

MASTER THESIS

DATA PROCESSING

NETWORKS MADE EASY
IMPROVING DEVELOPMENT POSSIBILITIES FOR

PEOPLE WITH LIMITED COMPUTER SCIENCE

KNOWLEDGE

Christiaan Alexander Nouta

SOFTWARE ENGINEERING GROUP
FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND
COMPUTER SCIENCE

GRADUATION COMMITTEE

Dr. Andreas Wombacher
Dr. Hasan Sözer
Rezwan Huq, M.Sc.

JANUARY 2011

Data Processing Networks Made Easy

Improving development possibilities for people
with limited computer science knowledge

by

Christiaan Alexander Nouta

born on the 1st of August 1985
in Sneek, The Netherlands

MASTER THESIS

Graduation committee:

Dr. Andreas Wombacher
Dr. Hasan Sözer

Rezwan Huq, M.Sc.

University of Twente

Software Engineering Group
Faculty of EEMCS

PO Box 217
7500 AE Enschede
The Netherlands

January 2011

“The function of good software is to make the complex appear to be simple.”
- Grady Booch

Acknowledgements

The writing of this thesis marks the end of my Computer Science Master at the
University of Twente. It was a wonderful time with many great moments which
I will carry with me for the rest of my life. This project was a great challenge
and I would like to thank everybody who made this possible.

I would not have been able to successfully complete this project without the
support of my supervisors Andreas Wombacher, Hasan Sözer and Rezwan Huq.
I learned a lot from them, and their critical questions and professional comments
have put this project, and thesis, to a higher level. I would also like to thank
the members of the CCES project RECORD for their support. In particular
Paolo Perona for providing me the required photo material. I am inspired by
their dedication and enjoyed the trip to their field site.

Due to setbacks in the project and opportunities beside my study, it was some-
times hard to keep focused and motivated. I would like to thank Sharon Vonk
for her support during these moments.

I thank Sabine Padberg-Heskamp and Barbara Spikker-Sieverink for their ad-
ministrative support.

I would like to thank all my college friends for making these years in Enschede
unforgettable. In particular, Joost and Matthias, for the endless laughs we
had and the nice projects we did. Even though our planning was often far
from optimal, I enjoyed every minute. Furthermore, I would like to thank my
roommates Maarten, Tim and Tri for the nice time we had together. With them
I discovered the fun of cooking and I will never forget some of their recipes.

The past few years where quite busy and therefore I would like to thank my
girlfriend, Sybrigje Pietsje, for her endless amount of patience and for being
there for me, no matter what. I have had endless love and support from my
family throughout my life. I would like to thank my parents, Klaas and Ankie,
and my sisters, Ella and Nanda, for the close bond we have.

v

Abstract

Data processing networks are not only used by computer science people, nowa-
days researchers in all kinds of research topics are processing large amounts of
data. Considering the required knowledge and amount of time, the development
of a distributed and/or (de)centralized data processing network is often not an
option for them. Sometimes they create scripts for the various processing steps,
which are manually executed step-by-step. It is clear that such a procedure is
far from optimal, especially in a streaming data environment. Due to the pop-
ularity of the internet, distributed data or even decentralized processing is used
more often. By introducing decentralization or distributed data, the complexity
of the overall processing network is increased dramatically. Both aspects re-
quire some overhead which lowers the understandability of the data processing
network in general.

We consider the following problems in supporting the development of data pro-
cessing networks by people with limited computer science knowledge. First, a
large group of users does not have a good overall understanding of the key con-
cepts and reusable components of a data processing networks. Second, existing
architectural styles are not well-suited for documenting a data processing view.
Third, the current tool support is insufficient for people with limited computer
science knowledge.

To tackle the first problem, we introduce a basic model for data processing
networks. Implementing a data processing network is a costly-process, it is
important that the users have a good understanding of the general structure.
This basic model can be used to overcome a potential knowledge gap between
the users and developers. To create a more detailed (technical) view of a data
processing network, we introduce a specialized model.

As a new architectural style, we introduce the data processing style for docu-
menting a data processing view. For documenting a more detailed (technical)
view of a data processing network, we introduce the DatProNet style. By cre-
ating a specialized data processing view, the understandability of the general
structure is increased.

As a solution for the third problem, we propose the DatProNet framework that
supports the development of data processing networks by people with limited
computer science knowledge. The complete development life cycle of data pro-
cessing networks is covered by the DatProNet framework, which reduces the
development and maintenance effort and increases the ease of use. XML-editors
can be used for the creation, and validation, of architectural descriptions. Based

vii

on a valid architectural description, the framework can generate a concrete im-
plementation. The DatProNet framework provides a set of reusable compo-
nents, which can be used to extend the framework if needed. Communication
with external systems is possible through the use of serializers. The framework
is completely implemented in JAVA, which implies a high portability.

Contents

1 Introduction 1

1.1 Thesis Scope . 1

1.2 Motivation . 2

1.3 The Approach . 3

1.3.1 Data Processing Network Analysis 3

1.3.2 Architectural Style for Data Processing 4

1.3.3 Framework for the Realization of Data Processing Networks 4

1.4 Thesis Overview . 4

2 Case Study: Water Segmentation on Aerial Photos 7

2.1 Problem Description . 7

2.2 Algorithm for Water Segmenting on Aerial Photos 8

2.2.1 Colour-Based Pixel Classification 9

2.2.2 Correlation-Based Classification 10

2.3 Discussion . 10

2.4 Related Work . 11

2.5 Conclusions . 12

3 Data Processing Networks 13

3.1 Basic Model . 13

3.2 Specialized Model . 14

3.3 Discussion . 16

3.4 Related Work . 16

3.5 Conclusions . 17

4 Documenting Data Processing Networks 19

ix

4.1 Documenting Software Architectures 19

4.1.1 Software Architecture Descriptions 20

4.1.2 Software Architecture Views 21

4.2 The Need for a Domain-Specific View 22

4.3 Data Processing Style . 23

4.4 DatProNet Style . 24

4.5 Using the DatProNet Style . 25

4.6 Discussion . 26

4.7 Related Work . 27

4.8 Conclusions . 27

5 Realization of Data Processing Networks 29

5.1 Basic Requirements . 29

5.2 DatProNet: A Framework for the Realization of Data Processing
Networks . 30

5.2.1 Reusable Components . 31

5.2.2 Architecture Description Language 32

5.3 Extending the DatProNet Framework 40

5.4 Using the DatProNet Framework 41

5.5 Discussion . 47

5.6 Related Work . 47

5.7 Conclusions . 47

6 Evaluation 49

6.1 DatProNet framework . 49

6.2 Segmentation Algorithm . 51

6.2.1 Performance Measurement 51

6.2.2 Qualitative Evaluation . 53

6.2.3 Evaluation by Example 55

6.3 Discussion . 56

6.4 Conclusions . 57

7 Conclusions 59

7.1 Problems . 59

7.2 Solutions . 60

7.2.1 Analyzing Data Processing Networks 60

7.2.2 Documenting Data Processing Networks 60

7.2.3 Realization of Data Processing Networks 61

7.3 Future Work . 61

A XML-Schema of the DatProNet Language 63

B XML-Schema for DatProNet Extensions 77

C Architectural Description of Case Study 81

Bibliography 85

Chapter 1

Introduction

Data processing can be defined as the concept of applying a series of operations
on data in order to fulfil a certain task [52]. A network can be defined as a
group of computers or (software) components connected through communica-
tion channels [45]. Based on these two definitions, a data processing network
can be defined as a network of computers or (software) components which apply
a series of operations on data in order to fulfil a certain task. Data process-
ing networks can be centralized or decentralized. Moreover, the data to process
can be distributed among various computers. The development of a distributed
and/or decentralized data processing network can be a complex task and re-
quires a considerable amount of time. The concept of distributed data and/or
decentralization introduces some overhead to the processing algorithm which
increases the complexity and lowers the overall understandability.

Data processing networks are not only used by computer science people, nowa-
days researchers in all kinds of research topics are processing large amounts of
data. Considering the required knowledge and amount of time, the development
of a distributed and/or (de)centralized data processing network is often not an
option for them. Sometimes they create scripts for the various processing steps,
which are manually executed step-by-step. It is clear that such a procedure is
far from optimal, especially in a streaming data environment. In this thesis,
various methods and techniques are introduced to support the development of
data processing networks by people with limited computer science knowledge.

1.1 Thesis Scope

The work presented in this thesis has been carried out to support the CCES
project RECORD [10]. The main objective of this project is to investigate
the effects of river restoration on the surrounding environment in hydrological,
biogeochemical and ecological terms [10]. The activities of the CCES project
RECORD [10] are focused on the Swiss river Thur. The river is monitored by
various devices, including two digital cameras. The researchers are now inter-
ested to see how computer vision algorithms can be used to support the calibra-

1

2 Chapter 1. Introduction

tion of their environmental models. For this calibration they need a segmented
version of the pictures taken by the cameras. A picture needs to be segmented
using two classes: water and non-water. Unfortunately the researchers do not
have the required knowledge to design and develop such kind of data process-
ing network. Currently, they are using various scripts to process their scientific
data. These steps are manually executed, one at a time, which can be a time
consuming and error-prone process.

Nowadays distributed and/or decentralized data processing networks become
more and more popular. Both aspects introduce some advantages, but it also
increases the complexity of the data processing network. Therefore it is harder
to understand or develop such kind of data processing network, especially for
people with limited computer science knowledge. The development of a data
processing network is a costly-process, it is important that the users have a
good understanding of the general structure to prevent expensive redesigns.
This increasing complexity brings us to the main question of this thesis:

How can we support the development of a data processing network
by people with limited computer science knowledge?

To find an answer to the question above, answers to the following sub questions
are needed:

1. What are the main concepts and reusable components of a data processing
network?

2. How can we document a data processing network design?

3. How can we support the realization of data processing networks by people
with limited computer science knowledge?

The first sub question is essential to the other two sub questions. With a
clear model of data processing networks it becomes easier to document and
implement data processing networks. The main question can then be answered
by combining the answers from the three sub questions.

1.2 Motivation

Researchers are processing more and more data nowadays. This trend is sup-
ported by the ever-increasing processing capacity and increasing complexity of
research. Sometimes this is done using various independent scripts, which are
manually executed one after another. It is clear that this can be a time consum-
ing and error-prone process. Data processing networks can be used to support
the processing of these streams of data. Due to the popularity of the inter-
net, distributed data or even decentralized processing is used more often. By
introducing decentralization or distributed data, the complexity of the over-
all processing network is increased dramatically. Both aspects require some
overhead which lowers the understandability of the data processing network in
general. Because not everyone has adequate knowledge of distributed data or
decentralized processing, more and more people have to rely on other people
for the implementation of their data processing networks. Due to this knowl-
edge gap, the risk on costly-redesigns and delays is increased. By introducing

Chapter 1. Introduction 3

a model-driven development approach, where unnecessary implementation de-
tails are abstracted away, these risks can be minimalized. The realization of a
data processing network can be automated by creating a model describing its
software architecture as a composition of reusable architectural elements.

First of all, we need to perform a domain analysis on data processing networks.
By selecting the general concepts and reusable components, a basic model can
be created. This model can be used to get a better understanding of a data
processing network which will improve the communication between the various
stakeholders. After we created a basic model, a specialized model can be build
which supports a higher level of implementation details.

After we performed a domain analysis, the possibilities of documenting a data
processing network design are analyzed. A data processing network has a soft-
ware architecture and can therefore be documented by a software architecture
description which commonly uses more than one architectural views. Each view
supports one or more concerns of the stakeholders involved. Capturing all these
concerns inside a single architectural view is often not possible due to the com-
plexity of a software system. An analysis of the current practise of representing
architectural views reveals that new dedicated views are needed to document a
data processing view.

The implementation of a data processing network is not always trivial and re-
quires a substantial development and maintenance effort, especially for people
with limited computer science knowledge. Developers need to be supported for
the implementation of a data processing network.

Accordingly, this thesis provides modelling, documenting and realization tech-
niques to improve the development opportunities of data processing networks
by people with limited computer science knowledge.

1.3 The Approach

In the following subsections, the followed approaches for supporting the docu-
mentation and development of data processing networks are summarized. The
overall goal is to employ documentation and implementation techniques to im-
prove the understandability and development of data processing networks.

1.3.1 Data Processing Network Analysis

After performing a domain analysis, a basic, and easy understandable, model
of data processing networks should be created. Since implementing a data
processing network is a costly-process, it is important that the users have a good
understanding of the general structure. The basic model can be used to overcome
a potential knowledge gap between the users and developers. To provide a
more detailed (technical) representation of a data processing network, a more
specialized model should be created. This model can be used if a more detailed
(technical) view on the design is needed, but requires additional knowledge.
After this step, we should be able to answer the first sub question.

4 Chapter 1. Introduction

1.3.2 Architectural Style for Data Processing

Once a basic and a more specialized model is created, a special data processing
view can be added to an architectural description of a data processing network.
A data processing view will increase the understandability of the structure and
can be used to communicate architectural design decisions with respect to data
processing. A practical and easy-to-use method is needed to create such a
data processing view. For this purpose, the data processing style is introduced.
This style defines a notation based on the concepts identified in the basic data
processing network model. As a further specialization of the data processing
style, the DatProNet style is introduced. The DatProNet style defines a notation
based on the concepts mentioned in the specialized data processing network
model and can be used for documenting a more detailed view of a data processing
network. Using the DatProNet style, a data processing view for the CCES
project RECORD [10] case study is created. After this step, we should be able
to answer the second sub question.

1.3.3 Framework for the Realization of Data Processing
Networks

After the software architecture of a data processing network is designed and
documented, it can be implemented accordingly. To reduce the implementation
and maintenance effort, an architecture description language (ADL) is intro-
duced which can be used to generate a concrete implementation through the
DatProNet framework. This ADL is based on the same model as the DatProNet
style, so it should be easy to map a data processing view to such an architectural
description. Using this ADL and the DatProNet framework, a data processing
network is created for the CCES project RECORD [10] case study. After this
step, we should be able to answer the third sub question.

1.4 Thesis Overview

This thesis is organized as follows.

Chapter 2 provides background information on our case study, CCES project
RECORD [10], which is used throughout this thesis. To support the calibration
of the environmental models used by those researchers, an algorithm for water
segmentation on aerial photos using a water and non-water class is proposed.

Chapter 3 provides a domain analysis on data processing networks. It defines a
basic model for data processing networks. A further specialized model is created
for a more detailed (technical) representation of a data processing network.

Chapter 4 introduces a new architectural style, called data processing style
for modelling the structure of a data processing network. This style can be
used to communicate and analyse architectural design decisions with respect to
data processing. A more specialized style is introduced, the DatProNet style,
to support a more detailed data processing view. Both styles are based on

Chapter 1. Introduction 5

the models presented in chapter 3. The usage of these styles is illustrated by
defining a data processing view for the CCES project RECORD [10].

Chapter 5 presents an architecture description language, called the DatProNet
language, which can be used for the automated realization of a data processing
network by the DatProNet framework. The usage of this language and frame-
work is illustrated by defining a data processing network for the CCES project
RECORD [10] case study.

Chapter 6 presents an evaluation of the DatProNet framework. The perfor-
mance of the segmentation algorithm is evaluated using a small and a larger set
of aerial photos from our CCES project RECORD [10] case study.

Chapter 7 provides our conclusions. The discussions, possible extensions and
related work for the various sub questions are provided in the corresponding
chapters.

An overview of the main chapters can be found in the figure below. The rect-
angles present the chapters of this thesis, the solid arrows indicate the rec-
ommended reading flow. The reader can start at Chapter 2 or 3, both are
self-contained. Chapter 4 should be read before Chapter 5. Chapter 6 is di-
vided into two parts. The first part, about the evaluation of the DatProNet
framework, depends on Chapter 5. The second part, about the evaluation of
the segmentation algorithm, only depends on Chapter 2.

Figure 1.1: The main chapters of this thesis and the recommended reading flow

6 Chapter 1. Introduction

Chapter 2

Case Study: Water
Segmentation on Aerial
Photos

The work presented in this thesis has been carried out to support the CCES
project RECORD [10]. The main objective of this project is to investigate
the effects of river restoration on the surrounding environment in hydrological,
biogeochemical and ecological terms [10]. The CCES project RECORD [10] is
focused on a small part of the Swiss river Thur. At their project site the river is
monitored by different devices, including two digital cameras. The researchers
are interested to see how computer vision algorithms can be used to support
the calibration of their environmental models. For this calibration they need
a segmented version of the photos taken by the cameras. In this chapter an
algorithm is proposed which segments an aerial photo using a water and non-
water class.

This chapter is organized as follows. Section 2.1 provides a more detailed de-
scription of the actual problem. In section 2.2 an algorithm for the segmentation
of aerial photos using a water and non-water class is presented. A conclusion is
given after discussing the alternatives and related work in sections 2.3 and 2.4
respectively.

2.1 Problem Description

The CCES project RECORD [10] is aimed at investigating the effects of river
restoration on the surrounding environment in hydrological, biogeochemical and
ecological terms [10]. Their activities are focused on the river Thur, the largest
river in Switzerland without a natural or artificial reservoir [5]. Their field site
is located at the restored section at Niederneunforn and Altikon [5]. The river,
and the surrounding environment, are analyzed, monitored and observed by
different instruments, among them are two digital colour cameras looking up-

7

8 Chapter 2. Case Study: Water Segmentation on Aerial Photos

or downwards to the river. Pictures are taken every thirty minutes and stored
on a computer located at the project site. The researchers are curious to see
how computer vision techniques can be used to support their research. As a
start, they are interested in the possibilities of using the pictures taken by the
cameras for the calibration of their scientific models. For a sample photo taken
by the upstream camera, see picture 2.1.

Figure 2.1: Sample photo taken by the upstream camera

The main goal is to develop an algorithm which automatically segments aerial
photos using a water and non-water class. The algorithm must be as generic as
possible, in other words, it must be easy to apply the algorithm on aerial photos
from another natural environment.

2.2 Algorithm for Water Segmenting on Aerial
Photos

Image segmentation is a fundamental problem in computer vision. Over the
past few years various methods and techniques about image segmentation are
proposed in the literature. Interesting for reading are [34, 55, 38, 43]. Inspired
by this literature, we developed an algorithm which segments pictures using a
water and non-water class. The algorithm uses two different computer vision
techniques, colour-based pixel classification and pixel correlation. Both steps
are discussed in more detail below. The proposed algorithm is used throughout
this thesis as an example processing task.

Chapter 2. Case Study: Water Segmentation on Aerial Photos 9

2.2.1 Colour-Based Pixel Classification

Pixel classification can be done using various techniques which can be cate-
gorized into the following two groups: method-based or learning-from-example
classification. Using the first technique all the conditional and prior probabil-
ities are derived from general knowledge and mathematical models. In case of
the learning-from-example approach, the various probabilities are derived from
sample objects. Different measurements are done on the sample objects and the
gathered data is used to train a classifier. Because the appearance of water is
influenced by many factors, which are hard or even impossible to model, the
second approach is used.

Figure 2.2: Possible segmentation problems

A perfect aerial photo would contain water with a high contrast and clear bound-
ary to its surroundings. Unfortunately this is not always the case, as you can see
in picture 2.2. The colour of the water is influenced by many factors. Among
them are the depth of the water, the amount of sediment and of course the
weather conditions. Pixel classification implies that each pixel is classified in-
dividually by a so called classifier. A classifier can be trained in two different
ways: supervised and unsupervised. During supervised learning the related class
is known for each sample measurement. This is not the case for unsupervised
learning. In our case, the first approach is more suitable because there is no
clear distinguishing between water and non-water.

Figure 2.3: Calculation of the minimal-water-area

Following the learning-by-example approach, the classifier needs to be trained
with some reference data. This data can be extracted during a so called train-
ing phase. Because the appearance of the water can change overtime, reference
data is collected from the current photo. Training of the non-water class is hard
because almost everything can appear in the surroundings of water. Therefore

10 Chapter 2. Case Study: Water Segmentation on Aerial Photos

a single-class classifier is used. In order to extract meaningful training informa-
tion from the current picture, some references are needed. To determine useful
reference points, a training phase is introduced. During this phase, the algo-
rithm is provided with a set of manual segmented photos. From this collection,
the minimal-water-area is determined. The minimal-water-area is defined as
the intersection of all the water areas inside the trainings photos, see figure 2.3
for an example. To (partially) overcome the problem of human segmentation
errors, a configurable margin is used around the borders of the water areas. For
the classification, a configurable amount of reference points are used to gather
training data. The colour of the water can be quite different inside a single pic-
ture, therefore local reference points are used if possible. The gathered colour
information is then used by the classifier to classify each pixel, in other words
it calculates the probability that a specific pixel belongs to the water class.

2.2.2 Correlation-Based Classification

The second step is aimed at the correlation between pixels inside a single picture.
This idea is derived from a filled bowl. If water is detected at the edges of a
bowl, we know for sure that there will be water in centre (due to its shape).
For aerial pictures, this idea is more complicated since the shape of the river
is probably not so regular. Even though this information can be quite useful
in combination with the results of the first step. The correlation between the
pixels is calculated during the training phase.

The results from the pixel classification step are used to determine reference
points. Pixels with a probability above a certain threshold are selected, and
their correlated pixels are determined. The correlated pixels are ranked by its
correlation factor, which is defined by the number of times it is correlated by
another pixel. Pixels below a configurable lower limit are regarded as non-
water and pixels above the configurable upper limit are regarded as water. All
pixels ranked between these boundaries, are submitted for a reclassification.
This reclassification is done by a two-class classifier. The classifier is trained
with colour information gathered from the already known water and non-water
pixels.

After the reclassification, the final result can be determined. Pixels are classified
as water if they have a correlation rank above the upper limit or if they are
classified as water by the two-class classifier.

2.3 Discussion

Determination of the training set

During the training phase of the algorithm, a set of pictures is needed to de-
termine the minimal-water-area and the correlation between the pixels. The
overall performance of the algorithm is strongly related to the usefulness of the
training set. The usefulness of a training set is influenced by various aspects.
For the determination of the minimal-water-area, it is important to have at

Chapter 2. Case Study: Water Segmentation on Aerial Photos 11

least one picture with a water level at a certain minimum. Secondly, a picture
with a water level at a certain maximum is needed to enlarge the set of possi-
ble water pixels. The algorithm only segments those pixels which have bin at
least once classified as water during the training phase. By discarding pixels
which are definitely non-water, for example the sky, the processing time is de-
creased. The lower and upper boundaries of the algorithm are defined by the
minimal-water-area and union of all the segmented training pictures.

To ensure the usefulness of the correlation step, a diverse training set is needed.
Add as much as possible pictures with various water levels. Be careful with
mixing older and more recently taken pictures. The usefulness of the correlation
step can decrease dramatically if the shape (or flow) of the river is changing.

Determination of the thresholds

In both steps various configurable thresholds are used. The overall result can
be strongly influenced by these values. The (sub)optimal values can be different
for each set of aerial photos, and are determined by a trail-and-error technique.
Automated determination of optimal thresholds is considered as a possible ex-
tension.

2.4 Related Work

A two-stage algorithm for shoreline detection is proposed in [53]. This algorithm
starts with classifying the image to one of the following two types: reflection-
unidentifiable and reflection-identifiable. For reflection-unidentifiable images, a
thresholding method based on the grey level intensity is used. A line-fitting
technique is then used to eliminate outliers. For reflection-identifiable images,
a two-class region classifier is used. The image is segmented into small areas
based on their colour homogeneity. The areas are then classified by a classifier
using the symmetry and brightness characteristics of the areas. In our case, both
reflection-unidentifiable and reflection-identifiable images are possible. Unfortu-
nately, the appearance of the water (and especially the colour) can have a high
overlap with the surrounding nature. A thresholding method based on the grey
level intensity is therefore almost useless. Furthermore, the reflections appear-
ing inside the CCES project RECORD [10] pictures are not always symmetric
and thus makes their reflection based classification less useful.

Algorithms for coastal boundary detection on satellite images can be found in
[26, 9]. These algorithms often assume a clear boundary, caused by high contrast
in colour. Unfortunately this is not the case for the pictures taken by the two
cameras of the CCES project RECORD [10]. Furthermore, the difference with
respect to the camera viewpoint makes the methods and techniques proposed
in this research topic less useful.

A water detection algorithm for autonomous off-road navigation is presented in
[35]. This algorithm uses a multi-cue approach. Colour, texture and reflections
characteristics are used to detect the water inside a picture. Instead of using a
supervised learning method, they try to model the characteristics of the water by

12 Chapter 2. Case Study: Water Segmentation on Aerial Photos

analyzing the appearance of water on a large set of aerial photos. The reflection-
cue uses stereo-imaging techniques. The CCES project RECORD [10] does not
have access to a stereo based camera set-up and because of the strong weight of
this reflection-cue on the final classification the algorithm is less useful at this
moment, but it is considered as a possible extension.

2.5 Conclusions

In this chapter a two-step algorithm for segmenting aerial pictures using a water
and non-water classes is proposed. A training phase is required to determine
reference points and the correlation between pixels. Colour-based pixel classifi-
cation is used to extend the set of reference points. Pixel correlation is used to
perform the final segmentation of the aerial photo.

Chapter 3

Data Processing Networks

Recall our definition of a data processing network: a network of computers or
(software) components which apply a series of operations on data in order to
fulfil a certain task. To support the development of a data processing network by
people with limited computer science knowledge, a domain analysis is needed.
In this chapter the main concepts and reusable elements of a data processing
network are identified, see also sub question number one as defined in section
1.1. These concepts are used to create a basic model and a more specialized
model, with respect to implementation and platform alternatives. A clear model
will increase the understandability of a data processing network and prevents
expensive redesigns.

This chapter is organized as follows. Section 3.1 provides a basic model of data
processing networks. In section 3.2 a more specialized model is presented which
uses a more detailed representation with respect to implementation and platform
alternatives. This specialized model will be used throughout this thesis. A
conclusion is given after discussing the alternatives and related work in sections
3.3 and 3.4 respectively.

3.1 Basic Model

For a good understanding of a data processing network, a basic model is needed.
This model identifies the basis concepts and the relations among them. Using
our definition of a data processing network, various general concepts are iden-
tified which can be found in figure 3.1. Three types of relations are possible:
associations, aggregations and generalizations. An aggregation indicates a part-
whole relationship. Associations and aggregations consists of a role and an op-
tional cardinality. For example, the diagram illustrates that a data processing
network fulfils (the role) one or more (the cardinality) tasks, a transformation
is part of a filter, and a data source is a specialization of an input port.

There are a few important concepts which need some explanation. A filter,
which is deployed on a node, consists of one or more input ports, a transformation
and one or more output ports. An input port can be a data source, which

13

14 Chapter 3. Data Processing Networks

Figure 3.1: Data processing networks, a basic model

originates and provides data, or an input gateway, which provides an entrance
to a filter. An output port can be a data sink, which stores data for further
use, or an output gateway which provides an entrance to a pipe. Nodes can be
connected to other nodes by communication channels. A pipe transmits data
from an output gateway to an input gateway using a communication channel.

3.2 Specialized Model

The basic model provides a high level representation of a data processing net-
work. In this section a more specialized model is presented which can be used
to provide a more detailed representation, with respect to implementation and
platform alternatives. This specialized model is created using the information
from the CCES project RECORD [10] case study (see chapter 2) and various
other data processing networks [40, 17, 51].

Chapter 3. Data Processing Networks 15

Based on our case study, as presented in chapter 2, three extensions of the basic
model can be derived. The first extension is a specialization of a data source,
called a file system listener, which monitors the file system for changes. A second
specialization of a data source is added, called a random value generator, which
can be used for debugging purposes or as a trigger for a specific filter. Thirdly,
a specialization of a data sink is created, called file system storage, which stores
data packages on the file system.

Figure 3.2: Data processing networks, a specialized model

From the data processing networks presented in [40, 17, 51] various other spe-
cialisations of a data source and data sink can be derived, see figure 3.2. These
three data processing networks need some static input parameters for their pro-

16 Chapter 3. Data Processing Networks

cessing tasks. Parameters can be put into a configuration file, but sometimes
it is easier, and nicer, to ask the user for these constants. A parameter prompt
asks the user to fill-in some constants and put them into a single data package.

These data processing networks are all printing there results onto the screen,
therefore the concept of a screen is introduced as a specialization of a data
sink. Another specialization of a data sink can be derived from the current
trend of storing data inside a database using a DataBase Management System
(DBMS) like Oracle database [33] or SQL Server [28]. A DBMS controls not
only the storage but also the organization, retrieval, security and integrity of
data inside a database. An external storage data sink is created to represent the
logic needed to transmit the data to an external storage system like a DBMS.

3.3 Discussion

Decomposition of transformation

In the basic model, and even the specialized model, the transformation is not
further specialized. Because the transformation represents the actual processing
operation, there are countless specializations possible. With adding specializa-
tions of a transformation, the model will be harder to read. In our case the
possible benefits of a further decomposed transformation do not outweigh the
disadvantages with respect to the understandability of the model.

Data source and data sink specializations

The specialized model contains three data sources and three data sinks. Even
though it is possible that another data source or data sink is needed. The
specialized model contains commonly used specializations of these concepts,
but can be extended if needed.

3.4 Related Work

Data processing networks are a special case of Kahn process networks [46], a
model based on deterministic processes which are communicating through un-
bounded FIFO channels. There are a couple important differences between data
processing networks and Kahn process networks. First, Kahn process networks
are using unbounded FIFO channels for the communication between processes.
The basic, and also the specialized, model do not specify any constrains on
the boundedness of channels. Secondly, determinism is not required for data
processing networks. Kahn process networks are deterministic, which means
that it must produce always the same output given a particular input (history).
Another difference can be found in the way the channels are used. In a Kahn
process network, reading from a channel is blocking while writing to a channel
is non-blocking. Our data processing network models do not contain such a
restriction.

Chapter 3. Data Processing Networks 17

A model for dataflow process systems is proposed in [23]. Dataflow process
systems tend to be a special case of Kahn process networks. The model intro-
duces the concept of a dataflow actor and firing rules. When a dataflow actor
fires, it will map input to output tokens. The moment of firing is specified by
a set of firing rules. These rules specify the input tokens needed for an actor to
fire. Once it fires, input tokens are consumed and output tokens are produced.
Unlike Kahn processes, dataflow processes can be interleaved by a so called
scheduler. This scheduler determines the order in which the various actors can
fire. An advantage of these networks is that there is no context switch overhead
for the suspension or resumption of a process.

Conventional query processing methods assume a relatively static and pre-
dictable computation environment [6]. Unfortunately, these techniques are not
sufficient in an constantly changing environment with large streams of continues
queries on data streams [6]. The TelegraphCQ [6] query processing system is
introduced to overcome these problems. It is focused on its adaptability inside
a frequently changing environment.

The past few years a lot of research has been done on the subject of data
stream processing. Many of these have led to the development of a so called
data stream management system, like Aurora [4]. These systems often use a
graphical user-interface to build queries using a set of operators. An overview
of the models and issues related to data stream (management) systems can be
found in [2, 14, 30].

A software architecture cannot be described in a simple one-dimensional fashion
[7]. An architectural description is therefore organized by a set of views. Each
view illustrates a specific aspect of the system and supports one or more con-
cerns. In [7] a model is presented for documenting a component-and-connector
view. One of the specializations of the component-and-connector view, called
the pipe-and-filter style, has many similarities with the models presented in the
previous sections. The pipe-and-filter style contains definitions of a pipe and
filter, but are more high level with respect to their functionality.

A workflow is an automated business process in which documents, information
or tasks are processed according a set of rules [8]. A data processing networks
is in fact a workflow, but a workflow is not always a data processing network.
Workflow systems like Kepler [19] or Taverna [41] are using a very detailed
model with respect to the actual transformation, which requires more technical
knowledge and increases the complexity of the overall model.

3.5 Conclusions

In this chapter a basic model for data processing networks is presented. A filter
which is deployed on a node, consists of one or more input ports, a transforma-
tion and one or more output ports. An input port can be a data source, which
originates and provides data, or an input gateway, which provides an entrance
to a filter. An output port can be a data sink, which stores data for further
use, or an output gateway which provides an entrance to a pipe. Nodes can be
connected to other nodes by communication channels. A pipe transmits data

18 Chapter 3. Data Processing Networks

packages from an output gateway to an input gateway using a communication
channel.

A specialized model is presented to provide a more detailed representation, with
respect to implementation and platform alternatives. This specialized model
contains specializations of a data source and data sink. A data source can be
a file system listener, which monitors the file system for changes, a random
value generator, which can be used for debugging purposes or as a trigger for
a specific filter or a parameter prompt, which asks the user to fill-in some con-
stants and put them into a single data package. A data sink can be a screen,
which prints the contents onto the screen, a file system storage, which stores
the data packages on the file system, or an external storage, which can be used
for transmitting data packages to an external storage system like a DBMS.

Chapter 4

Documenting Data
Processing Networks

Each data processing network has an architecture. The software architecture of
a data processing network consists of the structure or structures of that system,
which comprise software elements, the externally visible properties of those, and
the relationships among them [3].

A software architecture represents a common abstraction of a system that can be
used by people, interested in the construction of the software system, for mutal
understanding and communication among them [3]. Between these so called
stakeholders, there can be a quite large knowledge gap. In this chapter the
data processing style and its specialization the DatProNet style are introduced,
which can be used for documenting a data processing network design, see also
sub question two as defined in section 1.1.

This chapter is organized as follows. Section 4.1 provides a short introduction
about documenting software architectures. In section 4.3 the data processing
style is introduced and its specialization, the DatProNet style, is described in
section 4.4. Section 4.5 illustrates the usage of the DatProNet style for the CCES
project RECORD [10] case study (see chapter 2). A conclusion is given after
discussing the alternatives and related work in sections 4.6 and 4.7 respectively.

4.1 Documenting Software Architectures

The software architecture of a system embodies various important design de-
cisions, which impacts all the next steps inside the software development life
cycle (e.g. development, maintenance, etcetera). It is clear that these decisions
must be carefully documented. Software architectures improve the reusability
of architectural models between systems with similar functional requirements
and/or quality attributes [3].

In the following subsections some basic concepts and techniques are introduced
about describing software architectures.

19

20 Chapter 4. Documenting Data Processing Networks

4.1.1 Software Architecture Descriptions

The software architecture of a system is described by a collection of documents
called the architectural description. The IEEE 1471 standard, Recommended
practice for architectural description of software-intensive systems, [25] is a use-
ful guideline for the creation of such an architectural description. This standard
introduces a conceptual framework which can be found in the diagram below.

Figure 4.1: The conceptual framework as proposed in IEEE 1471 [25]

The diagram shows the different concepts and the relations among them. Two
types of relations are possible: associations and aggregations. An aggregation
indicates a part-whole relationship. Both types consists of a role and an op-

Chapter 4. Documenting Data Processing Networks 21

tional cardinality. For example, the diagram illustrates that a stakeholder has
(the role) one or more (the cardinality) concerns and that a view is part of
an architectural description. There are a few important concepts which need
some explanation. A stakeholder is a person or organisation that is interested in
the construction of the system. Some typical stakeholders are the end-user(s),
software architect, system engineer, developer, designer, etcetera. Each stake-
holder has some interests, called concerns, in the development, operation or any
other critical aspect of the software system. In some cases these concerns are
conflicting to each other. A view consists of a collection of models illustrating a
particular aspect of the system. A viewpoint is a specification for creating and
using a particular view.

IEEE 1471 [25] provides a practical guideline for describing software architec-
tures. It does not standardize the process of designing an architecture nor the
format or notation used for the documentation. In the literature various ar-
chitectural design methods or software design processes are proposed, such as,
Attribute-Driven Design [3], Model-Driven Design [20] and Rational Unified
Process [22]. In practise, UML [37] is often used for describing architectures,
but there are also several specific architecture description languages (ADLs)
proposed in the literature, such as, Aesop [13], Darwin [24] and Weaves [15].

4.1.2 Software Architecture Views

A software architecture cannot be described in a simple one-dimensional fash-
ion [7]. An architectural description is therefore organized by a set of views.
Each view illustrates a specific aspect of the system and supports one or more
concerns. In the literature some authors have proposed fixed sets of views to
document a software architecture. For example, Kruchten’s 4+1 view approach
[21] introduces a logical view, a development view, a process view and a phys-
ical view. On the other hand the current trend is more like taking different
sets of views for different systems instead of a fixed set for all software systems.
The IEEE 1471 standard has taken this trend into account by just proposing a
multi-view approach and not a particular set of views.

Figure 4.2: Viewpoint, viewtype, style and view

22 Chapter 4. Documenting Data Processing Networks

In the literature many different views can be found. Clements et al. proposed
their Views and Beyond (V&B) approach [7] to bring some order to all these
views. They basically split the viewpoint concept into a viewtype and a style
(see figure 4.2). A viewtype defines the elements and their possible relation-
ships which can be used to describe the system from a particular perspective
[7]. A style specializes the elements and relationships defined by a viewtype
and adds some (additional) constrains on their usage [7]. The V&B approach
introduces three different viewtypes: the module viewtype, the component-and-
connector viewtype and the allocation viewtype. Furthermore they introduce
different specializations, for example, the pipe-and-filter style is a specialization
of the component-and-connector viewtype. The concept of viewtypes and styles
makes the V&B approach easy adaptable since an architect can define any style
needed.

4.2 The Need for a Domain-Specific View

Data processing networks are used in many different domains. The scientific
research domain is just one of them. During the development of a data process-
ing network, there can be a quite large knowledge gap between the developers
and the researchers. They are mainly interested in how the data flows and less
about how this is achieved. Therefore it is important to have a specialized data
processing view which can be easily understood by all interested stakeholders.

The IEEE 1471 standard proposed a multi-view approach but it does not intro-
duces any specific views. The V&B approach introduces various different styles
which can be used for documenting a software architecture. One of the styles
they propose is the pipe-and-filter style which is often used for documenting
data transformation systems.

Figure 4.3: Relation between the data processing style and the DatProNet style

Chapter 4. Documenting Data Processing Networks 23

In the next section, a data processing style is proposed which specializes the
elements and relations of the pipe-and-filter style. To document data processing
networks represented by the specialized model from section 3.2, another style is
created, called the DatProNet style, in which the elements and relations of the
data processing style are further specialized (see figure 4.3).

4.3 Data Processing Style

The data processing style can be used for documenting a data processing view.
The notation for the key concepts from the basic model (see section 3.1) can
be found in figure 4.4. For notation purposes only, the concept of a binding is
added.

Figure 4.4: Data processing style notation

� Elements: Filter. Filter ports must be either input (light coloured) or
output (dark coloured) ports. An input port can be an input gateway or
a data source. An output port can be an output gateway or a data sink.

� Relations: Binding, Pipe.

� Properties of elements: Properties of a Filter: a name which suggest its
functionality, a description indicating its place inside the data processing
network, one or more input ports and one or more output ports.

� Properties of relations: Properties of a Pipe: type of communication (for
example synchronous or a-synchronous).

� Topology : A pipe connects an output gateway to an input gateway. A
binding connects an input port to an input gateway or connects an output
gateway to an output port. Bindings can only be used inside a filter. Every
input and output gateway should be connected using these rules. Filters
can be placed inside other filters using the binding relation and the rules
above. Each set of connected filters should contain at least one filter with
a data source input port and one filter with a data sink output port (can
be combined in a single filter).

24 Chapter 4. Documenting Data Processing Networks

The DatProNet style introduces the filter element with different kinds of input
and output ports. Data packages are arriving through the input ports. Inside
the filter there will be some data transformation applied onto the packages. Data
packages are leaving the filter through its output ports. Input gateways are just
passing data packages from a binding or pipe to the filter. Data sources are
originating and providing data to the filter. Output gateways are passing data
packages from the filter to a binding or pipe. Data sinks store data packages
for further use. A binding can only be used to connect two filters placed inside
of each other. A pipe is used for the communication between two filters. Each
pipe uses its own type of communications and has its own quality properties (in
the sense of recoverability, performance, etcetera).

4.4 DatProNet Style

In this section, the DatProNet style is presented in which the elements and
relations of the data processing style are further specialized according to the
specialized model as introduced in section 3.2. The key elements and relations
can be found in figure 4.5.

Figure 4.5: DatProNet style notation

� Elements: Filter. Filter ports must be either input (light coloured) or
output (dark coloured) ports. An input port can be an input gateway, a
file system listener, a parameter prompt or a random value generator. An
output port can be an output gateway, a screen, a file system storage or
an external storage.

Chapter 4. Documenting Data Processing Networks 25

� Relations: Binding, Socket Pipe.

� Properties of elements: Properties of a Filter: a name which suggest its
functionality, a description which suggest its place inside the data pro-
cessing network, one or more input ports and one or more output ports.
Properties of a File System Listener: the element (directory or file) it lis-
tens to and some performance based properties (e.g. delay between two
polling sessions, minimal delay between the generation of two data pack-
ages, etcetera). Properties of a Parameter Prompt: a set of parameters
which has to be provided (manually) by the user and the type of commu-
nication used (for example command-line). Properties of a Random Value
Generator: a range specifying the possible values it can generate and some
performance based properties (same as File System Listener). Properties
of an Output Gateway: a number indicating the amount of pipes which
will be selected (randomly) to pass an incoming data package on. Proper-
ties of a File System Storage: a directory indicating the location where the
packages will be stored. Properties of an External Storage: a description
of the external application used for storing the incoming data packages.

� Properties of relations: Properties of a Socket Pipe: the port number
used for the socket communication and an optional condition indicating
in which cases the pipe accepts data packages.

� Topology : A pipe connects an output gateway to an input gateway. A
binding connects an input port to an input gateway or connects an output
gateway to an output port. Bindings can only be used inside a filter. Every
input and output gateway should be connected using these rules. Filters
can be placed inside each other using the binding relation and the rules
above. Each set of connected filters should contain at least one filter with
a data source input port and one filter with a data sink output port (can
be combined in a single filter).

4.5 Using the DatProNet Style

Figure 4.6 illustrates the usage of the DatProNet style for documenting a data
processing view for the CCES project RECORD [10] case study. A description
of the CCES project RECORD case study can be found in chapter 2.

The figure illustrates just one possible data processing view. Many alternatives
are possible. One of them would be to remove the specializations of the training
and analyze filter. Some computer vision details are lost but depending on the
interested stakeholders, it could be a valid choice.

Another design alternative would be to move (and copy) the file system lis-
tener input port of the settings filter to the two merge filters. In that case the
communication overhead between the settings filter and the two merge filters
is removed, but two file system listeners are created instead (with their own
polling interval). From a performance point of view, its is better to have just
one settings filter since the configuration file will not change frequently.

26 Chapter 4. Documenting Data Processing Networks

Figure 4.6: A data processing view for the CCES project RECORD [10] case
study (for key see figure 4.5)

4.6 Discussion

Style or Viewpoint?

The data processing style is a specialization of the pipe-and-filter style intro-
duced by the V&B approach [7]. The V&B approach does not describe the
concept of a viewpoint, as defined by the IEEE 1471 standard [25], however it
introduces the viewtypes and styles. A viewpoint describes the language and
notation used to create a particular view. Therefore the data processing style,
and also the DatProNet style, can be considered as a viewpoint as well since
both styles define a notation to describe a data processing view. Because both
styles are strongly related to the component-and-connector viewtype and the
pipe-and-filter style, the terminology of the V&B approach is selected.

Data Flow Views

A data processing view is not the same as a data flow view. The relations defined
by the data processing style have a different meaning than the ones used in a
data flow view. A pipe, as defined by the data processing style, represents
a connector with a clear computational meaning. The relations drawn in a
data flow view have little computation meaning, there simply flows some data
between the two elements (which can be realized by a connector).

Chapter 4. Documenting Data Processing Networks 27

Static and dynamic analysis

Static analysis can support the user with the development of a faultless data
processing network. Static analysis contains at least a verification of the topol-
ogy requirements as stated in the previous sections. But even after performing
this verification, it is still possible to develop a data processing network con-
taining one or more faults. For example, if a data processing view contains a
loop, it is impossible to verify (with static analysis) that a specific data package
eventually will arrive at a data sink output port. With dynamic analysis more
verification can be done. For example, a verification of the performance prop-
erties of the various input ports (together with a suggestion of their optimal
values). Other possibilities of applying static and dynamic analysis on a data
processing view is considered as feature work.

4.7 Related Work

In [18] UML 2.0 is discussed as a language/notation for documenting software
architectures and in particular component-and-connector views. With respect
to earlier versions of UML there is some improvement but still its not possible
to represent connectors (the pipes) in an intuitive way.

A comparison of architectural styles for network-based software architectures
can be found in [11]. After a classification and comparison of the existing
styles, the Representational State Transfer (REST) style for distributed hyper-
media systems is introduced. In comparison with the data processing style, and
also the DatProNet style, the REST style is more focused on the network prop-
erties instead of the data processing aspects. Depending on the interest of the
stakeholders, both styles can be used inside an architectural description.

Workflows can be created with a Workflow Management Systems like Kepler
[19] or Taverna [41] using an intuitive drag-and-drop interface. A workflow is
defined as the automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for
action, according to a set of procedural rules [8]. A data processing network
is in fact a workflow, but a workflow is not always a data processing network.
The workflows created by these systems support some decentralization aspects,
but there is always a central system needed to execute the workflow, so it is
not completely decentralized. In comparison with the data processing style,
the workflows created by Kepler [19] or Taverna [41] offer a more detailed view
on the processing task, especially on how the transformation is done. De data
processing style, and even the DatProNet style, are more high level and thus
require less knowledge about the application.

4.8 Conclusions

In this chapter a data processing style is introduced for documenting a data
processing network. The data processing style is a specialization of the pipe-

28 Chapter 4. Documenting Data Processing Networks

and-filter style as defined in the V&B approach [7]. The DatProNet style is
introduced in which the elements and relations of the data processing style are
further specialized. The usage of these styles has been illustrated by defining a
data processing view for the CCES project RECORD [10] case study.

Chapter 5

Realization of Data
Processing Networks

In the previous chapter the data processing style and its specialization, the
DatProNet style, where introduced. After designing, documenting and ana-
lyzing the architecture of a data processing network, the various architectural
elements and relations should be implemented. In this chapter the DatProNet
framework is introduced to reduce the development and maintenance effort of
a data processing network, see also sub question number three as defined in
section 1.1.

This chapter is organized as follows. Section 5.1 provides an outline of the
basic requirements. In section 5.2, the DatProNet framework is introduced.
Section 5.3 discusses the extensibility of the DatProNet framework. Section
5.4 illustrates the usage of the DatProNet framework for the CCES project
RECORD [10] case study (see chapter 2). A conclusion is given after discussing
the alternatives and related work in sections 5.5 and 5.6 respectively.

5.1 Basic Requirements

The development of a data processing network imposes certain requirements to
its architecture. Based on our models from chapter 3 and the CCES project
RECORD [10] case study (see chapter 2), the following requirements are iden-
tified (sorted by importance):

� Reliability : A data package flowing through a data processing network
may never be lost, not even during any kind of system failure.

� Ease of use: People with limited computer science knowledge should be
able to develop, and maintain, a data processing network through the
framework.

� Interoperability : A typical data processing network uses various exter-
nal applications to perform the processing steps. The framework should

29

30 Chapter 5. Realization of Data Processing Networks

provide a way to communicate (bi-directional) with these applications pre-
serving the requirements and quality aspects denoted.

� Portability : The framework should support various system environments.
It should be possible to develop data processing networks which can be
deployed on a Windows [29], Linux (e.g. RedHat Linux [36]) or Unix
(e.g. FreeBSD [12]) based platform. Furthermore it should support the
possibility of having various system environments inside one specific data
processing network.

� Recoverability : In case of a system failure (hardware or software) the
data processing network should be able to recover from this event and
return to a consistent state. The framework must be captured to deal
with unavailability of nodes, for example, by sending retrying messages or
by generating exceptions.

� Extensibility : It should be possible to extend the framework with cus-
tomized input or output ports, transformations and/or pipes. In this way
each user can customize the framework to its own special needs without
having to develop a complete data processing network from scratch.

5.2 DatProNet: A Framework for the Realiza-
tion of Data Processing Networks

To reduce the development and maintenance effort of a data processing network,
the DatProNet framework is introduced. The framework has been implemented
in the JAVA language [32]. Through the concept of write-once-run-anywhere
[50], a variety of platforms are supported. The DatProNet framework comprises
a collection of reusable components and an architecture description language,
both items are discussed in the following subsections.

The development life cycle of a data processing network is illustrated in figure
5.1. Once a data processing view is created, it can be mapped to an architectural
description using the DatProNet language. This architectural description can
be put into the DatProNet framework which creates the required deployment
packages for the various machines. Each deployment package can only be used
on the machine it is created for.

Figure 5.1: The development life cycle of a data processing network

Chapter 5. Realization of Data Processing Networks 31

5.2.1 Reusable Components

The frameworks includes a set of reusable abstractions for data processing net-
works. Figure 5.2 shows a conceptual view of the DatProNet framework as an
UML class diagram [44]. The framework comprises eight main components: Fil-
ter, InputPort, OutputPort, Transformation, Condition, PipeEnd, DataPackage
and Serializer. Using these reusable components, the DatProNet framework can
be easily extended. Section 5.3 provides more information about extending the
DatProNet framework with user-defined components.

Figure 5.2: A Conceptual View of the DatProNet framework

32 Chapter 5. Realization of Data Processing Networks

Each node inside a data processing network is mapped onto a Filter. Each Filter
connects the related InputPorts to the Transformation, and the Transformation
to the related OutputPorts. A data package flowing through the data processing
network is encapsulated by a DataPackage which contains a list of data items
and a list of related resources. A pipe is divided into two parts (so called
PipeEnds): a Source and a Destination.

DataPackages are generated by DataSources. Each data processing network
must contain at least one DataSource. The framework contains three prede-
fined DataSources: one that monitors the file system for changes, one that
generates DataPackages with a random value and one that asks the user for
some additional input. Other DataSources can be developed by implement-
ing DataSource. InputGateways are passing DataPackages from a Destination
PipeEnd to the related Transformation.

Once the DataPackages are arrived at the Transformation, various operations
are possible. The framework contains four predefined transformations. The first
transformation applies a Cross-Join operation on the incoming DataPackages.
The second one provides the possibility of adding and removing data items in-
side a DataPackage. The third transformation can be used for (bi-directional)
communication with an external application. The last one is an empty trans-
formation, it just passes the DataPackages without any transformation. Other
transformations can be developed by implementing Transformation.

OutputGateways are passing DataPackages from the Transformation to the con-
nected Source PipeEnds. By default, incoming DataPackages are put on all the
connected, and activated through Condition, Source PipeEnds. The Random
specialization selects randomly a specific number of connected, and activated,
Source PipeEnds. DataPackages can be stored by DataSinks using a specific
Serializer. The framework contains three predefined DataSink implementations:
one for storing the DataPackages onto the file system, one for external storage
and one for showing incoming DataPackages onto the screen. Other DataSinks
can be developed by implementing DataSink.

A Serializer can be used for converting DataPackages to any other format. The
framework contains a MATSerializer which can be used for serializing Data-
Packages to a MatLab-readable format [42]. Serializers for other applications
or formats can be developed by implementing Serializer.

The InputPort, Transformation, OutputPort and PipeEnd components use an
acknowledge based method to communicate to each other. In this way a reliable
data processing network can be created. Furthermore, The PipeEnd compo-
nents are using a polling technique to recover from unavailable nodes inside the
data processing network.

5.2.2 Architecture Description Language

The DatProNet language can be used to create an architectural description.
The language is XML-based and defined by its own XML-schema which can
be found in Appendix A. Because it is XML-based, the architectural descrip-
tions can be created and validated by XML-editors like XMLBlueprint [39] or

Chapter 5. Realization of Data Processing Networks 33

XML Notepad [27]. With this architecture description language all the fea-
tures of the DatProNet framework can be configured. An architectural de-
scription consists of various components, and all these components are defined
by XML-tags. When we refer to an XML-tag including its contents, we call
it an XML-element. An XML-element thus includes all enclosed XML-tags
and XML-elements. An XML-tag consist of a keyword enclosed by the brack-
ets ’<’ and ’>’. The DatProNet language is strongly structured and consists
of a root element called <project>, which contains a <filters> element. The
<filters> element consists of a set of <filter> elements. A <filter> element
has three sub elements: an <input> element, a <transformation> element and
an <output> element.

1 <project >

2 <filters >

3 <filter name=" Sample Filter" runat ="127.0.0.1"

buffer ="10">

4 <input >

5 ...

6 </input >

7 <transformation >

8 ...

9 </transformation >

10 <output >

11 ...

12 </output >

13 </filter >

14 </filters >

15 </project >

Listing 5.1: The basic structure of an architectural description

The <filter> element has three attributes: name, runat and buffer (optional).
The first attribute depicts its name and must be unique. The second attribute
shows the ip-address of the machine where the filter will be deployed on. The last
attribute indicates the maximum number of DataPackages inside the internal
buffer. In the following subsubsections the three sub elements of the <filter>

element are discussed.

The <input> element

The <input> element consists of a set of <port> elements. Each <port>

element has two attributes: name and type. The name must be unique inside
the parent <input> element. Four types of InputPorts are defined: gateway,
filesystemlistener, parameterprompt and randomvaluegenerator. The first
type has no aditional sub elements and just passes the incoming DataPackages
to the related Transformation. The other three types have their own set of sub
elements.

A filesystemlistener InputPort monitors a specific file or directory on the
file system, and when it detects a change (e.g. a file is added or removed), the

34 Chapter 5. Realization of Data Processing Networks

modified files are put into a DataPackage. The file or directory can be specified
by the <object> element. In the case of a directory, no subdirectories are taken
into account by default, if needed they can be set by the <depth> element.
Three operational modes are possible in case of a directory: all, collection
and single, which can be specified by the <mode> element. When single is
selected, only the modified file is put into a DataPackage. In case of multiple
modified files, each file is put into a separate DataPackage. When collection

is selected, all the modified files are put into one single DataPackage. When
the option all is selected, the complete contents of the directory is put into
one single DataPackage. The <key> element is used to define the name for
the entries inside the DataPackage. With the <initialization> element, the
start-up procedure can be defined. Two types of initialization are possible:
clear (default) or current. When clear is selected, the file or all the files
inside the directory are said to be modified at start-up. When current is
selected, the modification time of the file or the contents of the directory is
stored at start-up and used for the next check. With the optional <delay>

and <lifetime> elements, the delay between two checks and the lifetime of the
generated DataPackages can be set (milliseconds).

1 <port name="Input" type=" filesystemlistener">

2 <object >C:\ images\</object >

3 <depth >1</depth >

4 <key >configuration </key >

5 <initialization >clear </ initialization >

6 <mode >single </mode >

7 <delay >700</delay >

8 <lifetime >700</ lifetime >

9 </port >

Listing 5.2: An InputPort of type filesystemlistener

A parameterprompt InputPort asks the user to provide some additional in-
put. These parameters can be defined through the <parameters> tag. The
<parameters> tag consists of one or more <parameter> tags. A <parameter>

tag consists of the following tags: a <key> tag indicating its name inside a Data-
Package, a <title> tag indicating the title of the parameter (will be shown to
the user) and a <type> tag indicating the parameter type. Possible types are
boolean, file, float, integer, and string.

1 <port name="Input" type=" parameterprompt">

2 <parameters >

3 <parameter >

4 <key >Count </key >

5 <title >Number of loops </title >

6 <type >integer </type >

7 </parameter >

8 </parameters >

9 </port >

Listing 5.3: An InputPort of type parameterprompt

Chapter 5. Realization of Data Processing Networks 35

A randomvaluegenerator InputPort generates DataPackages with a pseudo-
random integer value inside. This can be useful for debugging purposes or to
trigger another filter. The range can be defined using the <min> (inclusive) and
<max> (exclusive) elements. The <key> element is used to define the name for
the entry inside the DataPackage. With the optional <delay> and <lifetime>

elements, the delay between the generation of two DataPackages and their life-
time can be set.

1 <port name="Input" type=" randomvaluegenerator">

2 <min >0</min >

3 <max >100</max >

4 <key >trigger </key >

5 <delay >700</delay >

6 <lifetime >700</ lifetime >

7 </port >

Listing 5.4: An InputPort of type randomvaluegenerator

The <transformation> element

A <transformation> element has only one attribute indicating its type. There
are four types of Transformations possible: empty, external, join and reform.
The empty Transformation does not apply any transformation onto the incoming
DataPackages. The other three types can be configured by their own set of sub
elements.

An external Transformation passes DataPackages to an external application.
The external application can be defined by the <command> element. Parameters
can be passed through the <parameters> element which consists of a set of
<parameter> elements. The value of the <parameter> element may contain %f

and %d markers which are substituted for the temporary DataPackage filename
and directory respectively. With the <serializer> element, the required Seri-
alizer can be selected. The DatProNet framework contains only one predefined
serializer. This matlab serializer can be used to convert a DataPackage to a
Matlab-readable format [42]. To prevent endless waiting, a timeout can be set
with the optional <timeout> element. The default value is set to 60 seconds.
In case the timeout expires, an exception will be thrown. The exit value can
be defined by the optional <exitvalue> element (default 0). When the current
exit value differs from the configured one, an exception will be thrown.

1 <transformation type=" external">

2 <command >matlab.exe </command >

3 <parameters >

4 <parameter >-nodesktop </parameter >

5 <parameter >-wait </parameter >

6 <parameter >-r</parameter >

7 <parameter >load(’%f’); Node1_input_test =

Node1_input_test + 1; save -v6 ’%f’

Node1_input_test; exit;</parameter >

36 Chapter 5. Realization of Data Processing Networks

8 </parameters >

9 <serializer >matlab </serializer >

10 <timeout >3600000 </ timeout >

11 <exitvalue >0</exitvalue >

12 </transformation >

Listing 5.5: A Transformation of type external

A join Transformation applies a cross-join operation on the incoming Data-
Packages. For each connected InputPort, a separate buffer is created. If a
DataPackage is arriving through an InputPort, it is joined with all the Data-
Packages inside the other buffers. DataPackages stay in their buffer until they
expire (by their lifetime) or when the buffer reach its capacity, which can be
defined by the <capacity> element. When the maximum capacity is reached,
DataPackages are removed using the first in - first out principle.

1 <transformation type="join">

2 <capacity >100</min >

3 </transformation >

Listing 5.6: A Transformation of type join

A reform Transformation can be used for adding or removing data entries to
or from a DataPackage. The reform Transformation can be used for example
to create a looping mechanism inside a data processing network. The required
<packages> element consists of a set of <package> elements. A <package>

element contains a set of <addfield> and <removefield> elements. The first
element, <addfield>, can have two attributes: key and override (optional).
The key attribute indicates the name of the (new) entry, and override indicates
if an existing key may be overwritten by its new value. The <removefield> has
only one attribute: the key of the entry that must be removed. If n <package>

elements are defined, each incoming DataPackage will result in n outgoing Data-
Packages.

1 <transformation type=" reform">

2 <packages >

3 <addfield key="x" override =" false">0</addfield >

4 <removefield key="y" />

5 </packages >

6 </transformation >

Listing 5.7: A Transformation of type reform

The <output> element

The <output> element consists of a set of <port> elements. Each <port>

element has two attributes: name and type. The name must be unique inside
the parent <output> element. Five types of OutputPorts are defined: gateway,
external, file system, random and screen. The first four types have their

Chapter 5. Realization of Data Processing Networks 37

own set of sub elements, the screen type just prints the contents of a Data-
Package onto the screen and requires no further configuration.

A gateway OutputPort passes incoming DataPackages onto the connected, and
activated, pipes. The related pipes can be defined through the <pipes> element.
The optional activation rules can be defined through the <conditions> element.
The <conditions> element consists of a set of <condition> elements. The
<condition> element has one attribute indicating its name which must by
unique inside its parent <conditions> element. The <condition> element
contains a boolean value tag, like <true> or <false>, or a boolean determina-
tion tag, like <match> or <time>, or a boolean operator tag, like <and>, <or> or
<not>, or a reference to another <condition> tag using the <reference> tag.
The <and>, <or> and <not> elements behave like the boolean operations and,
or and not and consist of at least one sub tag (boolean value, determinator,
operator or reference).

The <match> element can be used to match a DataPackage by its contents. It
can be configured by a <key> and/or <value> element. If only the <key>

element is defined, the <match> element returns true when an entry with
the value of the <key> element is defined inside the DataPackage. If only
the <value> element is defined, the <match> element returns true when the
DataPackage contains an entry with a value equal to the value of the <value>

element. If both elements, <key> and <value>, are defined, the <match> element
returns true if this combination exists inside the DataPackage.

Character Description Example

d Day of the month, 2 digits with
leading zeros

01 to 31

j Day of the month without leading
zeros

1 to 31

N ISO-8601 numeric representation of
the day of the week

1 (for Monday) through 7 (for
Sunday)

z The day of the year (starting from 0) 0 through 365

m Numeric representation of a month,
with leading zeros

01 through 12

M Numeric representation of a month,
without leading zeros

1 through 12

W ISO-8601 week number of year, weeks
starting on Monday

42 (the 42nd week in the year)

y A two digit representation of a year 99 or 10

Y A full numeric representation of a
year, 4 digits

1999 or 2010

h 12-hour format of an hour with
leading zeros

01 through 12

H 24-hour format of an hour with
leading zeros

00 through 23

i Minutes with leading zeros 00 through 59

s Seconds with leading zeros 00 through 59

Table 5.1: Possible characters for the <format> element. Based on [16]

38 Chapter 5. Realization of Data Processing Networks

The <time> element has one attribute indicating its type and has two sub
elements: <format> and <value>. The value of the <format> element can be
formatted using the characters found in Table 5.1. The type is used to compare
the current date, formatted by the <format> element, against a limit, defined
by the <value> element. The type of comparison can be defined by the type

attribute of the <time> element. There are six types possible: less, lessequal,
equal, greater, greaterequal and notequal. For example, when the less

type is selected, the <time> element will return true if the formatted date is
less then the specified limit.

1 <port name=" output" type=" gateway">

2 <conditions >

3 <condition name=" weekdays">

4 <time type=" lessequal">

5 <format >M</format >

6 <value >5</value >

7 </time >

8 </condition >

9 <condition name=" weekend">

10 <not >

11 <reference name=" weekdays" />

12 </not >

13 </condition >

14 </conditions >

15 <pipes >

16 <pipe destination =" Node1.input"

condition =" weekdays" type="local" />

17 <pipe destination =" Node2.input"

condition =" weekend" type="tcp">

18 <portnumber >1444 </ portnumber >

19 </pipe >

20 </pipes >

21 </port >

Listing 5.8: An OutputPort of type gateway

The <pipes> element consists of a set of <pipe> elements. A <pipe> element
can have three attributes: destination, condition (optional) and type. The
destination attribute indicates the destination InputPort of the pipe. A des-
tination consists of the destination filter name, followed by a dot and then
the name of the InputPort. The condition attribute contains the name of
the condition which decides if the pipe accepts DataPackages. The DatProNet
framework provides two predefined pipes: local and tcp. The local pipe re-
quires no further configuration but can only be used between filters on the same
host. This type of communication is the most simple one, and provides the
highest performance. The tcp pipe can be used to connect Filters on different
hosts. Communication will be provided through the TCP protocol [48]. The
port number used for this type of communication can be defined through the
<portnumber> element.

Chapter 5. Realization of Data Processing Networks 39

A random OutputPort passes incoming DataPackages onto a number of pseu-
dorandom selected and activated pipes. This type of OutputPort can be used
for example to apply a simple way of load balancing. The configuration is com-
pletely the same as a gateway OutputPort except that an additional element is
added: the <select> element, which defines the number of pipes to select.

1 <port name=" output" type=" random">

2 <pipes >

3 <pipe destination =" Node1.input" type=" local" />

4 <pipe destination =" Node2.input" type=" local" />

5 <pipe destination =" Node3.input" type=" local" />

6 <pipe destination =" Node4.input" type=" local" />

7 </pipes >

8 <select >2</select >

9 </port >

Listing 5.9: An OutputPort of type random

An external OutputPort passes incoming DataPackages to an external appli-
cation for storage. The external application can be defined by the <command>

element. Parameters can be passed through the <parameters> element, which
consists of a set of <parameter> elements. The value of the <parameter>

element may contain %f and %d markers which are substituted for the tempo-
rary DataPackage filename and directory respectively. With the <serializer>

element, the required Serializer can be selected. The DatProNet framework
contains only one predefined serializer. This matlab serializer can be used to
convert a DataPackage to a Matlab-readable format [42]. To prevent endless
waiting, a timeout can be set with the optional <timeout> element. The de-
fault value is set to 60 seconds. In case the timeout expires, an exception will
be thrown. The exit value can be defined by the optional <exitvalue> element
(default 0). When the current exit value differs from the configured one, an
exception will be thrown.

1 <port name=" output" type=" external">

2 <command >matlab.exe </command >

3 <parameters >

4 <parameter >-wait </parameter >

5 <parameter >-r</parameter >

6 <parameter >load(’%f’);

storeCurrentWorkspace (); exit;</parameter >

7 </parameters >

8 <serializer >matlab </serializer >

9 <timeout >3600000 </ timeout >

10 <exitvalue >0</exitvalue >

11 </port >

Listing 5.10: An OutputPort of type external

A filesystem OutputPort stores incoming DataPackages onto the file system.
The <directory> element specifies the directory to store the packages into. For

40 Chapter 5. Realization of Data Processing Networks

each DataPackage a separate directory will be created. The files are stored using
a Serializer, defined by the <serializer> element.

1 <port name=" output" type=" filesystem">

2 <directory >C:\ Storage\</directory >

3 <serializer >matlab </serializer >

4 </port >

Listing 5.11: An OutputPort of type filesystem

5.3 Extending the DatProNet Framework

The DatProNet framework can easily be extended using XML and JAVA. In-
side the installation directory of the DatProNet framework, a folder called
extensions can be found. For each extension, a new subfolder needs to be
created. The name of this folder is not important to the system. Each exten-
sion can contain multiple user-defined components. Inside this new folder, a
file has to be created, called config.xml. This extension configuration file uses
XML, and is defined by its own XML-schema which can be found in Appendix
B. The configuration file consists of a root element called <extension>, which
contains a set of <component> tags. Each <component> tag defines a single user-
defined component. A <component> tag has only one required attribute, called
type, with four possible values: inputport, transformation, outputport and
pipe.

1 <extension >

2 <component type=" inputport">

3 <key >temperaturesensor </key >

4 <xmlschema >temperaturesensor.xml </xmlschema >

5 <class >datpronet.extensions.temperaturesensor.

TemperatureSensor </class >

6 </component >

7 <component type=" transformation">

8 <key >fahrenheittocelcius </key >

9 <class >datpronet.extensions.temperaturesensor.

FahrenheitToCelcius </class >

10 </component >

11 <component type=" outputport">

12 <key >simplemysqlinterface </key >

13 <xmlschema >simplemysqlinterface.xml </xmlschema >

14 <class >datpronet.extensions.temperaturesensor.

SimpleMySQLInterface </class >

15 </component >

16 </extension >

Listing 5.12: A sample extension configuration file

A <component> tag consists of the following sub elements: <key>, <class> and

Chapter 5. Realization of Data Processing Networks 41

<schema> (optional). The <key> tag is used to indicate the identifier inside
an architecture description. For example, when inputport is selected as the
component type, and temperaturesensor is used as a key, then it is possi-
ble to define an InputPort of type temperaturesensor inside an architectural
description.

The <class> tag indicates the full qualified java class name, including the
package name, of the user-defined component. In case of a <component> tag
of type pipe this <class> tag consists of two sub elements: <source> and
<destination>. Both elements contain the full qualified java class name of
the user-defined PipeEnd component. User-defined classes can be created by
extending one of the reusable components as described in the previous sections.
The optional <schema> tag can be used to refer to an XML-schema for defin-
ing additional parameters (and their properties). These XML-schemas can be
merged with the original DatProNet language XML-schema to validate an ar-
chitectural description with user-defined components.

5.4 Using the DatProNet Framework

The data processing view of the CCES project RECORD [10] case study, as
created in section 4.5, can be mapped to an architectural description using the
DatProNet language. Every Filter from the data processing view is mapped
onto a corresponding <filter> element inside the architectural description.
The complete architectural description can be found in Appendix C.

The Training Data filter

The Training Data filter is mapped to a <filter> element with a single In-
putPort of type filesystemlistener. When a file is added or removes from
the directory, the InputPort has to create a DataPackage with the complete
training set. Furthermore, it has no transformation to perform, so an empty

transformation is used. A single OutputPort of type gateway is added to pass
the DataPackages to the Merge filter. Because the Merge filter will be deployed
on the same host, a pipe of type local is used.

1 <filter name=" TrainingData" runat ="127.0.0.1" >

2 <input >

3 <port name=" input" type=" filesystemlistener">

4 <key >trainingpictures </key >

5 <mode >all </mode >

6 <object >C:\ TrainingData \</object >

7 <depth >1</depth >

8 <delay >700 </delay >

9 <initialization >clear </ initialization >

10 </port >

11 </input >

12 <transformation type=" empty" />

42 Chapter 5. Realization of Data Processing Networks

13 <output >

14 <port name=" output" type=" gateway">

15 <pipes >

16 <pipe destination =" Merge1.input1"

type=" local" />

17 </pipes >

18 </port >

19 </output >

20 </filter >

Listing 5.13: The configuration of the Training Data filter

The Settings filter

The Settings filter is mapped onto a <filter> element with a single Input-
Port of type filelistener. The InputPort has to create a DataPackage every
time the file has changed. It performs no further transformation, so an empty

transformation can be used. A single OutputPort of type gateway is added to
pass the DataPackages to the Merge filter. Two pipes are added to pass the
DataPackages to the two Merge filters, and because they will be deployed on
the same host, pipes of type local are used.

1 <filter name=" Settings" runat ="127.0.0.1" >

2 <input >

3 <port name=" input" type=" filesystemlistener">

4 <key >configuration </key >

5 <object >C:\ configuration.m</object >

6 <delay >700 </delay >

7 <initialization >clear </ initialization >

8 </port >

9 </input >

10 <transformation type=" empty" />

11 <output >

12 <port name=" output" type=" gateway">

13 <pipes >

14 <pipe destination =" Merge1.input2"

type=" local" />

15 <pipe destination =" Merge2.input1"

type=" local" />

16 </pipes >

17 </port >

18 </output >

19 </filter >

Listing 5.14: The configuration of the Settings filter

Chapter 5. Realization of Data Processing Networks 43

The first Merge filter

The first Merge filter is mapped to a <filter> element with two separate In-
putPorts of type gateway. Because the filter has to merge the incoming Data-
Packages, a transformation of type join is used with a capacity set to one. A
single OutputPort of type gateway is added to pass the DataPackages to the
Training filter. Because the Training filter will be deployed on the same host,
a pipe of type local is used.

1 <filter name=" Merge1" runat ="127.0.0.1" >

2 <input >

3 <port name=" input1" type=" gateway" />

4 <port name=" input2" type=" gateway" />

5 </input >

6 <transformation type="join">

7 <capacity >1</capacity >

8 </transformation >

9 <output >

10 <port name=" output" type=" gateway">

11 <pipes >

12 <pipe destination =" Training.input"

type=" local"/>

13 </pipes >

14 </port >

15 </output >

16 </filter >

Listing 5.15: The configuration of the first Merge filter

The Training filter

The Training filter is mapped to a <filter> element with a gateway InputPort.
Once the DataPackages are arrived, they are passed to an external Transforma-
tion for further processing. The internal filters, called Reference Area and Pixel
Correlation, are deployed inside the Matlab application. Once a DataPackage
is processed by Matlab, the trainings data is passed to an OutputPort of type
gateway. This OutputPort passes the DataPackages to the second Merge filter
using a pipe of type local (both on the same host).

1 <filter name=" Training" runat ="127.0.0.1" >

2 <input >

3 <port name=" input" type=" gateway" />

4 </input >

5 <transformation type=" external">

6 <command >matlab.exe </command >

7 <parameters >

8 <parameter >-nodesktop </parameter >

9 <parameter >-wait </parameter >

10 <parameter >-r</parameter >

44 Chapter 5. Realization of Data Processing Networks

11 <parameter >load(’%f’); startTraining ()l save

-v6 ’%f’; exit;</parameter >

12 </parameters >

13 <serializer >matlab </ serializer >

14 <timeout >3600000 </ timeout >

15 </transformation >

16 <output >

17 <port name=" output" type=" gateway">

18 <pipes >

19 <pipe destination =" Merge2.input2"

type=" local" />

20 </pipes >

21 </port >

22 </output >

23 </filter >

Listing 5.16: The configuration of the Training filter

The Acquire filter

The Acquire filter is mapped to a <filter> element with an InputPort of type
directorylistener. Every time the camera has taken a picture, it will be put
into a specific directory. The InputPort monitors this directory and when a new
picture is added, a DataPackage (with the new picture) is created. There is no
further transformation needed, so an empty transformation is used. A single
OutputPort of type gateway is added to pass the DataPackages to the second
Merge filter. Because the second Merge filter will be deployed on another host,
a pipe of type tcp is used.

1 <filter name=" Acquire" runat ="10.0.0.138" >

2 <input >

3 <port name=" input" type=" filesystemlistener">

4 <key >trainingpictures </key >

5 <mode >single </mode >

6 <object >C:\ Camera\</object >

7 <depth >1</depth >

8 <delay >700 </delay >

9 <initialization >clear </ initialization >

10 </port >

11 </input >

12 <transformation type=" empty" />

13 <output >

14 <port name=" output" type=" gateway">

15 <pipes >

16 <pipe destination =" Merge2.input3"

type="tcp">

17 <portnumber >1444 </ portnumber >

18 </pipe >

19 </pipes >

Chapter 5. Realization of Data Processing Networks 45

20 </port >

21 </output >

22 </filter >

Listing 5.17: The configuration of the Acquire filter

The second Merge filter

The second Merge filter is mapped to a <filter> element with three separate
InputPorts of type gateway. Because the incoming DataPackages have to be
merged, a join transformation with a capacity of one is used. A single Out-
putPort of type gateway is used to pass the DataPackages to the Analyze filter.
Because the Analyze filter will be deployed on the same host, a pipe of type
local is used.

1 <filter name=" Merge2" runat ="127.0.0.1" >

2 <input >

3 <port name=" input1" type=" gateway" />

4 <port name=" input2" type=" gateway" />

5 <port name=" input3" type=" gateway" />

6 </input >

7 <transformation type="join">

8 <capacity >1</capacity >

9 </transformation >

10 <output >

11 <port name=" output" type=" gateway">

12 <pipes >

13 <pipe destination =" Analyze.input"

type=" local"/>

14 </pipes >

15 </port >

16 </output >

17 </filter >

Listing 5.18: The configuration of the second Merge filter

The Analyze filter

The Analyze filter is mapped to a <filter> element with a single InputPort
of type gateway. Once the DataPackages are arrived through the InputPort,
they are put to the Matlab application for further processing. The resulting
DataPackages are passed to an OutputPort of type gateway. This OutputPort
passes the DataPackages to the Store filter. The Store filter will be deployed on
the same host, thus a pipe of type local is used.

1 <filter name=" Analyze" runat ="127.0.0.1" >

2 <input >

3 <port name=" input" type=" gateway" />

46 Chapter 5. Realization of Data Processing Networks

4 </input >

5 <transformation type=" external">

6 <command >matlab.exe </command >

7 <parameters >

8 <parameter >-nodesktop </parameter >

9 <parameter >-wait </parameter >

10 <parameter >-r</parameter >

11 <parameter >load(’%f’); analyzePicture ();

save -v6 ’%f’; exit;</parameter >

12 </parameters >

13 <serializer >matlab </ serializer >

14 <timeout >3600000 </ timeout >

15 </transformation >

16 <output >

17 <port name=" output" type=" gateway">

18 <pipes >

19 <pipe destination =" Store.input"

type=" local" />

20 </pipes >

21 </port >

22 </output >

23 </filter >

Listing 5.19: The configuration of the Analyze filter

The Store filter

The Store filter is mapped to a <filter> element with a single InputPort of type
gateway. No transformation is needed, thus an empty transformation is used.
A single OutputPort of type filesystem is used to store the DataPackages on
the file system.

1 <filter name=" Store" runat ="127.0.0.1" >

2 <input >

3 <port name=" input" type=" gateway" />

4 </input >

5 <transformation type=" empty" />

6 <output >

7 <port name=" output" type=" filesystem">

8 <directory >C:\ Storage\</directory >

9 <serializer >matlab </ serializer >

10 </port >

11 </output >

12 </filter >

Listing 5.20: The configuration of the Store filter

Chapter 5. Realization of Data Processing Networks 47

5.5 Discussion

The definition of pipes

During the design of the architecture description language there was discussion
about where to put the definition of pipes. The alternative would be to bundle
the definition of pipes, which can be an advantage, within a <pipes> tag beneath
the <filters> tag. In this case, both ends of the pipe should be specified and
it is harder to see which pipes are connected through a specific output gateway.
Another disadvantage would be that the definition of a pipe is not close to its
starting point, and therefore less intuitive.

5.6 Related Work

In [31] a highly-extensible architecture description language for software and
systems is proposed, called xADL, which is defined by a set of XML schemas.
Although xADL provides a large and extensive framework, it is not used within
this project because it would require to much specific knowledge from the user
in order to define an architectural description. The possibility of converting
an architectural description based upon the DatProNet language to xADL is
considered as future work.

A data stream management system called Aurora [4] has been developed for
monitoring, filtering and/or processing of data from numerous streams. Through
a graphical user-interface, queries can be build using a small set of operators.
Medusa [54] can be used to add distribution functionality. A new distributed
stream processing engine, called Borealis [1], is developed which uses the Aurora
system in conjunction with Medusa. Borealis address the problem of dynamic
revision of query results and dynamic query modification.

5.7 Conclusions

In chapter 5 the DatProNet framework is introduced together with an archi-
tecture description language. A data processing view can be mapped to an
architectural description using the DatProNet language. Based on a valid ar-
chitectural description, the framework can generate a concrete implementation.

The DatProNet framework offers various ways to interoperate with external
systems. Serializers can be used to convert data packages to almost any format
needed. Throughout the framework an acknowledge technique is used to pro-
vide reliable data processing networks. Input ports, transformations and output
ports are all equipped with a simple recovery technique. If for example a node is
(temporarily) unavailable, the other (connected) nodes will send retrying mes-
sage within a predefined interval. After a certain number of attempts, the nodes
will stop trying and inform the user about the current problem. The DatProNet
framework is completely implemented in JAVA, which implies a high portabil-
ity. The DatProNet framework requires no difficult or complex installation, just

48 Chapter 5. Realization of Data Processing Networks

copy the files and compile your architectural description. Even though the ex-
tension module is not yet available inside the prototype, the user can develop
their own input ports, transformations or output ports by implementing the
selected component.

Chapter 6

Evaluation

In the previous chapter we proposed the DatProNet framework to support the
development of data processing networks by people with limited computer sci-
ence knowledge. In this chapter an evaluation of the DatProNet framework is
presented, based on the requirements as stated in section 5.1. In chapter 2, we
proposed an algorithm for the segmentation of aerial photos using a water and
non-water class. Using the DatProNet framework, this algorithm can be imple-
mented into a data processing network. The performance of the segmentation
algorithm is evaluated by a small and a larger set of aerial photos from our
CCES project RECORD [10] case study.

This chapter is organized as follows. Section 6.1 presents an evaluation of the
DatProNet framework. An evaluation of the segmenetation algoritm is pre-
sented in section 6.2. A conclusion is given after discussing the alternatives in
section 6.3.

6.1 DatProNet framework

Empirical research is often an important aspect of the evaluation of a framework.
Unfortunately, such material is not yet available for the DatProNet framework,
therefore the basis requirements from section 5.1 are used as a guideline for the
evaluation.

Reliability

Throughout the framework an acknowledge technique is used to provide a reli-
able data processing network. Local buffers are used to ensure that data pack-
ages are not lost within a single filter. Data packages are only removed from
these buffers if an acknowledgement is received from the connected party. These
acknowledgements are only send if the data packages are stored successfully in
the local buffer of the connected party. A data processing network created with
the DatProNet framework can interoperate with other external systems, but the
reliability is only guaranteed for the standard (internal) components. Develop-

49

50 Chapter 6. Evaluation

ers of customized input ports, transformation or output ports should take there
own precautions to provide a reliable behaviour.

Ease of use

The complete life cycle of the development of a data processing network is
provided by the DatProNet framework. A basic model is provided to increase
the overall understandability of data processing networks by people with limited
computer science knowledge. Depending on the required technical details, the
specialized model can be used.

The design of a data processing network can be documented by a data pro-
cessing view using the data processing style or the more specialized DatProNet
style. Both styles use the same terminology as the models presented in chapter
3. A data processing view can be easily mapped onto a architectural descrip-
tion, using the DatProNet language. This architecture description language is
XML-based and thus strongly structured. Using the provided XML-schema,
architectural descriptions can be easily validated using the XML-editor of your
choice. For the creating of an architectural description, no specific computer sci-
ence knowledge is required, only the format and requirements of the DatProNet
language.

Once a valid architectural description is created, the framework can create
fully automatically the concrete implementation of the data processing network.
During the validation of the architectural description, all the requirements are
checked by the compiler. In case of an error, the user is presented with a helpful
error message. The framework requires no complex installation, it only needs
the JAVA environment to be available. The deployment packages generated
by the framework can directly, and only, be used on the nodes specified inside
the architectural description. Deployment mistakes are not possible because a
deployment package can only be deployed on the node it is compiled for.

Interoperability

The DatProNet framework offers various ways to interoperate with external
systems. The communication can be directional (e.g. external data sink), or
bi-directional (e.g. external transformation). Serializers can be used to convert
data packages to almost any format needed. The DatProNet framework contains
just one predefined serialized, which can be used to convert data packages to
a Matlab-readable format, more serializers can be developed by implementing
the Serializer class. The predefined external transformation and external data
sink components are using a timeout and exit code validator to monitor the
communication with an external system. If case of any problems, the user gets
warned through warnings or exceptions.

Portability

The DatProNet framework is completely implemented in JAVA, which implies
a high portability. The DatProNet framework requires no difficult or complex

Chapter 6. Evaluation 51

installation, just copy the files and compile your architectural description. To
prevent errors, deployment packages generated by the DatProNet framework
can only be deployed on the machines they are specified for.

Recoverability

Input ports, transformations and output ports are all equipped with a simple
recovery technique. If a filter or node goes down, or if one of the components
suffers from a software error, the node will be automatically recovered without
loosing a single data package. If a node is (temporarily) unavailable, the other
(connected) nodes will send retrying message within a predefined interval. After
a certain number of attempts, the nodes will stop trying and inform the user
about the current problem.

Extensibility

Even though the extension module is not yet available inside the prototype,
the user can develop their own input ports, transformations or output ports by
implementing the related component. Without using the extension module, as
described in section 5.3, the user should implement the desired class, modify the
DatProNet language and recompile the complete framework. With the extension
module, it is much easier to extend the various components. By placing the user
defined extensions inside a separate directory, extensions can be easily added
and removed without recompiling the complete framework.

6.2 Segmentation Algorithm

In this section the segmentation algorithm, as presented in chapter 2, is evalu-
ated by a small and large set of aerial photos from the CCES project RECORD
[10] case study. In order to evaluate these results, a clear model for measuring
the segmentation quality is needed.

6.2.1 Performance Measurement

For the evaluation of the segmentation algorithm, as presented in chapter 2, we
need to define a model for performance measuring. Inspired by the information
retrieval field, two statistical measurements properties are selected: precision
and recall [47]. In the field of information retrieval, precision is defined as the
fraction of retrieved documents which are relevant to the search [47]. Recall
is defined as the fraction of all the relevant documents which are successfully
received [47]. Below their formal definitions are given (taken from [47]).

Precision =
|{relevant documents} ∩ {retrieved documents}|

|retrieved documents|

Recall =
|{relevant documents} ∩ {retrieved documents}|

|relevant documents|

52 Chapter 6. Evaluation

Unfortunately, these definitions cannot be used directly because we need to
measure the performance in a classification context. We can modify these defi-
nitions by using the type I and type II errors from statistical hypothesis testing:
false positive and false negative [49]. Below the modified definitions of precision
and recall using type I and type II errors are given (taken from [49]).

Precision =
tp

tp + fp
Recall =

tp

tp + fn

tp = water is classified as water

fn = water is classified as non-water

fp = non-water is classified as water

tn = non-water is classified as non-water

In the context of our case study, a precision score of 1 means that all the
classified water is indeed water (exactness). On the other hand, a recall score of
1 means that all the water is classified correctly (completeness). For the CCES
project RECORD [10] case study precision and recall are equally important so
for the evaluation the weighted harmonic mean of precision and recall is used
(also known as the F-measurement [47]).

Performance = 2× precision× recall

precision + recall

The performance of the classification is of course the most important part of the
evaluation. On the other hand we are interested to see how much time is saved
by using our segmentation algorithm. The processing time of our algorithm
is highly depending on the hard- and software it is running on, but it is still
interesting to see if automatically segmentation is faster and if so, how much.
We use the definition below for measuring the amount of time saved by using
our segmentation algorithm.

Time saved = 1− Ax + By + C

A(x + y)

x = size of training set

y = size of test set

A = average time needed for manual segmenation of a picture

B = average time needed by the algoritm for the segmenation of a picture

C = time needed for the traning of the algorithm

A negative result means that the use of our algorithm has increased the time
needed for the segmentation of all the photos. A positive result means that we
saved a fraction of our time by using the segmentation algorithm.

Chapter 6. Evaluation 53

6.2.2 Qualitative Evaluation

For a qualitative evaluation of our segmentation algorithm, a set of 75 pictures
is selected from the upstream camera. All these pictures, with a resolution
of 2144 (width) by 1424 (height) pixels, are manually segmented, which took
approximately 15 minutes per picture. Depending on the desired precision this
time can be lowered. A training set of 15 pictures is created. The selection of
these pictures is based on a maximum diversity with respect to the water level.

The architectural description, as created in chapter 5, is now used to generate
the required deployment packages. In this evaluation, all the filters are deployed
on a single workstation with an Intel Pentium Core2Duo E8400 processor and
3.5GB of internal memory running Microsoft Windows XP Home with service
pack 3. After installing the segmentation algorithm, the data processing net-
work is started. For the segmentation algorithm, Matlab R2010b is used. The
training, based on these 15 pictures, took less then 10 minutes.

After the training phase, the actual segmentation can be done. The pictures
are now one-by-one segmented using a water and non-water class. The average
processing time for a picture turns out to be approximately 30 seconds. Once all
the pictures are segmented, the results are compared with our manual segmented
versions. The resulting performance can be found in figure 6.1.

Figure 6.1: Performance of the segmentationg algorithm on a test set of 60
pictures using a training set of 15 pictures

The results are quite promising, and will now be evaluated by discussing the
worst case, an average case and of course the best case. For each case we show
the results as an overlay on the picture. Blue indicates the water detected by our
segmentation algorithm, red indicates the classifications errors (false negatives
and false positives) . The overlay is made transparent, so it is possible to see
what is behind.

54 Chapter 6. Evaluation

Figure 6.2: Worst case: picture #5

The picture with the lowest performance can be found in figure 6.2. The pre-
cision could not be better, but the recall score leaves much to be desired. The
photo suffers from a relatively large colour overlap between the sandbank and
the surrounding water. Furthermore, classification errors can be found around
the trees and bushes. Classification of these pixels is hard because there is no
clear boundary between the water and for example the trees. These errors can
also be caused by human classification faults inside the reference picture.

Figure 6.3: Average case: picture #43

A picture with an average performance can be found in figure 6.3 . The result
is quite nice, especially if we look to the colour overlap between the sandbank

Chapter 6. Evaluation 55

and the surrounding water. The areas around the trees and bushes are also this
time a problem. The surrounding nature is constantly changing, which causes
the pixel correlation step to be less useful in the areas around trees and bushes.

Figure 6.4: Best case: picture #38

The picture with the highest performance can be found in figure 6.4. The
segmentation result is pretty good, even at the problem areas like the sandbank.
The high performance is a result of the high contrast between the water and
the surrounding nature. Furthermore, the sandbank does not contain a colour
overlap with the surrounding water, which makes the classification more easier.

The manual segmentation of the complete set of pictures, 75 in total, took
almost 20 hours. By using our segmentation algorithm, we completed the task
in less than 41⁄2 hours, which means a saving of more than 75 percent!

6.2.3 Evaluation by Example

After a qualitative evaluation, we are interested to see how the segmentation
algorithm performs on a set of more then 1500 pictures taken by the upstream
camera. For the training set, 35 pictures are selected. Because the pictures
where taken during a period of more than a year, the training set contained a
lot of different scenarios. Once these pictures where manually segmented, the
training of the algorithm was started.

Due to the large test set, it was not possible to create a reference set of these
pictures. Therefore these results are not evaluated by exact performance, but on
a more high level scale. Just 6 pictures, with mixed results, are selected to get a
good overview of the overall performance. Figure 6.5 shows some results of the
segmentation process as an overlay on the original pictures. Blue indicates the
water detected by our segmentation algorithm. The overlay is made transparent,
so it is possible to see what is behind.

56 Chapter 6. Evaluation

Figure 6.5: Sample results from an evaluation based on more than 1500 pictures

It is clear that these results are not as good as the ones from the qualitative
evaluation. All pictures suffer from a low recall. The precession on the other
hand is relatively high, except for the pictures with a flood. The problems are
highly related to the fact that the pictures are not stabilized before they are
processed. Due to camera movements, there can be a huge difference between
two consecutive pictures. This problem causes the minimal-water-area to be
relatively small. Therefore it will be harder for the algorithm to collect sufficient
reference information during the classification. Another problem is that the pixel
correlation step is less useful with such a large and diverse training set. There is
just to much difference between the training pictures. To improve these results,
the collection can be divided into a number of subsets which will be processed
separately (together with their own training set).

6.3 Discussion

Manual segmentation errors

The results of the segmentation algorithm evaluation are highly depending on
the manually segmented reference pictures. A manual classification fault, can
result in a lower recall and precision score during the evaluation. During the
segmentation of the training pictures, users are facing the same segmentation
problems, as described in chapter 2. Take for example a picture with a large
black spot around the bushes, caused by a shadow. Inside this shadow, it
is hard to see which pixels belongs to the water and which not. To partially
overcome the problem of human segmentation errors, a don’t care border is used
around the classified water. The results within this area are ignored during the
evaluation of the pictures. During the qualitative evaluation, a don’t care border
of 8 pixels is used.

Chapter 6. Evaluation 57

6.4 Conclusions

In this chapter, we have performed an evaluation of the DatProNet framework,
based on the basic requirements from section 5.1. A performance measurement
model is introduced for the evaluation of the segmentation algorithm. A qual-
itative evaluation of the segmentation algorithm is performed using a set of 75
photos from our CCES project RECORD [10] case study. Furthermore, an eval-
uation by example is performed using a set of 1500 pictures, covering a period of
more than a year. These results of the qualitative evaluation where promising,
nevertheless the results of the second evaluation where a bit disappointing. In
a rapidly changing environment it is better to divided the collection of pictures
into smaller subsets (with their on training set) otherwise the minimal-water-
area, and the pixel correlation step will be less useful. A stabilization step can
be introduced for further optimization.

58 Chapter 6. Evaluation

Chapter 7

Conclusions

Data processing networks are not only used by computer science people, nowa-
days researchers in all kinds of research topics are processing large amounts of
data. Considering the required knowledge and amount of time, the development
of a distributed and/or (de)centralized data processing network is often not an
option for them. Sometimes they create scripts for the various processing steps,
which are manually executed step-by-step. It is clear that such a procedure
is far from optimal, especially in a streaming data environment. Due to the
popularity of the internet, distributed data or even decentralized processing is
used more often. By introducing decentralization or distributed data, the com-
plexity of the overall processing network is increased dramatically. Both aspects
require some overhead which lowers the understandability of the data process-
ing network in general. To solve these problems, methods and techniques are
introduced to support the development of a data processing network by people
with limited computer science knowledge.

7.1 Problems

In this thesis, we have addressed the following problems related to the devel-
opment of data processing network by people with limited computer science
knowledge.

� Analyzing data processing networks: Since implementing a data process-
ing network is a costly-process, it is important that the users have a good
understanding of the general structure. A basic, and easy understandable,
model should be created to overcome a potential knowledge gap between
the users and developers. A more detailed model is needed to provided a
more detailed view, with respect to implementation and platform alterna-
tives, on the design of a data processing network.

� Documenting a data processing network design: Once a basic and a more
specialized model is created, a special data processing view can be added
to an architectural description of a data processing network. A data pro-

59

60 Chapter 7. Conclusions

cessing view will increase the understandability of the structure and can be
used to communicate architectural design decisions with respect to data
processing. A practical and easy-to-use method is needed to create such
a data processing view.

� Realization of data processing networks: The implementation of a data
processing network is not always trivial and requires a substantial develop-
ment and maintenance effort, especially for people with limited computer
science knowledge. Developers need to be supported for the implementa-
tion of a data processing network.

7.2 Solutions

In this section, an outline of our solutions to the addressed problems can be
found. Each solution addresses a specific step inside the development life cycle of
a data processing network, from domain analysis to the actual implementation.

7.2.1 Analyzing Data Processing Networks

A basic model for data processing networks is presented in chapter 3. A filter
which is deployed on a node, consists of one or more input ports, a transforma-
tion and one or more output ports. An input port can be a data source, which
originates and provides data, or an input gateway, which provides an entrance
to a filter. An output port can be a data sink, which stores data for further
use, or an output gateway which provides an entrance to a pipe. Nodes can be
connected to other nodes by communication channels. A pipe transmits data
packages from an output gateway to an input gateway using a communication
channel.

A specialized model is presented to provide a more detailed representation, with
respect to implementation and platform alternatives. This specialized model
contains specializations of a data source and data sink. A data source can be
a file system listener, which monitors the file system for changes, a random
value generator, which can be used for debugging purposes or as a trigger for
a specific filter or a parameter prompt, which asks the user to fill-in some con-
stants and put them into a single data package. A data sink can be a screen,
which prints the contents onto the screen, a file system storage, which stores
the data packages on the file system, or an external storage, which can be used
for transmitting data packages to an external storage system like a DBMS.

7.2.2 Documenting Data Processing Networks

In chapter 4 a data processing style is introduced for documenting a data pro-
cessing network. The data processing style is a specialization of the pipe-and-
filter style as defined in the V&B approach [7]. The DatProNet style is in-
troduced in which the elements and relations of the data processing style are

Chapter 7. Conclusions 61

further specialized. The usage of these styles has been illustrated by defining a
data processing view for the CCES project RECORD [10] case study.

7.2.3 Realization of Data Processing Networks

In chapter 5 the DatProNet framework is introduced along with an architecture
description language. A data processing view can be mapped to an architecture
description using the DatProNet language. This architecture description can be
put into the DatProNet framework which then creates the various deployment
packages.

Because the complete development life cycle of data processing networks is cov-
ered by the DatProNet framework, the development and maintenance effort is
further reduced and the ease of use increased. XML-editors can be used for
the creation, and validation, of architectural descriptions. Based on a valid ar-
chitectural description, the framework can generate a concrete implementation.
During the validation of the architectural description, all the requirements are
checked by the compiler. In case of an error, the user is presented with a helpful
error message.

The DatProNet framework offers various ways to interoperate with external
systems. Serializers can be used to convert data packages to almost any format
needed. Throughout the framework an acknowledge technique is used to pro-
vide reliable data processing networks. Input ports, transformations and output
ports are all equipped with a simple recovery technique. If for example a node is
(temporarily) unavailable, the other (connected) nodes will send retrying mes-
sage within a predefined interval. After a certain number of attempts, the nodes
will stop trying and inform the user about the current problem. The DatProNet
framework is completely implemented in JAVA, which implies a high portabil-
ity. The DatProNet framework requires no difficult or complex installation, just
copy the files and compile your architectural description. Even though the ex-
tension module is not yet available inside the prototype, the user can develop
their own input ports, transformations or output ports by implementing the
selected component.

7.3 Future Work

In the following, we provide several future directions regarding to the methods
and techniques proposed in this thesis.

The DatProNet framework requires an architectural description language for
creating deployment packages. An improvement would be to develop some-kind
of graphical user-interface which can be used to create architectural descriptions
though a drag-and-drop interface. With such kind of application, people with
limited computer science knowledge are further supported during the develop-
ment of a data processing network.

A centralized extension repository can be developed to support the exchange
of extensions and to reduce the implementation effort. Through an central

62 Chapter 7. Conclusions

system, for example a website, information about the various extensions could
be distributed. By sharing information or extensions, errors can be prevented
and more users could be attracted

Static analysis can support the user by the development of a faultless data pro-
cessing network. Static analysis contains at least a verification of the topology
requirements as stated in chapter 3 and 4. But even after performing this veri-
fication, it is still possible to develop a data processing network containing one
or more faults. For example, if a data processing view contains a loop, it is
impossible to verify (with static analysis) that a specific data package will ar-
rive at a data sink eventually. With dynamic analysis more verification can be
done. For example, a verification of the performance properties of input ports
(together with a suggestion of their optimal values).

xADL [31] is a highly-extensible architecture description language for software
systems, defined by a set of XML schemas. Because xADL provides a large
and extensive framework, it would be nice to have the possibility to convert an
architecture description, created with the DatProNet language, to xADL.

Appendix A

XML-Schema of the
DatProNet Language

1 <?xml version ="1.0" encoding ="ISO -8859 -1" ?>

2 <xs:schema xmlns:xs="http :// www.w3.org /2001/

XMLSchema">

3
4 <xs:simpleType name=" nametype">

5 <xs:restriction base="xs:string">

6 <xs:pattern value ="[a-zA -Z0 -9_-]+"/>

7 </xs:restriction >

8 </xs:simpleType >

9
10 <xs:simpleType name=" dateexpressiontype">

11 <xs:restriction base="xs:string">

12 <xs:pattern value ="[djNzmMWyYhHiIsS]+"/>

13 </xs:restriction >

14 </xs:simpleType >

15
16 <xs:simpleType name=" booleantype">

17 <xs:restriction base="xs:string">

18 <xs:pattern value ="[true|false]"/>

19 </xs:restriction >

20 </xs:simpleType >

21
22 <xs:simpleType name=" emailaddresstype">

23 <xs:restriction base="xs:string">

24 <xs:pattern value ="[A-Za -z0 -9_]+([-+. ’][A-Za -z0

-9_]+)*@[A-Za -z0 -9_]+([-.][A-Za -z0 -9_]+)*

\.[A-Za -z0 -9_]+([-.][A-Za -z0 -9_]+)*"/>

25 </xs:restriction >

26 </xs:simpleType >

27
28 <xs:simpleType name=" ipaddresstype">

63

64 Appendix A. XML-Schema of the DatProNet Language

29 <xs:restriction base="xs:string">

30 <xs:pattern value

="((1?[0 -9]?[0 -9]|2[0 -4][0 -9]|25[0 -5]) .){3}

31 (1?[0 -9]?[0 -9]|2[0 -4][0 -9]|25[0 -5])"/>

32 </xs:restriction >

33 </xs:simpleType >

34
35 <xs:element name=" exceptionHandlerCriteria">

36 <xs:sequence >

37 <xs:element name=" period" type="xs:

positiveInteger" minOccurs ="1" maxOccurs

="1"/ >

38 <xs:element name="max" type="xs:positiveInteger

" minOccurs ="1" maxOccurs ="1"/ >

39 <xs:element name=" timeout" type="xs:

positiveInteger" minOccurs ="1" maxOccurs

="1"/ >

40 </xs:sequence >

41 </xs:element >

42
43 <xs:group name=" emailExceptionHandlerParameters">

44 <xs:sequence >

45 <xs:element name="from" type=" emailaddresstype"

minOccurs ="1" maxOccurs ="1"/ >

46 <xs:element name="to" type=" emailaddresstype"

minOccurs ="1" maxOccurs ="1"/ >

47 <xs:element name="smtp" type=" ipaddresstype"

minOccurs ="1" maxOccurs ="1"/ >

48 <xs:element name=" subject" type="xs:string"

minOccurs ="0" maxOccurs ="1"/ >

49 <xs:element ref=" exceptionHandlerCriteria"

minOccurs ="0" maxOccurs ="1"/ >

50 </xs:sequence >

51 </xs:group >

52
53 <xs:group name=" logfileExceptionHandlerParameters">

54 <xs:sequence >

55 <xs:element name="file" type="xs:string"

minOccurs ="1" maxOccurs ="1"/ >

56 <xs:element ref=" exceptionHandlerCriteria"

minOccurs ="0" maxOccurs ="1"/ >

57 </xs:sequence >

58 </xs:group >

59
60 <xs:group name=" screenExceptionHandlerParameters">

61 <xs:element ref=" exceptionHandlerCriteria "/>

62 </xs:group >

63
64 <xs:complexType name=" exceptionhandler">

65 <xs:choice >

Appendix A. XML-Schema of the DatProNet Language 65

66 <xs:group ref=" emailExceptionHandlerParameters

"/>

67 <xs:group ref="

logfileExceptionHandlerParameters "/>

68 <xs:group ref=" screenExceptionHandlerParameters

"/>

69 </xs:choice >

70 <xs:attribute name="name" type=" nametype" use="

required"/>

71 <xs:attribute name="type" use=" required">

72 <xs:simpleType >

73 <xs:restriction base="xs:string">

74 <xs:enumeration value=" email"/>

75 <xs:enumeration value=" logfile"/>

76 <xs:enumeration value=" screen"/>

77 </xs:restriction >

78 </xs:simpleType >

79 </xs:attribute >

80 </xs:complexType >

81
82 <xs:group name=" fstInputPortParameters">

83 <xs:sequence >

84 <xs:element name=" object" type="xs:string"

minOccurs ="1" maxOccurs ="1"/ >

85 <xs:element name="key" type=" nametype"

minOccurs ="1" maxOccurs ="1"/ >

86 <xs:element name=" depth" type="xs:

positiveInteger" minOccurs ="0" maxOccurs

="1"/ >

87 <xs:element name=" initialization" minOccurs ="0"

maxOccurs ="1">

88 <xs:simpleType >

89 <xs:restriction base="xs:string">

90 <xs:enumeration value=" clear"/>

91 <xs:enumeration value=" current"/>

92 </xs:restriction >

93 </xs:simpleType >

94 </xs:element >

95 <xs:element name="mode" minOccurs ="1" maxOccurs

="1">

96 <xs:simpleType >

97 <xs:restriction base="xs:string">

98 <xs:enumeration value="all"/>

99 <xs:enumeration value=" collection "/>

100 <xs:enumeration value=" single"/>

101 </xs:restriction >

102 </xs:simpleType >

103 </xs:element >

104 <xs:element name=" delay" type="xs:

positiveInteger" minOccurs ="0" maxOccurs

66 Appendix A. XML-Schema of the DatProNet Language

="1"/ >

105 <xs:element name=" lifetime" type="xs:

positiveInteger" minOccurs ="0" maxOccurs

="1"/ >

106 </xs:sequence >

107 </xs:group >

108
109 <xs:group name=" ppInputPortParameters">

110 <xs:sequence >

111 <xs:element name=" parameters" minOccurs ="1"

maxOccurs ="1">

112 <xs:complexType >

113 <xs:element name=" parameter" minOccurs ="1"

maxOccurs =" unbounded">

114 <xs:complexType >

115 <xs:sequence >

116 <xs:element name="key" type=" nametype

" minOccurs ="1" maxOccurs ="1"/ >

117 <xs:element name=" title" type="xs:

string" minOccurs ="1" maxOccurs

="1"/ >

118 <xs:element name="type" minOccurs ="1"

maxOccurs ="1">

119 <xs:simpleType >

120 <xs:restriction base="xs:string">

121 <xs:enumeration value=" boolean

"/>

122 <xs:enumeration value="file"/>

123 <xs:enumeration value=" float"/>

124 <xs:enumeration value=" integer

"/>

125 <xs:enumeration value=" string

"/>

126 </xs:restriction >

127 </xs:simpleType >

128 </xs:element >

129 </xs:sequence >

130 </xs:complexType >

131 </xs:element >

132 </xs:complexType >

133 </xs:element >

134 </xs:sequence >

135 </xs:group >

136
137 <xs:group name=" rvgInputPortParameters">

138 <xs:sequence >

139 <xs:element name="min" type="xs:positiveInteger

" minOccurs ="1" maxOccurs ="1"/ >

140 <xs:element name="max" type="xs:positiveInteger

" minOccurs ="1" maxOccurs ="1"/ >

Appendix A. XML-Schema of the DatProNet Language 67

141 <xs:element name="key" type=" nametype"

minOccurs ="1" maxOccurs ="1"/ >

142 <xs:element name=" delay" type="xs:

positiveInteger" minOccurs ="1" maxOccurs

="1"/ >

143 <xs:element name=" lifetime" type="xs:

positiveInteger" minOccurs ="0" maxOccurs

="1"/ >

144 </xs:sequence >

145 </xs:group >

146
147 <xs:group name=" externalTransformationParameters">

148 <xs:sequence >

149 <xs:element name=" command" type="xs:string"

minOccurs ="1" maxOccurs ="1"/ >

150 <xs:element name=" serializer" minOccurs ="1"

maxOccurs ="1">

151 <xs:simpleType >

152 <xs:restriction base="xs:string">

153 <xs:enumeration value=" matlab"/>

154 </xs:restriction >

155 </xs:simpleType >

156 </xs:element >

157 <xs:element name=" parameters" minOccurs ="0"

maxOccurs ="1">

158 <xs:complexType >

159 <xs:element name=" parameter" type="xs:

string" minOccurs ="0" maxOccurs ="

unbounded"/>

160 </xs:complexType >

161 </xs:element >

162 <xs:element name=" timeout" type="xs:

positiveInteger" minOccurs ="0" maxOccurs

="1"/ >

163 <xs:element name=" exitvalue" type="xs:

positiveInteger" minOccurs ="0" maxOccurs

="1"/ >

164 </xs:sequence >

165 </xs:group >

166
167 <xs:group name=" joinTransformationParameters">

168 <xs:sequence >

169 <xs:element name=" capacity" type="xs:

positiveInteger" minOccurs ="1" maxOccurs

="1"/ >

170 </xs:sequence >

171 </xs:group >

172
173 <xs:group name=" reformTransformationParameters">

174 <xs:sequence >

68 Appendix A. XML-Schema of the DatProNet Language

175 <xs:element name=" packages" minOccurs ="1"

maxOccurs ="1">

176 <xs:complexType >

177 <xs:element name=" package" minOccurs ="1"

maxOccurs =" unbounded">

178 <xs:complexType >

179 <xs:all >

180 <xs:element name=" addfield" minOccurs

="0" maxOccurs =" unbounded">

181 <xs:complexType >

182 <xs:simpleContent >

183 <xs:extension base="xs:string">

184 <xs:attribute name="key" type

=" nametype" use=" required

"/>

185 <xs:attribute name=" override"

type=" booleantype "/>

186 </xs:extension >

187 </xs:simpleContent >

188 </xs:complexType >

189 </xs:element >

190 <xs:element name=" removefield"

minOccurs ="0" maxOccurs =" unbounded

">

191 <xs:complexType >

192 <xs:attribute name="key" type="

nametype" use=" required"/>

193 </xs:complexType >

194 </xs:element >

195 </xs:all >

196 </xs:complexType >

197 </xs:element >

198 </xs:complexType >

199 </xs:element >

200 </xs:sequence >

201 </xs:group >

202
203 <xs:group name=" expressions">

204 <xs:choice >

205 <xs:element name="and" type="

multipleExpressionType "/>

206 <xs:element name=" condition">

207 <xs:complexType >

208 <xs:attribute name="name" type=" nametype"/>

209 </xs:complexType >

210 </xs:element >

211 <xs:element name=" false"/>

212 <xs:element name=" match">

213 <xs:complexType >

214 <xs:choice minOccurs ="1" maxOccurs ="2">

Appendix A. XML-Schema of the DatProNet Language 69

215 <xs:element name="key" type=" nametype"

minOccurs ="0" maxOccurs ="1"/ >

216 <xs:element name=" value" type="xs:string"

minOccurs ="0" maxOccurs ="1"/ >

217 </xs:sequence >

218 </xs:complexType >

219 </xs:element >

220 <xs:element name="not" type="

singleExpressionType "/>

221 <xs:element name="or" type="

multipleExpressionType "/>

222 <xs:element name="time">

223 <xs:complexType >

224 <xs:choice minOccurs ="1" maxOccurs ="2">

225 <xs:element name=" format" type="

dateexpressiontype "/>

226 <xs:element name=" value" type="xs:

positiveInteger "/>

227 </xs:sequence >

228 <xs:attribute name="type" use=" required">

229 <xs:simpleType >

230 <xs:restriction base="xs:string">

231 <xs:enumeration value="less"/>

232 <xs:enumeration value=" lessequal"/>

233 <xs:enumeration value=" equal"/>

234 <xs:enumeration value=" greater"/>

235 <xs:enumeration value=" greaterequal

"/>

236 <xs:enumeration value=" notequal"/>

237 </xs:restriction >

238 </xs:simpleType >

239 </xs:attribute >

240 </xs:complexType >

241 </xs:element >

242 </xs:choice >

243 </xs:group >

244
245 <xs:complexType name=" multipleExpressionType">

246 <xs:sequence >

247 <xs:group ref=" expressions" minOccurs ="2"

maxOccurs =" unbounded "/>

248 </xs:sequence >

249 </xs:complexType >

250
251 <xs:complexType name=" singleExpressionType">

252 <xs:choice >

253 <xs:group ref=" expressions "/>

254 </xs:choice >

255 </xs:complexType >

256

70 Appendix A. XML-Schema of the DatProNet Language

257 <xs:complexType name=" conditions">

258 <xs:sequence >

259 <xs:element name=" condition" minOccurs ="0"

maxOccurs =" unbounded">

260 <xs:complexType >

261 <xs:choice >

262 <xs:group ref=" expressions "/>

263 </xs:choice >

264 <xs:attribute name="name" type=" nametype"

use=" required"/>

265 </xs:complexType >

266 </xs:element >

267 </xs:sequence >

268 </xs:complexType >

269
270 <xs:complexType name=" pipes">

271 <xs:sequence >

272 <xs:element name="pipe" minOccurs ="1" maxOccurs

=" unbounded">

273 <xs:complexType >

274 <xs:attribute name=" destination" type="xs:

string" use=" required"/>

275 <xs:attribute name=" condition" type="xs:

string"/>

276 <xs:attribute name="type" use=" required">

277 <xs:simpleType >

278 <xs:restriction base="xs:string">

279 <xs:enumeration value=" local"/>

280 <xs:enumeration value="tcp"/>

281 </xs:restriction >

282 </xs:simpleType >

283 </xs:attribute >

284 </xs:complexType >

285 </xs:element >

286 </xs:sequence >

287 </xs:complexType >

288
289 <xs:group name=" basicOutputPortParameters">

290 <xs:sequence >

291 <xs:element ref=" conditions" minOccurs ="0"

maxOccurs ="1"/ >

292 <xs:element ref=" pipes" minOccurs ="1" maxOccurs

="1"/ >

293 </xs:sequence >

294 </xs:group >

295
296 <xs:group name=" externalOutputPortParameters">

297 <xs:sequence >

298 <xs:element name=" command" type="xs:string"

minOccurs ="1" maxOccurs ="1"/ >

Appendix A. XML-Schema of the DatProNet Language 71

299 <xs:element name=" serializer" minOccurs ="1"

maxOccurs ="1">

300 <xs:simpleType >

301 <xs:restriction base="xs:string">

302 <xs:enumeration value=" matlab"/>

303 </xs:restriction >

304 </xs:simpleType >

305 </xs:element >

306 <xs:element name=" parameters" minOccurs ="0"

maxOccurs ="1">

307 <xs:complexType >

308 <xs:element name=" parameter" type="xs:

string" minOccurs ="0" maxOccurs ="

unbounded"/>

309 </xs:complexType >

310 </xs:element >

311 <xs:element name=" timeout" type="xs:

positiveInteger" minOccurs ="0" maxOccurs

="1"/ >

312 <xs:element name=" exitvalue" type="xs:

positiveInteger" minOccurs ="0" maxOccurs

="1"/ >

313 </xs:sequence >

314 </xs:group >

315
316 <xs:group name=" fileSystemOutputPortParameters">

317 <xs:sequence >

318 <xs:element name=" directory" type="xs:string"

minOccurs ="1" maxOccurs ="1"/ >

319 <xs:element name=" serializer" minOccurs ="1"

maxOccurs ="1">

320 <xs:simpleType >

321 <xs:restriction base="xs:string">

322 <xs:enumeration value=" matlab"/>

323 </xs:restriction >

324 </xs:simpleType >

325 </xs:element >

326 </xs:sequence >

327 </xs:group >

328
329 <xs:group name=" randomOutputPortParameters">

330 <xs:sequence >

331 <xs:element ref=" conditions" minOccurs ="0"

maxOccurs ="1"/ >

332 <xs:element ref=" pipes" minOccurs ="1" maxOccurs

="1"/ >

333 <xs:element name=" select" type="xs:

positiveInteger" minOccurs ="1" maxOccurs

="1"/ >

334 </xs:sequence >

72 Appendix A. XML-Schema of the DatProNet Language

335 </xs:group >

336
337 <xs:complexType name=" filter">

338 <xs:sequence >

339 <xs:element name=" input" minOccurs ="1"

maxOccurs ="1">

340 <xs:complexType >

341 <xs:sequence >

342 <xs:element name="port" minOccurs ="1"

maxOccurs =" unbounded">

343 <xs:complexType >

344 <xs:choice minOccuers ="0">

345 <xs:group ref="

fstInputPortParameters "/>

346 <xs:group ref="

ppInputPortParameters "/>

347 <xs:group ref="

rvgInputPortParameters "/>

348 </xs:choice >

349 <xs:attribute name="name" type="

nametype" use=" required"/>

350 <xs:attribute name="type" use="

required">

351 <xs:simpleType >

352 <xs:restriction base="xs:string">

353 <xs:enumeration value=" gateway

"/>

354 <xs:enumeration value="

filesystemlistener "/>

355 <xs:enumeration value="

parameterprompt "/>

356 <xs:enumeration value="

randomvaluegenerator "/>

357 </xs:restriction >

358 </xs:simpleType >

359 </xs:attribute >

360 </xs:complexType >

361 </xs:element >

362 </xs:sequence >

363 </xs:complexType >

364 </xs:element >

365 <xs:element name=" transformation" minOccurs ="1"

maxOccurs ="1">

366 <xs:complexType >

367 <xs:choice minOccuers ="0">

368 <xs:group ref="

externalTransformationParameters "/>

369 <xs:group ref="

joinTransformationParameters "/>

370 <xs:group ref="

Appendix A. XML-Schema of the DatProNet Language 73

reformTransformationParameters "/>

371 </xs:choice >

372 <xs:attribute name="type" use=" required">

373 <xs:simpleType >

374 <xs:restriction base="xs:string">

375 <xs:enumeration value=" empty"/>

376 <xs:enumeration value=" external"/>

377 <xs:enumeration value="join"/>

378 <xs:enumeration value=" reform"/>

379 </xs:restriction >

380 </xs:simpleType >

381 </xs:attribute >

382 </xs:complexType >

383 </xs:element >

384 <xs:element name=" output" minOccurs ="1"

maxOccurs ="1">

385 <xs:complexType >

386 <xs:sequence >

387 <xs:element name="port" minOccurs ="1"

maxOccurs =" unbounded">

388 <xs:complexType >

389 <xs:choice minOccuers ="0">

390 <xs:group ref="

basicOutputPortParameters "/>

391 <xs:group ref="

externalOutputPortParameters "/>

392 <xs:group ref="

fileSystemOutputPortParameters

"/>

393 <xs:group ref="

randomOutputPortParameters "/>

394 </xs:choice >

395 <xs:attribute name="name" type="

nametype" use=" required"/>

396 <xs:attribute name="type" use="

required">

397 <xs:simpleType >

398 <xs:restriction base="xs:string">

399 <xs:enumeration value=" gateway

"/>

400 <xs:enumeration value=" external

"/>

401 <xs:enumeration value="

filesystem "/>

402 <xs:enumeration value=" random

"/>

403 <xs:enumeration value=" screen

"/>

404 </xs:restriction >

405 </xs:simpleType >

74 Appendix A. XML-Schema of the DatProNet Language

406 </xs:attribute >

407 </xs:complexType >

408 </xs:element >

409 </xs:sequence >

410 </xs:complexType >

411 </xs:element >

412 </xs:sequence >

413 <xs:attribute name="name" type=" nametype" use="

required"/>

414 <xs:attribute name=" runat" type=" ipaddresstype"

use=" required"/>

415 <xs:attribute name=" buffer" type="xs:

positiveInteger "/>

416 <xs:attribute name=" exceptionhandler" type="

nametype"/>

417 <xs:key name=" PK_inputport">

418 <xs:selector xpath =".// input/port" />

419 <xs:field xpath=" @name" />

420 </xs:key >

421 <xs:key name=" PK_outputport">

422 <xs:selector xpath =".// output/port" />

423 <xs:field xpath=" @name" />

424 </xs:key >

425 </xs:complexType >

426
427 <xs:element name=" project">

428 <xs:complexType >

429 <xs:sequence >

430 <xs:element name=" exceptionhandlers"

minOccurs ="0">

431 <xs:complexType >

432 <xs:element ref=" exceptionhandler"

minOccurs ="0" maxOccurs =" unbounded

"/>

433 </xs:complexType >

434 <xs:key name=" PK_exceptionhandlers">

435 <xs:selector xpath =".// exceptionhandler"

/>

436 <xs:field xpath=" @name" />

437 </xs:key >

438 </xs:element >

439 <xs:element name=" filters" minOccurs ="1"

maxOccurs ="1">

440 <xs:complexType >

441 <xs:element ref=" filter" minOccurs ="1"

maxOccurs =" unbounded "/>

442 </xs:complexType >

443 <xs:key name=" PK_filter">

444 <xs:selector xpath =".// filter" />

445 <xs:field xpath=" @name" />

Appendix A. XML-Schema of the DatProNet Language 75

446 </xs:key >

447 </xs:element >

448 </xs:sequence >

449 </xs:complexType >

450 </xs:element >

451
452 </xs:schema >

76 Appendix A. XML-Schema of the DatProNet Language

Appendix B

XML-Schema for
DatProNet Extensions

1 <?xml version ="1.0" encoding ="ISO -8859 -1" ?>

2 <xs:schema xmlns:xs="http :// www.w3.org /2001/

XMLSchema">

3
4 <xs:simpleType name=" nametype">

5 <xs:restriction base="xs:string">

6 <xs:pattern value ="[a-zA -Z0 -9_-]+"/>

7 </xs:restriction >

8 </xs:simpleType >

9
10 <xs:group name=" pipeConfiguration">

11 <xs:sequence >

12 <xs:element name="key" type=" nametype"

minOccurs ="1" maxOccurs ="1"/ >

13 <xs:element name=" xmlschema" type="xs:string"

minOccurs ="0" maxOccurs ="1"/ >

14 <xs:element name=" class">

15 <xs:complexType >

16 <xs:sequence >

17 <xs:element name=" source" type="xs:string

" minOccurs ="1" maxOccurs ="1"/ >

18 <xs:element name=" destination" type="xs:

string" minOccurs ="1" maxOccurs ="1"/>

19 </xs:sequence >

20 </xs:complexType >

21 </xs:element >

22 </xs:sequence >

23 </xs:group >

24
25 <xs:group name=" simpleConfiguration">

26 <xs:sequence >

77

78 Appendix B. XML-Schema for DatProNet Extensions

27 <xs:element name="key" type=" nametype"

minOccurs ="1" maxOccurs ="1"/ >

28 <xs:element name=" xmlschema" type="xs:string"

minOccurs ="0" maxOccurs ="1"/ >

29 <xs:element name=" class" type="xs:string"

minOccurs ="1" maxOccurs ="1"/ >

30 </xs:sequence >

31 </xs:group >

32
33 <xs:complexType name=" component">

34 <xs:sequence >

35 <xs:element name="port" minOccurs ="1" maxOccurs

=" unbounded">

36 <xs:complexType >

37 <xs:choice minOccuers ="0">

38 <xs:group ref=" simpleConfiguration "/>

39 <xs:group ref=" pipeConfiguration "/>

40 </xs:choice >

41 <xs:attribute name="name" type=" nametype"

use=" required"/>

42 <xs:attribute name="type" use=" required">

43 <xs:simpleType >

44 <xs:restriction base="xs:string">

45 <xs:enumeration value=" inputport"/>

46 <xs:enumeration value=" transformation

"/>

47 <xs:enumeration value=" outputport "/>

48 <xs:enumeration value="pipe"/>

49 </xs:restriction >

50 </xs:simpleType >

51 </xs:attribute >

52 </xs:complexType >

53 </xs:element >

54 </xs:sequence >

55 </xs:complexType >

56
57 <xs:element name=" extension">

58 <xs:complexType >

59 <xs:sequence >

60 <xs:element name=" component" minOccurs ="1"

maxOccurs ="1">

61 <xs:complexType >

62 <xs:element ref=" component" minOccurs

="1" maxOccurs =" unbounded"/>

63 </xs:complexType >

64 <xs:key name=" PK_component">

65 <xs:selector xpath =".// component" />

66 <xs:field xpath ="/ key" />

67 </xs:key >

68 </xs:element >

Appendix B. XML-Schema for DatProNet Extensions 79

69 </xs:sequence >

70 </xs:complexType >

71 </xs:element >

72
73 </xs:schema >

80 Appendix B. XML-Schema for DatProNet Extensions

Appendix C

Architectural Description of
Case Study

1 <project >

2 <filters >

3
4 <filter name=" TrainingData" runat ="127.0.0.1" >

5 <input >

6 <port name=" input" type=" filesystemlistener

">

7 <key >trainingpictures </key >

8 <mode >all </mode >

9 <object >C:\ TrainingData \</object >

10 <depth >1</depth >

11 <delay >700 </delay >

12 <initialization >clear </ initialization >

13 </port >

14 </input >

15 <transformation type=" empty" />

16 <output >

17 <port name=" output" type=" gateway">

18 <pipes >

19 <pipe destination =" Merge1.input1" type

=" local" />

20 </pipes >

21 </port >

22 </output >

23 </filter >

24
25 <filter name=" Settings" runat ="127.0.0.1" >

26 <input >

27 <port name=" input" type=" filesystemlistener

">

28 <key >configuration </key >

81

82 Appendix C. Architectural Description of Case Study

29 <object >C:\ configuration.m</object >

30 <delay >700 </delay >

31 <initialization >clear </ initialization >

32 </port >

33 </input >

34 <transformation type=" empty" />

35 <output >

36 <port name=" output" type=" gateway">

37 <pipes >

38 <pipe destination =" Merge1.input2" type

=" local" />

39 <pipe destination =" Merge2.input1" type

=" local" />

40 </pipes >

41 </port >

42 </output >

43 </filter >

44
45 <filter name=" Merge1" runat ="127.0.0.1" >

46 <input >

47 <port name=" input1" type=" gateway" />

48 <port name=" input2" type=" gateway" />

49 </input >

50 <transformation type="join">

51 <capacity >1</capacity >

52 </transformation >

53 <output >

54 <port name=" output" type=" gateway">

55 <pipes >

56 <pipe destination =" Training.input" type

=" local"/>

57 </pipes >

58 </port >

59 </output >

60 </filter >

61
62 <filter name=" Training" runat ="127.0.0.1" >

63 <input >

64 <port name=" input" type=" gateway" />

65 </input >

66 <transformation type=" external">

67 <command >matlab.exe </command >

68 <parameters >

69 <parameter >-nodesktop </parameter >

70 <parameter >-wait </parameter >

71 <parameter >-r</parameter >

72 <parameter >load(’%f’); startTraining ()l

save -v6 ’%f’; exit;</parameter >

73 </parameters >

74 <serializer >matlab </ serializer >

Appendix C. Architectural Description of Case Study 83

75 <timeout >3600000 </ timeout >

76 </transformation >

77 <output >

78 <port name=" output" type=" gateway">

79 <pipes >

80 <pipe destination =" Merge2.input2" type

=" local" />

81 </pipes >

82 </port >

83 </output >

84 </filter >

85
86 <filter name=" Acquire" runat ="10.0.0.138" >

87 <input >

88 <port name=" input" type=" filesystemlistener

">

89 <key >trainingpictures </key >

90 <mode >single </mode >

91 <object >C:\ Camera\</object >

92 <depth >1</depth >

93 <delay >700 </delay >

94 <initialization >clear </ initialization >

95 </port >

96 </input >

97 <transformation type=" empty" />

98 <output >

99 <port name=" output" type=" gateway">

100 <pipes >

101 <pipe destination =" Merge2.input3" type

="tcp">

102 <portnumber >1444 </ portnumber >

103 </pipe >

104 </pipes >

105 </port >

106 </output >

107 </filter >

108
109 <filter name=" Merge2" runat ="127.0.0.1" >

110 <input >

111 <port name=" input1" type=" gateway" />

112 <port name=" input2" type=" gateway" />

113 <port name=" input3" type=" gateway" />

114 </input >

115 <transformation type="join">

116 <capacity >1</capacity >

117 </transformation >

118 <output >

119 <port name=" output" type=" gateway">

120 <pipes >

121 <pipe destination =" Analyze.input" type

84 Appendix C. Architectural Description of Case Study

=" local"/>

122 </pipes >

123 </port >

124 </output >

125 </filter >

126
127 <filter name=" Analyze" runat ="127.0.0.1" >

128 <input >

129 <port name=" input" type=" gateway" />

130 </input >

131 <transformation type=" external">

132 <command >matlab.exe </command >

133 <parameters >

134 <parameter >-nodesktop </parameter >

135 <parameter >-wait </parameter >

136 <parameter >-r</parameter >

137 <parameter >load(’%f’); analyzePicture ();

save -v6 ’%f’; exit;</parameter >

138 </parameters >

139 <serializer >matlab </ serializer >

140 <timeout >3600000 </ timeout >

141 </transformation >

142 <output >

143 <port name=" output" type=" gateway">

144 <pipes >

145 <pipe destination =" Store.input" type="

local" />

146 </pipes >

147 </port >

148 </output >

149 </filter >

150
151 <filter name=" Store" runat ="127.0.0.1" >

152 <input >

153 <port name=" input" type=" gateway" />

154 </input >

155 <transformation type=" empty" />

156 <output >

157 <port name=" output" type=" filesystem">

158 <directory >C:\ Storage\</directory >

159 <serializer >matlab </ serializer >

160 </port >

161 </output >

162 </filter >

163
164 </filters >

165 </project >

Bibliography

[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S.B. Zdonik. The design of the borealis stream processing
engine. In Proceedings of the 2nd Confention on Innovative Data Systems
Research, pages 277–289, January 2005.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Mod-
els and issues in data stream systems. In Proceedings of the 21st ACM
SIGACTSIGMOD-SIGART Symposium on Principles of Database Sys-
tems, pages 1–16, June 2002.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, Boston, 2003.

[4] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams - a new
class of data management applications. In Proceedings of 28th International
Conference on Very Large Data Bases, pages 215–226, August 2002.

[5] CCES. Cces - record. http://www.cces.ethz.ch/projects/nature/

Record, January 2011.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Heller-
stein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and
Mehul Shah. Telegraphcq: Continuous dataflow processing for an uncertain
world. In Proceedings of the 1st Confention on Innovative Data Systems
Research, pages 269–280, January 2003.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
and J. Stafford. Documenting Software Architectures: Views and Beyond.
Addison-Wesley, Boston, 2003.

[8] Workflow Management Coalition. The workflow reference model. Docu-
ment Number TC00-1003, Issue 1.1, January 1995.

[9] K. Di, R. Ma, and R. Li. Automatic shoreline extraction from highresolu-
tion ikonos satellite imagery. In Proceedings of ASPRS 2003 Conference,
pages 5–9, Anchorage, May 2003.

[10] Swiss Experiment. Record:home - swissexperiment. http://www.

swiss-experiment.ch/index.php/Record:Home, January 2011.

85

86 BIBLIOGRAPHY

[11] R.T. Fielding. Architectural styles and the design of network-based software
architecture. Phd dissertation, Dept. of Information and Computer Science,
University of California, Irvine, 2000.

[12] The FreeBSD Foundation. The freebsd project. http://www.freebsd.org,
January 2011.

[13] D. Garlan. An introduction to the aesop system. http://www.cs.cmu.edu/
afs/cs/project/able/www/aesop/html/aesop-overview.ps, July 1995.

[14] L. Golab and M. T. Ozsu. Issues in data stream management. SIGMOD
Record, 32(2):5–14, June 2003.

[15] M. M. Gorlick and R. R. Razouk. Using weaves for software construc-
tion and analysis. In Proceedings of the 13th International Conference on
Software Engineering (ICSE13), pages 23–34, Austin, May 1991.

[16] The PHP Group. Php: date - manual. http://nl3.php.net/manual/en/
function.date.php, January 2011.

[17] D. Hull. Ebi interproscan. http://www.myexperiment.org/workflows/

4.html, January 2011.

[18] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and J.R.O. Silva.
Documenting component and connector views with uml 2.0. Technical
Report CMU/SEI-2004-TR-008, Software Engineering Institute, Carnegie
Mellon University, 2004.

[19] Kepler. The kepler project. http://kepler-project.org, January 2011.

[20] A. Kleppe, J. Warmer, and W. Bast. MDA Explained, The Model Driven
Architecture: Practice and Promise. Addison-Wesley, Boston, 2003.

[21] P. Kruchten. The “4+1” view model of software architecture. IEEE Soft-
ware, 12(6):42–50, 1995.

[22] P. Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley, Boston, second edition, 2000.

[23] E.A. Lee and T. Parks. Dataflow process networks. In Proceedings of the
IEEE, volume 83, pages 1–63, May 1995.

[24] J. Magee, N. Dulay abd S. Eisenbach, and J. Kramer. Specifying distributed
software architectures. In Proceedings of the Fifth European Software En-
gineering Conference (ESEC’95), Barcelona, September 1995.

[25] M.W. Maier, D. Emery, and R. Hilliard. Software architecture: Introducing
IEEE standard 1471. IEEE Computer, 34(4):107–109, 2001.

[26] D.C. Mason and I.J. Davenport. Accurate and efficient determination of
the shoreline in ers-1 sar images. IEEE Transactions on Geoscience and
Remote Sensing, 34:1243–1253, 1996.

[27] Microsoft. Download details: Xml notepad 2007. http:

//www.microsoft.com/downloads/en/details.aspx?FamilyID=

72d6aa49-787d-4118-ba5f-4f30fe913628, January 2011.

BIBLIOGRAPHY 87

[28] Microsoft. Sql server. http://www.microsoft.com/sqlserver/2008/en/

us/, January 2011.

[29] Microsoft. Windows: Products. http://www.microsoft.com/windows/,
January 2011.

[30] S. Muthukrishnan. Data streams: Algorithms and applications. In Proceed-
ings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms.,
January 2003.

[31] University of California. xadl 2.0 - a highly extensible architecture de-
scription language for software and systems. http://www.isr.uci.edu/

projects/xarchuci/index.html, January 2011.

[32] Oracle. For java developers. http://www.oracle.com/technetwork/

java/index.html, January 2011.

[33] Oracle. Oracle database. http://www.oracle.com/us/products/

database/index.html, January 2011.

[34] N.R. Pal and S.K. Pal. A review on image segmentation techniques. Pattern
Recognition, 26:1277–1294, 1993.

[35] A. Rankin, L. Matthies, and A. Huertas. Daytime water detection by
fusing multiple cues for autonomous off-road navigation. In Proceedings of
the 24th Army Science Conference, Orlando, November 2004.

[36] Inc. Red Hat. The world’s open source leader. http://www.redhat.com,
January 2011.

[37] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, Boston, 1998.

[38] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[39] Monkfish XML Software. Xmlblueprint. http://www.xmlblueprint.com/,
January 2011.

[40] F. Tanoh. Example of a conditional execution workflow. http://www.

myexperiment.org/workflows/52.html, January 2011.

[41] Taverna. Taverna - open source and domain independent workflow man-
agement system. http://www.taverna.org.uk, January 2011.

[42] Inc. The MathWorks. Matlab - the language of technical computing. http:
//www.mathworks.com/products/matlab/, January 2011.

[43] F. van der Heijden, R.P.W. Duin, D. de Ridder, and D.M.J. Tax. Clas-
sification, Parameter Estimation and State Estimation: An Engineering
Approach using MATLAB. John Wiley & Sons Ltd, Chichester, 2004.

[44] Wikipedia. Class diagram. http://en.wikipedia.org/wiki/Class_

diagram, January 2011.

88 BIBLIOGRAPHY

[45] Wikipedia. Computer network. http://en.wikipedia.org/wiki/

Computer_network, January 2011.

[46] Wikipedia. Kahn process networks. http://en.wikipedia.org/wiki/

Kahn_process_networks, January 2011.

[47] Wikipedia. Precision and recall. http://en.wikipedia.org/wiki/

Precision_and_recall, January 2011.

[48] Wikipedia. Transmission control protocol. http://en.wikipedia.org/

wiki/Transmission_Control_Protocol, January 2011.

[49] Wikipedia. Type i and type ii errors. http://en.wikipedia.org/wiki/

Type_I_and_type_II_errors, January 2011.

[50] Wikipedia. Write once, run anywhere. http://en.wikipedia.org/wiki/

Write_once,_run_anywhere, January 2011.

[51] A. Williams. Pipelined list iteration. http://www.myexperiment.org/

workflows/1372.html, January 2011.

[52] WordNet. Data processing. http://wordnetweb.princeton.edu/perl/

webwn?s=data+processing, January 2011.

[53] A. Subramanian X. Gong and C.L. Wyatt. A two-stage algorithm for
shoreline detection. In IEEE Workshop on Applications of Computer Vision
(WACV’07), 2007.

[54] S. Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel, M. Balazinska,
and H. Balakrishnan. The aurora and medusa projects. IEEE Data Engi-
neering Bulletin, 26(1), March 2003.

[55] S.C. Zhu and A. Yuille. Region comperition: Unifying snakes, region grow-
ing, and bayes/mdl for multiband image segmentation. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 18(9):884–900, 1996.

