

Monitoring data exchanges between information systems

Master Thesis Business Information Technology

Tycho Bom

November 10th 2010

Monitoring data exchanges between information systems

II

Master Thesis

Monitoring data exchanges between information systems

Place and date
Hilversum, November 10th 2010

Author
Tycho M. Bom
Master Business Information Technology
University of Twente

University supervisors
Dr. Marten J. van Sinderen
Faculty of Electrical Engineering, Mathematics and Computer Science

Dr. Maria E. Iacob
School of management and governance

CRM Resultants supervisor
Marc la Chapelle

Monitoring data exchanges between information systems

III

Abstract

Context

Information systems are more and more connected to each other and exchange more and more data
with each other. As the number of data exchanges increases, it becomes increasingly difficult to
maintain an overview of how these data exchanges are performing. This is especially a problem for
application service providers which host systems for customers because they host multiple systems
and each system can have multiple data exchanges. Although there are monitoring tools available
that monitor the states of systems, there are no tools available to monitor the functional aspects of
data exchanges. Due to this lack of oversight on the functional performance of data exchanges,
problems can be unnoticed and customers can become unsatisfied. The purpose of this study is to
create a reference architecture for systems that can provide central monitoring of data exchanges
with the possibility of aggregating information on different data exchanges into useful diagnostic
reports. The scope of this study is focused on monitoring only at the target system of a data
exchange.

Approach

Our research combines information from literature and information from a case study at CRM
Resultants. The combined information is about different aspects of data exchanges, possible failures
in data exchanges, data quality and monitoring concepts. Based on this information we specify a
reference architecture for monitoring functional aspects of data exchanges. When monitoring
functional aspects we make a distinction between syntactic monitoring and semantic monitoring.
Syntactic monitoring is about monitoring erroneous and successful transactions. Semantic
monitoring also takes into account the contents of data in a transaction. To validate this reference
architecture we create a prototype based on the reference architecture and test it in the
environment of CRM Resultants.

Reference architecture and prototype

The reference architecture consists of three main components: a monitoring plugin, a data collection
mechanism and a central monitoring server. The monitoring plugin is used to acquire monitoring
information from a data exchange. This information is then collected by the data collection
mechanism of the central monitoring server and the central monitoring server presents the data to
the end user and is able to generate alerts if necessary. This architecture is capable of monitoring
different types of data exchanges because for each type of data exchange a different monitoring
plugin can be used and the possible differences in the data format the monitoring plugins generate
can be compensated by the data collection mechanism.

In the prototype the monitoring plugin is implemented by Log4Net for monitoring web service data
exchanges and by Scribe for monitoring Scribe data exchanges. Scribe is also used as a data collection
mechanism to transfer data from the monitoring plugins to the central monitoring server. We use
Microsoft Dynamics CRM as the central monitoring server to show the result to the end user.

Findings

Test results of the prototype show that the prototype works and that the reference architecture is
valid. Most of the syntactic errors we wanted to detect were detected by the prototype. During the
testing period the prototype even identified several real problems of which some might be unnoticed
without the monitoring prototype. We did not detect a lot of semantic errors. This is due to the fact
that our implementation for checking semantic correctness is limited and the fact that the field we
monitored is often automatically checked before it is sent to the target system.

Monitoring data exchanges between information systems

IV

Benefits resulting from this research

Our research resulted in the following benefits.

 Based on our reference architecture monitoring solutions can be created for monitoring
functional aspects of data exchanges.

 By monitoring data exchanges insight is gained in the transactions data exchanges execute.

 Errors in data exchanges can be detected before a customer complains about a problem. This
can increase customer satisfaction.

 In our prototype all monitoring information is accessible from a single web based user
interface. There is no need any more to check separate databases and folders with error logs.
This can speed up the investigation on problems.

 Monitoring data exchanges can be offered as a service to customers. Customers can pay a
monthly fee for this service or they can monitor their own data exchanges and pay a licence
fee for the monitoring software. This can increase revenue for the application service
provider.

 Although it has never been an objective of this research, using our prototype it is now
possible to view which data exchanges put the most information in a CRM system. It was
already possible to determine the records that were created in a specified period in the CRM
system itself, but it could be hard to determine from which source the information
originated.

Recommendations

We formulate recommendations for application service providers in general and for CRM Resultants
in particular. The most important recommendations are the following.

General recommendations

 Implement our reference architecture to monitor data exchanges between information
systems to maintain oversight of the successful transactions of data exchanges and errors in
data exchanges.

 Create an implementation of our reference architecture that can monitor all technologies
that are used in the environment that is to be monitored.

Recommendations for CRM Resultants

 Use the monitor for all new data exchanges that are developed and add it to existing data
exchanges which are known to be prone to errors.

 Extend the alerting functions of the monitor to make them more reliable and to increase the
ease of use.

 Include a service module to support the process of following up errors in data exchanges.

 Incorporate the monitor into the company’s central CRM system to make the monitoring
results easily accessible to all employees and to integrate it to the existing information about
hosted CRM environments and customers.

Monitoring data exchanges between information systems

V

Preface
Years ago companies did all administration on paper and used manually ordered systems to store
information. The most well-known examples of these systems are card catalogs and large filing
cabinets. The most important asset in this process of storing and retrieving information was the
employee itself. The employee needed to know all necessary procedures exactly because all actions
were executed manually. As a result the employee had a feeling of the quality of data and the
frequency of transactions. In large organizations where multiple people worked in the same files, it
was difficult to maintain oversight, but at least each individual transaction was checked by humans
and each employee was able to signal abnormalities in his or her work. You could state that
employees were in touch with the information they worked with.

Nowadays most companies have replaced their card catalogs and filing cabinets by computer
systems which store all their data. These systems vary from simple Excel sheets to the most
advanced online ERP systems. This brings numerous benefits such as the increased accessibility of
information, the ability to quickly search through the information and of course possibilities to easily
copy and back up data. Along with these replacements also more and more actions, which were
executed manually in the past, are automated by IT systems. This includes data exchange between
information systems. This saves a lot of work which was previously done by hand. It is less error
prone and it is often a lot faster.

Automation of information systems certainly brings a lot of benefits to companies. Maybe the most
important of these benefits is cost reduction. The downside of all this automation is that IT systems
are black boxes to a lot of users. They enter data into the system, but they do not know what the
system does with it and how it works in the background. Especially if data is exchanged with other IT
systems most users have no clue on what is actually happening. Users expect that the systems takes
care of the data and executes all necessary procedures but as the amount of data increases it
becomes impossible for users the check if the data is still correct. As long as everything is functioning
correctly this is not a problem, but things become different if IT systems do not behave as desired or
expected. Users will often not be able to signal these problems directly.

In the old situation users knew exactly how things were related and what data was exchanged
between their systems. In the new, automated situation only system administrators can view
transaction logs and error reports. The problem is that they either have to look at a lot of different
locations for error logs or they are overloaded by e-mails containing log files. As a result system
administrators often do not signal problems in data exchanges until the user complains. To solve this
problem we create a solution that can monitor multiple data exchanges and presents the results in
one overview. This gives system administrators the opportunity to signal problems before the user
complains and oversight of exchanged data between information systems is regained.

Monitoring data exchanges between information systems

VI

Acknowledgements
During the execution of this research I was supported by several people, who I want to thank for
their support. I want to thank my supervisors from the University of Twente Marten van Sinderen
and Maria Iacob for their valuable feedback and the easy way in which discussions were held. All
meetings went very smooth in my opinion.

I completed this research at CRM Resultants. I would like to thank Roel Hilberink and especially Marc
la Chapelle for providing me this opportunity. Marc has been a really flexible supervisor and has been
a valuable sparring partner for discussing research topics and possible solutions.

Furthermore I would like to thank Bas van Sluis and Hanno Zwikstra from CRM Resultants. Bas gave
me useful insights in how to use Scribe for both monitoring and acquiring monitoring data. A lot of
his hints are used in this research. Hanno has been very helpful by explaining the Log4Net framework
and making small modifications to it to make it suitable for monitoring purposes. Without Hanno I
would not have been able to monitor custom built web service data exchanges. I would also like to
thank the other colleagues at CRM Resultants. They have been really supportive and were always
available for discussing my research. These discussions helped me thinking about the research and
gave me new insights.

Monitoring data exchanges between information systems

VII

Table of contents
Master Thesis .. II

Monitoring data exchanges between information systems ... II

Place and date ... II

Author .. II

University supervisors ... II

CRM Resultants supervisor.. II

Abstract .. III

Context ... III

Approach .. III

Reference architecture and prototype ... III

Findings... III

Benefits resulting from this research ... IV

Recommendations.. IV

Preface ... V

Acknowledgements .. VI

1 Introduction ... 1

 Motivation ... 1 1.1

1.1.1 Background of the topic .. 1

1.1.2 About the company ... 1

1.1.3 Current situation ... 2

1.1.4 Desired situation ... 2

1.1.5 Difference between the current and desired situation ... 2

1.1.6 Problem definition ... 2

 Research objective .. 2 1.2

 Research approach .. 4 1.3

 Report structure .. 5 1.4

2 State of the art .. 6

 Data exchanges between information systems .. 6 2.1

2.1.1 Architectures of data exchanges ... 6

2.1.2 Layers of data exchanges .. 7

2.1.3 Timeliness of messages ... 10

 Possible failures in data exchanges ... 11 2.2

2.2.1 Failures in network communication .. 11

2.2.2 Application failures .. 11

 Data quality ... 12 2.3

 Monitoring concepts for data exchanges .. 15 2.4

2.4.1 Methods of monitoring ... 15

Monitoring data exchanges between information systems

VIII

2.4.2 Levels of monitoring .. 15

2.4.3 Polling versus publish and subscribe ... 17

2.4.4 Reporting results of monitoring .. 18

3 Case study on failures of data exchanges ... 19

 Web service data exchanges of the Hogeschool Utrecht ... 19 3.1

3.1.1 Reasons for failures that have occurred.. 20

 Scribe data exchange Hogeschool Utrecht.. 21 3.2

3.2.1 Reasons for failures that have occurred.. 22

 BizTalk data exchange between Peoplesoft and Microsoft CRM of ROC van Amsterdam ... 22 3.3

3.3.1 Errors that can occur ... 22

 Combined results of this case study .. 23 3.4

3.4.1 Errors resulting from the contents of data .. 23

3.4.2 Errors in middleware ... 23

3.4.3 Connection and performance errors ... 24

 Mapping of errors to data quality ... 24 3.5

4 Monitoring reference architecture ... 25

 Components of the architecture ... 25 4.1

 Monitoring requirements of the architecture ... 26 4.2

 Monitoring process steps .. 26 4.3

 Contents of monitoring information ... 27 4.4

 Events that must be monitored .. 28 4.5

 Requirements of the central monitoring server ... 28 4.6

 How this reference architecture improves data quality ... 29 4.7

5 Assessment of technical alternatives .. 30

 Hyperic ... 30 5.1

5.1.1 Monitoring plugin .. 30

5.1.2 Central monitoring server ... 31

5.1.3 Monitoring data collection mechanism .. 31

5.1.4 Conclusion ... 31

 WSMonitor .. 31 5.2

5.2.1 Monitoring plugin .. 31

5.2.2 Conclusion ... 31

 SoapKnox ... 32 5.3

5.3.1 Monitoring plugin .. 32

5.3.2 Conclusion ... 32

 ManageEngine ... 32 5.4

5.4.1 Monitoring plugin .. 32

5.4.2 Central monitoring server ... 32

Monitoring data exchanges between information systems

IX

5.4.3 Monitoring data collection mechanism .. 32

5.4.4 Conclusion ... 33

 Scribe ... 33 5.5

5.5.1 Monitoring plugin .. 33

5.5.2 Monitoring data collection mechanism .. 33

5.5.3 Conclusion ... 34

 soapUI .. 34 5.6

5.6.1 Monitoring plugin .. 34

5.6.2 Conclusion ... 35

 Log4Net ... 35 5.7

5.7.1 Monitoring plugin .. 35

5.7.2 Conclusion ... 36

 Microsoft Dynamics CRM .. 36 5.8

5.8.1 Central monitoring server ... 36

5.8.2 Conclusion ... 36

 Conclusion on technical alternatives for monitoring .. 36 5.9

6 Our prototype .. 38

 Components and architecture... 38 6.1

 Requirements .. 39 6.2

6.2.1 Aggregate data from different sources which may use different technologies............ 39

6.2.2 Monitor syntactic and semantic aspects of data exchanges ... 39

6.2.3 Support real time and deferrable messages ... 40

6.2.4 Detect patterns in data exchanges .. 40

6.2.5 Report different types of failures .. 40

 Monitoring web service data exchanges ... 40 6.3

 Monitoring Scribe data exchanges .. 41 6.4

 Monitoring semantics .. 42 6.5

 Central monitoring server ... 43 6.6

 User experience of the central monitoring server .. 44 6.7

6.7.1 General interface ... 44

6.7.2 Following up alerts .. 45

6.7.3 Viewing batch results .. 48

6.7.4 Viewing semantic results ... 52

 Collection mechanism ... 53 6.8

6.8.1 Collection of data from web service data exchanges .. 53

6.8.2 Collection of data from Scribe data exchanges ... 54

6.8.3 Collection of semantic results ... 57

 Summary of how the prototype meets the requirements .. 58 6.9

Monitoring data exchanges between information systems

X

 Monitoring the monitor .. 58 6.10

 Security aspects ... 59 6.11

 Interoperability .. 59 6.12

 Test results of the prototype ... 59 6.13

6.13.1 Types of errors found by the prototype .. 60

6.13.2 Counts of monitoring results ... 60

6.13.3 Real problems that were found by the monitor ... 63

6.13.4 Test limitations .. 64

7 Validation and discussion .. 65

 Validation .. 65 7.1

 Discussion .. 66 7.2

8 Conclusion ... 68

 Summary of results .. 68 8.1

 Benefits .. 69 8.2

 Recommendations... 70 8.3

8.3.1 General recommendations .. 70

8.3.2 Recommendations for CRM Resultants... 70

 Limitations and future work .. 70 8.4

References ... 72

Monitoring data exchanges between information systems

1

1 Introduction
In this chapter we explain the background of this research and why this research is conducted. We
first give a motivation and some background information about the topic. Then we continue with the
research objective. How we reach the objective is described in the research approach. Finally we
explain the report structure.

 Motivation 1.1
In this section we explain the background of the topic. We explain the current situation, the desired
situation and the difference between them. At the end we present our problem definition.

1.1.1 Background of the topic

Enterprise application integration and service oriented architectures (SOA) are becoming increasingly
popular. These concepts mean that data from different enterprise systems is combined, resulting in
added value and a total overview of all information that is available. To be able to combine data from
different systems, data exchanges between information systems have to be created. When the
number of data exchanges increases, the oversight on how they are performing can easily be lost.

Another upcoming trend in the past few years is that companies are shifting from hosting enterprise
systems themselves to using systems that are offered by application service providers. Companies
can use these systems without having to install and maintain their own servers. The application
service provider takes away a lot of possible obstacles for implementing and using a system and in
return the customer can pay per user or per usage. This concept is often referred to as software as a
service or cloud computing. One of the key success factors for software as a service is reliability of
the systems. If this reliability is lower than when the customer hosts the system himself, the
customer will not use the hosted platform. Also because for most systems there are multiple
application service providers, there exists competition between them. If the reliability is not at least
as high as that of your competitor, you will lose the competition beforehand.

Combining these two trends one can imagine that systems that are offered by application service
providers are often integrated with other systems the customer uses. Because reliability of these
systems is so important, it is necessary to monitor these data exchanges. For monitoring servers itself
and the application that is offered, there are normally sufficient monitoring tools. For monitoring
data exchanges this is different. When monitoring data exchanges not only the connections have to
be monitored, but also the functional aspects of data exchanges will have to be monitored. Among
other aspects this includes monitoring quality of data, the number of executed transactions and the
number of transactions that cannot be processed with the corresponding reason etcetera.

1.1.2 About the company

This research is carried out at CRM Resultants. Cases and experience from this company are used to
gather information and to test the solution.

CRM Resultants executes two main activities: consulting and hosting. The consultancy activity is
focused on implementing Microsoft Dynamics CRM. CRM Resultants analyzes the business needs of
customers and implements the CRM system to suit the needs of the customer. Because each
customer has different needs, the system is always tailor made. Often there is a need to exchange
data between the CRM system and other systems customers use. During the implementation project
also these data exchanges are specified and built.

After the implementation project, the relation between CRM Resultants and the customer does not
end. From the KPN cyber center at Schiphol CRM Resultants offers hosted CRM and functions in this
way as an application service provider to customers. Customers can use their system by paying per
user without having to install and maintain their own CRM servers. Also related Microsoft products

Monitoring data exchanges between information systems

2

such as SharePoint, Exchange and even Windows desktops can be hosted on the platform of CRM
Resultants. Support on these systems is also included.

Although CRM Resultants does a lot of CRM implementations and is a major player in the Microsoft
CRM market, it is a small company. It has around 20 employees. Most of these employees are
consultant or project manager. A few of them are developers. The developers build custom solutions
and data exchanges with other systems.

1.1.3 Current situation

In the current situation there are no standard monitoring tools for monitoring data exchanges
between information systems. For some data exchanges there are execution logs available, but these
reside at different servers and locations and are not frequently checked. This can result in problems
not being noticed until the customer complains. In the meantime data can be lost. This results in
customers becoming unsatisfied. In the end this can even result in a customer switching to in house
hosting of the system or switching to a competitor. Both of these are undesirable.

1.1.4 Desired situation

ASP platforms should have a very high reliability and should outperform in house installations of
enterprise systems. Monitoring tools have to detect possible errors in data exchanges and should
notify support employees. These employees can then investigate the problem and fix it before the
customer notices the problem and files a complaint. This results in satisfied customers who see that
everything is under control.

1.1.5 Difference between the current and desired situation

The main difference between the current situation and the desired situation consists of tools and
knowledge. There are no tools for central monitoring of data exchanges. Some data exchanges log
errors somewhere, but because the information is fragmented, no checks are executed on the
information. Also, there is no knowledge of what and how these tools should monitor. Nowadays
there are only tools in use which monitor if a server is online and what the CPU load is etcetera, but if
a server is online that does not mean that data exchanges are functioning properly.

This research will contribute in reaching the desired situation. It will focus on monitoring data
exchanges between information systems. Monitoring tools can help in detecting possible errors and
it is up to the system administrator to take actions on this monitoring information.

1.1.6 Problem definition

Analyzing the current situation, the desired situation and the difference between them, we
formulate the following problem definition:

There is a lack of insight in how data exchanges are performing. This results in failures of data
exchanges which are unnoticed and on which no corrective actions are taken.

 Research objective 1.2
We formulate the following research objective:

Create a reference architecture for systems that can provide central monitoring of data exchanges
with the possibility of aggregating information on different data exchanges into useful diagnostic
reports.

In this section we explain the background of this objective. Also we state the main research question
that is answered and which sub questions are used to answer the main question.

First we depict the relation between this research and the main target of an application service
provider.

Monitoring data exchanges between information systems

3

Satisfied

customers
Good data quality

Reliable data

exchanges

Monitoring and

recovery

procedures

Figure 1 Causal relation

We state the main target of an application service provider as having satisfied customers. Satisfied
customers will remain customers and will possibly attract more customers. These customers are of
vital essence for an application service provider. We continue with the question: ‘How to make
customers satisfied?’ Customer satisfaction depends on a lot of variables, but certainly one of them is
good data quality. Customers use enterprise systems to store data of for example their orders. It is
important that this data is as good as possible. If an application service provider can deliver better
data quality than the customer can by hosting the system itself, it is even an additional reason for the
customer to use the platform of the application service provider.

There are basically two ways in which data can be put into the enterprise system. The user can enter
data or data can be entered by data exchanges with other systems. If these data exchanges are not
reliable or enter wrong data, this degrades the data quality in the system. So to keep the data quality
in the system high, the data exchanges need to be reliable.

Creating reliable data exchanges starts with a good design and a solid implementation. However, at
runtime there are a lot of things that can go wrong. Therefore monitoring is needed. Monitoring does
not directly increase the reliability of a data exchange, but if concrete actions are taken by support
personnel if the monitoring tools signal a problem, the data exchange does become more reliable.

To summarize this section: monitoring tools will eventually lead to increased customer satisfaction.
There are a lot of other opportunities to increase customer satisfaction, but in this research we focus
on this opportunity.

A data exchange always has a source system and a target system. In our research we focus on
monitoring the transaction results of data exchanges on the target system, because only at the target
system we know the exact impact of transactions of a data exchange. We are interested in the errors
of transactions and the successful transactions. By monitoring the errors we can identify potential
problems and by monitoring successful transactions we can determine the effect a data exchange
has on the data in the target system and detect the absence of transactions. Often an application
service provider only has influence on one side of the data exchange. In our research we focus on the
target system so we use the case where the target system is in the domain of the application service
provider. This is schematically shown in Figure 2.

Figure 2 Overview of a data exchange and the scope of our research

In this research we make a distinction between syntactic and semantic errors. Syntactic errors are
transaction errors. Semantic errors do not result in a transaction error, but results in not meaningful
data in the target system. We do not focus on errors in network links between information systems,
but if a link is completely down, we will detect the absence of transactions.

The main research question of the project is stated as follows:

Monitoring data exchanges between information systems

4

How should a reference architecture that implements syntactic and semantic monitoring at the target
system of data exchanges be specified?

To acquire knowledge to answer the research question, the following sub questions are used.

 What types of data exchanges are available and need to be distinguished?

 What problems can occur?

 How can data exchanges be monitored so that problems are detected?

 How should the architecture of a data exchange that includes monitoring functionality be
specified?

 Which existing solutions are available which offer monitoring and recovery procedures and
do they meet the requirements?

This research aims to develop a reference architecture for monitoring data exchanges. This should
bring the current state of art closer to the desired situation as described in 1.1.4. Monitoring can be
added to existing data exchanges and new data exchanges can incorporate monitoring from the
design stage.

 Research approach 1.3
The final product of this research is a reference architecture for monitoring data exchanges. In this
reference architecture monitoring tools are specified and guidelines are given for what has to be
monitored. To get to the final result, this research is split up into four phases. These phases are
depicted in Figure 3.

In the first phase the state of the art concerning relevant topics in literature are investigated and a
case study on real world errors is executed. In the literature study we focus on types of data
exchanges, possible failures, data quality and monitoring concepts. In the case study we gather
errors that have occurred in data exchanges of customers of CRM Resultants.

Based on the information we retrieved in phase one, we create our reference architecture in phase
two. After we specified our reference architecture, we execute a case study on existing monitoring
solutions. We compare them with our reference architecture and see if they meet the requirements.

Phase three consists of building our own prototype of a monitoring solution. We make use of a
solution we found in our case study in phase two or a combination of solutions. By building and
testing this prototype we validate our reference architecture.

If our prototype proves that our reference architecture is correct, we have validated our reference
architecture. In phase four we draw conclusions on our findings, provide a discussion on our work
and give recommendations for future work.

Monitoring data exchanges between information systems

5

Phase 4Phase 3Phase 2Phase 1

Initial version of

architecture

Case study 1 on

errors in data

exchanges

Prototype

Case study 2 on

possible solutions

Validated

architecture

Report

Literature study

Figure 3 Schematic overview of our research approach

 Report structure 1.4
In this section we describe the structure of the report.

Chapter 1 explains why this research is carried out. It gives background information on the topic, the
company and the problems that exist. By analyzing the current and desired situation a problem
definition is given. How the process of solving this problem looks like, is explained in the research
approach.

Chapter 2 describes the current state of the art of relevant concepts. Results from a literature study
are presented per topic.

Chapter 3 describes the results of the first case study about the problems that can occur in practice
in data exchanges. This information is gained from experience of CRM Resultants.

Chapter 4 elaborates on the monitoring reference architecture. This reference architecture is based
on the literature study from chapter 2 and the case study from chapter 3.

Chapter 5 concerns a case study on available monitoring solutions that might meet the requirements
of our reference architecture. Solutions found in this case study are used to create our prototype.

Chapter 6 is about implementing and testing the prototype of the monitoring solution. Results from
these tests are also presented in this chapter.

Chapter 7 validates if our prototype and reference architecture are correct by analyzing our results
from the prototype and our experience with building it.

Chapter 8 gives a conclusion on our research project. Also the benefits and limitations of our solution
are discussed and recommendations for future work are presented.

After chapter 8 a list of references used in our research is presented.

Monitoring data exchanges between information systems

6

2 State of the art
In this chapter we present the state of the art concerning relevant topics for this research. We
execute a literature review to find out what knowledge is already available [1]. We discuss this
information from literature per topic and for each topic we explain why it is relevant for this
research. At the end of each topic we relate the retrieved information to our research to make clear
how we use the information.

In this research we do not strive to give a complete overview of all literature that is available about
the relevant topics. We make use of the search engines Google Scholar [2], Scopus [3] and Web of
Science [3] to gather the most important information about topics. Also we make use of books that
give an introduction to topics and that can hint for other relevant topics.

 Data exchanges between information systems 2.1
In this research data exchanges are the most important concept. Therefore we have to define what
data exchanges are and what properties of data exchanges are important for our research.

In the past years enterprise application integration has gained more and more attention. By
combining data from different information systems additional value can be created. Integrating data
creates possibilities for data mining and for creating a complete overview of all data that is available
to an organization [4]. When integrating enterprise applications, data exchanges have to be created.

We define a data exchange as follows: A data exchange is a process that transfers data from a source
system to one or more target systems.

In the following sections we describe the following general properties of data exchanges.

 Architectures of data exchanges. This section explains the possible relations between
involved systems in data exchanges.

 We refine the architecture of data exchanges by describing the layers of data exchanges and
the layers of applications that exchange data. Also the relation between the application and
the available network layers are explained.

 Timeliness of messages. This section explains the difference between real time messages and
deferrable messages and explains batch data exchanges and real time data exchanges.

2.1.1 Architectures of data exchanges

The relations between information systems that exchange data can vary. We distinguish three types
of architectures of data exchanges, which we based on Britton and Bye [5].

 Bus architecture. This architecture is well known under the name of enterprise service bus. In
this architecture there is a central bus to which all systems connect. This bus is middleware
that manages all communications between those systems. It is a tightly coupled architecture
because all systems must use the same technology and follow the same protocol. This type
of architecture has several advantages. It is fast because the hardware and software are
made for this job. It is secure because all security can be built into this one piece of middle
ware. It is flexible because new systems can easily be added.

 Hub architectures. Information systems can be connected using a hub. A hub is a server that
routes messages between systems and can perform additional actions. These additional
actions can be reformatting of the message, routing the message, adding information to the
message and monitoring the message flow. In one enterprise architecture multiple hubs can
be placed that serve different purposes and use different technologies and protocols.

 Web service architecture. This is a point to point architecture where web services interact
directly with each other. Web services are in fact just middleware, but they are often part of
an application. Therefore applications can talk directly to each other without the need for

Monitoring data exchanges between information systems

7

additional middleware. This makes is possible to connect systems with different platforms
with each other. Furthermore, they are designed to work over the internet, so they do not
need additional connections between systems and do not have problems with firewalls.

What all three architectures have in common is that middleware is used. This middleware can consist
of integration applications, but it can also consist of web services. In Figure 4 the architecture of a
data exchange between a source system and a target system is shown. We based this generalized
architecture on the book of Bussler [6].

Source
information

system

Target
middleware

Source
middleware

Target
information

system

Figure 4 Layered data exchange using middleware

Now we take a look at what each piece of middleware does. First we take a look at the middleware
of the source system. Its activities are shown in Figure 5. First it extracts data from the source
system. If needed, it transforms this data to a specific format and finally it sends this data to the
target system.

Extract data
Analyze/

transform data
Send data

Figure 5 Process of middleware at the source system

The process of the middleware at the target system is similar to the process of the middleware in the
source system. It starts with receiving data from the source system. Then it analyses and transforms
that data to make it fit in the target system and finally it stores the data in the target system.

Receive data
Analyze/

transform data
Store data

Figure 6 Process of middleware at the target system

Relation to this research
For this research it is important to note that data exchanges always have a source system and a
target system. To make interaction between these systems possible, middleware is used. This
middleware can transform data to make it compatible with middleware at the other side to the data
exchange.

2.1.2 Layers of data exchanges

In our research we focus on monitoring syntactic and semantic aspects of data exchanges. Both
applications and network interfaces are composed of layers. To make clear at which layer we want to
do monitoring, we explain the relation between applications and network interfaces in this section.

The OSI model [7] is the layered architecture that is used to transport data over computer networks.
This model is schematically shown in Figure 7. Each layer uses functionality from the layer below and
provides functionality to the layer above. At the bottom there are three media layers. These layers
are implemented by the network that is provided to the system that is connected to it. The upper
four layers are implemented by systems that are connected to the network.

Monitoring data exchanges between information systems

8

The OSI model is a very generic model, which can be applied to various technologies. The most
common technology is TCP/IP. This technology only distinguishes four of the seven layers of the OSI
model. In this model the application layer, presentation layer and session layer are simply called
application layer. In this application layer protocols such as FTP, HTTP and SMTP are used.

TC
P

/I
P

 m
o

d
el

H
o

st
 la

ye
rs

M
ed

ia
 la

ye
rs

Application layer
(Network Process to Application)

Presentation layer (Data
Representation and Encryption)

Session layer (Interhost
communication)

Transport layer (End-to-End
Connections and Reliability)

Network layer (Path Determination
and IP (Logical Addressing)

Data Link layer (MAC and LLC, Physical
addressing)

Physical layer (Media, signal, and
binary transmission)

Network interface layer

Internet layer

Transport layer

Application layer

Figure 7 The OSI layered architecture and the TCP/IP model

Now that we described the layered architecture of computer networks, we take a look at the layered
architecture of applications that interact with the application layer of the TCP/IP model.

There are various guidelines and architectures available for building layered applications. We make
use of the architecture that originates from the Microsoft Application Architecture Guide [8]. There
are other variants on this layered architecture available from competitors like IBM. We use the
Microsoft version because we build our prototype in a Microsoft environment. We use this
architecture as-is because the most important is to note that applications are composed of layers.
The overview of the layered architecture is shown in Figure 8. Note that this is the architecture of an
application and not of a computer network.

Monitoring data exchanges between information systems

9

Figure 8 Layered architecture of Microsoft information systems [8]

In this architecture each layer uses functionality from the layer below and provides functionality to
the layer above it. The basic three layers are the data layer, the business layer and the presentation
layer. Because in this research the information systems often expose services to other systems and
exchange data with other systems, we use the variant of the layered system that also incorporates a
services layer. We shortly describe each layer, based on the Microsoft Application Architecture Guide
[8].

 Presentation layer. This layer is responsible for providing the user oriented functionality and
for managing the user interaction. The layer contains components that provide a bridge to
the services layer, or if that is not available, to the business layer.

 Services layer. This layer is not explicitly available in all information systems. However, if the
system must offer services to other systems as well as providing functions to support clients,
the services layer is a common approach to expose business functionality of the system.

 Business Layer. This layer contains the core functionality of the system, and encapsulates the
relevant business logic. It generally consists of components, some of which may expose
service interfaces that other systems can use.

 Data Layer. This layer provides access to data hosted within the boundaries of the system,
and data exposed by other networked systems; perhaps accessed through services. The data
layer exposes generic interfaces that the components in the business layer can consume.

Monitoring data exchanges between information systems

10

Now we relate the application architecture to the TCP/IP model. The relation between the
architecture of the application and the TCP/IP model is that the services layer from the application
uses the application layer from the TCP/IP model. So suppose the services layer from the source
system needs to send data to the services layer of the target system, the data goes to the TCP/IP
model and its lower layers and eventually reaches the services layer of the target system. The data
flow in this situation is depicted in Figure 9. In the picture is not shown how the services layer of the
source system acquires its data from lower layers and how the services layer of the target system
stores its data because it is out of the scope of this research.

TCP/IP model

Network interface layer

Internet layer

Transport layer

Application layer

Application architecture

Data layer

Business layer

Services layer

Presentation layer

Source system Target system

TCP/IP model

Network interface layer

Internet layer

Transport layer

Application layer

Application architecture

Data layer

Business layer

Services layer

Presentation layer

Figure 9 Overview of layers involved in a data exchange

Relation to this research
In our research we do not investigate monitoring on layers that are part of the TCP/IP model. For
monitoring these layers, there are already a lot of tools available. We only focus on the services layer
from the application architecture because we want to monitor the ultimate result of a transaction in
the target system.

For this research the most important fact to note is that applications are composed of layers and that
the services layer of an application interacts with the application layer of the TCP/IP model. The
layers of the applications architecture and the layers of the TCP/IP model are not directly
comparable.

2.1.3 Timeliness of messages

In data exchanges between systems, messages with information are exchanged. It is important to
distinguish real-time and deferrable messages. Messages are real-time if the result of the message is
needed immediately. So if the message cannot be processed the system must halt and report an
error. Deferrable messages are messages of which the result is not immediately needed. This means
that the system can process the message after the transaction which created the message has
completed. If the message cannot be sent at a certain time it can be useful to report that, but it does
not directly impose a problem because the system can retry it later [5].

In practice deferrable messages are often processed in batch transactions. These messages can each
be stored in a separate file or can be combined in a large file. In this case multiple deferrable
messages are consecutively processed. Data exchanges that use batch transactions are normally
scheduled and started at certain times whereas real-time data exchanges execute the transaction
directly when input is received.

Monitoring data exchanges between information systems

11

Relation to this research
For monitoring purposes it is important to make the distinction between real-time and deferrable
messages because the monitoring tool will have to monitor different aspects. For real-time messages
actions can be monitored at the time the message is received, but for deferrable messages
monitoring can be done when the batch process is started.

 Possible failures in data exchanges 2.2
In this section we identify possible failures that can occur in data exchanges. We need to investigate
these failures to be able to determine what should be monitored. Before we go into detail about
possible failures, we first define the term failure.

A failure is defined as a deviation between the observed behavior and the desired behavior of a
software system [9].

In IT systems failures can occur at various components of the system. Data exchanges consist of at
least four components: a source system, middleware of the source system, middleware of the target
system and the target system itself. The components use layered application architectures and
layered network architectures. At both layered systems failures can occur.

2.2.1 Failures in network communication

Failures can happen at several layers of the data exchange. In section 2.1 we explained that
application that exchange data make use of the TCP/IP model, also referred to as the OSI model. For
this model there are numerous solutions available to monitor its status and process. Therefore we
exclude errors at this level in this research. For this research it is sufficient to know that errors can
occur in this part of the data exchange.

2.2.2 Application failures

In this research we focus on failures that affect layers in the application architecture. As mentioned
before errors can also occur in the TCP/IP model, but most of those errors will not propagate to the
application. However, if a link between two systems is completely malfunctioning, the application
will suffer from these error and these errors can be monitored.

Robinson [10] identified a list of problems that can occur when using services. This illustrates why
monitoring is important. According to Robinson the following problems can occur.

 Service Failure. A service can (silently) fail to produce any results.

 Tardy Service. A service can produce results after a specified deadline. Dissatisfaction may
also be associated with results produced by the service.

 The Reluctant Service. A service can consistently produce late results.

 Service Spam. A service may make frequent requests of other services.
This failure cannot happen in the case we use in our research because all connections are
secured and are not publicly available.

 Run on the Bank. A set of buyers, or an individual buyer, can overload a service with
requests. For example, a collection of competing retailers could flood a vendor with requests
for a popular product (e.g., “tickle me Elmo” at Christmas). Knowing this, a strategic retailer
could abuse other retailers by using a Service Spam strategy to prevent them from placing
requests.
This failure cannot happen in the case we use in our research because all connections are
secured and are not publicly available.

 Doesn’t play well with others. An individual service may work fine in isolation. However,
when combined with others, it may fail. Such scenarios will be commonplace as new traders
enter the marketplace while web service standards evolve.

Monitoring data exchanges between information systems

12

 The Gang that can’t Shoot Straight. Just as an individual service may fail to work with another
service, an aggregation of services may be prone to failure.

 Service Spoof. A non-legitimate trader can penetrate an electronic marketplace, in spite of
security precautions. Thus, it will be important to monitor transactions for unusual behavior
that can be associated with a spoofed service.
This failure cannot happen in the case we use in our research because all connections are
secured and are not publicly available.

 Denial of Service. A non-legitimate trader can make frequent requests of services, as part of
a denial of service strategy.
This failure cannot happen in the case we use in our research because all connections are
secured and are not publicly available.

Some of the above failures are caused by software failures, which are errors in the program code of
software. According to Britton and Bye [5] software failures are the worst kind of error. To minimize
problems in software, programmers should write code that:

 Prevents bad data from getting in the database. All inputs should be checked and if any
errors in the data are found, the transaction should not be committed.

 Checks for corrupt data when data is read from the database.

 Displays as much information as possible when errors are detected.

Relation to this research
In this research we do not concern communication failures, but only failures that can be detected at
the services layer of an application. From the complete list which was given by Robinson, only a
subset of the possible failures is applicable to this research because not all failures can happen or are
important in this research. We use only the following failures.

 Service failure

 Tardy service

 The reluctant service

 Doesn’t play well with others

 The gang that can’t shoot straight

For failures that we do not use in our research, the reason why they are not used is explained in the
complete list above.

 Data quality 2.3
Monitoring tools should lead to better data exchanges, which lead to better data quality and which
ultimately lead to improved customer satisfaction. This is explained in section 1.2. Because improved
data quality is a target of this research, we state what we define as data quality. We use the
definition of Wang and Strong [11]. Wang and Strong did an extensive literature study and a two-
stage survey among data consumers to research what data quality is.

Monitoring data exchanges between information systems

13

Data quality

Intrinsic data quality
Contextual data

quality
Representational

data quality
Accessibility of data

quality

Believability
Accuracy

Objectivity
Reputation
Uniqueness

Value-added
Relevancy
Timeliness

Completeness
Appropriate amount

of data

Interpretability
Ease of understanding

Representational consistency
Concise representation

Accessibility
Access security

Figure 10 A combination of Wang and Strong [11] and Akoja et al. [12]

According to Wang and Strong data quality has four aspects as shown in Figure 10. Each of these
aspects has several properties. These aspects are the following:

 Intrinsic data quality. This aspect includes accuracy and objectivity, but, in contrary to the
traditional view, also believability and reputation. This is similar to some aspects of product
quality. So when implementing a system you should also ensure believability and reputation
of the data.

 Contextual data quality. This means that data quality must we considered within the context
at hand. So the data consumer must see relevant data which is needed for the task that is
executed. In the context of this research timeliness and completeness are the most
important.

 Representational data quality. This aspect is about the format of the data and the meaning of
data. This implies that for end users data must not only be concise and consistently
presented, but also interpretable and easy to understand.

 Accessibility of data quality. Accessibility is presumed by consumers. Not all studies threat
accessibility as part of data quality, but according to Wang and Strong there is little
difference in treating accessibility as an aspect of overall data quality or separating it from
other categories of data quality.

The same classification of data quality aspects is used by Batini and Scannapieco [13]. They call it the
empirical approach. This approach is based on feedback from data consumers, so we use this
approach in our research. In the end the target of this research is to make customers satisfied, so we
can use their opinion on data quality.

Akoja et al [12] add to the framework of data quality the uniqueness property. Especially for CRM
systems this is an important property. Because CRM systems often aggregate data from different
sources, these data has to be combined instead of duplicated.

Batini and Scannapieco [13] also describe several methods to improve data quality. There are two
approaches: data driven and process driven. Data driven approaches use existing data and try to
improve the quality of that data. Process driven approaches look into the processes which enter data
into the system and try to eliminate the root causes. In this research we focus on process driven

Monitoring data exchanges between information systems

14

approaches by improving the process and monitoring of data entry in information systems. We do
not strive to improve the data quality of existing data.

In section 2.2 we identified possible failures of data exchanges. We now map those failures to
concepts of data quality. These concepts are taken from the lowest row of Figure 10 and only the
affected aspects are shown. Each failure can affect other aspects of data quality. The mapping of
failures to data quality aspects is shown in Figure 11.

Possible failuresPossible failures

Service failure

Tardy service

Data quality aspects

Intrinsic data
quality

Contextual data
quality

Representational
data qualityReluctant

service

Service spam

Run on the bank

Accessibility data
quality

Doesn’t play
well with others

The gang that
can’t shoot

straight
Service spoof

Denial of
service

Figure 11 Mapping of failures to data quality aspects

Relation to this research
As can be seen in Figure 11 all four aspects of data quality are impacted by possible failures of data
exchanges. In section 2.2 we explained that not all possible failures can happen in our case. Because
service spam, run on the bank and denial of service failures cannot happen in the case we use in our
research, accessibility of data quality is not important for this research. So if we look at the failures
that can happen and the affected aspects of data quality only the following aspects are important for
this research:

 Intrinsic data quality

 Contextual data quality

 Representational data quality

Monitoring data exchanges between information systems

15

 Monitoring concepts for data exchanges 2.4
Because this research focuses on monitoring, it is important to investigate existing concepts of
monitoring. These concepts can be used to create the reference architecture for data exchanges with
monitoring.

When software is developed several verification techniques such as testing, model checking and
theorem proving can be applied to verify its theoretical correctness. To check the current execution
of software, monitoring is needed. Monitoring helps in detecting possible failures and in providing
additional information on failures. This information can be used to correct errors and speed up the
recovery of data [9].

In organizations where systems are hosted for customers a robust monitoring system is needed. This
system should provide the service desk with all information needed about the current state of
systems [14].

2.4.1 Methods of monitoring

There are a lot of monitoring tools for information systems available. However, most tools monitor if
the operating system is still running and if there is enough drive space etc. For monitoring functional
aspects of an application other monitoring tools are needed that monitor different aspects.

If standard middleware is used, the default monitoring capabilities of the middleware can be used. If
these do not suffice or if monitoring of functional aspects is needed, interceptors can be used. This is
described by Morgan et al. [15]. These interceptors can be configured to analyze the data that is
processed by the middleware. This results in the opportunity to monitor the data that is processed. It
can for example count certain values and report them to another system which gathers the data and
creates a visual representation of the monitoring data.

2.4.2 Levels of monitoring

Monitoring can be done by middleware or agents that are plugged into middleware. Monitoring can
be done at different levels. For our research we are interested in syntactic monitoring and semantic
monitoring. Both levels of monitoring are described in this section.

Syntactic monitoring
The term syntax is used to refer to a set of rules concerning the construction of natural languages,
but also to computer programming languages. The term syntactic correctness can be used in various
contexts. If we apply it in a natural language, a sentence which is grammatically correct is syntactic
correct, but it may have no meaning. In our research we define that a transaction of a data exchange
is syntactic correct if no error occurs. In most situations this means that the middleware of the target
system can process the transaction and can execute the necessary steps to complete the transaction.
With syntactic monitoring we want to monitor the number of transactions, the number of records
that are created in these transactions and the errors that have occurred. The process of syntactic
monitoring is shown in Figure 12.

Monitoring data exchanges between information systems

16

Receive input

Process input

Error occured?

No

End

Store error and
related information

YesStore information
about the number
of records created

Figure 12 Process of syntactic monitoring

Semantic monitoring
Semantics is about the meaning of content. This content can consist of words, phrases or other types
of data. In our research we define a semantic correct transaction as a transaction that is syntactic
correct and has meaningful data as a result. To illustrate this, we give an example. Suppose there is a
transaction that creates a person with a phone number of only 3 digits. Syntactic this transaction is
correct because the transaction completes without errors, but the transaction is semantic incorrect
because a phone number of 3 digits is not meaningful and obviously incorrect.

So in contrast to syntactic monitoring, semantic monitoring also analyzes the content of messages
that are exchanged. The contents can be compared to rules that are specified beforehand. If the
input matches the rules, no error occurs. If the input does not match the rules there is an error.

In some cases restrictions on the contents of messages are included in the syntax of the target
system. If this is the case and the contents of the message do not meet the requirements the
message will be rejected and a syntactical error will occur. In the case we use in our research most
data fields are strings and will accept any input. Therefore separate monitoring has to be done to
monitor semantics. So to summarize: if a transaction error occurs we call it a syntactic error. If the
contents of data in the message do not meet the requirements we call it a semantic error.

The process of semantic monitoring is similar to the process of syntactic monitoring. In practice both
types of monitoring can be executed by the same program. In Figure 13 the process of semantic
monitoring is shown. Important in this process is the comparison of the input to rules that are
specified beforehand. These rules are needed because the semantic correctness of a transaction
cannot be determined by whether a transaction error has occurred.

Monitoring data exchanges between information systems

17

Receive input

Compare input with
specified rules

Error occured?Store correct results
Store error and

related information
yesno

End

Figure 13 Process of semantic monitoring

2.4.3 Polling versus publish and subscribe

On the web there is a lot of debate on whether polling or publish and subscribe is the best solution to
send monitoring results to a central server. There is no hard conclusion to draw on this topic and
each solution has its advantages [16].

Publish and subscribe monitoring is the concept in which the system that is monitored, runs a
monitoring agent which collects data and reports to a central server that is subscribed to the agent.
This monitoring agent is plugged into the software that is to be monitored.

Polling, also called agent-less monitoring, works without an additional running process on the server
that is monitored. In this concept the central server polls the servers that it wants to monitor and
collects the data itself. Also in this case the server that is to be monitored, has to deliver the required
data to the central server. So in some way there is still a monitoring agent, which collects the data
and is able to send the data to the central monitoring server.

According to Roepke [17] the difference between publish and subscribe and polling lies in the fact
whether the server that is monitored takes the initiative to send data or that the central server asks
for data. If the server that is monitored uses a sort of interrupt based model and initiates the transfer
of monitoring results, we call it publish and subscribe. If the central server initiates the data transfer
to request data, we call it polling.

For our research both polling and publish and subscribe are possible solutions. Regardless of which
mechanism is used, the server that is monitored needs some logic to gather information and to send
information. We call this logic a plugin. For most general concepts of monitoring it does not matter
whether this plugin uses an agent to send data or that it sends data in response to a request from the
central server. So in descriptions where it is not relevant if the system is agent-based or agentless,
we use the term plugin.

Monitoring data exchanges between information systems

18

2.4.4 Reporting results of monitoring

At each data exchange a monitoring plugin gathers information. This information is sent to a central
monitoring server to create an overview of all data exchanges that are monitored. In Figure 14 the
relation between the data exchange, the monitoring plugin and the central monitoring server is
shown. Middleware often has monitoring capabilities. These monitoring capabilities can be used to
implement the monitoring plugin functionality. This functionality is used to gather information and to
send useful information to the central monitoring server. We do not go into detail about the
configuration of middleware and the format in which information is sent. This can be determined for
each data exchange separately as long as the format is supported by the central monitoring server.

As can be seen in the figure, monitoring is done at the target system. This is because in practice we
often only have influence on the target system, which in the case of CRM Resultants is Microsoft
Dynamics CRM. Monitoring can also be done at the source system, but this would be the
responsibility of the external administrator of the source system. In cases where our system
functions as the source system, monitoring can be done by the external party that manages the
target system. They can use the reference architecture we specify in this research to set up their own
monitoring solution.

Source
information

system

Target
information

system
Middleware

Monitoring
plugin

Central monitoring
server

Middleware

Figure 14 Monitoring architecture of a data exchange

The central monitoring server can be connected to multiple monitoring plugins. In this way it can
monitor multiple data exchanges and create and overview of all data exchanges. This is further
explained in our reference architecture.

Relation to this research
In this research we use the concept of plugins to monitor a data exchange. This plugin can be
implemented by various types of middleware. The plugins have a connection to the central
monitoring server to send the monitoring information to the central monitoring server. This central
monitoring server is used to provide an overview of all data exchanges.

Monitoring data exchanges between information systems

19

3 Case study on failures of data exchanges
In our literature review in chapter 2 we found several possible failures of data exchanges. These are
possible failures for data exchanges in general. Because we execute this research on a specific case
and we build our prototype for a specific case, we execute a case study to find failures that can occur
in this specific situation.

This case study is focused on data exchanges that are built by CRM Resultants. We take some data
exchanges of which is known that they do not always function as desired and we gather all failures
that occur in these data exchanges. Gathering this information from practice helps in building the
prototype and eventually validating if failures are correctly monitored.

 Web service data exchanges of the Hogeschool Utrecht 3.1
The CRM system of the Hogeschool Utrecht has a custom built web service data exchange with the
website of the Hogeschool Utrecht. The CRM side of the data exchange is built by CRM Resultants
and the side of the website is built by Evident, the company which builds the website for the
Hogeschool Utrecht. The following data is exchanged between CRM and the website.

 Requests for brochures. People who are interested in following a study at the Hogeschool
Utrecht can fill out a form to request a brochure, which is sent by post. Information that is
entered on this form is sent to CRM using web services. This information is sent in two steps.
First information about the person is sent. This is for example the name, birthdate and
address. Afterwards information is sent about the brochure that is requested and this
information is related to the personal information that is sent in the previous step.

 Events. In CRM events can be created which are then sent to the website.

 Subscriptions for events. People can subscribe for events. These subscriptions are sent to
CRM in two steps. First the contact information is sent and afterwards the information about
the subscription is sent.

 Information about studies of the Hogeschool Utrecht is sent from CRM to the website.

 Courses are retrieved by CRM from the website.

 Information about postal codes is sent from CRM to the website. On the website in forms
only the postal code and house number have to be filled in and the rest of the address is
completed automatically.

An overview of the data that is exchanged is shown in Figure 15.

Monitoring data exchanges between information systems

20

Website

Request for
brochures

Event

Subscription
for event

Webservice Webservice

Study

Course

Postal code
information

Microsoft Dynamics
CRM

Figure 15 Overview of the web service data exchange between the website and CRM

Unfortunately these data exchange have had some problems in the beginning. By doing extensive
analysis on these problems a lot of errors are identified and changes to the data exchange are made
to prevent these errors from occurring. Because in this research we aim to gather as much
information about errors as possible, we also list errors that cannot happen anymore.

3.1.1 Reasons for failures that have occurred

In this section we list the reasons for failures that have occurred in practice. Information about these
failures is retrieved from employees of CRM Resultants and log files of data exchanges.

 Message cannot be processed because it is syntactically incorrect. This can happen if one
party that builds the data exchange changes something to the specification without notifying
the other party.

 The record that is referenced cannot be found. Because information about the brochure
request has to be related to the contact information, the unique ID of the contact has to be
referenced in the second message. It is possible that this record is not found.

 There is no reference specified to which the record should be linked.

 Multiple records found. Because information should not be duplicated in the database,
before inserting records, a lookup is done based on certain criteria to check if the record
already exists. If this is the case, the record is updated instead of a new record being created.
If multiple records are found, it is impossible to determine which of them should be updated.

 Data wrongly formatted. The message is syntactically correct, but the data it contains does
not meet the requirements of the data format of the target system.

 Data incomplete. The message is compatible with the specified WSDL, but some attributes
are missing.

 Service fails silently. Occasionally the service fails without producing an error message or
anybody noticing.

Monitoring data exchanges between information systems

21

 Web service is very slow and responds after a reasonable amount of time. This does not
directly result in a failure, but can cause long waiting times for the user.

 Time out. If the web service responds too slowly, a time out occurs and the transaction is
aborted. This data is not sent again afterwards.

 Could not establish trust relationship for the SSL/TLS secure channel. The underlying
connection for the data exchange did not work.

 SOAP exception because an invalid argument was passed to the web service.

 SOAP exception because the length of an attribute is exceeded.

 Send failure. A connection to send data cannot be opened.

 Scribe data exchange Hogeschool Utrecht 3.2
The CRM system of the Hogeschool Utrecht has various data exchanges. Data exchanges are not only
realized with web services, but most of them are built with Scribe [18]. Scribe is an integration
product that can connect to various information systems and can handle various interfaces such as
web services, FTP, e-mail and file systems. From this interfaces it accepts files in different formats
such as XML, Excel and CSV. Most data exchanges that are built with Scribe, are batch exchanges in
which a file with multiple records is imported in one job. Jobs can be scheduled to check for input at
a certain time.

For each data exchange a definition has to be made in Scribe to define which steps have to be taken
to transform and store the data. Scribe has built in functionality to export failed records to a file and
to e-mail a summary of the job that is executed.

The Hogeschool Utrecht uses Scribe to exchange data with Osiris, a student administration system,
and to import data from Excel files. In Figure 16 this data exchange is schematically shown.

Microsoft CRMScribe

Osiris

Students in CSV file

Studies in CSV file

Enrollments in CSV
file

User

Excel file with
various information

Middleware

Figure 16 Data exchanges with Scribe

Monitoring data exchanges between information systems

22

3.2.1 Reasons for failures that have occurred

In this section we list the reasons for failures that have occurred in practice. Information about these
failures is retrieved from employees of CRM Resultants and log files of data exchanges.

 Multiple records found. Because information should not be duplicated in the database,
before inserting records, a lookup is done based on certain criteria to check if the record
already exists. If this is the case, the record is updated instead of a new record being created.
If multiple records are found, it is impossible to determine which of them should be updated.
This error can occur with different types of records.

 Generic SQL error. For some reason the SQL server is not able to process the request.

 Post job failure. After a job has completed, Scribe moves files from one folder to another.
This can fail because of a lack of disk space or files being in use.

 BizTalk data exchange between Peoplesoft and Microsoft CRM of ROC 3.3
van Amsterdam

The ROC van Amsterdam has a data exchange between Peoplesoft and Microsoft CRM. This data
exchange is built with BizTalk. The data exchange executes the following tasks:

 Inserting/updating student information from Peoplesoft to CRM

 Inserting/updating enrolment information from Peoplesoft to CRM

 Deleting enrolment information from CRM.

 Inserting/updating company information from CRM to Peoplesoft

 Inserting/updating training periods (internships) information from CRM to Peoplesoft

The architecture of this data exchange is shown in Figure 17.

Figure 17 Data exchange between Peoplesoft and Microsoft CRM

In this data exchange the possible errors were specified beforehand. The result is that all possible
errors are caught by the system. Therefore for this data exchange we list the errors that are caught
by the system.

3.3.1 Errors that can occur

As can be seen in the figure above the complete data exchange consists of multiple components. At
each component different errors can occur. Therefore we list the errors per component.

BizTalk file watcher
The BizTalk file watcher watches the contents of a folder on the server. If an XML file is placed in that
folder, the file watcher picks it up and processes the contents of the file. This can result in the
following errors.

Monitoring data exchanges between information systems

23

 General exception in reading the file.

 SOAP exception which can be caused by an incorrect SOAP format.

BizTalk web service
The BizTalk web service processes the XML messages and stores the information in the target
systems. The following errors can occur in this process.

 Format invalid. The format in which data is received does not meet the requirements.

 Invalid CRM ID. The record that should be updated or deleted is not found in the CRM
database.

 ID from Peoplesoft is invalid. In CRM the Peoplesoft ID of a company is stored and in
Peoplesoft the CRM ID of a company is stored. If a company in CRM already has a Peoplesoft
ID, but this is different than the Peoplesoft ID that is provided, this error occurs and the
request is discarded.

 System exception. The system can have a failure which makes it impossible to store data.

 Company not found. There is no company found in CRM with the supplied ID.

 Failure to connect to web service of CRM.

 SOAP exception. A general SOAP exception occurred while interacting with the web service.

 BizTalk web service exception. The web service of BizTalk has a generic failure.

BizTalk Functoids
Functoids in BizTalk are building blocks which are used in field mappings.

 Unable to open registry key. For some configuration tasks settings are stored in registry keys.
This error can occur if the registry key is not found.

 Combined results of this case study 3.4
In this case study we looked at three types of data exchanges. For each type of data exchange
different errors can occur, but some errors overlap. Therefore in this section we create a list of all
possible errors regardless of the type of data exchange and we list each type of error only once.

To create an overview of the errors we grouped them in four categories. Within each category we
estimated which errors occur most frequently and we list the errors by descending frequency. We
estimate that most errors result from the contents of data. We estimate that errors in the other
categories do not differ much from each other if we compare them by frequency of occurrence.

Note that all ranking of errors is based on estimation because there is currently no monitoring
executed on these errors. There is no statistical data available yet.

3.4.1 Errors resulting from the contents of data

1. Multiple records found.
2. The record that is referenced cannot be found.
3. There is no reference specified to which the record should be linked.
4. Message cannot be processed because it is syntactically incorrect.
5. Data wrongly formatted.
6. Data incomplete

3.4.2 Errors in middleware

1. Generic SQL error.
2. Post job failure.
3. General exception in reading the file.
4. System exception.
5. Unable to open registry key.

Monitoring data exchanges between information systems

24

3.4.3 Connection and performance errors

1. Time out.
2. Could not establish trust relationship for the SSL/TLS secure channel.
3. A SOAP exception.
4. Web service is very slow and responds after a reasonable amount of time.
5. Send failure.

 Mapping of errors to data quality 3.5
To determine the impact of the errors, we mapped the errors to the aspects of data quality that are
impacted by the error. In Figure 18 the errors are shown in grey blocks and the aspects of data
quality are shown in blue. The category of the aspects is shown between brackets.

Syntactically
incorrect

Referenced
record not

found

Accuracy (Intrinsic)

Completeness
(Contextual)

Timeliness
(Contextual)

No record
referenced

Multiple
records found

Data incorrect
Data

incomplete

Errors that do not impact data quality

Slow web
service

Time out

No SSL
connection

SOAP exception

Send failure

Generic SQL
error

Post job faliure

File read error

System
exception

Unable to open
registry key

Representational
consistency

Figure 18 Mapping of errors to aspects of data quality

As can be seen in the diagram not all errors have impact on aspects of data quality. This is because
the error does not affect transactions of the data exchange.

Monitoring data exchanges between information systems

25

4 Monitoring reference architecture
Based on information from literature which is presented in chapter 2 and information from our case
study in chapter 3 in this chapter we present our reference architecture. In this architecture we
discuss the components that the monitoring solution has to incorporate and which requirements
have to be met.

 Components of the architecture 4.1
In the reference architecture we distinguish two types of components. First there are components
that are needed by the data exchange itself and secondly there are components that are needed for
monitoring those data exchanges.

Minimal components of data exchanges

 Source system. This is the system from which data is sent to the target system.

 Middleware of the source system. The middleware of the source system is responsible for
extracting data from the source system, formatting it in the correct way and sending it to the
middleware of the target system.

 Middleware of the target system. This middleware is responsible for receiving data from the
middleware of the source system and processing it to store it in the target system.

 Target system. The target system is the system to which the data is stored.

Components for monitoring data exchanges

 Monitoring plugins. For each type of data exchange a plugin is needed that collects data
about the transactions that are executed and the data that is exchanged. These plugins can
be implemented by different applications. If middleware applications have built-in features
for monitoring purposes, these can be used.

 Central monitoring server. This server is used to store monitoring information from different
data exchanges and to present the information to the end user.

 A mechanism to collect data from the plugins. At this stage we do not impose restrictions on
the choice if this mechanism is agent based or agent-less. The choice for one of the two
options depends on the available monitoring solutions.

An overview of the reference architecture is depicted in Figure 19. In this architecture different data
exchanges are shown. Each data exchange has its own plugin that reports monitoring information to
the central monitoring server. This monitoring server aggregates this data and reports the
information to the end user.

Legend

Central
monitoring server

Source

Monitoring plugin

Middleware

Monitoring information

Data flow of a data
exchange

Target

Source Target Source Target

Source Target Source Target

Figure 19 Reference monitoring architecture

Monitoring data exchanges between information systems

26

Now we look at the process of an individual data exchange and the relation of the involved systems
to the central monitoring server. If we zoom in on an individual data exchange, the architecture looks
as depicted in Figure 20.

Target system
middleware

Monitoring
plugin

Monitoring information
Central monitoring

server

Source system
Source system

middleware
Target systemData Data Data

Figure 20 Reference architecture of monitoring an individual data exchange

 Monitoring requirements of the architecture 4.2
Not all aspects of the reference architecture can be shown in a figure. Therefore we specify
additional requirements which have to be met if a monitoring solution is built. We specify the
following requirements.

 The solution must be able to aggregate data from different sources which may use different
technologies.

 The solution must be able to monitor syntactic and semantic aspects of data exchanges.

 The solution must support real time and deferrable messages.

 The solution must be able to detect patterns in data exchanges.

 The solution must be able to report different types of failures.

 Monitoring process steps 4.3
In Figure 21 a sequence diagram is presented on how the involved systems interact to exchange data
and to process monitoring information. Each involved system has its own time line. The source
system is the system from where the data originates. Both the source and the target system have
middleware. The middleware of the target system is responsible for providing monitoring
information to the central monitoring server. The central monitoring server receives this information
and has to combine this information from different data exchanges. In this picture the initiative for
sending monitoring information lies at the middleware target system but in practice also the central
monitoring server can take the initiative to collect monitoring data.

Monitoring data exchanges between information systems

27

Source system Source middleware Target middleware Central monitoring server

Send data

Acknowledge

Send data

Acknowledge

Send monitoring report

Acknowledge

Target system

Store data

Acknowledge

Figure 21 Sequence diagram of the monitoring process

 Contents of monitoring information 4.4
The exact contents of monitoring information depend on the data exchange that is monitored. Below
is a list of components that always need to be included.

 Server from which the information originates. Because the central monitoring server receives
information from multiple servers, it needs to know from which server the data is coming to
be able to relate the monitoring results to the correct server.

 Data exchange from which the information originates. Often there are multiple data
exchanges running on a server. Therefore the central monitoring server needs to be able to
determine from which data exchange the monitoring information originates.

 Date and time. The date and time of the transaction have to be stored in the monitoring
results. This helps in finding the transaction that caused the error and in case the monitoring
server has a downtime, it is still possible to determine when an error occurred.

 Error or success. The monitoring information should include information about whether a
transaction was successfully executed or whether an error occurred.

 Error message. In the case of an error the type of error has to be specified.

 Context. To be able to locate the source transaction that caused an error, information has to
be stored with which the transaction can be found. Normally this will be a transaction ID or a
unique number from the source data.

 Information about the semantic correctness of a transaction. This information can be
delivered for each transaction separately or a query can be executed at scheduled times that
reports information about the semantic correctness of transactions that are executed.

Monitoring data exchanges between information systems

28

 Events that must be monitored 4.5
Depending on the type of data exchange a different set of events can be monitored. For each data
exchange at least the following events have to be monitored and reported to the central monitoring
server.

 A successful transaction. Successful transactions are needed to detect patterns in the data
exchange and to detect a possible absence of transactions. If the source system does not
send data to the target system, no error occurs, but based on the lack of successful
transactions, it is still possible to detect an error.

 An error in a transaction. If a transaction cannot be executed this has to be reported to the
central monitoring server including the type of error and its context.

 A fatal error in the middleware. It is possible that the middleware does not even try to
execute transactions because the middleware itself encountered an error.

For real-time data exchanges it is preferred to report the events above for each transaction
separately. For batch data exchanges it is also possible to aggregate the information and report them
at once.

 Requirements of the central monitoring server 4.6
The central monitoring server is the key component in our reference architecture. It is responsible
for storing all monitoring data and providing a user interface to the end user. To be able to present
the monitoring data in a clear way it must store the information in a structured way. A reference
data model is therefore presented in Figure 22.

-Name
-URL
-IP-address

Server
-Name
-Timeliness
-Type
-Description

Data exchange

-Monitoring date
-Message
-Error code

Monitoring result

1 * 1 *

-Message

Alert

*

1

Figure 22 Reference data model of the central monitoring server

In the data model only the minimum required attributes are included. Depending on the
environment additional attributes can be added. As can be seen in the data model the highest entity
is the server. This server entity represents the server on which the target system that has data
exchanges is running. This can be for example a CRM server. This server can have multiple data
exchanges. All monitoring results are appended to these data exchanges and because data exchanges
have a relation with the server, the monitoring results are indirectly linked to the server. This makes
it possible to make selections of monitoring results at different levels. To provide an easy way for the
end user to view potential problems, alerts can be appended to data exchanges. These alerts should
be generated based on configured conditions.

Monitoring data exchanges between information systems

29

Apart from storage of monitoring data, the central monitoring server must provide the following
functionality.

 A user interface, preferably web based to make it easily accessible from different locations.

 Search functionality.

 Functionality to view results at the server level or at the data exchange level.

 Functionality to generate alerts on specified conditions.

 How this reference architecture improves data quality 4.7
In section 2.3 we specified that in this research we focus on improving intrinsic, contextual and
representational data quality. As can be seen in Figure 10 these three aspects of data quality are
main categories of data quality. In section 3.4 we showed that errors that occur in practice affect the
following subcategories of data quality. After the specific aspect of data quality the main category is
specified between brackets.

 Completeness (intrinsic data quality)

 Accuracy (contextual data quality)

 Timeliness (contextual data quality)

 Representational consistency (representational data quality)

If we can monitor the errors that affect data quality as shown in Figure 18, we can improve data
quality. Of course monitoring by itself does not improve data quality, but monitoring provides the
opportunity to take actions if errors occur. Without monitoring most errors will be unnoticed and no
corrective actions will be taken and that affects data quality in a negative way. In Figure 23 this
reasoning is schematically shown. The system administrator will probably not take action on every
single error, but each corrective action he does take, improves the data quality compared to the
situation where there is no monitoring at all.

Data exchanges without monitoring

Data exchanges with monitoring

Error in data
exchange occurs

Data quality is
negatively affected

Error in data
exchange occurs

Monitoring system
reports the error

and notifies system
administrator

System
administrator takes
corrective actions

Data quality is not
affected

Figure 23 How monitoring improves data quality

Monitoring data exchanges between information systems

30

5 Assessment of technical alternatives
In this chapter we present the results of our second case study. Based on our reference architecture
we searched for existing alternatives that could meet the requirements. Not all alternatives are
directly comparable to each other. Therefore for each alternative we specify which component of our
reference architecture it covers and we describe each component separately, if applicable.

At the end of this chapter a summary of all solutions is presented. This summary contains an
overview of the components that are included in the solution and the requirements that are met by
the solutions.

 Hyperic 5.1
Component Covered

Monitoring plugin Yes

Central monitoring server Yes

Monitoring data collection mechanism Yes

Hyperic [19] is a division of VMware, which offers enterprise monitoring solutions. The architecture
of Hyperic is depicted in Figure 24. The way this architecture is built matches our reference
architecture. All three components in our reference architecture are included in this solution.

Figure 24 Architecture of Hyperic

5.1.1 Monitoring plugin

Hyperic makes use of so called HQ Agents which can be installed on the servers that have to be
monitored. These HQ Agents detect the software that is installed and report to the central Hyperic
Server. The agents are compatible with a wide range of applications including applications like IBM
MQ, Microsoft SQL Server, Java Management Extensions and Internet Information Services. The
agents however to not measure syntactic and semantic aspects of data exchanges. They are only
capable of measuring system statuses.

Monitoring data exchanges between information systems

31

5.1.2 Central monitoring server

Hyperic has a central server that stores monitoring results and presents it in a web based interface. It
gives a complete overview of all system statuses and offers the opportunity to drill down on
problems and analyze error logs. It is capable of detecting patterns and can notify the user if a
pattern is different from the regular pattern.

5.1.3 Monitoring data collection mechanism

The data collection mechanism is implemented in the agents. Agents at the servers that are
monitored take the initiative to send monitoring data to the central server.

5.1.4 Conclusion

Although Hyperic offers a lot of options, it is mainly focused on the system status. It can monitor
applications at process level and show available disk space, cpu usage and related measures. It is not
capable to monitor syntactic and semantic aspects of data exchanges. Unfortunately this product is
not useful for our research.

 WSMonitor 5.2
Component Covered

Monitoring plugin Yes

Central monitoring server No

Monitoring data collection mechanism No

WSMonitor [20] is an open source java project. It can capture and analyze HTTP requests and SOAP
messages and present them in a graphical user interface. The interface of WSMonitor is shown in
Figure 25.

Figure 25 Graphical interface of WSMonitor

5.2.1 Monitoring plugin

WSMonitor only has functionality that we require for the monitoring plugin. It captures the data by
using port forwarding. So if a client makes a request, that request is copied to another port on which
WSMonitor is listening. These results can show syntactic and semantic aspects of a request. It can
however only report on the contents of requests that are done and cannot measure the effective
results of a transaction in the target system.

5.2.2 Conclusion

Although WSMonitor provides a graphical user interface, it can only be used as a monitoring plugin
for web services. The main problem is that is cannot monitor the effective results in the target
system so for our research WSMonitor is not usable.

Monitoring data exchanges between information systems

32

 SoapKnox 5.3
Component Covered

Monitoring plugin Yes

Central monitoring server No

Monitoring data collection mechanism No

SoapKnox [21] is a monitoring solution that is capable of monitoring Java and .Net web services. The
user interface is web based, so all information about the current status can be viewed in a web
browser. This interface is however not capable of aggregating monitoring results from data
exchanges that are not monitored by SoapKnox. Therefore we only recognize it as a monitoring
plugin.

5.3.1 Monitoring plugin

SoapKnox has modules that can be plugged into various web servers. These modules can be used as
the plugin component of our reference architecture. The modules do however only support web
service technology.

5.3.2 Conclusion

SoapKnox can be used as a plugin to monitor web services. It is possible to define a lot of measures
and this makes it capable of monitoring syntactic and semantic aspects of the data exchange. The
monitoring results that it creates must however be collected by another application to be able to
create an overview of data exchanges using different technologies.

 ManageEngine 5.4
Component Covered

Monitoring plugin Yes

Central monitoring server Yes

Monitoring data collection mechanism Yes

ManageEngine [22] is a complete suite which includes all three components of our reference
architecture. The architecture of the solution also matches our reference architecture in which
plugins report to the central server.

5.4.1 Monitoring plugin

What we call plugins in our reference architecture, are called monitors in this solution. The available
monitors can monitor various applications. The list of applications includes SQL Server, .Net
Monitoring, SharePoint Monitoring, Database Query Monitor and Web Services (SOAP). The plugins
are capable of monitoring traffic and statuses of services and systems, but they are not capable of
monitoring syntactic and semantic aspects of data exchanges.

5.4.2 Central monitoring server

The results from all connected monitors are shown in the central monitoring server. This interface is
web based. In this interface it is possible to define thresholds, set alarms, detect patterns and more.
Because there are monitors available for different technologies, in this interface an overview of all
data exchanges can be shown regardless of the technology that is used. An example of this interface
is shown in Figure 26.

5.4.3 Monitoring data collection mechanism

Results from the monitors are sent to the central monitoring server using a mechanism of
ManageEngine itself. This mechanism has auto discovery features that can detect installed monitors
automatically.

Monitoring data exchanges between information systems

33

5.4.4 Conclusion

The problem with this solution is that it monitors the status of web services and if they respond
instead of the data that it exchanges. So although it is a nicely integrated solution that covers all our
needed components, it monitors the wrong aspects of data exchanges.

Figure 26 Web based interface of ManageEngine

 Scribe 5.5
Component Covered

Monitoring plugin Yes

Central monitoring server No

Monitoring data collection mechanism Yes

Scribe [18] is a data integration and migration tool that accepts various source formats and can
output data to SQL databases of various applications. It can for example insert data from XML, CSV
and Text formats into the database of Microsoft CRM, Salesforce and many others. It is also capable
of transforming data from one database directly into another database. In Figure 27 the position of
Scribe between various applications is shown. Scribe is widely used by CRM Resultants to create data
exchanges with CRM.

5.5.1 Monitoring plugin

Scribe can generate monitoring results of its own data exchanges. Each execution can be logged and
within each execution all errors can be logged. By default these errors include only syntactic aspects
but it is possible to add additional conditions on which errors must be generated. This adds the
opportunity for monitoring semantic aspects. The monitoring features of Scribe are not able to
monitor data exchanges that use other technologies than Scribe. The big advantage of using the
monitoring features of Scribe is that it is able to monitor the effective results of transactions in the
target system.

5.5.2 Monitoring data collection mechanism

Because Scribe is capable of using various source formats and because it can transform the data into
various output formats, it is very useful to use as a monitoring data collection mechanism. It can
gather and transform results from various sources and store the results in the central monitoring
server. It can accept results from both real-time and batch data exchanges.

Monitoring data exchanges between information systems

34

Figure 27 Scribe as a data integration tool

5.5.3 Conclusion

For Scribe data exchanges the default monitoring features of Scribe are very useful. Scribe can
monitor the effective results of a data exchange in the target system and this makes it very suitable
for our research.

The data integration features of Scribe can be used to collect monitoring data from various plugins.
Because a lot of technologies are supported it makes the monitoring solution technology
independent.

 soapUI 5.6
Component Covered

Monitoring plugin Yes

Central monitoring server No

Monitoring data collection mechanism No

SoapUI [23] is and open source application which is created by Eviware. Its main purpose is
functional testing of web services but it has much more features. It can simulate services, do load
testing and use test cases to test quality of web services. This also includes testing data quality. It is
possible to define certain assertions to which data has to match. SoapUI then runs the test and
checks if the data matches the criteria and is able to report the results.

5.6.1 Monitoring plugin

Although soapUI is mainly targeted at testing web services at the design stage, it also features SOAP
recording. This is a kind of monitoring in which soapUI intercepts web service messages between a
client and server and can do several analyses on the message. This can be used as the monitoring
plugin component of our reference architecture. One of the possibilities of this monitoring feature is
to compare the actual web service requests with the WSDL specification of the web service. SoapUI is
then able to show the coverage of all elements in the WSDL specification. In this SOAP monitoring it
is also possible to define so called XPath constraints on values in the XML message. Based on these

Monitoring data exchanges between information systems

35

constraints points can be given to the message and these points can then be used to evaluate the
quality of the message. This makes both syntactic and semantic monitoring possible. The results of
such analysis can be seen in the screenshot in Figure 28.

Figure 28 Analysis of values based on XPath constraints

5.6.2 Conclusion

The monitoring features of soapUI provide extensive features to report transactions of web services.
The problem is however that it is not capable of monitoring the effects of a transaction in the target
system. It can only monitor contents of requests without knowing if the request is correctly handled
by the target system.

 Log4Net 5.7
Component Covered

Monitoring plugin Yes

Central monitoring server No

Monitoring data collection mechanism No

Log4Net [24] is a logging tool that can be used in .Net frameworks. It can log actions to various
output formats such as XML and SQL databases. It is already in use by CRM Resultants for debugging
purposes at the design stage of custom built solutions.

5.7.1 Monitoring plugin

Log4Net can be added to web services to log the actions web services perform. This provides the
opportunity to monitor both the incoming requests and the effective results a transaction has on the
target system. It is capable of generating various error messages. These can be user defined or can
be system errors. Log4Net supports only .Net code, so it is not technology independent.

Monitoring data exchanges between information systems

36

5.7.2 Conclusion

Because Log4Net can be used to monitor the effective results of a transaction to a database, it is very
suitable for our research. Although it does not support various technologies, it is very suitable in the
case we use for validating our reference architecture.

 Microsoft Dynamics CRM 5.8
Component Covered

Monitoring plugin No

Central monitoring server Yes

Monitoring data collection mechanism No

Microsoft Dynamics CRM [25] is in our research often the target system of a data exchange. It does
not provide out of the box monitoring features, but it can be used to store data from various sources.

5.8.1 Central monitoring server

Although its name suggests that it can only be used as a CRM system, Dynamics CRM is in fact just a
relational database with a built-in web interface. The system can be used for various purposes and it
is possible to create custom database schemas and import data into those tables. This makes it
possible to let Dynamics CRM serve as a central monitoring server into which all monitoring results
are aggregated and shown. The advantages of using Dynamics CRM as a central monitoring server
are that it is easy to configure, that it supports workflows and that is has reporting functionalities.
The workflows can be used to define triggers that notify a user when a data exchange needs
attention. The reporting functionalities can be used to provide an overview of the status of all data
exchanges that are monitored.

5.8.2 Conclusion

Microsoft Dynamics CRM is suitable for functioning as a central monitoring server. It can contain all
types of data and can report the results to the end user. Especially in the case we use in our research
to validate the reference architecture Dynamics CRM can be useful because we already have
experience with Dynamics CRM.

 Conclusion on technical alternatives for monitoring 5.9
In our case study we did not find a solution that includes all of our three required components and
matches all criteria of our monitoring reference architecture. There are tools available to intercept
web service requests such as soapUI and WSMonitor and there are tools available that can integrate
information from various monitoring agents such as ManageEngine and Hyperic. There is however no
tool that can do syntactic and semantic monitoring and can aggregate these monitoring data into a
central monitoring server. Most tools for creating overviews of monitoring information are aimed at
server states instead of syntactic and semantic monitoring information. In addition, tools that can
intercept web service requests are only focused on the contents of the request and not on the
effective results of those requests in the target system. Therefore we have to build a prototype
ourselves that combines some of the listed products above. An overview of the technical alternatives
we assessed, their components and the requirements they meet, is shown in Table 1.

For the plugin component of our reference architecture we can make use of Log4Net and Scribe. As a
collection mechanism only Scribe is suitable because the collection mechanisms of other solutions
can only be used with their own monitoring plugins and central monitoring server. Scribe is capable
of handling various sources and target systems so it is the only option from our case study. For
storing monitoring results Dynamics CRM is the only possible option from our case study. Other
central monitoring servers only work with their own collection mechanism and monitoring plugins.
For the central monitoring server also other database solutions can be used, but we did not
investigate other options.

Monitoring data exchanges between information systems

37

 C
o

m
p

o
n

en
ts

M
o

n
it

o
ri

n
g

p
lu

gi
n

C
en

tr
al

 m
o

n
it

o
ri

n
g

se
rv

er

C
o

lle
ct

io
n

 m
ec

h
an

is
m

R
e

q
u

ir
em

e
n

ts

A
gg

re
ga

te
 d

if
fe

re
n

t
te

ch
n

o
lo

gi
es

Sy
n

ta
ct

ic
 a

n
d

se

m
an

ti
c

as
p

ec
ts

R
ea

l-
ti

m
e

an
d

d

ef
e

rr
ab

le
 m

es
sa

ge
s

D
et

ec
t

p
at

te
rn

s

R
ep

o
rt

 d
if

fe
re

n
t

ty
p

es
 o

f
fa

ilu
re

s

Hyperic ● ● ● ● ● ●

WSMonitor ● ● ●

SoapKnox ● ● ●

ManageEngine ● ● ● ● ● ●

Scribe ● ● ● ● ● ●

soapUI ● ● ●

Log4Net ● ● ●

Dynamics CRM ● ● ● ● ● ●

Table 1 Overview of possible solutions

(● indicates that the solution includes the component or satisfies the requirement)

Monitoring data exchanges between information systems

38

6 Our prototype
Because in our case study on possible solutions for monitoring we did not find a solution that has all
three components and matches the criteria of our monitoring reference architecture, we build a
prototype ourselves to test our reference architecture. The main purpose of this prototype is to
validate our reference architecture for monitoring data exchanges. In this chapter we describe our
test setup of the prototype and show the results of the prototype.

In our prototype we build a monitoring solution for monitoring data exchanges based on web
services and for data exchanges based on Scribe. We use these two types of data exchanges because
90% of all data exchanges that are built by CRM Resultants are covered by these two types. In our
prototype we make use of one central monitoring server and two separate solutions to acquire
monitoring information from web services and from Scribe. First we describe the overview of our
monitoring server and the requirements it meets, then we describe the implementation of our
prototype and finally we provide the test results of our prototype.

 Components and architecture 6.1
In our prototype we make use of the following solutions:

 Monitoring plugins: Log4Net and Scribe

 Monitoring data collection mechanism: Scribe

 Central monitoring server: Microsoft Dynamics CRM

The complete overview of the used components and their relations to each other are shown in Figure
29. In this picture only one Scribe data exchange is shown and only one web service data exchange is
shown. In practice there are multiple data exchanges that are monitored. The components of this
architecture that are used for monitoring are coloured yellow.

The results from the Log4Net logging database and the Scribe internal database are stored in the
CRM database of the central monitoring server. The Scribe instance of the central monitoring server
is responsible for collecting the data from the data exchanges that are monitored.

Monitoring data exchanges between information systems

39

CRM Resultants domainCustomer domain

Data

Scribe
internal

database

Data

Monitoring information

Monitoring information

Target CRMScribeSource system
Source system

middleware

Data

Target CRM
web service

Log4Net

Logging
database

Monitoring information

Scribe

Monitoring information

Monitoring
CRM server

Source system
Source system

web service
Target CRM

Data Data Data

Figure 29 Overview of the architecture of the prototype

 Requirements 6.2
In our reference architecture we specified a number of requirements that have to be met. We
explain per requirement how our prototype meets the requirement.

6.2.1 Aggregate data from different sources which may use different technologies

In our prototype we make use of Scribe to retrieve the monitoring results from different data
exchanges. Scribe can handle a lot of formats and this makes the prototype technology independent.
Also difference in the structure in which data exchanges report monitoring results can be handled by
Scribe. Scribe can transform the data so that all data can be stored in a uniform way in the
monitoring CRM system.

6.2.2 Monitor syntactic and semantic aspects of data exchanges

Because Log4Net is included in the .Net code that is responsible for handling web service requests,
all types of errors and success messages can be generated. Syntactic errors in which the .Net code
encounters an error are automatically generated. Semantic errors in which data is incorrect must be
configured and those error messages must be manually programmed into the .Net code.

Monitoring data exchanges between information systems

40

Scribe automatically logs all transactions error to a database. In this way all syntactic errors are
covered. For generating semantic errors additional checks will have to be built into the data
exchange. Scribe can then log semantic errors.

In our prototype we do not build checks for semantic errors into the data exchange. We do not do
this because we are monitoring data exchanges that are in production and because these checks will
decrease the performance of data exchanges badly. Instead we use Scribe to generate a summary of
all semantic correct transactions and semantic incorrect transactions every day. This summary is then
stored in the central monitoring server.

6.2.3 Support real time and deferrable messages

All results from both real time and batch data exchanges are stored in the logging database and the
Scribe internal database. The Scribe instance of the monitoring server can handle both types of
monitoring results.

6.2.4 Detect patterns in data exchanges

The functionality of detecting patterns is limited in our prototype. It is however capable of generating
alerts when no successful transactions are registered for a specified amount of time. Also it is
possible to generate charts from the monitoring results. The pattern can then be observed by the
end user.

6.2.5 Report different types of failures

The prototype is capable of reporting all types of failures as long as the monitoring plugin can log
them. The prototype stores error messages as text in the monitoring server. By doing this it supports
all errors that are generated by the monitoring plugins in the data exchanges.

 Monitoring web service data exchanges 6.3
For monitoring data exchanges that make use of web service technology, we use the tool Log4Net.
Log4Net is a tool that can be configured to log information about the execution of .Net code. It
supports logging events at five different levels. The following levels are supported.

 Debug. This level is designated for usage while building the data exchange and contents of
the message should provide internal parameters.

 Info. This level is designated to provide information about data that is retrieved from
external sources and to confirm that responses are sent to external systems. Also messages
that confirm that the transaction is completed have this level.

 Error. This level is used to log that an error has occurred and that the transaction is aborted.

 Warn. This level is used to log that something went wrong, but that the transaction can
continue.

 Fatal. This level is used if no communication with the other system of the data exchange is
possible.

Apart from the level also a message is logged. This can be a message that is automatically generated
by Log4Net or it can be a message that is specified by the developer of the data exchange. In this way
also successful transactions can be logged. In Figure 30 an example is shown of how data that is
generated by Log4Net looks like.

Monitoring data exchanges between information systems

41

Figure 30 The Log4Net table in SQL Server Management studio

In our prototype we monitor the web services of the Hogeschool Utrecht that we took earlier as a
case to gather possible errors in section 3.1. Because Log4Net generates way more info messages
than the number of successful transactions, we applied a filter on the messages that we use for
monitoring. We describe this filter later where we go into detail on the collection of monitoring
results.

 Monitoring Scribe data exchanges 6.4
Scribe is middleware that has built-in logging features. Scribe can log execution job results to a
database and send reports in XML format by e-mail. For our prototype we make use of database
logging. Scribe logs its execution results to two tables: Executionlog and transactionerrors.

In the executionlog table results are stored each time a job is executed. In this table a summary of
the job is stored including the number of successful transactions and the number of errors. For real
time data exchanges each transaction is a separate job so the executionlog contains a row for each
individual transaction. For batch data exchanges a job can consist of multiple transactions so the
executionlog contains a summary of the job. So for batch data exchanges there can be multiple
successes and errors per row in the table, whereas for real time data exchanges the maximum
number of successful transactions and errors is one. An example of the executionlog table is shown
in Figure 31. In this screenshot not all columns are shown.

Figure 31 The Scribe executionlog table in SQL Server Management Studio

In the transactionerrors table the errors of both real time and batch data exchanges are stored. This
table has a row for each input record that resulted in an error. Successful transactions are not stored
in this table. So the job that is logged in the executionlog of a real-time data exchange can have zero
or one rows in the transactionerrors table and the job of a batch data exchange can have zero or
more rows in the transactionerrors table. An example of the transactionerrors table is shown in
Figure 32. Not all columns of this table are shown.

Monitoring data exchanges between information systems

42

Figure 32 The Scribe transactionerrors table in SQL Server Management Studio

 Monitoring semantics 6.5
The data exchanges that we monitor in our prototype are in production and cannot be changed. We
could create some additional data exchanges for testing purposes, but when checking transactions
for semantic correctness in the data exchange itself, it would impact the performance of a data
exchange very badly. Especially for Scribe data exchanges this has a big impact.

Because of these reasons we generate the semantic results of transactions once a day. Each day a
Scribe job, at the server that is monitored, queries the lead records that are modified in the CRM
environment in the last 24 hours and checks their correctness. In our prototype we implemented this
in a limited way. We check if a postal code of an address which is located in The Netherlands consists
of four numbers followed by a space and two capital letters. If a record does not match these criteria
we can guarantee that it is incorrect. If a record matches the criteria we can however not guarantee
that it is correct because the postal code might not exist or might not match with the city that is
entered. In our case study we say that a postal code is correct if it is correctly formatted.

The query we use to generate the daily summary is shown in Textbox 1. In this query the GUID of the
countrypid represents The Netherlands. The result of this query is a number of correct postal codes
and a number of incorrect postal codes.

Textbox 1 SQL query used to generate daily semantic summary

The results of this query are stored in the Scribe internal database and a monitoring date is
appended. This information is retrieved by the Scribe instance of the central monitoring server.

SELECT

 (SELECT COUNT (*)

 FROM Lead

 WHERE modifiedon > GETDATE()-1

 AND address1_postalcode LIKE '[0-9][0-9][0-9][0-9] [A-Z][A-Z]'

 AND (crmrd_countrypid = '3082FD92-0D28-DD11-B0A3-005056AE5887' OR

 crmrd_countrypid IS NULL)

) AS [CorrectPostalcodes],

 (SELECT COUNT (*)

 FROM Lead

 WHERE modifiedon > GETDATE()-1

 AND address1_postalcode NOT LIKE '[0-9][0-9][0-9][0-9] [A-Z][A-Z]'

 AND (crmrd_countrypid = '3082FD92-0D28-DD11-B0A3-005056AE5887' OR

 crmrd_countrypid IS NULL)) AS [IncorrectPostalcodes]

Monitoring data exchanges between information systems

43

 Central monitoring server 6.6
For our central monitoring server we use Microsoft Dynamics CRM. Dynamics CRM fulfils all
requirements of the reference architecture. It has a web based user interface, search functionality,
functionality to view results at different levels and functionality to generate alerts on specified
conditions.

The advantages of Dynamics CRM are that it already has a user interface which is data driven and it is
easy to set up. Also it is capable of defining workflows. These workflows can be used to notify
administrators by sending e-mails or creating tasks if there is a potential problem. Eventually this can
even be extended with a ticketing system for keeping track of fixing problems. In Figure 33 the data
model of the CRM database that is used to store monitoring results is schematically shown. This data
model is an extended version of the reference data model from our reference architecture.

-Name
-URL
-IP-address
-ID

CRM Environment

-Name
-Timeliness
-Type
-Server name
-ID
-Internal application name
-Description
-Last success time
-Last error time
-Alerts enabled
-Max hours inactive

Data exchange

-Name
-Monitoring date
-Source ID
-Logger
-Level
-Message
-Context
-Target table
-Operation
-Error code
-Source row number

Monitoring result

1 *

1

*

-Name
-Monitoring date
-Level
-Fatal error code
-Source ID
-Fatal error message
-Source rows
-Source rows rejected
-Inserts
-Updates
-Deletes

Batch result

-Message

Alert

*
1

1

0..*

1

0..*

-Name
-Correct
-Incorrect
-Monitoring date

Semantic result

1

*

Figure 33 Data model of the central monitoring server

As can be seen in the data model of the central monitoring server a CRM Environment can have
multiple data exchanges. If a data exchange is real-time it cannot have batch results. For each
transaction the results are stored in the Monitoring result. In the monitoring result the level indicates
whether the transaction was successful or resulted in an error.

Results of batch data exchanges are stored in a different way from results of real-time data
exchanges. For batch data exchanges it is possible to store a summary of an executed job instead of
creating a separate monitoring result record for each transaction. Therefore the results of batch data
exchanges are stored in a batch result record. Only the errors of the batch job are stored in
monitoring result records. This minimizes the number of created records and improves the ability to
create an overview of the results of batch data exchanges.

Monitoring data exchanges between information systems

44

When monitoring multiple data exchanges a lot of monitoring results are stored. This can make it
difficult for a user to quickly signal potential problems. Therefore each data exchange can have
multiple alerts. These alerts can be generated based on certain conditions. In our prototype we
included functionality that generates alerts if no successful transaction was executed for a specified
time. These alerts are generated by Scribe. On the data exchange the date and time of the last
successful transaction and the last erroneous transaction are stored. Also the maximum number of
hours that a data exchange is allowed to have no successful transaction can be specified. Based on
this information and the field which specifies whether alerts are enabled or not, a scheduled job
checks these conditions and generates alerts. These alerts can then signal the user and the user has
the ability to dig further into the potential problem by viewing individual results of a data exchange.

 User experience of the central monitoring server 6.7
In this section we show the user experience of the central monitoring server. We do not cover every
detail, but show the most important aspects. Other actions can be performed in similar ways. First
we present the general interface and afterwards we provide some examples of how actions can be
performed.

6.7.1 General interface

The interface of the monitoring server is completely web based. This means that only a web browser
is needed to work with the system. The main screen of the monitoring module of the system is
shown in Figure 34. This screen has several areas. On the left side there is a list of the different types
of records in the system. By clicking on them the list of records is shown. In the example the list of
data exchanges in the system is shown. In this view the data exchanges are ordered by the time of
the last successful transaction. So the lower the data exchange is listed, the longer ago a successful
transaction was executed. Because inactive data exchanges go down in the list automatically, it is
easy to recognize them.

Figure 34 General view of the monitoring user interface

In the interface it is also possible to view overview reports of data in the system. By going to the
Workplace module and clicking on the DashBoard button, various graphs are available concerning

Monitoring data exchanges between information systems

45

monitoring information. An example of these graphs is shown in Figure 35. By viewing these graphs
problems can easily be noticed and trends can be viewed.

Figure 35 Two graphs of monitoring results of real-time data exchanges

6.7.2 Following up alerts

To view alerts that are generated by the system, the view of alerts can be opened. This is shown in
Figure 36.

Figure 36 Main screen of the monitoring server

Monitoring data exchanges between information systems

46

In the list of alerts the data exchange to which the alert is applicable and the message of the alert are
shown. Alerts can be opened by clicking on them. In our prototype an alert looks like depicted in
Figure 37. In our prototype we created a very basic implementation alerts. In future versions this can
be extended with data to store whether the alert has been resolved etcetera.

Figure 37 Alert record

To check whether there is really a problem with the data exchange, the data exchange can be
opened by clicking on it. The information pane of the data exchange is shown in figure Figure 38. On
this screen the general information of a data exchange is shown and in the status section information
regarding its latest success and latest error are shown. Also alerting for this data exchange can be
configured here.

Figure 38 The information pane of a data exchange record

Monitoring data exchanges between information systems

47

To show the monitoring results of this data exchange, at the left side of the screen there is a menu
option for monitoring results. After clicking on it, the related monitoring results of this data exchange
are shown, as can be seen in Figure 39.

Figure 39 Related monitoring results of a data exchange

The information of related monitoring results can also be viewed in a graph by clicking on the
DashBoard button. This is shown in Figure 40.

Figure 40 Dashboard of the monitoring results of this data exchange

Monitoring data exchanges between information systems

48

From the screen in Figure 39 it is possible to open an individual monitoring result. An example of a
monitoring result is shown in Figure 41. On the monitoring result information regarding the error is
shown. Depending on the type of error and the source of the monitoring results, the displayed fields
can contain different data. Based on the number of errors that are linked to the data exchange and
the information in the monitoring results, the user can determine if action is required.

Figure 41 Monitoring result

6.7.3 Viewing batch results

To improve the overview of monitoring results of batch data exchanges, we store summaries of
batch executions in batch result records. These records are linked to batch data exchanges and
possible errors of a batch result are stored in the monitoring results, similar to real-time data
exchanges. Successful transactions are not stored in separate monitoring result records.

To view batch results, users can either open a batch result directly, or select a data exchange first
and afterwards view its related batch results. In Figure 42 the list of data exchanges that are
monitored is shown. A data exchange can be opened by clicking on it.

Monitoring data exchanges between information systems

49

Figure 42 List of monitored data exchanges

The record of a batch data exchange is similar to the record of a real-time data exchange. The main
difference is that the entity batch result is used. At the left side of the record the user can click on the
batch results button to view the related batch results. This is shown in Figure 43.

Figure 43 Related batch results of a data exchange

To easily view trends in batch results of a batch data exchange, there is a dashboard available. This
can be opened by clicking on the DashBoard button. This is shown in Figure 44.

Monitoring data exchanges between information systems

50

Figure 44 Graph of source rows in batch results of this data exchange

From the screen in Figure 43 batch results can be opened to view its details. The general view of a
batch result is shown in Figure 45.

Figure 45 General information of a batch result

On the batch result record the total number of rows or records that are processed is shown in
‘Source rows’. The number of errors is shown in ‘Source rows rejected’. To view the errors the
monitoring results of this batch result can be shown by clicking on monitoring results. This is shown
in figure Figure 46.

Monitoring data exchanges between information systems

51

Figure 46 Errors of a batch result

The individual monitoring result is the same as the monitoring result of real-time data exchanges.
Note that monitoring results are in this case related to both the batch result and the data exchange.
This means that these errors can be viewed directly from the data exchange or from the batch result.

The errors of batch results can also be viewed graphically. This can be done by clicking on the
DashBoard button. This is shown in Figure 47.

Figure 47 Graph of errors of a batch result

Monitoring data exchanges between information systems

52

6.7.4 Viewing semantic results

Semantic results are linked to CRM environments instead of data exchanges. There is no information
available on the semantic results per data exchange because we only generate daily summaries. If we
open a CRM environment, we can see that the semantic results are linked to the environment in the
menu on the left side. By clicking on it the results can be viewed. This is shown in Figure 48.

Figure 48 Semantic results of a CRM environment

Individual semantic result records can be viewed by clicking on them. A semantic result record is
shown in Figure 49. On this record the number of correct results and the number of incorrect results
are shown. The monitoring date shows the date and time on which the result was generated. The
name of the record indicates the field that is monitored. In our prototype we only monitor the postal
code field of lead records.

Figure 49 Semantic result record

Monitoring data exchanges between information systems

53

 Collection mechanism 6.8
Scribe is used to collect monitoring information from different sources and to store that information
in the central monitoring CRM database. Scribe connects to databases that store results about web
service data exchanges and to databases that store information about Scribe data exchanges. Apart
from the data collection function Scribe also has a function to generate alerts.

6.8.1 Collection of data from web service data exchanges

In Figure 50 the relation between involved systems in the monitoring process of web service data
exchanges is shown. Log4Net logs to a database. Multiple loggers can use the same database, as long
as this database is not blocked by firewalls and virtual LANs. In practice there are some blockades, so
the Scribe instance of the monitoring server will have to query multiple databases but this is not
shown in the figure.

Target CRM
web service

Log4Net

Logging
database

Monitoring information

ScribeMonitoring information

Monitoring
CRM server

Source system
Source system

web service
Target CRMData Data Data

Figure 50 Overview of the architecture for monitoring web services

As stated before Log4Net classifies its logging messages with different levels. We are only interested
in the levels info, warn, error and fatal. The debug level is only used at the development stage and
contains too much information for our purpose. Also the messages from the info level contain too
much data. Each transaction can generate multiple info messages containing information about the
lookups that are performed and other local variables. We are only interested in the records that are
created, so we apply a filter on the info messages. We do not apply a filter on the levels warn, error
and fatal because we are especially interested in things that go wrong. The query that we use to
retrieve data from the Log4Net database is shown in Textbox 2. In this query we included the
LastRunDateTime. This is an internal Scribe variable that contains the date and time of the last time
the job has run. In this way we only get the new results. To compensate for possible differences in
system times of the monitoring server and the server of the source database, we include records
from one hour earlier than the last time the job has run. Although this creates some overlap, this
does not result in duplicate records in the monitoring database because we perform update/insert
operations. This means that for each operation first a lookup is done to check if the record already
exists. If that is the case, it is updated. If no record is found, a new record is created.

In our prototype we filtered on info messages that contain the text “Postcode query result” or “A
new % record was created” where % functions as a wildcard. This is a filter specific for the data
exchanges that are monitored in the prototype. For new data exchanges it is recommended to agree
on a keyword that is used to generate info messages that represent a successful transaction.

Monitoring data exchanges between information systems

54

Textbox 2 SQL query to retrieve Log4Net information from HU production server

6.8.2 Collection of data from Scribe data exchanges

In Figure 51 the relation between the involved systems in the process of monitoring Scribe data
exchanges is shown. In this figure a data exchange between a source system and a target CRM
system is shown. The middleware of the source system is not specified, but the middleware of the
target CRM system is Scribe. Scribe logs the monitoring results of the data exchange to the Scribe
internal database. From this database the monitoring information is collected by the Scribe instance
of the central monitoring CRM server. Each instance of Scribe needs its own database because also
its settings are stored in the database. In practice this means that the Scribe instance of the central
monitoring server will have to retrieve data from multiple Scribe internal databases.

Data

Scribe
internal

database
Scribe

Data

Monitoring
CRM server

Monitoring information

Monitoring information

Target CRMScribeSource system
Source system

middleware
Data

Figure 51 Overview of the architecture for monitoring Scribe data exchanges

As stated in section 6.4 Scribe stores the monitoring results in two tables. Also there is a distinction
between real-time and batch data exchanges. Therefore we need multiple queries to retrieve the
data.

Realtime data exchanges
To retrieve monitoring results from realtime data exchanges, we retrieve the successful transactions
from the executionlog table and we retrieve the errors from the transactionerrors table. Therefore
we use two queries. These queries are shown in Textbox 3 and Textbox 4. In both queries the
LastRunDateTime is used to retrieve only the results that are created after the last date and time the
job has run minus one hour, similar to the query for results from Log4Net.

SELECT *

FROM [Log4Net].[dbo].[Log]

WHERE (([Level] = 'INFO' AND ([Message] LIKE '%Postcode query result%')

 OR [Message] LIKE '%A new % record was created%')

 OR ([Level] = 'ERROR') OR ([Level] = 'WARN') OR ([Level] =

'FATAL'))

 AND [Application] != '(null)'

 AND [Date] > DATEADD ("hh", -01, :LastRunDateTime)

ORDER BY [Id] DESC

Monitoring data exchanges between information systems

55

Textbox 3 Query for retrieving successful transactions of real-time data exchanges

Textbox 4 Query for retrieving errors of real time data exchanges

In the query to retrieve errors of a data exchange, a join is needed to be able to identify the data
exchange from which the error originates. In this example we also filter on the collaboration called
Icares because that is the only real-time Scribe data exchange that we monitor in this prototype.

Batch data exchanges
For batch data exchanges we use only one query to retrieve both the summary and the errors. This
results in a table where the summary is displayed multiple times in case there are multiple errors.
The query used is shown in Textbox 5.

SELECT [EXECID]

 ,[SERVERNAME]

 ,[COLLABORATION]

 ,[STARTTIME]

 ,[ENDMILLISECONDS]

 ,[JOBSPECNAME]

 ,[MESSAGE]

 ,[FATALERRORCODE]

 ,[FATALERRORMESSAGE]

 FROM [ScribeInternal].[SCRIBE].[EXECUTIONLOG]

 WHERE SOURCEROWS <=1

AND SOURCEROWSREJECTED = '0'

AND [STARTTIME] > DATEADD ("hh", -1, :LastRunDateTime)

SELECT [ScribeInternal].[SCRIBE].[EXECUTIONLOG].[EXECID]

 ,[SOURCEROWNUMBER]

 ,[TARGETTABLE]

 ,[OPERATION]

 ,[ERRORCODE]

 ,[ERRORMESSAGE]

 ,[ERRORSOURCE]

 ,[STARTTIME]

 ,[SERVERNAME]

 ,[COLLABORATION]

 ,[JOBSPECNAME]

FROM [ScribeInternal].[SCRIBE].[EXECUTIONLOG] JOIN

[ScribeInternal].[SCRIBE].[TRANSACTIONERRORS]

ON [ScribeInternal].[SCRIBE].[EXECUTIONLOG].EXECID =

[ScribeInternal].[SCRIBE].[TRANSACTIONERRORS].EXECID

WHERE [COLLABORATION] = 'Icares' AND [STARTTIME] > DATEADD ("hh", -1,

:LastRunDateTime)

Monitoring data exchanges between information systems

56

Textbox 5 Query to retrieve results from Scribe batch data exchanges

We created logic that first creates the summary in CRM and afterwards appends the errors to the
summary. The logic first checks if a summary exists and depending on that result it creates a
summary or adds the error to the existing summary. The steps that Scribe executes to insert the
batch summaries and the individual errors are schematically shown in Figure 52. In this figure the
green lines depict the number of results that are found in the seek step.

Figure 52 Steps executed to insert batch results into the CRM database

SELECT

[ScribeInternal].SCRIBE.executionlog.execid,

[ScribeInternal].SCRIBE.executionlog.SERVERNAME,

[ScribeInternal].SCRIBE.executionlog.COLLABORATION,

[ScribeInternal].SCRIBE.executionlog.STARTTIME,

[ScribeInternal].SCRIBE.executionlog.JOBSPECNAME,

[ScribeInternal].SCRIBE.executionlog.SOURCENAME,

[ScribeInternal].SCRIBE.executionlog.SOURCEROWS,

[ScribeInternal].SCRIBE.executionlog.FATALERRORCODE,

[ScribeInternal].SCRIBE.executionlog.FATALERRORMESSAGE,

[ScribeInternal].SCRIBE.executionlog.SOURCEROWSREJECTED,

[ScribeInternal].SCRIBE.executionlog.INSERTS,

[ScribeInternal].SCRIBE.executionlog.UPDATES,

[ScribeInternal].SCRIBE.executionlog.DELETES,

[ScribeInternal].SCRIBE.TRANSACTIONERRORS.SOURCEROWNUMBER,

[ScribeInternal].SCRIBE.TRANSACTIONERRORS.TARGETTABLE,

[ScribeInternal].SCRIBE.TRANSACTIONERRORS.OPERATION,

[ScribeInternal].SCRIBE.TRANSACTIONERRORS.ERRORCODE,

[ScribeInternal].SCRIBE.TRANSACTIONERRORS.ERRORMESSAGE

 FROM [ScribeInternal].[SCRIBE].[EXECUTIONLOG]

 LEFT JOIN [ScribeInternal].[SCRIBE].[TRANSACTIONERRORS]

 ON ScribeInternal.SCRIBE.EXECUTIONLOG.EXECID =

ScribeInternal.SCRIBE.TRANSACTIONERRORS.EXECID

 WHERE SOURCEROWS > '1' AND [STARTTIME] > DATEADD ("hh", -6,

:LastRunDateTime)

 ORDER BY SOURCEEXECTIME DESC

Monitoring data exchanges between information systems

57

6.8.3 Collection of semantic results

The summaries of semantic results are stored once a day in the Scribe internal database of the server
that is monitored. This information is collected by the Scribe instance of the monitoring server. This
situation is shown in Figure 53.

Scribe
internal

database
Scribe

Query

Monitoring
CRM server

Semantic results

Semantic results

Target CRMScribe

Correct/incorrect records

Figure 53 Collection of semantic results

The query used to retrieve the semantic results is shown in Textbox 6. Again in this query the date
and time the query has run are used to collect only the new results.

Textbox 6 SQL query to retrieve semantic results

SELECT (*)

FROM [ScribeInternal].[SCRIBE].[MONITOR_SEMANTICRESULTS]

WHERE [MONITORINGDATE] > DATEADD ("hh", -1, :LastRunDateTime)

Monitoring data exchanges between information systems

58

 Summary of how the prototype meets the requirements 6.9
In the sections before we explained each part of our prototype in detail. In this section we provide an
overview of which requirements of the reference architecture are met and how the components are
implemented. This summary is shown in Table 2.

Component

Monitoring plugin Log4Net and Scribe

Central monitoring server Microsoft Dynamics CRM

Collection mechanism Scribe

Requirements

Aggregate different technologies Yes

Syntactic and semantic aspects Yes

Real-time and deferrable messages Yes

Detect patterns Yes

Report different types of failures Yes

Contents of monitoring information

Originating server Yes

Originating data exchange Yes

Date and time Yes

Error or success Yes

Error message Yes

Context Yes

Semantic correctness Daily summary

Events that are monitored

Successful transactions Yes

Error in a transaction Yes

Fatal error in the middleware Yes
Table 2 Components and requirements of the prototype

As can be seen in the table all requirements are met. We already explained these in section 6.2.

If we look at the contents of monitoring information, all information we specified in the reference
architecture is available in the prototype. There is however a difference between the implementation
of semantic correctness in the reference architecture and our implementation. In the reference
architecture semantic correctness is monitored as part of the execution of a data exchange whereas
we generate daily summaries in our prototype.

In our reference architecture we specify a minimum of three types of events that must be monitored.
All three of these events are supported by our prototype.

If we look at the complete comparison between the reference architecture and our prototype, we
can see that the prototype meets all requirements that are demanded by the reference architecture.
Only the semantic monitoring of data exchanges is limited in our prototype.

 Monitoring the monitor 6.10
The monitor we created is built to monitor data exchanges, but by introducing this monitor we
created additional data exchanges. Of course also in these data exchanges errors can occur.
Formatting errors are unlikely to happen because the source databases have static schemes which
are compatible with the target system, but other types or errors can still occur. To monitor if the
monitor is still working, there are three mechanisms implemented.

Monitoring data exchanges between information systems

59

 If fatal errors occur in retrieving data from the source databases, an e-mail is sent to the
system administrator.

 If the monitor cannot retrieve information from a data exchange, eventually an alert will be
generated because the maximum time of inactivity is reached. When the system
administrator checks the problem he or she will quickly see that the data exchange is
functioning but that the monitor is not working.

 In the views in CRM, data exchanges are ordered based on the date and time of their last
activity. In this way it is easy to see when the last results from data exchanges are received
and complete malfunctioning of the monitor will easily be noticed.

 Security aspects 6.11
CRM systems often contain sensitive information that may not be made public. In our project we
retrieve monitoring information from multiple servers on which CRM is running so this could possibly
introduce security issues. We have taken the following measures to ensure the security of data in the
CRM systems is not affected.

 Both the monitor server and the CRM servers are running in a protected environment. This
environment is secured by firewalls. All data remains in this protected environment.

 To retrieve monitoring information from SQL servers on the CRM systems, a special account
is used. This account has no access to the CRM database but only read access to databases
containing monitoring information. So even if this account is used by a hacker he or she will
only be able to access the non-sensitive monitoring information.

 No CRM data is stored in the monitoring results unless the error is related to the input data.

 Interoperability 6.12
The main components of our central monitoring server consist of Scribe and Microsoft Dynamics
CRM. Both run on a Microsoft platform and will not run on other platforms. The prototype is
however still capable of monitoring other platforms. In our prototype we only use Log4Net and
Scribe as monitoring plugins, but these can be replaced by other monitoring plugins. Because we
make use of Scribe as our data collection mechanism, we can accept almost every input format. As
long as there is a plugin available that can monitor a data exchange and store results, Scribe can
collect the results and store them in Dynamics CRM. Also when the structure of monitoring results is
different from the structures we used in our prototype, Scribe can transform that data into the
structure we need in Dynamics CRM.

Our prototype is not even limited to monitoring data exchanges. In fact it can monitor all types of
software. As long as there is a plugin available that generates monitoring results, we can store them
in Dynamics CRM and monitor the software. In that case the data exchange in the monitoring CRM is
not a data exchange but another piece of software. In the case of CRM Resultants it can for example
be used to monitor the execution of all custom built .Net code.

 Test results of the prototype 6.13
In this section we provide the results of the testing period of our prototype. We present an overview
of the type of errors that are found, the number of errors that are found and the real problems that
the prototype already solved.

We started monitoring with our prototype on the 25th of October 2010. For some data exchanges it
was however possible to retrieve data from transactions in the past. We did however not use results
from before the 1st of October 2010. For each table or graph we present we specify the period of the
results that are used.

Monitoring data exchanges between information systems

60

6.13.1 Types of errors found by the prototype

To get as much distinct errors as possible, we used all available monitoring data from the 1st of
October 2010 till the 11th of November 2010. We found the distinct errors that are shown in Table 3.
We grouped errors in which actual values are shown into one error.

 Error Count

1 Error opening data source Scribe.MSCRMAdapter30.Database 2799

2 A(n) SoapException occurred while executing the requested operation. 472

3 The profile for account with ID [value] could not be retrieved! 289

4 RequestCounter cannot be persisted, method is not yet implemented! Current
counter value is [value]

241

5 The operation has timed out 94

6 User error: Meerdere aspiranten gevonden! 48

7 The following query returned 2 results, where 1 was expected 39

8 No account found with number [value] 37

9 User error: Inschrijving zonder corresponderende student in CRM 24

10 A(n) IndexOutOfRangeException occurred while executing the requested
operation.

15

11 input value: [value] 15

12 Writing out properties of record..Entity name: account 12

13 Error opening data source HUTEST CRM database. 9

14 Postal code incorrect (semantic error) 6

15 No study could be found for provided id: 25DW00700502-D-MTIBIN! 4

16 Index and count must refer to a location within the string. 4

17 The following query returned 3 results, where 1 was expected 3

18 No werkrelatie could be retrieved for the provided ID ([00000000-0000-0000-
0000-000000000000])

2

19 Multi-record operations are not allowed. At least 2 records matched. 2

20 Contact record was not created 2

21 CreateEntity failed: Generic SQL error. 1

22 The following query returned 5 results, where 1 was expected 1

23 An error occured while retrieving KvK data 1

24 Account was not created 1

25 Call failed! 1

26 An uncaught exception occurred 1

27 <soapVal xsi:type="xsd:string" 1

 Total 4124

Table 3 Distinct errors from the period 01-10-2010 till 11-11-2010

As can be seen in the table we found 27 distinct errors in the period we analysed. For semantic
results only one error can occur. The value is either correct or incorrect. We do not make a
distinction in which part of the value is correct.

6.13.2 Counts of monitoring results

In the previous section we only listed the errors and not the successful monitoring results. To be able
to relate the number of errors to the number of successful transactions we show graphs of

Monitoring data exchanges between information systems

61

monitoring results for real time data exchanges and batch data exchanges. All monitoring results
with the level INFO are successful transactions. All results with other levels are warnings or errors.

Results from real-time data exchanges
Because we were not able to retrieve monitoring information from real-time data exchanges before
we started monitoring them, we use data from the period 25-10-2010 till 11-11-2010. In Figure 54
the distribution of the results over the monitoring result levels is shown. In the graph there is a
relatively large amount of fatal errors. This is mainly caused by a real-time Scribe data exchange that
could not connect to its source. Scribe then keeps retrying every minute and generates a fatal error
at every attempt.

Figure 54 Monitoring results of real-time data exchanges by level from 25-10-2010 till 11-11-2010

If we look at how the monitoring results are distributed over the most active real-time data
exchanges, we see that most fatal errors are indeed caused by the Scribe data exchange called Icares.
This is displayed in Figure 55.

Figure 55 Monitoring results of real-time data exchanges by data exchange from 25-10-2010 till 11-11-2010

Monitoring data exchanges between information systems

62

We can also view the monitoring results by date. In this way we can see when successful transactions
were executed and when errors have occurred. This is shown in Figure 56. We can see that most fatal
errors occurred on the 28th of October. This was caused by the fact that the SQL-server of the CRM
environment crashed. The monitor detected this error properly. In this graph we can also see a
pattern in the activity of data exchanges. We can see that there is less activity in the weekends,
which are on 30-31 October and 6-7 November.

Figure 56 Monitoring results of real-time data exchanges by date from 25-10-2010 till 11-11-2010

Results from batch data exchanges
For the batch data exchanges we monitored it was possible to use results from the 1st of October till
the 11th of November. If we look at the batch results of the three most active batch data exchanges
we can see that the number of successful transactions is much larger than the number of errors.
Errors are equal to rejected source rows. This is shown in Figure 57.

Figure 57 Batch results of batch data exchanges from 1-10-2010 till 11-11-2010

Monitoring data exchanges between information systems

63

The batch results used in the graph in Figure 57 are the summaries of batch executions. If the
execution is not able to start at all, a normal monitoring result is created containing a fatal error.
Now if we look at the monitoring result records from batch data exchanges, we get the graph
displayed in Figure 58. In this graph the errors correspond to the rejected source rows in Figure 57.
Fatal errors are errors that prevented the batch execution from starting. This is quite a large amount
of errors because Scribe data exchanges retry the execution of a batch job every 60 seconds and for
each failed retry Scribe logs a fatal error.

Figure 58 Monitoring results of batch data exchanges from 1-10-2010 till 11-11-2010

Semantic results
In our prototype the functionality for monitoring semantic aspects of data exchanges is very limited.
As a result also the test results of this functionality are limited. In a testing period of 8 days we got
the results shown in Table 4 for the semantics of postal codes. We expect that the low ratio of
incorrect postal codes is due to the fact that at most input forms an automatic script is used to check
postal codes and to retrieve the corresponding street and city. Therefore most users will correct the
postal code before submitting the form.

Type Number of results

Correct 5536

Incorrect 6
Table 4 Semantic results of postal codes

6.13.3 Real problems that were found by the monitor

The monitor stores a lot of data and of course the question is if this data helps in solving real
problems. During our testing period the monitor already found some problems with data exchanges
that needed attention.

 On Monday the 25th of October we saw that the last successful transaction of the Icares data
exchange was more than 24 hours ago. This was unusual for this data exchange, so we
looked deeper into the problem. It turned out that one of the services responsible for the
data exchange was not running. By turning it on, we fixed the problem.

 On Thursday the 28th of October the monitor reported a lot of fatal errors from the Icares
data exchange. It turned out that the SQL Server of the CRM environment stopped working.
We already received a call from the customer because the whole environment was down,
but at least the monitor detected the problem too.

Monitoring data exchanges between information systems

64

 On Monday the 1st of November the complete hosting platform was cut off from the
internet. Our monitor was still accessible because it runs in a separate environment. Because
the monitor could not retrieve data from the data exchanges, it reported fatal errors. In this
case we already knew the platform was down, but again the monitor also noticed it.

 The monitor showed that the batch data exchanges called Osiris Inschrijvingen and Osiris
Vooropleidingen do not run every night as they should do. We never noticed that before. The
reason turned out to be that no files were received. The problem was caused outside our
domain, but at least we were able to notify the administrator who is responsible for sending
the files.

 Based on the semantic results we were able to detect that a small number of lead records in
the CRM environment of the Hogeschool Utrecht has an incorrect postal code. The number
of errors is however so low that it does not need attention.

6.13.4 Test limitations

With our prototype we monitored real data exchanges that are running on a production
environment. This made it impossible to create errors in the data exchange ourselves because this
would harm the production environment of the customer. Because we had no influence on the
errors that occurred ourselves we were only able to test the monitor on errors that occurred in
practice. Therefore we assume that we did not test all possible errors. We have however no
indication that other errors than we tested will not be caught by the monitor.

In our test results we show real numbers of monitoring results that were stored by our prototype.
The main purpose of these numbers is to show that our prototype is working. You can however not
directly compare the numbers of errors between data exchanges because not all data exchanges
generate errors in the same way. If you look at Figure 55 you might conclude that Icares is the worst
performing data exchange because it has the most fatal errors. In practice however it is one of the
most reliable data exchanges. The difference is caused by the way it treats a complete downtime. In
our monitoring period the complete CRM system has been down a couple of hours. In this period
none of the data exchanges was functioning. If the system is down, the Icares data exchange keeps
retrying to store data every couple of seconds and every time it fails it reports a fatal error. The other
data exchanges are also down but they do not retry transactions so fewer errors are reported.

As described in section 6.13.3 we found some real problems with data exchanges that needed
attention. Because during our testing period we paid a lot of attention to the monitor, we quickly
saw potential problems. It is possible that a normal administrator would not have seen these
problems in the monitor.

Our test results of semantic monitoring are very limited. We choose to monitor the number of
correct and incorrect postal codes of lead records that were created. We have chosen this value
because it was the easiest value to monitor. The problem with this value is that on most input forms
there is an automatic check on the postal code. This results in a very low number of errors and as a
result the potential of semantic monitoring does not show off. To show the real potential of semantic
monitoring additional testing should be done on other values.

Monitoring data exchanges between information systems

65

7 Validation and discussion
In this chapter we validate our prototype and eventually our reference architecture. The prototype is
specified in chapter 6 and the reference architecture is specified in chapter 4. We relate the errors
from literature and from our case study to the results that we presented in section 6.13 to see if our
prototype and our reference architecture are valid.

 Validation 7.1
Before we specified our reference architecture and built our prototype, we looked for possible
failures in literature and we executed a case study to find errors that occurred in practice. We related
these errors to aspects of data quality in Figure 11 and Figure 18. By monitoring the errors that affect
data quality we have the opportunity to increase data quality. So if we are able to monitor the errors,
our prototype and implicitly our reference architecture are valid.

In the test results of our prototype we listed the distinct errors that were detected by our monitor.
We numbered them in Table 3 and in Table 5 we relate the errors we wanted to detect to the errors
the monitor detected in practice.

Errors from literature Error numbers from prototype

Service failure 1, 2, 21, 25 and more

Tardy service 5

Reluctant service 5

Doesn’t play well with others 27

The gang that can’t shoot straight

Errors from case study Errors numbers from prototype

Multiple records found 6, 7, 17, 19, 22

The record that is referenced cannot be found 3, 8, 15, 18

There is no reference specified to which the record
should be liked

18

Message cannot be processed because it is syntactically
incorrect

2, 27

Data wrongly formatted 11, 14

Data incomplete 14

Generic SQL error 21

Post job failure

General exception in reading the file 1, 13

System exception

Unable to open registry key

Time out 5

Could not establish trust relationship for the SSL/TLS
secure channel

A SOAP exception 2

Web service is very slow and responds after a reasonable
amount of time

Send failure
Table 5 Mapping of errors found by the prototype to errors from literature and our case study

As can be seen in Table 5 most of the errors we wanted to monitor are covered by the results of our
prototype. Because we investigated possible errors of data exchanges with three different
technologies and only monitored data exchanges with two different technologies, it is a logical result
that not all errors are found by the monitor. It is also possible that not all errors occurred during the

Monitoring data exchanges between information systems

66

testing period. We expect that apart from performance errors, the errors that were not detected in
our testing period will be detected if they occur.

Performance problems can only be detected if they result in an error. If the performance of a data
exchange is low but there is no data lost, our prototype does not detect the problem. In the future
functionality for detecting performance issues can be added to the prototype. In general we can say
that most of the errors we specified in our state of the art and our case study can be detected. These
errors affect data quality so by monitoring these errors with our prototype the data quality of data
exchanges can be improved.

By building the prototype we also showed that it can handle different technologies. We used
Log4Net to monitor custom built web service data exchanges and we used Scribe to monitor Scribe
data exchanges. These Scribe data exchanges can also use different technologies. This proves that
our prototype is not technology dependent.

In our research we made a distinction between real-time and deferrable messages. The latter is also
referenced to as a batch data exchanges. Both types of data exchanges can be monitored by our
prototype so also at this point our prototype is valid.

Although we only tested semantic monitoring of postal codes, we show that the architecture for
monitoring semantics works. In our prototype the semantic results were measured per CRM
environment and not per data exchange to maintain the performance of data exchanges. This
implementation is a bit different from the way the reference architecture is specified, but the same
components are used and the data flow is also the same.

Because our prototype is based on our reference architecture, by testing our prototype we implicitly
validated our reference architecture. The prototype we built is only one implementation of the
reference architecture, but it proved that if the guidelines of the architecture are followed and the
requirements are met, the monitoring solution works. Therefore we state that our reference
architecture is valid.

 Discussion 7.2
Our reference architecture is specified as generic as possible. This means that it can be implemented
with various tools and should work in various environments. We have however tested this reference
architecture only in the environment of CRM Resultants. In this environment it showed that it was
valid, but there might be situations where this reference architecture does not work. This can be the
case if for example the middleware that is involved in the data exchange cannot produce monitoring
information or log results. In our case Scribe itself could log transaction results and for web service
data exchanges Log4Net could produce monitoring information, but a similar solution might not be
possible in all cases.

In our project we assumed that there is somebody who checks the monitoring results and takes
action on potential problems. The reliability of data exchanges is of course only improved if there
really is somebody taking action on the results. This means that there is not only a technical aspect
on monitoring, but also an organizational aspect. We did not investigate the organizational aspect,
but we can recommend making one person responsible for checking the results and that person can
delegate potential problems to other people who might have more knowledge about the specific
data exchange.

In our prototype we had set the conditions to generate alerts very tight. This was mainly to test if the
mechanism of alerting was functioning correct. In real situations these settings should be tweaked
over time to make each alert more meaningful. The risk of generating too many alerts is that the
system administrator does not take them seriously anymore.

Monitoring data exchanges between information systems

67

As explained before in section 6.5 our monitoring of semantics can only determine which values are
incorrect. It assumes that all values that are correctly formatted are correct. In reality the values can
still have no meaning. So to make semantic results more reliable additional checks should be done.
Also for showing off the real potential of semantic monitoring, additional field should be monitored.

In our research we monitored at the target system to which the data of a data exchange is stored. In
this way we are sure about the results of the transaction. It is also possible to monitor at the source
system, but then it is only possible to monitor if data is being sent, without knowing what the results
of the transaction are in the target system. In cases where CRM is the source system, our prototype
can easily be used to monitor if data is being sent to the target system. We did however not
investigate this possibility because in cases where CRM is the source system, a similar monitoring
solution as we provided can be implemented on the target system.

In literature we found more possible errors than in our case study. We were only able to test our
reference architecture on errors that occurred in the case of CRM Resultants. Although we could not
test if all types of errors could be reported, we expect no problems here. As long as there is a plugin
that can store the error somewhere, our central monitoring server is able to pick up the error and
report it to the end user of the central monitoring server.

Monitoring data exchanges between information systems

68

8 Conclusion
In this section we present the conclusions of our research, point out the limitations of our research
results and give recommendations for future work.

 Summary of results 8.1
The objective of this research is to create a reference architecture for systems that can provide
central monitoring of data exchanges with the possibility of aggregating information on different
data exchanges into useful diagnostic reports. In this section we summarize how we accomplished
this objective.

We started by specifying the state of the art on modelling of data exchanges and identified classes of
data exchanges, failures and the concepts of data quality and data exchange monitoring. Data
exchange involves multiple systems which are composed of functional layers. A distinction can be
made between data exchanges with real-time requirements and data exchanges that exchange
deferrable messages. The latter are called batch data exchanges. With the state of the art study we
answered our first research sub question about what types of data exchanges are available and need
to be distinguished.

After we acquired knowledge about data exchanges in general, we focused on errors that can occur
in data exchanges. We found a list of errors in literature and we executed a case study on errors of
data exchanges in practice. We related these errors to data quality aspects to determine their impact
on the target system of a data exchange. The target system of a data exchange is defined as the
system to which data from a source system is stored. We found that there are three categories of
errors: errors resulting from the contents of data, errors in middleware and connection and
performance errors. These errors have impact on intrinsic, contextual and representational data
quality. By identifying the errors and their effects on data quality, we answered our second research
sub question about what problems can occur in data exchanges.

To determine possible options for monitoring data exchanges we looked at monitoring concepts
proposed in literature. We found out that most monitoring approaches focus on system states such
as CPU usage and disk space. We want to monitor functional aspects of data exchanges in which we
make a distinction between syntactic and semantic monitoring. Syntactic monitoring is about the
correct execution of transactions of a data exchange. Semantic monitoring is about the meaning of
data that is exchanged. To acquire monitoring results from different sources into one central system
there are two main mechanisms available: polling versus publish and subscribe. In our prototype we
use polling to transfer monitoring results from plugins to the central monitoring server. This answers
the third research sub question about how data exchanges can be monitored so that problems are
detected.

To create a reference architecture that satisfies our requirements three components are needed in
addition to the data exchange itself. First a monitoring plugin is needed. This component collects
information about the transactions that are executed by the data exchange and stores this
information. Second a central monitoring server is needed to store the results from different data
exchange and to present the results to the end user. Third a data collection mechanism is needed to
retrieve the monitoring information from the monitoring plugins and store the information in the
central monitoring server. Apart from the components there are requirements on the information
that is contained in the monitoring results. This reference architecture answers the fourth research
sub question: “How should the architecture of a data exchange that includes monitoring functionality
be specified?”

To test our reference architecture we looked for existing solutions with which we could implement
our reference architecture. We did not find a solution that includes all the three needed components
and meets all the requirements of the reference architecture. Therefore we used a combination of

Monitoring data exchanges between information systems

69

products and built a prototype ourselves. We used Microsoft Dynamics CRM as our central
monitoring server and Scribe as our data collection mechanism. Depending on the type of data
exchange we used Scribe or Log4Net as the monitoring plugin. By monitoring both successful
transactions and errors, we were able to detect not only errors, but also absence of transactions.
Absence of transactions can be caused by the source system that does not send data or by problems
that prevent data from the source system reaching the target system. Because no data is received,
no error occurs, but by analysing the number of transactions, the problem can still be detected. Our
prototype generates alerts if no successful transaction is executed for a specified amount of time.
We tested our prototype by monitoring real data exchanges that occur in a production environment
of a customer. The results of this prototype show that the prototype works and that the reference
architecture is valid. This answers our fifth research sub question: “Which existing solutions are
available which offer monitoring and recovery procedures and do they meet the requirements?”

By answering all research sub questions we answered our main research question. We specified a
reference architecture that implements syntactic and semantic monitoring at the target system of
data exchanges. By implementing the reference architecture the data quality of data exchanges can
be improved.

 Benefits 8.2
We started our research by declaring that integration between information systems becomes more
and more important. As a result data exchanges are becoming more important and thus they need to
be monitored. Our reference architecture and our prototype can help to monitor these data
exchanges. The most important benefits that result from our research are the following.

 Based on our reference architecture monitoring solutions can be created for monitoring
functional aspects of data exchanges.

 By monitoring data exchanges insight is gained in the transactions data exchanges execute.

 Errors in data exchanges can be detected before a customer complains about a problem. This
can increase customer satisfaction.

 In our prototype all monitoring information is accessible from a single web based user
interface. There is no need any more to check separate databases and folders with error logs.
This can speed up the investigation on problems.

 Monitoring data exchanges can be offered as a service to customers. Customers can pay a
monthly fee for this service or they can monitor their own data exchanges and pay a licence
fee for the monitoring software. This can increase revenue for the application service
provider.

 Although it has never been an objective of this research, using our prototype it is now
possible to view which data exchanges put the most information in a CRM system. It was
already possible to determine the records that were created in a specified period in the CRM
system itself, but it could be hard to determine from which source the information
originated.

Monitoring data exchanges between information systems

70

 Recommendations 8.3
Based on the findings of our research we give recommendations for application service providers in
general and for CRM Resultants in particular. The general recommendations do not take our
prototype into account but only the reference architecture. The recommendations for CRM
Resultants do take the prototype into account.

8.3.1 General recommendations

 Create an implementation of our reference architecture for monitoring data exchanges
between information systems to maintain oversight of the successful transactions and errors
of data exchanges.

 Create an implementation of our reference architecture that can monitor all technologies
that are used in the environment that is to be monitored.

 Make somebody responsible for checking the results and taking actions on the results. This
does not mean that this person has to solve all problems, but he or she can also delegate the
problems to people who have more knowledge about the specific problem.

 Make somebody owner of the monitoring server. This person has to manage the system,
make necessary changes and setup monitoring for new data exchanges.

8.3.2 Recommendations for CRM Resultants

 Use the monitor for all new data exchanges that are developed and add it to existing data
exchanges which are known to be prone to errors.

 Extend the alerting functions of the monitor to make them more reliable and to increase the
ease of use.

 Include a service module to support the process of following up errors in data exchanges.

 Incorporate the monitor into the company’s central CRM system to make the monitoring
results easily accessible to all employees and to integrate it into the existing information
about hosted CRM environments and customers.

 For monitoring web service data exchanges some keywords have to be agreed on between
the owner of the monitoring server and the developers of data exchanges. These keywords
can then be used to only include relevant messages in the monitoring server.

 Limitations and future work 8.4
Our research has some limitations and there are opportunities for future work. Both are presented in
this section.

Our reference architecture and our prototype are based on the assumption that we have influence
on only one side of the data exchange. In the case of CRM Resultants this is true, but in other cases
there can be situations in which you have influence on both the source and the target system of a
data exchange. This provides additional opportunities for monitoring and can be researched in future
work.

Because we monitor at the target system of a data exchange, errors at the source system can only be
detected by the absence of transactions at the target system. This means that it takes at least the
specified maximum time of inactivity before the error is detected. Monitoring at the source system
can detect these errors faster and should therefore be further researched.

Semantic monitoring of data exchanges is very limited in our research. We only check the
representation of data. There are additional opportunities for checking semantic correctness of data.
Researching these opportunities can be done in future work.

We tested our prototype only in the environment of CRM Resultants. To test if it is indeed capable of
monitoring data exchanges in other environments, additional testing should be done.

Monitoring data exchanges between information systems

71

Our reference architecture and prototype can only detect problems but not correct them. The next
step would be to investigate if it is possible to automatically correct problems or at least suggest
solutions.

By building our prototype we created a solution for monitoring data from different sources. In this
research these sources are data exchanges, but we expect that it can be extended to monitor other
custom built software. This can be further researched.

During our research we found out that monitoring of syntactic and semantic aspects is not very
common yet. Keeping the trends of service oriented architectures and integrating systems with each
other in mind, we expect that this area of research will gain more attention in the next years.

Monitoring data exchanges between information systems

72

References
[1] Hart. C, Doing a literature review: releasing the social science research imagination. London,

United Kingdom: Sage Publication, 1998.

[2] Google Scholar. [Online]. http://scholar.google.com

[3] Scopus. [Online]. http://www.scopus.com

[4] William A Ruh, William J Brown, and Francis X Maginnis, Enterprise Application Integration: A
Wiley Tech Brief.: John Wiley & Sons, Inc., 2001.

[5] Chris Britton and Peter Bye, IT Architectures and Middleware: Strategies for Building Large,
Integrated Systems (2nd Edition).: Pearson Addison Wesley, 2004.

[6] C Bussler, B2B integration: concepts and architecture.: Springer-Verlag New York Inc, 2003.

[7] H Zimmermann, "OSI reference model--The ISO model of architecture for open systems
interconnection," Communications, IEEE Transactions on [legacy, pre-1988], vol. 28, pp. 425--
432, 1980.

[8] Microsoft Patterns & Practices Team, Microsoft Application Architecture Guide (Patterns &
Practices), 2nd ed.: Microsoft Press, 2009.

[9] N Delgado, A Q Gates, and S Roach, "A taxonomy and catalog of runtime software-fault
monitoring tools," IEEE Transactions on Software Engineering, vol. 30, pp. 859 - 872, dec. 2004.

[10] William N. Robinson, "Monitoring Web Service Requirements," in Proceedings of the 11th IEEE
International Conference on Requirements Engineering, Washington, DC, USA, 2003, pp. 65-75.

[11] R Y Wang and D M Strong, "Beyond accuracy: What data quality means to data consumers,"
Journal of management information systems, vol. 12, p. 33, 1996.

[12] J Akoka et al., "A framework for quality evaluation in data integration systems," , 2007.

[13] C Batini and M Scannapieco, Data quality: Concepts, methodologies and techniques.: Springer-
Verlag New York Inc, 2006.

[14] Suparno Biswas and Xavier Idrovo. (2006, January) ITSM Watch. [Online].
http://www.itsmwatch.com/itil/article.php/3581491/The-Role-of-Application-Monitoring-in-
ITIL.htm

[15] G Morgan, S Parkin, C Molina-Jimenez, and J Skene, "Monitoring middleware for service level
agreements in heterogeneous environments," Challenges of Expanding Internet: E-Commerce, E-
Business, and E-Government, pp. 79--93.

[16] Baron Schwartz. (2008, August) Xaprb. [Online]. http://www.xaprb.com/blog/2008/08/21/is-
agent-based-or-agentless-monitoring-best/

[17] Kay Roepke. (2008, August) Kay Roekpe's Blog. [Online].
http://blogs.sun.com/kay/entry/agent_vs_agent_less_monitoring

http://scholar.google.com/
http://www.scopus.com/
http://www.itsmwatch.com/itil/article.php/3581491/The-Role-of-Application-Monitoring-in-ITIL.htm
http://www.itsmwatch.com/itil/article.php/3581491/The-Role-of-Application-Monitoring-in-ITIL.htm
http://www.xaprb.com/blog/2008/08/21/is-agent-based-or-agentless-monitoring-best/
http://www.xaprb.com/blog/2008/08/21/is-agent-based-or-agentless-monitoring-best/
http://blogs.sun.com/kay/entry/agent_vs_agent_less_monitoring

Monitoring data exchanges between information systems

73

[18] Scribesoft. Scribe. [Online]. http://www.scribesoft.com/

[19] (2010) Hyperic. [Online]. http://www.hyperic.com/

[20] GlassFish. (2010, October) WS Monitor. [Online]. https://wsmonitor.dev.java.net/

[21] SoapKnox Inc. (2010, October) SoapKnox. [Online]. http://www.soapknox.com/

[22] ZOHO Corp. (2010, October) ManageEngine. [Online]. http://www.manageengine.com/

[23] Eviware. (2010, September) soapUI. [Online]. http://www.soapui.org

[24] Apache Software Foundation. (2010, October) Log4Net. [Online].
http://logging.apache.org/log4net/index.html

[25] Microsoft. (2010, October) Microsoft Dynamics CRM. [Online]. http://crm.dynamics.com/

http://www.scribesoft.com/
http://www.hyperic.com/
https://wsmonitor.dev.java.net/
http://www.soapknox.com/
http://www.manageengine.com/
http://www.soapui.org/
http://logging.apache.org/log4net/index.html
http://crm.dynamics.com/

