
IMPROVING COMMUNICATION
BETWEEN COMPUTER
PROGRAMMERS AND DOMAIN
EXPERTS.

CREATING A GENERIC SCENARIO DESCRIPTION

LANGUAGE TO AID THE PROCESS OF DESCRIBING

SCENARIOS FOR EMERGENCY RESPONSE TRAINING

SIMULATORS.

MASTER DISSERTATION

BSc. Jesper Jeeninga

GRADUATION COMMITTEE

Dr. Job Zwiers

Dr. ir. Dick Quartel

 MSc. Mark ter Maat

Dr. ir. Marten van Sinderen

Abstract

The communication process between programmers and domain experts is time

consuming. This is caused by a “knowledge gap” between the two parties. In this

case we examine the emergency response training simulation domain. Domain

experts deliver domain specific information to the programmer. The

programmers use this information to build an emergency response training

simulator.

There is no description language available to describe such a scenario. We

introduce GSDL (Generic Scenario Description Language), creating a general

solution for scenario description. We claim this will reduce the communication

problems and increase the efficacy of scenario generation.

To come close to a complete solution we suggest a graphical Generic Scenario

Description Tool based on GSDL.

1

Acknowledgments

I would like to show my gratitude to the people who helped me complete my

master program. First of all to my supervisors Dick Quartel and Job Zwiers who I

know to have put more time in me then they could spare. I appreciate they let

me figure things out myself instead of just telling me what to do. This was hard

for me but I learned a lot from it.

Then to Mark ter Maat and Marten van Sinderen who agreed to join the

committee on the last moment and offered some of their private time to read my

report and help me finish on time.

I would also like to thank Jan Schut, who helped me during my whole study. One

appointment with him always helped me straighten things out and have the

motivation to carry on.

I want to thank my parents Ate and Annie Jeeninga who I know to support me in

everything I do. They are the best parents anyone could wish for. I would also

like to thank my sister Rinske and her boyfriend Siebe Bosselaar for their

support and time to provide feedback on my report.

Special thanks to my colleagues at Novay and the HMI research lab. We had a

great time together and I made some special new friends.

This dissertation would not have been possible unless the following people

shared their knowledge with me: M. Hendrix & F. Brederode (E-semble), E.

Kramer, M. Mensink & A. Osinga (Trimm), D. Nusman (Re-Lion), P. Porskamp &

T. de Groot (T-Xchange), E. Widding (Fire Department Enschede), B. Kobossen

(NIFV), N. Wijngaards (DECIS), T. Benjamins (TU-Delft).

Also special thanks go to Alex Champandard and his wife Petra whose hospitality

I enjoyed during the AI-GameDev Conference in Paris.

2

Contents

1 Introduction ______________________________________ 5

1.1 Problem Description___________________________________ 5

1.2 Problem Analysis _____________________________________ 7

1.3 Research Objective ___________________________________ 9

1.4 Approach __ 10

1.5 Summary __ 12

1.6 Overview __ 14

2 Background information ____________________________ 15

2.1 Related domains ____________________________________ 15

2.1.1 Introduction __ 15

2.1.2 Scenario description in movies __________________________________ 15

2.1.3 Scenario description editors for games ___________________________ 16

2.1.4 Conclusion related technologies _________________________________ 20

2.2 Scenario Description _________________________________ 20

2.2.1 Introduction __ 20

2.2.2 Scenario description languages _________________________________ 21

2.2.3 Conclusion scenario description languages ________________________ 26

2.3 Planning languages __________________________________ 27

2.3.1 Introduction __ 27

2.3.2 Planning Languages __ 27

2.3.3 Conclusion planning languages _________________________________ 32

2.4 Conclusion background information _____________________ 33

3 Generic Scenario Description _________________________ 34

3.1 Introduction __ 34

3.2 Practical Environment ________________________________ 34

3.3 Development _______________________________________ 36

3.3.1 Describing a simple situation ___________________________________ 36

3.3.2 Predicates, Functions and Messages _____________________________ 38

3.3.3 Relations ___ 40

3.3.4 Events and Actions ___ 41

3.3.5 Architecture __ 44

3.4 Generic Scenario Description Language ___________________ 47

3.4.1 Lexer ___ 48

3.4.2 Object Declaration ___ 48

3.4.3 Action and Event Declaration ___________________________________ 49

3.4.4 Scenario declaration __ 50

3

3.5 GSDL simulation testing _______________________________ 51

3.6 Problems and Discussion ______________________________ 53

3.6.1 Usability ___ 53

3.6.2 Concurrency __ 54

3.6.3 Compared with MultiAgent Systems ______________________________ 55

3.6.4 Compared with Labeled Transition Systems ________________________ 57

3.7 Conclusion Scenario Description Language ________________ 58

4 Scenario Description Tool ___________________________ 59

4.1 Introduction __ 59

4.2 Adding information to the domain definition _______________ 59

4.3 Scenario Description _________________________________ 62

4.4 Usability ___ 62

4.5 Conclusion Scenario Description Tool ____________________ 63

5 Evaluation _______________________________________ 65

5.1 Problem solving _____________________________________ 65

5.2 Issues __ 66

6 Conclusion and Future research ______________________ 69

6.1 Conclusion ___ 69

6.2 Answers to the research questions ______________________ 71

6.3 Future research _____________________________________ 73

6.3.1 Usability Tests __ 74

6.3.2 GSDL v2 ___ 75

6.3.3 State-space exploration _______________________________________ 76

6.3.4 Compatibility ___ 76

6.3.5 Visualization using state transition diagrams _______________________ 78

7 References _______________________________________ 79

8 Appendices ______________________________________ 81

8.1 EBNF Description of the Scenario Description Language ______ 81

8.2 GSDL Railroad view __________________________________ 82

8.3 Template API _______________________________________ 85

8.4 Lexer and Parser ANTRL Grammar _______________________ 91

8.5 Code snippets _______________________________________ 96

4

5

1 Introduction

1.1 Problem Description

Earlier research shows us there are many emergency simulators available

(Jeeninga, 2010). All of which have different implementations. These simulators

try to achieve the same goal: offer a cost-efficient and safe training environment

for emergency personnel; allowing police, medics and firefighters to train

dangerous missions in a safe virtual environment. This has proven to be a

successful addition to their training program.

We discovered a shared problem during the research about emergency

simulators (Jeeninga, 2010). During the interviews, each respondent admitted

the fact that the users lack the knowledge for efficient use of the simulator and

the programmers lack the knowledge to program a simulator efficiently.

(Hendrix & Brederode, 2009)(Kobossen, 2010)(Kramer, Mensink, & Osinga,

2009)(Porskamp & Groot, 2009)(Widding, 2009) (Nusman, 2009). This is a

specific problem but it exists in other domains as well (For example, the medical

software development area (Shortliffe, 2006)). The “How projects really work”

cartoon1 shows the general problem.

Figure 1 - The "How projects really work" cartoon.

With emergency simulators the main problem is not the use, but the generation

of a single scenario. The people who want to create a training scenario (we call

them domain experts) have the knowledge about the scenario, but they lack the

knowledge to import this in a simulator. A simulation programmer holds the

knowledge to implement this scenario but lacks the expertise about the

emergency response domain. We spotted a gap in knowledge needed by both

parties. In addition the domain expert does not exactly know what part of his

information the programmer needs to implement the scenario. Figure 2 depicts a

visual representation of this problem.

1 http://www.projectcartoon.com/ (visited 2010)

http://www.projectcartoon.com/

6

Figure 2 – Picture of the knowledge gap problem.

The most common solution to this problem is to have intensive contact between

both parties. They have to meet often and discuss each part of the scenarios

individually. The programmer applies an application life cycle; each software

engineering model includes multiple meetings with the customer. After the first

meetings the programmer starts programming, then both parties join again to

review the scenario followed by another programming session and so on

(prototyping). Many companies faced this problem and this solution just came

naturally. In one case this solution advanced, over a time period of 8 years,

where the programmers just learned enough about the domain to lessen the

number of meetings. Both parties learned from each other and the problem

started to dissolve. Due the physical distance of both parties it was not possible

to meet in person as often as they would like. The cost of one specific scenario is

still 80.000 Euros. In the long run this solution is still not efficient because new

personnel have to cope with the same problem again when the current workers

stop working on this project. (Kobossen, 2010)

Another company tried to overcome this problem by training the domain experts

to be able to program some scenario-logic themselves. The company provided a

tool to allow easy editing of the simulator code. This solution did not work out.

The code was still too difficult for the domain experts to understand. Also the

limits of the tool did not allow the domain experts to implement directly every

scenario they would want. They would need some programming skills to work

around these limits. Their programmers now use the tool themselves but they

still use the first approach: intensive contact (Kramer, Mensink, & Osinga,

2009).

It is possible to train people to understand both areas. This works, for example,

in the healthcare domain. The need for medical experts, who are also able to

create software applications, becomes so high; new training programs arise to

7

train people in Medical Software Engineering. The domain we are looking into is

not big enough for this to happen.

To aid developing crisis simulations it is helpful to solve this problem in an

efficient way. Our proposed solution is to be able to describe a scenario in a

language both sides can easily understand. A language, that not only provides

all the needed static information like locations of objects, but also some logic

about decisions for the possible courses of action.

This knowledge gap problem does not only occur in the emergency response

domain. Current times show a trend of IT-solutions for many other domains as

well. Here the same problem occurs when domain experts try to explain their

ideas to programmers. Our solution could be an inspiration for people with the

same problems.

1.2 Problem Analysis
To specify the knowledge gap problem, we look at the problem from the side of

the domain expert and from the other side, the programmer. We define what

specific problems occur on each side.

We define the knowledge gap problem in our domain as followed:

P0- It takes too much time and effort for a domain expert and

programmer to obtain a shared understanding about implementing a

scenario.

We present sub-problems where the people who want to create training

scenarios (the domain experts) lack information from the programmer to supply

the right information. We also look to the other side and define what problems

occur when the programmer tries to get the right information from the domain

expert. If our tool can offer a solution to any of these sub-problems we are well

on our way to a solution for our main problem P0. By asking both domain

experts and simulation programmers during the interviews in our previous

research we define these sub-problems. (Jeeninga, 2010)(Hendrix & Brederode,

2009)(Kobossen, 2010)(Kramer, Mensink, & Osinga, 2009)(Porskamp & Groot,

2009)(Widding, 2009) (Nusman, 2009)

8

Problems where the domain expert lacks information from the programmer:

P1- Difference in jargon.

For example, when interpreting an “object”; the programmer could think about a

software object, which could point to a person. A domain expert would not

understand this object oriented approach of the programmer. The domain expert

would not think of a person as an object. Speaking in different languages causes

errors in communication.

P2- Missing “obvious” information.

Information that seems obvious to the domain expert might not seem so obvious

to the programmer. For example, to the domain expert it might be obvious that

a tanker truck contains 1500 liters of water. When he forgets to mention this to

the programmer, who might need this number for calculations, this will slow

down the scenario generation process.

P3- Undefined restrictions.

The simulator may have physical restrictions. For example, the number of people

it can display on screen at the same time. The domain expert may need to know

this in advance to avoid inventing scenarios that are not able to run in the

simulator unless the programmer extends the simulator.

P4- Practical view.

The domain experts sometimes only knows what to do or what will happen

without knowing exactly why. A heated gas-tank will explode at some time.

Unknown is the underlying logic about the exact temperature and pressure. A

programmer might need this information but the domain expert is not the one to

supply this information to the programmer.

Problems where the programmer lacks information from the domain expert:

P1- Difference in jargon.

This problem works both ways. For example, the Dutch firefighters use the

phrase “ruim uitschakelen” (which freely translates to “big elimination”) to point

out they will shut down the powerline of a railway. This extra information is

unknown to the programmers and might cause misconceptions.

P5- Allow forbidden events to happen.

Without enough information about the used objects in the field the programmer

might allow the simulator to let events happen that should not take place. For

example, the simulator could allow a firefighter to use a hose alone when you

need at least two people to handle it. The difference with P2 is that this problem

is a misunderstanding issue from the programmer instead of a submission

problem from the domain expert.

P6- Abundance of information.

The important information that defines a scenario is not much. The information

needed to implement a scenario becomes larger because of the compulsory

9

definition of all the default values. This makes the communication time-

consuming. The difficulty of this problem is to gather only these pieces of

essential information from the domain expert.

1.3 Research Objective
The objective of this dissertation is to aid the scenario generation for crisis

simulators. Our main problem is the time-consuming communication between

the domain expert and simulation programmer. To aid both parties we propose

the use of tools to structure the communication between these two parties.

We use the knowledge gap problem (described in section 1.1) to supply us with

a set of problems (described in section 1.2). We try to find a way to tackle our

main problem (P0) and speed up the communication. We propose a solution

consisting of a set of tools based on a common language between both parties;

we call this language the Generic Scenario Description language or GSDL. The

solution should answer to the following requirements.

R1- The tools should be able to describe an entire scenario and support

direct feedback. For efficient communication the choice to describe only

objects and the first state of the scenario is not enough. We need solutions to

describe possible courses of action and as much (simulation) logic as possible for

a complete description of a scenario.

Interviews pointed out that it was often unclear to the domain experts what

information is useful to a programmer. On the other hand it is often unclear

what information the programmer needs; the programmer would later discover

he missed some of the information. The tools should be able to point out where

information might be missing or where we do not use excess information. This

would aid solving P2 by showing in advance when information is missing and P5

by giving feedback on what information we need.

R2- The tools should provide an unambiguous description of the

scenario. It should provide a clear answer to all the questions a domain expert

could answer about the scenario. We should confine the mistakes in

communication to a minimum. This would tackle P1 and P5 by taking away the

possibilities for misinterpretation.

R3- The tools should allow a programmer to extend or restrict the

template of a scenario. This requirement mostly goes for situations where the

simulator is already present. Then the scenario programmer should be able to

communicate limits or default information before the scenario generation. This

will help to minimize P3.

R4- The tools should allow intuitive and extensive usability for the

domain expert. The tool should not restrict the possibilities of the scenario. It

should be possible to create a scenario quickly and everything a domain expert

would want should be possible to add. We need to keep the domain expert from

having to make difficult programming decisions. This requirement aids to reduce

10

problems like P1 by allowing adding extensive possibilities to scenarios. And this

will partially reduce P42 by allowing the domain expert to add complex

information, or a simple version if this information is unknown. It should not be

a contradiction to R3. The programmer might add restrictions, but this should

only present a warning or advice.

R5- The tools should be modular and reuse previously or predefined

information. This way each scenario is just a small subset of changes instead of

a load of new information. This would help to lessen time lost on P6. (And it

would speed up the process of creating more than one scenario thus tackling P0

in this case).

R6- The tools should allow confirmation to both sides to confirm a

similar understanding. Some sort of back-and-forth communication method

should be applied to allow both sides to confirm the simulation works as they

have in mind. This combines R2 and R3. The system could provide part of the

feedback. Some acknowledgements need to be done in different steps during the

development phase of the scenario.

1.4 Approach
In our previous research we created a review of current emergency response

simulators (Jeeninga, 2010). We interviewed domain experts (Kobossen,

2010)(Widding, 2009) and simulation programmers (Hendrix & Brederode,

2009)(Kramer, Mensink, & Osinga, 2009)(Porskamp & Groot, 2009) (Nusman,

2009) about the problem described in section 1.1. The goal of that research was

to find where we could improve emergency simulators. One of the ways to

improve scenario simulation is by offering solutions for the knowledge gap

problem which we defined in section 1.2.

In the end we want to find the answers to the following research questions:

Q1- What problems define the knowledge gap problem with scenario generation

for a computer simulation?

Q2- What existing tools could offer a solution to any of these problems?

Q3- Could (a combination of) these tools offer a solution to the general

knowledge gap problem? How do these tools cope with the individual problems?

Q4- How can we test effectiveness of the proposed tools?

Using the information from the previous research we defined the knowledge gap

problem by defining groups of smaller problems that are the roots to the

problem in section 1.2 (answering Q1). Any of these problems we can solve will

contribute to the general solution. We propose a solution that uses a description

language supported by tools as intermediary between the domain expert and the

2 The problem P4 can only be solved by a third party that knows about the internal calculations of objects. For

now it would suffice if the domain expert would be allowed to just enter the practical information (R4) and let

the programmer find out the specifics.

11

simulation programmer. Using the problem definitions we defined a set of

requirements for our tools in section 1.3.

Figure 3 - Problem solving approach

We make a literature survey of possible description languages and related

technologies to act as a base for our description language (to answer Q2). Then

we propose a new solution using the best features of the existing description

languages in section 3 answering Q3. We evaluate our findings in section 5 and

draft testing methods of our solution in section 0 (answering Q4).

Some of the requirements cannot be met by a common language (GSDL) alone.

Since we want to we base this language on complicated planning and

programming languages we need extra tools to make this understandable for a

domain expert (R4).

To support feedback (R2) we use a GSDL simulator. GSDL could in some cases

be parsed to provide direct input for the actual simulator. The tools are depicted

in Figure 4. The programmer could be able to understand GSDL code directly,

but can also use the GSDL simulator and even the Scenario Description Tool.

12

Figure 4 - GSDL Tools overview

We describe the development of GSDL in section 3.4, the GSDL simulator in

section 3.5 and the Scenario Description Tool in section 4.

1.5 Summary
We want to answer the following research questions:

Q1- What problems define the knowledge gap problem with scenario generation

for a computer simulation?

Q2- What existing tools could offer a solution to any of these problems?

Q3- Could (a combination of) these tools offer a solution to the general

knowledge gap problem? How do these tools cope with the individual problems?

Q4- How can we test effectiveness of the proposed tools?

We defined the knowledge gap in section 1.2. We use the requirements provided

in section 1.3 to build a set of tools. One tool is a Generic Scenario Description

Language (GSDL, described in section 3) that acts as a common language

between both parties. The second tool is the GSDL Simulator that provides

feedback about the written GSDL code. The third tool is a user interface that

provides the domain expert a usable environment to create a GSDL description

of a scenario. An overview of these tools is depicted in Figure 4.

We try to solve the following communication and understanding problems:

P0- It takes too much time and effort for a domain expert and

programmer to obtain a shared understanding about implementing a

scenario

P1- Difference in jargon

P2- Missing “obvious” information

P3- Undefined restrictions

P4- Practical point of view

P5- Allow forbidden events to happen

P6- Abundance of information.

13

The tools should …

R1- describe the entire scenario and support feedback;

R2- provide an unambiguous description of the desired scenario;

R3- allow a programmer to extend or restrict the template of a scenario;

R4- allow intuitive and extensive usability for the domain expert;

R5- be modular and reuse previously or predefined information;

R6- allow confirmation to both sides to confirm a similar understanding.

The table below specifies what requirement would help reducing which problem.

 P1 P2 P3 P4 P5 P6

R1 X X

R2 X X

R3 X

R4 X X

R5 X

R6 X X X
Table 1 – Requirement versus Problem Table

We assume that by living up to the following requirements, we will progress

towards the main goal: speeding up the communication between the domain

expert and the simulation programmer (P0).

We created two of the three major tools of our solution. The GSDL language

(section 3.4) and the GSDL simulator (section 3.5).

14

1.6 Overview
We discuss the background information in section 2. First we look at ideas from

distant domains like scenario description for movies and games. Following, we

look more into existent solutions for description and decision making tools.

We define the following 3 tools:

 Generic Scenario Description Language (GSDL), a script language that can

describe scenarios in an efficient way. (section 3.4)

 GSDL Simulator, a simple simulator that uses GSDL to support testing of

the scenarios described in GSDL. (section 3.5)

 Scenario Description Tool, a tool to support creation of GSDL scenarios.

(section 4).

For an overview of the tools see Figure 4 on page 12.

We start describing a simple scenario, using the ideas of our studies, in section

3. This provides us a description method we use as a start for GSDL.

This narrows the knowledge gap problem because of the following advantages of

using these tools:

 There is less need for appointments with the domain expert and

programmer

 There is less time needed to program the simulator

 The quality of the information delivered by the domain expert is better.

We evaluate the results and issues in section 5 and we elaborate our conclusions

in section 6.

15

2 Background information
We will have a look at similar problems in different domains in section 2.1. Then

we will look into existing scenario description languages in section 2.2. During

this research we found that planning languages are capable of describing a

scenario to find a solution for a specific problem. We decided to take a better

look at them in section 2.3. We discuss the conclusions about the background

information in section 2.4.

2.1 Related domains

2.1.1 Introduction

We define related domains as domains that do not directly use scenarios in a

way we plan to do, but might be worth looking at, like movie or game scenarios.

Section 2.1.4 describes what lessons we learned from the related domains.

2.1.2 Scenario description in movies

Moviemaking is a related area where they use scenarios. The more often used

term in this field is a screenplay. It is relevant to our research to check to what

extend we can use techniques from screenplays for our method of creating

scenarios.

A script describes a screenplay. In this area writing a script is a separate

profession called screenwriting. There are some loose rules about the style of a

script. The goal is that the director can read it and understand the general idea.

The directors can fill in the missing or undescribed parts by own insight.

Compared to our problem we could say that we can compare a screenwriter to

the domain expert and the director to the simulation programmer. The script

would then be the solution we are looking for. The big difference is the number

of details and fixed facts that a script describes compared with what we need to

solve our problem. The programmer should not be able to use his own insights

for the implementation; we want to avoid ambiguous interpretations.

A few fixed rules to managing document style bind a scenario description for a

movie but the rest is open to a different interpretation. The first obvious rule is

the use of a so called slugline before a scene. This is a capitalized heading and it

provides a short description of the time and location of the scene, it usually

exists of 3 parts:

1. INT./EXT. Shows whether the scenario is in- or outside

2. Location description. A brief description of the general location. For

example, KITCHEN

3. Time indication: for example, NIGHT.

A space, a hyphen and another space separate the location and the time.

Sometimes they also add camera hints to this line. There are no strict rules

about the contents or layout of the slugline. They just consider it good manners

to keep to the protocol.

16

Figure 5 - A movie script example

Below the slugline is an objective description of the scene followed by a

chronologic story of events. The screenwriter also writes the speech dialogs in a

specific protocol. They use smaller, centered lines and capitalize names.

As you can see the script shown in the example above is open for interpretation

on many parts. For example, a director is supposed to know how a “Spires-like

coffee shop” should look like.

2.1.3 Scenario description editors for games

In games, the game presents the player with different kinds of scenarios. Level

editors invent these scenarios. Here is a thin line and much communication

needed between the programmers and level editors. We will take a look at a

selection of how editors allow level designers to create scenarios for the players.

This can provide us insights on how they describe scenarios.

Valve Hammer Editor

To create levels for games like Half-Life® and any other games that use the

source™ engine one can use the Valve Hammer Editor™.3 The first purpose is to

create 3D environments. Next to that it allows an editor to add extra scenario

information. The Valve Hammer Editor™ can load a configuration file (Forge

Game Data file or FGD file) that defines the usable objects for the editor.

3 http://developer.valvesoftware.com (visited 2010)

INT. COFFEE SHOP – MORNING

 A normal Denny's, Spires-like coffee shop in Los Angeles.

 It's about 9:00 in the morning. While the place isn't jammed,

 there's a healthy number of people drinking coffee, munching

 on bacon and eating eggs.

 Two of these people are a YOUNG MAN and a YOUNG WOMAN. The

 Young Man has a slight working-class English accent and,

 like his fellow countryman, smokes cigarettes like they're

 going out of style.

 It is impossible to tell where the Young Woman is from or

 how old she is; everything she does contradicts something

 she did. The boy and girl sit in a booth. Their dialogue is

 to be said in a rapid pace "HIS GIRL FRIDAY" fashion.

 YOUNG MAN

 No, forget it, it's too risky. I'm

 through doin' that shit.

 YOUNG WOMAN

 You always say that, the same thing

 every time: never again, I'm through,

 too dangerous.

http://developer.valvesoftware.com/

17

Figure 6 - Valve Hammer Editor

This FGD file is the connection between the code of the game and the properties

of the level (scenario). This makes the editor usable for multiple games. Each

game provides its own FGD that describes all the game-hooks. The editor can

use these hooks to add interaction with the game to a level.

There is a distinction between two types of objects: point based (defined by

@Pointclass) and area based objects (defined by @Solidclass). A point based

entity is a light source for example. When you place this object at a location in

@PointClass base(Targetname, Origin) = example_entity : "example"

[

 spawnflags(flags) =

 [

 32 : "A flag" : 0 // 0 means the flag is not-ticked by default

 64 : "Another flag" : 1 // 1 means the flag is ticked by default

]

 foobarname(string) : "Name" : : "Name of foobar"

 foobargroup(string) : "Group" : "Squad1" : "Name of foobar group"

 foo(float) "Floating point number" : "100.7" : "Decimal points = fun"

 something(integer) readonly: "first number" : 0 : "This is a number which can't be

manually edited"

 something2(choices) : "second number" : 0 : "Your choice of numbers!" =

 [

 0 : "Default"

 1 : "Something"

 2 : "Another Thing"

]

 // Outputs

 output OnSomethingHappened(void) : "Fires when something happens"

 output OnSomethingElse(void) : "Fires when something else happens"

 // Inputs

 input DoSomething(void) : "Do something"

]

Figure 7 - FGD example

18

the editor; the game will know where to put the light source. Area based entities

can define an area where specific rules of the game apply. For example, a

trigger: the designer creates an area and if the player walks into this area a

trigger will activate an alarm.

The way they use this editor in the game development industry suggests that in

this area there was need for a solution to solve the knowledge gap between the

programmer and the level editor. They solved this by using the FGD to hook the

editor to a game. This does not specifically solve the problem, but it aids in the

development. The programmer provides the hooks that limit the level editor. If

there is need for new hooks the level editor should ask the programmer to add

these. This step is still subject to the knowledge gap problem.

UnrealScript™

For the Unreal® game engine there is a similar editor as above for the 3D

environment. The main difference is there is a bigger separation between the

world and the objects within. UnrealScript™ provides the objects its body using,

a Java-like scripting language which allows extendible behavior. (Sweeney,

2010) The disadvantage to this is the understandability. One needs

Programming experience to understand how to add behavior to objects.

The link between the engine and the scripts is the API of the game. Each

scriptable object a level designer creates must extend from a base object in the

game. The game calls the overrideable functions of the objects when specific

conditions apply. In the example below each game-tick the game calls the

function Tick. This action oriented approach is common in game scripts.

Each object can have several states. This allows the object to behave differently

when in a certain state. The game calls a different function depending on the

current state. This method is also common in game scripts.

19

Figure 8 - UnrealScript example

//===

// TriggerLight.

// A lightsource which can be triggered on or off.

//===

class TriggerLight expands Light;

//---

// Variables.

var() float ChangeTime; // Time light takes to change from on to off.

var() bool bInitiallyOn; // Whether it's initially on.

var() bool bDelayFullOn; // Delay then go full-on.

var ELightType InitialType; // Initial type of light.

var float InitialBrightness; // Initial brightness.

var float Alpha, Direction;

var actor Trigger;

//---

// Engine functions.

// Called at start of gameplay.

function BeginPlay()

{

 // Remember initial light type and set new one.

 Disable('Tick');

 InitialType = LightType;

 InitialBrightness = LightBrightness;

 if(bInitiallyOn)

 {

 Alpha = 1.0;

 Direction = 1.0;

 }

 else

 {

 LightType = LT_None;

 Alpha = 0.0;

 Direction = -1.0;

 }

}

// Called whenever time passes.

function Tick(float DeltaTime)

{

 LightType = InitialType;

 Alpha += Direction * DeltaTime / ChangeTime;

 if(Alpha > 1.0)

 {

 Alpha = 1.0;

 Disable('Tick');

 if(Trigger != None)

 Trigger.ResetTrigger();

 }

 else if(Alpha < 0.0)

 {

 Alpha = 0.0;

 Disable('Tick');

 LightType = LT_None;

 if(Trigger != None)

 Trigger.ResetTrigger();

 }

 if(!bDelayFullOn)

 LightBrightness = Alpha * InitialBrightness;

 else if((Direction>0 && Alpha!=1) || Alpha==0)

 LightBrightness = 0;

 else

 LightBrightness = InitialBrightness;

}

// Public states.

// Trigger turns the light on.

state() TriggerTurnsOn

{

 function Trigger(actor Other, pawn EventInstigator)

 {

 Trigger = None;

 Direction = 1.0;

 Enable('Tick');

 }

}

// Trigger turns the light off.

state() TriggerTurnsOff

{

 function Trigger(actor Other, pawn EventInstigator)

 {

 Trigger = None;

 Direction = -1.0;

 Enable('Tick');

 }

}

// Trigger toggles the light.

state() TriggerToggle

{

 function Trigger(actor Other, pawn EventInstigator)

 {

 log("Toggle");

 Trigger = Other;

 Direction *= -1;

 Enable('Tick');

 }

}

// Trigger controls the light.

state() TriggerControl

{

 function Trigger(actor Other, pawn EventInstigator)

 {

 Trigger = Other;

 if(bInitiallyOn) Direction = -1.0;

 else Direction = 1.0;

 Enable('Tick');

 }

 function UnTrigger(actor Other, pawn EventInstigator)

 {

 Trigger = Other;

 if(bInitiallyOn) Direction = 1.0;

 else Direction = -1.0;

 Enable('Tick');

 }

}

20

2.1.4 Conclusion related technologies

Scripts describe the scenarios in movies which have few standards and leave

room for own interpretation. They always define inside or outside as well as the

time of day of a scenario. The rest is defined using normal language. It is

necessary to leave room for the director or actors to add information to this

scenario.

There is a similar knowledge gap between the scenario writer and the movie

director. Only in this domain the gap is not a real problem. One could suggest

the scenario writer could even deliberately leave some parts open for

interpretation by the director.

For us it is important to find out what parts of a crisis simulation scenario to

define and what parts to leave open for own interpretation. For example, it is

important that the length of a ladder on a fire truck matches with a real one. On

the other hand it might not be as important to know the exact amount of people

who walk the streets. Also it could aid the scenario description to allow adding

some textual information to make certain details easier to understand. We infer

that for our goal it is important the description allows no room for open

interpretation.

Also a great similarity exists between our research domain and the game

industry. In the game industry the level designers are better schooled to work

with programmers in contrast to our domain experts. This means the knowledge

gap here is smaller. We found the game industry also developed some solutions

for the programmer versus editor knowledge gap. They have a solution for the

communication flow from the programmer to the level editor by allowing the

programmer to alter the level editor’s software program to allow adding only

valid entries within the level. This suits R3 to solve P3.

Using a script language provides extensive possibilities for the scenario but is

difficult for the user to understand. A combination of script language and fixed

choices could provide a solution for our problem.

2.2 Scenario Description

2.2.1 Introduction

Little research is done on scenario description for simulators. We found a few

description “languages” that are able to describe scenarios. SDL, a script used in

vehicle simulation programs. It provides the simulator with some artificial

intelligence rules to anticipate on situations. The description language Q is a

method used for evacuation simulation. Finally we discuss MSDL, a definition

language to describe a tactical version of a military situation.

21

2.2.2 Scenario description languages

Simula

Simula (Dahl & Nygaard, 1965) is a programming language designed for

simulations but nowadays most people see it as the root of object oriented

programming languages. They created Simula to satisfy the need for precise

tools for describing and simulating complex man-machine systems. They use a

language that describes systems for both people and computers (through a

compiler).

The latest version (Simula 67) included objects, classes, subclasses, virtual

methods, co routines, discrete event simulation, and features garbage collection.

We describe an example of a simulation in simula below.

Sam, Sally, and Andy are shopping for clothes. They have to share one fitting

room. Each one of them is browsing the store for about 12 minutes and then

uses the fitting room only for about three minutes, each following a normal

distribution. A simulation of their fitting room experience is as follows:

Simulation Begin

 Class FittingRoom; Begin

 Ref (Head) door;

 Boolean inUse;

 Procedure request; Begin

 If inUse Then Begin

 Wait (door);

 door.First.Out;

 End;

 inUse:= True;

 End;

 Procedure leave; Begin

 inUse:= False;

 Activate door.First;

 End;

 door:- New Head;

 End;

 Procedure report (message); Text message; Begin

 OutFix (Time, 2, 0); OutText (": " & message); OutImage;

 End;

 Process Class Person (pname); Text pname; Begin

 While True Do Begin

 Hold (Normal (12, 4, u));

 report (pname & " is requesting the fitting room");

 fittingroom1.request;

 report (pname & " has entered the fitting room");

 Hold (Normal (3, 1, u));

 fittingroom1.leave;

 report (pname & " has left the fitting room");

 End;

 End;

 Integer u;

 Ref (FittingRoom) fittingRoom1;

 fittingRoom1:- New FittingRoom;

 Activate New Person ("Sam");

 Activate New Person ("Sally");

 Activate New Person ("Andy");

 Hold (100);

End;

Snippet 1 – A Simula example

The main block is prefixed with “Simulation” to enable simulation, using the

simulation package on any block. Even nesting of simulations is possible to

simulate someone doing simulations.

22

The fitting room object uses a queue (door) for getting access to the fitting

room. When someone requests the fitting room and it is in use they must wait in

this queue (Wait (door)). When someone leaves the fitting room the first one (if

any) is released from the queue (Activate door.first) and therefore removed

from the door queue (door.First.Out).

Person is a subclass of Process and its activity is described using hold (time for

browsing the store and time spent in the fitting room) and calls methods in the

fitting room object for requesting and leaving the fitting room.

The main program creates all the objects and activates all the person objects to

put them into the event queue. The main program holds for 100 minutes of

simulated time before the program terminates.

SDL

SDL (Willemsen, 2000) stands for Scenario Definition Language. It is an event-

based description language for a multiagent system. A scenario director uses

SDL to pick up environmental changes and notify agents accordingly. (See

Figure 9)

Figure 9 - SDL outline

The scenario director listens to the environment using monitors. When specific

values are true the SDL states what behavior the agents need to fulfill. This way

one cannot only describe what happens, but also when it will happen and how.

23

SDL is a script language using semantics from object oriented programming

languages. The language is elaborate and allows complicated programming

structures to define events.

01 defscenario LightSequencer(vehicle)

02 {

03 // Obtain a reference to the vehicle’s current road.

04 road = vehicle.queryRoad();

05 // Locate the intersection towards which the vehicle

06 // is approaching on it’s current road.

07 isect = vehicle.queryNextIntersection();

08 // Determine the traffic light controlling the next

09 // intersection towards which the vehicle is heading.

10 traffic light = isect.queryTrafficControlDevice();

11 sync point = TRANSITION TO RED;

12 aslongas (vehicle.queryDistanceToNextIntersection() > 0.0)

13 {

14 eta = vehicle.queryDistanceToNextIntersection() / vehicle.speed();

15 send traffic light sync(sync point, eta);

16 }

17 event(exit, vehicle, isect.geometry()) triggers EXIT EVENT;

18 when(EXIT EVENT)

19 {

20 create LightSequencer(EXIT EVENT.instigator);

21 }

22 }
Snippet 2 - SDL Example: every LightSequencer directs the behavior of a single traffic

light to synchronize its cycle to the approach of the driver.

The functions that are called (like vehicle.queryRoad()) need to be described in

an API. These are functions of the Environment Description Framework (EDF).

These dictate the boundaries of the system and thus limit the possible actions to

a fixed set.

SDL is developed for driving simulators, concentrating on the fixed set of actions

on driving-environments. It is possible to use the language for multiple kinds of

simulators but would need a different description framework.

The SDL can send commands to objects (Snippet 2: line 15) The EDF defines

these.

A monitor can listen for specific events to happen (Snippet 2: line 17). When the

event occurs a trigger will be set to a true value allowing the script to respond

on events.

Q

The motivation to develop the Q definition language is the same as we use to

develop our description language. The Q Language … provides an interface

between computing professionals and scenario writers. (Ishida, 2005) They

recognized the same knowledge gap we did (Jeeninga, 2010).

24

The Q language concentrates mainly on the interaction between agents. This

interaction is based on cues. Each agent has one or more cues on which it will

perform actions that can possibly trigger a cue by another agent. Cues are

preceded by a question mark where actions are preceded by an exclamation

mark. Snippet 3 shows an example of a simple scenario described with Q.

 (defscenario reception (msg)

 (scene1

 ((?hear "Hello" :from $x)

 (!speak "Hello":to $x)

 (go scene2))

 ((?hear "Bye")

 (go scene3)))

 (scene2

 ((?hear "Hello" :from $x)

 (!speak "Yes, may I help you?" :to $x))

 (otherwise (go scene3)))

(scene3 ...))

Snippet 3 - A Q scenario example

Snippet 3 shows the possible cues at any given time depending on the “state” of

the agents using the “scene” keyword. In scene1 the possible inputs are: ?hear

―Hello‖ and ?hear ―Bye‖. In scene2 any other input then “Hello” would

advance the agents’ state to scene3. This implies a one-to-one interaction

pattern without the possibility to parallelize interactions.

To make the language more accessible for less technical scenario writers they

propose an Interaction Pattern Card (IPC) that describes the scenario and is

convertible to the Q script language.

Figure 10 - An Interaction Pattern Card for the Q description language

The design is as followed: the scenario writer and the programmer discuss the

possible cues and actions, then the writer will write a scenario and the

programmer will implement the cues and actions.

25

MSDL

MSDL is the Military Scenario Definition Language4, a scenario description

language standardized in 2008 by the Simulation Interoperability Standards

Organization (SISO). It is developed in affiliation with the US Army and designed

to be able to create a common mechanism for validating and loading Military

Scenarios. To allow easy access by computers or simulators they define the

language using an XML schema (World Wide Web Consortium).

An MSDL scenario represents an intermediate state or a link between the

planning and execution for any type of military scenario. Entities that do not

support MSDL need a conversion of the plans and execution format.

Figure 11 - Architectural position of an MSDL Scenario

A large default set of elements is defined that is used to describe scenarios (also

see Figure 12). They call this the MSDL-Schema. The schema restricts this

language to military use, but also assures that every possible military object is

definable using this language. It forces defining certain variables like

environmental or equipment settings and it allows adding tactical visual data like

anchor points and tactical areas. This language is only used for military

situations; therefore the language will be enough for these situations, as long as

it is possible to define each object that might be interesting in this domain.

An MSDL Scenario exists mainly of a current situation and the possible courses

of action. It is possible to create one or more plans that contain a collection of

actions and events that occur simultaneously or in sequence.

4 SISO-STD-007-2008

26

Figure 12 - MSDL Scenario overview

2.2.3 Conclusion scenario description languages

Simula was designed for simulations and was the first object oriented

programming language. This shows that object oriented programming languages

are suitable for simulations. Besides being suitable for simulations, the object

oriented approach also provides modularity supporting R5.

SDL uses programming language semantics. This allows description of behavior

(supporting R1). It is also legible by the simulation programmer; but the

semantics only resemble those of programming languages. The language still

has its own keywords which the simulation programmer must understand. SDL is

created to be able to optimize performance for the program; our language

should be created for optimal usability for the domain expert.

SDL is too difficult for a domain expert to understand lacking support for R4. We

considered building a user interface for SDL (like we describe in section 4 for

GSDL) but the complicated programming would give us a hard task to keep

scenario description simple for the domain expert. Another issue with SDL is the

27

environment API which limits the use but this can be extended if needed. We

choose for a simpler version of SDL to describe a scenario.

We can use the idea of programming semantics to add interaction and behavior

into our scenarios. This would support R1; also an object oriented language

using programming semantics also supports modularity and thus R5. Provision

of an (extendible) API can support R3 to define the boundaries of the simulator.

Both Q and MSDL scenario description languages describe one “state”. A few

choices are available which will bring you to another state. This does work in

favor of the ambiguity of R2. We think a scenario description should not only

describe loose predefined states (this does not comply with R4). MSDL limits the

possible extensions to a predefined list; this does not allow extensive use as

stated in R4 or could restrict the domain expert too much so he cannot create a

complete scenario as is required by R1.

 R1 R2 R3 R4 R5

Simula X X

SDL X X

Q X X

MSDL X X
Table 2 – Description Language versus Requirement table

We can use tricks from these languages to meet some requirements, but

usability is a problem with description languages.

2.3 Planning languages

2.3.1 Introduction

In science we use planning languages to calculate the best solutions for planning

problems. They describe an initial state of a system and a goal state. Describing

such a system state is comparable with (the start of) a scenario in a simulation.

Multiagent systems (Weiss, 1999) also use planning languages if there is need

for some decision making. Planning languages can help make optimal decisions

for agents. We can use ideas of these planning languages to describe a scenario

and provide them some logic for decision making. We describe STRIPS, a

planning language that acts as a base for many other types of planning

languages. We describe HTN, a practicable implementation of planning

languages to speed up the decision. And PDDL, an extension to STRIPS that

allows the use of more complicated features.

2.3.2 Planning Languages

STRIPS

STRIPS (Stanford Research Institute Problem Solver) is an automated planner

developed by Richard Fikes and Nils Nilsson in 1971 (Nilsson, 1971), later using

the same name to refer to the formal language of the inputs to this planner. This

language is the base for most of the languages for expressing automated

planning problem instances in use today.

28

An STRIPS instance is comprised of:

 An initial state

 The specification of the goal states – situations which the planner is trying

to reach

 A set of actions. For each action, including:

o Preconditions (We have to satisfy this before performing the

action);

o Postconditions (what is established after performing the action).

By specifying these parameters an automated planner can calculate the (ideal)

route to get from the first state to the goal state.

The conditions in strips are either true or false. Specifying nothing will assume

the condition to be false.

Initial state: At(A), Level(low), BoxAt(C), BananasAt(B)

Goal state: Have(Bananas)

Actions:

 // move from X to Y

 Move(X, Y)

 Preconditions: At(X), Level(low)

 Postconditions: not At(X), At(Y)

 // climb up on the box

 ClimbUp(Location)

 Preconditions: At(Location), BoxAt(Location), Level(low)

 Postconditions: Level(high), not Level(low)

 // climb down from the box

 ClimbDown(Location)

 Preconditions: At(Location), BoxAt(Location), Level(high)

 Postconditions: Level(low), not Level(high)

 // move the box from X to Y—And the monkey moves, too

 MoveBox(X, Y)

 Preconditions: At(X), BoxAt(X), Level(low)

 Postconditions: BoxAt(Y), not BoxAt(X), At(Y), not At(X)

 // take the bananas

 TakeBananas(Location)

 Preconditions: At(Location), BananasAt(Location),

Level(high)

 Postconditions: Have(bananas)

A lot of planning languages stemmed from STRIPS. The limit to use only true or

false conditions has its advantages: the problems are simple and quickly

calculated. But not every problem can be described using only true or false

conditions. This is why there is research to extensions of STRIPS like PDDL

(described below) that would allow the generation of more complicated

problems.

29

HTN

Hierarchical Task Networks (HTNs) are used to support decision making for

planning problems. It is mostly used in games with artificial intelligence. Due the

limit of assigned processor calculation time, game-AI need to base decisions on

optimal calculated plans. (Jeeninga, 2010).

In HTN planning, they provide the planner with a set of tasks to be performed.

Then they formulate a plan by repeatedly breaking up tasks into smaller and

smaller subtasks until they have primitive, executable tasks. A primary reason

behind HTN’s success is that its task networks capture useful procedural control

knowledge described by a decomposition of subtasks (Nau, 2003). Such control

knowledge can significantly reduce the search space for a plan thus making it a

fast planner and ideal to use in restricted processor environments like games.

Figure 13 - an HTN example

The example above shows the transport procedure of two packages. First we

check the preconditions for transporting both packages. If this fails we can

quickly move on to the next task without looking more into the tree. If the

transport can take place we look at the task of transporting a package. If these

preconditions fail we move on, else we need to perform the subtasks dispatch,

load, move and return in this order. We know we can perform these tasks

because the preconditions are valid.

30

PDDL

Planning domain definition language is another way of describing situations and

come up with an optimal solution to reach a goal state. It was created in 1998

by Drew McDermott for the first International Planning Competition (IPC).5

The first version of PDDL used Boolean operators only, like STRIPS. The idea is

to calculate every possible course of actions to reach the goal and then show the

most efficient one (for example, a minimum of steps).

Parts of a PDDL planning task:

 objects/types: things in the world that interest us

 predicates: properties of objects that we are interested in; can be true or

false

 actions/operators: ways of changing the state of the world

 initial state: the state of the world that we start in

 goal specification: things that we want to be true.

The first three parts define the PDDL domain. Different scenarios can use this

domain. It only describes the object types, their properties and possible

interactions. To solve multiple scenarios that contain the same objects we can

use the same domain specification. The definition of a scenario exists of a

domain, an initial state and a goal. The objects that interact are defined within

the initial state specification.

5 http://ipc.informatik.uni-freiburg.de/PddlExtension

31

(define (domain BLOCKS)

 (:requirements :strips :typing)

 (:types block)

 (:predicates (on ?x - block ?y - block)

 (ontable ?x - block)

 (clear ?x - block)

 (handempty)

 (holding ?x - block)

)

 (:action pick-up

 :parameters (?x - block)

 :precondition (and (clear ?x) (ontable ?x) (handempty))

 :effect

 (and (not (ontable ?x))

 (not (clear ?x))

 (not (handempty))

 (holding ?x)))

 (:action put-down

 :parameters (?x - block)

 :precondition (holding ?x)

 :effect

 (and (not (holding ?x))

 (clear ?x)

 (handempty)

 (ontable ?x)))

 (:action stack

 :parameters (?x - block ?y - block)

 :precondition (and (holding ?x) (clear ?y))

 :effect

 (and (not (holding ?x))

 (not (clear ?y))

 (clear ?x)

 (handempty)

 (on ?x ?y)))

 (:action unstack

 :parameters (?x - block ?y - block)

 :precondition (and (on ?x ?y) (clear ?x) (handempty))

 :effect

 (and (holding ?x)

 (clear ?y)

 (not (clear ?x))

 (not (handempty))

 (not (on ?x ?y)))))
Snippet 4 – PDDL Domain definition example

Showing in Snippet 4 only one object type is defined: block. Predicates are

true/false conditions. PDDL assumes all predicates to be false by default. Actions

have parameters that locally define block objects (defined using a question mark

followed by a variable name). We can use them to test preconditions or to show

which values will change when the action occurs.

(define (problem BLOCKS-4-0)

(:domain BLOCKS)

(:objects D B A C - block)

(:INIT (CLEAR C)

 (CLEAR A)

 (CLEAR B)

 (CLEAR D)

 (ONTABLE C)

 (ONTABLE A)

 (ONTABLE B)

 (ONTABLE D)

 (HANDEMPTY))

(:goal (AND (ON D C) (ON C B) (ON B A)))

)
Snippet 5 - PDDL Scenario definition example

32

In Snippet 5 the “scenario” is defined. Multiple object instances are now defined

and assigned to a variable (in the example the letters A,B,C,D). The initialization

part defines predicates that are true; the system assumes all others to be false.

Using the specified goal, a PDDL interpreter can search for a solution which will

consist of a series of actions that need to be performed to reach the goal state.

In PDDL version 2.1 fluents were added. These are numerical values that can be

compared using logical operators. This also broadened the perspective to allow

durational actions. An action could start at time T and a calculative function

would determine the time before the action is complete. They included the

choice to interrupt these actions when preconditions fail (Olaya, 2007). This

expanded the possibilities for PDDL but also created much larger problems with

many more states. This made calculations more intensive and it would take

much longer to find the optimal solution. It is unsuitable to use this version for

real-time decision making.

PDDL version 3 (latest version is 3.1 Developed by Alfonso Gerevini and Derek

Long for IPC5 (ICAPS 06)) added goal preferences. This way we can improve a

plan by pointing out what states we have to avoid or take. This concentrates

more on quality then the result. If we select preferences carefully, this also

improves the time it takes to find the first valid solution.

2.3.3 Conclusion planning languages

The first feature of planning languages we can to use for GSDL is to separate the

domain information from the scenario itself. Multiple scenarios can reuse the

same domain definition. This helps us to decrease P6 (sections 1.2) by reusing

existing information instead of duplicating information. It also supports the

modularity of R5 from section 1.3. Using a domain description, the programmer

can create initial information for the domain. This way he can assure the domain

expert will add certain values or include the restrictions of the simulator. This

supports R1 and R3.

The second feature we use is the preconditions. Using these to find out when a

specific action can happen we can assure completeness of information (R2). We

can provide warnings when information is missing or when actions can never

occur. We can support playing back a scenario using a GSDL simulator and warn

the domain expert when he wants to perform an action which is not possible.

Then we can provide the domain expert with information about what

preconditions enable the action.

33

The final features we will use are the predicates and fluents. Using these we can

insert information like the number of people a fire truck can transport or

whether a person has a fire extinguisher. This will support R2 and will allow us

to create advanced preconditions to support the extendibility of R3. Several

numbers will be the internal values that are unknown by the domain expert.

 R1 R2 R3 R4 R5

Strips X X

HTN X X X

PDDL X X X
Table 3 – Planning Language versus Requirement table

Table 3 shows which requirements are met by the planning languages.

2.4 Conclusion background information
We researched three associated areas for scenario description.

1. Movies and games.

2. Existing scenario description languages.

3. Planning languages.

Each area coped with a similar knowledge gap in a different way, each with its

advantages and disadvantages. None satisfied to all of our requirements, we

picked the following features from these areas that help toward solving our

problem:

 allow the programmer to alter the domain expert’s software program to

enforce adding valid entries (2.1.3)

 allow the domain expert to add textual information to clarify things if

needed (2.1.4)

 use a well-known object oriented script language to define the scenario

(2.2.2)

 allow description of behavior (2.2.3)

 separate the domain definition from the scenarios (2.3.2)

 add actions with preconditions like planning languages to be able to define

an extensive scenario without describing each state individually (2.3.2)

 allow the programmer to define the boundary of the simulator (2.3.3).

We will combine these features to mold a scenario description language.

Using knowledge from this background information we can satisfy many

requirements. However, meeting R4 is a problem for all language based

solutions. We can create a base for a general solution, but need to deal with

intuitive and extensive usability in another way. Our solution, a scenario

description tool which supports the user with a graphical user interface, is

described in section 4.

34

3 Generic Scenario Description

3.1 Introduction

According to the dictionary a scenario is “An outline or model of an expected or

supposed sequence of events”. In our case we decided that this model can be

described in a structured piece of plain text. We call this our Generic Scenario

Description Language (GSDL). This language should be writable by the domain

expert and readable by the programmer. To help the domain expert by writing a

code language we should develop the language in a way that a graphical user

interface can interpret and export this code. We develop our language conform

our requirements described in section 1.3.

In our scenario the sequence of events is not fixed. User interaction can alter the

sequence and the outcome of the scenario. We should describe all the

possibilities and boundaries of the supposed sequence of events to define the

whole scenario. During the development, the domain expert should be able to

test these boundaries with the GSDL simulator described in section 3.5.

The following section describes the environment in which we will use our tools.

The workflow will affect some of the features of GSDL.

Then we will describe features and decisions in the next sections based on an

example scenario. We will look at the sequence of events that takes place and

how we can use our language to define this scenario.

3.2 Practical Environment
The environment in which we will use the description language is important for

the structure of the language.

Most existing techniques use the following method: first the programmer creates

some basic rules and objects for the expert to use. Like the FGD, EDF, MSDL-

Schema or the domain definition of PDDL (section 2). Then the domain expert

learns how to use these rules and objects and creates a scenario. Flaws are

reported to the programmer (note that not all existing methods can deal with

these flaws).

We borrow this idea from these existing techniques. We divide the scenario

description in two parts; the first part to define the domain and abilities of the

simulator and the second part to define the scenario itself. This supports R3 and

R5. The programmer can start by creating a set of default rules and objects to

define the possibilities of the simulator defining the template of the scenarios.

Figure 14 depicts the suggested workflow. Both parties can work simultaneously

which allows the process to finish faster and thus offering a possible solution to

our main problem.

35

Figure 14 - Sequence Diagram Workflow of creating a domain definition

The first step is for the programmer to create a domain definition. This defines

the possibilities of the simulator. If the simulator does not yet exist, the main

ideas of the programmer about what features he is planning to implement can

be described here. It serves as an API to the domain expert. The scenario

description tool of the domain expert uses this domain definition; providing him

with default objects and rules to create a first version of a scenario. The

description tool is also responsible for a valid output of a GSDL defined scenario

to prevent the domain expert from solving parse errors. Section 4 describes this

scenario description tool.

If the domain definition is not enough to support the entire scenario, the tool the

domain expert uses can expand the domain if necessary by adding more actions

or objects. Here is the difference with a normal API, the domain expert can

make changes to the domain definition. This will save time (P0) because the

domain expert can continue working on the scenario, even if there was no

support for the initial scenario.

The programmer can compare both versions of the domain definition and decide

whether the changes are possible or if the domain definition needs to be defined

in a different way. The programmer will know the intents of the domain expert

and can effectively look for an alternate solution if the supplied version is

impossible to implement directly.

Meanwhile the domain expert can work on completing the scenario.

The script will allow performing tests on the script itself using a GSDL simulator.

Therefore allowing the domain expert to execute some simple tests to make sure

the simulation will do what it is supposed to do. This will help the programmer

36

understand what the goals of the simulation are. We can use these tests to “ask”

specific questions to the domain expert. The programmer just adds a test and

asks the domain expert if this is the correct result. If it’s not, the domain expert

can try to change the script until all tests work as wanted or, if the task is too

difficult, the programmer can do this himself since he now knows what the

results must be. We discuss this idea in section 6.3.3.

3.3 Development
We describe the development of the generic scenario description language

(GSDL). The GSDL language is used by the GSDL simulator (section 3.5) and the

Scenario Description Tool (described in section 4). The language should be

interpretable by the programmer and possibly extendable to be used directly

with other simulators.

We start using an object oriented script language (Java) to describe a simple

scenario. We use the benefits of the background information to optimize the

usability for scenario description. We use this simple scenario to describe the

generic architecture of a simulation in section 3.3.5. Finally we use this

information and the Java code to strip the unused Java features which will leave

a concise description language for scenarios. We make sure we can convert this

language back to Java to keep the feedback features. This conversion process is

described in section 3.4.

In section 3.5 we start building a simple discrete GSDL simulator that can

simulate the objects and possible actions described in a GSDL scenario. This is

important for the domain expert to be able to test the scenario providing

feedback to make sure it works as it is supposed to. We need it to provide

information about the state and show what actions are available.

Within these sections we present snippets of code that help explain the text.

Appendix 0 describes the complete and uncensored code.

In section 3.6 we put our language to the test, discussing benefits and

drawbacks and comparing our language to some comparable ideas.

3.3.1 Describing a simple situation

We want to describe the following simple scenario:

1. A fire starts at a specific location.

2. The fire department sends a fire truck with 2 firefighters to the location.

3. The firefighters deploy at the location and extinguish the fire together.

We assume the virtual environment of this scenario is already present in some

way. This can be a list of locations, but also a 3-dimensional environment. The

final language should be able to cope with both kinds. Depending on the virtual

environment the GUI for the domain expert will be different; we discuss this in

section 4. For our example we assume that a location is defined by a name and

each object is able to be at a maximum of one location at the time.

37

We chose Java as a base for our description language. We use the advantages

from the object oriented approach (section 2.4) and it is a well-known language

for programmers. Thanks to the use of a virtual machine it can also run on

multiple platforms. The next sections describe the implementation of the rest of

the features based on a sample scenario.

The first step we need to take is to describe objects that persist within the

simulation environment. We describe the main objects in the domain definition.

Then we can introduce multiple instances of them in the scenario itself.

From our simple scenario we extract the following objects:

 a specific location

 a fire

 a fire department

 a fire truck

 a fireman.

We want each object to have some generic features, so we create a BaseObject

from which each object inherits generic features. We add a name for each object

to identify the object.

public abstract class BaseObject {

 private final String name;

 public BaseObject(String name) {

 this.name = name;

 this.init();

 }

 protected void init() {

 }

 public final getName() {

 return this.name;

 }

}

To create a person we extend the BaseObject. The same can be done for a fire.

public class Person extends BaseObject {

 public Person(String name) {

 super(name);

 }

}

A fireman is an extension to the object person. So we use the Java inheritance

to define fireman. To create a fireman we extend the person object.

public class Fireman extends Person {

 public Fireman(String name) {

 super(name);

 }

}

This way we can add features to a person which each fireman would

automatically inherit. For the fire truck and a vehicle we can do the same. This is

straightforward to Java programmers. This modular approach suits R5 by adding

modularity to the scenarios. Once we create a set of base objects, we can reuse

them for multiple scenarios. These objects can easily be extended to custom

objects with similar features.

38

The actions we will create can allow one type of object to perform it. If we create

an action that can be performed by a “person”, each “fireman” will also have the

ability to perform that action since they also classify as a “person”.

The BaseObject class defines how we use our language. The simulation

programmer will not be able to change this class. Therefore we put this class in

a package “base”. The other classes reside in the domain definition so we put

these in a package “domain”. The programmer will create or edit these classes

and later possibly the domain expert will edit the domain as well. The use of a

domain package matches to the requirement R3, changes to the domain could

mean the programmer should add these features the simulator.

Each object is at maximum at one location at the time. So we define the location

for each object in the BaseObject class. To be able to use different location

properties for different simulators we define a location object that can be

expanded later. For now we assume a location is defined by a unique name.

Objects often depend on other objects for its location. For example, a mobile

phone might be carried by another object or a nozzle can be attached to a hose.

Therefore we introduced the possibility to attach objects to other objects. Each

object can be attached to one other object and will share the location of that

object.

To allow user interaction we need something to define where a user can exert

influence on. The trainee can make decisions within the scenario, but this can

also be the teacher or even a piece of software. We define a controller object for

each BaseObject. This controller object should receive all perception events for

this object and it should be able to tell the object when to perform certain

actions.

Appendix 0 describes the final version of our BaseObject.

3.3.2 Predicates, Functions and Messages

From the PDDL language we learned that we can use predicates and functions to

define the characteristics of objects. In our language we can define these in the

object class within the domain specification. We define a set-method to be able

to add predicates to an object. We use a string as identifier. Using this string we

can request the suiting value.

We found that we need to add messages for use in simulations. Next to planning

a scenario we also need to provide textual information to the trainee. So we

need a way to define text based values for our objects. We add them just like we

do with predicates and functions.

39

We use the following types of variables in our language:

 predicates (Boolean) – setting true or false conditions

 functions (float) – adding numeric values and the capacity to use them for

calculations

 messages (string) – saving textual information or to present users with a

helpful message.

We add the following code to the BaseObject class for the variables. We decided

that we can use one name for a specific parameter. This aids the intelligibility

(R2) and allows us to find out what (type of) parameter belongs to any given

name which aids the lookup procedure.

 private HashMap<String, Boolean> predicates = new HashMap<String, Boolean>();

 private HashMap<String, Float> functions = new HashMap<String, Float>();

 private HashMap<String, String> messages = new HashMap<String, String>();

 private HashMap<String, VariableType> typeList = new HashMap<String, VariableType>();

 public final boolean getPredicate(String name) {

 if(!predicates.containsKey(name)) {

 //write warning

 }

 return predicates.get(name);

 }

 public final void setPredicate(String name, Boolean value) {

 if (this.typeList.containsKey(name)) {

 if (!(this.typeList.get(name) == VariableType.PREDICATE)) {

 //write warning

 return;

 }

 }

 else {

 this.typeList.put(name, VariableType.PREDICATE);

 }

 this.predicates.put(name, value);

 this.controller.notify(this);

 }

An object is now represented by a name, optional predicates, functions and

messages. We can now add the predicate “hasphone”, for example, to show the

object has a phone. We can then test whether this predicate is true before

allowing the person to call someone (or be called). Using functions we can add

numeric values to objects. For example, intensity rate to the fire.

 joe.setPredicate("hasphone", true);

 fire.setFunction("intensity", 10.0f);
Using a string as identifier allows a flexible use of variables. Using this way of

setting variables, we do not need to be predefine them and we can add them on

the fly.

This also allows the extensive usability from requirement R4. The language does

not limit the domain expert because he can express every feature of an object if

necessary. The predicates can be compared using logical operators and the

functions can be used for the mathematical features of the simulation.

40

3.3.3 Relations

We found that it can be useful to describe relations between objects. Using the

same idea from the predicates and functions we can define relations between

specific objects. Again we use a string as identifier.

 private HashMap<String, Vector<BaseObject>> relations = new HashMap<String, Vector<BaseObject>>();

 public final void setRelation(String name, BaseObject object) {

 if (this.typeList.containsKey(name)) {

 if (!(this.typeList.get(name) == VariableType.RELATION)) {

 //write warning

 return;

 }

 }

 else {

 this.typeList.put(name, VariableType.RELATION);

 }

 if (!this.relations.containsKey(name)) {

 Vector<BaseObject> v = new Vector<BaseObject>();

 v.addElement(object);

 this.relations.put(name, v);

 }

 else {

 this.relations.get(name).addElement(object);

 }

 this.controller.notify(this);

 }

 public final void removeRelationWith(String name, BaseObject object) {

 if (!this.relations.containsKey(name)) {

 return;

 }

 if (this.relations.get(name).contains(object)) {

 this.relations.get(name).remove(object);

 this.controller.notify(this);

 }

 }

 public final boolean hasRelationWith(String name, BaseObject object) {

 if (!this.relations.containsKey(name)) {

 return false;

 }

 for (BaseObject o : this.relations.get(name)) {

 if (object == null || o.equals(object)) {

 return true;

 }

 }

 return false;

 }

We can now define that a fireman is sitting inside a fire truck, also the other way

around we can set the relation describing the fire truck contains a fireman.

 f1.setRelation("inside", truck);

 truck.setRelation("contains", f1);
Before events may happen we can test if these features of objects are true. We

could also provide a warning or explanation why an event cannot take place (for

example, truck cannot drive because there is no fireman inside the truck).

During the creation of GSDL we found that we can replace relations by

predicates using an objectname within the identifier. We could replace the code

above by the following:

 f1.setPredicate("inside " + truck.getName(), true);

 truck.setPredicate("contains " + f1.getName(), true);
Due time constraints we did not change this. But a description how to do this

can be found in section 6.3.2.

41

3.3.4 Events and Actions

Using the previous definitions we can define a state of the simulation. We now

need to define something that allows changing the state of the simulator. We

use event and action classes to define a state change.

An event exists of two main features: a precondition and the preformed changes

if the event takes place. These features exist in STRIPS as well as PDDL and HTN

(see section 2.3.2) and proved to be usable for scenario description. When

preconditions of an event become valid it performs immediately. This idea from

planning languages allows logical tests to decide when a state-change can occur.

Using this theory from the planning languages allows us to add conditional

events (supporting R1).

An action looks like an event except an action cannot perform by itself; an object

is needed to perform the action. Each action has exactly one object that can

initiate that action. In a scenario there are many possible actions defined but

only a few will be in an enabled state. When the preconditions of an action

become valid the action will become enabled and the corresponding object can

choose to perform the action.

The controller of an object should be able to list all the possible actions,

preferably also the disabled actions and the reason the action is disabled in the

GSDL simulator. This way you can learn from the scenario… For example, “I

cannot move the truck because there is no fireman inside”. This answers to

requirement R2 by supporting feedback when performing a test.

To add events into our code we create a BaseEvent class in our base package.

This class should assure the presence of the two features of an event.

package base;

public abstract class BaseEvent {

 public abstract boolean enabled();

 public abstract void perform();

}

An action will define the first object in the constructor as the initiator of the

action. This will result in adding this action to the actionlist of this object.

One feature that is present in every simulator but not specifically defined is the

time. To allow events to happen on a predefined time we add the Simulator

class. This class contains simulator specific information, for now just the time.

Below an example how we can trigger an event on a specific time.

42

package domain.events;

import base.*;

public class MessageEvent extends BaseEvent {

 public MessageEvent() {

 }

 @Override

 public boolean enabled() {

 if (Simulator.getTime() > 10f) return true;

 return false;

 }

 @Override

 public void perform() {

 }

}

An interesting problem shows up using events; if two events are enabled at the

same time, which one will execute? One could argue that both can execute, but

this complicates when one event disables the other. For now we assume the

simulation becomes nondeterministic when we use events that can happen at

the same time and that only one event can happen at one time. We address this

problem in section 3.6.2.

We can create tests to see if specific events can happen. For example, if we

want to test if the incoming call can also occur at the 9th timeslot, we can invoke

the IncomingCall.enabled() function which would return false. To fully

understand why this is not possible and which values need to change before we

can perform this event we need a textual representation of the preconditions.

For example, EnterVehicle action:

public class EnterVehicle extends BaseAction {

 private Person person;

 private Vehicle vehicle;

 public EnterVehicle(Person person, Vehicle vehicle) {

 this.person = person;

 this.vehicle = vehicle;

 }

 @Override

 Public boolean enabled() {

 if (!(person.getLocation().equals(vehicle.getLocation())))return false;

 if (!(vehicle.getValue("occupants") < vehicle.getValue("seats"))) return false;

 if (!(!person.hasRelationWith("inside", vehicle))) return false;

 if (!(!person.isAttached()))return false;

 return true;

 }

 @Override

 public void perform() {

 person.setRelation("inside", vehicle);

 vehicle.setFunction("occupants", vehicle.getFunction("occupants") + 1f);

 person.attachToObject(vehicle);

 }

}

43

This action enables when both the person and the vehicle are at the same

location and the person is not already inside another vehicle. If this action is

disabled we do not know whether the location causes this or if this person is

already inside another vehicle (or both). We can add an extra method that

provides us with the extra information:

@Override

public String enabledStatus() {

 String s = "";

 s += (person.getLocation().equals(vehicle.getLocation()) ? "" : "(!) ") + person.getName() + " has

the same location as " + vehicle.getName() + "\n";

 s += (vehicle.getValue("occupants") < vehicle.getValue("seats") ? "" : "(!) ") +

"vehicle.getValue(\"occupants\") < vehicle.getValue(\"seats\")\n";

 s += (!person.hasRelationWith("inside", vehicle) ? "" : "(!) ") + person.getName() + " has no

relation \"inside\" with " + vehicle.getName() + "\n";

 s += (!person.isAttached() ? "" : "(!) ") + person.getName() + " is not attached\n";

 return s;

}

@Override

public String toString() {

 return "EnterVehicle"+ " (" + this.person.getName() + ")"+ " (" + this.vehicle.getName() + ")";

}

We can draw this piece of code automatically from the enabled function. It is not

necessary for a domain expert to write down this code. This is an

implementation problem.

The most difficult code the domain expert should insert is the following:

 if (!(person.getLocation().equals(vehicle.getLocation())))return false;

 if (!(vehicle.getValue("occupants") < vehicle.getValue("seats"))) return false;

 if (!(!person.hasRelationWith("inside", vehicle))) return false;

 if (!(!person.isAttached()))return false;

This is simplified, but still hard for a non programmer to understand.

If you would ask someone when a person can enter a vehicle, the answer would

be: “When the person and the vehicle are at the same location”. This could

translate to person’s location equals vehicles location. We have to make this

translation as easy as possible for the domain expert.

The second interesting part is the perform function. We want to define what

happens if we perform an action.

The first information our system needs to describe an action is the initiator.

From a list of defined actions the domain expert chooses what object (type) is

able to initiate this action. We can select second optional other objects from

which this action needs information or on which this action performs change. For

the example above it is not difficult to realize that a person is the initiator of

EnterVehicle and that we need an object Vehicle to perform this action with.

Finally when we create a new action we possibly introduce some new functions

or predicates. These might put restrictions on existing actions. If so, this is the

time to present the domain expert with this fact. For example, when we attach

this object, actions like “enterVehicle” should use this as a restriction.

44

3.3.5 Architecture

We depict the architecture of the example used above in the UML Class diagram

below. The base objects contain the necessary functions to describe a scenario.

This is not part of the scenario description itself; it is the tool that happens to be

written in the same language as the description.

Figure 15 - Example Architecture

The image shows the objects that we can instantiate. This is our domain

definition. We define the instantiated objects separately in a scenario. The

scenario will use these objects from our domain definition.

We can use one domain definition to create multiple scenarios.

Object

An object represents an entity within the simulation. We can extend it to inherit

all functions that its parent object has. It will automatically be able to perform all

the actions of its parent. The domain definition of an object describes a default

state of any object that we create using this class. The important fields are:

 objectname (Name of the object type)

 parentname (Optional, name of the parent of this object type)

 predicates (Optional, boolean values, true or false)

 functions (Optional, numeric values)

 messages (Optional, textual values).

45

We do not define the following fields in the domain definition since they are

different for each object and should be defined in the scenario part.

 controller (Default = none, is AI- or user-controlled)

 relations (Lists of objects that relate to this object)

 actions (The actions this object can perform by itself).

The only compulsory field within the domain definition is the objectname. We

define a new object using the following syntax:

object <objectname>

Or including a parent using the “extends” syntax:

object <objectname> extends <parentname>

We translate this automatically to the following Java syntax:

package domain.objects;

public class <objectname> extends <parentname> {

 public <objectname>(String name) {

 super(name);

 }

}

We can use this in our GSDL simulator. Notice that we need a name to construct

any object.

To save time we want to define some default values for a specific object and

make use of the advantages of object oriented programming. Defining default

values will save time for the domain expert because he only needs to supply the

differences to the default values. Therefore we introduce the init() function that

we call on creation of the object or any children of this object. We can initialize

predicates, functions and messages. In the pseudo code below we use square

brackets to mark optional code and inequality signs to mark variable values. The

curly braces are part of the code.

object <objectname> [extends <parent>] {

 [predicate <predicatename> = <true/false>;]

 [function <functionname> = <numericvalue>;]

 [message <messagename> = <string>;]

}

Snippet 6 - Pseudo code Object Definition

For Example:

object Firetruck extends Vehicle {

 predicate "isDriving" = false;

 function "waterVolume" = 1500;

 function "seats" = 3;

 message "vehicleId" = "V001";

}

46

This would translate into the following Java code:

package domain.objects;

public class Firetruck extends Vehicle {

 public Firetruck(String name) {

 super(name);

 }

 public void init() {

 super.init();

 this.setPredicate("isDriving", false);

 this.setFunction("waterVolume", 1500f);

 this.setFunction("seats", 3f);

 this.setMessage("vehicleId", "V001");

 }

}
By introducing the init() method we make sure that we call this method for each

created instance. We can do this in the BaseObject constructor. We cannot

create default relations or controllers since these are different for each

instantiated object and need to be defined in the scenario definition.

If there is extra information we can add about a certain value, it is always

possible to add a commentary line, starting with a double slash forward. We

want to keep this option open because there might be pieces of code where it is

still too difficult for the domain expert to create the code himself and wants to

leave a helpful remark to the programmer.

Event

An event is something that can happen within the simulation. If its conditions

apply it will perform changes to objects.

 eventname

 prerequisites (Set in constructor, defines what objects we need to perform

this event)

 enabled (Logic function to tell whether this event can take place)

 perform (Description about what values this event changes each step).

Action

An action defines the capacity of an object to make changes to its environment.

If its conditions apply it can perform if an object triggers it to do so.

 actionname

 initiator (Set in constructor, defines what objects can initiate this action)

 prerequisites (Set in constructor, defines what objects we need to perform

this action)

 enabled (Indicates the conditions that we must meet before this action

can perform)

 perform (Generates an enabled event which describes what will happen).

For each of these features we define a piece of code that contains all the

necessary information needed for us to create valid Java-code. This is presented

in table 4.

47

Feature Info Needed Target Java code

Actionname/
Eventname

Name public <ActionName>() {}

Initiator ObjectType,
LocalObjectName

private <ObjectType> <LocalObjectName>;

public <ActionName>(<LocalObjectName>) {

 this.initiator = <LocalObjectName>;

}
Prerequisites ObjectType,

LocalObjectName

private <ObjectType> <LocalObjectName>;

public <ActionName>(<LocalObjectName>) { }

Enabled Logic tests public boolean enabled() {

 [if(!(<Logic test>)) return false;]*

 return true;

}

Perform Variable Assignments:
LocalObjectName,
ValueType, ValueName,

Value

public void perform() {

 <LocalObjectName>.set<ValueType>(<ValueName>,

<Value>);

}

Table 4 – Required information table

We can also reuse the logic tests information to create enabledStatus() code

described in section 3.4.3. We now know what information we need to define in

GSDL. How we define this is described in the following section.

3.4 Generic Scenario Description Language
In this section we describe how we develop a structured language (GSDL) to

define a scenario and how we convert this simple language to more complicated

useful Java code. This code is used in the GSDL simulator described in section

3.5. We use the information from our findings in the previous sections and

combine this be able to create an efficient description of a scenario. Appendix

8.1 shows the complete EBNF6 notation of GSDL.

We use the ANTLR (Parr, 2007) tool to assure consistency of our language.

ANTLR stands for ANother Tool for Language Recognition; it is a language tool

that provides a basic structure for constructing recognizers, interpreters,

compilers, and translators from grammatical descriptions containing actions in

various target languages, including Java. Appendix 8.4 shows the complete

grammar file for GSDL.

6 Extended Backus–Naur Form

48

3.4.1 Lexer

The idea is to create a lexer (or “scanner”) to remove whitespaces and

comments. Then the lexer defines the useful tokens. Using these tokens we can

use a parser to interpret the code and parse this to Java code. This will produce

parse errors if the code is not consistent and it will not be able to detect

ambiguous code thus ensuring unambiguous code.

We display the lexer at the bottom of appendix 8.4. We define identifiers as a

word starting with an uppercase character, variables as a word starting with a

lowercase character and strings as characters between double quotation marks

(”) this is comparable with the Java syntax.

3.4.2 Object Declaration

In the previous section we depicted the 5 important elements of the object

declaration. We combine these in our parser. Appendix 8.1 shows the EBNF

notation of the object declaration. ANTLR creates the following visual railroad

view.

Figure 16 - Railroad view of object declaration

The first identifier is the name of the object. The second is the optional name of

the parent object. Then we define predicates and functions using a keyword at

the start and a semi-colon at the end. This is all the information we might need

to create an object for our Domain Definition.

49

3.4.3 Action and Event Declaration

Actions and events are similar. The only difference is that an action has an

initiator and an event has not. The railroad view of an action shows what how we

define an action.

Figure 17 - Railroad view of actions and events

At declaring the initiator and the utilization, we match objects (defined by the

identifier) to a variable. We can use these variables in the expressions in the

enabled and perform functions. We describe an example of the EnterVehicle

action below. The expressions and assignments are straightforward, the

complete list of railroad views can be found in appendix 8.2.

50

action EnterVehicle {

 initiator Person person;

 utilize Vehicle vehicle;

 enabled {

 person location equals vehicle location;

 vehicle "occupants" < vehicle "seats";

 !person hasrelation "inside" vehicle;

 !person is attached;

 }

 perform {

 relation make person "inside" vehicle;

 function vehicle "occupants" = vehicle "occupants" + 1;

 attach person to vehicle;

 }

}
Snippet 7 - EnterVehicle Action in GSDL

This action is enabled if the following 4 predicates are true:

1. The location of person and vehicle is the same.

2. The number of occupants is smaller than the number of seats.

3. The person trying to enter does not have a relation inside with the

vehicle.

4. The person is not attached to another object.

If this action performs the following changes to the environment will take place:

1. A relation “inside” is created for the person who invoked this action with

the vehicle.

2. The function “occupants” of vehicle is increased by one.

3. The person becomes attached to the vehicle.

3.4.4 Scenario declaration

Using a domain definition we can define a scenario by defining objects and the

initial state of those objects. The scenario declaration looks like the perform

function of actions and events.

scenario Scenario1 {

 Location fd = "Fire Department";

 Location home = "Home";

 FireMan f1;

 FireMan f2;

 FireTruck truck;

 Fire fire;

 location fire = home;

 predicate fire "burning" = true;

 location f1 = fd;

 location f2 = fd;

 location truck = fd;

}
Snippet 8 – Scenario definition in GSDL

First we need to declare the objects. We assign each object a variable name

which we use later to change the default values of the objects like we do within

a perform function (section 3.4.3). Finally we can define locations and initial

variables or attachments if needed.

51

3.5 GSDL simulation testing
We can run our simulation in the GSDL simulator using the Java output of the

GSDL parser. We run the scenario by creating the initial state where we

instantiate all objects. At the end we can gather a list of all possible events and

actions that can take place. For now we assume a discrete event simulation.

Advantages we can use thanks to our tool to assure completeness of the

scenario are:

 creating a list of all the possible actions at the current state

 creating a list of actions for each controller

 creating validity tests.

The initial state is the collection of objects and their current predicates, functions

and relations. To create a list of all objects we use the BaseObject class to add

each instance to the GSDL simulator:

 public BaseObject(String name) {

 this.name = name;

 Simulator.addObject(this);

 }
Now we can think of the current state of an object using the following code.

 public final String getStringState() {

 String s = this.name + "\n";

 if (this.getLocation() != null) s += " location is " + this.getLocation().getName() + "\n";

 if (this.attached != null) s += " attached to " + this.attached.getName() + "\n";

 for (Map.Entry<String, Boolean> entry : this.predicates.entrySet()) {

 s += " predicate " + entry.getKey() + " is " + entry.getValue() + "\n";

 }

 for (Map.Entry<String, Float> entry : this.functions.entrySet()) {

 s += " function " + entry.getKey() + " is " + entry.getValue() + "\n";

 }

 for (Map.Entry<String, String> entry : this.messages.entrySet()) {

 s += " message " + entry.getKey() + " is " + entry.getValue() + "\n";

 }

 for (Map.Entry<String, Vector<BaseObject>> entry : this.relations.entrySet()) {

 for (BaseObject b : entry.getValue()) {

 s += " relation " + entry.getKey() + " " + b.getName() + "\n";

 }

 }

 return s;

 }
We can use the BaseAction constructor to add each action to a master list of

actions. The number of objects and constructor types can change by editing the

GSDL code; we need this to be independent. The following code manages this:

 for (Class<?> c : Simulator.getClasses("domain.actions")) {

 Simulator.checkAction(c);

 }
This takes all classes from the domain.actions package and sends them to the

checkAction-method. Now we need to check what type of objects we need to

construct this action. For each parameter we create a list of all objects that are

the right type.

52

private static void testActions(Constructor<?> c) {

//One vector containing X vectors with objects where X is the number of arguments needed to construct

action.

 Vector<Vector<Object>> parameters = new Vector<Vector<Object>>(c.getParameterTypes().length);

 int i = 0; // this int is reused multiple times in this method

 // Initialize an empty vector for each parameter.

 for (i = 0; i < c.getParameterTypes().length; i++) {

 parameters.add(i, new Vector<Object>());

 }

 //loop through all objects

 i = 0;

 for (BaseObject o : Simulator.objects) {

 //check if the classtype fits one of the classes

 i = 0;

 for (Class<?> cl : c.getParameterTypes()) {

 if (cl.isInstance(o)) {

 // add object to the associated list

 parameters.get(i).addElement(o);

 }

 i++;

 }

 }

 // If there is an empty vector this means this action cannot be created.

 for (Vector<Object> v : parameters) {

 if (v.isEmpty()) return;

 }

 // Use recursion to create all possible combinations of the objects in the vectors.

 recursiveCheck(new Vector<Object>(parameters.size()), parameters, c);

}

Finally we need to create all possible variations using all the current existing

objects in the scenario. We use a recursive function to loop through all the

possible combinations of objects to construct this action. We ignore actions

where we would try to use the same object twice because we only need to

initiate one object once in any constructor.

private static void recursiveCheck(Vector<Object> v, Vector<Vector<Object>> parameters, Constructor<?> c) {

//Check if the vector with elements is filled. (iow: we have enough elements to create an action object)

// Check for duplicates: HashSet does not allow duplicates, skip all next iterations if a duplicate is

found.

 HashSet s = new HashSet(v);

 if (s.size() != v.size()) {

 return;

 }

 if (v.size() == parameters.size()) {

 //try to create our object

 try {

 // Create the action object using the parameters from our vector v.

 BaseAction action = (BaseAction) c.newInstance(v.toArray());

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 //we are done! we return to the previous invocation.

 return;

 }

 //Loop through all possible parameters we can use as next argument

 for (Object o : parameters.get(v.size())) {

 // add the next element to the vector

 v.addElement(o);

 // pass the vector to check again

 Simulator.recursiveCheck(v, parameters, c);

 // when we return here, our element has been checked. remove it and try the next

 v.removeElementAt(v.size() - 1);

 }

}

At any given time we can check each action whether the enabled-method

returns true. If this is the case, the action can perform. We could present the

user with this list and let the user decide which action should take place. Then

we can calculate the next state of the GSDL simulator.

We built a system that changes states using actions (labels), similar to Labeled

Transition Systems (LTS, see section 3.6.4) which we can picture using state

diagrams. We show an example of this visualization in section 0.

53

Figure 18 – GSDL simulator examples

The figure above shows the example we used in our GSDL simulator. We show

more screenshots in section 0. This GSDL simulator will provide the domain

expert with feedback and can offer help where needed. The domain expert can

test if the scenario does what it is supposed to do. Also a programmer can

understand what a given action does, even if the name is unclear.

Another feature is to create validity tests. One might want to assure that at

some time in the simulation certain values are valid. For example, you might

want to be sure that it is possible to extinguish the fire at some point. We can do

this the same way as with planning languages. Using the planning language

structure we can calculate every possible state of the GSDL scenario. The

simulator can use an algorithm to find the fastest way to its goal, or just visit

each state using graph theorems. We expand this idea in section 6.3.3.

3.6 Problems and Discussion
This section will discuss some of the problems we faced during the development

of GSDL. Also we will make assumptions about the usability. We compare our

solution to LTS and MAS to compare our GSDL simulator with similar solutions.

We describe the conclusion about GSDL in section 3.7.

3.6.1 Usability

A GSDL script is still too difficult for the domain expert to understand. It does

provide a solid platform for a user interface as we will discuss in section 4. This

could result in an acceptable tool for the domain expert. The main question is if

learning and using the GSDL tools will cost less time than intense

communication. We claim that this is the case; we elaborate this claim in section

6. The tool supports the requirements to solve our final problem.

Another issue to find out is the usability of this language. We want to know

whether it is scalable to describe each scenario that we can think of. We have

shown it to work with simple scenarios. Large scenarios with big amounts of

important objects can easily lose overview. Again the tool from section 4 can aid

solving this problem.

54

Some other issues we stepped over for now still needs solving. The GSDL

simulator time and location types may differ from the values we used here. Time

might not be discrete and locations might be xyz-coordinates. We address this

issue in section 6.3.2.

Another feature could be the easy implementation of durational actions (like in

PDDL 2.1, section 2.3.2). For now we can do this for example by using a

predicate “busy” that disables each action. Then we can use an event that will

set this predicate to “false” when a timer has passed. This is a complicated

solution, especially for a domain expert so a special function to support

durational actions might help.

3.6.2 Concurrency

A few problems arise when testing a scenario. What if events can happen at the

same time but also disable one another? This can also happen with actions that

disable events and conversely. But we give priority to events above actions so

this should not necessarily be a problem. We describe these situations using LTS

notation (Magee & Kramer, 2006). Assume we have 3 events that can happen:

Now we define a situation where event_a blocks event_b.

We depict this state machine in Figure 19.

Figure 19 - State Machine Model of blocking events

The simulator has to make a choice in events, since this is not yet described in

our language. Ideally one would say that the best sequence of events would be

where we use the complete alphabet:

55

In the example this would be:

The problem is that the simulator does not by definition know what events block

one another. We can make an assumption by checking if the events use shared

resources. Another alternative is to explore each possible state and find out what

events block each other. We can achieve this using state space exploration

described in section 6.3.3.

3.6.3 Compared with MultiAgent Systems

Development of multiagent Systems (MAS) started late 1970 as the study of

Distributed Artificial Intelligence (DAI). They define DAI by the following

definition:

DAI is the study, construction, and application of multiagent systems, that is,

systems in which several interacting, intelligent agents pursue some set of goals

or perform some set of tasks.

Agents are autonomous, computational entities that perceive their environment

through sensors and act on their environment through effectors (Weiss, 1999).

Our current GSDL simulator does not meet these requirements. Therefore we

cannot say we have created a multiagent system. We created an environment

for agents to run in. It is possible, using the controllers in our simulator, to

create autonomous computational entities to control the objects.

According to Nwana, we can classify agents by the following three attributes:

cooperation, ability to learn and autonomy (Hyacinth, 1996).

Figure 20 - Nwana's Category of Software Agents

Our “agents”, or objects, are able to cooperate and can act autonomously. If we

develop a computational entity as controller of our system, the agent would be a

collaboration agent. We could take a more difficult step to add learning

56

possibilities. But this would require adding goals (we elaborate this idea in

section 6.3.3) or a way to find out if something is a good or bad result.

Weiss suggests an abstract architecture for intelligent agents. This includes

characterizing the agents’ environment using S = {s1, s2, … } being

environmental states. Then we assume the effectoric ability of an agent to be

represented by a set A = { a1, a2, … } of actions. Then, abstractly an agent can

be viewed as a function:

which maps the sequences of environment states to actions. Our system fits

within this architecture. The environment can only change using actions or

events, assuming for now we trigger events by other actions or the simulator

“agent” (for example, using the clock). This architecture to describe an agent is

an efficient but mathematical approach and is not suitable for domain experts.

Weiss also suggests adding a perception level for agents. This is something our

GSDL simulator does not yet implement but might be a compulsory update if we

were to program intelligent agents into the simulator. For now the perception

each agent is the entire environment, while in reality each agent has its own

perception. A quick implementation would be to allow agents only to precept

objects that share the same location for example. For more elaborate

functionality one should look at SDL described in section 2.2.2 which

concentrates more on supporting an MAS then our language.

Another notation used to make MAS visually understandable is using Agent UML

Notation (AML) (Huhns, 2004), stemmed from UML with its main purpose to

support software development with more visual tools.

Figure 21 - AML notation example (Cervenka, Trencansky, & Calisti, 2006)

57

AML is created to support software programmers so it is too hard for domain

experts to use. Possibly a simplified version would be a valuable added feature

to help de domain expert understand the situation better then plain texts.

AML can aid the programmer by making the problem more visual. An interesting

study would be if it is possible for our system to produce these kinds of models

from our scenario definition automatically.

3.6.4 Compared with Labeled Transition Systems

We have mentioned LTS, or Labeled Transition Systems (Magee & Kramer,

2006). Our GSDL simulator has a few similarities so we tried to use the existing

LTS knowledge to create a visual representation of our state machine. We came

up with the following code:

const Max = 5

range L = 0..Max

AGENT = AGENT[0],

AGENT[location:L] = (vehicle[location].enter -> DRIVER[location]

 | move_to[loc:L] -> AGENT[loc]

),

DRIVER[location:L] = (vehicle[location].exit -> AGENT[location]

 | drive_to[loc:L] -> DRIVER[loc]

).

VEHICLE = VEHICLE[1],

VEHICLE[location:L] = (vehicle[location].enter -> DRIVING[location]),

DRIVING[location:L] = (vehicle[location].exit -> VEHICLE[location]

 | drive_to[loc:L] -> DRIVING[loc]

).
We found that, although these are also parallel processes that can enable or

disable one another, it is not possible to create this code from a GSDL scenario.

The code above resulted in the following state space diagram:

Figure 22 – A generated LTS state space diagram

58

Technically our system could create a visual LTS version of any scenario, like the

one showed above. We just have to let the GSDL simulator perform each

possible step. But we found hierarchical state machines more useful for our

purposes. We discuss this in 0.

3.7 Conclusion Scenario Description Language
We used a simple scenario to show how we can use a scenario description

language that uses the Java-syntax. It allows describing objects, relations,

events and actions. We combined this with features of planning languages to

allow testing GSDL code using a GSDL simulator. Using these base building

blocks we claim that it is possible to describe any scenario in an efficient way.

The detail of description can be varied when required.

The option to test the scenario before its implementation allows description and

feedback of a scenario as required by R1. The restrictions on the scenario and

interpretation of its elements make the description less ambiguous then a plain

written description. We support interpreting variables by using them in the

simulation; leaving less room for misinterpretations (thus answering R2).

Separating domain and scenario allows the programmer to put some restrictions

to the domain expert. But R3 is not satisfied. We still allow the domain expert to

add changes to the domain description. The advantage for the programmer is he

can spot these changes easily and can act as a clear point of discussion for

future meetings.

Because we also allow commentary, it is possible to add hints to the

programmer or domain expert about implementation within the script if needed.

The main drawback of GSDL is that it is probably too difficult for the domain

expert to use. So we need to provide a simple interface for the domain expert.

The description language itself does not meet R4 except for the extensive use.

The solution to solve R4 is the Scenario Description Tool we describe in section

4.

The object oriented approach using inheritance creates a modular and reusable

description supporting R5. Once we create a solid base for a specific simulator,

adding new scenarios will be a significant more efficient job because we can

reuse large parts of the domain for multiple scenarios.

The practical environment described in section 3.2 shows back and forward

communication as required by R6. The GSDL simulator allows some

acknowledgments both ways. We aid communication by the possibility of the

programmer to add extra tests and show the domain expert if the results are

correct before implementing them in the simulator.

GSDL can be used as a base to solve knowledge gap communication problems.

We show how this can be achieved in the following sections.

59

4 Scenario Description Tool

4.1 Introduction

To help the domain experts to generate GSDL code we provide them with a user

interface to enter the values we need to create valid GSDL code. We developed

GSDL in such a way that it is usable in a simulator, but also in an editor tool as

we will show in this section.

Currently GSDL only adds limits to the syntax of the description. There are no

checks to see if the code is valid. (For example, there is no check if the used

variables are declared). Entering invalid code with correct syntax will result in a

Java compile error on using the output files in the GSDL simulator. For a

programmer these errors are easy to fix, but we want to restrain the domain

expert from adding invalid code. A description tool can make sure all the code

that is entered is valid by adding restrictions to the values that can be entered.

The interface can collect some more information for the domain expert to

support describing the scenario. Although the programmer should make the first

steps. The scenario description tool becomes more powerful when the domain

definition becomes bigger.

Because of the time constraint of this project we did not implement the scenario

description tool. In this section we show the features GSDL offers to ease

creating such a tool and what advantages this offers for the domain expert.

4.2 Adding information to the domain definition
We first have to define the domain definition. A tool can provide a few checks to

allow correct output.

As described in section 3.3 we need the following values:

Create a new type of Object:

 objectname (Name of the object type)

 parentname (Optional, name of the parent of this object type).

The objectname needs to be unique, the tool can check for this by not allowing

saving an existing name. The parentname needs to be an existing object; we

can check this as well.

The next screen will show all the default variables (predicates, functions and

messages) of the parent object. The user can choose to add or edit variables for

this new object.

60

Figure 23 - Object Type Creation GUI

Adding default variables to an Object:

 name (String)

 type (Predicate, Message, Function)

 value.

The name of the variable needs to be unique for each object, no duplicates may

exist. (See section 3.3). Each type of variable can only have one type of value. A

predicate needs a true or false value, a message a string and a function a

numeric value. The tool will be able to enforce the correct value type.

Figure 24 - Object Type Editing GUI

Create an event or action:

The user can choose from the list of objects what objects we need for this action

(prerequisites). For actions the user will need to select an initiator. It is possible

to add more than one object of the same type. Each object will receive a

variable name, by default this will be the name of the object type and a number

but the user can choose to change this.

Enabled function:

Then we can edit the enabling function. We can only use objects added above to

check variables from, we can offer to add new objects if the user tries to add

invalid variables. There is always the simulator variable available to get

simulator-wide variables like the time. The three types of object variables should

deliver a true/false condition. We can do this as followed:

Predicates: are true or false by themselves. They can be negated using ! (NOT)

operators.

Relations: are true if a relation exists.

Functions: can be numerically compared using =, <, >, <=, => operators.

Values can also be operated by +, -, /,* operators.

Messages: can be compared using “equals” or “contains”.

Attachments: will result true if an object is attached (to a specific other object).

61

To aid the domain expert in defining complex formula’s for predicates or

functions the following addition to the tool can be useful. We can describe the

formula in a readable sentence where the domain expert can add or change

specific values. For example:

If it is true the speed of vehicle v1 is smaller than the speed of vehicle v2 + 10
… then this action can be performed by person p1 …

We can click on the underlined texts to change them or add more values. This

way the domain expert can define more complex formulas. The example above

would translate into

if (v1.speed < v2.speed + 10) return true;

Figure 25 - Action Editing GUI

Perform function:

Then we can edit the perform function. First we need to select an object to add,

remove or change a variable.

The tool can aid the domain expert by adding extra (logical) security checks

here. For example, if the domain expert is to use the attach option, the tool can

check if the action is disabled when the object is already attached to another

object. In our examples we could even automatically check if the location of both

objects is the same before allowing an attachment between those two.

The combined interfaces above will allow the domain expert to create a domain

definition. The chances are that the domain expert will not use this often since

the programmer most likely already added most of the needed elements into the

domain definition.

The domain expert will probably use more time creating the specific scenario and

just using the domain definition. This would mean just adding instances of

objects to the environment.

62

4.3 Scenario Description
The scenario description itself is the same as a perform function for actions and

events. Important is the instantiation of new objects.

Create an Object:

The user enters the following compulsory information:

Name(String) – The name of the object

Type(Object) – The type of object, selected from a list of possible objects or the

possibility to add a new type of object that would send the user to the “Create

new type of Object” screen.

Controller (Controller) – The controller, defaults to AI-controlled.

Location (Location) – The location this object will start at the beginning of the

simulation.

If the type of object is changes so will all the default fields of the object that we

can fill in. We can add new values.

 Person a = new Person("a"); // mandatory field, the unique name of the object

 // optional fields can just be added when needed

 a.setController(AIController);

 a.setPredicate("hasphone", true);

Entering the location would be different for 2D or 3D environments. Here we

would present the user with a map or 3D world and let the user click to add the

new location to the map. Also see section 6.3.

4.4 Usability
Using a Graphical User Interface allows the domain expert to work with GSDL. A

tool like this offers some extra features to improve usability.

The tool can aid solving the scalability problems for scenarios. Currently if a

scenario becomes bigger and more objects are available, the code will become

obscure. It will become more difficult to preserve overview and much time can

be lost searching for the right objects.

The tool can help here by grouping objects: for example, to allow mass editing

large amounts of objects. The tool can also support searching for objects or

actions.

In our examples we assumed a location is identified by a name only. For most

simulators a location will exists within a 2D or 3D environment. Using a GUI like

63

Figure 6 - Valve Hammer Editor; adding objects to a scenario with these types of

locations becomes possible. Also one could define certain areas. We can meet

the conditions of actions if an object is present in a specific area. Or the initial

position of an object can be defined as “anywhere within this area”.

4.5 Conclusion Scenario Description Tool
A Graphical User Interface (GUI) to produce GSDL code is necessary to allow the

domain expert to work with GSDL. This tool will have to meet the following

requirements:

 create a new type of object

 adding default variables to object types

 create an event or action

 adding objects to the scenario

 adding events to the scenario

 check for validity of the entered values

 produce valid GSDL code.

The following optional requirements will ease creating scenarios:

 allow grouping and mass editing multiple objects

 allow searching for objects or actions

 allow 2D or 3D locations and areas.

We presented suggestions and ideas about the implementation.

64

65

5 Evaluation
This section evaluates our findings. We will take the problems we found from

section 1.2 and discuss how our solution contributed to solving those problems.

The next part will address some issues that still needs coping with or are

introduced by our solution.

5.1 Problem solving
A script that describes a scenario can aid the process of scenario generation. We

reflect on the problems and show how we deal with them using our script.

P0- It takes too much time and effort for a domain expert and

programmer to obtain a shared understanding about implementing a

scenario.

P1- Difference in jargon.

We tackle the differences in jargon because the script allows a close to

unambiguous description of the scenario because the domain expert tested

whether this description is able to produce the expected results. Although

variable names might still be confusing, we can derive the function of that

variable from the script. This will result in less communication problems between

both parties.

The scenario description tool for the domain expert will aid to speed up the

process because the domain expert will not need to understand Java or GSDL.

P2- Missing “obvious” information.

The script can provide feedback to the domain expert through the GSDL

simulator. In each state of the GSDL simulation the script can point out why a

specific event can or cannot take place. This should prevent the domain expert

from making these common mistakes, at least for the most obvious and desired

course of events. We could reduce this problem even more if we add state-space

exploration to the GSDL simulator (described in section 6.3.3). This would allow

the domain expert to define invalid or error-states which can be discovered by

the simulator.

P3- Undefined restrictions.

Our GSDL solution does not preserve strict control over restrictions of the

simulator. This is because we do not want to confine the domain expert too

much. The programmer can supply a domain definition that runs within the

simulators boundaries. This way we can steer the domain expert to use objects

within limits. By separating the domain and scenario we make it possible for the

programmer to spot differences in important areas quickly by comparing his own

working version of the domain with the new version.

P4- Practical point of view.

We cannot solve this entire problem. The GSDL simulator does allow a practical

approach due the possibility of a test run. For unknown values to the domain

66

expert the option is open to leave a remark for the programmer to solve this

problem.

P5- Allow forbidden events to happen.

Testing the scenario will prevent most forbidden events to happen; there might

be some left when the domain expert is not able to explore all the states of the

simulation. If we can define known pitfalls using the validity tests and state-

space exploration (described in section 6.3.3) we can even check for these

events automatically.

P6- Abundance of information.

We reduced the information needed to create a scenario as much as possible.

The GSDL description is a compact set of all the information needed for a

simulation. By reusing the domain definition and the choice to inherit objects we

decrease the total amount of information that we need to add new information

to a scenario. This will also avoid introducing new errors.

Using GSDL as proposed in our dissertation will speed up the development

process due several reasons. The first reason is there is less need for discussion

appointments. The domain expert will be able to tests and solve problems

himself before asking the programmer. There are fewer contact moments and

both parties can work more efficiently without each other.

Second reason is there is less time needed to program the simulator. Evaluation

of the simulator is now mostly done in the GSDL simulator.

Third reason is the information delivered by the domain expert has a better

quality; it is less error prone and it describes complete scenarios. When the

programmer starts programming the simulator, the information available is more

accurate than without GSDL.

5.2 Issues
We discovered some issues with our solution that we would like to address here

and add suggestions on how to engage these issues.

Untested.

Our solution has no test results. We demonstrated the effect for small examples.

We claim that our solution aids to solve our problem, backing this with theories,

but whether this is true and to what degree it solves our problem is untested.

We have some suggestions for tests in section 0. It is important to test if adding

an extra tool saves more time that it costs to learn handling it.

Scalability.

We showed how we can simulate a simple scenario. For larger scenarios our

GSDL might become obscure. In section 4.4 we suggest some possible solutions

to this problem, but the general concern stays that large and complicated

scenarios might become too difficult for the domain expert to understand.

67

Technically scalability might become a problem as well. From our definition we

produce all possible actions when we load the GSDL simulator. For larger

numbers of objects this will exponentially grow in numbers and runtime

calculations. These are technical issues that can are solvable to a certain point.

Concurrency.

We used a discrete time simulation for our example. We also assumed that only

one event or action may occur at any one timeslot. This is useful for simple

scenario testing, but real life is continues and allows parallel processes to work

concurrently. The goal of simulations within the emergency response domain is

to train for real life.

It is possible to use GSDL for concurrent simulations, but we need to adjust it.

We discuss some suggestions in section 3.6; for example, by adding durational

actions and locking or synchronization mechanisms.

Completeness.

We claim that using GSDL it is possible to simulate any scenario. It is difficult to

test whether that is true. We created an extensive language that supports a

broad scale of choices for our scenario. Areas where our definition lacks support

are time and space. For example, movement: we can think of a workaround, just

like durational actions, by adding a “moving” predicate and increment the

location by the value of its speed using events. But again this could prove to be

too complicated for the domain expert. We can extend the GSDL language to

support these kinds of essential properties of scenarios. We make some

suggestions in section 6.3.2.

68

69

6 Conclusion and Future research
This section describes the conclusions of our research in section 6.1. Section 6.2

will present the answers to the research questions from section 1.4). We present

ideas and improvements for future research in section 6.3.

6.1 Conclusion
We discovered that with scenario description for disaster scenarios too much

time is lost to the communication process between the domain expert and the

programmer. There is need for intense contact for both parties to understand

each other. Misunderstandings result in faulty implementations and time-

consuming reprogramming. This is a generic problem that occurs also in other

domains.

The root to our solution to this problem is GSDL (Generic Scenario Description

Language): a simple scripting language supported by a GSDL simulator and

script writing tool. We showed the parsing process of a simple scenario and how

this can be used for feedback in the GSDL simulator.

The language, based on object oriented and planning languages, is a compact

form of information needed by a simulator to perform a simulation. The

programmer can start by defining the domain definition. This is a piece of GSDL

code that defines what objects might persist in the simulator and what actions

these objects can perform. The programmer sends this to the domain expert,

who, using the visual scenario description tool to load the domain definition, can

start adding objects or instantiating them in the scenario. This scenario

description tool can generate the required GSDL code for the domain expert. The

code is automatically parsed to executable Java code for the included GSDL

simulator. The GSDL simulator will show the domain expert what objects are

present and what actions can be performed in the current state.

This feedback is decreases the communication process between the programmer

and the domain expert. Figure 26 below shows the gain of time and number of

meetings in a sequence diagram.

70

Figure 26 – Sequence Diagram GSDL use

Needing less time and fewer contact it is possible to make bigger development

steps which results in an improvement of our previous situation.

It is to be tested if this theory works as we presume it will. We describe more on

this in section 0. There are a few pitfalls that might lessen the success of GSDL

we discussed these in section 5.2. It is important to find out if a domain expert

is able to work efficiently with GSDL; this can be tested if the GUI (described in

section 4) is functional.

The main advantages of using GSDL are:

 there is less need for appointments with the domain expert and

programmer

 there is less time needed to program the simulator

 the quality of the information delivered by the domain expert is better.

71

6.2 Answers to the research questions
This section presents the answers found to our research questions:

Q1- What problems define the knowledge gap problem with scenario

generation for a computer simulation?

The following problems define the knowledge gap problem; we explain them in

section 1.2 and evaluate them in section 5.1.

P0- It takes too much time and effort for a domain expert and

programmer to get a shared understanding about implementing a

scenario.

P1- Difference in jargon.

P2- Missing “obvious” information.

P3- Undefined restrictions.

P4- Practical point of view.

P5- Allow forbidden events to happen.

P6- Abundance of information.

Q2- What existing tools could offer a solution to any of these problems?

We researched several existing tools in section 2. None of them could offer a

decisive solution. We did found the following features that we used for our

solution:

 allow the programmer to alter the domain expert’s software program to

enforce adding valid entries (2.1.3), supports reducing P3 problems.

 allow the domain expert to add textual information to clarify things if

needed (2.1.4), helps solving P2 and P5 problems.

 use a well-known object oriented script language to define the scenario

(2.2.2); this aids solutions for P6 problems.

 allow description of behavior (2.2.3), this helps us to solve P2, P3 and P5

problems.

 separate the domain definition from the scenarios (2.3.2), this helps

reducing P2 and P6 problems.

 add actions with preconditions like planning languages to be able to define

an extensive scenario without describing each state individually (2.3.2),

this helps to use the GSDL simulator (which supports solutions to P1, P2

and P5).This can also help solving P5 with state space exploration

(section 6.3.3).

 allow the programmer to define the boundary of the simulator (2.3.3)

which helps solving P3.

The common problem with comparable techniques is that they are too

complicated for nontechnical users. More information how these tools relate to

our problems is described in section 2.

72

Q3- Could (a combination of) these tools offer a solution to the general

knowledge gap problem? How do these tools cope with the individual

problems?

Yes, we combined the methods to create GSDL which tackles most of the

individual problems and logically also the general knowledge gap problem. We

described the conclusion about coping with the individual problems in section 5.

We developed the GSDL toolset using the following requirements:

R1- describe the entire scenario and support feedback;

R2- provide an unambiguous description of the desired scenario;

R3- allow a programmer to extend or restrict the template of a scenario;

R4- allow intuitive and extensive usability for the domain expert;

R5- be modular and reuse previously or predefined information;

R6- allow confirmation to both sides to confirm a similar understanding.

Our solution exists of 3 tools, the GSDL language (described in section 3.4), that

is build conform R1, R2, R3 and R5; acts as a base for the communication. The

GSDL simulator (described in section 3.5) uses this language to provide

feedback to both the domain expert and the programmer to make sure there is a

similar understanding about the scenario (supporting R1, R2 and R6). Finally

we suggest the creation of an intuitive scenario description tool for the domain

expert to support R4 (described in section 4).

Figure 27 - GSDL Tools overview

73

The following table relates which requirements of our GSDL toolset aid solving

which problems.

 P1 P2 P3 P4 P5 P6

R1 X X

R2 X X

R3 X

R4 X X

R5 X

R6 X X X
Table 5 – Requirement versus Problem Table

The main advantages of using GSDL are:

 there is less need for appointments with the domain expert and

programmer

 there is less time needed to program the simulator

 the quality of the information delivered by the domain expert is better.

Q4- How can we test effectiveness of the tools?

Unfortunately we did not have time to perform tests. We will discuss how we

could test our solution in our future research section 0.

6.3 Future research
This section elaborates a bit more on how to approach the steps we were not

able to take for this dissertation. How to test if our solution is successful is

described in section 0. Possible additions to the GSDL language are suggested in

section 6.3.2. Extra features to our GSDL Simulator can be added using state

space exploration which is described in section 6.3.3. How to use GSDL with

other tools is described in section 6.3.4.

A feature we did implement in our demonstrated version is visualization using

HSMs; we describe this in section 6.3.5.

74

6.3.1 Usability Tests

To test GSDL for emergency simulators we need programmers and domain

experts. We can use GSDL for Generic Scenario Description. It is possible to use

experts from other domains. The emergency response domain is fairly small.

General testing

We claim that using GSDL will speed up the scenario creation process. To test

this, multiple test groups should perform the same task of creating and

implementing the same scenarios. Some groups will use GSDL and others will

just communicate intensively. Elements that need testing are:

 time used communicating

 time used understanding GSDL

 time used developing scenario (domain expert)

 time used implementing scenario (programmer)

 completeness of the implementation

 number of misunderstandings

 experience of the users.

It could be that for simple scenarios the saving of time is the minimum. The

assumption is that with more complicated or a larger number of scenarios the

saving of time will play a significant role.

We cannot test the added features of state exploration and transition diagrams

because these are all added values for the domain expert.

Testing the language

It is important to test if the language is complete enough to describe each

scenario and if it is compatible with the large set of simulators. We can ask the

programmers if it is easy to understand the script and if it is possible to add a

scenario described in this script to their simulator.

We can ask the domain experts using the GUI if they can use the object/action-

based structure to create the scenario they have in mind.

Testing the GUI

The GUI needs to meet the requirements of general usability tests and

international standards (ISO 9241). Testing of the GUI can be done with both

domain experts and programmers, but the tool is mainly created to be used by

domain experts.

It is advisable to do a requirement research before creating the GUI. The domain

experts should provide input before testing. This act of requirements engineering

can be used as a test for the GSDL language as well, this will point out if GSDL

can be used efficiently.

75

6.3.2 GSDL v2

As discussed in our evaluation section (5.2) we can extend the current version of

GSDL to support some more essential features for real life scenario description.

These include:

 durational actions

 continues time-space

 location operators

 dimensional operators

 movement operators.

These features will allow using GSDL for currently existing simulators like ADMS

or other simulators discussed in our previous research (Jeeninga, 2010). We can

add most of these to the grammar file to support these actions in the GSDL

script. For example, object sizes:

dimensionDeclaration ::=

'dimension' 'x' '=' NUMBER ';'

'dimension' 'y' '=' NUMBER ';'

'dimension' 'z' '=' NUMBER ';';
Snippet 9 - EBNF suggestion for dimensions in GDSL v2

Figure 28 - Railroad notation for dimensions in GSDL v2

Looking back at section 2.1.3, using dimensions we could use GSDL to produce

an FGD file for the Valve Hammer Editor™, allowing scenario generation in a 3D

environment. See also section 6.3.4 for more ideas on this matter.

We could also optimize the GSDL simulator we created to support faster

calculations for scenarios. We could only update the actions that changed during

the last adaptation and cache the rest. Options to save states and scenarios

could help speed up the GSDL simulator use. This would solve some scalability

issues.

We also discovered we can describe the relations between objects as predicates.

Due time restriction this was not implemented in the demonstrated version of

GSDL, but we can simplify the language if we allow adding names of objects to

the name of a predicate. For example:

76

This would allow entering the following code:

predicate person "inside" vehicle = true;

This would translate to the following Java code:

person.setPredicate("inside" + vehicle.getName(), true);

And we can test it with:

person.getPredicate("inside" + vehicle.getName());

This would simplify the GSDL language because there is even less syntax used.

The GUI could keep the relations interface only the translation to GSDL is

different. One should keep in mind that this could restrict some possibilities as

well; if you want to check if a person has a relation “inside” with any object for

example. This might be solved using messages and its “contains” function but

this can produce some extra problems that needs solving.

6.3.3 State-space exploration

We can see the current discrete time simulator as a finite state system. The

simulator can calculate a starting state from the given scenario and create new

states from there. The current implementation has a simple hashing algorithm

for each state. It is possible to detect whether a state is already visited, this way

it is possible to explore each possible state that we can visit beginning at our

starting state.

Now we can define a goal. For example, a certain value to be true, an action to

be enabled, or a combination of these goals to be reached. Using our explored

state-space we can select the path to the closest state where these predicates

are true, providing an optimal solution for our goal.

Oppositely it is possible for the domain expert to add restrictions to the scenario.

For example, when it is not possible in the reality for two values to be true at the

same time, we can warn the domain expert if there are states reachable where

this is the case. The scenario needs extending to avoid these error-states.

Using continues time-space will hinder state space exploration because we are

not dealing with a finite state system anymore. It might be possible to be able to

use the advantages of a finite state model. We would need to remove some

elements from distinguishing states (time for example) and cut the continued

time in discrete pieces (using the enabled functions that deal with time)

6.3.4 Compatibility

To explain the use for our language we can use an existing 3D-environment

editing tool (for example, the Valve Hammer Editor). We use the domain

77

definition from our description language to produce an FGD-file for the editor.

This process is a one-on-one change of the domain definition.

There are some minor features that we can adjust to make it work more flawless

with the editor. For example, we can tell our conversion tool how we defined the

size of the objects. If this is not defined by the domain definition we will need to

use default values or we can ask for user input on this matter.

Here is how we convert our fire truck from the script to FGD format:

Base

public BaseObject(String name) {

 this.name = name;

}

@BaseClass = Global

[

 globalname(string) : "Global Entity Name"

]

Domain

public class Vehicle extends BaseObject {

 public Vehicle(String name) {

 super(name);

 }

}

@BaseClass base(Global) = Vehicle

public class FireTruck extends Vehicle {

 public FireTruck(String name) {

 super(name);

 }

}

@PointClass base(Vehicle) = firetruck : "Firetruck"

[]

For example, if we add variables like water capacity it would change like this:

public class FireTruck extends Vehicle {

 public FireTruck(String name, Float capacity) {

 super(name);

 this.setFunction("capacity", capacity);

 }

}

@PointClass base(Vehicle) = firetruck : "Firetruck"

[

 capacity(string) : "capacity" : ""

]

Figure 29 - the use of our description language in VHE

Using the editor we can place objects in the scenario and set their initial values

like the location, but also the predicates and functions that are available because

of the domain definition. We can compile this information into a map-file that we

can convert to a scenario written in our own script again.

78

As discussed in section 5.2, one point needs to be redesigned for compatibility

with multiple other simulators: the simulator specific information like time,

location and object size. For example, to support checks if objects are present in

a certain three-dimensional area.

Compatibility with existing description languages is important to look at. SDL

(section 2.2.2) has several common features with GSDL. An interesting research

would be if we can use our simple language to automatically gather complicated

scenarios in SDL. If this is true then we could directly use GSDL to aid scenario

programming for users of simulators that use SDL. We can do the same for

MSDL; we can describe the predefined list in a domain description and use this

with GSDL.

6.3.5 Visualization using state transition diagrams

A carried out feature in our demonstration version is the Hierarchical State

Machine (HSM) visualization. This can aid to supply overview in difficult and

large-scale simulations. We can model the internal state of any object using the

HSM tool within the GSDL simulator to help see internal problems. Internal

states are common practice in simulators, as you can see by the Unreal Script™

in section 2.1.3.

For example, if a truck can contain two passengers, we can model its internal

state as follows:

Figure 30 - truck HSM model within our GSDL simulator

While running the scenario, the state graph will change if we invoke an action

EnterVehicle using the truck as parameter. If we invoke EnterVehicle twice in a

row without an ExitVehicle action the truck is full and will produce an error if the

scenario allows another EnterVehicle action.

We manually modeled this example HSM state. It is possible to derive states

from the simulation, but the graphical placement of the states might be difficult.

It would result in a diagram like Figure 22 – A generated LTS state space

diagram (page 57). Also added information like the state-names needs to be

produced and might seem obscure.

It can be good practice for the simulation programmer to use HSM models for

complicated objects. We can use this to validate the scenario.

We discussed AML models earlier in section 3.6.3. It would be interesting to see

if we can use more models like this for visualization of our GSDL simulator.

79

7 References
Cervenka, R., Trencansky, I., & Calisti, M. (2006). Modeling Social Aspects of

Multi-Agent Systems: The AML Approach. Bratislava, Slovakia: Springer.

Dahl, O.-J., & Nygaard, K. (1965). Basic concepts of SIMULA: an ALGOL based

simulation language.

Hendrix, M., & Brederode, F. (2009, 06 10). E-semble interview. Paris.

Huhns, M. N. (2004). Agent UML Notation for Multiagent System Design. IEEE

Computer Society.

Hyacinth, S. N. (1996). Software Agents: An overview. Cambridge University

Press.

Ishida, T. (2005, November). Q: A Scenario Description Language for Interactive

Agents. Computer .

Jeeninga, J. (2010). Investigation of Scenario Simulation. Enschede.

Kobossen, B. (2010, February 15). NIFV ADMS Interview. Amesfoort.

Kramer, E., Mensink, M., & Osinga, A. (2009, May 26). Berhloo. TriMM interview.

Magee, J., & Kramer, J. (2006). Concurrency State Models and Java Programs.

Wiley.

Nau, D. e. (2003). SHOP2: An HTN Planning System. Journal of Artificial

Intelligence Research 20 , pp. 379-404.

Nilsson, R. F. (1971). STRIPS: a new approach to the application of theorem

proving to problem solving. Artificial Intelligence , pp. 2:189-208.

Nusman, D. (2009, March 23). RE-lion ANWB driving simulator. RE-lion

interview.

Olaya, A. G. (2007, September). Seminario PLG: Overview of PDDL.

Parr, T. (2007). The Definitive ANTLR Reference: Building Domain-Specific

Languages.

Porskamp, P., & Groot, T. d. (2009, 06 24). Txchange interview. Enschede.

Quartel, S. (2009). Projectplan voor ISETICfP HOP221.

Shortliffe, E. (2006). Biomedical Informatics Computer Applications in Health

Care and Biomedicine.

SISO. (sd). Simulation Interoperability Standarads Organization. Opgehaald van

http://www.sisostds.org/

80

Sweeney, T. (2010). UnrealScript Language Reference . Epic Games.

Weiss, G. (1999). Multiagent Systems. Cambridge, Massachusetts: The MIT

Press.

Widding, E. (2009, 11 17). Fire department interview.

Willemsen. (2000). Behaviour amd Scenario Modeling for Real-time Virtual

Environments. Iowa.

World Wide Web Consortium. (sd). W3C XML Schema. Opgeroepen op 2010, van

W3C: http://www.w3.org/XML/Schema

81

8 Appendices

8.1 EBNF Description of the Scenario Description Language
actionDeclaration ::= 'action' IDENTIFIER '{' initiatorDeclaration utilizationDeclaration

(enabledFunction performFunction | performFunction enabledFunction) '}' ;

eventDeclaration ::= 'event' IDENTIFIER '{' utilizationDeclaration

(enabledFunction performFunction | performFunction enabledFunction) '}' ;

initiatorDeclaration ::= 'initiator' IDENTIFIER VARIABLE ';' ;

utilizationDeclaration ::= 'utilize' IDENTIFIER VARIABLE ';' ;

enabledFunction ::= 'enabled' '{' ('true' ';' |

(relationExpression | messageExpression | attachedExpression | otherExpression | locationExpression)+) '}' ;

performFunction ::= 'perform' '{' (functionAssignment | predicateAssignment | messageAssignment | attachAssignment |

locationAssignment | objectCreation | relationAssignment)* '}' ;

relationExpression ::= NOT VARIABLE 'hasrelation' STRING ('with'? VARIABLE)? ';' ;

messageExpression ::= NOT VARIABLE STRING ('equals' | 'contains') (VARIABLE STRING | STRING) ';' ;

otherExpression ::= expression RELATIONALOPERATOR expression ';' ;

attachedExpression ::= NOT VARIABLE 'is' 'attached' ';' ;

locationExpression ::= NOT VARIABLE 'location' 'equals' VARIABLE 'location'? ';' ;

predicateAssignment ::= 'predicate' VARIABLE STRING '=' ('true' | 'false' | VARIABLE STRING) ';' ;

relationAssignment ::= 'relation' ('make' | 'remove') VARIABLE STRING VARIABLE ';' ;

functionAssignment ::= 'function' VARIABLE STRING '=' expression ';' ;

messageAssignment ::= 'message' VARIABLE STRING '=' (VARIABLE STRING | STRING) ';' ;

attachAssignment ::= ('attach' VARIABLE 'to'? VARIABLE ';' | 'detach' VARIABLE ';') ;

locationAssignment ::= 'location' VARIABLE '=' VARIABLE ';' ;

objectCreation ::= IDENTIFIER VARIABLE ('=' STRING)? ';' ;

eventCreation ::= 'create'? 'event' IDENTIFIER '(' VARIABLE (',' VARIABLE)* ')' ';' ;

expression ::= (partialExpression | (VARIABLE STRING | NUMBER | 'time') OPERATOR expression |

(VARIABLE STRING | NUMBER | 'true' | 'false' | 'time')) ;

partialExpression ::= '(' expression ')' ;

predicateDeclaration ::= 'predicate' STRING '=' ('true' | 'false') ';' ;

functionDeclaration ::= 'function' STRING '=' NUMBER ';' ;

messageDeclaration ::= 'message' STRING '=' STRING ';' ;

IDENTIFIER ::= UPPERCASE_CHARACTER (LOWERCASE_CHARACTER | UPPERCASE_CHARACTER | DIGIT | '_')* ;

VARIABLE ::= LOWERCASE_CHARACTER (LOWERCASE_CHARACTER | UPPERCASE_CHARACTER | DIGIT | '_')* ;

UPPERCASE_CHARACTER ::= 'A..Z' ;

LOWERCASE_CHARACTER ::= 'a..z' ;

RELATIONALOPERATOR ::= ('==' | '!=' | '<=' | '>=' | '<' | '>') ;

OPERATOR ::= ('+' | '-' | '/' | '*' | '%' | '^') ;

NOT ::= '!' ;

STRING ::= '"' ~('\\' | '"' | '\r' | '\n') '"' ;

NUMBER ::= ('-'? '1..9' DIGIT* ('.' DIGIT+)? | '0') ;

DIGIT ::= '0..9' ;

WS ::= (' ' | '\t' | '\n' | '\r' | '\f')+ ;

COMMENT ::= '//' .* ('\n' | '\r') ;

http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form

82

8.2 GSDL Railroad view

scenarioDeclaration

objectDeclaration

actionDeclaration

eventDeclaration

initiatorDeclaration

utilizationDeclaration

enabledFunction

performFunction

relationExpression

messageExpression

83

otherExpression

attachedExpression

locationExpression

predicateAssignment

relationAssignment

functionAssignment

messageAssignment

attachAssignment

locationAssignment

objectCreation

eventCreation

expression

partialExpression

predicateDeclaration

functionDeclaration

messageDeclaration

IDENTIFIER

84

VARIABLE

UPPERCASE_CHARACTER

LOWERCASE_CHARACTER

RELATIONALOPERATOR

OPERATOR

NOT

STRING

NUMBER

DIGIT

WS

COMMENT

85

8.3 Template API
GSDL Template API

This API describes what variables will be passed to which files in the

StringTemplate of the GSDL parser so one can create a custom GSDL convertor.

For more information on the GSDL language please see the GSDL EBNF notation.

Usage: change the files from the GSDL templates directory to support your

custom output.

Required files in the template directory:

object.st Defines the output of an object declaration
action.st Defines the output of an action declaration
event.st Defines the output of an event declaration
expression.st Defines the output of an expression
predicatedeclaration.st Defines the output for a predicate declaration
functiondeclaration.st Defines the output for a function declaration
messagedeclaration.st Defines the output for a message declaration

The input you receive from the parser for each of the template files is described

below.

All values are passed without quote-signs. If you want to escape or strip quotes

you added for example, in the expression.st template file, use the

format="escapeQuotes" or format="stripQuotes" functions of the supplied

BasicFormatRenderer.

Object.st

Variable Type Description
$objectname$ String The name for this object.
$parentname$ String Parent name for this object, this value is unset if

there is no parent object.
$predicates$ List A list of predicates using the

predicatedeclaration template.
$functions$ List A list of functions using the functiondeclaration

template.
$messages$ List A list of messages using the messagedeclaration

template.

Action.st

Variable Type Description
$actionname$ String The name for this action.
$initiator$ String The variable name followed by a space

character and then followed by the type of
object that is the initiator object for this

action.
$utilize$ List A list of variable names and their types of

86

the other objects that are needed for this

action.
$variables$ List A list of all variables, only the variable

names in order of appearance.
$enabled$ List(Expression) A list of expressions that enable this action.

See the expression template.
$perform$ List(Assignment) A list of assignments that should be

performed when this action is fired. See
assignment below.

Assignment

An assignment can be of various types. Therefore each assignment has one

unique variable that is set to “true” to be able to check the type of assignment.

Variable Type Description
$predicate$ String This variable is set to “true” if this is a predicate

assignment
$message$ String This variable is set to “true” if this is a message

assignment
$function$ String This variable is set to “true” if this is a function

assignment
$relation$ String This variable is set to “true” if this is a relation

assignment

Predicate Assignment

Variable Type Description
$predicate$ String This variable is set to “true” if this is a predicate

assignment
$var1$ String The variable name of the object to set this

predicate.
$predicatename$ String The name of the predicate
$bool$ String This variable is only set when the predicate is set

by a direct boolean. This variable is “true” or

“false” depending on the setting.
$var2$ String The variable name of the object where we derive

our predicate from. This is only set in combination
with $predicatename2$ if $bool$ is not set.

$predicatename2$ String The name of the predicate to derive the value
from.

87

Message Assignment

Variable Type Description
$message$ String This variable is set to “true” if this is a message

assignment
$var1$ String The variable name of the object to set this

message.
$message1$ String The name of the message
$var2$ String This variable is only set when the message

depends on another variable, otherwise the

$message2$ should be the message.
$message2$ String The variable name of the object where we derive

our message from. Or if $var2$ is not set, this is
our message.

Function Assignment

Variable Type Description
$function$ String This variable is set to “true” if this is a function

assignment
$var1$ String The variable name of the object to set this

function.
$function1$ String The name of the function
$expression$ String The expression that defines the value of this

function. See expression for more info.

Relation Assignment

Variable Type Description
$relation$ String This variable is set to “true” if this is a relation

assignment
$var1$ String The variable name of the object to set this

relation.
$relation1$ String The name of the relation
$make$ String This variable is set to “true” if a relation is to be

made, this variable is not set if a relation is to be

removed.
$var2$ String The variable name of the object to make the

relation with.

88

Event.st

Variable Type Description
$eventname$ String The name of this event.
$variables$ List A list of all the variable names used in

this event.
$utilize$ List A list of all variables used, followed by a

space followed by the objecttype of the
variable.

$enabled$ List(Expression) A list of expressions that enable this
action. See the expression template.

$perform$ List(Assignment) A list of assignments that should be
performed when this event is fired. See

assignment from Action.st above.

Expression.st

There are 3 types of expressions. Relation expressions which have the $relation$

variable set, message expressions which have the $message$ variable set and

other expressions.

Relation Expression

Variable Type Description
$var1$ String The variable to check this relation on.
$relation$ String The name of the relation.
$with$ String If this variable is set we want to check

whether the object defined in $var1$ has
a relation with the object defined in
$with$, else we want to know if the

object has any relation called $relation$.
not String This value is set if we want to negate the

result.

Message Expression

Variable Type Description
$var1$ String The variable to get this message from.
$message1$ String The name of the message.
$var2$ String If we want to compare the message to

another object his message we define

this in $var2$
$message2$ String This is the name of the message in case

$var2$ is set, otherwise just use the
value of this variable.

$contains$ String This value is set if we want to check if
$message1$ contains $message2$,
check for equal values otherwise.

not String This value is set if we want to negate the
result.

89

Other Expression

The other expressions are a little complicated. A lot of values can be set and in

that case others are not. The railroad-view above helps visualize which values

are used. For example, if $var1$ and $function1$ are set, $expression$ is also

set.

The difference from var1 and var2 is that for var1 it is known that this is a

function-expression since there is an operator involved. $var2$ could be a

message, boolean or a function.

Variable Type Description
$partial$ String A partial expression, recursively using this

template and preceded by the (-sign and
ended with a)-sign.

$var1$ String A variable name to get a function from, this
value is unset if this expression does not use a

function value.
$function1$ String The function name to get the value from using

$var1$. This value is unset if $var1$ is unset.
$number$ String This is a plain numeric value to compare with

the expression after the operator, this value is
set if $var1$ and $partial$ is unset.

$operator$ String The operator for this expression, can be any of
+-/*%^

$expression$ String The expression after the operator, recursively
using this template.

$var2$ String The variable to get the value from, this can be
a boolean or function variable.

$value2$ String The name of the value to receive from $var2$,
this value is not set if $var2$ is not set.

$bool$ Integer A number representing “true” or “false” for
boolean comparison. This value becomes “1” or
“0” respectively.

$time$ String This will stand for the current time, a numeric
value that can be compared to functions.

90

Example:

$if(partial)$$partial$

$elseif(var1)$$var1$.getFunction("$function1$")

$elseif(var2)$$var2$.getValue("$value2$")

$elseif(number)$$number$f

$elseif(bool)$$bool$f

$endif$

$if(operator)$ $operator$ $expression$

$endif$

predicatedeclaration.st

Variable Type Description
$predicate$ String Name of the predicate to declare
$value$ String The value to set for this predicate (true

or false)

functiondeclaration.st

Variable Type Description
$function$ String Name of the function to declare
$value$ String The value to set for this predicate

(numeric value)

messagedeclaration.st

Variable Type Description
$message$ String Name of the message to declare
$value$ String The value to set for this message

(String)

91

8.4 Lexer and Parser ANTRL Grammar
grammar GSDL;

options {

 language = Java;

}

/* PARSER RULES */

@header {

 import org.antlr.stringtemplate.*;

 import org.antlr.stringtemplate.language.*;

 import java.util.HashMap;

}

@members {

StringTemplateGroup templates =

 new StringTemplateGroup("GSDLGroup", System.getProperty("user.dir") +"/src/templates");

}

parseAll returns [HashMap result]

@init {

 result = new HashMap<String, String>();

}

: (

 object=objectDeclaration { result.put("domain" + System.getProperty("file.separator") + "objects" +

System.getProperty("file.separator") + object.getAttribute("objectname"), object.toString());}

 |action=actionDeclaration { result.put("domain" + System.getProperty("file.separator") + "actions" +

System.getProperty("file.separator") + action.getAttribute("actionname"), action.toString());}

 |event=eventDeclaration { result.put("domain" + System.getProperty("file.separator") + "events" +

System.getProperty("file.separator") + event.getAttribute("eventname"), event.toString());}

 |scenario=scenarioDeclaration { result.put("scenario" + System.getProperty("file.separator") +

scenario.getAttribute("scenarioname"), scenario.toString());}

)*;

scenarioDeclaration returns [StringTemplate scenarioTemplate]

@init {

 scenarioTemplate = templates.getInstanceOf("scenario");

 ArrayList<HashMap> assignments = new ArrayList<HashMap>();

}

: 'scenario' name=IDENTIFIER '{'

 (

 (a=functionAssignment|a=predicateAssignment|a=messageAssignment|a=attachAssignment

 |a=locationAssignment|a=objectCreation|a=relationAssignment|a=eventCreation){ assignments.add(a); }

)*

'}'

{

 scenarioTemplate.setAttribute("scenarioname", $name.text);

 scenarioTemplate.setAttribute("assignments", assignments);

};

objectDeclaration returns [StringTemplate objectTemplate]

@init {

 //Use the object.st template to create the code for this object

 objectTemplate = templates.getInstanceOf("object");

}

: 'object' objectname=IDENTIFIER ('extends' parentname=IDENTIFIER)?

(('{'

 ((p=predicateDeclaration|f=functionDeclaration|m=messageDeclaration)

 {

 if (p != null) objectTemplate.setAttribute("predicates", p);

 if (f != null) objectTemplate.setAttribute("functions", f);

 if (m != null) objectTemplate.setAttribute("messages", m);

 p = null;

 f = null;

 m = null;

 })*

'}')|';')

{

 objectTemplate.setAttribute("objectname", $objectname.text);

 objectTemplate.setAttribute("parentname", $parentname.text);

};

actionDeclaration returns [StringTemplate actionTemplate]

@init {

 //Use the action.st template to create the code for this object

 actionTemplate = templates.getInstanceOf("action");

 //Use our custom BasicFormatRenderer to allow the escapeQuote format.

 actionTemplate.registerRenderer(String.class, new BasicFormatRenderer());

}

: 'action' actionname=IDENTIFIER '{'

 i=initiatorDeclaration { actionTemplate.setAttribute("variables", i.get(1));

actionTemplate.setAttribute("initiator", i.get(0) + " " + i.get(1)); }

 (u=utilizationDeclaration { actionTemplate.setAttribute("variables", u.get(1));

actionTemplate.setAttribute("utilize", u.get(0) + " " + u.get(1)); })*

 (e=enabledFunction p=performFunction

92

 |p=performFunction e=enabledFunction) { actionTemplate.setAttribute("enabled", e);

actionTemplate.setAttribute("perform", p); }

 '}'

{

actionTemplate.setAttribute("actionname", $actionname.text);

};

eventDeclaration returns [StringTemplate eventTemplate]

@init {

 //Use the event.st template to create the code for this object

 eventTemplate = templates.getInstanceOf("event");

 //Use our custom BasicFormatRenderer to allow the escapeQuote format.

 eventTemplate.registerRenderer(String.class, new BasicFormatRenderer());

}

: 'event' eventname=IDENTIFIER '{'

 (u=utilizationDeclaration { eventTemplate.setAttribute("variables", u.get(1));

eventTemplate.setAttribute("utilize", u.get(0) + " " + u.get(1)); })*

 (e=enabledFunction p=performFunction

 |p=performFunction e=enabledFunction) { eventTemplate.setAttribute("enabled", e);

eventTemplate.setAttribute("perform", p); }

 '}'

{

eventTemplate.setAttribute("eventname", $eventname.text);

};

initiatorDeclaration returns [List<String> init]

// return a list of the two values we need. first one is the identifier and the second the variable

: 'initiator' i=IDENTIFIER v=VARIABLE { init = new ArrayList<String>(); init.add($i.text);

init.add($v.text); }';';

utilizationDeclaration returns [List<String> util]

: 'utilize' u=IDENTIFIER v=VARIABLE { util = new ArrayList<String>(); util.add($u.text); util.add($v.text);

}';';

enabledFunction returns [List expressions]

@init {

 expressions = new ArrayList<HashMap>();

}

: 'enabled' '{'

 ('true' ';'{ HashMap<String,String> h = new HashMap<String,String>(); h.put("expression", "true");

expressions.add(h); }

 |(r=relationExpression { expressions.add(r); }

 | m=messageExpression { expressions.add(m); }

 | a=attachedExpression { expressions.add(a);}

 | o=otherExpression { expressions.add(o); }

 | l=locationExpression { expressions.add(l);}

)+)

 '}';

performFunction returns [List assignments]

@init {

 assignments = new ArrayList<HashMap>();

}

: 'perform' '{'

 (

 (a=functionAssignment|a=predicateAssignment|a=messageAssignment|a=attachAssignment

 |a=locationAssignment|a=objectCreation|a=relationAssignment){ assignments.add(a); }

)*

'}';

relationExpression returns [HashMap<String, String> relation]

@init {

 relation = new HashMap<String, String>();

}

: n=NOT? v=VARIABLE 'hasrelation' r=STRING ('with'? v2=VARIABLE)? ';'

{

 relation.put("relation", $r.text);

 relation.put("var1", $v.text);

 if ($v2 != null) {

 relation.put("with", $v2.text);

 }

 if ($n != null) {

 relation.put("not", "!");

 }

};

messageExpression returns [HashMap<String, String> message]

@init {

 message = new HashMap<String, String>();

}

: n=NOT? v1=VARIABLE s1=STRING op=('equals'|'contains') (v2=VARIABLE s2=STRING|s2=STRING) ';'

{

 message.put("message", "true");

 message.put("var1", $v1.text);

 message.put("message1", $s1.text);

 message.put("message2", $s2.text);

 if(op.getText().equals("contains")) {

 message.put("contains", "true");

93

 }

 if ($n != null) {

 message.put("not", "!");

 }

 if ($v2 != null) {

 message.put("var2", $v2.text);

 }

};

otherExpression returns [HashMap<String, String> expression]

@init {

expression = new HashMap<String,String>();

}

: (e1=expression op=RELATIONALOPERATOR e2=expression ';') { expression.put("expression", e1 + " " +

$op.text + " " + e2); };

attachedExpression returns [HashMap<String, String> attached]

@init {

 attached = new HashMap<String, String>();

}

: n=NOT? v1=VARIABLE 'is' 'attached' ';'

{

 attached.put("attached", $v1.text);

 if ($n != null) {

 attached.put("not", "!");

 }

};

locationExpression returns [HashMap<String, String> expression]

@init {

 expression = new HashMap<String, String>();

}

: n=NOT? v1=VARIABLE 'location' 'equals' v2=VARIABLE 'location'? ';'

{

 expression.put("location", "true");

 if ($n != null) {

 expression.put("not", "!");

 }

 expression.put("var1", $v1.text);

 expression.put("var2", $v2.text);

};

predicateAssignment returns [HashMap<String, String> assignment]

@init {

 assignment = new HashMap<String, String>();

}

: ('predicate' v1=VARIABLE s1=STRING '=' (b='true'|b='false'|v2=VARIABLE s2=STRING) ';')

{

 assignment.put("predicate", "true");

 assignment.put("var1", $v1.text);

 assignment.put("predicatename", $s1.text);

 assignment.put("bool", $b.text); //b.equals("true") ? "1f" : "0f");

 assignment.put("var2", $v2.text);

 assignment.put("predicatename2", $s2.text);

};

relationAssignment returns [HashMap<String,String> assignment]

@init {

 assignment = new HashMap<String,String>();

}

: ('relation' action=('make'|'remove') v1=VARIABLE s1=STRING v2=VARIABLE ';')

{

 assignment.put("relation", "true");

 if($action.text.equals("make")) assignment.put("make", "true");

 assignment.put("var1", $v1.text);

 assignment.put("relation1", $s1.text);

 assignment.put("var2", $v2.text);

};

functionAssignment returns[HashMap<String,String> assignment]

@init {

 assignment = new HashMap<String, String>();

}

: ('function' v1=VARIABLE s1=STRING '=' e=expression ';')

{

 assignment.put("function", "true");

 assignment.put("var1", $v1.text);

 assignment.put("function1", $s1.text);

 assignment.put("expression", e);

};

messageAssignment returns [HashMap<String,String> assignment]

@init {

 assignment = new HashMap<String,String>();

}

94

: ('message' v1=VARIABLE s1=STRING '=' (v2=VARIABLE s2=STRING|s2=STRING) ';')

{

 assignment.put("message", "true");

 assignment.put("var1", $v1.text);

 assignment.put("message1", $s1.text);

 assignment.put("var2", $v2.text);

 assignment.put("message2", $s2.text);

};

attachAssignment returns [HashMap<String, String> assignment]

@init {

 assignment = new HashMap<String, String>();

}

: ('attach' v1=VARIABLE 'to'? v2=VARIABLE ';') {

 assignment.put("attach", "true");

 assignment.put ("var1", $v1.text);

 assignment.put ("var2", $v2.text);

 }

| ('detach' v1=VARIABLE ';') {

 assignment.put("detach", "true");

 assignment.put("var1", $v1.text);

 }

{

};

locationAssignment returns [HashMap<String, String> assignment]

@init {

 assignment = new HashMap<String, String>();

}

: ('location' v1=VARIABLE '=' v2=VARIABLE ';')

{

 assignment.put("location", "true");

 assignment.put("var1", $v1.text);

 assignment.put("var2", $v2.text);

};

objectCreation returns [HashMap<String, String> assignment]

@init {

 assignment = new HashMap<String, String>();

 }

 : type=IDENTIFIER v1=VARIABLE ('=' name=STRING)? ';'

{

 assignment = new HashMap<String, String>();

 assignment.put("object", "true");

 assignment.put("type", $type.text);

 assignment.put("var1", $v1.text);

 assignment.put("name", $name.text);

};

eventCreation returns [HashMap<String, String> assignment]

@init {

 assignment = new HashMap<String, String>();

 StringTemplate eventCreateTemplate = templates.getInstanceOf("eventcreation");

}

: 'create'? 'event' name=IDENTIFIER '(' v=VARIABLE? (',' v=VARIABLE?)* ')' ';'

{

 eventCreateTemplate.setAttribute("name", $name.text);

 eventCreateTemplate.setAttribute("variables", $v.text);

 assignment.put("eventcreate", eventCreateTemplate.toString());

};

expression returns [String expression]

@init {

 StringTemplate expressionTemplate = templates.getInstanceOf("expression");

}

:

 (

 p=partialExpression { expressionTemplate.setAttribute("partial", p); }

 |(v=VARIABLE s=STRING { expressionTemplate.setAttribute("var1", $v.text);

expressionTemplate.setAttribute("function1", $s.text); }

 |n=NUMBER { expressionTemplate.setAttribute("number", $n.text); }

 |'time' { expressionTemplate.setAttribute("time", "true");})

 o=OPERATOR e=expression { expressionTemplate.setAttribute("operator", $o.text);

expressionTemplate.setAttribute("expression", e); }

 |(v=VARIABLE s=STRING {expressionTemplate.setAttribute("var2", $v.text);

expressionTemplate.setAttribute("value2", $s.text);}

 |n=NUMBER { expressionTemplate.setAttribute("number", $n.text);}

 |'true' { expressionTemplate.setAttribute("bool", "1");}

 |'false' { expressionTemplate.setAttribute("bool", "0");}

 |'time' { expressionTemplate.setAttribute("time", "true");})

)

{

 expression = expressionTemplate.toString();

};

partialExpression returns [String expression]: '(' e=expression ')' { expression = "(" + e + ")"; };

95

predicateDeclaration returns [String result]

@init {

 StringTemplate predicateTemplate = templates.getInstanceOf("predicatedeclaration");

}

: 'predicate' p=STRING '=' v=('true'|'false') ';'

{

 predicateTemplate.setAttribute("predicate", $p.text);

 predicateTemplate.setAttribute("value", $v.text);

 result = predicateTemplate.toString();

};

functionDeclaration returns [String result]

@init {

 StringTemplate functionTemplate = templates.getInstanceOf("functiondeclaration");

}

: 'function' f=STRING '=' v=NUMBER ';'

{

 functionTemplate.setAttribute("function", $f.text);

 functionTemplate.setAttribute("value", $v.text);

 result = functionTemplate.toString();

};

messageDeclaration returns [String result]

@init {

 StringTemplate messageTemplate = templates.getInstanceOf("messagedeclaration");

}

: 'message' m=STRING '=' v=STRING ';'

{

 messageTemplate.setAttribute("message", $m.text);

 messageTemplate.setAttribute("value", $v.text);

 result = messageTemplate.toString();

};

/* LEXER RULES */

IDENTIFIER

 : UPPERCASE_CHARACTER (LOWERCASE_CHARACTER | UPPERCASE_CHARACTER | DIGIT | '_')*

 ;

VARIABLE

 : LOWERCASE_CHARACTER (LOWERCASE_CHARACTER | UPPERCASE_CHARACTER | DIGIT | '_')*

 ;

fragment UPPERCASE_CHARACTER: 'A'..'Z';

fragment LOWERCASE_CHARACTER: 'a'..'z';

RELATIONALOPERATOR

 : '=='

 | '!='

 | '<='

 | '>='

 | '<'

 | '>'

 ;

OPERATOR

 : '+'

 | '-'

 | '/'

 | '*'

 | '%'

 | '^';

NOT : '!';

STRING : '"' ~('\\' | '"' | '\r' | '\n')+ '"' {setText(getText().substring(1, getText().length()-1));};

// Strip the "'s from the string

NUMBER: ('-'? '1'..'9' DIGIT* ('.' DIGIT+)?)|'0';

fragment DIGIT : '0'..'9';

WS : (' ' | '\t' | '\n' | '\r' | '\f')+ {$channel = HIDDEN;};

COMMENT : '//' .* ('\n'|'\r') {$channel = HIDDEN;};

96

8.5 Code snippets
BaseAction

package base;

public abstract class BaseAction {

 public BaseAction() {

 Simulator.addAction(this);

 }

 public abstract boolean enabled();

 public abstract void perform();

 public abstract String enabledStatus();

 @Override

 public String toString() {

 String s =this.getClass().getName().substring(15) + " ";

 return s;

 }

}
BaseEvent

package base;

public abstract class BaseEvent {

 public BaseEvent() {

 Simulator.addEvent(this);

 }

 public abstract boolean enabled();

 public abstract void perform();

 public abstract String enabledStatus();

}
BaseObject

package base;

import domain.objects.Location;

import java.util.HashMap;

import java.util.Map;

import java.util.Vector;

import java.util.logging.Logger;

/**

 * @author jeeninga

 */

public abstract class BaseObject {

 private static Logger log = Logger.getLogger("base");

 private final String name;

 private Location location = null;

 private BaseObject attached = null;

 private Controller controller = new BaseController();

 private HashMap<String, Boolean> predicates = new HashMap<String, Boolean>();

 private HashMap<String, Float> functions = new HashMap<String, Float>();

 private HashMap<String, Vector<BaseObject>> relations = new HashMap<String, Vector<BaseObject>>();

 private HashMap<String, String> messages = new HashMap<String, String>();

 private HashMap<String, VariableType> typeList = new HashMap<String, VariableType>();

 private Vector<String> actions = new Vector<String>();

 public BaseObject(String name) {

 this.name = name;

 this.init();

 Simulator.addObject(this);

 }

 /**

 * Method to initialize default values.

 */

 protected void init() {

 }

 ;

 /**

 * @return name

 */

 public final String getName() {

 return this.name;

 }

 /**

 * @param c

 */

97

 public final void setController(Controller c) {

 this.controller = c;

 }

 /**

 * @return

 */

 public final Controller getController() {

 return this.controller;

 }

 public final Location getLocation() {

 if (attached != null) {

 return attached.getLocation();

 }

 return this.location;

 }

 public final void setLocation(Location l) {

 if (attached != null) {

 log.warning("Could not change location of object " + name + "; object is attached to " + attached.getName());

 return;

 }

 this.location = l;

 }

 /**

 * Attach this object to another object, this means the location of this object will stay the same as the location of the

provided object until detached

 * @param o the object to attach this object to.

 */

 public final void attachToObject(BaseObject o) {

 if (attached != null) {

 log.warning("Could not attach object " + name + "; object is attached to " + attached.getName());

 return;

 }

 this.attached = o;

 }

 /**

 * Detach this object. The location will change to the last known location of the object this was attached to.

 */

 public final void detachFromObject() {

 if (attached == null) {

 log.warning("Trying to detach object " + name + "; object is not attached");

 return;

 }

 this.location = attached.location;

 attached = null;

 }

 /**

 * A boolean to check if this object is attached to any other object

 * @return

 */

 public final boolean isAttached() {

 if (attached == null) {

 return false;

 }

 return true;

 }

 public final boolean getPredicate(String name) {

 if(!predicates.containsKey(name)) {

 log.warning("Could not find predicate " + name);

 }

 return predicates.get(name);

 }

 public final void setPredicate(String name, Boolean value) {

 if (this.typeList.containsKey(name)) {

 if (!(this.typeList.get(name) == VariableType.PREDICATE)) {

 log.warning("Could not add predicate " + name + "; " + name + " already exists as type " +

this.typeList.get(name));

 return;

 }

 }

 else {

 this.typeList.put(name, VariableType.PREDICATE);

 }

 this.predicates.put(name, value);

 this.controller.notify(this);

 }

 public final HashMap<String, Boolean> getPredicates() {

 return this.predicates;

 }

 public final Float getFunction(String name) {

 if (functions.containsKey(name)) {

 return functions.get(name);

 }

 return null;

 }

 public final void setFunction(String name, Float value) {

 if (this.typeList.containsKey(name)) {

 if (!(this.typeList.get(name) == VariableType.FUNCTION)) {

 log.warning("Could not add function " + name + "; " + name + " already exists as type " +

this.typeList.get(name));

 return;

 }

98

 }

 else {

 this.typeList.put(name, VariableType.FUNCTION);

 }

 this.functions.put(name, value);

 this.controller.notify(this);

 }

 public final HashMap<String, Float> getFunctions() {

 return this.functions;

 }

 public final void setMessage(String name, String message) {

 if (this.typeList.containsKey(name)) {

 if (!(this.typeList.get(name) == VariableType.MESSAGE)) {

 log.warning("Could not add message " + name + "; " + name + " already exists as type " +

this.typeList.get(name));

 return;

 }

 }

 else {

 this.typeList.put(name, VariableType.MESSAGE);

 }

 this.messages.put(name, message);

 this.controller.notify(this);

 }

 public final String getMessage(String name) {

 if (messages.containsKey(name)) {

 return messages.get(name);

 }

 return null;

 }

 public final HashMap<String, String> getMessages() {

 return this.messages;

 }

 public final boolean hasRelationWith(String name, BaseObject object) {

 if (!this.relations.containsKey(name)) {

 return false;

 }

 for (BaseObject o : this.relations.get(name)) {

 if (object == null) {

 return true;

 }

 if (o.equals(object)) {

 return true;

 }

 }

 return false;

 }

 public final boolean hasRelation(String name) {

 return this.relations.containsKey(name);

 }

 public final void removeRelationWith(String name, BaseObject object) {

 if (!this.relations.containsKey(name)) {

 return;

 }

 if (object == null) {

 this.removeRelation(name);

 }

 else if (this.relations.get(name).contains(object)) {

 this.relations.get(name).remove(object);

 this.controller.notify(this);

 }

 }

 public final void removeRelation(String name) {

 if (!this.relations.containsKey(name)) {

 return;

 }

 this.relations.remove(name);

 this.controller.notify(this);

 }

 public final void setRelation(String name, BaseObject object) {

 if (this.typeList.containsKey(name)) {

 if (!(this.typeList.get(name) == VariableType.RELATION)) {

 log.warning("Could not add relation " + name + "; " + name + " already exists as type " +

this.typeList.get(name));

 return;

 }

 }

 else {

 this.typeList.put(name, VariableType.RELATION);

 }

 if (!this.relations.containsKey(name)) {

 Vector<BaseObject> v = new Vector<BaseObject>();

 v.addElement(object);

 this.relations.put(name, v);

 }

 else {

 this.relations.get(name).addElement(object);

 }

 this.controller.notify(this);

 }

 public final Float getValue(String name) {

 if (this.typeList.containsKey(name)) {

99

 if (this.typeList.get(name) == VariableType.PREDICATE) {

 if (this.predicates.get(name)) {

 return 1f;

 }

 else {

 return 0f;

 }

 }

 if (this.typeList.get(name) == VariableType.FUNCTION) {

 return this.functions.get(name);

 }

 }

 else {

 log.warning("getValue called on non existent value");

 }

 return 0f;

 }

 public final HashMap<String, Vector<BaseObject>> getRelations() {

 return this.relations;

 }

 public final boolean hasAction(String name) {

 return this.actions.contains(name);

 }

 public final void addAction(String name) {

 if (this.actions.contains(name)) {

 return;

 }

 this.actions.addElement(name);

 this.controller.notify(this);

 }

 public final void removeAction(String name) {

 if (!this.actions.contains(name)) {

 return;

 }

 this.actions.removeElement(name);

 }

 public final VariableType getVariableType(String name) {

 return this.typeList.get(name);

 }

 @Override

 public final String toString() {

 return this.getClass().getName().substring(15) + " - " + this.getName();

 }

 public final String getStringState() {

 String s = this.name + "\n";

 if (this.getLocation() != null) s += " location is " + this.getLocation().getName() + "\n";

 if (this.attached != null) s += " attached to " + this.attached.getName() + "\n";

 for (Map.Entry<String, Boolean> entry : this.predicates.entrySet()) {

 s += " predicate " + entry.getKey() + " is " + entry.getValue() + "\n";

 }

 for (Map.Entry<String, Float> entry : this.functions.entrySet()) {

 s += " function " + entry.getKey() + " is " + entry.getValue() + "\n";

 }

 for (Map.Entry<String, String> entry : this.messages.entrySet()) {

 s += " message " + entry.getKey() + " is " + entry.getValue() + "\n";

 }

 for (Map.Entry<String, Vector<BaseObject>> entry : this.relations.entrySet()) {

 for (BaseObject b : entry.getValue()) {

 s += " relation " + entry.getKey() + " " + b.getName() + "\n";

 }

 }

 return s;

 }

 /**

 * A very simple hashing method. Just put all the parameters in one large string

 * @return a string containing all parameters of this object.

 */

 private final String getHashString() {

 String s = this.name;

 if (this.getLocation() != null) s += this.getLocation().getName();

 if(this.attached != null) s += this.attached.getName();

 for (Map.Entry<String, Boolean> entry : this.predicates.entrySet()) {

 //ignore the false values since all entries are false by default

 if(entry.getValue()) s += entry.getKey() + entry.getValue();

 }

 for (Map.Entry<String, Float> entry : this.functions.entrySet()) {

 s += entry.getKey() + entry.getValue();

 }

 for (Map.Entry<String, String> entry : this.messages.entrySet()) {

 s += entry.getKey() + entry.getValue().hashCode();

 }

 for (Map.Entry<String, Vector<BaseObject>> entry : this.relations.entrySet()) {

 for (BaseObject b : entry.getValue()) {

 s += entry.getKey() + b.getName();

 }

 }

 return s;

 }

 @Override

 public final int hashCode() {

 return this.getHashString().hashCode();

 }

100

 @Override

 public final boolean equals(Object obj) {

 if (obj == null) {

 return false;

 }

 if (getClass() != obj.getClass()) {

 return false;

 }

 final BaseObject other = (BaseObject) obj;

 if ((this.name == null) ? (other.name != null) : !this.name.equals(other.name)) {

 return false;

 }

 return true;

 }

}

101

GSDL Simulator

package base;

import java.io.File;

import java.lang.reflect.Constructor;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Vector;

import java.util.logging.ConsoleHandler;

import java.util.logging.Level;

import java.util.logging.Logger;

import java.net.URL;

import java.util.HashSet;

import scenario.*;

//import scenario.Scenario1;

/**

 * @author jeeninga

 */

public class Simulator {

 public static Logger log = Logger.getLogger("base");

 /**

 */

 private static int time = 0;

 private static int stateId = 0;

 /**

 */

 private static Vector<BaseObject> objects = new Vector<BaseObject>();

 private static Vector<BaseEvent> events = new Vector<BaseEvent>();

 /**

 */

 private static Vector<BaseAction> actions = new Vector<BaseAction>();

 private static HashMap<Integer, String> statespace = new HashMap<Integer, String>();

 public static void main(String[] args) {

 // Create a console handler

 ConsoleHandler handler = new ConsoleHandler();

 handler.setLevel(Level.ALL);

 log.addHandler(handler);

 log.setLevel(Level.ALL);

 Scenario1 s = new Scenario1();

 s.init();

 actions = new Vector<BaseAction>();

 try {

 for (Class<?> c : Simulator.getClasses("domain.actions")) {

 Simulator.checkAction(c);

 }

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 performEvents();

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new Gui().setVisible(true);

 }

 });

 }

 /**

 * Make a discrete Simulation step. This means increasing the time and performing events

 */

 public static void step() {

 time++;

 performEvents();

 }

 private static void performEvents() {

 for (BaseEvent e : Simulator.events) {

 if (e.enabled()) {

 log.fine("Performing event " + e.toString());

 e.perform();

 }

 }

 }

 /**

 * Returns a string representation of all the object, actions and events with their parameters in the current state.

 * @return string representation of the current state.

 */

 public static String stringState() {

 String s = new String();

 for (BaseObject o : Simulator.objects) {

 s += o + "\n";

 }

 for (BaseEvent e : Simulator.events) {

 s += e + "\n";

 }

 for (BaseAction a : Simulator.actions) {

 s += a + (a.enabled() ? " = enabled" : " = disabled") + "\n";

 }

 return s;

 }

102

 /**

 * Returns the current time of the Simulation.

 * @return

 */

 public static int getTime() {

 return new Integer(time);

 }

 /**

 * Add an object to the Simulation.

 * @param o the object to add.

 */

 public static void addObject(BaseObject o) {

 if (Simulator.objects.contains(o)) {

 Simulator.log.warning("Did not create object " + o.getName() + " duplicate name already exists");

 }

 else {

 Simulator.log.finest("Creating object " + o.getName() + "(" + o.getClass().getName() + ")");

 Simulator.objects.addElement(o);

 }

 }

 /**

 * Add an even to the Simulation.

 * @param e the event to add.

 */

 public static void addEvent(BaseEvent e) {

 Simulator.log.finest("Adding event " + e + "(" + e.getClass().getName() + ")");

 Simulator.events.addElement(e);

 }

 /**

 * Add an action to the Simulation

 * @param a the actoin to add.

 */

 public static void addAction(BaseAction a) {

 Simulator.log.finest("Creating action " + a.getClass().getName());

 if (!Simulator.actions.contains(a)) {

 Simulator.actions.addElement(a);

 }

 }

 /**

 * Check if we can create provided actions from our current state.

 * @param myclass the action to be checked.

 */

 private static void checkAction(Class<?> myclass) {

 Constructor<?> constructors[] = myclass.getConstructors();

 for (int i = 0; i < constructors.length; i++) {

 Simulator.testActions(constructors[i]);

 }

 }

 /**

 * Test all possible combinations with an action specified by the passed constructor.

 * Only objects from the current state of the simulator are used.

 * @param c a constructor of an action

 */

 private static void testActions(Constructor<?> c) {

 // One vector containing X vectors with objects where X is the number of arguments needed to construct this action.

 Vector<Vector<Object>> parameters = new Vector<Vector<Object>>(c.getParameterTypes().length);

 int i = 0; // this int is reused multiple times in this method

 // Initialize an empty vector for each parameter.

 for (i = 0; i < c.getParameterTypes().length; i++) {

 parameters.add(i, new Vector<Object>());

 }

 //loop through all objects

 i = 0;

 for (BaseObject o : Simulator.objects) {

 //check if the classtype fits one of the classes

 i = 0;

 for (Class<?> cl : c.getParameterTypes()) {

 if (cl.isInstance(o)) {

 // add object to the associated list

 parameters.get(i).addElement(o);

 }

 i++;

 }

 }

 // If there is an empty vector this means this action cannot be created.

 for (Vector<Object> v : parameters) {

 if (v.isEmpty()) return;

 }

 // Use recursion to create all possible combinations of the objects in the vectors.

 recursiveCheck(new Vector<Object>(parameters.size()), parameters, c);

 }

 /**

 * Loop through all objects that can be passed as first argument

 * Check if you can create an action object with the vector of arguments, if not, add (all possible) next arguments and

recursively try again.

 * @param v the vector with arguments (this is the only object that changes during recursion).

 * @param parameters a vector with vectors, each argument has a vector of possible objects.

 * @param c the constructor of the action to create.

 */

 private static void recursiveCheck(Vector<Object> v, Vector<Vector<Object>> parameters, Constructor<?> c) {

 //Check if the vector with elements is filled. (iow: we have enough elements to create an action object)

 //FIXME: Maybe some performance could be won by using a more efficient duplicate check

 // Check for duplicates: HashSet does not allow duplicates, skip all next iterations if a duplicate is found.

 HashSet s = new HashSet(v);

 if (s.size() != v.size()) {

103

 return;

 }

 if (v.size() == parameters.size()) {

 //try to create our object

 try {

 // Create the action object using the parameters from our vector v.

 BaseAction action = (BaseAction) c.newInstance(v.toArray());

 //System.out.println(action.enabledStatus());

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 //we are done! we return to the previous invocation.

 return;

 }

 //Loop through all possible parameters we can use as next argument

 for (Object o : parameters.get(v.size())) {

 // add the next element to the vector

 v.addElement(o);

 // pass the vector to check again

 Simulator.recursiveCheck(v, parameters, c);

 // when we return here, our element has been checked. remove it and try the next

 v.removeElementAt(v.size() - 1);

 }

 }

 /**

 * Get an array of classes in a specific package.

 * @param pckgname the name of the package

 * @return

 * @throws ClassNotFoundException if no classes are found or an error occurred.

 */

 private static Class<?>[] getClasses(String pckgname) throws ClassNotFoundException {

 ArrayList<Class<?>> classes = new ArrayList<Class<?>>();

 // Get a File object for the package

 File directory = null;

 try {

 ClassLoader cld = Thread.currentThread().getContextClassLoader();

 if (cld == null) {

 throw new ClassNotFoundException("Can't get class loader.");

 }

 String path = pckgname.replace('.', '/');

 URL resource = cld.getResource(path);

 if (resource == null) {

 throw new ClassNotFoundException("No resource for " + path);

 }

 directory = new File(resource.getFile());

 }

 catch (NullPointerException x) {

 throw new ClassNotFoundException(pckgname + " (" + directory

 + ") does not appear to be a valid package");

 }

 if (directory.exists()) {

 // Get the list of the files contained in the package

 String[] files = directory.list();

 for (int i = 0; i < files.length; i++) {

 // we are only interested in .class files

 if (files[i].endsWith(".class")) {

 // removes the .class extension

 classes.add(Class.forName(pckgname + '.'

 + files[i].substring(0, files[i].length() - 6)));

 }

 }

 }

 else {

 throw new ClassNotFoundException(pckgname + " does not appear to be a valid package");

 }

 Class<?>[] classesA = new Class[classes.size()];

 classes.toArray(classesA);

 return classesA;

 }

 /**

 * @return A vector containing all the objects currently loaded in the Simulator.

 */

 public static Vector<BaseObject> getObjects() {

 return Simulator.objects;

 }

 /**

 * @return A vector containing all the actions currently loaded in the Simulator.

 */

 public static Vector<BaseAction> getActions() {

 return Simulator.actions;

 }

 /**

 * @return the letter S followed by a number. This number is unique for the current state.

 */

 public static String getState() {

 String s = "";

 for (BaseObject o : objects) {

 s += o.hashCode();

 }

 for (BaseEvent e : events) {

 s += e.hashCode();

 }

 for (BaseAction a : actions) {

 s += a.hashCode();

 }

104

 if (!Simulator.statespace.containsKey(s.hashCode())) {

 Simulator.statespace.put(s.hashCode(), "S" + stateId++);

 }

 return Simulator.statespace.get(s.hashCode());

 }

}

GSDL Simulator interface screenshots

The objects of a scenario and their corresponding HSM models.

Figure 31 – GSDL Simulator screenshot including HSM models

105

The actions tab of the GSDL simulator interface. We can see why it is not

possible for f1 to initiate the Extinguish action using f2 and fire. F1 is not at the

same location as f2 and f1 is still attached to an object.

Figure 32 - GSDL Simulator actions interface

	1 Introduction
	1.1 Problem Description
	1.2 Problem Analysis
	1.3 Research Objective
	1.4 Approach
	1.5 Summary
	1.6 Overview

	2 Background information
	2.1 Related domains
	2.1.1 Introduction
	2.1.2 Scenario description in movies
	2.1.3 Scenario description editors for games
	Valve Hammer Editor
	UnrealScript™

	2.1.4 Conclusion related technologies

	2.2 Scenario Description
	2.2.1 Introduction
	2.2.2 Scenario description languages
	Simula
	SDL
	Q
	MSDL

	2.2.3 Conclusion scenario description languages

	2.3 Planning languages
	2.3.1 Introduction
	2.3.2 Planning Languages
	STRIPS
	HTN
	PDDL

	2.3.3 Conclusion planning languages

	2.4 Conclusion background information

	3 Generic Scenario Description
	3.1 Introduction
	3.2 Practical Environment
	3.3 Development
	3.3.1 Describing a simple situation
	3.3.2 Predicates, Functions and Messages
	3.3.3 Relations
	3.3.4 Events and Actions
	3.3.5 Architecture

	3.4 Generic Scenario Description Language
	3.4.1 Lexer
	3.4.2 Object Declaration
	3.4.3 Action and Event Declaration
	3.4.4 Scenario declaration

	3.5 GSDL simulation testing
	3.6 Problems and Discussion
	3.6.1 Usability
	3.6.2 Concurrency
	3.6.3 Compared with MultiAgent Systems
	3.6.4 Compared with Labeled Transition Systems

	3.7 Conclusion Scenario Description Language

	4 Scenario Description Tool
	4.1 Introduction
	4.2 Adding information to the domain definition
	4.3 Scenario Description
	4.4 Usability
	4.5 Conclusion Scenario Description Tool

	5 Evaluation
	5.1 Problem solving
	5.2 Issues

	6 Conclusion and Future research
	6.1 Conclusion
	6.2 Answers to the research questions
	6.3 Future research
	6.3.1 Usability Tests
	6.3.2 GSDL v2
	6.3.3 State-space exploration
	6.3.4 Compatibility
	6.3.5 Visualization using state transition diagrams

	7 References
	8 Appendices
	8.1 EBNF Description of the Scenario Description Language
	8.2 GSDL Railroad view
	8.3 Template API
	8.4 Lexer and Parser ANTRL Grammar
	8.5 Code snippets

