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Nomenclature 
 

General   

 , , Tx x y z


 Global Cartesian coordinates [m,m,m]T 

 , , Tu u v w


 Velocity vector in global Cartesian coordinates [m/s] 

 , , Tr z  Polar coordinates in the actuator disk plane [m,rad,m]T 

q  Velocity magnitude [m/s] 
,  nV u  Velocity component normal to the actuator disk [m/s] 

M  Local Mach Number [-] 
a  Local speed of sound [m/s] 
  Local fluid density [kg/m3] 
p  Local fluid pressure [kg/m2] 
T  Local fluid temperature [K] 
H  Local fluid total enthalpy [J/kg] 
E  Local fluid total energy [J/kg] 
   
Propeller specific   
R  Propeller tip radius [m] 
r  Local radius of a point in polar coordinates [m] 
r  Non-dimensional radius ( / )r R  [-] 
D  Propeller/rotor diameter  [m] 
T  Propeller/rotor thrust [N] 
P  Propeller/rotor power [W] 
  Propeller/rotor rotational speed [rad/s] 
n  Propeller/rotor rotations per second [1/s] 

VJ
nD

  
Propeller/rotor advance ratio [-] 

c  Propeller/rotor local blade chord length [m] 
  Propeller/rotor local angle of incidence with the  free 

stream 
[rad] 

   
ZEN specific   

TdC
dr

 
Local thrust coefficient [-] 

PdC
dr

 
Local power coefficient [-] 

RdC
dr

 
Local radial force coefficient [-] 

rN  Number of cells in radial direction [-] 
N  Number of cells in circumferential direction [-] 

zN  Number of cells in longitudinal direction [-] 
  Unsteady distribution width [rad] 
DTS  Number of timesteps per revolution [-] 
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RAMSYS specific   

NC  Local normal force coefficient [-] 
AC  Local force coefficient in chordwise direction [-] 
YC  Local force coefficient in spanwise direction [-] 

   
Aero-acoustic specific   
 ..�  Wave equation operator  

)x   Dirac delta function  
( , )v x t  Velocity of a point on the control surface 0f   [m/s] 

c Local speed of sound [m/s] 
t Observer time  
  Emission time [s] 

ret  Retarded time [s] 
r Distance between source and observer [m] 
 ..

ret
 Evaluated at the retarded time.  
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1. Introduction 
This report covers an investigation into the feasibility of the use of the actuator disk approach in aero-
acoustic analysis of a propeller/rotor. In the actuator disk approach, a propeller or rotor is represented as 
an infinitesimally thin disk where flow field quantities are added to the flow in a discontinuous jump. This 
approximation results in a dramatic reduction of computational workload. The approach has been 
validated on aerodynamical grounds for a steady computation in earlier investigations. Recent 
developments at CIRA extend the use of the actuator disk approach to unsteady flow calculation. However, 
little investigation has been done in the past on the effects of using the approach in this way and therefore 
in the first part of the project, the effect of using the actuator approach in unsteady computation is 
investigated. Also the way to properly model a specific propeller/rotor as an unsteady actuator disk 
boundary condition has not been formulated before, and so a distribution is constructed and validated. 

In the second part of the report, the output of the unsteady CFD computations are used as input data for 
an in-house aero-acoustic code that is based on the permeable Ffowcs Williams-Hawkings analogy. This 
can be done by formulating a surface around the actuator disk. In order to investigate the result of using 
this approach, a comparison is made between computations that use this ZEN input data and regular input 
data containing a moving body. The report is structured in the following way.  

In chapter 2, an overview of ZEN is given, which is the used CFD code. This chapter starts with a small 
introduction into the features of ZEN and the theory behind the actuator disk approach. Then, a short 
description of the unsteady form of ZEN (UZEN) is given, together with an explanation in the way an 
unsteady boundary condition is formulated. The last paragraph of the chapter contains a description of 
possible phenomena that can emerge with the use of UZEN in comparison to ZEN.  

Chapter 3 contains an investigation into ZEN and UZEN using a simple test case. First, a steady simulation 
is done to generate reference data and investigate the effects of mesh density. Then, the unsteady 
boundary condition is constructed and ran through a series of tests. The chapter ends with observations 
and conclusions on the effects of using the actuator disk approach in UZEN for propellers/rotors. 

Then in chapter 4, an attempt is made in generating an actuator disk boundary condition from the output 
data of a potential flow solver for number of propellers and rotors. The code used for this is RAMSYS. The 
reason for this is that RAMSYS output can be used reference data for the aero-acoustic analysis. The 
chapter contains a description on how to convert the output data of RAMSYS to an actuator disk boundary 
condition. Then, the result is investigated for 3 different geometries and a geometry is chosen on which 
the aero-acoustic investigation will be performed.  

Chapter 5 covers the investigation of aero-acoustics. As with the other chapters, this section starts with an 
introduction into the method used. The first paragraph contains information about the theory of the FW-H 
analogy and the description of the test setup. Then, a number of tests are conducted comparing the results 
of a variety of aero-acoustic simulations with UZEN input data to a simulation done with RAMSYS input 
data. This will lead to a number of observations and conclusions at the end of the chapter.  
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Finally all the conclusions made in the project are summarized in chapter 6, which is followed by several 
recommendations about possible future work on the subject in chapter 7. This chapter also lists a 
selection of tests that need to be conducted to check whether the conclusions made in the project are 
valid.  

Also, since the report consists of a variety of subjects and the amount of tests done and displayed is quite 
large, the author has tried to keep the report readable by adding small sections that summarize the 
conclusions in between chapters. With the same goal, all of the in depth theory used has been placed in the 
appendix. 
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2. UZEN overview 
This chapter contains information on the flow solver used in the investigation. In the first subchapter the 
specifications of the ZEN solver are introduced, as well as the necessary input and output files. In the 
second subchapter, the actuator disk boundary condition is described, together with the non-
dimensionalization involved. After this the implementation of the actuator disk boundary condition in the 
solver is explained in subchapter three. Finally, subchapter four starts with a description of the unsteady 
ZEN solver. After this, the chosen definition of the unsteady boundary condition distribution is explained 
and motivated. 

2.1. Introduction 
The ZEN (Zonal Euler Navier-Stokes) simulation system is a set of codes for the analysis of steady 
aerodynamic flows around complex geometry. It solves the RANS equations, and optionally Euler or TLNS 
equations using the multi-zone approach. It is based on a multi-block structured grid finite volume 
approach which is a Jameson-like quasi second order accurate cell centered method. For Euler blocks, 
artificial dissipation is introduced based on the Jameson artificial dissipation model, which introduces a 
dissipative flux at each cell face. For RANS computation, the method is able to use a variety of turbulence 
models that include algebraic models, e.g. Baldwin Lomax, κ-ε models and κ-ω models. 

Furthermore, ZEN has optional features that include a TVD switch and the usage of multi-grid to enhance 
stability and computational speed respectively. Relaxation is performed with the Runge-Kutta time 
stepping scheme, which utilizes implicit residual averaging. Also the time step needed is evaluated locally, 
i.e. local time stepping is employed. 

ZEN uses with the following input files: 

IN: Contains the configuration parameters for the simulation, as well as the choice of 
solution type.    

INTOO:  Contains additional configuration parameters for the simulation. (Optional) 

 GRID:  Contains the structured grid. (Binary file) 

 SELECT: Contains the configuration parameters to obtain desired output variables. 

 BCDAT: Contains the block specific boundary condition data. 

The output consists of: 

 OUT:  Contains information about the solution process 

 FLOW:  Contains the flow solution 

 VISFOR: Contains the desired output variables in Tecplot360 format. 

This report includes the use of ZEN using the actuator disk boundary condition in Euler flow only.  
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2.2. Actuator disk boundary condition 
The actuator disk boundary condition is an internal boundary condition that imposes addition of flow 
field quantities to the flow through discontinuities that work according to the general momentum theory. 
(Glauert, 1963). Across the disk, mass flux is continuous, while there is a discontinuous jump in 
momentum and total energy flux. These discontinuous jumps are implicitly defined by specifying jumps in 
other variables. ZEN allows this to be done in two ways, that is, with a field model and a force model 
definition of boundary condition data. Because this report will only include simulations performed using 
boundary conditions defined for the force model because of the limited capability of unsteady ZEN, the 
field model will not be mentioned hereafter. The force model boundary condition distribution is defined in 
the following way. 

2.2.1. ZEN force model actuator disk boundary condition 
The ZEN force model contains a distribution of force coefficient data. Based on the general momentum 
theory, an added axial force, i.e. thrust induces in a jump in pressure while added radial and tangential 
force exerted induces in a jump in momentum.  

The non-dimensional data distribution in the boundary condition consists of a local thrust coefficient aC , a 

local power coefficient pC , and a local radial force coefficient rC , which are function of radius r  and angle 

 . The added axial tangential and radial force is calculated in ZEN from the non-dimensional boundary 
condition data in the following way: (Excerpt from the CESAR-report by A. French) 

Local axial force 
The non-dimensionalization of axial force is done according to the coefficient definition of Renard. The 
Renard thrust coefficient is defined as: 

 2 4T
TC
n D

  (1.1) 

Therefore locally, the thrust can be defined as: 

 
   

 
2 4 2 4

/ /
T

T
dCdTdT n D dC n D

d r R d r R
      (1.2) 

Where  / /dT d r R  is the local axial force per unit scaled radius and  / /TdC d r R  is the local thrust 

coefficient per unit scaled radius. The radial coordinate can be made non-dimensional by: 

 
rr
R

  

 drdr
R

  

Where R  is the radius of the disk.  
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Using the definition of the advance ratio and the fact that 2D R : 

 
2 2

2

4 TV R dCdT
dr J dr

 
 (1.3)

 

Therefore, the axial force on a circular element of scaled radius dr  is: 

 
2 2

2

4 TV R dCdT dr
J dr

   (1.4) 

The local axial force per unit area is obtained by dividing the result by the area of a circular strip 
2(2 )rR dr : 

 
2

2

2 T
a

V dCF
J r dr


   (1.5) 

Using the definition of the speed of sound for an ideal gas: 2 /c p     

 
2 2 2

2 2 2 2

2 2 2T T T
a

V dC p V dC p M dCF
J r dr c J r dr J r dr
  
  
     



    (1.6) 

 
Where M  is the Mach number of the free stream. The result is the definition used in the subroutine 
biprop.f of the ZEN code. 

Local tangential force 
The local tangential force is calculated from the local power coefficient. The Renard power coefficient is 
defined as: 

 3 5  P
PC
n D

  (1.7) 

Therefore locally, the power can be defined as: 

 
 

3 5 3 5 P
P

dCdPdP n D dC n D
dr dr

    
 (1.8)

 

The total power is equal to the product of the tangential velocity and the total tangential force, therefore: 

 . 2 .
total total

P V f nr f     

The local power therefore is: 

 . 2 .dP V f nRr f     (1.9) 
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Combining equations(1.8) and (1.9) results in the tangential force per unit non-dimensional radius: 

 
2 5

2
Pdf n D dC

dr Rr dr
 




 (1.10)
 

Using the definition of the advance ratio and the fact that 2D R : 

 
2 2

2

4 Pdf V R dC
dr J r dr

 


 
 (1.11)

 

Therefore, the tangential force on a circular element of scaled radius dr  is: 

 
2 2

2

4  PV R dCdf dr
J r dr



 

 (1.12)
 

The local tangential force per unit area is obtained by dividing the result by the area of a circular strip 
2(2 )rR dr : 

 
 

2 2 2

22 2 2 2

4 2 
2

P PV R dC V dCF dr
J R r dr dr drJ r


 
 

    
 (1.13)

 

Again using the definition of the speed of sound for an ideal gas results in: 

 
     

2 2 2

2 2 22

2 2 2P P PV dC p V dC p M dCF
dr dr drJ r c J r J r


  
  
     



  

 (1.14)

 

Which is the definition used in the subroutine biprop.f of the ZEN code. 

Local axial force 
The non-dimensionalization of radial force is done in a similar way to the non-dimensionalization of the 
axial force. The radial force coefficient is defined as: 

 2 4
r

r
FC
n D


 (1.15)

 

Where rF  is the total radial force on the disk. Locally: 

 
 

2 4 2 4r R
r R

dF dCdF n D dC n D
dr dr

    
 (1.16)
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Following the same procedure of non-dimensionalization as was used for the axial force, the local axial 
force per unit area is found to be: 

 
2

2

2 R
r

p M dCF
J r dr



   

Which is again the definition used in the subroutine biprop.f of the ZEN code. 
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2.3. Boundary condition formulation 
The force model boundary condition data is used in ZEN to calculate the discontinuous jump between the 
blocks where the actuator disk boundary condition is located. This is done in the following way. Assume 
the actuator disk to be located at the interface of two blocks, namely block 1 and block 2, illustrated in 
figure 1 (National Aerospace Laboratory NLR, 1987). 

 
figure 1: AD cell locations and indices 

 

The following steps are carried out twice during one iteration; once for each block. 

The subscript notation used in this section comprises of two indices. The first indicates the cell number of 
the block, which is positive away from the boundary. The second index indicates the block number. Cell 
number 0 indicates the dummy cell. 

Initially the values of the local flow at the interface between blocks, i.e. the position of the actuator disk, 
are calculated by linear interpolation of the values of the cell centers at both sides of the interface. The 
index d indicates the values at the disk. 

 1,1 1,2
1
2d       

      1,1 1,2

1
2d

u u u     
  

 (1.17)
 

 1,1 1,2
1
2dp p p     
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Where u  is the velocity vector ( , , )Tu v w . Furthermore, the velocity normal to the disk, outQ , is defined as: 

 
 

ˆd
out

d

u
Q n




 




 (1.18)
 

where n̂


 is the unit normal pointing from block 1 to block 2. outQ  indicates in which direction the 

momentum is flowing; If outQ  is less than zero, momentum flows from block 2 to block 1 and if outQ  is 

positive momentum flows from block 1 to block 2. If outQ  equals zero, there is no exchange of momentum 
between the blocks. 

When the flow direction is known, the location of the up- and downstream blocks is also known. 
Hereafter, it is assumed that block 1 is the upstream block and block 2 is the block downstream. 

Since the forces exerted by the disk on the fluid have been calculated, they can be added to the momentum 
equations. In ZEN, the local axial force is added directly to the local pressure downstream in coherence 
with the general momentum theory. The resulting value of the dummy cell then becomes: 

 0,2 1,22 d ap p p F    (1.19) 

 0,1 1,12 d ap p p F    

These pressures are used to calculate the density at the up-and downstream side by using Poisson’s 
relation for isentropic flows :p C   

 

1

0,2
0,2 d

d

p
p



 
 

  
   (1.20)

 

 

1

0,1
0,1 d

d

p
p



 
 

  
   (1.21)

 

With these quantities the total enthalpy per unit volume is calculated: 

   2
0,1 0,1 0,10,1

1
1 2

H p u H
  

   




 (1.22)
 

ZEN calculated the enthalpy always in block 1, even if block 1 is on the downstream side. This is because 
the same steps are also done for the block on the other side of the actuator disk. 
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Furthermore, the velocity normal to the disk outQ  is used to calculate the momentum components to be 

added to the downstream side: 

   x

out

Fu
Q

 
 (1.23)

 

   y

out

F
v

Q
 

 (1.24)
 

   z

out

Fw
Q

 
 (1.25)

 

Where xF , yF  and zF  are the x, y and z components of the tangential and radial non-dimensional force in 

the actuator disk plane. 

Finally, these components are added to the momentum components on the downstream side. The 
resulting value at the dummy cell of each block therefore becomes: 

(Upstream) block 1: 

        0,1 1,1
2

d
u u u u       

        0,1 1,1
2

d
v v v v     

 (1.26)
 

       0,1 1,1
2

d
w w w w      

 

 
(Downstream) block 2: 

        0,2 1,2
2

d
u u u u        

        0,2 1,2
2

d
v v v v      

 (1.27)
 

        0,2 1,2
2

d
w w w w       
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2.4. Unsteady ZEN solver 
Basic steady ZEN input data for a rotor consists of non-dimensional 
force coefficients as a function of r  and  , represented on a disk. 
In a UZEN computation (i.e.  Unsteady ZEN), there is an option that 
allows the actuator disk boundary condition to rotate in time in 
order to simulate a rotating propeller, thus generating non-steady 
flow.  

The concept is illustrated in a very basic way in figure 2. Every 
physical time step, the boundary condition is rotated with angle 
φ 360 / TPR   , where TPR represents the number of time steps 
per rotation, which can be specified in the ‘IN’ file of ZEN. Here, the 
user is able to specify the amount of time steps to be calculated. 

The unsteady ZEN solver solves can run for a specified number of 
iterations or until the residual of the continuity equation is reduced by a specified factor. Then, the solver 
uses a dual time step approach to solve the problem in time.  

This method has certain limitations, because only one force distribution in ψ can be specified for all time 
steps. This boundary condition is then rotated around the actuator disk axis, implying that the method is 
only applicable for blades or rotors in an axisymmetrical flow. Therefore, the method is only applicable for 
cases where the following conditions are both present: 

 The propeller/rotor axis is at zero angle of incidence with the free stream (zero inflow angle). 
  Axisymmetrical hub/nacelle geometry is used.  

For the purpose of this investigation, which is to check the effects numerical effects of UZEN in 
comparison with steady ZEN, this is sufficient. In fact, the input data for the currently adopted actuator 
disk BC in ZEN consists of time averaged data, which are used to create an unsteady boundary condition. 

2.4.1. Construction of the unsteady BCDAT 
The BCDAT file for UZEN is constructed from a BCDAT file valid for a steady ZEN computation. In contrast 
to UZEN, steady ZEN flow solutions are naturally not a function of time. This means that the force 
coefficients used in the boundary condition data are defined as the fully developed time averaged flow 
field induced by the propeller/rotor.  

For the zero inflow angle condition, UZEN conveniently adopts the same approach. Therefore, the integral 
of the force coefficients in the boundary condition distribution over the disk surface at any time has to be 
equal to the integral of the force coefficients in the boundary condition distribution over the disk surface 
for a steady ZEN run. If this is ensured, the same amount of time averaged momentum is added to the flow 
and in theory the resulting time averaged flow field will be identical to the steady solution.  

Furthermore, in order to simulate a propeller, the unsteady distribution of force coefficients should be 
constructed it such a way that it simulates the presence of a propeller/rotor at any time. This is explained 
in the following paragraph.  

figure 2: rotation of boundary condition 
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2.4.2. Conversion of steady to unsteady BCDAT 
In order to simulate the presence of a propeller, the force coefficient data prescribed in the BCDAT file 
used for a steady ZEN simulation are redistributed. An example of this transformation for a six blade 
propeller is depicted in figure 3 and figure 4.  A method for constructing this distribution is presented in 
this paragraph.  

  
figure 3: 6-blade CESAR steady axial force coefficient 

distribution 
figure 4: 6-blade CESAR unsteady axial force coefficient 

distribution 
 

A general BCDAT distribution is defined in a polar coordinate system, hence the force coefficient data are 
function of r  and  . The presence of a propeller in an unsteady BCDAT is simulated by redistributing the 
force coefficient data on angular sections with size Δ that approximates the propeller blades (figure 5). 

As stated earlier, in the transformation from a steady to an unsteady distribution of the AD boundary 
conditions, it is essential that the quantity of the non-dimensional 
force coefficients of the unsteady distribution remains equal to that 
of the steady distribution. To ensure this, the transformation must 
hold the following integral equation: 

 
2

10 0

pNRtip Rtip
k

kRhub Rhub

dCdC rd dr rd dr
dr dr



 






   
 (1.28)

 

 

Where k  is the blade index, pN  is the number of blades and /kdC dr  is the force coefficient distribution 

in the section with angular width Δ representing blade k . One way to do this is to split up the disc into 

pN  parts of angular size 2 / pN  as depicted in figure 5, i.e. one domain for every blade. 

 

figure 5: visualization of Δ 
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Consider steady BCDAT data for a five blade propeller in i  radial positions and 20j n   azimuthal 
positions. For a given radial position, it is then required to integrate over 4 azimuthal positions per blade. 
The situation is depicted in figure 6. ZEN uses (tri)linear interpolation to project the BCDAT data onto the 
grid, which means that the data specified on the points at a certain radial position i  result in a  
distribution of force coefficient data in ZEN depicted by the red line. 

Because ZEN uses this (tri)linear interpolation when projecting the BCDAT data onto the grid, a 
convenient way1 to express the unsteady boundary condition data distribution in θ for a blade is as a 
triangle with base width ( )r i  and height ( ) /dC i dr . This triangle is positioned at the center of the 

integration domain at p   (the azimuthal position of the center of a blade). This distribution is also 

depicted in figure 6. The triangle is generated automatically by interpolation in ZEN if the BCDAT file 
contains for every blade:  

 An array of force coefficients on p   with values ( ) / ( ) /dC i dr dC i dr  

 Arrays of force coefficients at / 2p    with values ( ) / 0dC i dr   

The values of   /dC i dr  are calculated from a steady 

distribution BCDAT file by considering equation (1.28). 
It is possible to evaluate the integral of ( ) /dC i dr  on a 
line in the domain depicted in figure 5 for the case 
considered by summation of the quantity  CQ of 

( ) /dC i dr  of the 4 azimuthal line sections displayed in 
figure 6. 

The quantity  CQ of ( ) / ( )dC i dr i  in an arbitrary single 
line section in figure 6 can be approximated as: 

 
 2 ( , )( , )C

r i dC i jQ i j
n dr


  (1.29) 

Evaluation of the integral through the summation of the quantitiy  CQ  of the 4 azimuthal positions in this 

way is equal to evaluating an integral with a left Riemann sum. The Riemann sum evaluation of the 
integral of an arbitrary smooth and differentiable function ( )f   over a domain in θ has a maximum  error 
of: 

 
 

1 sup
2

fE
n 

      (1.30)
 

                                                             
1 Other options are also possible; e.g. a step-like function. These however are less computationally stable in UZEN. 

figure 6: triangle distribution slice 
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which is not particulary accurate. Note however that the used steady boundary condition distribution in 
this investigation is constant in   (figure 3) because of test case limitations listed the previous paragraph. 
Therefore, the error of the sum reduces to zero and its use is justified. For the case of the BCDAT data 
considered in figure 6, the sum becomes: 

      
 

2 1

1 2

2 ,
,c

j j

r i dC i j
Q i j

n dr i



 

 
 (1.31)

 

This must be equal to the amount of quantity  cQ of ( ) /dC i dr  present in the triangle distribution, and so: 

 
     

 
1

2

2 ,( )  
2 j

r i r i dC i jdC i
dr n dr i






 

 (1.32)
 

After rearranging this equation, a relation is obtained for one blade. In general form this is: 

 
 
 

0,

0,

,( ) 4
k

p

k

nj
N

k

j j

dC i jdC i
dr n dr i











   

This is to be done for all blades present. After this, integration over r  will satisfy equation (1.28). 

2.4.3. Definition of Δ 
The only variable used that hasn’t been defined yet in a quantitive way is the angular size of the unsteady 
boundary condition data distribution, .  Because little is known about the influence of this parameter on 
the unsteady flow solution, its size will be investigated. As a reference, Δ is constructed for all blades 
investigated in this report in the same following way: 

Consider a rotor blade like the one depicted in figure 7 and assume that the 
local chord distribution is known. The average chords is calculated as: 

  1 tip

hub

R

m
tip R

c c r dr
R

 
                              (1.33)

 

With the average chord, the blade surface area can easily be calculated as 

 m tip hubA c R R  .  Furthermore, the surface area of an azimuthal section 

with angular width Δ is: 

 2 2

0 2

tip

hub

R

tip hub
R

A rdrd R R
         

  figure 7: Δ construction 
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Now  is defined by substituting the equation for blade surface area into equation (1.33) : 

 
 

2 2

2 m tip hub

tip hub

c R R
R R


 


 

This defines Δ as a function of the surface of the blade. Note that this is only a definition. It is unknown 
whether or not Δ has to somehow incorporate geometry of the propeller in order to accurately simulate 
the flow. This will be investigated in this report. 
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2.5. Expected effects of the use of Unsteady ZEN 
The use of the unsteady boundary condition as defined in the previous paragraph can be a source of 
effects not present in a steady simulation. These effects are explained below. 

2.5.1. Increased artificial dissipation 
The higher concentrations of force coefficients that are present in an unsteady boundary condition 
(BCDAT) file in ZEN result in high gradients of flow field variables around the actuator disk, inducing 
wiggles in the solution process of the (Euler) flow. This is the major source of numerical instability. 
Because of the quasi-second order Jameson like scheme used by UZEN, the calculation is made convergent 
by the use of dissipative terms. These terms in the numerical scheme make sure that the solution is 
smoothened out during the solving process. Basically, this is done by averaging the high gradients in 
momentum between neighboring cells in such a way that the scheme remains stable enough. However, 
because energy is conserved, this means that kinetic energy is transformed into internal energy.  

In the analysis of the UZEN output, the total pressure is chosen as a way to measure the momentum in the 
flow. Because of the reasons explained above, it can be expected that the introduction of the unsteady 
force coefficient distribution will result in a drop in total pressure, increasing in magnitude with 
decreasing Δ. Further in depth detail on the Jameson scheme is included in appendix I.  

Because of the redistribution of force coefficient data from a steady distribution to an unsteady one, a 
more or less physical phenomenon is occurring. To illustrate this, we consider a simplified distribution of 
force coefficients using four cells with a certain dimension: 

 

figure 8 

These cells introduce an increase of momentum of 
24* u


. As was stated in paragraph 2.3, the pressure 

increases linearly with axial momentum added at the BC. Therefore, the total enthalpy increase in the flow 
will be: 

 
    2

14 4
2

rV VPH  
 

                
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When the force coefficient data is redistributed to one cell while ensuring that the added momentum stays 
constant, the situation of figure 9 occurs: 

 

figure 9 

While the amount of added momentum stays equal to the initial situation, the total enthalpy does not 
because the force coefficients inducing the increase in momentum are present on a smaller area. This 
causes an increase of total enthalpy of: 

 
   

2
2 2

14 4 4 4
2

r
new

V VPH H 
  

 
                         

 

 

The same phenomenon is occurring when a steady ZEN boundary condition distribution is redistributed 
for UZEN use in the way described in paragraph 2.4. Therefore, it can be expected that the total enthalpy, 
measured by the total temperature in the results of an analysis, will grow when the force coefficient 
distribution is made denser, i.e. when Δ is made smaller. 
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3. CESAR test case 
In order to test the ZEN solver and to create a set of reference data, a simple test case is devised. In this 
chapter the actuator disk boundary condition data generated in the CESAR (Cost Effective Small AiRcraft) 
project is used to make a steady run in ZEN.  The exact data used is obtained from the DLR URANS 
computation for the project and averaged over θ in order to be applicable for the test setup. The results of 
this test case are to be used as a reference for the validation of the unsteady ZEN solver later on. The 
objective is the obtain results of simulations of an isolated propeller with a dummy nacelle under 0 angle 
of incidence with the free stream.  

An Euler simulation is carried out on both a fine and a course grid. This is done in order to establish the 
amount of smoothening that takes place when ZEN interpolates the boundary condition data onto the 
mesh and in which fashion this influences the resulting flow. 

Because the unsteady ZEN method described in chapter 2 can only use ZEN’s force model for actuator 
discs, also for the steady run the force model is used and the input data consists of the local thrust 

coefficient 
dCa
dr

, the local power coefficient 
dCp
dr

, and the local radial force coefficient 
dCr
dr

, which are 

defined according to the definitions given in appendix II. The used boundary condition distribution is 
depicted in figures figure 10, figure 11 and figure 12. 

figure 10: steady CESAR axial force coeffient distribution figure 11: steady CESAR power coeffient distribution 
 

 
figure 12: steady CESAR radial force coeffient distribution 
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3.1.1. Test setup 
The steady tests are conducted in ZEN and solved for Euler flow: effects of viscosity and thermal 
conductivity are neglected. Input parameters are: 

Free stream Mach number:   0.235 
Advance ratio:      1.101 
Rtip      0.235 m 
Rhub/Rtip:     0.2602 
Angle of incidence α:    0° 

3.1.2. Geometry 
A dummy nacelle is used in the test in order to obtain lift, drag and side force data. The used geometry is 

depicted in figure 13. The actuator disk is located at (0,0,0)cx 


. 

 
figure 13: nacelle geometry 

3.1.3. Mesh 
The mesh used for the CESAR propeller test case is a structured grid consisting of 24 blocks. The block 
structure is depicted in figure 14. In figure 15 the far field blocks are not shown, and the focus is on the 
block structure around the highlighted nacelle. 

 
 

figure 14: Grid block structure figure 15 Grid block structure detail 
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Furthermore, figure 16 shows the coarse mesh of cell centers in the ZX plane where y=0 and reveals the 
structure of the cells in downstream direction, while figure 17 and figure 18 reveal the cell structure of the 
mesh in the ZY plane just after the actuator disk and just after the nacelle respectively. The dense mesh 
has the same block and vertice structure as the coarse grid, but consists of twice as many cells in all 
directions. 

 
figure 16: Coarse grid cell density (ZX plane) 

 

figure 17: Coarse grid cell density just after the AD (ZY 
plane) 

figure 18: Coarse grid cell density just after the nacelle (ZY 
plane) 
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3.2. Steady results 

3.2.1. Convergence 
Figures figure 19 and figure 20 show the convergence history of the run on the coarse mesh and the dense 
mesh respectively, by the residual of the root mean square of the continuity equation together with the 
maximum residual of the continuity equation.  For both simulations, the residual decreases steadily. 
However, as can be expected, the residual of the simulation on the coarse mesh decreases more rapidly 
because of the smaller amount of equations needed to be solved. 

 
figure 19: Residual plot: CESAR test-case steady coarse grid run 

 

 
figure 20: Residual plot: CESAR test-case steady dense grid run 
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Below the results obtained for both simulations are depicted. The output given has been non-
dimensionalized by the following convention: 

 0 / ,   0 /t tT T T P P P    

Where tT   is the total temperature and tP  is the total pressure. Furthermore, the values with the infinity 

subscript are the quantities of the temperature and pressure in the undisturbed section of the flow field. 

3.2.2. Coarse grid results 

 
figure 21: Coarse grid run: Total pressure(ZX plane) 

 

figure 22: Coarse grid run: Total pressure (ZY plane, just 
after the nacelle) 

figure 23: Coarse grid run: Total pressure (ZY plane, just 
after the nacelle) 
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figure 24: Coarse grid run: Total temperature (ZX plane) 

 

figure 25 : Coarse grid run:  Total temperature (ZY plane, 
just after the AD) 

figure 26: Coarse grid run:  Total temperature (ZY plane, 
just after the nacelle) 
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figure 27: Coarse grid run: velocity vector field(ZY-plane, 

just after the AD) 
figure 28: Coarse grid run: velocity vector field(ZY-plane, 

just after the AD) 
 

The simulation performed as expected and works according to the theory in paragraph 2.2. The total 
pressure increase induced by the axial force coefficient distribution on the boundary condition accelerates 
the flow in downstream direction after the actuator disk. The radial force coefficient adds contraction to 
the flow just after the actuator disk as can be seen in figure 21, while the power coefficient induces swirl, 
which is shown in figure 27. Furthermore, the flow expands diffuses after the actuator disk while moving 
downstream, which results in the total pressure- and temperature distribution of figure 23 and figure 26 
respectively. 
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3.2.3. Dense grid results 
 

 
figure 29: Dense grid run: Total pressure(ZX plane) 

 

figure 30: Dense grid run:  Total pressure (ZY plane, just 
after the AD) 

figure 31: Dense grid run:  Total pressure (ZY plane, just 
after the nacelle 
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figure 32: Dense grid run: Total temperature(ZX plane) 

 

figure 33: Dense grid run:  Total temperature (ZY plane, 
just after the AD) 

figure 34: Dense grid run:  Total temperature (ZY plane, 
just after the nacelle) 
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figure 35: Dense grid run: velocity vector field(ZY-plane, 

just after the AD) 
figure 36: Dense grid run: velocity vector field(ZY-plane, just 

after the nacelle) 
 

The results of the ZEN run on the dense grid show similar results just after the actuator disk in 
comparison with the run on the coarse grid. However, after the nacelle the flow is more compact. Also, the 
concentration of total pressure induced at the actuator disk remains concentrated more. The expansion 
occurring in the run of the coarse grid is therefore dependent on mesh resolution. The reason why this 
phenomenon is occurring is the smoothening between grid points due to artificial dissipation. A 
description of this phenomenon is explained in paragraph 2.5. 

In contrast to total pressure, ZEN conserves the amount of total enthalpy and thus total temperature. This 
means that the total temperature profile can be used as a way to measure the amount of artificial diffusion 
due to mesh density. The effect is clearly visible when comparing figure 26 to figure 34. It is difficult to 
quantify the results properly, but we know from appendix I, that the order of magnitude of artificial 
dissipation is of 3( )O x . Since our comparison is between a grid with x and a grid with / 2x , we expect 

the maximum difference to be  31/ 2 *100% 12.5%  between the solutions of the dense and the coarse 

grid respectively. When we compare the coarse grid total temperature to the dense grid total temperature, 
we find a maximum difference of 

max max 1.0164 1.0158*100% *100% 10.2%
max min 1.0164 1.0105

dense coarse

dense dense

 
 

 
 

If we assume that the simulation of the dense mesh comes very close to the exact solution, this agrees with 
the theory and therefore, the artificial diffusion is working as expected. 
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It should be noted that both for the run on the dense and the coarse grid, the flow is slightly non axial 
symmetric.  Investigation of the 4th quadrant of the ZY plane just after the actuator disk reveals a small 
defect in the amount of total pressure and induced horizontal velocity near the nacelle. A closer look at the 
nacelle gives an explanation: 

  
figure 37: Mesh defect figure 38: Mesh defect(cont.) 

 

figure 37 and figure 38 show a detailed view of the nacelle. The flooded areas represent the total pressure 
distribution. Inside the red circles in figure 37, it can be seen that the geometry is not completely straight 
in x-direction, i.e. it has a slight kink at the position of the actuator disk. Comparing this to figure 38, it can 
be seen that the mesh surface representing the nacelle is not axisymmetric at all. The position of the bump 
in figure 38 is on the same azimuthal position as the position of the different total pressure distribution on 
the nacelle after the actuator disk. Therefore it can be assumed that this geometric imperfection is the 
cause of the non-axisymmetrical total pressure distribution near the nacelle. To solve this, mesh 
refinement is needed. Because of the short duration of the study, this was impossible to do. However, 
because the resulting flow is only affected in a small way we continue the study with this mesh and see 
whether or not the effect is neglible. 
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3.3. Unsteady results 
For the same CESAR test case, an unsteady run has been done with UZEN. The time averaged mean flow is 
used as a platform to measure the differences with a steady ZEN run to investigate the effects of the 
unsteady force coefficient distribution. This is measured just at the position just after the nacelle, which is 
some distance after the actuator disk where the effects are more visible than just after it.  Also, in order to 
test to what extent grid density affects the aerodynamic solution of the unsteady computations, a series of 
comparisons have been done between the steady solution of the flow just after the nacelle of the CESAR 
test case is and the mean flow of its unsteady computation on both grids.  

To examine the effects of smoothening of high gradients in momentum, another test is done using a 
distribution where Δ is half its size. In order to visualize the effects, plots are made of the difference in 
result. 

The tests are conducted on the grid displayed in paragraph 3.1.3 for both a dense mesh and a coarse mesh, 
where the latter has half as many cells in every direction. 

3.3.1. Coarse grid results 
The convergence of the simulation on the coarse grid with 16.8    depicted in the figures below: 

 
figure 39 
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figure 40 

 

 
figure 41 

 

From figures 39 to 41, it can be seen that the solution starts to oscillate in a steady manner. This is 
sufficient proof that the solution converges. Note that the side and lift force coefficient are not oscillating 
around zero. This is due to the mesh defect described in paragraph 3.2. 
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Total pressure 
Comparing the plots of the total pressure 
distribution just after the nacelle, the first 
observation is that little effect of smoothening on 
the unsteady solution is taking place.  In figure 45 
the difference is plotted between the steady and 
the unsteady solution with Δ=16.8°. There is a 
maximum near the center of the mesh that is likely 
a result of the mesh imperfections discussed in 
paragraph 3.2. The maximum difference in the 
other area is around 0.0002, and this is  

 
0.0002 *100% 0.9%

1.058 1.035



 

of the maximum total pressure increase. 

The differences between the mean flow of the computation with Δ=16.8° and the computation with Δ=8.4° 
are somewhat larger, however still relatively small. The maximum difference is 0.0004 and this is: 

 
0.0004 *100% 1.7%

1.058 1.035



 

of the maximum total pressure increase. What also is visible in figure 46 is the effect of the block structure 
of the mesh. Because the same error is visible in every quadrant while the propeller has five blades, it is 
likely that an interpolation error is occurring. 

  

figure 42: P0: steady 



38 
 

 

  
figure 43: P0: unsteady (Δ=16.8) 

 
figure 44: P0: unsteady (Δ=8.4) 

  
figure 45: ΔP0: steady – unsteady(Δ=16.8) figure 46 ΔP0: unsteady(Δ=16.8) – unsteady(Δ=8.4) 
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Total temperature 
Comparing figure 47, figure 48 and figure 49 reveals 
an influence of Δ. The mean flow of the unsteady 
distributions shows an increase of total temperature 
and thus total enthalpy with decreasing Δ. This 
phenomenon is to be expected as was explained in 
paragraph 2.5. figure 50 reveals a difference between 
the steady and unsteady solution that is 

 
0.0005 *100% 8,5%

1.0164 1.0105



 

of the maximum increase in total temperature. 

 

figure 48: T0: unsteady (Δ=16.8) 
 

figure 49: T0: unsteady (Δ=8.4) 

 

  

figure 47: T0: steady 
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The difference between the mean-flow of the unsteady computation with Δ=16.8° and the computation 
with Δ=8.4° is, according to figure 51. 

 0.0003 *100% 5.1%
1.0164 1.0105




 

of the maximum increase of the total temperature. Again, the comparison of the mean flow of the two 
unsteady cases reveals an error that seems to have a connection to the mesh block structure. 

 

figure 50: ΔT0: steady – unsteady(Δ=16.8) figure 51: ΔT0: unsteady(Δ=16.8)– unsteady(Δ=8.4) 
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3.3.2. Dense grid results 
The convergence of the simulation on the coarse grid with 16.8    depicted in the figures below: 

 

figure 52 

 

figure 53 
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figure 54 

Also for the dense mesh, it can be seen in figures 52 to 54 that the solution starts to oscillate in a steady 
manner. This is sufficient proof that the solution converges. Again the side and lift force coefficient are not 
oscillating around zero. This is due to the mesh defect described in paragraph 3.2. 
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Total pressure 
Comparing the plots of the total pressure 
distribution just after the nacelle on the dense 
grid, it can be concluded that there is again little 
effect of smoothening.  In figure 58 the difference 
is plotted between the steady and the unsteady 
solution with Δ=16.8°. There is again a maximum 
near the center of the mesh, however much more 
concentrated. For mesh imperfection reasons 
stated before this difference is neglected. The 
maximum difference in the other regions is 
around 0.001, and this is  

 
0.001 *100% 4.35%

1.058 1.035



 

of the maximum increase in total pressure. 

 

figure 56: P0: unsteady (Δ=16.8) figure 57: P0: unsteady (Δ=8.4) 
 

  

figure 55: P0: steady 
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The difference between the unsteady computation with Δ=16.8° and the computation with Δ=8.4° is 
depicted in figure 59. The maximum difference is  

 0.0005 *100% 2.2%
1.058 1.035




 

of the maximum increase in total pressure, which is of the same relative magnitude as what was found for 
the coarse grid. The mesh size doesn’t seem to have an influence of the phenomenon. 

figure 58: ΔP0: steady – unsteady(Δ=16.8) figure 59: ΔP0: unsteady(Δ=16.8)– unsteady(Δ=8.4) 

Total temperature 
Also on the dense grid it can be concluded from 
figure 57, figure 61 and figure 62 that there is again 
little effect from smoothening.  The difference 
between the steady solution and the unsteady 
solution with Δ=16.8° is depicted in figure 63, and 
from it can be estimated that the maximum 
difference between the two is 

 
0.0005 *100% 8.5%

1.0164 1.0108



 

of the maximum increase of total temperature. 

  

figure 60: T0: steady 
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The difference between the unsteady computation with Δ=16.8° and the computation with Δ=8.4° is 
depicted in. The maximum difference is 

 0.0003 *100% 5.1%
1.0164 1.0108




 

Of the total increase of total temperature. 

 

figure 61: T0: unsteady (Δ=16.8) 
 

figure 62: T0: unsteady (Δ=8.4) 

figure 63: ΔT0: steady – unsteady(Δ=16.8) 
 

figure 64: ΔT0: unsteady(Δ=16.8)– unsteady(Δ=8.4) 
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3.3.3. Observations 
From the illustrations showcased in the previous paragraph, a number of observations can be made. 
These are listed below. 

 Artificial dissipation of total pressure 
Mesh density has an effect on the smoothening caused by the artificial diffusion as was found in the 
investigation of the steady ZEN results of paragraph 3.2. For reasons explained in paragraph 2.5, a 
decrease in total pressure is expected for decreasing   due to artificial dissipation because kinetic energy 
is transferred to internal energy in the process. 

The result of the unsteady simulation on the coarse grid, displays the opposite. From figure 45, the 
difference in magnitude of total pressure of the unsteady solution with 16.8    is very small in 
comparison to the distribution of the steady solution. Therefore regrettably, little statements can be made 
about the artificial dissipation of the high gradients of momentum and energy from the simulation on the 
coarse grid. 

On the dense grid, the presence of artificial dissipation is properly resulting in a decrease in total pressure. 
However, the results represented in figure 58 and figure 59 show that the difference is very small: The 
effect of halving the Δ parameter results in a maximum difference of 2% in total pressure. 

 Total temperature increase and artificial diffusion 
Due to the presence of the effect described in paragraph 2.5, total temperature increases with decreasing 
Δ.  The occurrence of this more or less physical phenomenon is present in the results above. For both the 
coarse and dense grid, total temperature increases with decreasing  . Since the total temperature 
represents the total enthalpy which is a conserved quantity in ZEN, the differences in the total 
temperature distribution between the results of the simulations on the dense and coarse mesh 
respectively, are an illustration of the artificial diffusion as was found in earlier in the steady investigation 
of paragraph 3.2. 

 Block structure 
From all plots comparing the effects of the distribution with 16.8   and 8.4  we observe an effect 
related to the block structure of the mesh. The occurrence of this effect is due to an interpolation of flow 
field variables between blocks. Sadly, because this error was found very late in the investigation, no 
attempts have been made to circumvent the problem which is regrettable because this is likely a source of 
unwanted noise in the aero-acoustic analysis. 
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3.4. Conclusions 
From the observations made in the previous paragraph, it can be concluded that the use of the unsteady 
boundary condition as defined in chapter 2.4 generally gives good results. The deviations in the mean flow 
are consistent with the expected effects of the use of the redistributed boundary conditions as listed in 
paragraph 2.5. The magnitudes of the effects are small and in no case the total temperature of the solution 
of the unsteady computation differs more than 10% from the steady result for Δ=16.8%. The decrease of 
total pressure due to redistribution is never larger than 5%. 

The investigation is also inconclusive in some areas. From the tests conducted, only statements can be 
made about the effects occurring due to an increase in force coefficient concentration. Decreasing Δ 
increases artificial dissipation and thus increases error. Another test should have been performed with a Δ 
that is larger than 16.8° to check whether the distribution should incorporate the blade geometry and/or 
to check if the Δ chosen according to the definition from paragraph 2.4.3 is close to an optimum. This 
should be further investigated in the future. 
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4. RAMSYS to ZEN conversion 
To generate ZEN actuator disk boundary condition data, a conversion is made from between RAMSYS 
output and the ZEN BCDAT file.2 The RAMSYS code (A. D'Alascio) (Rotorcraft Aerodynamic Modelling 
SYStem) is an unsteady panel code for multi body configurations, based on a boundary integral 
formulation for arbitrary rigid-body motion in subsonic compressible or incompressible flow. A 
propeller/rotor geometry is used as input data and the RAMSYS code solves the 3D potential flow around 
this geometry for certain operational parameters. The code calculates the pressure distribution induced 
by the flow on the blade. With certain transformations, the code can also output these local pressures as a 
force coefficient distribution is Cartesian coordinates on the tip path plane. A short description of the tip 
path plane is given below: 

Tip path plane 
A possible output of RAMSYS is the forces acting on the blade. 
While it is possible to extract force data in spanwise, 
chordwise and normal direction of the real geometry, a more 
convenient way for conversion to ZEN is the output data in 
the tip path plane frame of reference. The tip path plane is 
the plane in which the tips of the rotor turn and thus it is a 
plane perpendicular to the axis of rotation. This is different 
from a local frame of reference of a blade section because 
RAMSYS includes a routine that calculates the deflection of 
the blade due to elastic effects, which results in a possible 
rotor shape depicted in the upper part of figure 65. The tip 
path plane frame of reference makes sure all the force coefficients are defined in the same global 
directions which simplifies the conversion to ZEN.  

When this tip path plane force coefficient data is given for the full rotation of a rotor, the result is a disk of 
force coefficients. A simple transformation leads to force coefficients in the tip path plane, defined in polar 
coordinates. These non-dimensional force coefficients are: 

 

2

2

2

( , ) :

( , ) :

( , ) :

 Force coefficient in axial direction
 Force coefficient in tangential direction
 Force coeffcient in radial direction

N l

A l

Y l

C M r
C M r
C M r







 

Where lM is the local Mach number defined as /lV a with sinlV r V   . How this data is 
constructed from the Cartesian RAMSYS output is explained in appendix IV.II. Keeping in mind the axis 
definitions in appendix 0, it is possible to convert this data into a ZEN actuator disk boundary condition 
distribution using the non-dimensionalization explained in appendix I and III.  

  

                                                             
2 Note that this is a choice. Other CFD codes can be used to create the AD boundary data as well. 

figure 65: tip path plane definition 



49 
 

The resulting output of the conversion consists of a disk distribution for a number of positions in r and 
of the following non-dimensional force coefficients: 

 

( , ) :

( , ) :

( , ) :

 thrust coefficient per unit non-dimensional radius

 power coefficient per unit non-dimensional radius

 radial force coefficient per unit non-dimensional radius

T

P

r

dC r
dr

dC r
dr
dC r
dr







 

These coefficients on the disk are the input data for a steady ZEN run. In the following paragraph, this 
conversion is tested after which it is used to investigate a number of propeller/rotor geometries. 
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4.1. Conversion test 
To test if the conversion from RAMSYS to ZEN is correct, a comparison is made of the force distribution on 
a blade. The boundary condition data that is compared is constructed with the method described in the 
previous paragraph. Furthermore. the geometry used is the APIAN blade, shown in the next paragraph. 
The comparison consists of: 

 The force distribution per unit radius derived present in the BCDAT after the conversion has been 
made using definitions listed in Appendices I, III and 0. 

 The force distribution calculated by the integration over all the panels of the forces acting on them 
in RAMSYS.  

Results are shown below: 

figure 66: axial force per unit radius comparison figure 67: tangential force per unit radius comparison 
 

figure 66 shows the axial force distribution, figure 67 
shows the tangential force distribution while figure 68 
shows the radial force distribution, all per unit radius. 
From the graphs, it can be concluded that the 
conversion from RAMSYS output data to ZEN AD force 
model BCDAT input data is correct. 

 

 

  

figure 68: radial force per unit radius comparison 
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4.2. Test case results 
To test the effects of using RAMSYS data as input data for ZEN 
a number of test cases are investigated, each with a different 
blade geometry. Results are shown below.  

4.2.1. APIAN propeller 
This paragraph describes the simulation of the propeller used 
in the APIAN (Advanced Propulsion Integration 
Aerodynamics and Noise)-project. The advantage of using 
this rotor is in the fact that it is well studied and as a 
consequence there is experimental data available. Its 
geometry however is quite complicated. A picture of the rotor 
is displayed in figure 69.  

A simulation of RAMSYS has been performed with the APIAN 
propeller and dummy nacelle geometry.  Relevant test data is displayed below: 

APIAN geometrical properties 
Tip radius:    0.25 m 
Hub ratio:    0.243 
Number of blades:   6 

APIAN test conditions 
Free stream Mach number:  0.23 
Rotational speed:   876 rpm 
Advance ratio:    1.118 
Free stream pressure:   101673 Pa 
Free stream density:   1.225 kg/m3 

Angle of incidence α:   0° 
 
The run in ZEN is done on a redimensionalized version of the grid shown in paragraph 3.1.3. The 
convergence history is plotted below: 
 

 
figure 70: Steady APIAN ZEN convergence plot 

figure 69; APIAN 6-blade propeller 
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Conversion results: 
For validation of the conversion, the velocity profile evolution in downstream direction is examined. At 
different axial positions, from both the steady ZEN and time averaged RAMSYS simulation velocity profiles 
are extracted. ZEN simulations are done using the dense grid for accurate results. The plane is chosen such 
that the x-velocity represents the axial velocity, the y-velocity represents the tangential velocity and the z-
velocity represents the radial velocity. Results are shown below:  

figure 71: APIAN propeller: ZEN axial velocity profiles 
 

figure 72: APIAN propeller: RAMSYS axial velocity profiles 

 
figure 73: APIAN propeller: ZEN tangential velocity 

profiles 
figure 74: APIAN propeller: RAMSYS tangential velocity 

profiles 
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figure 75: APIAN propeller: ZEN radial velocity profiles figure 76: APIAN propeller: RAMSYS radial  velocity 
profiles 

 

The results shown above indicate an error. Since the time averaged RAMSYS results shown agree to some 
degree with the existing ZEN AD field model results, displayed below. 

  
figure 77: APIAN propeller; ZEN field model run: axial 

velocity profiles 
figure 78: APIAN propeller; ZEN field model run: tangential 

velocity profiles 
 

  



54 
 

Even though the field model simulation was done 
using the coarse grid, these results were validated in 
an earlier investigation of the APIAN propeller. From 
figure 76 we see that the maximum in axial velocity is 
close to the tip, which is also the case with the time-
averaged RAMSYS result displayed in figure 72. 

From paragraph 4.1 it was learned that the non-
dimensionalizing of the force coefficient data was 
done in the correct way. Therefore, in theory the 
BCDAT file should include the proper force coefficient 
distribution and this means something awkward is 
happening if the RAMSYS data is used as ZEN input for 
the APIAN test case. A test with an even denser grid 
(2x2x2 times as dense as before) is done to rule out 
the effect of mesh density. The results are shown 
below: 

  
figure 80: APIAN propeller; ZEN run on denser mesh: axial 

velocity profiles 
figure 81: APIAN propeller; ZEN run on denser mesh: 

tangential velocity profiles 
 

  

  

figure 79: APIAN propeller; ZEN field model run: radial 
velocity profiles 
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Because there are no further numerical phenomena in 
ZEN that can cause an error of this magnitude to exist, 
the question arises if the non-correspondence of the 
simulation results with RAMSYS is the result of a 
physical effect. This however, is hard to prove. An 
analysis has to be performed in the future to 
investigate why the force coefficient data is not 
sufficient to simulate the flow field it induces. 

As a result, the APIAN propeller is abandoned for 
another test case in order to find out whether or not 
the ZEN BCDAT can be constructed from RAMSYS data 
properly and the problem is indeed specific to the 
APIAN propeller test case. 

 

 

 

  

figure 82: APIAN propeller; ZEN run on denser mesh: 
radial velocity profiles 
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4.2.2. Fictional helicopter rotor test case 
This paragraph describes the simulations done on a fictional 
helicopter rotor under hover conditions. The choice for this test 
case was made because of its simple geometry; the blades have a 
constant chord. Also, in a previous project, the helicopter rotor was 
successfully converted from RAMSYS to ZEN. 

A simulation of RAMSYS has been performed on the fictional 
helicopter rotor geometry.  Relevant test data is displayed below: 

Fictional helicopter rotor geometrical properties 
Tip radius:    8.54 m 
Hub ratio:    0.200 
Number of blades:   4 

Fictional helicopter rotor test conditions 
Free stream Mach number:  0.003 (Hover condition) 
Rotational speed:   222 rpm 
Advance ratio:    0.0322 
Free stream pressure:   91076 Pa 
Free stream density:   1.103 kg/m3 

Angle of incidence α:   0° 
 

The steady run in ZEN is done on the grid depicted in the next paragraph. The convergence history is 
plotted below: 
 

 
figure 83: Steady HELI_AD ZEN convergence plot 
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Grid 
The grid used for the fictional helicopter is depicted below: 

figure 84: HELI_AD grid block structure figure 85: HELI_AD grid(ZX plane) showing AD location 
 

The mesh structure differs quite a bit from forward 
flight meshes suited for propellers. The mesh used 
here was generated for the simulation of forward 
flight for a helicopter (Tomas, 2009), which involves 
a very high angle of incidence of the free stream. 
Nevertheless, it can also be used for this specific test 
case. 

 

  

figure 86: HELI_AD grid(ZY plane) showing AD location 
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Conversion results: 
For validation of the conversion, again the velocity profile evolution in downstream direction is examined. 
At different axial positions, from both the steady ZEN and time averaged RAMSYS simulation velocity 
profiles are extracted. In contrast to the APIAN investigation, the results are plotted in one figure for each 
velocity direction: 

figure 87: HELI_AD axial velocity profiles figure 88: HELI_AD tangential velocity profiles 
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In the velocity profiles displayed, it can be seen that 
results more or less agree between RAMSYS and 
ZEN. The differences close to the hub are a result of 
the difference in approach: In ZEN a certain hub 
condition is defined, while in RAMSYS, a geometry is 
present there. The axial velocity profiles of figure 87 
show the maximum to be more or less in the right 
position for all 3 positions. The tangential velocity 
profile differs a bit, but the induced velocities in this 
direction are very small in comparison to the axial 
velocities and so this might be a numerical problem 
as much as anything else. The radial velocity 
profiles in figure 88 compare very good. 

Therefore, it can be concluded that for this test case 
acceptable results are obtained. This was expected 
since the test case was carried out before in the 
past. However, for future purposes the results 
cannot be used since the ZEN solver has severe stability problems with a very low Mach number of the 
free stream. Therefore, another test case is considered to provide usable data for the aeroacoustic analysis 
of chapter 5. 

 

4.2.3. Prop-rotor test case 
This paragraph describes the simulations done on a classified 
prop-rotor geometry in forward flight. The choice for this test 
case was made because of the fact that the blades are more 
similar to a helicopter rotor than more common lower aspect 
ratio propeller blades and therefore good results are expected. 
On the other hand, more complex features like a variable 
chord are present in the geometry that make the investigation 
more interesting. 

A simulation of RAMSYS has been performed on the fictional 
helicopter rotor geometry.  Relevant test data is displayed 
below: 

Prop- rotor geometrical properties 
Tip radius:    3.70 m 
Hub ratio:    0.108 
Number of blades:   4 

Prop-rotor test conditions 
Free stream Mach number:  0.303  
Rotational speed:   426 rpm 
Advance ratio:    1.958 

figure 89: HELI_AD radial velocity profiles 
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Free stream pressure:   97753 Pa 
Free stream density:   1.19 kg/m3 

Angle of incidence α:   0° 
 
 
The steady run in ZEN is done on the grid displayed in the next paragraph. The convergence history is 
plotted below: 

 
figure 90: Steady Prop-rotor ZEN convergence plot 

Mesh 
The grid used for the fictional helicopter is a modified version of the grid presented in paragraph 3.1.3, to 
include the hub ratio specification of the prop-rotor. Also it has twice as many cells in radial direction for 
improved accuracy. Details are shown below. Note that this is the coarse grid; the dense grid has twice as 
many cells in every dimension.  
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figure 91: Prop-rotor grid block structure figure 92: Prop rotor grid(ZX-plane) showing AD location 

  

 

figure 93: Prop rotor grid(ZY-plane) showing AD location 
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Conversion results: 
For validation of the conversion, again the velocity profile evolution in downstream direction is examined. 
At different axial positions, from both the steady ZEN and time averaged RAMSYS simulation velocity 
profiles are extracted: 

figure 94: Prop-rotor axial velocity profiles figure 95: Prop-rotor tangential velocity profiles 
 

The results are similar to the results of the fictional 
helicopter. Close to the nacelle, there is some 
difference between RAMSYS and ZEN. These 
differences indicate the effects of the presence of the 
nacelle in the ZEN simulation, which is not present 
in the RAMSYS simulation. However, again it can be 
observed from the axial velocity profiles of figure 94 
that the ZEN profiles have the right shape and the 
maximum is at the same radial position as the 
profiles obtained with RAMSYS. The same is true for 
the tangential and radial velocities depicted in figure 
95 and figure 96 respectively. Therefore, it can be 
assumed safely that the simulations for the prop-
rotor boundary condition data in ZEN give a 
coherent representation of the flow with respect to 
the RAMSYS solution of the flow field. 

  
figure 96: Prop-rotor radial velocity profiles 
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4.3. Conclusions 
From the investigation in this chapter, a number of things can be concluded: 

 The conversion interface between ZEN and RAMSYS works as expected. This means that the 
non-dimensionalization explained in appendix I,III and 0 is correct, together with axis 
orientations.  
 

 The use of an actuator disk to model a propeller/rotor using solely force coefficient data does 
not always work with satisfactory results. Why this is the case is not known. Possible causes 
for error are discrepancies, e.g. the absence of certain flow features in ZEN, or faulty RAMSYS-
simulation output. This needs to be further investigated in the future. 

 
Therefore, the use of the converted RAMSYS data should always be checked and validated. 
 

 The HELI-AD investigation shows satisfactory compliance with RAMSYS simulation results. 
The same is the case for the Prop-rotor geometry. It should be noted that close to the 
nacelle/hub, values are slightly off. This is due to a difference in method between RAMSYS and 
ZEN near the nacelle/hub. To properly check the results and for the sake of scientific rigor, 
RAMSYS simulations should be conducted with proper nacelle/hub geometry. Because of the 
limited time available for the investigation, this is recommended to do in future investigations. 
 

 The Prop-rotor geometry is found suited for future investigation, because the test involves 
forward flight. All the aero-acoustic tests will be done on this geometry.  



64 
 

Summary of results so far 
Before the investigation into aero-acoustics begins in the next chapter, a short recap of conclusions 
regarding (U)ZEN is displayed below: 

On steady ZEN: 
 In steady ZEN, the simulation works as expected. The influence of the grid density is visible in the 

results and complies with the spatial scheme accuracy. 

On unsteady ZEN: 
 As was predicted, the use of unsteady ZEN introduces two effects in comparison with steady ZEN:  

 
1. the increase of total enthalpy in the flow. 
2. the decrease of total pressure due to artificial dissipation. 

The second effect is found to be very small, even neglible. The first effect is larger, but since this is 
a physical phenomenon this is not considered an error.  

 With the  specified, the mean flow of the unsteady simulations shows overall good compliance 
with the steady flow solution and the method is validated. 
 

 With the tests conducted, any statements about the influence of the shape of the unsteady 
distribution are inconclusive. What can be concluded is that a too concentrated distribution will 
result in higher gradients and more artificial dissipation thus lesser accuracy.  No statements can 
be made about the assumption that the distribution should incorporate physical properties of the 
blades. To find an optimum in the magnitude of  , comparison should be made between unsteady 
ZEN results and experimental data. The present distribution definitions give satisfactory results. 
 

 The generation of difference plots shows a small defect due to interpolation between mesh blocks. 
This effect should be kept in mind in the aero-acoustic investigation. 
 

On the RAMSYS to ZEN conversion: 
 The conversion is validated for two geometries. The cause of the erroneous flow field results of the 

APIAN geometry is unknown. Therefore when using the method, a flow field comparison between 
ZEN, RAMSYS and preferably experimental data should always be made to check for coherence. 
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5. Aeroacoustics 
With the results from UZEN of the prop-rotor test case, it is possible to make an aero-acoustic analysis of 
the noise generated by the test case. This will be done in this chapter. In the first paragraph, a small 
introduction on the theory used is included. In paragraph two the test setup will be described, together 
with a description of the input files and parameters used. Furthermore, the third paragraph contains the 
results of the aero-acoustic simulation of the UZEN results. This paragraph will be divided into a number 
of subparagraphs, each one containing a specific comparison. Finally, the fourth paragraph contains the 
observations and conclusions that can be made from the investigation. 

5.1. Ffowcs Williams-Hawkings analogy 
For aero-acoustic predictions, there are two strategies that can be adopted. One is based on the 
Computational AeroAcoustic approach, the other is based on the integral formulations. The CAA approach 
predicts the acoustic fluctuations using classical CFD methods with high accuracy numerical schemes. For 
this method to be cost effective, the approach is limited to near-field predictions. On the other hand, with 
integral formulations it is possible to propagate near field fluctuations to the far field at computational 
cost which  doesn’t depend on observation distance.  

Combining these strategies leads to a hybrid approach using acoustic analogies. The acoustic analogy-
approach is based on the ideal assumption that the sources of sound generation can be separated from its 
propagation in the physical domain. Therefore, the governing equations are rearranged in a form of the 
wave equation, where all the terms not included in wave propagation are gathered in the right hand side 
of the equation as source terms. The first model of this approach was proposed by Lighthill. (Lighthill, 
1952). Later on, this model was extended by Ffowcs Willams and Hawkings (Ffowcs Williams J. E., 1969). 
The Ffowcs Williams-Hawkings(FW-H) approach is the most appropriate analogy for understanding the 
mechanisms involved in the generation of aerodynamic sound from bodies in complex motion, which is 
the case in predictions of rotor noise. A short description of the analogy is given below. For a more 
detailed derivation of the analogy, the reader can resort to appendix V.  

5.1.1. Theory 

Consider a control surface  , 0f x t 


 with a 

boundary that moves with velocity  ,v x t 
. 

Furthermore, the surface is defined such that f n 


, where n  is the unit normal vector that points out of 
the surface. The flow field enclosed by this surface (

0f  ) can be replaced by a quiescent fluid 
combined with a surface distribution of sources that 
the restore the conservative character of the field. 
This allows us, after some manipulations described 
in appendix V, to write the linear conservation 
equation of mass and momentum as: 
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 (4.1) 

where  0    ij ij ijP p p  is the compressive stress tensor and 0ij ij ijP P p    is the perturbation stress 

tensor. Furthermore, subscript n denotes the velocities normal to the integration surface S and ( )f
denotes the Dirac delta function. Rearranging these equations leads to the Ffowcs Williams-Hawkings 
equation for a permeable surface: 
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where: 
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
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   (4.3)
 

And where 

  2
0ij ij i j ijT P u u c        (4.4) 

is Lighthill’s equivalent stress tensor. Assuming sufficiently small perturbations in the medium, the 
solution of the pressure perturbations of this equation is again derived in appendix V.I, and can be written 
in a compact way as: 

 ( , ) ( , ) ( , ) ( , )Q L Tp x t p x t p x t p x t     
   

 

which describes that the pressure perturbations are divided into 3 components, namely the thickness 
noise Qp , the loading noise Lp and the quadrupole noise term Tp . The loading term accounts for the 

unsteady loading exerted by the body on the fluid, while the thickness term accounts for the displacement 
of fluid produced by the moving body. Furthermore, the quadruple noise term accounts for all the flow 
non-linearity in the exterior of the control surface where 0f  . 
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5.2. Test setup 
The simulation software used was written by Damiano Casalino and it can be configured in multiple ways. 
This enables us to make a comparison between the aero-acoustic predictions using UZEN aerodynamical 
results as input and the aero-acoustic predictions of an actual rotating geometry in a flow. The input of 
this rotating geometry can be specified using RAMSYS output data, which consists of the surface of a 
propeller with local pressure values for a specific number of time steps, generating thickness and loading 
noise. Since RAMSYS was also used to construct the boundary conditions for UZEN, this enables us to 
investigate the influence of the CFD approach on the final aero-acoustic result.  

The UZEN simulation output is used as the boundary condition data for the aero-acoustic code by 
exporting a permeable surface around the propeller for every computational time step and using it as 
input for the corresponding time step in the aero-acoustic code. This permeable surface remains 
stationary in time. On this surface, local pressure, density and velocity distributions are defined for each 
specific time step which are regarded by the code as a source distribution representing the interior of the 
surface. This distribution logically changes every computational time step and hence simulates the 
rotating rotor being present in the flow field of the aero-acoustic simulation.  

An example of such a surface is depicted in figure 97 and figure 98. In these particular figures, the 
pressure distribution is depicted, and clearly the influence of the four-bladed rotor present can be 
observed. 

 
 

figure 97: extruded surface from UZEN solution(front) figure 98: extruded surface from UZEN solution(back) 
 

As a guideline, the distance of the surface with respect to the actuator disk is chosen to be about one 
average chord length from all sides. The influence of this choice will be analyzed further on in the 
investigation.  
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Finally, to measure the resulting acoustic output in the far field, microphone carpets with specific size, 
position and orientation are defined. The choice made in this investigation is depicted in figure 99, and 
consists of a carpet parallel to the flow and a carpet downstream of the surface orientated parallel to the 
flow. Both carpets are located sufficiently far from the surface to find far field acoustic data. In future 
references to the carpets, carpet 1 denotes the carpet that is positioned parallel to the flow direction and 
carpet 2 refers to the carpet positioned in the wake, orientated perpendicular to the flow direction 

 
figure 99: Test setup in the aeroacoutic code 

 

The test is relatively simple in nature. Although the input data comes from unsteady CFD simulation, the 
velocity of rotation of the rotor will be constant, and so a steady harmonic solution is expected. Because 
the solution is simple in theory this is highly useful since any effects that the usage of UZEN, e.g. the 
unphysical presence of non-linearity, will become apparent. The downside of this method is that because 
the test is simple, more complex aero-acoustic phenomena like the effect of a non-axisymmetrical nacelle 
geometry on the acoustic field, will be beyond the scope of the investigation. Since this is an investigation 
into the effects that emerge using a CFD code like UZEN in the FW-H code, this is not a problem. 
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5.3. Results 

5.3.1. Tests conducted 
In this aero-acoustic analysis, a number of tests are conducted. These tests are listed below, together with 
their intended objective. 

Test Goal 
 Coarse vs. dense grid:  To investigate the effects of accuracy of the CFD 

solution. 
 Δ vs. Δ/2 distribution:  

 
o Coarse vs. dense grid: 

 

 To investigate the effects of the unsteady 
distribution BC profile 
o To investigate the effects of accuracy of the CFD 

solution on this subject. 
 Guideline surface vs. nearer 

surface: 
 To investigate the influence of the surface distance 

from the actuator disk 
 Guideline surface vs. 

guideline surface without 
wake surface: 

o Coarse vs. dense grid: 
 

 To investigate the influence of the wake on the 
accuracy of the aero-acoustic analysis. 
 
o To investigate the effects of accuracy of the CFD 

solution on this subject. 
 

5.3.2. Reference: RAMSYS input data 
Depicted below are the resulting microphone carpets from the aero-acoustic simulation done with the 
RAMSYS input data. The output of the steady harmonic test case is as expected and consists of the 
unsteady loading (loading noise) and moving geometry (thickness noise) that generate the acoustic noise, 
hence the emerging dipole profile of the sound pressure levels on the microphone carpets. This result will 
be used as a reference. 

  
figure 100: Carpet 1, RAMSYS-input figure 101: Carpet 2, RAMSYS input 
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5.3.3. Coarse vs. dense grid solution: 
In the plots below, the coarse grid output of UZEN is used as aero-acoustic input data. 

  
figure 102: Carpet 1, coarse mesh input, Δ figure 103: Carpet 2, coarse mesh input, Δ 

 

Furthermore, the resulting microphone carpets of the aero-acoustic analysis using the dense grid UZEN-
solution as input data is displayed in figure 104 and figure 105. 

  
figure 104: Carpet 1, dense mesh input, Δ figure 105: Carpet 2, dense mesh input, Δ 
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What can be observed immediately is the large deviation of local sound pressure levels of the aero-
acoustic run with coarse grid input data which renders this data practically unusable. The situation 
dramatically improves with the dense grid input data, but still on the downstream microphone carpet, a 
quadrupole-like profile is present, together with the maximum value in the center indicates unphysical 
non-linearity is generated. This effect can be caused by multiple reasons, discussed in paragraph 5.4.1. For 
further analysis, the frequency spectrum can be investigated as well: 

 
figure 106: frequency spectrum comparison on carpet 1 

 

 
figure 107: frequency spectrum comparison on carpet 2 
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In figure 106, which displays data from a microphone near the center of the carpet parallel to the flow, we 
see that the first harmonic at 4 * 7.1 rps=28.4Hz is matched accurately by the aero-acoustic results both 
the coarse grid and dense grid input. The dense grid also models the second mode with reasonable 
accuracy, but higher modes are not properly found; High frequency noise is taking over. What is positive 
about the results is that at least the first 3 harmonics of the UZEN input results are present at the proper 
frequency. Looking at figure 107, which displays data from a microphone near the center of the carpet 
perpendicular to the flow direction, we see that the first harmonic is again properly simulated by coarse 
and dense UZEN solution input data. However, all higher frequency modes are not captured with sufficient 
accuracy. This decrease of accuracy downstream of the accuracy hints to an influence of the wake on the 
aero-acoustic solution.  

Together with the frequency spectrum, a comparison can be made of the signal on both carpets. figure 108 
shows the results on a microphone placed on the carpet perpendicular to the flow. Results show large 
noise peaks because of second mode error for the simulation with coarse grid input data. The effect is 
reduced in the plot of the simulation with dense grid input, where the noise due to the second mode is 
significantly reduced and the noise is due to higher frequencies. The results from a microphone situated 
on the carpet parallel to the flow, depicted in figure 109 show the same effects, but further increased in 
magnitude. 
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figure 108: Signal comparison on carpet 1 

 

 
figure 109: Signal comparison on carpet 2 

 

  



74 
 

5.3.4. Δ vs. Δ/2 distribution solution 
Below, the results with UZEN input using the alternative BC distribution are displayed, for both the coarse 
and dense grid. 

 
figure 110: Carpet 1, coarse mesh input, Δ/2 figure 111: Carpet 2, coarse mesh input, Δ/2 

  

 
figure 112: Carpet 1, dense mesh input, Δ/2 figure 113: Carpet 2, dense mesh input, Δ/2 

 

As was found in the investigation of the CFD solution, decreasing the value of Δ in the unsteady BC-
distribution leads to larger errors in the UZEN output. This observation is consistent with figures 102 to 
105. When figures 110 to 113 are compared to figures 102 to 105 we see a decrease in accuracy regarding 
the distribution of sound pressure levels for both the dense and the coarse grid input. Also, the magnitude 
of sound pressure levels of the aero-acoustic simulation with coarse grid input deviates more with respect 
to the dense grid input which is again consistent with our previous observations regarding CFD mesh 
density. 
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figure 114: frequency spectrum comparison on carpet 1 

 
From the frequency spectrum plot of figure 114 which displays a microphone close to the center on the 
carpet parallel to the flow direction, it can be concluded that indeed high frequency noise is present with 
larger amplitude for smaller Δ of the unsteady BC distribution in UZEN. Nevertheless, the first harmonic of 
the UZEN input data is again properly simulated. This result is also present in figure 115, which 
represents the frequency spectrum recorded by a microphone on the carpet perpendicular to the flow 
direction, which was already found to be quite inaccurate. After about 100Hz, the amplitude of the noise 
goes up with respect to the simulation with original delta size. 

 
figure 115: frequency spectrum comparison on carpet 2 
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5.3.5. Guideline surface vs. nearer surface  
To test the influence of the chosen surface enclosing the actuator disk data from the UZEN output, a test 
was made with an alternative surface which is at half the distance from the actuator disk with respect to 
the guideline surface. Aero-acoustic results are shown below: 

  
figure 116: Carpet 1, coarse mesh input, Δ, alt. surface figure 117: Carpet 2, coarse mesh input, Δ, alt surface 

  
figure 118: Carpet 1, dense mesh input, Δ, alt surface figure 119: Carpet 2, dense mesh input, Δ, alt surface. 

 

The results look reasonably similar to the results with the standard surface, displayed in figures 102 to 
105. An analysis in the frequency spectrum is needed to clearly tell the influence. 
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figure 120: frequency spectrum comparison on carpet 1 

 
figure 120 displays a microphone close to the center of the carpet parallel to the flow direction. When 
closely inspecting the higher frequency spikes of the dense grid input from 100Hz upwards, it can be 
observed that the peaks have a slightly higher magnitude. In the lower frequencies, this effect is not 
present. A possible reason for this small high frequency difference is likely due to numerical oscillations. 
Close to the actuator disk, the sudden discontinuity in momentum is not yet sufficiently smoothed out. The 
same phenomenon is occurring on the microphone carpet perpendicular to the flow direction. The 
microphone capture is displayed in figure 121. 

 
figure 121: frequency spectrum comparison on carpet 2 
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Another test has to be done with a surface further away from the geometry than the guideline in order to 
check if the guideline distance is actually a proper one. This test however was not done because of the 
limited time available for the project. It should be noted that the further away from the actuator disk, the 
numerical solution will show an error due to artificial dissipation. This justifies in some way that the test 
has not been done. Nevertheless, the test should be conducted in the future so statements can be made. 
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5.3.6. Guideline surface vs. guideline surface without wake surface 
From the tests of paragraph 5.3.3, it was noticed that the microphones on the carpet parallel to the flow 
perform better than those that are placed on the carpet in the wake. The effect of the wake in open rotor 
noise predictions is a general cause for concern as was found by e.g. (Farassat, 2010), because it is difficult 
to precisely balance the non-linearity with sources on the wake surface. Therefore, a test was conceived 
with the same surface as the one used in the test of paragraph 5.3.3, however, without a wake surface 
present. Results are shown below. 

  
figure 122: Carpet 1, coarse mesh input, Δ, no wake surf. figure 123: Carpet 2, coarse mesh input, Δ, no wake surf. 

  

  
figure 124: Carpet 1, dense mesh input, Δ, no wake surf. figure 125: Carpet 2, dense mesh input, Δ, no wake surf. 
 

This result is the best so far. Even the aero-acoustic run with the coarse grid UZEN input gives quite a 
proper SPL distribution on both carpets, even though overall SPL levels are about 10dB too small on the 
carpet parallel to the flow displayed in figure 122. The SPL levels of the run with the dense grid UZEN 
input are quite accurate. What is remarkable though is the pattern of low SPL levels on the microphone 



80 
 

carpets located in the wake. Since the actual wake surface is gone, this points to a general error in the CFD 
solution. This phenomenon is very likely a result of interpolation between mesh blocks, as was discussed 
in paragraph 3.3.3. Further investigation on this phenomenon is needed. However, a large amount of non-
physical non-linearity is removed by excluding the wake surface, which is illustrated by the absence of the 
maximum in SPL in the middle of the wake. 

 
figure 126: frequency spectrum comparison on carpet 1 

 

In figure 126, which again displays the capture of a microphone located close to the center of the carpet 
parallel to the flow direction. The effect of the missing wake surface results in the large reduction of noise 
on the simulation with coarse grid input in frequencies in the region higher than 100 Hz. This leads to a 
very small difference between the simulation with the dense grid input, from which can be concluded that 
the large errors found in the original simulation with coarse grid input in paragraph 5.3.3 are a result of 
the inability of the wake surface to balance flow field quantities in an accurate way.  

An even more dramatic increase in accuracy is displayed in figure 127. In this figure, a microphone in the 
center of the carpet in the wake of the actuator disk is displayed. Also visible is the accuracy difference 
between the simulation with coarse and dense grid input, because the sound pressure levels in the 
frequency domain around 200 Hz are slightly larger for the coarse grid input. 

All in all, it can be concluded that the effect of removing the wake surface significantly increases accuracy 
of the simulation with coarser grid input to the point where its use is more or less viable. It should be 
noted that overall sound pressure levels on the carpets are off by 10dB.  
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Also, since removing the wake surface brings the solution of the simulation with dense and coarse grid 
input closer together, the result hints to an intrinsic error in the CFD solution. There are a number of 
possible reasons for this, summed up in the next paragraph. 

 
figure 127: frequency spectrum comparison on carpet 2 
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5.4. Conclusions 
From the observations in the results from the tests in chapter 5.3 it is possible to draw a number of 
conclusions. Before this can be done however, a number of possible error sources should be pointed out 
as well. This is done in the paragraph below. 

5.4.1. Possible error sources in the CFD output 
As was observed in paragraph 5.3.6, removing the wake surface increases accuracy. However, high 
frequency errors still remain for both the coarse and dense grid UZEN input. Possible errors for this might 
lie in the CFD solutions used as input data. Listed below are possible reasons that contribute to this error: 

 As was found in the investigation of the CESAR test case, there is a mesh inconsistency at the 
nacelle which results in a non-axisymmetrical flow near the nacelle. 

 Because of time shortage in the project, the nacelle was not modeled in the RAMSYS simulation of 
the prop rotor. This inconsistency in the test might have a negative effect in the analysis accuracy. 

 In the analysis of the unsteady ZEN simulation of the CESAR test case, it was found that there is an 
error caused by the interpolation between the blocks of the mesh. (paragraph 3.3.3) The error of 
interpolation is consistently visible on the microphone carpet perpendicular to the flow direction 
for all simulations that have some degree of accuracy. 

 The UZEN simulation is not completely accurate as can be seen from the convergency plots in 
paragraph 3.3. The solution is oscillating.  

5.4.2. Conclusions from observations 
Keeping in mind the possible inaccuracies caused by using a CFD simulation as input data, there are some 
conclusions that can be made from the tests of chapter 5.3. These conclusions are summarized below. 

From paragraph 5.3.3:  

 Only the first harmonic mode is simulated with sufficient accuracy for both the dense and coarse 
grid input.  

 Overall SPL levels are more or less correct of the simulation with dense grid input, in contrast to 
the coarse grid input simulation. 

 The unphysical non-linearity present is illustrated the most by the maximum value of SPL in the 
center of the wake carpet, rendering the use of this simulation for accurate analysis undesirable. 
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From paragraph 5.3.4: 

 Decreasing the Δ in the unsteady ZEN BC distribution leads to larger errors in the CFD solution 
due to higher gradients in momentum, which is consistently followed by an increase of unphysical 
non-linearity. These are represented by the more inaccurate distribution of SPL on the 
microphone carpets and the stronger HF peaks in the frequency spectrum for both tests. From 
this, it can be concluded that for the sake of accurately modeling a rotor in unsteady ZEN, it is 
undesirable to use a very dense local distribution of force coefficients in the boundary conditions.  

From paragraph 5.3.5: 

 Decreasing the distance of the FW-H surface with respect to the actuator disk results in the 
capture of not sufficiently smoothed out gradients in the flow near the actuator disk. The result of 
this is the growth of HF(100Hz+) noise peaks. Therefore, it can be concluded that the distance of 
the surface should be sufficiently far away from the actuator disk. 

From paragraph 5.3.6: 

As can be found in literature, the influence of the wake surface can impose unphysical non-linearity in the 
flow, resulting in an inaccurate aero-acoustic result. This is consistent with the results found in the tests 
done without the wake surface. Non-linearity decreases significantly and this results in: 

 The absence of the maximum value of SPL in the middle of the wake 
 Accurate simulation of the first two harmonic modes on both carpets using dense grid UZEN input 

data. 
 The accurate SPL distribution and magnitude using the dense grid UZEN input on the surface 

parallel to the flow direction 

5.4.3. Concluding remarks on the use of UZEN as input data for the FW-H code 
Overall, it can be concluded that with the use of UZEN input data in the FW-H code is a feasible approach 
since results are consistently agreeing with the level of accuracy of the UZEN output. It should be noted 
that for the practical approach of estimating SPL and harmonic modes, a sufficiently accurate CFD 
simulation should be used, e.g. the UZEN result on the dense grid.  

However, the rigor of the investigation is somewhat lacking. There are a number of tests that should be 
conducted in the future to construct definitive guidelines for the construction of the FW-H surface, as well 
as construction of the unsteady BCDAT used in UZEN.  These tests are listed in chapter 7. The reader will 
also note that very few quantitative statements are made. This is the case because the present 
investigation was done purely with a qualitative objective, namely to see if the interface between UZEN 
and the FW-H code produces feasible results. In order to produce quantitative results, first and foremost, 
the existing errors in the CFD solution listed in paragraph 5.4.1 should be reduced. Because of the limited 
time span of this project, this investigation is left to future research.  
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6. Summary of project conclusions 
In this chapter, the conclusions found in the investigation are compactly summarized.  

Unsteady ZEN 
The unsteady ZEN results for the CESAR test case show good coherence with the steady ZEN result, based 
on time averaged flow field quantities. Therefore, the chosen method of boundary condition distribution is 
a good initial guess.  

Decreasing the magnitude of  increases flow field quantity gradients resulting in a decrease of total 
pressure due to artificial dissipation in the Euler flow simulations. Furthermore, the more concentrated 
distribution of boundary condition data increases the total temperature in the flow through a physical 
phenomenon. 

RAMSYS to ZEN data conversion 
The conversion between RAMSYS and ZEN using three components of local force coefficients works, but 
not for every blade geometry. Therefore when employing the method, the time averaged flow field 
solutions of both approaches should be compared for validation, favorably together with experimental 
data, in order to establish whether or not the conversion results in realistic ZEN-simulation results. 

Ffowcs Williams-Hawkings analysis 
From the results of the aero-acoustic simulations it can be qualitatively stated that the unsteady Euler 
simulation results from ZEN can be used as input data for the FW-H code. However, it should be taken into 
account that the wake surface of the input data is a source of a lot of noise. When this is considered and 
circumvented, the first two harmonics and overall sound pressure levels can be estimated with good 
accuracy using sufficiently accurate input data when simulations are performed with the current choice 
for input data. 

Overall, the main goal of the project was to investigate the feasibility of using unsteady ZEN simulation 
results as input data for aero-acoustic analysis. After the investigations that were done in the project, it 
can be stated with some certainty that the approach is indeed feasible. This report should be viewed as a 
first investigation in the possibility of using this approach. For a more conclusive statement, a number of 
additional tests should be performed to obtain to increase the scientific rigor of the current investigation. 
Recommended tests are listed in the following chapter. Ultimately, a test case should be devised to create 
the possibility to compare the results of UZEN and the aero-acoustic results with experimental data in 
order to make proper quantitative statements about the approach. 
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7. Recommendations 
After the tests in the project were devised and conclusions were formulated, it was found that a number of 
tests were missing. Without these tests it is very difficult to make proper statements about the feasibility 
of the approach that was investigated with full scientific rigor. However, due to the limited time in which 
the investigation was performed, it was not possible to include these tests in the report. The suggested 
tests are listed below for future study:  

UZEN: 
All simulations should be performed again on a grid that is both absolutely axisymmetric and has just one 
block in tangential direction to limit the inaccuracy caused by interpolation between blocks. The current 
flow field results show a small contribution of both effects, where the latter is also clearly visible in the 
aero-acoustic results. 

Unsteady boundary condition distribution 
A third test should be performed with a larger  than the value that results from the chosen guideline. 
Together with experimental data, this should answer the question whether or not the unsteady boundary 
condition distribution should incorporate geometrical features of a blade and/or what the optimum value 
for  should be for a given blade/rotor geometry. 

In future research, different approaches of boundary condition distribution should also be investigated. 
The current triangle distribution can perhaps be replaced by a more accurate and realistic distribution. 

RAMSYS to ZEN conversion of force coefficient data 
In the report a problem was found in the usage of force coefficient data of the APIAN propeller geometry. 
The resulting flow fields of ZEN and RAMSYS show large differences. Why the approach works for a 
generic helicopter blade and a generic prop-rotor blade, but fails to give satisfactory results in the APIAN 
case should be investigated in future studies.  

Aero-acoustic analysis 
With the errors in the aerodynamic solution reduced as proposed, the aero-acoustic simulations should be 
performed over again. Very likely the aero-acoustic results will be more accurate for all tests, given that a 
sufficiently dense grid is used in the aerodynamic simulations. 

Furthermore, since it was discovered that the wake surface generates significant noise, different 
configurations of input data surfaces should be investigated. More specifically a surface that has little to 
no surface geometry that is perpendicular to the flow direction. An example of this is a cone-like surface 
that is widely adopted in the analysis of jet wakes. 

Overall 
The main goal of an investigation into the applicability of integrating UZEN results and the FW-H code is 
to make qualitative and quantitative statements about the approach and its accuracy. To make 
quantitative statements, a test case should be devised that includes the capability to compare the results 
with experimental data in order to do this. 
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Appendices 
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I. The Jameson scheme 
The ZEN flow solver is based on a finite volume approach which is a Jameson-like quasi second order 
accurate cell centered method. Because higher order central difference methods are generally very 
unstable for Euler flows, stability is ensured using artificial dissipation. To illustrate where the dissipative 
terms show up in the numerical scheme, as well as to show the accuracy of the method, the scheme is 
explained below. Consider inviscid Euler flow for two spatial dimensions: 

 
   2 21 ;
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In integral form, the Euler equations then are: 
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Consider a grid cell depicted in figure 128. The equation for a single cell is: 

  d hw Qw
dt

  

Where h is the surface of the cell and Q is the flux velocity. Let kx and ky be the increments in x and y 
direction along side k of the cell. Then the flux balance over the cell for e.g. x-momentum is: 
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Each numbered quantity is an average between cells. For instance: 
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In this way the finite volume method is further constructed, which reduces to a second order accurate 
central difference scheme. Because it is generally known that such a scheme is unstable, measures have to 
be taken to prevent even-odd coupling and the growth of wiggles in high pressure gradient wiggles. A 
good way to do this for Euler flow is to introduce artificial dissipation. Therefore, we rewrite the equation 
for a single cell as: 

figure 128: depiction of single cell 
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   0d hw Qw Dw
dt

    (1.3) 

In this equation, D is the dissipative operator, which is a blend of 2nd and 4th order differences that depend 
on local pressure gradients. As an illustration on how it is defined, consider the density equation: 

 x yD D D     (1.4) 
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The terms on the right hand side of the equation all have a similar form: 
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The coefficients in this equation are adapting to the flow using a pressure sensor. They are defined in the 
following way. First, we define the pressure sensor: 
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Then: 

   (2) (2) (4) (4) (2)
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Where the value for the constants (2) and (4) is typically: 

 (2) (4)1 1;
4 256

    

Now, if we analyze the steps defined above, we notice that (2) is because of the central difference of order 
2( )O x , while (4) is of order (1)O . Since there are solely undivided differences between brackets in 

equation (1.6) and the incremental surface 1/2,i jh  is ( )O x , the difference operator D is 3( )O x accurate. 

Otherwise when the flow isn’t sufficiently smooth, i.e. shock waves are present, the pressure sensor will 
become of (1)O and the scheme will behave locally as a first order scheme. 
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II. Definition of ZEN AD force model input data 
The actuator disk BCDAT for the force model contains the 
non-dimensional force coefficients 

 : local thrust coefficient per unit radiusadC
dr

 

 : local power coefficient per unit radiuspdC
dr

 : local radial force coefficient per unit radiusrdC
dr

 

Where r  is the non-dimensional radius / tipr R . 

These coefficients are acting in the direction illustrated in figure 129 and defined using the non-
dimensionalization of thrust, power and radial force proposed by Renard, in the following way. 

II.I. Local thrust coefficient per unit radius: 
The non-dimensional thrust coefficient is defined by Renard as(see nomenclature for symbol definitions): 

 2 4a
TC
n D

  (2.1) 

Where T  is the thrust produced by N  blades together, therefore: 

 bladeT NT  (2.2) 

Substituting this into the definition of the trust coefficient leads to: 

 2 4  blade aNdT n D C   (2.3) 

or: 

 
2 4

blade adT dCn D
dr N dr

  (2.4) 

 
2 4

blade adT dCn D
dr N dr

   (2.5) 

Using the definition of the advance ratio /J V nD  this becomes:  

 
2 2

2 ( / )
blade adT dCV D

dr NJ d r R
    (2.6) 

figure 129: ZEN axis definition, force from AD to 
fluid 
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2

2 2
a bladedC dTNJ

dr V D dr 

  (2.7) 

II.II. Local power coefficient per unit radius: 
The non-dimensional power coefficient defined by Renard is defined as(see nomenclature for symbol 
definitions): 

 3 5p
PC
n D

  (2.8) 

Where p  is the power produced by N  blades together, therefore: 

 bladeP NP  (2.9) 

Substituting this into the definition of the power coefficient leads to: 

 3 5  blade pNdP n D C  (2.10) 

or: 

 
3 5

pblade
dCdP n D

dr N dr
   (2.11) 

/bladedP dr  can also be written as: 

 

 2 bladedFnrR
dr
  

Furthermore, using the definition of the advance ratio /J V nD   equation (2.11) can be rewritten as 

 
2 3

22 pblade dCdF nV DnrR
dr NJ dr
      (2.12) 
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   (2.13) 
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II.III. Local radial coefficient per unit radius: 
The non-dimensional radial force coefficient is defined by Renard as (see nomenclature for symbol 
definitions): 

 2 4
R

r
FC
n D

  (2.14) 

Where RF  is the radial force produced by N  blades together, therefore: 

 R RbladeF NF  (2.15) 

Substituting this into the definition of the radial force coefficient leads to: 

 2 4  Rblade rNdF n D C  (2.16) 

or: 

 
2 4

Rblade rdF n D dC
dr N dr

  (2.17) 

Using the definition of the advance ratio /J V nD   this becomes:  

 
2 2

2
Rblade rdF V D dC
dr NJ dr
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III. RAMSYS output conversion 
The non-dimensional RAMSYS output data in the tip path plane frame of reference is defined as:  

2
N lC M  :  local force coefficient in normal direction multiplied by the local Mach number squared. 

 2
A lC M :  local force coefficient in chordwise direction 

multiplied by the local Mach number squared. 

2
Y lC M  :  local force coefficient in spanwise direction 

multiplied by the local Mach number squared. 

where /l lM V a  and lV  is the local tangential velocity of the 
blades. Note also that these are coefficients of the forces acting 
from to fluid to the blade and act in the direction illustrated in 
figure 130. They are transformed to the desired output in the 
following way: 

III.I. Local force coefficient in normal direction 
The local normal force coefficient is defined as: 

 
21 ( ) 

2

N

l

dNC
V c r dr

  (3.1) 

Where dN  is the normal force on the blade segment in [N], lV  is the local tangential velocity  in [m/s], c  

is the local chord length in [m] and dr  is the length of the blade segment in spanwise direction in [m]. The 
tangential velocity for this simplified case is equal to: 

 lV r  (3.2) 

Where   is the rotational velocity of the propeller in [rad/s]. Equation (3.1)can be rewritten to: 

 21 ( ) 
2 l N

dN V c r C
dr

  (3.3) 

Which can conveniently be rewritten using the definitions of the Mach number and the speed of sound: 

    2 21 1   
2 2N l N l

dN c C M P c C M
dr

     (3.4) 

This expression uses the RAMSYS output data parameter 2
N lC M . Furthermore: 

  21  
2

blade
N l

dT dN R P c C M R
dr dr

    (3.5) 

figure 130: RAMSYS TPP axis directions, force 
from fluid to blade 
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III.II. Local force coefficient in chordwise direction 
The local force coefficient in chordwise direction is defined as: 

 
21  

2

A

l

dAC
V c dr

  (3.6) 

Where dA  is the local force coefficient in chordwise direction of a blade segment in [N], lV  is again the 

local tangential velocity  in [m/s], c  is the chord length in [m] and dr  is the length of the blade segment in 
spanwise direction in [m]. Equation (3.6)can be rewritten to: 

 21  
2 l A

dA V cC
dr

  (3.7) 

This again can conveniently be rewritten using the definitions of the Mach number and the speed of 
sound: 

    2 21 1   
2 2A l A l

dA c C M P c C M
dr

     (3.8) 

This expression uses the RAMSYS output data parameter 2
A lC M . Furthermore: 

  21  
2

blade
A l

dF dA R P c C M R
dr dr
     (3.9) 
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III.III. Local force coefficient in spanwise direction 
The local force coefficient in spanwise direction is defined as: 

 
21  

2

Y

l

dYC
V c dr

  (3.10) 

Where dY  is the local force coefficient in spanwise direction of a blade segment in [N], lV  is again the 

local tangential velocity  in [m/s], c  is the chord length in [m] and dr  is the length of the blade segment in 
spanwise direction in [m]. Equation (3.10)can be rewritten to: 

 21  
2 l Y

dY V cC
dr

  (3.11) 

This again can conveniently be rewritten using the definitions of the Mach number and the speed of 
sound: 

    2 21 1   
2 2Y l Y l

dY c C M P c C M
dr

     (3.12) 

This expression uses the RAMSYS output data parameter 2
Y lC M . Furthermore: 

  21  
2

Rblade
Y l

dF dY R P c C M R
dr dr

    (3.13) 
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IV. Axis directions 
Before the local force coefficient in normal, chordwise 
and spanwise direction can be converted to ZEN AD 
force model data, the definition of the used frames of 
reference have to be investigated in order to ensure  
correctness of the signs. This investigation is done in 
this paragraph. 

IV.I. ZEN AD-axis directions (from biprop.f) 

Consider an actuator disk located at  0cx 


. The unit 

vector perpendicular to the disk is (1,0,0)A 


 and 
points downstream, i.e. along the x-axis. The vector 
directions are determined in the following way: 

First, define the vector O


: 

2

2 2
0,   ,   O AA

O O O
AA A

z zxy z x
xy z


   


 

Then, define the vector D


: 

 D A O 
 

 

Furthermore, the radial vector is calculated as ( ) /c cR x x x x  
    

. The tangential vector is defined as 

T R A 
 

. This result in the vector directions depicted in figure 131, in which (1,0,0)A 


. These vectors 
can be used to define the starting point and the direction of ψ. In order to do this, define: 

 
   

min(1.0,max( 1.0,  ))xpR R O  


 

 DR R D 
 

 

In ZEN, ψ is defined using these values as: 

 

1

1

180 cos ( )          if      0 

180360 cos ( )    if   0

xp D

xp D

R R

R R









   
  


 

So   starts at O


 and is positive in the direction depicted in figure 131.  This results in a force coefficient 
frame of reference shown in figure 129. 

  

figure 131: Construction of ZEN axis directions from  
code 
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IV.II. RAMSYS tip path plane axis directions 
The default RAMSYS output on the tip path plane consists of force coefficient data in the Cartesian frame 
of reference, depicted in figure 132. To convert this data to a local system, a transformation to polar 
coordinates with variables r, ψ and z is required, depicted in figure 133: 

  
figure 132: RAMSYS TPP force directions, Cartesian 

coordinates from fluid to blade 
figure 133: RAMSYS TPP force directions, polar 

coordinates from fluid to blade 
 

The transformation of the coefficients is done in the following way: 

 
   , ,

( , ) ( , )sin ( , ) cos
( , ) ( , ) cos ( , )sin

n z

a x y

r x y

C r C r
C r C r C r
C r C r C r

 
    
    


  
 

 (4.1)

 

Because ZEN uses force coefficients for defining the force from the blade on the fluid, another 

transformation is required:            , , ,   , , ,   , ,n n a a r rC r C r C r C r C r C r            . This 

results in the force coefficients orientation depicted in figure 134. The axis orientation in ZEN is illustrated 
in figure 135. In ZEN the force coefficient in downstream direction is positive for a propeller moving 
upstream. Because this is exactly the opposite in RAMSYS, another similar transformation has to be done: 

           , , ,   , , ,   , ,n n a a r rC r C r C r C r C r C r           . Note that after multiplying the 

coefficients twice by 1  the situation of equation (4.1) is restored, however they apply on a different FOR. 
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figure 134: RAMSYS TPP force directions, polar 

coordinates from blade to fluid 
figure 135: ZEN axis definition, force from AD to fluid 

 
 

Comparing figure 134 with figure 135 one finds that in order to make the correct force coefficient 
transformation from RAMSYS to ZEN, the following operations have to be done after the transformation to 
the polar coordinate system in order to ensure the forces to be in the proper direction: 

 ,   ,  n n a a r rC C C C C C    
 (4.2) 

  



98 
 

 

V. Ffowcs Williams – Hawkings analogy 
The following derivation is a more detailed description of the steps provided by (Casalino, 2003). 
Consider an arbitrary stationary volume V in space enclosed by a surface . Suppose the volume V is 
divided into two sub-volumes 1 and 2 by a smooth surface of discontinuity S . Let 


l be the outward 

normal from V and let 
n be the unit normal going from region 1 to region 2. The change of mass inside the 

volume is:  

 
(1) (2 )

(1) (2)    
 

    
V V V

dV dV dV
t t t

 (5.1) 

For each region: 

    
(1) (1)

(1)(1)(1)

0

( )  
 


   

   i i i i i
SV

dV u l d u v n dS
t

 

So equation (5.1) becomes: 

     (2)

(1)
  




        i i i i i

V S

dV u l d u v n dS
t

 

Applying the divergence theorem and using the fact that we are dealing with a stationary volume allows 
us to write: 

     (2)

(1)

  
  

        
 i i i i

iV S

u dV u v n dS
t x

 (5.2) 

Suppose the surface S  is defined by ( , ) 0
f x t so that  0f  is region 1 and 0f  is region 2. It is 

possible to replace the surface integral on the right hand side of the equation by a volume integral using 
the results of generalized function theory (JONES, 1966). For instance. We can use a generalized function 
that uses a volume integral containing delta functions: 

  *( ) ( ( ))


 

 
 

   

k

FF z g z dz z d
g

 (5.3) 

Where  2 2/    kg g z  and *z is a point on the surface k defined by *( ) 0g z . Here, k is the 

projection of the surface onto the plane that has its normal in k direction.   

We can use this expression conveniently because S  is defined by ( ) 0
f z , i.e. the right hand side of 

equation (5.2) is compatible.  However, we do have to multiply the integrand of this part of the equation 
by the divergence of f . After having done this, we can use expression (5.3) and find that: 
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     (2)

(1)
( )

  




     
            

 i i i
i iV

fu dV u v f dV
t x x

 

Because ( ) f is a one dimensional delta function which is zero everywhere except at 0f (which is 
contained within V ), we can take the integrand out of the integral on both sides of the equation without 
any problems to find the generalized equation for conservation of mass: 

     (2)

(1)
( )

  
  

      i i i
i i

fu u v f
t x x  (5.4)

 

 This equation implies that in order to keep the fluid in its defined state, a shell distribution of sources is 
needed. This distribution of sources has to have the same strength as the difference between the mass flux 
requirements of each region. The same procedure can be done on conservation of momentum to find the 
generalized momentum equation: 

       (2)

(1)
( )             i i j ij ij i j j

i j

fu u u P P u u v f
t x x  (5.5)

 

Where  0    ij ij ijP p p  is the compressive 

stress tensor. Note that these equations govern the 
unbounded fluid and that the source terms 
disappear if there are no discontinuities present in 
the domain. The only requirement on the 
discontinuity is that its surface has to be smooth 
and differentiable. Also note that  

Now suppose that region 1 is the interior of the 
permeable surface S  and suppose that here, the 
fluid is at rest: 

0' 0, , 0P u   


 

Also, note that / if x  in this case is the unit 
normal outward of the surface. Region 2 is the 
exterior of the surface. Equation (5.4) now 
reads: 

      0 0( ) ( )       
    

  i n n n
i

u u f u v f
t x

 (5.6) 

  

figure 136: FW-H definition overview 
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And equation (5.5) becomes: 

      ( ) ( )i ij i j ij j i n n
j

u P u u P n f u u v f
t x
          

 
 (5.7) 

Where 0ij ij ijP P p    is the perturbation stress tensor. 

We can use expression (5.6) and (5.7) to construct an expression involving the wave operator. This is 
done by taking the divergence from equation (5.7) and subtracting it from equation (5.6) after 
differentiating it with respect to t : 

 
      

 

2 2

0 02 ( ) ( ) ( )

( )

ij i j n n n ij j
i j i

i n n
j

P u u u f u v f P n f
t x x t t x

u u v f
x


      

 

                     


   

 

Rearranging leads to: 

       

     

2 2 2
2 2

0 0 0 02

0

( ) ( )

( ) ( )

n ij j ij i j
i j i i j

n n i n n
j

c v f P n f P u u c
t x x t x x x

u v f u u v f
t x

         

    

                        

 
           

This can be rewritten in a more compact way as: 

      
2

2 2
0 ( ) ( ) ij

i
i i j

T
c Q f L f

t x x x
   

          
�  (5.8) 

Which is known as the Ffowcs Williams – Hawkings equation for a permeable surface, where: 

    0
0

, 1 ,i i i i i i i ij j i n nQ U n U u u v L P n u u v 


 
        

 
 

And where 

  2
0ij ij i j ijT P u u c        

Is Lighthill’s equivalent stress tensor.  
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V.I. Solution 
For the solution of the FW-H equation, we use Green’s functions. The Green’s function G of the unbounded 

three-dimensional space is defined as ( ) /G g r , where r x y 
 

, /g t r c   , and where xand 

y represent observer and source positions respectively. Furthermore, t  is the observer time and  is the 
source(emission) time. Note that equation (5.8) is a generalized wave equation of the form: 

 
2 2

2
2 2

n
ij

i i j

Q
c

t x x x
   
 

   



 

With   and Q being generalized functions. Its formal solution is known, so that the solution of equation 
(5.8) is: (JONES 1964): 

 

2

0 0

0

( / ) ( / )4 '

( / )

ij if f
i j i

f

t r c t r cp T dVd L dSd
x x r x r

t r c QdSd
t r

   
  

 


 



     
 
  

  



 


 (5.9) 

On this equation, we can change integral variable using: 

  
1

( ) ( ( ))
/

N
n
ret

n

LL g
g

   



   

Which is taking the sum over all the zero’s n
ret of the retarded time equation 0g  . Furthermore, note 

that: 

 
1 11 1 1 r

g r y x M
c c   

                  

 
 

The term 1 rM accounts for dilatation or contraction of the observer time scale with respect to the 

source time scale. This effect is known as the Doppler effect. Suppose the source elements are in subsonic 

motion. We denote  ret
 as the evaluation at the retarded time: 

 
( )ret

ret

x y
t

c





 
 

 

With this, equation (5.9) can be written as: 

 
     

2

0 0 0
4

1 1 1
ij i

f f f
i j r i r rret ret ret

T L Qp dV dS dS
x x r M x r M t r M


  

                          
  

 (5.10)
 

We will try to further rearrange this equation to something useful. This is done using the relation: 
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 2 30 0 0

( ) ( )( ) 1 i i
f f f

ret ret reti

r g r gg dS dS dS
x r c t r r

 
  

                       (5.11) 

For the loading noise. For the quadrupole noise term, the above chain can be used twice to find: (Brentner 
& Farassat, 1998) 

 
2

2 30 0 0

( ) ( )( ) 1 i i
f f f

ret ret reti j i

r g r gg dV dV dV
x x r x c t r r

 
  

                          
    

 
     2

2 2 20 0 0

ˆ ˆ ˆ ˆ3 ( ) 3 ( )ˆ ˆ1 1
3

i j ij i j iji j

f f f

r r g rr grr g
dV dV dV

c t r c t r r
   

  

      
               

    (5.12) 

Where  ˆ /i i ir x y r  and ij is the Kronecker delta. Using relations (5.11) and (5.12), equation (5.10) 

can be written as: 

 

     

   

 

2

2 2 2 30 0 0

20 0

0

3 31 14
1 1 1

ˆ ˆ1
1 1

1

rr ii rr iirr
f f f

r r rret ret ret

i i i i
f f

r rret ret

f
r ret

T T T TTp dV dV dV
c t r M c t r M r M

L r L rdS dS
c t r M r M

Q dS
t r M


  

 



               
         

   
    

     

 
    

  

 



 (5.13) 

Where ˆ ˆrr i j ijT rr T  and 11 22 33iiT T T T   . In (Brentner, 1997) it is demonstrated that: 

 
 

1
1x xr ret

t M 
  

      
 

 
ˆ ˆ

, ,i i r i
r

r rcM cMr cM
r 

 
  

 
 

  2 21 ˆ ir
i r

MM r c M M
r 

       
 

Now we can rewrite  equation (5.13) as: 

 ( , ) ( , ) ( , ) ( , )Q L Tp x t p x t p x t p x t     
   

 (5.14) 

And thus the pressure pertubations are divided into 3 components, namely the thickness noise Qp , the 

loading noise Lp and the quadrupole noise term Tp , which are defined as: 
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Thickness noise: 
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     

 

 





 (5.15) 

Where M


is the Mach number vector of a source point on the integration surface. Furthermore: 

 ˆ ˆ ˆ ˆ ˆ, , , ,n i i n i i n i i r i i r i iU U n U U n U U n M M r M M r    
      

Where the dots represents a derivative with respect to  . This thickness noise accounts for the 
displacement of fluid due to the moving surface. 

Loading noise: 
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 

 






  (5.16) 

Where  

 ˆ ˆ, ,r i i r i M i iL L r L r L L M   

The loading noise accounts for the unsteady loading of forces and pressures of the surface on the fluid. 
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Quadrupole noise: 

 31 2
2 2 30

4 ( , )T f
ret

KK Kp x t dV
c r cr r




      


 (5.17) 

With: 
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Where: 

 
ˆ ˆ, , ,

ˆ ˆ ˆ ˆ ˆ, ,
MM ij i j Mr ij i j ij i jMr

Mr ij i j rr ij i j rr ij i j

T T M M T T M r T T M r

T T M r T T rr T T rr

  

  




     
 

The quadrupole noise sources account for the non-linearities in the flow field outside the permeable 
surface(e.q. induced vortical disturbances, shocks and local sound speed variations.) 

Equation (5.14) is the solution of the Ffowcs Williams- Hawkings for a permeable surface proposed by 
Farassat & Brentner. The loading, thickness and quadrupole noise terms as derived above are used in the 
FW-H code written by D. Casalino. 
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