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Abstract

The estimation of head position and orientation is an important building stone in many applications
of Human-computer interaction. This thesis presents two variations of a monocular image head pose
estimator based on Subclass Discriminant Analysis (SDA). The use of subclasses enables the application
of discriminant analysis to a wider variety of high-dimensional classification problems. The difficulty in
applying SDA is in determining the optimal division of the data into subclasses.

For a selected number of discrete poses, a specialised one-versus-all classifier is generated using
a boosting procedure applied to feature selection. The one-versus-all classifiers are combined into a
discrete head pose estimator. This approach is compared to a multi-class approach using the information
learned while training the separate one-versus-all classifiers. The performance of these two approaches is
evaluated on the Pointing’04 dataset and compared to the performance of the more widely used Linear
Discriminant Analysis (LDA) approach.

The results show that the image features selected using the boosting procedure are similar to those
that would be selected using a face mask. The multi-class approach is shown to be preferable over the
one-versus-all approach. Additionally, the SDA classifiers are shown to have performance characteristics
comparable to those of LDA for both approaches.
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Chapter 1

Introduction

The development of computer vision systems that rival human vision and recognition has, over the course
of more than 40 years, proven to be a difficult task. During the approximately 40 years of research the
availability of computing power and digital cameras has increased manifold. Simultaneously there is a
growing interest in biometric identification and alternative human-computer interaction techniques. The
result is a rising interest in face identification and pose estimation in diverse research fields such as image
processing, pattern recognition, computer graphics and psychology. Still, there are limitations to the
current state of the art and there are many remaining challenges.

This research considers the problem of estimating the pan and tilt angles of a person’s head as shown
in a monocular image. The next sections introduce the concept of head pose and discuss the applications
for head pose estimation. We conclude the chapter by stating the questions for this research.

1.1 Head pose

Consider a situation in which a static camera is used to take images of a person who is allowed to move
and rotate freely in a number of directions. Head pose estimation is concerned with only pan and tilt
rotations, these are illustrated in figure 1.1.

Pan

Tilt

Figure 1.1: The two rotations, pan and tilt, relevant to the head pose estimation domain.

The subject’s movement determines the location of his head within the captured image. The roll
rotation affects the image differently than the pan and tilt rotations. If the subject performs a roll
rotation, the appearance of his head would be unchanged, were as with pan and tilt rotations we see a
different side of the subject’s head. This is referred to as an in-plane rotation Estimating the location
and roll rotation of a head in an image is generally the task of a face detection system and not of a head
pose estimation system.

In this research, only the out-of-plane rotations of pan and tilt are considered. Both these rotations
result in drastic changes within the image. As the head tilts or pans facial features move in or out of the
image, the outline of the head changes and light reflections and shadows move across the face. These
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deformations result in non-linear transformations of the image which makes pose estimation through
computer vision a complex task.

1.2 Overview of head pose systems

Regardless of the large variation in head pose estimation systems, most of these systems can be divided
into the same three stages shown in figure 1.2. The first stage is to detect the presence and location of a
head in an image. This can be done by simple methods such as color based head detection (chapter 4)
or even by the repeated application of a head pose estimation system (chapter 2). The second stage is to
create a description from the image that is suitable for classification. There is a wide range of suitable
descriptors. The most basic form consists of the pixel values of the image but more complex variations
exist and are discussed in section 2.2. The choice of descriptors is dependent on the classification
method used in the final stage. Different methods are discussed in 2.3. Because the complete set of
poses available to a person are continuous and ordered, pose estimation can be considered a regression
problem. However, in many systems, the ranges of poses are divided into discrete classes and head pose
estimation is considered as a classification problem. For the system developed in this research we will
consider the head pose estimation as a discrete classification problem.

Figure 1.2: Overview of a generic pose estimation system, listing variations for the latter two stages.

1.3 Applications for head pose estimation

For successful human computer interaction to move beyond the keyboard and mouse we will likely
require a multi-modal approach relying not only on head pose, but also hand gestures, speech or even
brain signals. Head pose estimation is just one of these modals but it has a few specific applications as
well.

Head pose assists in estimating people’s gaze and focus-of-attention. This is not only important for
multi-modal interfaces but also has commercial applications such as monitoring the attention given to
advertisements.

The tracking of head pose over time allows the interpretation of head gestures. Besides applications
in multi-modal interfaces, head pose tracking has also been used for detecting drowsiness in drivers.

There are numerous existing biometric identification methods that are easier to perform than face
identification. But methods such as fingerprint analysis and retinal scans require the cooperation of the
subject. Face identification, however, is a passive metric which requires no special actions by the user
and can be performed outside of the controlled environments required for other biometric identification
methods. Such systems would allow the identification and tracking of individuals through existing video
surveillance systems. But to perform face identification under these circumstances we require a head
pose estimation system.
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This research concentrates on pose estimation using monocular camera images that could potentially
be acquired by a basic camera. This type of pose estimation can be used for real-time pose estimation
for use with webcameras or it could be used for pose estimation in photographs. This pose information
can subsequently added to historical archives and other multimedia databases.

1.4 Research questions

As we will discuss in chapter 2.3, some very successful systems use a variation of discriminant analysis
to perform the head pose classification. In chapter 6 we will discuss a recent variation named Subclass
Discriminant Analysis, or SDA, developed by Zhu and Martinez[72]. We will apply SDA to the head
pose estimation task in two variations; as an array of binary classifiers and as a multi-class classifier.
Furthermore, we use the well known Gabor filter[50] in combination with GentleBoost[18] to create a
compact image description which is further described in chapter 5.

In this thesis we attempt to answer the following questions regarding the application of GentleBoost
and SDA to head pose estimation.

1. What are the differences in classifying the discrete poses:

(a) Does the GentleBoost feature selection approach provide valid features for each pose?

(b) Do the number of features required for optimal performance differ between pose classes?

(c) Should we create a different division of subclasses for each pose class?

2. Does SDA offer a significant improvement over LDA methods in discrete head pose estimation:

(a) for use as a one-versus-all classifier?

(b) for use as a multi-class classifier?

9
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Chapter 2

Overview of related work

Many of the developed systems related to head pose estimation are applicable in multiple domains, such
as face recognition, and often overlap in their use of image features or statistical methods. Both Zhao
et.al.[68] (of which an extended version is available as the introduction to [69]), Murphy-Chutorian and
Trivedi[41] and Zhang and Gao[67] provide excellent surveys covering a wide range of systems. The work
discussed here focuses on pose estimation from monocular 2D images but there are other domains with
different use cases and corresponding hardware requirements such as 3D imaging techniques.

As discussed in the introduction in section 1.2, the process of head pose estimation can be divided into
three stages: head detection, feature extraction and classification. We start this chapter with a summary
of the available face databases which can be used for training and evaluating head pose detection systems.
The next two sections discuss the variations in the second, feature extraction, and third, classification,
stages of a generic pose estimation system.

2.1 Existing datasets

Heads and faces are three dimensional objects whose appearance is affected by identity, pose, expression,
age, occlusion, illumination, hair and other factors. Most methods require significant numbers of training
samples with variations of these factors in order to be robust against such variations. Additionally the
increasing accuracy of developed methods require increasingly large test sets in order to reliably estimate
and compare their accuracy.

The collection of large datasets with controlled variations over many factors is a resource-intensive
task which a number of researchers have undertaken. Table 2.1 provides an overview of popular and
recent facial databases. Another overview can be found in chapter 13[23] of the Handbook of Face
Recognition[31] for most of the datasets released before 2005.

11



N
am

e
Y

ea
r

#
Sa

m
pl

es
#

Su
b

je
ct

s
#

po
se

s
P

an
T

ilt
M

is
ce

lla
ne

ou
s

A
R

Fa
ce

D
at

ab
as

e[
37

]
19

98
4,

00
0+

12
6

1
0◦

0◦
ex

pr
es

si
on

s,
at

tr
ib

ut
es

F
E

R
E

T
[4

4]
19

98
14

,1
26

1,
19

9
9–

20
±

90
◦

0◦

X
M

2V
T

SD
B

[3
8]

19
99

-
29

5
co

nt
in

uo
us

±
90
◦

±
60
◦

vi
de

o,
3D

m
od

el
of

fa
ce

s
Y

al
e

Fa
ce

D
at

ab
as

e
B

[2
0]

20
01

16
12

8
62

8
9

±
24
◦

0◦
va

ry
in

g
ill

um
in

at
io

n
co

nd
it

io
ns

C
M

U
P

IE
[5

3]
20

02
41

,3
68

68
13

-6
6◦

–
+

62
◦

-
ill

um
in

at
io

n,
ex

pr
es

si
on

s
Fa

ce
P

ix
(3

0)
[9

,
33

]
20

02
16

,2
90

30
18

1
±

90
◦

0◦
va

ry
in

g
ill

um
in

at
io

n
co

nd
it

io
ns

B
A

N
C

A
[3

]
20

03
6,

24
0

20
8

1
0

0
va

ri
ed

co
nd

it
io

ns
P

oi
nt

in
g’

04
[2

1]
20

04
2,

79
0

15
93

±
90
◦

±
90
◦

3D
F

R
G

C
[4

3]
20

05
50

,0
00

46
6

-
-

-
m

ul
ti

pl
e

da
ta

se
ts

,
3D

ra
ng

e
da

ta
ID

IA
P

[2
]

20
05

2
ho

ur
s

16
co

nt
in

uo
us

±
60
◦

-6
0◦

–
+

15
◦

vi
de

o,
na

tu
ra

l
m

ov
em

en
t

M
M

I
Fa

ci
al

E
xp

re
ss

io
n[

42
]

20
05

1,
50

0+
19

2
0◦

,9
0◦

0◦
em

ot
io

ns
,

fa
ci

al
ac

ti
on

un
it

s
C

M
U

M
ul

ti
-P

IE
[2

2]
20

08
75

0,
00

0
33

7
15

±
90
◦

-
ill

um
in

at
io

n,
ex

pr
es

si
on

s
H

R
3D

E
xp

re
ss

io
n[

66
]

20
08

60
,6

00
10

1
-

-
-

dy
na

m
ic

3D
ra

ng
e

da
ta

,
ex

pr
es

si
on

s
G

E
N

K
I[

28
]

20
09

7,
17

2
≈

4,
00

0
-

-
-

un
co

nt
ro

lle
d

en
vi

ro
nm

en
ts

,
tw

o
da

ta
se

ts

12



Besides 2D images and video, there is increasing interest in the use of 3D range data for face identi-
fication and expression classification. Datasets using static range data have become available in recent
years[43]. Yin et.al.[66] have developed an extensive facial expression database using dynamic 3D range
data. In the remainder of this chapter we will limit the discussion to 2D image data.

2.2 Feature extraction

Before we can attempt classification of head poses from 2D images we need to represent the image data in
a form which we can subject to statistical analysis. In the generic pose estimation system shown in figure
1.2, this would be the second stage. For this section we divide the image descriptors into two groups:
image transformations over the whole image and descriptors which represent local salient features. This
corresponds roughly to the two major categories of systems, the holistic template matching systems
and geometrical local feature based systems. In many cases, the number of features extracted from the
sample images is too large in relation to the number of available samples to allow reliable classification.
We can reduce the dimensionality of the feature vector by selecting the most useful elements (2.2.3).

(a) Original image (b) Sobel edge filter

Figure 2.1: A sample image before and after the application of various filters.

2.2.1 Color and texture features

Early systems primarily used the image intensity values, the pixels, of digital images and these form
the basis for a number of variations collectively referred to as holistic template matching systems. The
classification performance can benefit from image processing techniques to negate differing illumination
conditions[24] or, in the case of pose estimation, to decrease the identity specific differences by applying
a Gaussian blur filter.

Alternatively, image operations can be applied to emphasize facial features. Each individual image
pixel has a comparatively low information density and many systems improve their performance by us-
ing features which can represent salient structures within the image. These region features, or texture
features, use a single descriptor to represent each pixel in the original image together with the neighbor-
hood surrounding this pixel. Haar features are widely used, largely due to the popularity of the boosted
cascade face detector by Viola and Jones[60, 61]. One of the most prominent texture features used within
image recognition tasks are Gabor features[50], which are discussed further in section 5.1.

A large problem with colour and texture features is the very high number of features to represent
a single image, as a result they are often paired with feature selection techniques[61] or dimensionality
reduction techniques, such as PCA (EigenFaces[58]) and LDA (Fisherfaces[5].

2.2.2 Edge and point features

Edge features are most often a binary image showing only the parts of the original image with a high
gradient. The numerous edge detectors differ in the gradient operator (kernel) used during the image
convolution. The quality of the located edges are sensitive to the image quality but can be improved
by using a slightly larger gradient operator or by including a Gaussian blur filter. The most used edge
detectors include the Robert, Sobel (shown in figure 2.1(b), Prewitt, Canny and Krisch operators[1].

While edge features attempt to extract lines, point features focus on the points where edges intersect,
examples of these are Moravec[40], Harris[25] and SUSAN[54] features. For which the more recent Scale
Invariant Image Features (SIFT)[36] are popular, especially for real-time tracking of arbitrary surfaces,
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and like the above have been used for face recognition tasks[8].
Point features remain popular in part due to the increased processing power which allows for realtime
computation and comparison of an increasingly larger number of these features for use in realtime tracking
of arbitrary surfaces.

2.2.3 Feature selection and sampling masks

For most classification algorithms the computational requirements increase dramatically with the dimen-
sionality of the feature set. Although the computational cost can be overcome by advances in technology,
as is evident by the increasing resolution of images in datasets and the increasing numbers of point fea-
tures used in most SIFT based systems, the curse of dimensionality as described by Bellman[6] has severe
consequences for statistical analysis which requires the number of samples to grow proportionally to the
square of the dimensionality.

One approach is to apply domain knowledge to limit the number of features that are gathered.
To perform the classification task we do not need to use any part of the image that represents the
background, thus the image can be cropped to at least the smallest rectangle encompassing the head
area and possibly just the face area[13]. Within this rectangle, not all features are equally useful and a
density sampling mask can be applied. This mask selects more features from areas which are deemed to
be most important to the classification and fewer, or none, from other areas.

Such a density sampling mask can be manually shaped according to the needs of the classification
domain. If there is a need for multiple classifiers, such as for discrete pose estimation or view-independent
face recognition it can be convenient to automatically generate the sampling masks. The dimensionality
reduction methods discussed in the next section have been used for this purpose[35] as have boosting
methods [56]. Boosting methods, such as AdaBoost[18] or GentleBoost[46] iteratively create a set of
weak classifiers one feature at a time. They have been successfully applied in multiple systems[57, 32, 56]
including the well known face detector by Viola and Jones[61]. Boosting procedures are discussed in more
detail in section 5.1.

A second approach is to create multiple classifiers each trained on a subset of the available features,
such as the approach by Wu and Trivedi[64] which trains one classifier for each scale of the Gabor
wavelets used. This approach combines the advantages of a smaller feature space with the advantages of
bagging[10].

Other approaches such as Face Bunch Graphs focus solely on the areas around specific facial features.
These methods are among the flexible methods discussed in section2.3.3.

2.3 Classification

Classification methods are often divided in continuous and discrete methods. Some methods, such as
the discriminant analysis method used in chapter 6, can be applied as a discrete detector array or as a
continuous classifier. The first section discusses the dimensionality reduction methods, the next section
discusses discrete pose recognition. For these methods, the classification stage can often be applied
independently of the type of features used to describe the image. The geometric methods discussed in
the final section explicitly take the physical properties of a face in account.

2.3.1 Dimensionality reduction

The feature selection techniques mentioned in section 2.2.3 heavily rely on domain knowledge or re-
quire manual intervention. Dimensionality reduction is an automatic process which requires no domain
knowledge and creates a combination of the features that best explain the data. This linear combination
of features results in a subspace with a lower dimensionality and, depending on the method used, can
have additional benefits such as robustness against changes in illumination and increased separation of
positive and negative samples.

Turk and Pentland applied PCA on the image intensity values to create Eigenfaces[58] while Bel-
humeur et.al use LDA to create Fisherfaces[5]. The subspace created by LDA has the additional benefit
of separating the different sample classes. Numerous variations on LDA exist and have been applied for
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general recognition tasks and pose estimation tasks, examples are SRDA[48] and SDA[72]. The latter is
discussed in more detail in chapter6.

These methods are linear but the classification of head pose is a non-linear task. One widely used
method to overcome this limitation is to map the samples onto a higher-dimensional space before applying
the linear classification method. This “kernel trick” has resulted in KPCA[47], KLDA[39], KSDA[12]
and many more kernelized variants of dimensionality reduction techniques. Other non-linear methods
include Isomap and Locally Linear Embedding[41].

An interesting property of these methods is the ability to learn a subspace in which samples with
similar poses are placed near each other on a non-linear manifold. Manifold methods hold a lot of
potential for continuous pose estimation[4]. But to learn the subspace and manifold correctly these
methods require large amounts of samples and they are sensitive to noise[65, 70].

2.3.2 Discrete head pose recognition

Over the years, a great variety of methods have been developed[5, 60] to recognize faces with specific
(frontal) pose. An array of these systems, each trained to identify faces in a distinct pose allows multi-
view face recognition and by extension, head pose estimation[68, 41, 67]. The final classification can
subsequently be performed by using a voting mechanism or by comparing the sample to prototype faces
learned for each pose.

The major disadvantage is the large number of detectors that need to be trained, each requiring
sufficient training samples. If the system simultaneously functions as a head detector, a relatively large
collection of non-face samples need to be added to the training set. As a result many detector arrays have
so far been limited to estimating only a limited number of poses[27, 55], but this number is increasing
with newer systems[30].

Model-based methods transform the sample image to conform to a set of prototypes. Cootes et.al.
delveloped the Active Appearance Model[14] which uses a shape descriptor and PCA to create a statistical
model, a prototype, of the shape of the head at each pose. The sample image is iteratively transformed
to conform to the nearest prototype. After the transformation, the sample can be compared using
standard template matching techniques to perform face identification, Active Appearance Models[16]
manage to combine shape and texture variations and these have been used in multi-view face recognition
systems[26, 15].

2.3.3 Flexible and geometric methods

With the exception of the sampling density methods from section 2.2.3, the majority of the methods
described up to now have considered the problem from a purely statistical point of view, giving little
consideration to the physical characteristics of the head and face.

In contrast, flexible methods, such as the Elastic Bunch Graph[29], search for a set number of major
facial feature points (the nodes); eyes, nose, corner points of the mouth, and compare their relative
positions (the graph) to the expected pose specific locations.

While the flexible methods compare the relative positions of feature points to prototypes to determine
a discrete pose estimation, geometric methods use this information to determine a continuous pose
estimate. There are multiple ways to calculate the head pose from different facial feature points but
small differences between individual faces do not make this an easy task. One option is to determine the
length of the nose away from the symmetry axis of the face[19]. Another method stems from the fact
that the three lines from the outer corners of the eye, the inner corners of the eye, and the corners of the
mouth run parallel[62].

The possible relative locations of the major facial feature points are of course constrained by the
physical characteristics of the face. This information can be exploited to facilitate the search for the
feature locations. Nonetheless, for flexible and geometric methods to operate reliably they require higher
resolution images than which are needed for template methods. Additonally, these methods require the
successful detection of all the required facial features which makes them sensitive to occlusions.
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Part II

Head pose estimation with SDA
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Chapter 3

Approach

The proposed head pose estimation system takes a discrete approach to pose classification. The classi-
fiable range of head poses, up to ±90◦ horizontally and ±60◦ vertically, is into distinct pose classes. As
a first step in the training phase, in all training images, the head is located, cropped from the image
and normalized in its dimensions. This is followed by a Gabor wavelet transform which results in a
high-dimensional feature vector. A boosting procedure is applied once for each pose class. This results
in multiple reduced feature sets specific to each pose class.

Figure 3.1: The division into pose classes, one sample from the Pointing’04 dataset is shown for each
class

We investigate two approaches to pose classification, an array of one-versus-all classifiers and a multi-
class classifier. For the array of classifiers, we apply the Subclass Discriminant Analysis algorithm
separately for each pose class in order to learn a subspace to optimally distinguish that specific pose
class from all other pose classes. The outputs of these binary classifiers are combined through voting
which results in a final pose classification. The second approach combines the pose specific feature vectors
in a single feature vector and applies multi-class SDA to learn a subspace in which we can perform a
multi-class classification of head pose.

As can be seen in the system overview presented by figure 3.2, most of the steps are the same, or
nearly the same, for both variations. Chapter 4 covers the detection of the location of the head within
the sample image and chapter 5 discusses the transformation of the resulting head image into a feature
vector and how we perform the pose specific feature selection. Chapter 6 discusses the application of
discriminant analysis and the one-versus-all and multi-class classification of head pose.
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(a) One-versus-all classification (b) Multi-class classification

Figure 3.2: System overview, showing the two proposed classification and training systems
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Chapter 4

Head detection

For face recognition, and by extension face orientation, most often only the frontal face area is used for
classification[13]. Because we attempt to classify head orientation with larger horizontal and vertical
angles the frontal face area would likely be obscured. Additionally, the head orientation estimation could
benefit from the presence of edges of the head and the ear locations. Therefore we constructed a head
detector to locate the head position. This head detector should detect heads under angles of up to ±90◦

horizontally and ±60◦ vertically.
This is a difficult task in general, but if we constrain the application to relatively predictable and

clean images a relatively simple method can suffice. First the method locates areas of skin as determined
by the color within the image. Secondly, working under the assumption that only one head is visible and
this head provides the largest area of visible skin, we determine the position of the largest connected
area of skin.

The first step is to perform color-based skin detection, which is most easily applied in the YCbCr
color space[52]. Within the YCbCr color space we apply a threshold filter to the Cb and Cr values as
described in [11, 45]. This threshold classifies pixels as either ‘skin’ or ‘not skin’:

Mskin =

{
1, if Cb ≥ 77 ∧ Cb ≤ 127 ∧ Cr ≥ 133 ∧ Cr ≤ 173;
0, otherwise.

(4.1)

with 0 ≤ Cb,Cr ≥ 255. The output is a binary skin map Mskin (figure 4.1(b)).

(a) original image (b) skin mask (c) eroded skin mask

Figure 4.1: The outline of the head region as determined by the skin mask (b) and (c) super imposed on
the original image (a)

To determine the position of the head with the use of the skin map we work under the assumption
that there is only one head within the image and that this head provides the largest area of visible skin.
For the Pointing’04 dataset discussed in chapter 7 a typical head width and height ranges from 160 to
240 pixels. We achieve good results if we erode the skin map by 7 pixels (figure 4.1(c)). The erosion
reduces the connectivity between regions within the skin map while preserving the larger regions. The
largest remaining connected region of skin is noted as the head location.
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We crop the area formed by the axis aligned bounding box around this region, including the number
of pixels we previously eroded, from the image. Some representative results on the dataset introduced
in chapter 7 are shown in figure 4.2.

Figure 4.2: A set of representative examples of the head region detector

The cropped sample images are normalized in size to 128× 128 pixels. By doing this, the same facial
features, such as the eyes, nose and mouth correspond to fixed locations in the image regardless of the
subject’s original size in the picture (i.e. distance to the camera). Furthermore the image is turned to
grayscale and normalized with regards to color. This results in sample images similar to those in figure
4.3.

Figure 4.3: The normalized images corresponding to the samples shown in figure 4.2

It is apparent from these images that the system has limitations which are important to note with
regards to the feature selection. The image normalization may distort the aspect ratio, especially for
faces with a very high pitch which often results in the inclusion of the neck into the image. However,
the amount of distortion is similar for each pose class. The next chapter discusses the extraction of a
feature vector from these images.
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Chapter 5

Image representation

In this chapter we discuss the creation of the pose specific feature vectors. We apply a Gabor transform
to the normalized head images from the previous chapter. This is followed by a feature selection stage
using GentleBoost. GentleBoost is applied to each pose separately. This set of pose specific feature
vectors is used for the classification of head pose in the next chapter.

5.1 Gabor feature extraction

Gabor features are largely insensitive to variation in lighting and contrast while simultaneously being
robust against small shift and deformation in the image[49]. The 2D Gabor filter is a Gaussian kernel
function modulated by a sinusoidal plane wave, which is commonly[63, 50, 59, 51] expressed as:

ϕΠ(f0,θ,γ,µ) (x, y) =
f2

0

πγµ
e−(α2x′2+β2y′2)ej2πf0x

′
, (5.1)

x′ = x cos θ + y sin θ,
y′ = −x sin θ + y cos θ,

where j =
√
−1, f0 is the central frequency of the sinusoidal plane wave, θ is the anti-clockwise rotation

of the Gaussian and the plane wave, α is the sharpness of the Gaussian along the major axis parallel
to the wave, and β is the sharpness of the Gaussian minor axis perpendicular to the wave. γ = f0

α and
µ = f0

β are defined to keep the ratio between the frequency and sharpness constant. The Gabor filters
are self-similar and are generated by dilation and rotation of a single mother wavelet. Each filter has the
shape of a plane wave with frequency f0, restricted by a Gaussian envelope with relative widths α and
β.

Depending on the size and orientation of the specific features one is interested in, a filter with a
corresponding frequency and orientation should be applied. It is unlikely that a single filter can detect
all the required image features and it is common to apply a set of complementary Gabor filters, each
tuned to features of a specific size and orientation:

ϕu,v = ϕΠ(f,θ,γ,µ) (x, y) , fu =
fmax√

2u
, θv =

v

V
π,

u = 0, . . . , U − 1, v = 0, . . . , V − 1,
(5.2)

with fmax being the highest peak frequency, U and V being the number of desired scales and orientations
respectively.

The value for the highest peak frequency fmax follows from Nyquist sampling theory and a good
value for face related tasks is determined to be fmax = 0.25[51]. The ratio between the center frequency
and the size of the Gaussian envelope is determined by γ and µ. This results in smaller filters to detect
high frequency features and larger filters to detect low frequency filters. A commonly used value in face
related tasks is α = β and γ = µ =

√
2[63, 34, 51]. This results in a filter which is as long as it is wide.

There are some empirical guidelines for selecting scales and orientations[51] and common values are
U = 5 and V = 8. This results in a filter bank, or family, of 40 different filters which is capable of
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representing a wide range of facial features. Examples of these filters are shown for varying scales in
figure 8.2 and for varying orientations in figure 8.3. These images only show the real part of the filters
and are normalized to show negative values as black, positive values as white and zero as gray.

5.1.1 Gabor representation of sample images

The Gabor representation of an image I such as the normalized sample images shown in figure 4.3, can
be obtained by convolving the image with each of the filters in the filter bank. The response of the image
at location x, y to the filter with scale u and orientation v is given by:

Gu,v (x, y) = [I ∗ ϕu,v] (x, y) . (5.3)

The response Gu,v, has real and imaginary parts which are combined into the magnitude of the image
response as follows:

G′u,v (x, y) =
√

real (Gu,v (x, y))2 + imag (Gu,v (x, y))2 (5.4)

Once the convolution is done for all Gabor filters this results in a feature vector with a size of U ×V the
original number of image pixels. The response is downsampled using bi-cubic interpolation, to 16 × 16
pixels and normalized to zero mean and unit variance. The individual filter responses of sample t are
concatenated into a single feature vector xt with 10240 elements (5 scales × 8 orientations × 162 pixels).
This is similar to the procedure in [34]. In the next stage of the system we use a boosting procedure
to select only the most informative features from this vector in order to reduce the dimensionality and
increase the classification performance.

5.2 GentleBoost feature selection

The feature vector xt extracted by the Gabor filter has, even after downsampling, a very high dimen-
sionality which makes classification more difficult. Simultaneously, there is a high correlation among the
elements in the feature vector. Therefore we want to reduce the dimensionality of the feature vector
and we want to select only the most informative features to support the SDA training. We do this by
applying a boosting procedure for each pose class.

GentleBoost[18] is a variation on the original AdaBoost[17, 46] with improved performance for object
detection problems[57] including the face recognition task[32]. Like AdaBoost, GentleBoost iteratively
creates a committee of weak classifiers. The main difference to AdaBoost is how GentleBoost gently
updates the weights for the training samples between iterations in the training procedure. Each individual
weak classifier is merely a threshold function, or decision stump, operating on a single feature and has
a performance possibly only slightly above mere guessing. A committee of these weak classifiers forms a
strong classifier with good performance.

The unique features among those selected by each of these decision stumps form the list of selected
features which we use in the SDA training. After the boosting procedure we should have a list of features
for each pose most appropriate to the classification of that specific pose.

The outline of the GentleBoost algorithm is as follows. Start with weight wt = 1/N for each training
sample t, with N samples in total. In each iteration m, fit the regression function fm(x) by weighted
least-squares of the class labels yt to the sample xt using weight wt. Update the combined classifier
F (x) = 0 and update the weights according to the classification error:

F (x) ← F (x) + fm(x) (5.5)

wt ← wte−y
tfm(xt) (5.6)

The weights should be re-normalized after each iteration. The regression function fm is determined by
minimizing the weighted error function:

error =
∑
t

(
wt|yt − fm(xt)|2

)∑
t w

t
(5.7)

By minimizing the weighted error we find the element xi in the feature vector x with the smallest error
and the appropriate values for a, b, and θ, which form fm:

fm(xt) = a
(
xti > θ

)
+ b, (5.8)
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A sample xt can now be classified by the combined classifier as follows:

sign(F (xt)) = sign(
M∑
m=1

fm(xt)) (5.9)

Where M is the number of weak classifiers after M iterations.
Normally, when GentleBoost is applied as a classifier, we would continue to add new decision stumps

until the strong classifier’s performance stops improving. In that case it would be safe to continue
boosting because the GentleBoost strong classifier does not overfit. In our case however, we do not
want to select the maximum number of features and the point at which to stop boosting is determined
empirically in chapter 8.
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Chapter 6

Discriminant analysis

Once we have the image representation in the form of GentleBoost selected Gabor features we use
discriminant analysis to find a subspace in which we can more easily perform the pose classification.
Linear Discriminant Analysis (LDA) has been applied to face recognition before and is commonly known
as a Fisherface[5]. LDA is a subspace projection technique and maps the high-dimensional image feature
space to a low-dimensional subspace which simultaneously optimizes the class separability of the original
data.

In this chapter we first review LDA followed by a recent variation on LDA named Subclass Discrim-
inant Analysis (SDA). Once SDA has been introduced we discuss classification using a detector array
which consists of a set of one-versus-all classifiers In the last section we discuss the application of SDA
for multi-class head pose classification.

6.1 Linear Discriminant Analysis

Linear Discriminant Analysis and its derivatives are based on maximizing Fisher-Rao’s criterion:

J = max
|WTAW |
|WTBW |

. (6.1)

Where W is the projection matrix we are looking for. The various variations usually differ in their
definition of the matrices A and B. For example, the well known Linear Discriminant Analysis uses the
between and within-class scatter matrices A = SB and B = SW , defined as,

SB =
C∑
i=1

(µi − µ)(µi − µ)T , (6.2)

SW =
1
N

C∑
i=1

ni∑
j=1

(xij − µi)(xij − µi)T , (6.3)

where C is the number of classes, µi is the sample mean for class i, µ is the global mean, xij is the jth
sample of class i and ni the number of samples in class i.

Using this definition the objective function J attempts to maximize the Euclidean distance between
the samples belonging to different classes while simultaneously minimizing the difference between samples
of the same class. The objective function J is maximized when the column vectors of W are the
eigenvectors of S−1

W SB . If the dimensionality of the feature vector is larger than the number of available
samples, SW becomes singular and its inverse does not exist. It is due to this “curse of dimensionality”
that we applied the feature selection approach outlined in the previous chapter.

6.2 Subclass Discriminant Analysis

LDA assumes that the data is generated by a multivariate normal distribution which is not a valid
assumption for either face identification or head pose estimation. Subclass Discriminant Analysis, de-
veloped by Zhu and Martinez[72], attempts to improve on LDA by modelling the data not as a single
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Gaussian distribution but as a mixture of Gaussians. This mixture of Gaussians is represented by sub-
classes which are introduced by redefining the matrix A from the Fisher-Rao criterion shown previously
in equation 6.1:

A = ΣB =
C−1∑
i=1

Hi∑
j=1

C∑
k=i+1

Hk∑
l=1

pijpkl(µij − µkl)(µij − µkl)T , (6.4)

where Hi is the number of subclasses of Ci, µij and pij are the mean and prior of the jth subclass of
class i, respectively. The prior pij = nij

N with nij as the number of samples in the jth subclass of class i.
This redefinition allows us to divide the training set into subclasses. The subspace resulting from the

subsequent optimization of the Fisher-Rao criterion will maximize the class separability as with LDA,
but also separate the subclasses. However, the subclass separation will not come at the cost of class
separability.

As a first step in the SDA training procedure, the training set must be grouped into subclasses of
their respective classes. It is difficult to know up front which division into subclasses is preferred. Zhu
and Martinez[71, 72] use the nearest-neighbor method to order the training samples and subsequently
divide them into subclasses of equal size which is not without problems[7]. For both the one-versus-all
classifiers and for the multi-class classifier we experiment with a division based on k-means and a division
based on refined pose classes. It should also be noted that assigning all samples to a single subclass makes
SDA identical to LDA. This is convenient in order to perform the comparisons to the LDA method in
chapters 9 and 10.

6.3 Classification with a detector array

The detector array consists of a single binary classifier for each of the 15 pose classes we want to be able
to classify. The classification task for binary classifier i is to distinguish samples of pose class i (A1) from
samples of all other pose classes (A2). Using the output of multiple of these one-versus-all classifiers we
can then perform the classification of each pose class.

We examine two options to divide the samples into subclasses. First is the the application of k-means
to divide the in-class and out-of-class samples into H1 and H2 subclasses, respectively. In chapter 9 it
is shown how k-means clusters the samples partially by pose and partially by identity. The clustering
by pose is of most use to us and because the dataset supports a more refined division than our 15 pose
classes, we can use this to create pose subclasses within each pose class. For the in-class samples we
divide the samples into as refined subclasses as the dataset allows. For the out-of-class samples we create
one subclass for each of the pose classes directly surrounding the relevant pose class and an additional
four subclasses subclasses for all poses with a tilt or pan smaller or larger than the surrounding pose
classes. This is illustrated for pose class 1 (maximal pan and tilt) in table 6.1, with H1i as the positive
subclasses and H2j the negative subclasses. Similarly, for pose class 8 this would result in 9 positive
subclasses and 14 negative subclasses.

Tilt Pan
90 75 60,45,30 15,0,-15 -30,-45,-60 -75,-90

60 H1,4 H1,3 H2,2 H2,6 H2,6 H2,630 H1,2 H1,1

15,0,-15 H2,1 H2,3 H2,4 H2,4 H2,4

-30,-60 H2,5 H2,4 H2,4 H2,4 H2,4

Table 6.1: Subclass division for pose class 1.

Once the training samples are divided into subclasses and the subspace has been learned we can
classify a given sample by projecting this sample into the learned subspace. Once the sample has been
projected into the learned subspace we can perform the classification by locating the subclass nearest
to the given sample. Mahalanobis distance and Normalized Euclidean distance have both proven to
be reliable distance metrics for this purpose but they are not the top performers in all cases[34, 51].
In addition, because SDA models each subclass as a Gaussian distribution, each class distribution is a
mixture of Gaussians. While the Euclidean or Mahalanobis distance metrics will calculate the subclass
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closest to a given sample x, what we really want to know is the most likely class. Therefore we also test
a third distance metric in which we use a mixture model to calculate the class probability. The three
distance metrics are:

1. Normalized Euclidean, For each subclass l of class k calculate P (Akl|xt) = |x
t−µkl

Σkl
| and select the

class corresponding to the closest subclass.

2. Mahalanobis, For each subclass l of class k calculate P (Akl|xt) as the Mahalanobis distance P (Akl|xt) =
(xt − µkl)Σ−1

kl (xt − µkl)T , select the class corresponding to the closest subclass.

3. Mixture Model, Each subclass Akl is a Gaussian distribution so we can calculate P (Ak|xt) using a
mixture model:

χ = {xt, yt}Nt=1, (6.5)
ytk = 1, if xt ∈ Ak and 0 otherwise, (6.6)
ytkl = 1, if xt ∈ Akl and 0 otherwise, (6.7)

P (Akl) =
∑
t y
t
kl

N
, (6.8)

P (Ak) =
∑
t y
t
k

N
, (6.9)

P (xt|Akl) =
1

2π
xt

2 |Σkl|
1
2

e−
1
2 (xt−µkl)Σ

−1
kl (xt−µkl)

T

, (6.10)

P (xt|Ak) =
∑
j

P (xt|Akl)P (Akl), (6.11)

P (Ai|xt) =
P (xt|Ai)P (Ai)∑
k P (xt|Ak)P (Ak)

. (6.12)

Despite the dimensionality reduction by using the boosting feature selection procedure, the covariance
matrices are at times singular, the results of this can be seen in chapter 9. Therefore, we also test two
variations which use a common covariance matrix shared between all subclasses:

4. Mahalanobis-Shared, As Mahalanobis but with a covariance matrix shared between all sub-
classes.

5. Mixture Model-Shared, As Mixture Model but with a covariance matrix shared between all
subclasses.

Once we have the output for each binary classifier, we select the final pose classification through a simple
voting scheme. In the case of a tie between multiple binary classifiers we break the tie by assigning the
pose classification to one of these classifiers at random.

6.4 Classification using multi-class SDA

The previous section discussed the application of SDA in an array of binary classifiers. Alternatively,
SDA can be applied for multiple classes simultaneously to create a single subspace in which we can
classify all of the pose classes. As with the one-versus-all classifiers, we experiment with a subclass
division through k-means and through refined pose subclasses. For k-means we divide each pose class
into an equal amount of subclasses. For the division according to pose we divide each pose class as we
did for the in-class samples of the one-versus-all classifiers.

The interesting part of SDA applied for all pose classes simultaneously is the position of the samples
within the learned subspace. Within the learned subspace, similar samples will be near each other. If
the training is successful and the feature vector expresses the correct information, ‘similar’ means similar
in pose. As a result, if we take a number of samples representing a subject panning his head from left
to right, these samples plot a curve in the subspace. This result would be a single line from figure 6.1.
If the subject also tilts his head, the samples will represent a two-dimensional manifold.
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Figure 6.1: The movement (pan and tilt) of subject 2 from the Pointing’04 dataset through the first two
dimensions of the subspace learned from this dataset.

One benefit of the existence of this manifold is that if we have misclassified a sample, the misclassified
pose is likely close to the actual pose. This decreases the error in degrees of the classification error. But
a greater benefit might be the potential for continuous pose estimation. This can be done in either of two
ways. We can either estimate the continuous pose based on the likelihood of the discrete classification or
we can find a two-dimensional (pan and tilt) mathematical description of the manifold. If we have such
a description of the manifold, the coordinates of a sample on the manifold corresponds to a continuous
estimate of the subject’s pan and tilt angles.
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Part III

Experimental results
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Chapter 7

Pointing ’04 dataset and SDA
subclass division

For the training and testing of the classifiers the Pointing’04[21] was used. This dataset contains pictures
of 15 different persons, photographed twice in each pose. Each image has 384×288 pixels. The available
horizontal angles range from -90◦ to +90◦ and the tilt ranges from -90◦ to +90◦ in steps of 15◦. For the
negative angles the subject faces downwards and to its left.

The samples are divided into 15 classes according to the orientation of the head, as shown in table
7.1. Sample with a ±90◦ tilt are only available with 0◦ pan angle and are not part of these classes.
As can be seen in figure 3.1, some subjects wear glasses but no other face coverings, the expressions
are fairly consistent as is the lighting, with the exception of one image series. Each discrete pose has
15subjects × 2series = 30 images, as a result the four corner classes (1, 3, 13 and 15) each contain 120
samples, classes 5, 8 and 11 (frontal and left and right from the frontal pose) contain 270 samples. The
remaining classes contain 180 samples each. With the exception of approximately ≈ 10 samples, all with
a pitch of ±60 degrees, all samples were cropped quite well by the head detector. The cropped images
of these ≈ 10 samples do show the major facial features and were not discarded.

Tilt Pan
90,75 60,45,30 15,0,-15 -30,-45,-60 -75,-90

60,30 1 (120) 4 (180) 7 (180) 10 (180) 13 (120)
15,0,-15 2 (180) 5 (270) 8 (270) 11 (270) 14 (180)
-30,-60 3 (120) 6 (180) 9 (180) 12 (180) 15 (120)

Table 7.1: Class labels corresponding with their poses, the number of samples per class are noted within
brackets

Tilt Pan
90,75 60,45,30 15,0,-15 -30,-45,-60 -75,-90

60,30 4 (6) 6 (9) 6 (10) 6 (9) 4 (6)
15,0,-15 6 (8) 9 (11) 9 (14) 9 (11) 6 (8)
-30,-60 4 (6) 6 (9) 6 (10) 6 (9) 4 (6)

Table 7.2: The number of in-class (and out-of-class) subclasses for the one-versus-all classifiers for each
pose class when refined according to pose annotations.

As discussed in section6.2, we divide the samples in subclasses by either k-means or by their pose
annotations. Table 7.2 shows the number of subclasses for each pose class while using the pose annotation
of the Pointing’04 dataset. The multi-class classifier uses the same subclass division as used for the in-
class samples of each of the one-versus-all classifiers.
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Chapter 8

GentleBoost feature selection

In this chapter we explore the characteristics of the GentleBoost feature selection. We first look at
the performance characteristics of the GentleBoost strong classifier as the number of decision stumps
increases. Next, we look at the features selected by those decision stumps. Finally we take the binary
SDA classifier and train it on different combinations of selected features in order to determine a good
feature set to use in combination with the SDA classifiers of the next chapters.

8.1 GentleBoost strong classifier

For each of the fifteen pose classes we created a pose specific dataset consisting of all in-class samples and
two times the number of random out-of-class samples. The GentleBoost classifiers were trained on this
pose specific dataset using a k-fold procedure with k = 3.The ROC curves for four representative pose
classes are shown in figure 8.1. They show the expected increase in performance as the number of stumps
increases. As can be seen more clearly in figure 8.1(e), the performance increase levels off well before
the 500th decision stump and there is very little gain in using the next 1500 stumps. We also found
no decrease in performance due to overlearning, as is consistent with the literature. The performance
characteristics are similar for all pose classes.

The locations of the first 100 selected features of each of the three folds are shown by scale on the
heatmaps in figure 8.2 and by orientation in figure 8.3. Although features which cover the background
of the image instead of the face are selected, the majority of the selected features correspond to pose
specific locations of facial features. The Gabor filters with a smaller scale mainly follow the contours of
the head while the larger filters cover the major facial features such as the eyes, nose and mouth.

8.2 Selecting features for discriminant analysis

The previous section discussed the GentleBoost strong classifier performance with regards to the number
of decision stumps. This section shows how the uniquely selected features corresponding to these decision
stumps correlate with the performance of a SDA classifier trained on these features.

Three separate feature sets are created to investigate three variations on gathering the features from
the boosting process:

G1 The first n features selected by the GentleBoost classifier.

G2 The first n features selected more than once by the same classifier.

G3 The first n features selected by more than one application of the GentleBoost classifier.

The training and testing method is again a k-fold with k = 3. The value of n is equal to the number
of in-class samples within the training set. For G3 we divide the training set into four folds and train a
separate GentleBoost classifier on each fold.

For this experiment we don’t divide the data into subclasses, which makes SDA identical to LDA.
The classification is performed by the Mixture Model metric in the first dimension of the SDA manifold,
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as is common practice with LDA. The ROC curves corresponding to the tree feature sets are shown in
figure 8.4. The ROC curves show no clear performance difference between the three feature sets. In
contrast, either a random selection of n features or a sparse subsampling of the whole feature set does
show a significant drop in performance compared to either of the three feature sets above. It appears
that feature selection through a combination of multiple short boosting runs (G3) is not an improvement
over selection through a single, longer, boosting run (G1). The property of the GentleBoost classifier
as a feature selector to select a single feature multiple times does not imply an increased benefit of this
feature with regards to feature selection. This is consistent with existing empirical evidence that boosting
procedures do not overfit and do not create bad decision stumps.

The boosting process allows for a single feature to be part of multiple decision stumps. This is a
necessary part of the boosting classifier but of no use for feature selection. Figure 8.5(a) shows the
ratio of unique features versus the number of decision stumps and 8.5(b) shows the performance of the
resulting SDA classifiers. Selecting a larger number of features thus becomes an increasingly resource
intensive task for diminishing returns.

For multi-class SDA we require a feature set which is able to represent all 15 pose classes. This set is
created by concatenating the features from all 15 pose specific feature sets, in sequence, to a combined
feature set. The first 100 features from this combined feature set are shown in figures 8.6 and 8.7. Even
though the heatmaps show only a small number of features specific to each pose class, it can be seen
that the feature set is largely symmetrical, covers the whole range of poses and has very little coverage
of noise areas such as background and hair.
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(e) The average area under the ROC curves over 3 folds

Figure 8.1: ROC curves show how the strong classifier’s performance increases with the number of
decision stumps
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Figure 8.2: Selected features shown separately for (per row) classes 1, 5, 6 and 8 and (per column) each
of the five scales

Figure 8.3: Selected features shown separately for (per row) classes 1, 5, 6 and 8 and (per column) each
of the eight orientations
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(d) Pose class 8

Figure 8.4: ROC curves showing the variation in SDA classification performance when varying the origin
of the used features
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(a) The number of unique features versus the number of
decision stumps in the boosting classifier.
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Figure 8.5: Diminishing returns for increasing numbers of decision stumps.

Figure 8.6: Selected features shown separately for each of the five scales
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Figure 8.7: Selected features shown separately for each of the eight orientations
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Chapter 9

Subclass Discriminant Analysis

In the previous chapter we discussed the application of GentleBoost and the influence of the number
of features on performance. In this chapter we discuss the dispersal of the training samples within the
learned SDA subspace and how this is influenced by the division of the training samples into subclasses.
We also look at the different classification metrics and the optimal number of dimensions to apply them
in. We start with the one-versus-all classifiers and end the chapter with the multi-class classifier.

9.1 One-versus-all classification

The one-versus-all classification in this section uses the features learned from the GentleBoost feature
selection of section 8.2. Figure 9.1 shows the position of the training samples for pose class 8 in a subspace
learned by training SDA on 100 features. The total number of dimensions in a subspace created by SDA
is equal to the total number of subclasses minus one. For this experiment the positive samples and the
negative samples were both divided into two subclasses by the application of k-means clustering. This
experiment used k-means to group the positive samples into subclasses H1,1 and H1,2 and the negative
samples into H2,1 and H2,2. Any set of two dimensions of the subspace shows a clear separation of three
out of four subclasses. These subclasses would not be discernible if the subspace were limited to a single
dimension, as would be the case with LDA.

The clustering of the subclasses shows some correlation to the subjects pose. In this example H1,1

has relatively fewer samples with a pan of 0◦ while H1,2 has only a small number of samples with a pan
of 15◦. The negative samples are also grouped around the horizontal orientation. Additionally, there are
a number of subjects which occur frequently in one subclass and hardly in the other. When we increase
the number of subclasses to four for both the positive and negative samples, the grouping around the
orientation is more distinct, this can be seen most clearly for pose class 1 in figure 9.2(a). The vast
majority of samples in H1,1 and H1,4 have a 30◦ tilt while the samples in H1,2 and H1,3 have a 60◦ tilt.
The differences between H1,1 and H1,4 and H1,2 and H1,3 appear to be due to identity. If we use the
pose annotation on the training data to group the samples into more refined pose subclasses we can see a
similar layout of the subclasses in figure 9.2. This time there is a strong division due to the tilt angle of
the samples H1,1 and H1,2 (30◦ tilt) versus H1,3 and H1,4 (60◦ tilt). The separation due to the pan angle
is less pronounced (H1,1 versus H1,2 and H1,3 versus H1,4) but still visible. Additionally, the negative
samples that have both a different pan and a different tilt angle (H2,4) form a distinct cluster.

Dim. Subclasses
k = 1 k = 2 k = 4 by pose

1 93.5 93.7 93.8 93.8
2 - 93.2 93.6 94.4
3 - 93.9 93.3 94.2

Table 9.1: Average area under the ROC curve for pose class 8 measured over 3 folds.

These figures show how the subclasses and multiple dimensions of the SDA subspace help to cluster
the samples. However, the effect on the classification performance is less pronounced. As previously,
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Figure 9.1: The training samples in the learned subspace for pose class 8 using two subclasses for both
the positive (crosses) and the negative samples (dots).
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Figure 9.2: The training samples in the learned subspace for pose class 1 using four subclasses for the
positive samples.
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we divide the training samples by either k-means or by their pose annotation. Table 9.1 shows the
classification results, using the Mixture Model, for four variations of subclass division. Despite the
differences in the sample dispersal seen in the previous figures, the actual differences in classification
are very minor. The table also suggests that performing the classification in more than one dimension
brings little benefit to the classification performance. This can also be seen in figure 9.3 which shows
similar performance results for classification in up to the first three dimensions. The figures also show
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(c) Three dimensions.

Figure 9.3: Average classification accuracy for pose class 8 over 3 folds, as a function of the number of
features used for learning the SDA subspace.

some clear results with regards to the classification metrics. The shared covariance matrix is detrimental
to the performance of the Mixture Model while this does not have the same effect on the Mahalanobis
distance. This suggests that an alternative method of calculating the shared covariance matrix might be
preferable. The other metrics all have very similar performance profiles.

9.2 Multi-class SDA

In the previous section we have seen how SDA groups the subclasses by pose in the subspace learned for
the one-versus-all classifiers. In the multi-class situation this property is even more pronounced. Figure
9.4 shows the dispersal of the training samples in a SDA subspace trained on 300 features without
subclasses.

Even without subclasses, the samples are largely ordered in a “v” or wing shape according to the
subject’s pose. As figure 9.5 shows, the addition of subclasses does have some slight performance benefits.
However, as we add more subclasses, and perform the classification in more dimensions the condition
of the covariance matrix degrades, this is shown in figure 9.6. The effects of this degradation on the
Mixture Model and Mahalanobis metrics is easily visible in figure 9.5. The metrics that do not require a
covariance matrix or have a shared covariance matrix do not share these difficulties and their performance
remains stable.
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Figure 9.4: The training samples in the SDA subspace learned without subclasses.
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(b) Two subclasses per pose class.
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(c) Four subclasses per pose class.
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(d) Subclasses divided by pose.

Figure 9.5: The average performance of multi-class SDA trained on 600 features.
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Figure 9.6: The condition of the covariance matrix degrades as the number of dimensions increases.
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Chapter 10

Comparison of classifiers

This chapter compares the one-versus-all approach with the multi-class approach. For both approaches we
apply the best settings for GentleBoost and SDA as determined in the previous chapters. We also apply
both approaches with only a single subclass for each pose class. This creates a LDA based variation to
both approaches. For additional comparisons we also combine the GentleBoost strong classifiers through
the same basic voting mechanism as the one-versus-all SDA approach. First we discuss the final settings
and classification results for each of the variations trained with the same three-fold cross validation
procedure as used in the previous chapters. In the final section we show the comparison between the
variations.

10.1 Combined GentleBoost classifier

We combine the GentleBoost strong classifiers we used to select the features for the binary SDA classifiers
through a voting scheme. If more than one GentleBoost strong classifier return a positive result, we assign
the classification to one of their respective pose classes at random. The results are shown in table 10.1.
The strong classifiers in this experiment have approximately 120 decision stumps on average. The mean
absolute horizontal error is 4.6◦ and the vertical error is 13.1◦.

Tilt Pan
90,75 60,45,30 15,0,-15 -30,-45,-60 -75,-90

60,30 81.7 68.3 57.8 64.4 89.2
15,0,-15 65.6 57.8 63.3 63.7 73.9
-30,-60 71.7 55.6 70.6 53.3 82.5

Table 10.1: Classification results for the combined GentleBoost classifier, the overall accuracy is 66.2%

10.2 Combined SDA classifier

For the multi-class classifier we combine the binary classifiers with a standard voting scheme. The
individual binary classifiers use 100 features each, selected by the GentleBoost classifiers from the previous
section. The classification results are shown for the Mixture Model applied in the first dimension and
the first and second dimensions of the subspace in table 10.2. This again shows that the additional
dimensions do not benefit the classification. The mean absolute horizontal error is 5.8◦ and the vertical
error is 13.7◦ when the classification is performed in the first dimension. Extending the classification
to the second dimension results in errors of 6.3◦ and 16.0◦ for the horizontal and vertical directions
respectively.
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(a) [The average classification in the first dimension, the overall accuracy is
64.7%.

Tilt Pan
90,75 60,45,30 15,0,-15 -30,-45,-60 -75,-90

60,30 72.5 58.9 64.4 65.6 84.2
15,0,-15 64.4 63.7 54.1 65.6 70.6
-30,-60 70.8 56.1 68.3 54.4 77.5

(b) The average classification results in two dimensions, the overall accuracy
is 62.8%.

Tilt Pan
90,75 60,45,30 15,0,-15 -30,-45,-60 -75,-90

60,30 74.2 58.3 63.3 63.9 83.3
15,0,-15 60.0 60.4 53.7 61.5 67.2
-30,-60 65.8 53.3 69.4 52.2 78.3

Table 10.2: Classification results for the combined SDA classifier using the Mixture Model.

10.3 Combined LDA classifier

In this section we show the classification results with multiple LDA based classifiers. We use the same
setup as in section 10.2, except that we do not group the training samples into subclasses. In this case
SDA is identical to LDA[72] and as can be seen in table 10.3, the results are similar as well. The learned
subspace is limited to a single dimension in which we apply the Mixture Model for classification. The
mean absolute horizontal error is 7.3◦ and the vertical error is 14.7◦.

Tilt Pan
90,75 60,45,30 15,0,-15 -30,-45,-60 -75,-90

60,30 70.0 59.4 61.1 62.2 88.3
15,0,-15 67.8 57.0 55.2 56.3 68.3
-30,-60 68.3 50.6 63.3 50.6 80.8

Table 10.3: Classification results for the combined LDA classifier, the overall accuracy is 62.1%.

10.4 Multi-class SDA classification

For the multi-class application of SDA we combine the feature sets selected by the GentleBoost classifiers
from section 10.1. From this combined feature set we used the first 600 features for learning the subspace.
To allow a direct comparison with the multivariate LDA classifier in section 10.5 we limit the classification
to 14 dimensions. The classification results with the euclidean distance metric are shown in 10.4. The
mean absolute horizontal error is 3.3◦ and the vertical error is 10.1◦.

Tilt Pan
90,75 60,45,30 15,0,-15 -30,-45,-60 -75,-90

60,30 73.3 77.8 70.0 80.0 82.5
15,0,-15 78.3 74.4 79.6 80.0 75.6
-30,-60 54.2 68.9 77.2 75.6 57.5

Table 10.4: Classification results for multi-class SDA classification with an average of 6 subclasses, using
the Mixture Model in 14 dimensions, the overall accuracy is 74.7%.
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10.5 Multi-class LDA classification

As with the previous section, we show the results for the LDA variation on the multi-class SDA classifier
from section 10.5. The classification is performed with the euclidean distance metric and shown for 14
dimensions in table 10.5. The mean absolute horizontal error is 3.2◦ and the vertical error is 10.9◦.

Tilt Pan
90,75 60,45,30 15,0,-15 -30,-45,-60 -75,-90

60,30 77.5 68.3 68.9 70.0 82.5
15,0,-15 76.1 69.6 71.9 74.4 75.0
-30,-60 66.7 66.7 78.9 67.8 72.5

Table 10.5: Classification results for multi-class LDA classification, over 3 folds, using the Mixture Model
in 14 dimensions, the overall accuracy is 72.2%.

10.6 Comparison

The classification results for the five different classifiers are reasonably similar. There is also considerable
overlap in the classification output of each classifier. This is illustrated in table 10.6. The table shows
the combined SDA and LDA classifiers having a particularly strong agreement between their respective
classification outputs. Less strong, but still evident is the agreement between the multi-class SDA
and LDA classifiers. The GentleBoost classifier has no particularly strong agreement with the other
variations. This pairing can also be seen in figures 10.1 and 10.2. Figure 10.1 shows a comparison of the

Actual Comb. Boost Comb. SDA Comb. LDA Mult. SDA Mult. LDA
Actual - 66.2 64.7 62.1 74.7 72.2
Comb. Boost 66.2 - 71.9 70.7 67.4 71.1
Comb. SDA 64.7 71.9 - 91.2 67.2 69.6
Comb. LDA 62.1 70.7 91.2 - 65.0 67.7
Mult. SDA 74.7 67.4 67.2 65.0 - 84.0
Mult. LDA 72.2 71.1 69.6 67.7 84.0 -

Table 10.6: Agreement in percentages between the classifier variations and the actual values.

mean error in pan estimation for each classifier as the subjects tilt is approximately 0◦ while the subject
pans its head ±90◦, which corresponds to pose classes 2, 5, 8, 11 and 14. Similarly, the mean error in
tilt estimation for pose classes 7, 8 and 9 is shown in figure 10.2. These figures show an increase in the
error rate when the subject’s movement nears a class boundary, as one would expect. Despite the lower
error rate near the class centres, figure 10.1 shows an increase in the horizontal error in degrees near the
class centres.
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(a) Horizontal error in degrees versus pan.
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(b) Error rate versus pan.

Figure 10.1: Horizontal rotation of the subject’s head.
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(a) Horizontal error in degrees versus tilt.
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(b) Error rate versus tilt.

Figure 10.2: Vertical rotation of the subject’s head.
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Part IV

Conclusion
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Chapter 11

Final discussion

For this thesis we have created and analysed an automatic feature selection method and two classification
approaches. Combined with a head detector these form a head pose detector whose performance has
been compared to similar pose detection methods.

The boosting procedure succesfully selects informative features that enable succesful pose classifica-
tion. The multi-class approach is shown to be preferable over the one-versus-all approach. Additionally,
the SDA classifiers are shown to have performance characteristics comparable to those of LDA for both
the one-versus-all and the multi-class approach.

11.1 Feature selection

The automatic feature selection through GentleBoost results in a feature vector covering the essential
facial areas and ignoring the background noise left over from the head crops. This coverage would
be similar as one would achieve with a manually generated density sampling mask. The automatic
generation of sampling masks is very convenient for any object recognition tasks and especially when we
need multiple masks such as for an array of pose classifiers.

The experimental results further indicate that a single application of the boosting procedure is suf-
ficient to achieve optimal results from the GentleBoost feature selection. It is possible to select fewer
features for pose classes that are easier to classify, such as the pose classes on the edge of the allowable
range of motion. However, a number of features larger than necessary does not immediately result in a
decrease in performance. Furthermore, because the features are selected in order of importance we can
choose how many of the selected features to use for training the SDA classifier and be confident that
we supply the SDA procedure with sufficient information to perform the classification. As a result, we
successfully selected a limited number of features from each of the pose specific feature sets to combine
into a single feature set for multi-class SDA classification.

11.2 Subclass Discriminant Analysis

The experiments show that a division of classes into subclasses can result in a clear spread of these
subclasses in the learned subspace of the one-versus-all classifiers. This occurs when the division is
performed by either k-means or by pose annotations. However, different subclass divisions do not result
in an increase in performance. There is also no large difference in the classification performance between
the SDA variations and the LDA variant. The additional benefit of SDA which allows us to perform
the binary classification in more than one dimension doesn’t result in a performance difference either.
A large factor in the performance of the classification procedure is the GentleBoost feature selection.
Selecting the right number of features has a larger influence on SDA performance than finding the optimal
subclass division. The effects of the feature selection are similar for LDA and SDA, regardless of the
specific subclass division applied.

In the multi-class case, we also see little effect of the subclass division on the classification performance.
The samples are spread along a single manifold whose characteristic shape is not influenced by the
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subclass division. We do see a benefit in performing the classification in more than one dimension,
however in the multi-class case, LDA has this ability as well.

The SDA variants consistently show a smaller performance increase over the LDA variants but this
difference might not be significant. The one-versus-all and the multi-class approaches do have a significant
performance difference to the benefit of the multi-class approach. This is consistent with the expectations
due to the ordered nature of the data.

11.3 Discussion

When we perform the subclass division by k-means we note that the subclasses are based partially on
pose and partially on identity. Subsequently we manually assigned samples to subclasses according to
their pose. Assigning the samples according to the subjects identity results in less distinct subclasses
and no performance benefits. This method would result in a larger number of subclasses and thus reduce
the number of training samples per subclass available in the training set, which would negatively affect
the training process. Additonally, large parts of the identity specific image features are lost due to the
application of the Gabor filters and the subsequent feature selection which favours pose specific features
over identity specific features. An option more likely to be successful is a subclass division according to
different categories of occluders. Large occluders such as glasses and hats as well as the non-occluded
face could each form a subclasses. The features required to distinguish these subclasses could more easily
be selected in the feature selection stage than the smaller identity specific features. The possibilities are
mostly limited by the diversity and quantity of the samples in the data set.

The combined feature set for multi-class SDA is sufficient for pose classification but it may not be
optimal. The one-versus-all classifiers show that the required number of features to correctly identify a
specific pose class is not equal for all pose classes. This suggest the creation of a combined feature set
with more features dedicated to the identification of the difficult poses and less features for the easier
poses.

There is a significant performance difference between the one-versus-all approach and the multi-class
approach. This is likely due to the ordered nature of the data and the capability of discriminant analysis
to order the data on a manifold. However, the performance gap between the multi-class approaches and
the combined GentleBoost approach is not very large. When the capabilities of the manifold are not
fully used, as in discrete classification as opposed to continuous classification, the one-versus-all approach
remains valid.
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