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Management Summary

The subject of this thesis is product reliability. During the development process of a product the
engineers want to predict the reliability of a product and verify that reliability requirements are met.
But, they also have to deal with a strong pressure to develop the products in a short time. This leads to a
need for fast and accurate lifetime testing methods. Accelerated lifetime testing, lifetime testing by
using stress (e.g. temperature or voltage), is such a fast testing method that can be used. To obtain
accurate results, the stress factors, the stress levels, the amount of products, and the test time must be
chosen strategically. These factors are described in a test plan. Scientific literature only provides a few
methods to design accurate accelerated lifetime test plans. Hence, the goal of this research is:

To develop a procedure for the design of efficient test plans to be able to make an accurate estimation of
the reliability of a product and to be able to determine the influence of design parameters on this, by

accelerating the occurrence of applicable failure modes.

In the development of test plans, we focus on different scenarios, based on the number of failure modes
(i.e. the causes of failure), the number of stress factors, and the number of product design variants.
Product design variants are largely similar, but differ on some specific points, such as size, type of
material or amount of chemicals included; differences are represented by design parameters.

The research consists of three phases to finally fulfill the research goal. During the first phase we use a
literature study to collect information about the transformation of lifetimes under stress to lifetimes
under normal use conditions, methods to design test plans and methods to measure the accuracy of
estimations. During the second phase, we use this information to develop procedures to design test
plans for different scenarios. We start the research with the development of a test plan for the most
basic scenario, namely one failure mode, one stress factor and one product design, and extend this
stepwise until the most complex scenario; two or more failure modes, two or more stress factors and
two or more product design variants. We describe these methods, but also make a program to be able
to generate the plans. The last phase is the verifying and testing phase. We test the developed
procedures based on cases from practice and compare the performance of different types of test plans
within a scenario. Based on these results we conclude which procedure must be used to design test
plans for lifetime testing in different situations.

According to our developed procedure, test plans are based on assumed situations. These assumptions
can be based on knowledge of previous products, expert opinions, or earlier experiments. Dependent on
the uncertainty about the situation a type of test plan must be selected. A test plan type determines the
number of stress levels and the way of allocating the items over these stress levels. For the selected
type of test plan, different configurations need to be evaluated during a simulation based on the
assumed situation. The test configuration that gives the most accurate estimation of the lifetime under
normal use conditions must be selected as the best test plan. To make the best test plan more robust
against inaccurate assumptions, close alternative test plan configurations need to be compared for
different situations. Based on those results the overall best test plan can be selected.
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We examine the performance of the developed procedure during two case studies. In the first case 100

lamps and 3,000 hours of testing time are available. The goal of the test of the first case study is to

estimate the product reliability and the influence of the design (i.e. the color of the light) with use of the

stress factor(s) temperature and/or voltage. Based on the results of this case study we conclude for our

developed procedure that:

- Using two independent stress factors instead of one stress factor reduces the needed sample size to
obtain certain estimation accuracy up to 80%

- If multiple designs are compared in one single stress test instead of one stress test per design the
needed sample size to obtain certain estimation accuracy is reduced by approximately 40%.

The second case concentrates on the development of a new type of aquarium lamp. For this test, 80

lamps and 4,000 hours of testing time are available to estimate the reliability and select the best design.

The different designs can be described by four design parameters, namely type of emitter, filling

pressure, amount of neon, and type of spiral. The influence of the design parameters on the reliability is

unknown. We designed a test plan and based on the case study results we conclude for our developed
procedure that:

- The developed procedure is flexible enough to be adjusted to practical scenarios. This became clear
from the fact that although our research only assumed two independent design parameters, it can
also deal with four interacting design parameters. Small changes in the procedure made it possible
to generate a test plan for this “new” scenario.

- Accurate prior information is very important. The difference between the expected accuracy of the
lifetime estimation based on the test plan configurations and the accuracy of the lifetime estimation
based on the test results is approximately 8%. This difference can be reduced if assumptions about
the influence of the design parameters on the reliability are available.

To make it possible for CQM to implement the developed procedure and to use the simulation program,
four steps are needed. First, the developed procedure and the simulation program must be understood
by the responsible employees and one person must be responsible for the maintenance. Second, the
procedure must be used during a pilot project to evaluate the performance and identify improvement
areas. Third, after validating the method, CQM must emphasize the importance of smart reliability
testing at their customers and the developed procedure can be integrated into the standard working
process. Last, the procedure must be extended or adapted based on the experiences from practice to be
able to use it in more various situations. For example, a step to optimize the needed test time to reach
certain estimation accuracy can be included.
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1. Introduction

Customers expect that the products they buy perform their intended function without failing. The
probability that a product will perform its intended function until a specified point in time under
encountered use conditions is called the reliability of a product (Escobar & Meeker, 2004). During the
development process of a product, it is important to test the reliability of the product and improve it if
necessary. Section 1.1 introduces the subject of reliability and the relevance of reliability testing. Section
1.2 describes the problems this research concentrates on. Section 1.3 introduces the initiator of this
research, CQM (Consultants in Quantitative Methods). It describes the company profile and the relation
towards reliability, the subject of this thesis. Section 1.4 gives an explanatory case description, based on
a practical situation, which we use in this thesis to illustrate the methods that are described and
developed.

1.1 Problem Introduction

During the development process of a product the engineers want to predict the reliability, verify that
reliability requirements are met, identify weak points in design, and compare design variants to identify
which design is best (Lydersen & Rausand, 1987). Insight in the reliability of the product can minimize
cost of warranty and product recalls, can minimize customer dissatisfaction and can help to manage
risks. This leads to more upfront testing of the products. But, engineers have to deal with strong
pressure to develop high technological products in a short time, while improving quality, productivity
and product reliability (Escobar & Meeker, 2006). This leads to a need for fast and accurate testing
methods.

Based on results of lifetime tests, the life cycle of a product can be described. Figure 1 presents a
general life cycle of a product, also called the rollercoaster curve. In the first-phase the failure rate is
high, because of failures caused by manufacturing errors. Often, these failures are observed before the
product arrives at the customer. During the second phase, the failure rate increases because failures
occur due to design errors or wrong usage of customers, a subgroup of the population deals with these
problems. During the third phase the failure rate is almost constant. Random failures occur due to use
or environmental factors. In the fourth phase, the failure rate increases, because the product reaches
the end of its life (Breyfogle, 2003). The shape and scale of this curve determine the mean life of the
product or the moment in time where p% of the products is failed. Engineers try to develop a product
such that the percentage of failures caused by early failures is as low as possible and the mean life of the
product is higher than the pre specified lifetime of the product. A bad understanding of the life cycle of a
product can cause product recalls. Appendix B gives some examples of product recalls based on causes
of failures that are not detected during the development of the product. To obtain the desired lifetime
curve, reliability must be considered during the complete development process of a product.
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Figure 1: Four Phase Rollercoaster Reliability Curve (Brombacher, 1992)

Figure 2 describes the development process of a product based on the Design for Six Sigma phases
(ReliaSoft, 2007). The activities with respect to reliability are summarized in this figure. The
identification phase and the optimization phase are the most important phases for this research and are
described in more detail. The reliability target is set in the identification phase, based on the
expectations of the customer, a benchmark study to competitive products and the requirements of the
developers. The modeling of the lifetime takes place in the optimization phase. During this phase, the
failure modes, i.e. causes of failure, of the product are identified and their impact on the lifetime of the
product is determined. Also the impact of design changes of the product on the reliability is important;
more design variants can be available for testing. Tests are executed to obtain the information to
establish these lifetime models. These lifetime tests are difficult; often there is not enough time to
observe the whole life of a product, because this can take for years. Another problem is that often a
limited amount of products is available for such tests; the products are not in production yet. This
research focuses on the design of these lifetime tests. The next section describes the problems with
respect to these tests in more detail.

Define Identification Design Optimize Verification Monitorin
Requirements and »  Quantitative » Feasibility opt . » Requirements > 9
P : . Reliability testing . Process control
goals specifications specifications demonstration

Figure 2: Reliability in the Product Development Process

1.2 Problem Description

As described in the problem introduction, tests must be executed to model the lifetime of a product in
order to estimate the reliability. A problem that often occurs with these lifetime tests is that there is not
enough time to observe the whole product lifetime, which can take years. For example the minimum
lifetime of a LED lamp, Light Emitting Diode, is 20.000 hours; this would take almost three years to
confirm (Philips: LED Lighting Systems). During the development process this amount of time is not
available; engineers strive for a short time-to-market to introduce a new product earlier than the
competitors do. The available time to test a LED lamp will be around one month (700 hrs). Therefore,
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ways to speed up this failure process must be used. This can be done via accelerated stress testing. The
items are tested under more severe stresses than those encountered during normal use, to quickly
obtain data, which yield desired information about the lifetime of the product under normal use
conditions. Examples of these stresses are temperature, humidity, voltage, mechanical load and thermal
cycling (Nelson, 1990). The levels of the stresses must be chosen such that there is a very low probability
that failure modes occur that are not feasible under normal conditions, for example melted or burned
components. But on the other hand enough failures must occur to obtain statistically significant results
(Clark, Garganese, & Swarz, 1997). Also the amount of products that is available for testing as well as the
testing equipment can be limited. For example for testing lighting products often 30 till 50 testing places
are available per product type. Different designs of the product can be compared to examine the
influence of a specific product design parameters on the reliability, for example size, chemicals included
or thickness. The lifetime tests must be designed such that the time and the number of products needed
are minimized, but still be able to make an accurate estimation of the reliability.

The controllable terms that must be determined for the lifetime tests are the stresses that must be
used, the values of these stresses, the way of increasing the stress levels, the sample size, the number of
replications per stress level and the test termination time. After testing, the observed lifetimes must be
translated to lifetimes under normal use circumstances and the accuracy of the estimation must be
determined. A procedure to design an efficient way of executing lifetime tests is needed, but not
available yet. In the scientific literature methods can be found to analyze lifetime data, for example,
Lawless (2003) and Elsayed (2003) describe different methods for these analyses. Some other authors,
for example Nelson(1990), Meeker & Escobar(1998) and Guo & Pan(2007), describe the optimization
problem for the design of a test plan for specific situations, but no clear description of a complete
procedure that solves the optimization problem for different situations is available. This research
focuses on the development of such a complete procedure to design lifetime tests.

1.3 Company Description

CQM is a consultancy firm located in Eindhoven, focused on decision problems, planning, and process
improvements. The company exists over 30 years and originates from Philips. CQM supports Philips
during a lot of projects, but also has customers like ASML, Océ and Prorail. Quantitative methods are
used to analyze and improve the complex problems and processes of the customers. CQM consists of 30
consultants, divided over three groups; chain management, planning, and product and process
improvement. This research is done for the latter group. This group enables companies to tackle and
validate all relevant steps in industrial innovation projects from marketing to production. The concept
Design for Six Sigma is used as method to shorten the time to market, make the design robust to input
and process variances and improve the quality. Customers are supported with statistical methods to
improve their decisions based on quantitative facts. The last few years, customers recognize the
importance of reliability testing during the development of new products and ask for methods for
reliability engineering. This thesis will describe the methods that can be used to design lifetime tests,
such that the reliability of the products can be estimated in an early stage.
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2. Research Design

This chapter includes the research goal of this thesis and the strategy that will be followed to reach this
goal. Section 2.1 states the research goal based on the problems described in chapter 1 and section 2.2
describes the corresponding research questions. Section 2.3 describes the scope of the research and
section 2.4 presents the research strategy to be followed during this research. Finally, section 2.5
describes the outline of this thesis.

2.1 Research Goal

As described in chapter 1.2, the problem this research deals with is that there exists no complete
procedure to design lifetime tests to estimate the reliability of a product. To solve this problem, the goal
of this research is:

To develop a procedure for the design of efficient test plans to be able to make an accurate estimation of
the reliability of a product and to be able to determine the influence of design parameters on this, by

accelerating the occurrence of applicable failure modes.

- Efficient tests are tests that are executed in a minimum amount of time, using a minimum amount of
products, containing purposeful changes in the input variables so that changes may be observed in
the output response. The response must be such that based on this an accurate estimation of the
reliability can be made (Montgomery, 2005).

- An accurate estimation is in this context a calculated approximation, using a statistical method,
which estimates the value of a parameter as close as possible to the true parameter value.

- Reliability is the probability that a unit will perform its intended function until a specified point in
time under encountered use conditions (Escobar & Meeker, 2004).

- Design parameters are physical or functional component or product characteristics represented by a
variable, these characteristics can be for example material or size.

- Accelerating means speeding up the failure process by making use of stress factors. Examples of
stress factors are temperature, humidity or power.

- Applicable failure modes are the most important causes of failure, also called failure mechanisms
(Nelson, 1990). A product can have several failure modes, but we focus on the failure modes that
have the largest influence on the lifetime of the product. Every failure mode has its own lifetime
distribution. To model the lifetime distribution of a product with multiple failure modes, a combined
distribution must be used. Part of this research will focus on products with multiple failure modes.

Appendix A lists the most important definitions we use in this report.

This research is scientifically relevant as well as relevant for CQM and other companies in the same
industry. The scientific literature is strongly focused on the analysis of lifetime data. Based on tests or
observations during use, there is information available about the lifetime of a product. Based on these
data, a statistical distribution can be fit and an expected lifetime can be determined. About the design of
the lifetime tests, less literature is available. There exist scientific articles about the design of lifetime
tests, but they are appropriate for specific situations, focus on comparisons of two product designs, or
determine one of the experimental factors, given the other ones. However, they do not include the
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effect of the design parameters and the reliability estimation. Some authors describe parts of the
design, but a complete procedure to generate the test values is missing. This research focuses on these
issues and will provide new insights into the fields of and develops methods to design lifetime tests.
Thereby, the research has not only scientific value, but is also relevant for CQM. Their customers express
their need for methods to test product reliability, but currently these complete methods are not
available. To give these customers full support, this research is necessary and the result will be a more
complete procedure that describes how to design lifetime tests. The focus of companies on reliability
shifts from production to the product development phase, so also other companies with R&D
departments can profit from this research.

2.2 Research Questions

To meet the research goal, several subquestions have to be answered. This section presents these
guestions and describes the purpose of each question. Figure 3 shows the relation between the
different research questions.

1. Which models are used to describe the lifetime of a product and how can failure modes, stress
factors and design parameters be included?
The goal of this question is to describe the most common lifetime models and the situations in
which they can be applied; examples are the Normal and the Weibull distribution. But also models
to combine lifetimes for products with different failure modes, data under stress or different design
parameters are needed. Examples of such models are the Arrhenius model and Proportional hazard
models. These models can be fitted through lifetime data obtained by tests; the model parameters
are chosen such that the data fits the model as good as possible. These models are necessary,
because based on them the reliability of a product can be estimated.
We answer this question based on a literature study; the most common models for different
situations are explored.

2. How can the accuracy of the lifetime model and the estimation methods be measured?
The lifetime model is fitted using the experimental data, but a criterion is needed to find the best fit
and measure the deviation of the model from the reality. The objective of this question is to
describe the criterion that can be used to fit the experimental data through the statistical model and
describe a method that can be used to measure the possible deviation from the true value, also
called accuracy. The accuracy of the model is measured when the developed procedure is used in
the simulation study, research question 5, and when it is tested in a practical situation, research
guestion 6. This method to measure accuracy is obtained from the scientific literature.
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3. Which procedures available in the scientific literature are appropriate to design tests to model the
lifetime of a product, and when are these methods applicable?
The purpose of this question is to give an overview of the existing methods to design lifetime
experiments. The methods are described based on available scientific literature. The methods are
categorized according to the scenarios for which the methods can be used and the situations for
which they are appropriate. Scenarios are based on the number of failure modes, the number of
stress factors and the number of different product design variants for which a test plan must be
designed. Situations are based on the assumptions made to design the test plan on, for example
uncertainty about the family of distributions, or uncertainty about the failure probabilities. From
this, missing methods can be recognized. These methods will be developed in answering research
question 4, and together with the available methods they are used to create a complete procedure
to design lifetime tests.

4. Which complete procedure can be followed to design tests to model the lifetime of a product?
Answering this question results in a recipe for designing lifetime tests. Methods for the situations
wherefore no methods are available in the scientific literature are developed. Combinations of these
methods are used to develop the complete procedure. Based on a given situation, it must be clear
how the sample size, stress levels, stress loadings, number of runs and run settings can be
determined. To come up with this procedure, different scenarios must be included. These different
scenarios are created based on the number of failure modes, the number of stress factors and the
existence of different product designs. More details about these scenarios and the research
approach can be found in section 2.4. Figure 4 gives a schematically overview of the different
scenarios. The methods described by answering research question 3 are used for the development
of the procedures, but also new methods are derived.

5. How appropriate is the designed procedure to well known situations?

Via computer based simulation the procedures designed by answering question 4 are tested. A
situation description is made and based on this, with use of the designed procedure, a test plan is
developed. Subsequently, the test plan is executed and results are generated by simulation. In this
step, the failures are simulated with use of a lifetime distribution and a life-stress relation. At the
end, the appropriateness of the procedure can be determined based on the accuracy of the
estimation, and the difference of the estimated values and the underlying model.

Answering question 4 & 5 is an iterative procedure; after the development of methods for one of
the scenarios this question must be answered and based on the test results the procedure can be
adapted and tested again. The goal of this research question is to improve the developed procedure
and determine the quality of the developed procedure.
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How appropriate is the designed procedure in a practical case?

After validation of the procedure via simulation, it can be tested in a practical situation. We describe
the development of a test plan for an aquarium lamp and describe the results. During this test
practical preferences and restrictions from the company that is involved are also incorporated. The
appropriateness of the test plan procedure is measured based on the accuracy and the adaptability
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Lifetime modelling me’:gﬁ‘r‘;:’;'ms Available methods

I

Q4
—> Design
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of the procedure.

A A
Qs

Validate as Case
procedure Test procedure

Figure 3: Relation Research Questions

2.3 Scope of the Research

Reliability and life testing are both very broad concepts; this research focuses on a specific part of

reliability. We can describe this part as:

Overstress testing

Different kinds of accelerated life testing exist, namely usage rate tests, overstress tests and,
degradation tests. Products with a low usage rate per day or week can be tested by high usage rate
tests. These tests are executed under normal circumstances, but the products are used more and for
longer periods than normal. During overstress tests the products are running at higher than normal
stress levels to shorten the product life. Degradation tests are almost similar to overstress tests, but
the performance is observed instead of the lifetime (Nelson, 1990). This research focuses on
overstress testing. The high usage tests do not deal with the time problem and the degradation tests
are only possible when the degradation process can be measured.

Quantitative methods

Both qualitative and quantitative accelerated life tests are used for reliability testing during the
optimization phase. In the scientific literature both kinds of methods are described, but they have
their own purpose. The main purpose of the quantitative methods is to obtain information about
the failure time distribution at specified use conditions of the stress variables. The purpose of the
qualitative methods is to identify product weaknesses caused by flaws in the product’s design or
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manufacturing process (Escobar & Meeker, 2006). The focus of this research is to estimate the
lifetime and reliability of a product based on the failure time distribution, so the quantitative
methods are used.

Highly reliable consumable items

High reliable products are defined as products with an expected lifetime much larger than the
available test time, for example LED lamps with an average lifetime of 20.000 hours and a test time
of 700 hours. Accelerated stress testing is used in such situations, but this is not necessary for
products with a relatively short lifetime, therefore only high reliable products are taken into
account.

Single component, nonrepairable item

The reliability is estimated for a single component or product, so serial systems are not taken into
account. Based on individual reliabilities, the reliability of a system can be determined; this part is
out of scope of this research. In general no new tests have to be done to examine this system
reliability; it can be based on the experimental data of the components. Because we focus on the
component level, the items that are failed cannot be repaired. Examples of products are electrical
insulations, battery cells or lighting products.

One or more product design variants available

To make it possible to compare different designs and measure the influence of specific design
parameters on reliability, we also include situations with one or more product design variants.

Time censoring, termination time given

There are different types of stress tests available. We concentrate on the situation where there is a
fixed amount of time available for testing. This is the most common situation in practice. The
consequence of this fixed amount of time is that the number of observed failures is not known
exactly beforehand. In most cases not all the products are failed when the test terminates and this
leads to censored data. Appendix C describes the different types of censoring in more detail.

Assumptions that we take into account are:

Family of lifetime distribution known

The lifetime of the products is assumed to be parametric. We use the Normal and Weibull
distribution to describe the lifetime because they have totally different characteristics and can be
used for different type of products. The assumption about the type of distribution and the
parameters is based on knowledge from previous tests and physics of the product. When no
parametric distribution can be applied, a nonparametric analysis can be used. This nonparametric
method is only applied when a parametric method gives infeasible results.

Constant shape parameter of lifetime distribution for different stress levels and design variants

The fundamental principle of overstress testing is that the unit under test will exhibit the same
behavior in a short time at high stress that it will exhibit in a longer time at low stress. This means
that the shape parameter of the life distribution is assumed to be constant and only the scale
parameter changes (Condra, 2001). Also, the design parameters only influence the scale parameter.
Failure modes to test known and independent

We assume that a qualitative analysis is done before the quantitative analysis, so the applicable
failure modes are identified. Examples of qualitative methods are HALT, High Accelerated Life
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Testing and MEOST, Multiple Environment Over Stress Testing. For more details about these
methods see Bhote and Bhote (2004).

- Applicable stress factors known with their normal use and highest level
We also assume that the stress factors with their normal use and maximum level are known. With
the maximum stress level, also called high stress level, we mean the maximum level that we can use
to stress the product without stressing the product that much that other failure modes occur that
do not appear during normal use. The stress factors can be known based on the physics of the
product, or are derived from the qualitative analysis.

- After failure, the corresponding failure mode is known
To be able to treat different failure modes independently, and finally combine them to estimate the
reliability of the product, the reason of failure of a product must be known when the product fails.

2.4 Research Strategy

The research can be split into three phases. Figure 3 displayed the research questions and the relations
between them; the three middle layers of this figure correspond with the phases of the research. The
first phase can be classified as literature study. The goal of this phase is to understand the current way
of working with respect to modeling lifetime, estimating reliability and the design of tests. Based on
scientific literature, methods to model reliability are described, we do this while answering research
guestion 1. We describe methods to estimate the parameters of the lifetime model and measure the
accuracy of these estimations, such as Maximum Likelihood Estimation and confidence intervals, by
answering research question 2. Important references for the first two research questions are Meeker
and Escobar (1998), Nelson (1990), Lawless (2003) and Deshpande and Purohit (2005). Subsequently, we
describe methods currently used in the scientific literature to design lifetime tests and categorize them
based on their assumptions and applications; we do this by answering research question 3. Based on this
literature review, we can recognize lacking methods to design lifetime tests.

The second phase of the research can be classified as the design phase; we develop methods to design
lifetime tests based on combinations of existing methods described by answering question 3 and
derivations of methods for similar situations. Different scenarios are created dependent on the number
of failure modes, the number of stress factors and the number of product designs to be tested. The
product designs are for a large part the same, but differ on one or a few points. It can be efficient to test
these designs, which have much in common, together. This is because it can increase the accuracy of the
estimation and make it possible to see the influence of a design parameter on the reliability. This makes
the decision for choosing the best design easier. Figure 4 shows the different scenarios schematically.
Starting with the simplest scenario, we develop a procedure, this procedure is used to come up with
procedures for more complex scenarios, and this process continues until the most complex scenario is
reached. After developing a procedure for one scenario, this procedure is tested via a simulation study
and adapted; this is described by research question 5. For the first two layers, we develop the
generation of the test plans completely. For the other two layers, we describe the idea behind the
method to design a test plan, but do not give the complete description.
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Figure 4: Research Approach

The last phase of this research can be classified as the validation and testing phase. The new developed
procedures are validated through a simulation study. We design tests based on the new methods and
simulate failures using Monte Carlo simulation based on a lifetime distribution and a life-stress relation.
After this, we fit a lifetime distribution based on the data obtained by the lifetime tests and measure the
difference between the estimated and the real reliability. This validation must be done for every
scenario of Figure 4. This means that the design of the procedure and the validation follow an iterative
procedure, we make adjustments to the procedures based on the test results and test the adapted
procedures again. After validation, we test the procedure with use of a practical case. This test shows if
the assumptions used during this research are realistic for practical situations and which adjustments
have to be made to be able to implement this procedure in practice. At the end, we conclude how
efficient lifetime tests can be designed to make accurate estimations of the reliability of products based
on the scientific literature and the test results and we give suggestions for further research.

2.5 Outline Thesis

Chapter 3 presents different lifetime models, these models describe the reliability of a product on a
specific moment. For every product, the parameters of these models can be estimated based on the
experimental data. Chapter 4 describes methods to determine the accuracy of the parameter
estimations, given the experimental data. To obtain these accurate results, Chapter 5 describes methods
based on the scientific literature that can be used to set up lifetime tests for the one failure mode, one
stress factor and one product design scenario. These methods are classified based on the situation they
can be applied on, and are illustrated with use of an example. Chapter 6 describes procedures to set up
lifetime tests for the other scenarios, based on the methods described in Chapter 5 and new designed
methods to fill the gaps. Chapter 7 gives the results of the new designed procedure during a practical
case. Chapter 8 describes the steps CQM has to execute to implement the developed. Based on the
procedure and the test results, Chapter 9 answers the research questions and gives suggestions for
further research.
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3. Lifetime Modeling and Analysis

This chapter describes the models that can be used for lifetime modeling and reliability estimation.
Section 3.1 describes the models that are employed to describe the lifetime and the reliability of a
product. Section 3.2 describes the lifetime model of a product with several failure modes, consisting of a
combination of individual models. Section 3.3 discusses the techniques to translate failure times of
products under severe stress conditions back to normal use conditions. The output data of tests are
used to choose an appropriate lifetime model and to estimate the parameters of this model. These
parameters are estimated based on Maximum Likelihood Estimation; this method is described together
with the methods to determine accuracy in chapter 4. Finally, section 3.4 describes the models to
analyze different design variants. To be able to design lifetime tests, knowledge of the lifetime models is
important.

3.1 Lifetime Modeling

The most widely used measure for reliability of a product is the failure time distribution; this distribution
is constructed based on the failure time data of the product. The lifetime or failuretime of a product can
be described by a nonnegative, continuous random variable T. The probability distribution for the
lifetime T can be characterized by a cumulative distribution function, a probability density function, a
reliability function or a hazard function. The reliability function gives the probability of an item surviving
up to time t. The hazard rate function, also called failure rate function, describes the probability of
failure in the small interval [t, t+A], given survival up to time t (Meeker & Escobar, 1998).

As described in the scope of the research, we focus on the Normal and the Weibull distribution. The
exponential distribution is a special form of the Weibull distribution, so it is also included in the
research. Appendix D describes the different characteristics of the Normal and the Weibull distribution.
In the situation where no prior information is available about the distribution or the number of failures
is very small the nonparametric approach can be used (Lawless, 2003). Section 3.1.3 describes this
approach.

3.1.1 Normal Distribution

The normal distribution is applicable for products with wear out failure; this is an increasing failure rate.
The older the product is, the higher the probability to fail becomes. Many consumable items can be
described by the normal distribution. The disadvantage of the normal distribution is that its range is
defined from -o= to oo, but in reality lifetimes cannot be negative. Therefore, the normal distribution can
only be used to model the lifetime if the mean lifetime is large and the standard deviation is small. In
this situation the fraction below zero is very small.

3.1.2 Weibull Distribution

The Weibull distribution is the most widely used lifetime distribution model (Nelson, 1990). The shape
parameter gives the distribution the flexibility to fit many types of data. The Weibull distribution can
describe an increasing, decreasing and monotone hazard rate as function of age. Figure 5 shows the
hazard rate for different values of the shape parameter, B. If =1, the hazard rate is monotone and the
Weibull distribution equals the exponential distribution. If <1, the hazard rate is decreasing over the
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time and if B>1 the hazard rate is increasing over time. In conclusion, the shape parameter determines
the type of hazard rate (Meeker & Escobar, 1998).

We only use the two-parameter Weibull distribution. The three-parameter distribution also has a
location parameter, this can be used to include a failure-free period, but this distribution is seldom used
for accelerated life testing (Nelson, 1990).

5=3.0
=15
h(z)
2

g=1.0

=05
. | 1 1 |
1 2 3 4

Figure 5: Weibull Hazard Functions (Pal, 2005)

The Weibull distribution can be transformed to the smallest extreme value (SEV) distribution. The
smallest extreme value distribution has the advantage that it belongs to the family of location-scale
distributions, like the Normal distribution, and for this kind of distributions general rules can be applied
during the lifetime analysis (Meeker & Escobar, 1998). For example the likelihood function for location
scale distributions can be expressed in a simple generic form. The transformation of the Weibull
distribution to the smallest extreme value distribution can be described as:

If T~ Weibull (B,n) then Y=In(T) ~ Smallest extreme value(y, o) with p=In(n) and o=1/B.

The characteristics of the SEV distribution are:

Cumulative distribution function: F(t;u,0) = Pggy [log(?_#] (D
Probability density function: ftuo)= idmgy [@] (2)
1
t 1ot
Hazard rate: h(t;u,0) = prp— [exp(#) 3)
Percentile: t, = explu + @5y (p)o] 4)

With gy (z) = 1 — exp[— exp(2)] and ¢pgpy = explz — exp(2)].
t: moment in time

u: location parameter

o:scale parameter

p: percentile
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In the remaining part of this thesis, this transformation of the Weibull distribution is used because the
normal distribution is also a location-scale distribution and in this way general expressions can be used
that are appropriate for both distributions to make the methods more generic. For example during the
parameter estimations via maximum likelihood estimation these expressions are used, see section 4.1.
The value of the location parameter, |, depends on the applied stress level.

In general the expression for p equals:

U=y +71X%, Yo and y; are both parameters and x is the applied stress. (5)

The value of x depends on the life-stress relation; section 3.3 describes this in more detail.

3.1.3 Nonparametric Analysis

Both the Normal distribution and the Weibull distribution are parametric models. It is important that the
assumptions about the type of distribution and parameters are accurate, because different assumptions
can give quite different results. When no assumptions can be made about the distribution type, we can
perform a nonparametric analysis. This method is more robust to wrong model estimations. The
disadvantage of this method is that the confidence bounds of the model are much wider than with use
of a parametric distribution and also predictions outside the range of observations are not possible. A
useful nonparametric method is the Kaplan-Meier method. The reliability function can be estimated as
follows:

~ . omi—d; )
RE) =TT ™Y i=1.m ©

nj

With n; =n—2§-;%)dj —Zj'-;%)sj i=1.m

R(t)): Reliability at time t;

t;: time of the it" observation moment

m: total number of observation moments

n: total number of units

n;:number of units at risk before the jt" observation moment

dj:number of failures within the jt" observation moment

sj:number of censored observations within the jt" observation moment
1 -
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Figure 6: Kaplan-Meier Reliability Plot
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Figure 6 shows the reliability plot of a product based on the Kaplan-Meier method. The Kaplan-Meier
approach is only described to show a method to analyze data without assuming a family of distributions.
For the design of a test plan we focus on the parametric approach, because then we can make some
assumptions about the distribution of the lifetimes.

3.2 Competing Failure Modes

A product can fail due to different reasons; the reason why a product fails is called failure mode. During
testing and analyzing the reliability it is important to make a distinction between these different failure
modes, because they all have their own lifetime distribution with their own parameter values. This
means that a model has to be fitted for each failure mode; subsequently they can be merged to the
lifetime distribution of the product. This sequential approach has to be followed, because mixing
different failure modes when fitting a distribution leads to high deviations and bad prognoses (Werner,
2009).

Products with statistically independent failure modes can be seen as independent systems and we can
use the addition law for failure rates. For such products, the failure rates add (Nelson, 1990). Figure 7
shows this for a product with two failure modes in a graph.

The general equation for a combined failure rate function equals:
h(t) = hy () + hp(8) + -+ 4 hy () (7)
M:number of independent failure modes

4.5 -
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Figure 7: Hazard rate for Product with Two Failure Modes

Per failure mode, the failure probability distribution has to be determined. Based on these individual
distributions, a function for the total failure rate or reliability can be established. These functions

become:
R(t) = Ry(t) * Ry(t) * ... * Ry (£) 3
F©) =1-[1=F@®]*..x[1 = Fy(®)] 9
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Sufficient failures per failure mode are necessary to make an accurate estimation for the individual
reliabilities. We assume that independent of the stress level, all failure modes can be observed. The
percentage in which they occur differ, but an initial estimate is available.

3.3 Life-Stress Relationships

The previous sections described models based on the normal use conditions of a product. To speed up
the failure rates and obtain lifetime data faster, stress factors are used. The scientific literature
describes different methods to relate the lifetime under stress to lifetime under normal conditions; most
important and general applicable methods are described in this section. These models do not describe
the shape of the distributions, but only the scale parameter (Condra, 2001).

Under the parametric models, for the Scale Accelerated Failure Time Models (SAFT) the assumption is
made that the failure time distribution at stress level s, remains within the same family as on stress level
S,, S3 etc. This means that the shape parameter of the distributions is the same for all stress levels, but
the scale parameters can be different. Based on this assumption the general relation between life under
normal use conditions and life under stress can be described as (Elsayed, 2003):

tp () = £, (%) * AF (%) (10)

ty: Time when p% of the population is failed

Xyt Vector of stress factors under normal use condition
x: Vector of stress factors

AF (x): Acceleration factor depending on vector x

1

RO = () 50 = ()5 () 1m0 = () )

Beside the SAFT models, there exist also Proportional Hazard failure time models (PH). The main
difference between these models is that the SAFT models assume that the effect of the variables is to
multiply the predicted random variable, lifetime, by some constant and the PH assumes that the effect
of the variables is to multiply the hazard rate, also called failure rate, by some constant (Lawless, 2003).
The hazard rate of the SAFT models depends on the stress level, and the baseline hazard rate, the failure
rate under normal use condition, of the PH models is independent of the stress levels. The general
description of the proportional hazard model is:

h(t, x) = P(x) * ho(t) (11D

x: Vector of stress factors

h(t,x): Hazard rate at time t, depending on vector x
Y(x): Relative risk ratio

ho(t): Baseline hazard function

Another type of stress models is based on step-stress. In this type of tests, the items are first tested at a
pre-specified stress level for a specified period of time. The items that are not failed are tested again,
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subject to a higher stress level for another period of time. This process continues until the termination
time is reached. The life-stress relation that can be used to analyze this process is the cumulative
exposure model.

Several life-stress relations exist for different situations depending on the product, the stress factor, the
stress loading, and the stress level. The most important relations are described in more detail. Based on
the applied stress factors, previous experience with similar products or preliminary testing the correct
relation should be chosen. Per life-stress relation the expression for the lifetime dependent on stress
and the acceleration factor are described.

The life-stress relations can be included in the lifetime model by replacing the location (SEV/normal), or
scale (Weibull) parameter by the expression for the lifetime dependent on the stress, T(V). In this way it
is possible to make the lifetime distribution dependent of the stress factor. Examples are given in
Appendix E.

3.3.1 Arrhenius Relationship

The Arrhenius relation originates from the thermodynamics. It is based on observations in chemical
reactions, the more energy in the system, the more likely the reactors are to cross the energy barrier,
and the shorter the life. This theorem can be applied when a thermal stress is used (Meeker & Escobar,
1998). Applications include electrical insulations, semiconductor devices, battery cells, plastics and lamp
filaments (Nelson, 1990). The Arrhenius relation expresses the time for a failure to occur as an
exponential function of the inverse of the applied absolute temperature (Condra, 2001).

It is described as:

B
T(V)=C=xeVv (12)
T(V): Stochastic variable for lifetime dependent on stress V

V:Temperature value in degrees Kelvin

C,B: Model parameters to be estimated

T(V) describes the characteristic life of a product, for that reason it can replace the scale parameter n of
the Weibull distribution.

Based on the relation for the characteristic lifetime based on temperature, the acceleration factor can
be determined:

TWhse) _ 5+(r; = 7)

Vuse

AF(V) = — - (13)

B is based on the activation energy of the chemical reaction divided by the Boltzmann constant, or can
be a parameter to be determined based on the experimental data. We will use the general expression,
because the activation energy of the process is most of the time not known and has to be estimated too.

Lifetime Modeling and Analysis



3.3.2 Inverse Power Relationship

The inverse power relationship is used when a stress factor analogous to pressure is applied; voltage is
for example often used. Some applications are ball and roller bearings and flash lamps. The relation
assumes that the life of a system is inversely proportional to the applied stress (Condra, 2001). The

expression is:
1

T(U) =X un

(14)

U:Value non thermal stress factor
K,n: Model parameters to be estimated

The acceleration factor that can be derived from this relation equals:

n

AF(U) = (Uie) (15)

3.3.3 Eyring Relationship
The Eyring relationship can be used when temperature and one other stress factor are applied. The
model consists of two constant stress terms and no interactions between those terms. Its general form
is:
1\" B
TWU,V)=A4 (U) Cev (16)
U: Non thermal stress
V:Thermal stress
A,B,C,n: Model parameters to be estimated

Stress U can be used in a variety of transforms. It can represent humidity, but also voltage. In this way,
also a combination of the Inverse Power Law and the Arrhenius law can be made. This combination
equals the product of both individual relations (Condra, 2001). The expression for the acceleration factor

becomes:
n 1 1
v ) - o5 (7 = 7) 7
U’U.SE

AF(U,V) = (

3.3.4 Generalized Log Linear Relationship
When a test involves more than one stress factor, the generalized log linear relationship can be used. It
is possible to include multiple stress factors (Nelson, 1990).

T(x) = e%F2 %] (18)
AF(x) = eX®¥usej ~ L &jXj (19

With the use of transformations, we can show that the Arrhenius relationship, the Inverse Power Law
and the Eyring relationship can be described by this generalized relationship.

Table 1 summarizes the transformations that must be made to the stresses to represent these
relationships. Other stress factors that are often used are also included with their transformation.
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Stress relation X

Arrhenius 1/v

Inverse power In(U)

Eyring 1/V & In(U)

Humidity In(RH) or In(RH/(1-RH))
Size In(Thickness)

Linear \Y

Table 1: Stress Transformations

When one stress factor, temperature, is applied, with x=1/V, the relation becomes:

Qo +a = Lt 5
T(x) =e "™V = e%ev =(Cx*ev

The last expression equals the expression of the Arrhenius relationship.

For computational reasons, the transformed stress is often standardized to a value between 1 and 0. In
this case, 1 corresponds to the lowest value of x, and 0 corresponds to the highest value of x. This makes
it easier to compute the parameters that determine the location (scale) of the distribution. The
standardized stress is called &. The standardized stress can be calculated based on the relation:
_ Xhigh — X (20)
Xhigh — Xuse

3.3.5 Proportional Hazard Regression Model

The Proportional Hazard regression model is a flexible model, which can be used to isolate effects of
explanatory variables. This model assumes that the explanatory variables have a multiplicative effect on
the hazard rate. The first applications were in the medical industry, but this model is also applicable to
describe product reliability (Dale, 1985). The explanatory variables can be continuous variables like
stress factors, as well as categorical variables, like design parameters, section 3.4 explains more about
design parameters. The advantage of this model is that both kinds of variables can be included in one
model. If stress factors such as temperature or voltage are used, the Arrhenius or Inverse Power Law
relation can be included by defining variable x as transformed stress. Equation 11 described the
Proportional Hazard model.

The Proportional Hazard model is a semi-parametric model, meaning that the distribution of the
baseline hazard rate function does not has to be specified, while the relation of the explanatory
variables does. The most common relations are the log linear and the linear relation (Deshpande &
Purohit, 2005).

The relative risk ratios for both situations can be described as:
Y(x) = exp(QlL; a;x;) Log linear relation
Y(x) =1+QL, a;x;) Linear relation

ho(t): baseline hazard rate
a;: Model parameter to be estimated
n:number of dif ferent explanatory variables
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If the baseline hazard function is chosen to be parametric, the model parameters can be estimated
based on maximum likelihood estimation. This method is described in section 4.1. The baseline hazard
rate function is often describes as a quadratic relation, hy(t) = y, + y1t + ¥,t2. If the baseline hazard
rate remains unspecified, the likelihood function is only based on the relative risk ratio.

3.3.6 Cumulative Exposure Model

The cumulative exposure model is needed when step stress is applied. During a step-stress experiment,
different stress levels are applied to the same item, to obtain failures quickly and to minimize the total
amount of products needed (Liao & Tseng, 2006). Within a step a constant stress level is applied, thus
the item will fail according to the distribution at the current step but with a starting age corresponding
to the total accelerated time up (ReliaSoft, 2007). The lifetime distribution becomes:

Fi(t; V) = 1 — e KV ((t-tin+ea)l? (21)

. Vi
With ey = (ti-1 — ti—2) ( ‘l,il) o

&;: Accumulated exposure
Vi:Value stress factor on level i,i =1..m
K,n, B: Model parameters to be estimated

More information about these formulas and the analysis of step stress tests is described by Liao and
Tseng (2006).

3.4 Design Parameters

Different settings of a product can lead to different product reliabilities. These settings can be
represented by discrete or continuous design parameters. Discrete parameters, represented by binary
variables, describe the presence or absence of a given setting, for example material, supplier, batch or
type of test equipment. Continuous parameters can also describe a given setting, for example size,
thickness, or amount of chemical included, but uses the exact value.

To compare different design settings, a one-factor-at-a-time analysis can be done per setting and the
results can be compared afterwards. But whenever applicable, a more efficient test should be used to
be able to establish a combined regression model. The advantage of the combined regression model is
that by combining the test to determine the reliability and the test to determine the influence of the
different design parameters on reliability, the number of samples needed during the test can be
decreased and some information about the best design choices can be obtained. Based on the
assumption that the total sample size per design variant is equal, the best design is the one with the
highest lower bound of the confidence interval of the performance indicator. The focus is on these
lower bounds, because the variance of the performance indicator is taken into account in these bounds.
If we only compare the lifetime estimate, it can be possible that the one with the highest lifetime also
has the largest variance, so it is not sure that the true value of this design is better than the true value of
the other design. The performance indicator can be for example the value of the p™ percentile or the
reliability at time t. Percentiles are often used in practice, because it can help setting the guarantee
period of the product, and it gives information about the amount of failures at a certain point in time
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(Kuo & Wan, 2007). For these reasons, we also use percentiles as performance indicator during this
research.

The one-factor-at-a-time analysis follows the method for a single product analysis as described in
chapter 5, and does not improve the efficiency of the tests so is not described in more detail. On the
contrary the regression based analyses needs other methods, and can improve the efficiency. The
remaining part of this section focuses on this method.

As stated in the scope of the research, we assume that the design parameters only influence the scale
parameter of the lifetime model; the family of the distribution remains the same. For the life-stress
relations this assumption also holds, therefore we can use some earlier described regression models to
model different designs under stress conditions. These are the generalized log linear model; see section
3.3.4, and the proportional hazard model as described in section 3.3.5. Both models include weights and
variables that can be used to represent the influence of the specific product design variables. The
generalized log linear model can be used in the parametric case and the proportional hazard model in
the nonparametric case. When the baseline hazard rate of the proportional hazard model is Weibull or
Standard Extreme Value distributed, the reliability functions of the generalized log linear model and the
proportional hazard model are equal and the stress coefficients can be transformed to each other.
Appendix F shows this relation between the Proportional Hazard and the Generalized Log Linear model.

The first question in testing different designs is which combinations need to be tested in order to be
able to fit an accurate regression model. The theory of Design of Experiments (DoE) can be used in this
situation; instead of testing all possible combinations, fractional factorial experiments can be executed.
Fractional factorial experiments only focus on the main effects and do not include all individual
interactions. See for example Condra (2001) for more information about DoE.

3.5 Conclusion

This chapter described models that can be used to model the lifetime of a product under normal
circumstances, but also including different failure modes, stress factors, or design parameters. The
families of distributions we consider are the Normal and the Weibull distribution. Table 2 gives a
summary of the most important life-stress relations and the situations wherein they can be applied.

In the remaining part of this thesis, we focus on the generalized log linear relationship, because via
stress transformations the Arrhenius, Inverse Power Law and the Eyring relation can be represented by
this relation. The second reason is that this relation can also be used in situations where more than one
stress factor is applied. The Proportional Hazard model equals the Generalized Log Linear relationship in
case of the Weibull distribution, so is not used during this research. If the focus is on nonparametric
models, this model must be used. Cumulative exposure models ask for other methods for the design of
tests and analysis, so they are out of scope for this research. The next chapter describes how the model
parameters of these life-stress relations can be estimated based on experimental data.
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Life-stress Stress factor Stress load # stress factors Lifetime Design

relation model parameters
Arrhenius Thermal stress Constant stress 1 stress factor Parametric No
:-r;\‘/:larse Power Non thermal stress Constant stress 1 stress factor Parametric No
Eyring (Non) thermal stress Constant stress 2 stress factors Parametric No

Generalized Log

. ) (Non) thermal stress Constant stress > 1 stress factor Parametric  Yes
Linear relation

Proportional Non
P (Non) thermal stress Constant stress > 1 stress factor ( ) . Yes
Hazard parametric
Cumulative )
(Non) thermal stress  Step-stress 1 stress factor Parametric No
Exposure

Table 2: Summary Life-Stress Relations
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4. Parameter Estimation and Accuracy Measurement

Chapter 3 described different lifetime models and life-stress relations, but to be able to estimate the
lifetime according to a specific percentile, the unknown parameters of the models have to be estimated.
This parameter estimation is often done based on the experimental data via Maximum Likelihood
Estimation. The experimental data consist of the time until failure of the items at a specific stress level,
or the test termination time for the items that are not failed at the end of the test, named censored
data. Section 4.1 describes Maximum Likelihood Estimation to estimate the unknown model
parameters. These parameter estimations have certain accuracy; this accuracy can be described by
confidence intervals. Section 4.2 describes methods to determine these intervals for parametric cases
and section 0 for nonparametric cases. Section 4.3 illustrates the use of MLE and the confidence
intervals with an example. Finally, section 4.5 summarizes the methods and describes which variables
determine the accuracy of the estimations and have to be optimized in an efficient test plan.

4.1 Maximum Likelihood Estimation

To determine the parameters of the life (stress) distribution, Maximum Likelihood Estimation (MLE) can
be used. For large samples, MLE has beneficial mathematical properties such as asymptotical normality,
asymptotic unbiasness, and consistency; this makes MLE preferable to, for example, least square
method (Pascual, 2008). The unknown parameters are estimated based on the likelihood function, a
function that contains the unknown parameters and expresses the “likelihood” of the data, given the
values of the parameters. Maximizing this expression, by changing the parameter values, results in the
parameter values that make the data most likely. The likelihood function can be described as the
product of the underlying probability density function evaluated for each data point. A general
expression for the likelihood of a sample is:

L(p) = L(p; DATA) = II;2, Li(p; data;) = [Ii=, f(data; p) (22)

L;(p; data;): Likelihood of observation i
data;: Lifetime of observation i
p:Vector of parameters to be estimated, described by 0 for paramteric estimates

For the location-scale distributions with exact right-censored observations, which means that some
items that are not failed at the end of the test time, the likelihood function can be written as:

L(,0) = [Tl i 1, )1 = Fyi )]0 = [T, |2 ¢ (Y;”)](S 1-o (yﬂ%”)]l_si (23)

g

o
5 = {1 if y; is an exact observation
l 0 if y;is aright censored observation
_ { t; if Normal distribution is used
Yi= log(t;) if Weibull distribution is used

6D = {d)normal, D ormal if Normal distribution is used
A Do Psey if Weibull distribution is used
t;: Lifetime observation i

Parameter Estimation and Accuracy Measurement



Maximizing the likelihood function gives estimations of the unknown parameters. In practice, it is often
computationally easier to maximize the log likelihood function to find the vector of the maximum
likelihood estimators. The log likelihood function for the smallest extreme value distribution equals:

L(6) =log(L(6)) = XiL, £i(6)
=y 6 * (— In(o) + % — exp (J%)) + (1—=6;) * (In(exp (— exp (3%))))

The maximum of the log likelihood function, if exists, occurs at the same value of the parameters as the
maximum of the likelihood function (Meeker & Escobar, 1998). Setting all partial derivatives equal to
zero and solving the equations simultaneously lead to the maximum and give the estimations of the
parameters. To check if the solution is indeed the maximum, the second derivative has to be negative
for the estimated parameters (Larsen & Marx, 2006).

The range of the true parameter value with a certain confidence can be given by a confidence interval.
Section 4.2 describes these intervals.

4.2 Confidence Intervals Parametric Case

A confidence interval is a range around a given statistical estimate within the true value is located with
some special degree of confidence (Condra, 2001). There are different types of confidence intervals
based on the type of model and the sample size that is used. Important types are Normal approximation
confidence intervals and Bootstrap based confidence intervals. We use the normal approximation based
confidence intervals, they are often used in reliability testing and can be computed analytically.

The normal approximation confidence interval assumes that Z(§)=[§—9]/,/v’dr§ can be

approximated by the standard normal distribution. The 100(1-a)% confidence interval for parameter 6
is:

[9 - Z(%) * /var(é), 6 + Z(%) * /var(é) ] (24)

, A aze(e)] ! . .
With var(9) = E [ o7 and Z(g) meaning P(Z > z) = %,Wlth Z~N(0,1)

2

The variance of the estimated parameters can be calculated based on the second derivative of the
Likelihood function. The variance can be extracted from the variance-covariance matrix, which is the
inverse of the Fisher Information Matrix (Meeker & Escobar, 1998).

1

[ g 9%L g °L 1
var(0,) - cov(B;,6,) I 026, 060,00, 1
: : =]1= : :
cov(8,,0,) - var(8,) %L 0%L
El— .. El—
96,,06, 226, | |
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Because of the complexity of the computation of this matrix, especially for functions with more than
two unknown parameters, a numerical method is used to solve this. We use the statistical package
STATA to calculate the Maximum Likelihood Estimators and the Fisher Information Matrix. STATA
converts the maximization problem to a root finding problem and solves this numerically using the
Newtons Raphson Method. This is an iterative procedure and stops after convergence. Gould and
Sribney (1999) describe the methods STATA uses in more detail. Appendix G shows the likelihood
function and the partial derivatives for a Weibull model without stress. Also the likelihood function of a
Weibull-Arrhenius model is presented in this appendix to show the complexity of this kind of functions
and the need for numerical methods to solve these problems. In the remaining part of this thesis STATA
is used for the MLE and variance calculations.

If the parameter to be estimated is a positive parameter, the log transformation generally improves the
normal approximation confidence interval in accuracy. The log transformation also ensures that the
lower endpoint of the confidence interval will be positive, which is not always the case with the
standard confidence intervals. The log transformed confidence interval assumes that Z,,; 3y =

[log(@) —log(G)]/ v/cz\rlog((;) can be approximated by the standard normal distribution (Meeker &
Escobar, 1998).

The 100(1-a)% confidence interval for parameter 0 is:

[ ]

[ Za * var(G Za * var( ) |

|§ , 0 % exp | /| | (25)

Y

The confidence interval for a function of parameters g(@), for example the p" percentile, g =t,

can be described as:

[ var (g(e))\‘ / var ( ) ‘
exp| In (g (0)) — Za , exp| In(g(8)) + Za (26)
M S
With var( (0)) Hal 1( ) var(8,) + X! Teir1(2 69 69 =9 cov( 8,8, ) 27)

The variances of the parameters are calculated based on the Fisher Information Matrix as equation 24
describes.

The variance of the parameter or function of interest determines the spread of the confidence interval.
During the development of a test plan, the variance of the p" percentile estimate under normal use
conditions must be minimized to make the estimation as accurate as possible.
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To be able to compare the variance of the pth percentile estimate for different test plans, a confidence
interval of the variance must be constructed. The variance of the variance of the p™ percentile estimate
can be calculated based on:

var (var (g(@))) = var (g(@)) * \/% (28)

Based on the variance of the p™ percentile and a target precision factor, the sample size needed to
reach certain estimation accuracy can be computed. A target precision factor of 1.5 means an
approximate estimated deviation of 50% between the estimation and the lower (or upper) confidence
bound. It is also possible to use the bound ratio as target; the target precision becomes in that situation
the square root of the bound ratio. The bound ratio is the upper bound of the confidence interval
divided by the lower bound. The formula for the sample size becomes:

Zé * Vog(9)
nN=-+-t—— 29
108 R @
Var(g
With Vlog(g) = % *n
gJ: Function or parameter of interest
Rr:Target precision factor
n: Sample size at which Var(g) is evaluated

For the Weibull distribution the value of beta has a large influence on the needed sample size. A small
value of the shape parameter beta is related to more relative variability (Zhang & Meeker, 2005). This
can also be observed from the shape of the failure rate function. In the case of a small beta value, the
failure rate is almost stable and this causes a lot of variability in failure times.

4.3 Example Analysis of Lifetime Data

Parameter Estimation and Accuracy Measurement



4.4 Confidence Interval Nonparametric Case

In case of a nonparametric situation, the Fisher Information Matrix cannot be used because there are no
parameter estimations. The nonparametric confidence interval for the cumulative failure probability can
be constructed based on the Greenwood rule:

[ﬁ(ti) — Ziq/2 % /V/@T[ﬁ(fi)] s F) + zi_gpe /U/@T[ﬁ(fi)]] (D)

var[F(t )] = var[R(t )] = [R(t )] Z (32)

1(1 p])

Wlthpi=% and n;=n- Z] 0T — Z] 0

1

m: total number of observation moments
n: total number of units
ri:number of failures within the jth observation moment

sj:number of censored observations within the jth observation moment

If the sample size is small, the normal approximation does not hold. A better confidence interval in that

situation is:
[ F(t) _ F(t) 33
Feo+ A-Fayysw’ P+ - Feo/w 59

Withw = exp (25 Col)

F(t)(1-F(ty)

4.5 Conclusion

Maximum Likelihood Estimation can be used to estimate the unknown parameters of the lifetime
models. Because of the complexity of the likelihood formula, STATA is used to calculate the parameters.
The variance of the parameter estimations can be derived from the inverse Fisher Information Matrix.
Based on these variances and the normal approximation, the confidence interval of the percentiles can
be computed. The variance determines the spread of the interval, to make estimations as accurate as
possible the expected variance of the parameters or function of interest must be minimized during the
design of a test plan. The standard error is the square root of the variance and has the same dimension
as the p™ percentile; this makes the standard error easier to interpret as the variance. So, in the
remaining part of this thesis, we focus on minimizing the standard error instead of the variance. The
case shows that an equal allocation of the items over three stress levels did not lead to very accurate
percentile estimates; the confidence interval is very wide. Hence, in the next chapters we describe
methods to design test plans that lead to more accurate estimations.
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5. Test Design

The goal of lifetime experiments is to make an accurate estimation of the reliability or lifetime of a
product. This chapter describes how such test plans can be designed for the scenario with one stress
factor, one failure mode and one product design. Section 5.1 describes properties of a test plan in
general; section 5.2 presents the setup of a test plan and gives a description how to design a test plan
for the one stress factor, one failure mode and one product design variant scenario. Chapter 6 describes
the extension of this method to methods for the other scenarios as shown in Figure 4. Section 5.3
illustrates the method with an example based on the case introduced in section 1.4. Section 5.4
compares the test configurations of the different types of test plans and evaluates the robustness of the
test plans with respect to parameter deviations and model departures. Finally, section 0 concludes this
chapter by describing in which situation which type of test plan can be used best and gives some
directions for the extensions of the methods to the more complex scenarios.

5.1 Test Plan Properties
Important information and capabilities to design an effective accelerated test plan are:

- Knowledge of the functional- and reliability requirements of a product

- Understanding of a product’s normal use conditions, applicable stress levels, and the stress range.
This means that some assumptions only hold for this limited range of stress or that new failure
modes can occur outside this limit that do not occur under normal use circumstances.

- Expected failure modes.

- Life-stress relations for each of the failure modes in order to design the lifetime test and to analyze
the test results.

- The capability to analyze physical failures and identify due to which failure mode the product has
failed.

We assume that this information and these capabilities are available before designing the test plans.
This can be obtained from qualitative analyses, such as MEOST and HALT, and experiences from
previous products. See Bhote and Bhote (2004) for more details about such qualitative methods.

A test plan includes information about the configurations and the number of different test runs. This
must be chosen such that an accurate estimation of the pth percentile can be made and practical
constraints are met. These practical constraints can be test time or sample size restrictions. A test plan
consists of the following information:

- The total number of test units, n
This number is often based on product availability or resource capacity, but the number can also be
determined based on a target precision of the percentile estimate. If the last one is the case, the
total number of test units is determined based on the expected standard error of the p™ percentile
estimate for the best test plan configurations, see equation 29.
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- Test termination time, t.
Based on the time available for testing or other practical constraints, a decision about the duration
of the lifetime test has to be made.

- Stress factors that can be used to accelerate the failure process
Based on the physics of the failure process of the product, applicable stress factors should be
chosen. Also the number of different stress factors that can be used depends on the physics of the
product.

- Number of different stress levels
The number of different stress levels determines the accuracy of the percentile estimation. If the
behavior of the failure process is uncertain more test levels have to be used than if the behavior is
assumed to be known. Section 5.2.2 describes rules to determine the number of test levels.

- Value of the stress levels per stress factor, x; (i: stress factor indicator, j: stress level indicator)
The highest stress level is fixed for all test plan designs; it is set at the limit of the stress range. This
highest stress level is located there to generate as many failures as possible; the probability of non
failed items is the smallest at this level. The other stress level values are decision variables during
the optimization of the test plan configurations.

- Allocation of the units over the stress levels , m; (i: stress factor indicator, j: stress level indicator)
The allocation of the units over the different stress levels can be given based on a specific test plan
type or must be optimized. A given allocation makes the test plan design faster, because fewer
alternatives have to be evaluated, but the results are less accurate. Different types of test plans are
described in section 5.2.2. In most of the cases, the allocation is a decision variable of the
optimization problem. On the one hand the goal is to generate as much failures as possible at the
lowest stress level, because this leads to an accurate estimation of the p™ percentile for that specific
stress level. But on the other hand, if a large amount of the items is allocated to the lowest stress
level, a lot of these items will be censored, because the failure probability at the lowest stress level
is low. This large amount of censoring leads to less accurate results than when these items were
allocated to a higher stress level. In the second case, most of these items were failed and a more
accurate extrapolation over stress can be made. A trade-off between the accuracy due to the
number of failures and the extrapolation over stress is made during the optimization.

The optimization criterion to obtain the test configurations is minimizing the standard error of the p™
percentile estimate under normal use conditions. The decision variables are the values of the lowest
stress levels and, depending on the test plan type, the allocation of the units over the stress levels. The
remaining part of this chapter focuses on methods to solve this optimization problem.

5.2 General Setup for Test Plans

Independent of the situation or the type of test plan that is used, a general setup can be described that
can be followed during the design of a test plan. First of all we give a global description of this setup, and
after that, the different steps are described in more detail.
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The general steps during the development of a test plan are:

1. Obtain prior information and initialize the life-stress model
Prior information is necessary to make assumptions about the lifetime model and the corresponding
parameter values. We need this assumed model to evaluate different test configurations and to
select the best one.
Section 5.2.1 describes the prior information that must be obtained. This information can be
obtained from knowledge of previous products, earlier tests or physics of the product. The
parameter values can be estimated based on the linear life-stress relation, section 5.2.1 also
describes this method. The optimization needs the assumed lifetime model with parameter values
to determine the expected amount of failures per stress level and to find the values of the decision
variables that minimize the standard error of the pth percentile estimate.

2. Choose type of test plan and design the test plan
The scientific literature describes different types of test plans for the one failure mode, one stress
factor and one product design variant scenario. Based on the uncertainty of the prior information
the most appropriate type can be selected. The type of test plan defines the number of stress levels
that must be used and the determination of the allocation of the items over the stress levels. Some
types of plans specify this allocation explicitly, and in some type of plans this allocation has to be
chosen during the optimization. Section 5.2.2 describes the test plan types for the one stress factor,
one failure mode and one product design variant scenario. Chapter 6 describes the test plant types
for the other scenarios.
In this step we select the best test plan, the plan that scores the best on the optimization criterion,
via optimization. The optimization problem has a nonlinear form, so it is difficult to solve. Instead of
solving this nonlinear optimization problem analytically, we use simulation and select the plan with
the best performance. Section 5.2.3 describes this optimization via simulation in more detail.

3. Test robustness of test plan by changing prior estimations
To design a test plan that is robust to changes of the prior information due to uncertainty about
these values, we established a robustness test. The best test configurations obtained in step 2 are
used for this test. Not only the best test plan is used, also the plans that do not differ significant
from this best test plan. We measure the significance of the difference with use of a confidence
interval for the standard error of the p™ percentile estimate. We change the prior information
assumptions that can affect the best test configurations one by one and evaluate the effect on the
standard error of the pth percentile estimate for each of the selected test configurations. Section
5.2.4 describes which assumptions have the largest impact on the test configurations and gives a
method to execute these tests. Based on the test results, we choose the final test plan
configurations to incorporate the uncertainty about the prior information.

5.2.1 Prior Information

In order to describe the expected standard error of the percentile estimate that results from a particular
test plan, it is necessary to have some “prior information” about the lifetime distribution. This
information is needed to assess the effect of sample size, stress levels and allocation of the items over
the different stress levels on the outcome of a test plan. Such information can be obtained from design
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specifications, expert opinion, or previous experiences (Meeker & Escobar, 1998). Tang and Liu (2010)
describe a sequential accelerated life test procedure. Before the real lifetime test is executed a part of
the items is used to obtain the needed prior information. These items are tested at the highest stress
level and based on the results of this lifetime test the prior information assumptions are made. This can
be an efficient way to obtain information if this is not available from previous experiences or expert
opinions.

The amount of prior information that is necessary depends on the scenario for which the test plan has
to be designed. This section describes the information that is needed in every scenario. When a range of
possible values is available instead of one specific value, test plans have to be constructed for the limits
and the expectation of this value, the best test configurations per value can be compared, and a plan
that is generally satisfactory should be chosen (Meeker W. , 1984).

The necessary prior information is:

- (Assumed) family of lifetime distribution (Weibull/(Log)Normal)
This information is needed to construct the assumed lifetime model, and to be able to estimate the
model parameter values with their variance and covariances.

- Normal use level & highest level of stress
These values define the experimental region of the stress levels that can be used during the lifetime
test. The standard error of the pth percentile estimate is minimized at the normal use stress level,
because we are interested in the reliability under normal use conditions. In general this stress level
is too low to generate failures in a short period of time, so most of the time it is not used as test
level. The highest stress level is always used as test level during the lifetime tests, the failure
probability is the largest at this level and the amount of censoring is the lowest. This increases the
accuracy of the percentile estimate.

- Life-stress relation (Arrhenius, Inverse power etc., see section 3.3)
Possible stress relations for different stress factors are described in chapter 3. The expected relation
is used to transform the stress to be able to use a Generalized Log Linear lifetime model.

- Assumed percentage of failures at end of test at normal use stress and at highest stress level
These two percentages define, together with the stress relation, the acceleration factor of the
applied stress. The parameters of the life-stress relation can be estimated based on these values to
construct the expression for the location parameter dependent on stress.

- Available test time
Based on the available test time and the failure probabilities, the expected number of failures per
stress level can be calculated. This expected number of failures per stress level is necessary to define
the range of the lowest stress level. To generate accurate results the probability of failure at the
lowest level must be as least as large as the percentile of interest, because otherwise extrapolation
over time is needed, and this reduces the accuracy extremely. Extrapolation over time means that
the percentile point for a lower percentage than the percentage of interest can be determined
based on the experimental data, so the percentile point of interest is estimated outside the range of
observations.

Test Design



- Assumed value of the scale parameter (beta (Weibull) or standard deviation ((Log)Normal))
This estimation gives, together with the expression for the location parameter the complete
expression for the estimated lifetime, dependent on the stress. This information is used to make an
estimation of the standard error of the percentile of interest and to determine the sample size
needed to obtain certain accuracy.

- Performance indicator
The indicator should be chosen based on the goal of the lifetime test and the information one would
like to obtain with the test. In practice often the 10" percentile is of interest, so during this research
we use the 10" percentile as performance indicator. We minimize the standard error of the 10"
percentile estimate during the development of a test plan, to obtain an accurate estimation.

We use the case to illustrate the need of the prior information and to illustrate the method to initialize
the life-stress model.

The next section presents different type of test plans, and after that, section 5.2.3 describes how to
come up with a test plan based on the initialized lifetime model and the chosen type of test plan.

5.2.2 Type of Test Plans

Different methods to design a test plan for the one failure mode, one stress factor, one product design
scenario are available in the scientific literature; this section describes the most appropriate ones. We
examined the appropriateness based on the reasoning behind the methods and the assumptions made.
If an improved method is developed based on exactly the same situation and assumptions, we only
describe the improved method. The assumptions of the methods must match the assumptions made
during this research, as described by section 2.3. For each of the test plans holds that the highest stress
level is assumed to be fixed, and equals the highest stress level as defined by the prior information.
Table 3 summarizes the different test plan types and describes the main differences.

1la. Two Level Statistical Optimum Plan

This method minimizes the standard error of the pth percentile, SE(t,), by choosing the lowest stress
level and the proportion of units allocated to the lowest stress level. In total two stress levels are used.
This method is appropriate if the prior information is expected to be true, because it is very sensitive to
model departures (other family of distributions or stress relationship) and parameter deviations
(Meeker & Escobar, 1998). Meeker and Nelson (1975) describe this method in more detail and use their
own figures to come up with optimum stress and allocation values, based on the prior information.
Methods to create these figures are not described, so we cannot use exactly the same method. We use
our own method to optimize SE(t,) to generate the best test plan configurations for this test plan type.
Section 5.2.3 describes the method we use for optimization in more detail.
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1b. Three Level Best Compromise Plan

The idea behind this method is that the resulting test plan is robust to wrong parameter estimates and
model assumptions while the statistical optimum plan, plan 1a, is not. A middle stress level is introduced
to ensure this robustness. This method minimizes SE(t,) by choosing the lowest stress level and the
proportion of units allocated to the lowest stress level as the optimum plan does, but allocates a fixed
percentage of the items to the middle stress level. The lowest stress level that result from this
optimization can be lower than that of the statistical optimum plan, plan 1a, because also a middle
stress level is used to generate failures. The middle level is located at the normalized average of the
chosen low stress level and the high stress level. The percentage of units allocated to the middle stress
level is fixed, often 20%, because otherwise by optimization the units will be allocated to the low and
the high stress levels only. The minimal SE(t,) will be higher than that of the statistical optimum plan,
plan 1a, but the advantage of this method is the robustness to wrong parameter estimates (Meeker &
Hahn, 1977).

1c. Three Level 4:2:1 Allocation Plan

To make the extrapolation from the test stress level to the normal use stress level as accurate as
possible, an equal number of failures per stress level is best. This idea is based on the theory of Design
of Experiments (DoE). But in case of lifetime testing, this leads to a very high allocation of the items to
the lowest stress level, where the probability of failure is low, and the amount of censored observations
is high. While fewer items are allocated to the highest stress levels this leads to less failures on these
levels. To overcome this problem, but use the idea of DoE Nelson (1990) constructed a compromise plan
with this same idea. A high fraction, 4/7th, of the items is allocated to the lowest stress level, 2/7" is
allocated to the middle stress level and 1/7™ is allocated to the high stress level. The lowest stress level
is chosen such that SE(t,) is minimized, the middle stress level is located at the average of the
normalized low and the normalized high stress level.

Other Plans and Guidelines

Some other type plans are described in the scientific literature. They are used for specific situations and
are difficult to generalize, but some ideas can be used to design new types of test plans. Appendix | gives
a short summary of these methods with references to the complete descriptions. We developed a new
method based on the ideas of these other plans and this type of test plan is described below.

1d. New Proposed Plan

We develop the new proposed plan as variant of the best compromise plan, plan 1b, with use of the
ideas of Meeker and Hahn (1985) and Tang and Yang (2002). They state that the middle stress level is
only used to check model departures and to make the test plan less sensitive to wrong parameter
estimations, so a low fraction of the items can be allocated to this level. It is important to ensure that at
least p% of the items, with a minimum of 5 items, will fail at the middle stress level. At least p% of the
items must fail because this reduces the variance for the p™ percentile estimate, otherwise
extrapolation over time has to be done. The minimum of 5 items is needed to be able to estimate the
parameter values with some accuracy. This constraint is easily met for large sample sizes, but for small
sample sizes this can be a problem. So, for the generation of the test plans we allocate that amount of
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items to the middle stress level that cause p% of the total items to fail. If the total sample size available
for the test is known beforehand, the settings for this small sample sizes must be optimized based on
the minimum of 5 failures restriction. In summary, the goal is to optimize SE(t,) by choosing the lowest
stress level and the fraction allocated to the lowest stress level as the best compromise plan, only with
the extra constraint on the middle stress level to improve the accuracy.

Table 3 summarizes the different test plan types and describes their special properties. The next section

describes how the test configurations for the different types can be generated.

Optimization Decision #Test Remark(s)
criterion Variable(s) levels
Statistical Meeker &  SE(t,) Xiows Tlow 2 Very sensitive to
Optimum Plan Escobar/ wrong estimations
Ahmad
Best Compromise  Meeker &  SE(t,) XLows Tlow 3 Compromise
Plan Hahn between statistical
optimality and
robustness
4:2:1 allocation Nelson SE(t,) Xiow 3 Based on DOE

principles, equal #
failures per level

New Proposed - SE(t,) XLows Tlow 3 Increase accuracy

Plan by allocating less
items to the middle
stress level

(xow: lowest stress level, m,,: allocation fraction to lowest stress level)

Table 3: Overview of Methods to Design Test Plans for the Basic Scenario

5.2.3 Generation of Test Plans

Section 5.2.2 described methods to design test plans, but a nonlinear optimization is necessary to obtain
the values of the decision variables and no method to solve this is described in the scientific literature.
The variances of the parameter estimations are necessary for this optimization, because the variance
and the standard error of the percentile estimate can be calculated based on these variances. Normally,
the variance can be computed based on the observations via MLE, but no observations are available
before the lifetime test is executed. To overcome this problem, we choose to use Monte Carlo
simulation to generate lifetime observations based on prior information and to make estimating the
variance of the parameters possible. Based on the prior information, we assume a life-stress model, and
based on this model the lifetimes are simulated. We use this simulated data to estimate the variance of
the model parameter estimates via MLE and based on this we calculate the standard error of the
percentile estimate of interest. Finally we select the test configurations with the minimum standard
error as best test plan configurations. This section explains the methods and ideas behind the
optimization via simulation; section 5.3 illustrates this with use of an example.
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Based on the type of test plan, we create different test plan configurations and thereafter we generate
experimental results per test plan configuration based on simulated lifetimes. We select the test plan
configuration with the smallest standard error as the best one. To obtain accurate results, the
simulation consists of some replications. The average standard error per test plan configuration over the
replications is used as optimization criterion. Figure 8 presents the generation process schematically.

) N
e e )
INPUT OUTPUT
Prior information EXCEL Estimation
Type test plan i - est plan
P Fni D Data generator forall settings for all settings evaluator Settings best test
Optimization 8
criterion plan
—  S— — —

Figure 8: Test Plan Generation Process

The first step of the generation process is the generation of simulation data; we use Microsoft Office
Excel for this step. We made a program called “Data Generator” to generate the failuretime data based
on the prior information. We use a large sample size per test to be able to make use of the asymptotical
unbiasness and the asymptotical normal properties of MLE. Experiments have shown that a sample size
of 2,000 can be used to generate unbiased estimations of t,. Appendix J shows the experimental results.
To make the comparison between test plans fair, we use the same lifetimes for all test plan
configurations, this means that we make use of common random numbers to generate the lifetimes per
observation for the different test configurations. To generate stable results, we use replications of the
simulation. Experiments have shown that 40 replications generate stable results, see also Appendix J for
these experimental results

We use the prior information, type of test plan, and the optimization criterion to come up with different
test plans configurations. To generate these test plan configurations, we established the following rules
based on experimental results and rules of thumb:

- The lower bound of the lowest stress level is chosen such that the failure probability is at least as
high as the percentile that is used for the optimization.

In(t)—Pshy (P)ro—ay
aq

ELow =

This minimum is necessary to reduce variance, because otherwise extrapolation over time is
needed. Only the percentile point for which failures are observed can be determined based on the
sample data, the remaining points must be estimated based on extrapolation of this data and this
increases the variance.

- The upper bound of the lowest stress level is the stress level for which the failure probability is two

times as large as the percentile used for optimization, with a maximum of 100%.
In(te)-®gpy (min (2p,1))*0—aq

ELow < oy

An upper bound is needed to limit the possible stress configurations. Several experiments have
shown that a stress level near to the lower bound is chosen, so the upper bound needs not to be
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that large. To give the optimization some flexibility, we choose to set the upper bound at the level
for which the failure probability is two times as large as the percentage of interest. The value can be
changed by the user of the simulation program.

- Afinite number of stress levels must be examined. We take only integer values in our example.

- The lower bound of the allocation fraction to the lowest level is 1/k.

1. .
Trow = e k is the number of different test levels

The reason for this is that the fraction allocated to the lowest stress level must be at least as large as
the fraction allocated to the other stress levels to obtain accurate results. (For some plans the
fractions are given, the lower and upper bound become the pre specified fraction in this case)

The upper bound of the allocation fraction to the lowest stress level equals 1-(k/10).

k
”Lowsl_ﬁ

The other stress levels must also have a fraction of units to create failures, so not all units can be
allocated to the lowest stress level. We use this rule because if two stress levels are used at least
2/10™ is allocated to the highest stress level, this is necessary for accurate model and parameter
estimates on that level. For three stress levels, 2/10" is allocated to the middle stress level and at
least 1/10th must be allocated to the highest stress level, so at most 7/10th can be allocated to the
lowest stress level. We developed several three level test plans, and the allocation percentage was
in all cases between the 40% and the 60%. Based on this, we conclude that this rule can be used.
- The step size of the allocation fractions is finite; we choose a step size of 1/10™ in the example.

Per test plan configuration the allocation of the items over the stress levels, or the lowest stress level
value is different. For example suppose we want to create a statistical optimum plan, plan 1a. This
means that two stress levels are used and both the lowest stress level and the allocation fraction to the
lowest stress level are decision variables. The allocation fraction at the lowest stress levels can vary from
0.5-0.8 according to the rules described above; this leads to 4 possible allocation fractions. The lowest
stress level can take the values 96W-101W based on the rules above and the expression for the failure
probability dependent on stress, this leads to 6 different lowest stress levels. This means that 24
different test plan configurations have to be compared (4*6). We simulate failuretime data based on the
prior information and per test plan configurations this failure time is accelerated according to the
applied stress. If the accelerated failuretime for that stress level is smaller than the total test time, the
item fails during the experiment, otherwise the item is censored. We generate random failuretimes
based on the assumed lifetime distribution, common random numbers per test plan, and the life-stress
relation. Per test configuration we use the obtained failure data to estimate the parameters of the
lifetime model based on MLE, and we use the covariance-matrix of these parameters for further
analysis. Based on this covariance-matrix, the variance and standard error of the pth percentile estimate
can be calculated. The test plan configuration with the lowest average standard error over all
replications for the p™ percentile under normal use conditions becomes the best test plan. Appendix J,
describes the simulation process and the program we created to determine the variance and standard
error in more detail. Section 5.3 illustrates which type of test plan fits the example and what the test
plan settings become in this situation.
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5.2.4 Test Robustness
To ensure that the designed test gives accurate results, even if the true lifetime model deviates from the
assumed lifetime model, the robustness of the test plan that results from the optimization must be
evaluated. We evaluate the best test plan and the test plans that are not significantly different from this
test plan, during this robustness test. Per test configuration, we construct the 95% confidence interval of
the standard error of the p™ percentile estimate with use of equation 28. If the confidence interval of a
test plan overlaps with the confidence interval of the standard error of the best test plan, we consider
this test plan not significantly different from the best test plan, and this plan must be taken into account
during the robustness test. Because this leads to a lot of test plans that must be evaluated, we only
focus on the plans for which SE(t,) lies within the confidence interval of the best test plan. We insert
new values of the prior information to check which of these selected test plan settings can deal best
with the deviations, and a final plan is chosen based on these test results. The assumed prior
information can be changed per assumption, but also in couples if it is more feasible that they change
together. The assumed value of the scale parameter is not taken into account, because this value does
not influence the best test configurations, it only influences the accuracy proportional to the parameter
change. Appendix K describes the influence of the scale parameter in more detail.
Assumptions within the prior information that have a large impact on the resulting test plan are:
- Percentage of failure at the end of the test under normal use conditions
This percentage determines the acceleration factor of the stress. An overestimate of this percentage
leads to a too low lowest stress level, less failures than expected will occur, and the expected
accuracy cannot be reached.
- Life-stress relation
The stress relation is chosen based on the physics of the product. If there is some uncertainty about
the relationship, test plans for other relationships can be generated and the differences can lead to
a compromise plan. Which plan has to be selected depends on the differences in test plan settings
and the probability that the different assumptions will be true.
- Family of distributions
The family of distributions is assumed based on expert knowledge or knowledge from previous
products. If one is not sure about this assumption, different families of distributions can be
evaluated and a test plan that scores well for the most reasonable families must be selected.

5.3 Example Generation of a Test Plan
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5.4 Comparison of Test Plan Types

To give an overview of the test plan types and the situations in which they are most appropriate, we
compare the settings and the standard error of the different type of test plans for different situations. A
deviation of the scale parameter (Weibull: (1/beta), (log)normal: sigma)) is not taken into account during
this analysis because this parameter has only influence on the sample size needed to reach certain
accuracy and not on the stress level settings. Appendix K describes the influence of beta on the variance
of the percentile and the sample size needed to reach certain accuracy.

Situation 1. Assumed model

The first situation for which we compare the performance of the different test plan types is the normal
situation, the situation for which the assumptions about the model and the stress relations are true. We
compare the standard error of the 10" percentile estimates and the test plan type with the smallest
standard error is the most appropriate type of test plan for this situation.

Table 4 summarizes the test plan configurations for the four different test plan types for the example
described in section 5.2.2. Based on situation 1 we conclude that test plan type 1a, the statistical
optimum plan, is the best test plan type if the assumed situation seems to be the true situation.

Table 4: Test Plan Configurations per Test Plan Type

To check the robustness of these test plans types, the ability to deal with parameter deviations and
model departures, we use the test plan settings as given in situation 1. We change some parameters of
the model that simulates the failuretimes, such that the true model with parameter values deviates
from the assumed model with parameter values. We do not change all the parameters at once, so
different situations are used for this comparison. These situations are described below and Table 10
presents the scores.

Situation 2. Deviation of the parameters of the acceleration model

In this situation we change the parameter values of the acceleration model, u(¢) = ay + a,¢. This
deviation can be obtained easily by changing the initial estimates of the failure probabilities at the end
of the test, because the parameters are derived from these estimates.

So the changes we make in this situation are:

- Increase the failure probability under normal use condition

- Decrease the failure probability under normal use condition

- Increase the failure probability at the highest stress level

- Decrease the failure probability at the highest stress level

Several deviation percentages can be chosen for the comparison. For our example we choose deviations
of 25%, 50% and a factor 10, but also other values can be used, depending on the situation.
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Situation 3. Other stress relation

In the example we chose to use the power relation to relate the lifetimes under stress to the lifetimes
under normal use condition. This choice is based on the physics of the product and the applied stress. In
practice it can be true that the failure process can be described better by another stress relation. So in
this situation we generate the lifetimes based on other stress relations than initial assumed. For the
example we evaluate the Arrhenius and the Linear relation instead of the Power relation, and we
examine the effect on the standard error of the estimate for each type of test plan.

Situation 4. Other family of distributions

In this situation we change the assumed family of distributions. In the example the Weibull distribution
is used to describe the lifetime, so we have to evaluate the performance of the different test plan types
when the true family of distribution is Lognormal or Normal. The scale parameter of the “new”
distribution is chosen such that the expected lifetime of the product remains the same.

Table 5 summarizes the score of each of the four types of test plans, as described during this chapter, on
these situations. This table describes the standard error of the 10" percentile estimate per situation and
per test plan type. We also use the median and the spread of the standard errors between replications
in examining which test plan is the best with use of histograms. For most of the situations the best test
plan type scores best on all three criteria, but in some situations not. The reviewer has the responsibility
to make the end decision based on the performance on the three criteria. In this case we are the
reviewers and prefer the test plan type with the smallest average SE(t,) unless the difference in average
is smaller than 0.5% with respect to another test plan which has a smaller spread and a smaller median.
The gray cells in the table indicate per situation the test plan that scores the best according to our
criteria. Only the cell marked with a * is chosen based on the best score on the criteria besides the
average. We conclude that the “Statistical Optimum Plan” seems to have the best overall performance,
but the “Best Compromise Plan” performs better if model departures occur. This plan can also deal best
with large parameter deviations, especially parameter increases. The “New Proposed Plan” can also deal
with parameter deviations, but performs best if these deviations are small. In the other situations, the
“New Proposed Plan” performs second best. From the comparison results, we derive suggestions for the
appropriateness of the different types in different situations. Figure 9 summarized the results of the
comparison study. With fast optimization we mean that the best test configurations can be generated
fast, because a small optimization is used. The 4:2:1 test plan chooses only the stress levels; the
allocation of the units over the levels is pre-specified, so the time needed to obtain the best settings is
small. The optimization speed is the advantage of this type of test plan, but this can result is a less
accurate test plans than with a full optimization. If no decision can be made about the situation of Figure
9 the “New Proposed Plan” can be used best, because it gives always the best or the second best test
plan.
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Table 5: Comparison of SE(t,,) for Different Types of Test Plans in Different Situations

Yes

Fast Optimization
Needed?

No

Uncertainty about
lifetime model?

No Yes
Failure probabilitie
can be smaller than
assumed?
N Uncertainty about
—No ;
failures small?
Yes
A \ 4 A
Best Compromise New Proposed Statistical 4:2:1 Plan
Plan Plan Optimum Plan ’ '1 c
1.b 1d 1.a ’

Figure 9: Most Appropriate Test Plan Type per Situation- One Failure Mode, One Stress Factor and One Product Design
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5.5 Conclusion

This chapter described several methods available in the scientific literature to develop tests plans for the
one failure mode, one stress factor and one product design scenario based on the Smallest Extreme
Value (Weibull) distribution. The described methods can also be applied to the Normal and the
Lognormal distribution if some small changes are made. To make the methods appropriate for the
Lognormal distribution, instead of using the Standard Extreme Value distribution, the Normal
distribution must be used as basic model. For the Normal distributed lifetime also the Normal
distribution must be used, and instead of calculating the log failure times, immediately the normal
failuretimes are calculated. So, no logarithmic transformations have to be made in this situation. The
simulation program we developed can deal with these three families of distributions.

The methods described during this chapter use the standard error of the pth percentile estimate as
optimization criterion and use the low stress level and, in most cases, the allocation of units to the
lowest stress level as decision variables. Methods to execute this optimization are not described in the
scientific literature, some authors use their own tables, and other authors give the nonlinear
optimization problem, but they do not describe generic methods to solve this. To generate the best test
settings for different situations, we developed our own optimization method based on simulation. The
procedure we developed to design a test plan consists of the steps:

1. Obtain prior information and initialize the life-stress model
2. Choose type of test plan and design the test plan with use of simulation
3. Test robustness of test plan by changing prior estimations

Based on a comparison of the different test plan types in different situations we conclude that the
Statistical Optimum Plan seems to have the overall best performance, but the Best Compromise Plan,
plan 1b, can deal best with wrong assumptions. The New Proposed Plan has the best or second best
performance, so it can be chosen if one does not want to make a decision about the situation. Figure 9
suggests which test plan type can be used best in which situation; based on this type the test
configurations can be established. Chapter 6 extends the methods described in this chapter and
combines them with other methods available to describe the design of test plans for the other
scenarios.
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6. Development of Test Plans

The goal of this chapter is to describe a complete procedure to develop test plans appropriate for
different scenarios based on the number of failure modes, the number of stress factors and the number
of different product design variants. To come up with this procedure, we use the method described in
chapter 5 and develop new methods. We also extend the simulation program used in chapter 5 for the
generation of test plans. This chapter consists of detailed descriptions of methods to generate test plans
for the scenarios with one factor larger than one, so for example two or more failure modes, one stress
factor and one product design or one failure mode, two or more stress factors, one product design
variant, descriptions of ideas to generate test plans for the remaining scenarios and a conclusion with a
guidelines to generate test plans in general. Per scenario we describe appropriate test plan methods
from the scientific literature, if they exist or methods of other scenarios. We describe the generation
process not in detail, because it works largely the same as the generation process described in chapter
5. We only describe special results and comparisons of different plans within one scenario.

6.1 Two or More Failure Modes, One Stress Factor, One Product Design

For this scenario we assume that a product can fail for more than one reason. Examples of failure modes
are cracking of the packaging, short circuit or wear. The failure modes that can occur during normal use
of a product are taken into account. When one of the modes appears the product fails and the other
modes cannot be observed. We assume that when a product fails, we can observe the corresponding
failure mode and we have some initial estimates for all failure modes we want to include in the lifetime
test. This section describes which types of test plans can be used for this scenario and how these test
plans can be generated.

6.1.1 Type of Test Plans

The first type of test plan for this scenario is a test plan obtained from the scientific literature. We do
not use this test plan type directly, because it is very situation specific and no methods to really design
the plan are described, but we use the plan as theoretic background to develop new plans.

2a. D- and D,- Optimal Plan

The test plan that can be found in the literature for this scenario is the D- optimal plan. A test plan is
called D-optimal if it maximizes the determinant of the Fisher Information Matrix, |F|. When not all
model parameters, but a subset is of interest, Ds-optimal test plans are more suitable. For example
when the focus is only on failure mode i, the determinant of |F;| is maximized instead of the complete
matrix. (Pascual, 2008). Pascual (2007) describes a simplification of the D-optimal method for situations
where the shape parameter of the Weibull distribution (scale parameter for SEV distribution) is known
and assumed to be equal for the different failure modes. In this case, an expression for the percentile
can be established and the variance of the percentile estimation can be calculated with use of the Fisher
matrix. The expression for the p™ percentile for a product with k different failure modes

o
—In (1- C .
1 —Z?(x)} . In practice it is uncommon that all the failure modes have the
)
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becomes: t,(x) = {

same scale parameter, so we also want to develop a procedure for different scale parameters. The prior
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estimates are difficult to obtain for the k failure mode case, because the estimations of the failure
probability under normal use condition is often a combination of all failure modes. To get around this
problem, we assume that independent estimations are available.

The simulation model we used for the generation of test plans for the one-one-one scenario optimizes
SE(t,) instead of the determinant of the Fisher Matrix. To make the test plan generation procedure as
generic as possible, and because the additional step to compute SE(t,) is not that difficult with use of the
simulation program, we decide to use this criterion, min SE(t,) also for this scenario. The literature does
not describe how to come up with the test plan settings, so we have to develop such a method
ourselves.

2b. Two Failure Modes Test Plan

The idea behind this test plan is to search for stress levels and allocation fractions that minimizes SE(t,)
for all the applicable failure modes. The highest stress level is chosen beforehand, just like for the one
failure mode scenario. The lowest stress level must be chosen to minimize SE(t,). Because different
failure processes with their own lifetime distribution take place, we treat the failure processes
separately for the parameter estimation and variance calculation. At the end of the test plan evaluation
we establish the model for the overall failure process, so including all applicable failure modes. Equation
9 described how such combined models can be made if the failure modes are independent. If the scale
parameter is not the same for all failure modes, no general expression for the pth percentile as function
of all individual failure modes can be established. The expression for the probability that an items with
two failure modes fails before time t equals:

1 - 1 -
F(6,§) = 1= [1 = Ooy (REE | [1 - gy (120 | (35)

Based on this expression we can conclude that an expression for the percentile point t can only be
derived if 0; = 0,, see Appendix L for the derivation. If this is not the case, a value for t must be
searched via a search method. This also means that numeric calculation of the standard error of this
percentile is not possible. For that reason, we determine the standard error of the percentile for the
combined model with use of simulation. We use parameter values from a multivariate normal
distribution, with means equal to the expected parameter values based on MLE of the simulated data
and variances equal to the variances obtained from the Fisher Information Matrix. We use these new
parameter values to generate lifetimes. We use the standard error of these new generated lifetimes as
estimate for the standard error of the overall product. The steps needed to generate the best test plan
are:

Obtain prior information per failure mode.
Choose a type of test plan based on the one failure mode, one stress factor, one product design
variant scenario, Figure 9.

3. Determine the bounds of the lowest stress level based on the total failure probability, equation 34,
as described in section 5.2.3.

4. Simulate lifetimes per failure mode per product. The failure mode that occurs first causes the failure
of the product and determines the lifetime.
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5. Estimate the life stress model parameters and their variances per failure mode. If a failure occurs
due to another failure mode, assign a censored indicator to this failure mode and take this lifetime
as censored observation into account.

6. Generate independent lifetimes per test plan for the pth percentile based on multivariate normal
draws for the model parameters. With multivariate normal draws we mean a draw from the normal
distribution, but with a mean equal to the estimated value of the parameter and a variance equal to
the estimated variance. The parameters corresponding to the stress relation are allowed to take
negative values, but sigma must always take a positive value. The lognormal distribution seems
appropriate for this situation.

The relation we use to generate these lifetimes t via a search method is:

In(t) — (10 + \711X)>] . [1 _ g <ln(t) =20+ ?21)())]
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Yij, 6,: parameter estimations based on multivariate random normal draws
p: percentile point used for evaluation

The value of t for which this relation holds becomes the simulated lifetime for a product for the pth
percentile, k times a lifetime is generated per test plan.

7. Calculate the standard error of the p™ percentile based on the generated percentile point estimates
per test plan. The test plan with the configurations that give the smallest total standard error is the
best test plan.

?:1(tp,i — t_p)z

SE(t,) = 36
() p— (36)
tp,i: percentile point for ith replication, i=1...k

— ?:1(tp i)

tp: mean percentile point, T

Appendix M describes the application of this method to the case that is used as example in this report.

6.2 One Failure Mode, Two or More Stress Factors and One Product Design

If the lifetime of a product is much longer than the available test time, even when a certain stress factor
is applied, it can be worthwhile to use more stress factors together. This section describes how the
stress level combinations on which the items must be tested have to be chosen in this situation. We
assume that the stress factors do not interact. The model can be extended to include interaction with an
extra interaction component, but this is out of scope for this research. We describe the methods for a
two stress factor situation, but the same idea holds for a k-stress factor situation. Section 6.2.1 describes
some different types of test plans and the method to generate these plans, section 6.2.2 compares the
different test plan types and describes in which situation which test plan type performs best. Section
6.2.3 compares the sample size needed to obtain certain accuracy for the one stress factor test with the
two stress factor test.
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6.2.1 Type of Test Plans

3a. Two Factor Optimum Plan

The idea behind this method is the same as that of the statistical optimum plan, plan 1.a of section
5.2.2. The two-factor problem can be transformed to a one-factor problem and solved by the method
for the statistically optimum plan; a description of this transformation is given below. The plan that
results according to this method is very sensitive to uncertain inputs and not capable of estimating the
effect of the individual stress factors, because combined stress values are used (Escobar & Meeker,
1995). In practice this is a very impractical plan, but we use it is as starting point for the improved
optimum split plan (plan 3b) and the best compromise plan (plan 3c).

The first step is to create the experimental region; this is a 2-dimensional area for a two-stress factor
problem. We describe this method with use of an example based on the case introduced in section 1.4.

Figure 10 shows the experimental region for this example. Stress factor 1 represents power and stress
factor 2 represents temperature. We transform both stresses based on respectively the Inverse Power
Law and the Arrhenius relationship. After that, we standardize the stresses between 1 and 0 to make
parameter estimation of the stress relation easier. The standardized stress becomes

= % . The bold lines in the picture are the borders of the experimental region and the dotted
lines are probability lines. All combinations of the two standardized stress levels located on such a
probability line correspond to the same failure probability. The probability lines can be constructed
based on the failure probability function dependent on the test time and stress level, equation 34. As
described in section 5.2.1 the values of the model parameters can be determined based on the failure
probability estimations at the normal use and high level for each stress. The relation for the example

becomes:

Failure probability (§,2000) = ®ggy (1n(zooo)—(5.98+2.15§1+1.70§z))

0.294
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Figure 10: Experimental Region Two Stress Factors

The total experimental region is feasible if all stress combinations can be tested. This means that there
are no equipment constraints on certain stress combinations and the failure modes that occur are the
failure modes of interest. We assume that in the example the total experimental region is feasible, the
constrained plan, plan 3d, focuses on situations where this is not the case.

Escobar and Meeker (1995) describe a method to transform the two stress level problem to a one stress
factor problem. Methods to solve the one stress factor problem are available, so this problem can be
solved too. The idea of the transformation is that if all the points within the experimental region are
feasible, the optimum combined stress levels can be located on the line from the standardized use
stresses (&4 =&, = 1) through the standardized high stresses (§; =&, = 0). This makes the
standardized stress level for both stresses equal and the problem can be transformed to a one-factor
problem; u(x) = ag+ a1é; + &, = ap + (@ + ay) & . This problem can be optimized via the
method described at the statistical optimum plan, plan 1a. &;, the standardized low stress level and m;,
the proportion allocated to the lowest stress level, should be chosen such that the standard error of the
p™" percentile estimate is minimized.

We use optimization by simulation, as described in chapter 5, with the adjustments described above to
generate the stress level and the allocation fractions. If we apply this, the standardized stress level
combinations that result from the optimization are (0.449, 0.449) and (0, 0) with an allocation
percentage of respectively 70% and 30% . If we transform these values back to the original stress, test
combination 1 becomes (96W, 118°C ) and test combination 2 becomes (120W, 200°C) Because two test
levels are chosen, the test plan is sensitive to wrong assumptions and the individual effects of the stress
factors cannot be determined. Test plan 3b and test plan 3c are extensions of this method and take
these disadvantages into account.
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3b. Two Factor Optimum Split Plan (3 levels)

The optimum split plan has the same asymptotic variance as the two factor optimum plan, plan 3a, but
is also possible to estimate the effects of the individual stress factor based on the test results. The
disadvantages of this type of plan are that it is not possible to estimate the parameters of an interaction
model and it is sensitive to uncertain inputs, like the one factor two-level statistical optimum plan, plan
1a. (Escobar & Meeker, 1995)

The starting point of this method is the stress level combinations obtained from the two-factor optimum
plan, plan 3a. Based on the probability of failure of the lowest stress level combination,

(€Low) = (€1Low» $2,L0w), Obtained from this plan, two stress combinations at the borders of the
experimental region can be derived, for which the probability of failure remains the same.

In(to)—(@o+a1é1owt®282,10w)) _ In(tc)—(ap+a181 10w1+@2%0) In(te)—(ao+ai1éy ow1+az*1)
Pseu ( . )= ®sev ( ; )= ®sev : )
The new stress level combinations are (1 1ow1,$2,Low1) @and (€1 Low2s €2,L0w2)- Figure 11 shows how we
split the low stress level of test plan 3a into two new stress level combinations on the border of the
experimental region. The proportion of units allocated to the lowest level, m;,,,, of the two factor
optimum plan, 3a, is also split over the two new combinations of levels, such that w411 Low1 +

Trow2$1,00w2 = TrowS1zow aNd Trow182 10w T Trow2$2,0w2 = TrLow2,Low O Maintain the optimality.
Detailed information about the maintained optimality is described by Escobar and Meeker (1995).
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Figure 11: Two Factor Optimum Split Plan
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If we apply this method to the example as described at the two factor optimum plan, we have to split
the lowest stress level (96W, 118°C) or (0.449, 0.449) into two new stress combinations on the borders
of the experimental regions for which the probability of failure remains the same, 49.5%. Stress 2 is the
stress with the smallest effect on the probability of failure if it increases from use level to the highest
level, so for the first new low stress combination we set stress factor 2 at the normal use level and for
the second new stress combination we set stress factor 2 at the highest level. Based on these values, we
choose values for stress factor 1 such that the probability of failure remains 49.5%.

Test combination low 1:

Failure probability (&, jow1, 1; 2000) = 0.495 = Dggy (ln(ZOOO)—(5.98+2.15§1+1.70*1)

0.294

)~ & =0.015

Test combination low 2:

Failure probability (& 1ow2, 0; 2000) = 0.495 = Pgpy (ln(ZOOO)—(5.98+2.15§1+1.70*0)

0.294

)-&=083

If we transform these standardized stresses back to the original stresses, the stress combinations on the
borders of the experimental region that give the same failure probability are (119W, 50°C) and (80W,
200°C). Sometimes it can be the case that the failure probability cannot be reached without increasing
the use stress level of the second stress factor. If this is the case, we set the first stress factor at the
highest stress level and choose a value for the second stress level such that the failure probability is
reached. Instead of the lower border of the experimental region, the right border is used in this
situation.

We split the allocation of 70% of the items to the lowest stress level into two parts based on the
formulas described before:

Trows * 0.015 + 142 ¥ 0.83 = 0.7 0.449 and mp o1 * 1 + oz * 0 = 0.7 * 0.449

Based on these equations, we allocate 31% of the items to test combination low 1 and 39% of the items
to test combination low 2. The remaining fraction, 30% is allocated to the high stress level combination,
(120w, 200°C).

3c. Two Factor Compromise Split Plan (5 levels)

The compromise split plan can be developed using the same method as the optimum split plan, but is
based on the one factor best compromise plan, plan 1b, instead of the one factor statistical optimum
plan, plan 1a. Besides the low stress level, also the middle stress level is split according to the same
method as described at the two factor optimum split plan, plan 3.b. Figure 12 shows how the best
compromise plan is split into test values for the two factor compromise split plan. As example the case is
used.

This compromise split plan increases the standard error of the pth percentile estimate, but is able to
estimate the parameters more accurately and can also estimate the interaction (Escobar & Meeker,
1995). It is also possible to generate a five level, two-factor test plan based on the 4:2:1 allocation
method, plan 1c., and use these stress level combinations to split the test plan. The construction of
these 5 level split plans are not illustrated with use of the case, because they can be constructed in the
same way as the two factor optimum split plan, only with one more stress combination that has to be
split.
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Figure 12: Compromise Split Plan

For the example, the one factor best compromise plan, plan 1b, becomes:

(Stress1 (€), Stress2 (€)) Fraction Prob. failure
Low 1 (0.47,0.47) 53% 40%
Middle 1 (0.24, 0.24) 20% 99.9%
High (0,0) 27% 100%

We use this plan to generate the two factor best compromise split plan. We split the levels and the
allocation fractions; Figure 12 shows the resulting test plan graphically. The difference in probability of
failure between the middle and the highest stress level is small, 99.9% vs. 100%. This happens because
in a two stress factor scenario, a 100% probability of failure line is reached much earlier than in the one
stress factor scenario. So there can be a lot of stress combinations that have a failure probability of
100%. The middle stress level is always located at the normalized average of the low and the high stress
level, and the parameters of the life-stress relation can be estimated based on the failure times on the
three stress levels. The optimal percentage of failure is chosen during the optimization of SE(t,).

3d. Constrained Split Plan

The plans described above can only be used if all stress level combinations are feasible. In practice it can
be the case that certain stress combinations lead to other failure modes due to the high stress, or
certain combinations are not possible due to practical restrictions, such as equipment constraints, for
example it is not possible to use the equipment under very high temperature with a high voltage or
there are environmental constraints. To incorporate this, we developed a new type of test plan. We use
the concept of the stress level combinations on a straight line from use conditions for both factors, but
instead of the highest stress levels for both factors, the reference point of the line becomes the
maximum feasible stress combination. Based on the slope of this line and the intersection with the
border of the experimental region, we construct a new model. Figure 13 shows the constrained
experimental region and the line we use for test plan generation.
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On the straight line through (1, 1) and the maximum stress combination holds: &, = a&; + b, with

a = slope of the line and b = intersection of the line with the right experimental border.

This leads to the expression: u(x) = ay + a1 &1 + ay(slope * & + intersection)

Based on these relations, the constrained model becomes:
In(tp) = (a, + intersection * a;) + (a; + slope * a,)&; + @55, (p) x o (37)

With intersection = 1 — slope and slope =

1_Ez,max

1_’51,max

¢i max: Maximum standardized level of stress i in combination with the other stresses

We use this model in the same way as the model to develop the plans for a nonconstrained situation as

described before. We illustrate this with use of an example based on the case.

Suppose that the maximum feasible stress combination is 109W and 142°C, this means a normalized

stress combination (0.2, 0.3).
The highest test stress combination changes from (120W, 200°C) to (109W, 142°C). To make it possible
to estimate the effect of the individual stresses, this high stress level must also be split into two separate

stress level combinations on the border of the experimental region. The lowest stress level

combinations have to be chosen such that SE(t,) is minimized. We generate the stress level values with

use of the adapted model based on the optimum split plan (plan 3b) or the compromise split plan (plan

3c).
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Figure 13: Experimental Region Including Stress Restriction

Based on the slope and intersection of the stress combination line, we adjust the parameters of the

standard model, and use these values in the simulation. The test plan settings for the constrained

optimum split plan become:
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Stressl (W) Stress2 (C) Fraction Prob. failure
Low 1 116 50 31.4% 36.78%
Low 2 78 200 38.6% 36.78%
Highl 120 103 13.5% 99.99%
High 2 96 200 16.5% 99.99%

6.2.2 Comparison of Test Plan Types

To describe the applicability of the test plan types in different situations, we use a comparison study as
we used for the one stress factor scenario in section 5.4. We add one new situation to examine the
differences in performance if there is some interaction between the stress factors. For some
applications it can be important that the test plan can deal with interaction.

We do not compare all the types of test plans described for this scenario. Plan 3a is not taken into
account because it gives no information about the influence of the individual stress factors and the
results cannot be used in practice, it describes only the basics of the other plans. Also plan 3d is not
taken into account because it is generally the same as the other plans, but appropriate for situations
where constraints about the stress level values are given. The test plans for this two stress factor
scenario are based on the plans for the one stress factor scenario. The 4:2:1 allocation plan, plan 1c., is
not used as basic plan during the comparison, because this type of plan has the worst performance, but
the advantage is the fast optimization. Therefore we only include it in the schematically categorization,
Figure 14. Based on the comparison of the standard error for the 10" percentile estimate for all
situations, as displayed in

Table 6, we can conclude which type of test plan is most appropriate for which situation. Remarkable is
that the Optimum Split Plan can deal better with model deviations and wrong parameter assumptions as
the Statistical Optimum Plan of scenario 1 can. For this two stress factor scenario, the optimum split
plan performs best in all situations, except the situation in which there is some interaction. Figure 14
summarizes this categorization schematically.

Table 6: SE(t,,) per Situation and Type of Test Plan for the Two Factor Plans
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Figure 14: Most Appropriate Test Plan Types per Situation - One Failure Mode, Two Stress Factors and One Product Design

6.2.3 Comparison Performance One Stress Factor Test vs. Two Stress Factors Test

We introduced methods to design test plans for the two stress factor scenario. These methods increase
the complexity of the design, but also improve the accuracy, so a smaller amount of products can be
used to reach the same estimation accuracy. For the example we use in this research, we compare the
needed sample size for both kind of tests. The available test time for both situations is 3,000 hours.

In the first situation, we design a test plan based on the best compromise plan, plan 1b. In the second
situation, we also design a test plan based on the best compromise plan but we use two stress factors,
namely power and temperature. So in fact we use the two factor best compromise split plan, plan 3c.
Table 7 describes the test plan settings for both situations, the standard error of the p™ percentile
estimate for a sample size of 2,000 items and the sample size that is needed to reach a target precision
of 1.5. Based on these results we conclude that a more complex lifetime test considerably reduces the
estimation uncertainty, the needed sample size decreases from 180 units to 34 units in the example.
While it seems to be efficient to always use two stress factors, this only increases the accuracy if both
stress factors really accelerate the failure process and do not interact. The risk of interaction increases if
more stress factors are used and when this is not taken into account during the design, the true
estimation accuracy is much larger than the expected accuracy.
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Situation | Test Configurations Test Results

Middle 1 Middle 2
One 98W - 108w - 120w 9564 | 594 180
stress 53% - 20% - 27%
factor
Two 117w, 50°C  79W,200°C 120W,107°C 97W,200°C 120W,200°C | 9605 | 260 34
stress 25% 28% 5% 15% 27%
factors

Table 7: Comparison One Stress Factor Test vs. Two Stress Factors Test

6.3 One Failure Mode, One Stress Factor, Two or More Product Design Variants

This section focuses on accelerated lifetime tests for products for which one or more product design
variants are available. As described in section 3.4 the design variants differ on some specific points and
the remaining properties are the same. In the scientific literature, no methods to develop test plans for
this scenario under stress conditions are available.

We represent the differences in design with use of design parameters; this can be discrete or continuous
variables. For the design of a test plan, the continuous variables have the advantage that they have
much in common with a stress factor, so methods for the two stress factors scenario can be adapted to
this situation. On the other hand, the discrete design parameters are easier to handle, the test levels are
fixed (yes/high(1) and no/low(0)), and only the allocation of the items over the test levels must be
optimized. We focus in this section on products with one design parameter, but the methods we use can
also be applied to situations with more design parameters. We split the two product design variants
scenario in four subscenarios based on the type of design parameter, discrete or continuous and the
expected difference in failure probability between the value of the design parameter, equal or unequal.
With equal we mean that we assume an equal effect or beforehand it is unknown if there is a difference
in lifetime between the variants and it is unknown which design variant is the best. With unequal we
mean that we assume that the design parameter influences the reliability and we have an idea about
the size of the influence. Figure 15 shows this classification. Per subscenario the decision variables are
indicated. The remaining part of this section uses this classification; we describe per subsection a
method to design a test plan. The expression for percentile points depending on a stress factor and a
design parameter based on the generalized log linear relationship, see equation 4 and equation 18,
equals:

ty(x) = exp(yo + vix1 + v2x2 + @5y (p) * 0) (38)
xq:transformed value of stress factor
X,: design parameter, can be distreet 0/1 or continuous
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6.3.1 Type of test plan

4a. Discrete Design Parameter- Equal Failure Probabilities

If the influence of the design parameter is unknown and the design parameter is discrete, we allocate an
equal fraction of the items to the specific values of the design parameter, zero and one. The test levels
of the stress factor and the allocation of the items over the stress levels can be determined based on the
methods for the one failure mode, one stress factor, one product design scenario as described in
Chapter 5. Based on the stress levels and the allocation for this scenario, we split the allocation fraction
per stress level into two equal parts, one for each design parameter value. The sample size needed to
reach certain accuracy must be based on the standard error of the best test plan for both product
designs, and not the standard error caused by one of the product designs.

To determine the efficiency of this combined stress and design test, we compare a situation for which
two separate tests are done, one per product design variant, and the combined test. We measure the
efficiency in terms of needed sample size to reach a precision factor of 1.5. Based on the case we use in
this thesis, we show the results of this comparison.

Two different lamp designs are tested; the only difference is the color of the light they produce. We use
a design variable to represent this color difference. The value of this variable is 1 if the color is white and
0 if the color is yellowish white. We compare two different situations. In the first situation the two tests
are execute separately, and in the second situation the tests are combined. For both situations we
measure the standard error of the 10™ percentile estimate and the sample size necessary to estimate
the 10" percentile with a precision factor of 1.5. We generate a two level statistical optimum plan. This
means for situation 1 that per design variant the product is tested at two different stress levels, and for
situation 2 that four different stress combinations are used.

Table 8 shows the test settings and the needed sample size for both situations to estimate the 10"
percentile point. If the design test is combined with the stress test, the sample size can be reduced with
50%, because the parameters of the lifetime model for both designs are the same. If in reality there is a
difference between the two designs, the sample size reduction is somewhat smaller. Suppose that in
reality the failure probability for the white design variant at use stress equals 0.3% instead of 0.2% as for
the yellowish white design variant, this difference is not known during the design of the test, only during
the performance comparison. Table 9 summarizes the test settings and the test results per situation.
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Based on this, we conclude that a combined lifetime-design test is more efficient than two separate
tests when the failure probabilities are beforehand assumed to be equal. In this example the sample size
can be reduced with 50% by combining the design test with the stress test if the failure probabilities are
equal and with 45% if there is a small difference. The reason for this sample size reduction is that a large
part of the lifetime model is the same for both designs, see equation 38.

Situation Test Configurations Test Results

Low 1 Low 2 High 1 High 2

One-factor Test 1 98w, 1 - 120w, 1 X 564 162
tests 70% - 30%
Test 2 98W, 0 - 120W, 0 X 565 163
70% - 30%
Total 325
Combined test 98w, 1 98W,0 120W,1 120W,0 | X 0: 557 | 158
35% 35% 15% 15% 1: 560

Table 8: Differences in Sample Size One-Factor Test vs. Combined Stress-Design Test with Equal Failure Probabilities

Situation Test Configurations Test Results

Low 1 Low 2 High 1 High 2

One-factor Test 1 98w, 1 - 120w, 1 X 425 115
tests 70% - 30%
Test 2 98W, 0 - 120W, 0 X 565 163
70% - 30%
Total 278
Combined test 98w, 1 98W,0 120W,1 120W,0 | x 0:557 | 152
35% 35% 15% 15% 1: 476

Table 9: Differences in Sample Size One-Factor Test vs. Combined Stress-Design Test with Unequal Failure Probabilities

4b. Discrete Design Parameter- Unequal Failure Probabilities

Due to the assumed unequal failure probabilities for the different product designs, a more accurate
estimation can be obtained if the allocation of the items over the design variants is not equal. This leads
to an extra decision variable in the optimization problem. Not only the allocation of the items over the
stress factors is a decision variable, but also the allocation of the items over the design variants is.
Similarities with the two stress factor scenario, section 6.2, can be found. The only difference is that only
the upper and the lower border of the experimental region can be used if we transform the design
parameter to a stress factor, because it can only take a value of 0 or 1, and not a value in between. We
use the method for the two stress factors scenario with this extra restriction. We assume that the
expected probability of failure at use stress, with the design parameter equal to 0 to be 0.2% and equal
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to 1 to be 0.8%. Table 10 shows the difference in the sample size needed to obtain a target precision
factor of 1.5 for the standard error of the 10™ percentile estimate. Comparing these results with the
results of the section above, equal failure probabilities, we conclude that the efficiency in sample size
increases if the difference in performance between the two designs increases. The sample size needed
for the combined test in the example is 66% lower than that of the one-factor experiment.

Situation Test Configurations Test Results

One-factor Test 1 96wW,1 - 120w,1 X 210 50
Tests 70% - 30%
Test 2 98W, 0 - 120w, 0 X 565 163
70% - 30%
Total 213
Combined test 105w, 0 95w,1 120w,1 X 391 76
27% 43% 30% 257

Table 10: Differences in Sample Size One-Factor Test vs. Combined Stress-Design Test with Unequal Failure Probabilities

4c. Continuous Design Parameter- Equal Failure Probabilities

In this subscenario we divide the items equal over the design variants per stress level, because of the
equal failure probabilities. We use this equal allocation per variant, because no differences in the
amount of failures are expected, but we want to test if this assumption holds. The values of the design
parameter are not fixed, because they can take each value of a finite interval. But because we expect
the failure probability to be the same for all design parameter values, we only use the lowest and the
highest stress value of this interval. We solve the optimization problem as the one failure mode, one
stress factor, and one product design variant problem as described in Chapter 5.

4d. Continuous Design Parameter- Unequal Failure Probabilities

This scenario can be transformed directly to the two stress factors problem. We transform the
continuous design parameter to a stress factor, with a linear life-stress relationship. Based on the
assumed failure probabilities under normal use condition (value of design parameter you are interested
in) and high stress (highest value design parameter) we obtain the test combinations. Dependent on the
situation, a selection of one of the different test plan types appropriate to this scenario can be selected
based on Figure 14 and the method described in section 6.2 can be followed.

6.4 Combined Scenarios

So far we described different methods to design test plans for different scenarios and build a simulation
model to execute these methods and to generate test plan configurations. This section describes how
the methods for the scenarios described before can be combined to be able to generate test plans for
the more complex scenarios. We describe which part of which methods can be combined, but do not
describe the generation of the test plans in detail, because this causes a lot of repetition. When a part of
a method deviates from the methods described so far, we describe this new part in more detail.
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6.4.1 Two or More Failure Modes, Two or More Stress Factors, One Product Design

A test plan for this scenario can be developed based on a combination of the method to design a test
plan for the two failure mode, one stress factor scenario and the one failure mode, two stress factors
scenario. An assumption about the lifetime distribution and the parameters must be made for the two
failure modes individual. Based on this, the one failure mode, two stress factor problems can be solved
for each of the failure modes. This means that the output of the simulation study, the variance-
covariance matrix, must be used to determine the variance, or standard error based on simulation for
the combined failure modes, as described at the two failure mode scenario. Instead of three parameters
for which values must be simulated based on multivariate normal draws, a fourth parameter is included
for the second stress factor. Based on the estimates and the variances of the parameters per failure
mode, lifetime data can be generated for the failure modes together and the standard error of the total
product can be estimated based on these data. The interpretation of the results is the same as for the
two failure modes, one stress factor scenario.

6.4.2 Two or More Failure Modes, One Stress Factor, Two or More Product Design Variants

The generation of a test plan for this situation can be done in the same way as for the scenario
described before, the two or more failure modes, two or more stress factors, one product design
scenario. Only the transformation of a design factor to a stress factor must be taken into account. So
instead of using the one failure mode, two or more stress factors, one product design variant scenario as
basis scenario per failure mode, the method for the one failure mode, one stress factor, two or more
product design variants must be used. After that the same methods as described at section 6.4.1 can be
applied.

6.4.3 One Failure Mode, Two or More Stress Factors, Two or More Product Design Variants

We represent product design variants by design parameters. These design parameters can be handled in
the same way as stress parameters; section 6.3 described this in more detail. In the earlier sections we
described methods to handle with two stress factors via a two-dimensional experimental region, the
idea of this method can also be used for this scenario. But now we have at least three stress factors, two
for the stresses and one for the design parameter. This means that we have to work with three-
dimensional experimental areas or larger. The complexity of finding the best test combinations
increases. Instead of equal probability lines, we have to deal with equal probability areas in a three-
dimensional case. The test level combinations are based on the intersections of this probability area
with the borders of the experimental region. The probability for which these intersections must be
searched can be obtained from the combined stress point as described in the one failure mode, two
stress factors, one product design scenario, section 6.2. It is possible that there are more intersections
with the borders of the experimental region as there are stress factors. Not all these intersections have
to be used. We choose the test combinations such that all individual parameters can be estimated.
Figure 16 gives an example of a three-dimensional area with test level combinations based on the
optimum split plan.
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Figure 16: Three-Dimensional Experimental Area with Test Level Combinations with Equal Failure Probabilities on a Surface

6.4.4 Two or More Failure Modes, Two or More Stress Factors, Two or More Product Design Variants
This scenario is the most complex scenario. A general equation for the failure probability based on this
situation equals:

F(t,8) =1— [1 — Dggy (ln(t)—a1,0+2?:1 “1,i5i)] - [1 — Dy (ln(t)—aM,0+Z'l-1:1 aM.ifi)] (39)

451 oM

&:vector of normalized (transformed)stress factors and design parameters
ay ;2 model parameter corresponding to failure mode k and stress factor/design parameter i
k=1.Mi=1..n

We use a combination of the methods described before to develop a method to design a test plan for
this scenario. This method is almost the same as the method for the two failure modes, two or more
stress factors, and one product design scenario, section 6.4.1. The only difference is the number of
stress factors/design parameters. The values for these factors must be chosen based on the method
described at the one failure mode, two stress factors, two product design variants scenario, section
6.4.3, so with use of a k-dimensional experimental region.
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6.5 Conclusion

Based on the descriptions of the methods to design a test plan per scenario, we can derive a procedure
to design test plans appropriate to all the scenarios. We do not describe the individual steps in detail,
because they are all based on the methods described before, but we describe the steps that must be
taken in order to generate a good test plan.

Obtain prior information per failure mode and initialize the lifetime model.
Choose type of test plan based on Figure 9 (one stress factor/design) or Figure 14 (multiple stress
factors/design variants).

3. Simulate lifetime data and estimate the model parameters and their variances.

4. If more than one failure mode occurs, simulate the standard error of the p" percentile estimate
based on multivariate normal draws for the model parameters.

5. Select the best test plan configurations based on the standard error of the p™ percentile estimate.

6. If more than one stress factor is used or more than one product design variants are tested, split the
combined values to feasible values on the borders of the experimental region.

7. Test the robustness of the best test plan configurations by changing some prior information values
and choose the most robust one.

The methods we use to generate test plans are all based on the methods of the one failure mode, one
stress factor and one product design scenario. The two stress factor problem can be transformed to this
problem by merging the two stress factors to one stress factor, search the best value for this combined
stress factor and split this value afterwards into individual stress levels on the borders of the
experimental region. Using two independent stress factors instead of one stress factor increase the
accuracy enormously. The two product design variants scenario can also be transformed to this one
failure mode, one stress factor, one product design scenario in the same way. It is important to include
an extra restriction if the design parameter is a discrete variable, because not all borders of the
experimental region can be used in this case. A combined stress-design tests reduces the sample size
needed to obtain certain accuracy with approximately 50%. The two failure modes scenario cannot
transformed directly to the one failure mode, one stress factor, one product design scenario. The two
failure modes must be treated separately and with use of an extra simulation step, p" percentile
estimates for the total product can be obtained via the estimates and variances of the individual model
parameters. Based on the standard error of the combined failure processes, the best test settings can be
selected. We implemented the methods described till and until section 6.3, the remaining test plans can
be generated based on these methods. Chapter O applies the general procedure to a practical case,
which includes design variables and stress factors.
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7. Case: Test Plan Design to Determine the Reliability of an Aquarium Lamp

This chapter describes a case to illustrate how the developed procedure can be applied during a
practical situation. Company X develops a new type of UV-lamp to use in aquaria for water purification.
The high intensity light kills the free-floating micro organisms and cleans the water. The aquarium lamp
has to be replaced if the lumen output drops below 70%, this intensity is too low to perform the
intended function. The low lumen output, an output below 70%, causes the lamp to fail, so can be seen
as failure mode. The normal use level of the lamp is 10°C, but to accelerate the failure process, the
temperature can be increased until 80°C (Schuld, 2010).

The company developed different design variants of the lamp and executed a test to measure the effect
of the different designs on the product reliability.

The different product design variants can be described with use of four different discrete design
parameters, namely:

d,: Emitter = {1 if type A emitter is used

0 if type B emitter is used

1if pressure is high

d,: Filling pressure = { 0 if pressure is low

. _ 1if amount of neon is high
ds: Neon = 0 if amount of neon is low
1if type A spiral is used

d4: Type of spiral = 0 if type B spiral is used

Design parameter 2, filling pressure, and design parameter 3, neon, can be seen as continuous

parameters. The engineers who develop the UV-lamp want to compare two specific levels of these
parameters in the test, thus we describe them as discrete variables.

Section 7.1 describes the design of a test plan to test the reliability and to test the influence of the
design parameters on the lifetime of this new type of lamp according to the steps and methods
described in Chapter 6. Section 7.2 describes the analyses of the test results that can be obtained from
the developed test plan. Because there is not enough time to wait on the real test results, we derived
the lifetimes used in this section from the two earlier executed experiments; the lifetimes of the 80
items (different designs) under high stress and the stress test for one design variant. We derive an
acceleration factor from the latter test and based on this factor the lifetimes of the other test, design
variants under high stress, are extrapolated to lifetimes that would be observed at the stress factors that
must be used according to the test plan. Section 7.3 compares the performance of the proposed test
plan with the worst test plan evaluated during the simulation.
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7.1

Design of a Test Plan: UV-lamp

We design a test plan for the UV-lamp according to the procedure of Chapter 6. We have to deal with a

one failure mode, one stress factor, two or more product design variants scenario with discrete design

parameters and equal failure probability as described in section 6.4.3.

1.

Obtain prior information per failure mode and initialize the lifetime model.
We obtained the prior information from the engineers; Fout! Verwijzingsbron niet gevonden.
summarizes this information.

The lifetime model we want to obtain after the lifetime test including all design parameters and the
interactions equals:

In(t,) = ap + a1¢ + ayd; + azd, + ayds + asdy, + agdids + az;dyds + @5y (p) * o

g, A1, Ay, A3, Ay, As, A, A7 Model parameters to be estimated

&:normalized transformed stress level

d;:value of design parameteri,0 or 1 i=1.4

The goal of the lifetime test is to measure the effect of the design parameters on the lifetime of the
lamp, estimations about these effects are difficult to obtain. Therefore we assume that the different
product design variants have equal failure probabilities and leave model parameters a, — @, out
our model during the generation of the test plan configurations. We only have to estimate the
model parameters ay and ;.

The resulting initial lifetime model becomes:
In(t,) = 5.991 + 3.912¢ + O3, (p) * 0.4

Choose type of test plan based on Figure 9, section 5.4.

We obtained the prior information from engineers based on experiences of similar products, but
they are not certain about some of the model assumptions. As described before we assume Weibull
distributed lifetimes, but based on the results of some other type of UV-lamps, it can be the case
that the Normal distribution fit best. We also assume during the design of the experiment that the
design parameters do not influence the lifetime, but in practice some of the parameters will have a
significant effect on the lifetimes. For these reasons, we want to design a robust test plan. Based on
the guidelines of Figure 9 we choose to use the best compromise plan as basic test plan.

Simulate lifetime data and estimate the model parameters and their variances.
With use of the simulation program and the lifetime model established in step 1, we generate
lifetime data for different test plan configurations.
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Equipment to increase the temperature is available, but only temperatures with differences of 5°C
can be generated (Schuld, 2010). According to the rules described in section 5.2.3, the upper bound
of the lowest stress level must be chosen such that the probability of failure s
min(50%%*2,100%)=100%. So the upper bound of the lowest stress level is the lowest temperature
for which the failure probability at the end of the test reaches 100%. The lower bound of the lowest
stress level must be chosen such that the probability of failure is 50%. Based on these bounds, the
lowest stress level interval becomes [30°C, 45°C], and based on the equipment constraint we use a
step size of 5°C. Based on the generation rules of section 5.2.3, the allocation fraction to the lowest
stress level varies from 0.33 to 0.63, and we choose to use a step size of 0.1. This results in 16
different test plan configurations to evaluate.

Select the best test plan configurations based on the standard error of the pth percentile estimate.

Table 11 presents the best test configurations, the configurations that perform almost equal and the
configurations that perform worst. The performance of test plan 7 and 8 are evaluated during the
robustness test of step 6, to choose the final test plan. Test plan 13 is included to compare the

performance of the worst and the best test plan.

Low stress Middle High stress Fraction Fraction Fraction t,

value stress value  value low middle  high
7 35 55 80 0.53 0.2 0.27 X 492
8 35 55 80 0.63 0.2 0.17 X 493
13 45 60 80 0.33 0.2 0.47 X 664

Table 11: Test Plan Configurations Best Compromise Plan

Split the combined values to feasible values on the borders of the experimental region.

Thus far we focused on the stress factor; the design variants are not included yet. We choose to use
this order because of the discrete design parameters with equal failure probabilities. Section 6.3.1
described that in this situation, both variants of a design parameter must be tested on each stress
level. But because we assume that there can be some interaction between the design parameters,
we choose the design parameter combination such that after the lifetime test, significant
interactions can be measured and included in the lifetime model. For these combinations, we use
the Design of Experiments (DoE) theory. Because the engineers are interested in the interactions
between d1 and d3 and d2 and d3 and no other interactions, we can use a half factorial design. This
means that with 4 design factors, ¥ * 2% = 8 different test runs exist.

Table 12 displays the settings per run for an 8 run DoE. We want to test an equal number of items
per design variant, because we do not know if there are any differences. So, we divide the total
sample size equal over these 8 test runs, this means 10 items per test run. To make the estimation
for both the stress factor as the design parameters as good estimation as possible, we execute every
test run at least one time at every stress level. Table 15 summarizes the resulting test plan including
these design parameters and the division of the items over the different stress levels.
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1 0 0 0 0| O:Low value for design parameter
2 1 0 0 1| 1: High value for design parameter
3 0 1 0 1

4 1 1 0 0

5 0 0 1 1

6 1 0 1 0

7 0 1 1 0

8 1 1 1 1

Table 12: Four Factor 8 Runs DoE (Montgomery, 2005)

6. Test the robustness of the best test plan configurations by changing some prior information values
and choose the most robust one.
There is some uncertainty about some of the prior information assumptions. Therefore, we compare
the performance of the best test plans of step 4 if we change these prior information values. During
the first test the Weibull distribution is replaced by the Normal distribution and during the second
test the acceleration factor is increased from 50 to 60. Table 18 and Table 19 show the resulting
SE(tso) per test plan per robustness test.

Plan tg SE(tso) Median Plan tso SE(tso) Median

7 X 213 212 7 X 471 470

8 X 223 223 8 X 469 466
Table 13: Test 1- Model Departure Table 14: Test 2- Acceleration Increase

Based on the robustness test results we conclude that both test plans perform well. We choose to
use test plan 7 as the best test plan, because it scores best on the model departure test and scores
almost equal to plan 8 on the acceleration test. Table 15 describes the resulting test plan, including
the design parameters. A lifetime test is executed based on the suggested test configurations. The
next section describes the test results, the effect of the design parameters and the estimation of the
lifetime of the UV-lamp.

Stress  Design Number of Stress Design Number of Stress Design Number of
level replications level replications level replications
35 0000 6 55 0000 2 80 0000 2
35 1001 6 55 1001 2 80 1001 2
35 0101 5 55 0101 2 80 0101 3
35 1100 5 55 1100 2 80 1100 3
35 0011 5 55 0011 2 80 0011 3
35 1010 5 55 1010 2 80 1010 3
35 0110 5 55 0110 2 80 0110 3
35 1111 5 55 1111 2 80 1111 3
Total 42 16 22

Table 15: Final Test Plan UV-case
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7.2 Results Designed Test Plan UV-lamp

There is not enough time to execute the proposed test plan, but based on the lifetime data of the two
test that are executed earlier for this type of lamp, we generate lifetimes for the 80 UV-lamps tested
based on the configurations of Table 15 for 4,000 hours. Appendix N presents the resulting lifetimes.
These lifetimes are used to estimate the lifetime model parameters; we do this with use of Maximum
Likelihood Estimation in STATA. Figure 17 summarizes the resulting parameter values, standard errors of
the parameter values and the significance of the parameters. If the P>|z| value is smaller or equal to
0.05 the parameter is significant. We can see that only the model parameter corresponding to x1, d13
and d23 are significant. This means that d4 has no significant influence of the lifetime of the UV-lamp.
New parameter values have to be derived without this parameter, and Figure 18 summarizes the results.

Figure 17: STATA Output to Determine Significant Model Parameters for the UV-case Lifetime Model

Figure 18: Model Parameter Values of the UV-case Lifetime Model
The model for the lifetime of the UV-lamp, dependent on stress and design parameters becomes:
t, = exp (a+bé+cdy+ed,+ fdy — gd; — hd,d; + CDS‘ElV(p) *1)

Optimizing this lifetime function gives the optimal settings for the discrete design parameters, these
optimal settings are:

di=1 Emitter: Type A

d2=1 Filling pressure: High

d3=0 Amount of Neon: Low

d4=0/1 Type of spiral: No influence on the product reliability

The expected lifetime of the optimal design is expected to be x hours. The standard error of the 50"
percentile estimate is 2,595 hours, which leads to a confidence interval of [x hours; x hours]. The
estimation is less accurate as expected during the design of the test plan. Reasons for this are the high
acceleration factor, the interaction between the design parameters and the unequal failure probabilities
of the design variables. To improve the accuracy of the lifetime estimation for such a situation a next
time, a pre-test can be used to obtain more information about the acceleration factor and the effects of
the design beforehand. During this pre-test a part of the sample is used to improve the prior information
assumptions.

The test time for this lifetime test was 4,000 hours. We are interested in the accuracy decrease if a
shorter test time is used and the accuracy increase if a longer test time is used. Based on these results,
we can conclude if 4,000 hours are really necessary or that the test time can be decreased. We generate
a test plan for different test times and compare the standard error of the 50" percentile estimates.
Figure 19 shows the results for different test times.
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Figure 19: Estimation Accuracy for Different Test Times

From the graph we conclude that the estimation accuracy decreases enormously if the test time
decreases from 4,000 to 2,000 hours, and the accuracy increases fewer if the test time is increased from
4,000 to 6,000 hours. In the case the test time and the available sample size are fixed, optimizing the
test time can be used to check if the preferred accuracy can be reached within a shorter test time. If the
test time is not fixed, it can be optimized based on the target accuracy and the available sample size.

7.3 Comparison

We cannot compare our results with the results of the lifetime test executed by company X, because
they measured the influence of the design parameters only under high stress conditions. They make the
transformation to normal use conditions based on a small experiment with one design variant and no
standard error of the lifetime estimation under normal use condition is available. To give an idea about
the performance of the proposed test plan, we compare this plan with our worst test plan, test plan 13
of Table 11. Appendix O summarizes the test plan settings and the lifetime data obtained in this
situation. The estimation of the 50" percentile point becomes y hours with a 95% confidence interval of
[y hours; y hours]. This percentile estimate is 1,500 hours higher than that of the best test plan and the
confidence interval of this worst test plan is larger than that of the best test plan. The precision factor
(see section 4.2) of the best test plan is 1.34 and that of the worst test plan is 1.47.

Based on this comparison we conclude that optimization of the test plan configurations is necessary to
generate accurate test plans. Not only the type of the test plan and the rules to create a range of test
plan settings lead to good test plans, but also the selection of the most accurate test plan of this range
of settings is important.
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8. Implementation

It is in the importance of CQM that the results of this research can be used during their projects related
to reliability for their customers. This implies that the procedure and the simulation program developed
into this research have to be formulated in such a matter that it can be absorbed by CQM. To do this, we
identify four steps; each of the sections below describes one step.

8.1 Understand and maintain the developed procedure and the simulation program

To be able to use the developed procedure, it must be understood by its users. We have to transfer the
knowledge obtained by this research to the responsible CQM employees. This transfer consists of three
parts.

Instructions

The first step of the knowledge transfer is a session in which we explain the procedure and the
functionality of the simulation program globally. This session is interactive, which makes it possible to
answer questions and focus on some parts found difficult by the CQM employees. We have transferred
the procedures and the simulation program during this kind of session.

User Manual

Test plans can be generated with use of the simulation program. This program is based on the
procedure described and developed in this research. A user manual to describe the functionality of the
simulation program and the link with the develop procedure in detail has to be made. The user manual
must look like a recipe that can be followed by individuals with and without knowledge of the
procedures to generate a test plan. We developed a user manual to enable CQM to use the simulation
program.

Software Administrator

To guarantee efficient and effective maintenance of the software, one CQM employee has to be
responsible for the simulation program. This means that this individual has to manage the usage and the
maintenance of the program. Roel Wijgers is the CQM employee responsible for the simulation
program.

8.2 Test and improve the procedure/ simulation program

If the procedure is transferred (meaning that it is understood by CQM and initial questions are
answered), it has to be tested during a pilot project in order to make it part of the existing CQM
routines. So far, we only tested the procedure based on case studies. The lifetime data resulting from
the test plan we used, it simulated and not actual observed. To guarantee the performance of the
developed procedure it must be evaluated during a pilot project.

Pilot Project
The goal of a pilot project is to validate the procedure and make improvements. We suggest searching a

project to design a test plan for, with a situation in accordance with the situations we assumed in this
research and a test time of around 1,500 hours. The performance of the test plan can be measured after

Implementation



the results become available; this is also the moment to evaluate the performance of the procedure
make improvements. To reduce the time needed for the validation and optimization of the procedure,
we suggest a period of approximately two months (x 1500 hours) and advise to involve the engineers
with this test. Their opinion and knowledge about tests can be used to improve the practical usage of
the procedure.

8.3 Apply the procedure during projects
After testing the procedure in practice, it can be integrated in the working procedures with respect to
reliability. When using the developed procedure, these two aspects are important:

Emphasize the importance of smart lifetime testing

Many companies know the importance of reliability, but do not know how to test this efficient and/or
accurate. CQM must emphasize this importance and support these companies with the insights of this
research to reduce costs of warrantee periods and product recalls.

Use a random sample during the lifetime experiments

We assumed that the items placed on life tests are randomly sampled from the population of interest;
otherwise the results might be biased. In practice, it is difficult to guarantee that the sample is randomly
selected. A control group with known performance can be used as baseline to recognize unexpected
problems.

8.4 Extend and adapt the procedure based on the experiences from practice
When using the procedure in practice, new situations can be discovered or some assumptions needed to
use the developed procedure do not hold. In these cases, the developed procedure and the simulation
program has to be extended or adapted. We describe some possible extensions.

Possible extensions

Extensions we recognized during this research and the case studies are:

- Include a step to optimize the test time based on the sample size and the target accuracy
We researched the influence of the test time on the accuracy in section 7.2; test time influences the
estimation accuracy. Optimizing the needed test time can be included in the test plan development
procedure, by specifying the target accuracy and the available sample size.

- Improve and extend the methods with a stress constrained (section 6.2.1).
We developed a method to design a test plan for the situation in which the stress constrained is a
maximum stress constrained and all stress combinations above this maximum are also not feasible.
Methods for other stress constraints that occur in practice must be researched and included.

- Include a method that can deal with interactions between stress factors and design parameters in
the design of test plans (section 7.1).
In this research we assume that there is no interaction between the stress and/or design factors. In
practice interaction often occurs. If an assumption about the interaction can be made beforehand,
this knowledge can be included in the prior information and the situation the test plan is optimized
on.

Implementation



9. Conclusions and Recommendations

So far we treated all research questions as described in section 2.2 Based on their answers, section 9.1
concludes with a complete procedure to design test plans for lifetime testing for different scenarios.
Section 9.2 provides recommendations with respect to further research.

9.1 Conclusions
The goal of this research is to develop a procedure for the design of efficient test plans to make an
accurate estimation of the reliability of a product and to be able to determine the influence of design
parameters on this, by accelerating the occurrence of applicable failure modes. To fulfill this goal,
section 2.2 states several sub questions; the conclusions based on the answers to those questions are
described below.

The Generalized Log Linear relation is the most appropriate model to describe the lifetime of a product.

This relation describes the product lifetime based on a statistical distribution, stress relations, and/or
design parameters. Several existing stress relations, such as the Arrhenius relationship or the Inverse
Power Law can be included (section 3.3.4). With use of the Generalized Log Linear relation, also an
expression for the failure probability dependent on stress, design and multiple failure modes can be
obtained (see equation 39 and section 6.4.4).

Maximum Likelihood Estimation can be used to estimate the unknown parameters of the lifetime model.

Based on the variances of these parameter estimations the accuracy of the lifetime estimation can be

obtained.

The variance of the parameter estimations can be derived from the inverse Fisher Information Matrix.
Based on these variances and the normal approximation, the confidence interval of the percentile
estimates can be computed. This determines the accuracy of the estimation; section 4.1 describes this in
more detail. To make the percentile estimation as accurate as possible the expected variance, or
standard error, of the percentile function must be minimized during the design of a test plan.

The scientific literature provides theories behind different procedures to design test plans for different

situations. This means that it does not describe how to generate these test plans in practice and how to

include tests to measure the influence of design parameters on reliability.

For the one failure mode, one stress factor, one product design scenario the theory of Meeker and
Escobar (1995) and Nelson (1990) can be used to generate test plans for different situations (section
5.2.2). For the one failure mode, two or more stress factors, one product design scenario Meeker and
Escobar (1995) developed a method to transform this problem to a one-stress factor problem (section
6.2). For the remaining scenarios, we had to develop our own methods.
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We developed a procedure based on the seven steps described below to generate a test plan for all

described scenarios. To execute this procedure we developed a program in Microsoft Office Excel to

execute the steps.

1.
2.

Obtain prior information per failure mode and initialize the lifetime model.

Choose type of test plan based on the uncertainty about the prior information assumptions and the
available time to optimize the test plan with use of Figure 9 or Figure 14.

Simulate lifetime data and estimate the model parameters and their variances.

If more than one failure mode occurs, simulate the standard error of the p™ percentile estimate
based on multivariate normal draws for the model parameters.

Select the best test plan configurations based on the standard error of the pth percentile estimate.

If more than one stress factor is used or more than one product design variants must be tested, split
the combined values to feasible values on the borders of the experimental region.

Test the robustness of the best test plan configurations by changing some prior information values
and choose the most robust one.

Section 5.2 and section 6.5 describe this procedure in more detail.

The developed procedure is appropriate to well known situations.

With use of the developed procedure and the simulation program we developed test plans for different

situations; based on comparison results we conclude that:

The two-level Statistical Optimum Plan seems to lead to the most accurate lifetime estimations, but
the three-level Best Compromise Plan is more robust to model deviations. The three-level New
Proposed Plan results in the best or second best test plan type (section 5.4).

Using two independent stress factors instead of one stress factor reduces the needed sample size to
obtain certain accuracy up to 80% (section 6.2).

A combined stress-design tests reduces the needed sample size to obtain certain accuracy with
approximately 40% (section 6.3).

The developed procedure is appropriate to a practical case, the development of aguarium lamps.

When applying the developed procedure to design a test plan to test the reliability of aquarium lamps,

we conclude for our developed procedure that:

The developed procedure is flexible enough to be adjusted to practical scenarios. This became clear
from the fact that although our research only assumed two independent design parameters, it can
also deal with four interacting design parameters. Small changes in the procedure made it possible
to generate a test plan for this “new” scenario (section 7.1).

Accurate prior information is very important. The difference between the expected accuracy of the
lifetime estimation based on the test plan configurations and the accuracy of the lifetime estimation
based on the test results is approximately 8%. This difference can be reduced if assumptions about
the influence of the design parameters on the reliability are available (section 7.1).
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9.2 Recommendations

This research focuses on the design of test plans to estimate product reliability. Based on the
assumptions made during this research and the knowledge obtained about this topic, we give some
suggestions for further research.

Include a qualitative testing phase, the phase in which the prior information is obtained, in the procedure

to design efficient test plans.

To improve the accuracy of the lifetime estimation accurate prior information, such as applicable failure
modes or assumed failure percentages, is important. To acquire more accurate information, more
research about qualitative testing methods to obtain this information is needed, see section 2.3 .

Research methods appropriate to situations in which the constant shape parameter assumption does not
hold.
During this research we assumed that the shape parameter of the Weibull distribution remains constant

over stress. This is a reasonable assumption, but in practice this is not always the case. Test plans for
situations with a non-constant shape parameter have to be developed and the difference in
performance with the constant shape parameter test plans must be examined. Seo, Jung and Kim (2009)
describe a numerical method for the one-stress factor scenario, but for the other scenarios extensive
research is needed.

Research methods to design test plans for situations based on other assumptions or more complex

failure processes.

Chapter 8 describes the implementation of the developed procedure and the simulation program and
describes possible extensions of the current method. Further research to incorporate these extensions
in the developed procedure is needed.

Research cumulative-exposure models (i.e. models needed for step-stress testing) and the differences in

the design of a test plan appropriate for that test method.

Section 3.3.6 describes the basics of cumulative-exposure models. Xu and Fei (2007) published an article
about planning step-stress accelerated life tests based on the theories of constant accelerated life tests.
The theories and ideas of this article can be used to develop the design of a test plan procedure such
that it can also deal with step-stress.

Improve the method to solve the nonlinear optimization problem that leads to the best test plan settings.

We developed a simulation program to solve the nonlinear optimization problem. Improvements to this
program can be made to increase the speed of the optimization or make it possible to increase the size
of the simulation. We solve the optimization problem with use of simulation in Microsoft Office Excel.
Microsoft Office Excel can use a limited number of rows and this leads to a maximum number of
replications. Other software packages can deal with more data, such as Microsoft Office Access, or are
faster, such as Delphi.
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Appendix A. Definitions

Accelerated stress testing

Stress testing method whereby items are tested under more severe stresses than those encountered
during normal use. The goal is to quickly obtain data, which yield desired information on product life
under normal use conditions.

Acceleration factor
Ratio of the lifetime under normal use conditions and the lifetime at a higher stress level.

Allocation fraction
Fraction of the items allocated to a specific test setting, i.e. stress level or design setting

Bound ratio
Upper bound of the confidence interval divided by the lower bound

Censoring
Not all the products are failed when the test terminates, so not all items can be used in the same way to
determine the lifetime of the product.

Confidence Interval
Range around a given statistical estimate within the true value is said to be located with some special
degree of confidence.

Cumulative Exposure (CE) model

A life-stress relationship corresponding to a step-stress test. The cumulative effect of the applied
stresses is taken into account. So it relates the life distribution of the units at one stress level to the
distribution at the next stress level.

Design parameter
Physical or functional component or product characteristics represented by a discrete or continuous
variable

Design of Experiments (DoE)
Structured approach to consider the effects of several independent variables simultaneously in one
experiment without evaluating all possible combinations of variable levels.

High Accelerated Life Testing (HALT)
Stress testing method to identify design weaknesses. Aggressive testing conditions are used to identify
these weaknesses.

Hazard rate function
Probability of failure in the small interval [t, t+A], given survival up to timet, also called failure rate
function.
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Failure
A product performs no longer its intended function satisfactorily.

Failure mode
Causes of a failure, for example melted or burned components

Failure rate
Probability of failure in the small interval [t,t+A], given survival up to timet, also called hazard rate
function.

Fisher Information Matrix

The expectation of the symmetric matrix of negative second partial derivatives. It is a way of measuring
the amount of information that an observable random variable X carries about an unknown parameter 6
upon which the likelihood function of 8, L(8) = f(X;0), depends.

Life-stress relationship
A method to relate the lifetime under stress to the lifetime under normal conditions.

Lifetime
The period in which a product performs its intended function.

Lifetime distribution
The probability distribution function of the lifetime of a population of items.

Likelihood function
A function which contains the unknown parameters and expresses the “likelihood” of the data, given the
values of the parameters.

Location-scale distribution
Univariate probability distribution parameterized by a location parameter and a nonnegative scale
parameter.

Log lifetime
The natural logarithm of the lifetime. This transformation is used for computational reasons.

Maximum Likelihood Estimation (MLE)

Method to estimate unknown parameter values with use of a likelihood function. This likelihood
function is maximized by changing the parameter values, and results in the parameter values that are
most likely to be the true values, the parameter estimates.

Multiple Environment Over Stress Testing (MEOST)
Stress testing method to identify failure modes. Multiple stresses are applied to products in a short
period of time and these stresses are increased until the product fails.
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Model departures
The “true” family of distributions or life-stress relation deviates from the assumed one.

Monte Carlo simulation
Computational algorithm that relies on repeated random sampling to compute their results.

Normal use conditions
Environmental or physical conditions under which the product is used during normal circumstances

Normalized (transformed) stress level

The (transformed) stress level projected on a one to zero scale. This means that the normal use stress
level is one and the highest stress level is zero. All other stress levels take a value between these two
values.

Percentile (p™)
Point in time below which p% of the items are failed.

Prior information

Assumptions necessary to derive the assumed lifetime model with the corresponding parameter values.
This prior information consist of assumption about the family of distribution, assumption about the scale
parameter, failure probability estimates per stress factor, design parameter or failure mode and a life-
stress relation per stress factor.

Proportional Hazard (PH) model
The proportional hazard regression model can be used to isolate effects of explanatory variables. This
model assumes that the explanatory variables have a multiplicative effect on the hazard rate.

Reliability
The probability that a product will perform its intended function until a specified point in time under
encountered use conditions

Reliability function
Probability of an items surviving up to time t, also called the survival function.

Robustness
Measure of how sensitive a method is to violations of his assumptions, such as model departures and
parameter deviations.

Sample size
The amount of products used during the lifetime test.

Scale Accelerated Failure Time (SAFT) model
A parametric model that assumes that the shape parameter of the distributions is constant for all stress
levels and that the scale parameter differs per stress levels. The lifetime of a product is multiplied by

Definitions



some constant based on the explanatory variables. Based on this, a linear model can be obtained for the
log lifetime dependent on the explanatory variables.

Step-stress test

Stress test whereby the items are tested at a pre-specified stress level for a specified period of time. The
items that are not failed are tested again, subject to a higher stress level for another period of time. This
process continues until the termination time is reached.

Stress factor

A condition in the environment which has an influence on the reliability of the product. In general an
increase of the stress factor increases the failure probability of a product. Examples of stress factors are
temperature, humidity or power.

Stress level
The value of a stress factor expressed in units. Examples are temperature in degrees Celsius or power in
Watt.

Survival function
Probability of an items surviving up to time t, also called the reliability function.

Target precision factor
The fractional deviation between the estimation and one of the confidence bounds.

Test configurations
Settings for a lifetime test. These configurations consist of the sample size, the stress factors, the stress
levels and the allocation of the items over the stress levels and design variants.

Test plan
Plan containing the test time, test configurations with as goal to perform a test which result in an as
accurate as possible estimation of the percentile of interest.

Test plan type
Kind of test plan appropriate based on situation specific ideas or including specific rules or constraints.

Transformed stress level
Transformation dependent on the stress relationship applied to the original stress level to be able to
generate a linear log lifetime-stress relationship.

Variance-Covariance matrix
Matrix of variances of the elements of a factor and the covariances between these elements. The matrix
can be generated based on the inverse of the Fisher Information Matrix.
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Appendix B. Examples of Product Failures

Example 1: Recall during the hidden 0-hour phase

This is an example of a product recall during the hidden 0-hour phase from the U.S. Consumer Product
Safety Commission (News from CPSC, 2010). The failure occurs during the first time the power pack is
charged. More insight in the reliability of the product by experiments during the development phase
could prevent these kinds of problems.

Mobile Power Packs Recalled By Tumi Due to Fire Hazard

WASHINGTON, D.C. - The U.S. Consumer Product Safety Commission, in cooperation with the firm
named below, today announced a voluntary recall of the following consumer product. Consumers should
stop using recalled products immediately unless otherwise instructed.

Name of Product: Mobile Power Packs
Units: About 5,000

Manufacturer: Tumi, of South Plainfield, N.J.

Hazard: The lithium-ion cells used in the Mobile Power Pack can ignite or explode while charging, posing
a fire hazard. This hazard is only present for units that have not been charged.

Incidents/Injuries: There were two reports of consumers experiencing small fires during their initial
charge. No injuries were reported.

Description: The recalled Mobile Power Pack is a mobile device that receives an AC charge in a
compact battery pack that will then give five DC charges to small electronic devices including mobile
phones, MP-3 players, Blackberries, and PDAs. The power pack is black and silver and is rectangular in
shape. The front of it has a small circular control panel. The front also displays the word “Tumi” engraved
on a silver button located towards the bottom of the device. Style number 14362 is printed on the power
pack packaging.

Sold by: Tumi retail stores, department and specialty stores nationwide and www.Tumi.com from August
2007 through March 2008 for $135.

Manufactured in: China

Remedy: If the unit has not been used and has never been charged, please do not try to charge. Contact
Tumi customer care for instructions on how to return the power pack and receive a free replacement
power pack. If you have charged the unit previously without incident, you can continue to use the product.
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Example 2: Recall during the early wear-out phase

The notification below is an example of failures during the second phase of the life cycle, the early wear-
out phase. If the percentage of products failed during this phase is very low, and also the consequences
of the failure have no risk, there is no problem. In the situation described below, the failure can cause
electrical shocks or incineration. During the development phase these problems must be recognized,
improvements of the product in that phase are much cheaper than product recalls and the
corresponding loss of goodwill.

DCO5 MOTORHEAD - VEILIGHEIDSBERICHT dgsun

DOit veiligheldsheric & enksl von leepossing op de Dyxon DCOS Molorheod, verkochd tussen 2000-2005, Gesn ankal
aitder DCOS proadu! B nn'n}'ir-rn
Heoll u san Dyson DCOS Metarhoad, neam dan ahiyblioll contoct ap mel Dysten ap hat andersteands nummaer,
In 2eidrome govallen breaki hel klepis op hat DOOS Motorheod hondwat C!-:' Dt kan arvoar 2argen dol de eleciracha
Badiadeng Bbleed kaml 16 |||]uml @
Wannear u deze bodroding canrookt ol het boated in hal sbopconioct 2if, betbaat hal risico op sen alactrische schok
of werbronding
Wa vragon daarem aan alle eigenaars van san DCOS Metorchead om de veigande moatagelen e irelien

Hoal de stekker wif el siopconiact.

In hat gl diot de slang les =i, ook de abschrische bedroding nied oen on gebouik hel toosted niot
Maam metoon comnlad] op mal l:l'rmn.
Wanneer di slang goed vas! oit, & of niet metean een risco, Het BijH weilig om uvw solrsger e gebaoiken, Toch willen
wir, B voarsanEmeninogal, o verileagend opretituk leveren oan alle DCOS Motorheod elgenoars om e
woorkomen dat de slong leat. Meam olsiubliel! contac! op mel Dyson op bat ondersipande nummar of op de wobnife
wiwrwe dysan nlidelSmalorhend voor ww gratis opeefsiuk.

Meom alstubliel contact op mul Dyson op onderdoond telofeennummer,

pc
5] motorhead

t» 020 521 9890 www.dyson.nl/dc05motorhead

This notification is retrieved 22 March 2010 from www.productwaarschuwing.nl.
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Example 3: Recall during the systematic wear-out phase

The PRO draglink problem is an example of a product where the systematic wear-out starts too early.
Material fatigue is the cause of the failure. Accelerated tests during the development phase can be used
to recognize these problems in an early stage.

Persbericht

BR?)

BELANGRIJKE VEILIGHEIDSINFORMATIE
PROD "Hi-Comp"® fietsstuurpennen

PRO heeft exn magel] kvelligheldarkice ontdelt betreffends PRO HI-Comp STUUNPSMINEN WOr race-
fletsen, geproduceerd tussen november 2002 en junl 2006, Ak gevolg wan materiaalmoehald kunnen
erscheurtjes in deze stuurpennen ontstaan waardoor ze witeindalijk kunnen breken. Wanneer dit
gebeurt tijdens het flietsen, kan de fletser de controle over zijn ripiel verllezen wat kan leiden tot
arnstige venwondingen.

omdat we willen dat alle PRO producten woldoen aan de hoogste Industrie-elsen, heaft PRO basloten
tot e=n wriwillige terugroepactie van alle getroffen stuurpennen, als eenvoorzorgsmaatregel in het
t=larg van dewelllghaid van anze klanten,

D& getroffen modellen zijn alle PRO stuurpennen voorzien van het “PRO HIComp™ logo zoals te Zlen
op da foto,

Wanneer u een PRO stuurpen In bezit heeft veorzien van het “PRO HI-Comp” logo, ongeacht de
lengte of diameter, diznt v cnmiddellijk te stoppen met het gebrulk ervan. Brengt u deze stuurpsn
terug naar de dealer waar deze |s gekocht woor eenvolledige teruggave van de kostprifs.

weanneer u hier vragen over heeft kunt u contact opnemen met ors of met vw lokale PRO dealer

Wil danken uwoor uw medewerking en bleden u anze verontschuldigingen aan voor dit engamak

SHIMANO EUROFE B.W
INDUSTRIEWEG 24

80T T NUNSPEET

THE HETHERLAMNCS

+3100 341 172232
WNALPRO-BIKE GEARLCOM

This notification is retrieved 22 March 2010 from www.productwaarschuwing.nl.
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Appendix C. Censoring

When methods are used to accelerate the lifetime of products, censoring occurs in most cases. Two
types of censoring are often used in practice.

Type-l censoring involves running each test unit for a predetermined amount of time. In this case, the
censoring time is fixed, while the number of failures is random, not all items have to be failed when the
test terminates.

Type-Il censoring involves simultaneous testing of the units until a predetermined number of them fail.
As opposed to type-l censoring, in this case the censoring time is random and the number of failures is
fixed (Tseng, 1994).

Within these two types of censoring, different variants exists; left, right and interval censoring. Left
censoring means that only the upper bound of the failure time is known, it occurs for example if a unit
fails before it first inspection. At right censoring the lower bound of the failure time is known, this occurs
for example at type | censoring, all unfailed items are right censored. At interval censoring, both the
lower and upper bound of the failure time is known, but the exact failure time is not known. These
censored observations influence the accuracy of the parameter estimations. This effect of censoring
must be taken into account when designing a test plan; the likelihood function can be adapted to deal
with this. In this research we focus on type-l exact censored data, so an observation can be censored
because the item is still alive when the test terminates.







Appendix D.Normal and Weibull Distribution

Probability density function
The probability density function describes the relative likelihood that an item fails at time t.

Normal: f(t) = (ZEJZ)_%exp [—(t —w)?/(202)] —o<t< o

Weibull:  f(t) = :%, (t)F~texp [ (%)B] n,6,t>0

Reliability Function
The reliability function represents the probability of an items surviving up to time t.

Normal: R(t)=1—<b[t%‘ —o<t<®
B
Weibull: R(t) = exp [— (%) ] n,B,t>0

Hazard Function
The hazard function describes the probability of failure in the small interval [t, t+At), given survival up to

time t.
1
2\ 2 e 2 2
Normal: h(t) = 22 2expL(t-1?/(20%)
1-o[ ]
Weibull: h(t) = E(ﬁ)ﬁ‘l Bt 0
' 7 \n n,p,
Percentile

The moment by which p*100% of the population will be failed is called the pth percentile.
Normal: t, = pu+ z,0

R

Weibull: ¢, = n[—In(1 —p)]

The scale parameter n is also called the characteristic life. This is always the time at which 63.2 % of the

population failed regardless the value of B, because -In (1 — 0,6321..) = 1. This is also called the
63.2% percentile (Lawless, 2003).

Mean Time to Failure
The mean time to failure (MTTF) of a product is the average lifetime of a product.
Normal: E[T]=pu =tys
i - 1
Weibull: E[T] =7 T (ﬁ + 1)

r(n) = J;" e *x" 1dx (gamma function)

Standard Deviation Lifetime
Normal: o, =0

Weibull: g, =7 *\/F(é+ 1) - F(1+ 1)2

Normal and Weibull Distribution
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Appendix E. Life-Stress Relations Combined with Location-Scale Distribution

ux) =yo +v1x

1
K+xU™

Inverse power law T(U) =

1) = In() = In (57

K+U™

= —In(K * U™) = —In(K) — nin(V)

x = In(U)
Yo = —In(K)
Yyi=—n

B
ArrheniusT(V) = C * ev

k() =Inm) =1n(C + ¥

=In(C)+ B*=1/V

x=1/V
Yo = InC
y1=B

Life-Stress Relations Combined with Location-Scale Distribution






Appendix F. GLL vs. PH

This appendix shows the hazard rate function and the survival rate function for both the Generalized Log
Linear (GLL) model and the Proportional Hazard (PH) model. We can write the equations of both models
such that for the standard extreme value distribution both expressions can be transformed to each
other.

GLL, smallest extreme value distribution

u(x) =In(n(x)) = In(exp(ao + XL @; %)) = ag + L; ; x;

h(t; x,0) = ! [ ‘ F_l

gexp(ag+il, a;x;) |exp(ag+Xit, aix;)

R(t;x,0) = exp <—exp [ln(t) BLLRPMOL xi]) = exp <— exp <1n§t)> * exp <—a° Xt xi>>

[ —0

1 <0~’0 + X5 xi>)

= exp (—to * exp —,

PH, baseline hazard rate via smallest extreme value distribution

m 1 £ m 1 1 m
h(t,x) = hy(t) * exp Z aix; | =—=* (=)o " *exp Z aix; | =—xto "~ xexp| ay + Z aix;
i=1 onH i=1 ’ =1

m
t 1
R(t;x) = e Jo MW — oxp (—t5 * exp (ao + Z al-xi>)

=1

Based on the expression for the reliability function of the generalized log linear model and the
proportional hazard model, we can see that both functions can be transformed to each other.

The transformation we use is: «;, GLL = «a;, PH * —0

GLL vs. PH






Appendix G.Likelihood Functions

Weibull distribution without censoring

_B - ty?
F© =50 e (1) ]

MLE
£ 0) = Xy n (£ 1 1= (2)1)

=nin(B) —nfIn(m) + (B — D Xi,In (T;) — Y& 1(—)’3

3—§=%—nzn(n)+2?ﬂln<n)— (P G
aL _ nﬁ
= =1 ( )“'

7 2 (n ()

9L _nB _ B+B

677 T]Z Z =1 (_)B
2L n iy (ﬂ)ﬁ ( Bln
apan - n n i=1 n =1 ) ( )

Weibull-Arrhenius model without censoring

B
f© = —E 5 (OF exp [~ <ﬁ)]

(coexp(2)) crexp(y

B
LB, B, Cit) = Bty In | —L— (1) Lexp [ (T—> ]
1 [(C*exv(i)f ey

= nin(B) ~npin(C +exp (7)) + (B~ DIyl (T) = iy (—— 7y

o

)B
exp(7)

Likelihood Functions






Appendix H.MLE with STATA

Stata code:

program weibull
args Inf thetal theta2

end

tempvar R

quietly gen double 'R'= (SML_y1-'thetal')/"theta2'
quietly replace ‘Inf'= -In(‘theta2')+'R"-exp('R') if SML_y2==1
quietly replace ‘Inf'= In(1-(1-exp(-exp('R")))) if SML_y2==0

. ml model If weibull (mu: Inlifetime failed= x) /sigma

. ml maximize

Data sheet:
SLress
1 e
2 e
3 e
4 e
5 e
& e
r 77
s 77
a 77
10 rrd
11 100
12 100
13 100
14 100
15 100
16 100
17 100
15 100
13 100
20 100
21 1z0
22 1z0
23 1z0
24 1z0
25 1z0
26 1z0
27 1z0
25 1z0
239 1z0
20 1z0

1ifetime
2000
2000
2000
2000
2000
2000
3000
3000
3000
3000
336
443
955
1054
1520
1526
leg2
1e27
1224
2532
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224
247
395
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467
BTG
&9l

failed
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£ £+ 2 &2 2 B2 B2 &2 &5 &
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Appendix |. Description of Additional Methods to Design a Test Plan

Not all the test plan types are used during this research; some are not taken into account because they
can only be used for specific situations. To give a complete overview of the existing methods, we give of
a short summery of these methods.

One failure mode, one stress factor, one product design scenario

Two Level Statistical Optimum Plan with Interval Censoring

This method uses the same way of reasoning as the statistical optimum plan presented above, but is
also able to use interval censored observations. Interval censoring means that the products are
inspected on interval basis; not the exact failure time, but the interval of time in which a product fails is

known. The likelihood function can be adapted to L(0; x) = []iL, ftt_i_lf(t; 0)dt = [, (F(T; 0) —

F(T;_4; @)) for this situation. Islam and Ahmad (1994) describe a method to develop a 2 level test plan
with use of a two step procedure to minimize the asymptotic variance of the pth percentile. The first step
is to optimize with respect to the allocation percentage of the low stress level. The second step is to
optimize with respect to the low stress level, by grid search. The asymptotic variance is evaluated on the
grid x;, = d, 2d, 3d, ... where d is the grid size. The optimal plan is that plan for which the asymptotic
variance is minimal among all the grid points considered. They also carried out a sensitivity analysis to
see the influence of estimation errors and conclude that 5 or more inspections give the same
asymptotically results as when k goes to infinity. This implies that more than 5 inspections are
unnecessary.

Three Level Best Linear-Quadratic Discriminator Plan

The Best Linear-Quadratic Discriminator Plan is a three level plan and minimizes the variances of y, in
the quadratic model: u(x) =y, + y1x + y,x2. This variance is a measure of the power to detect
quadratic departures from the linear model u(x) = yy + y1x. This method can be used if a curvilinear
relationship between the stress and the lifetime is expected (Meeker W., 1984).

Other ideas and guidelines

Tang and Yang (2002) use contour plots to determine the sample allocation and the stress levels. Three
different approaches are described. The first approach follows the strategy that the average of the low
and middle stress levels, weighted by their respective allocation in a near optimal situation equal to the
optimal low stress level in the statistical optimum plan (plan 1a.). The second approach is based on the
assumption that the purpose of the middle stress level is validating the stress-life relationship. In this
case, minimum allocation to this level is preferred, such that there are sufficient failures to detect
nonlinearity. The third approach is a hybrid of both. Because contour plots are difficult to compute,
these methods are not used directly, but the idea behind these methods can be used in developing new
tests plan methods.

Description of Additional Methods to Design a Test Plan



Meeker and Hahn (1985) give some guidelines for planning accelerated life test which can be used in
developing new procedures. The guidelines are based on a compromise between extrapolation in time
and extrapolation in stress. Extrapolation in time is necessary if less than p100% is failed if one wants to
estimate the pth percentile. Extrapolation in stress is necessary when the lowest test stress level is higher
than the normal use condition. If three stress levels are used, they must be chosen such that the failure
probability at the highest stress level is at least 2p(100)%, at the middle stress level at least p(100)% and
at the lowest stress level p/3(100)%. The minimum of failures per stress level equals 5, to generate
significant results.

One failure mode, two or more stress factors, one product design scenario

Factorial plan

The factorial plan is based on the idea of Design of Experiments. Traditional DoE uses for each factor a
number of levels on which it is tested and the test runs are designed such that all interactions can be
determined based on the results. These plans are called full factorial plans (Condra, 2001). The
disadvantage of such plans is that for an experiment with n different factors tested at k different levels,
k™different test runs are necessary. Standard the factors have 2 settings, for example low and high, or
without and with. No optimization criterion is used to choose these levels. Half or quarter factorial test
plans can be developed to overcome the large number of runs problems, but in this way it is not
possible to determine all interaction effects.

D-Optimal Reliability Test Design

The test plans that can be obtained with this method are based on the DoE theory. If no censoring takes
place, the boundaries of the feasible regions are used as test values. For the D-optimal plan, the
determinant of the Fisher Information Matrix is maximized, and this occurs in the no censoring case
when the allocation to each level is the same. When censoring is included, the Information Matrix is also
dependent on the value of the other parameters, and no exact analysis can be done. No suggestions for
planning values in this situation are given. (Guo & Pan, 2007)

Proportional Hazard plan

This method is based on the Proportional Hazard models, with a quadratic baseline hazard rate function
and an exponential relative risk ratio. The optimization criterion for this kind of test plans is to minimize
the variance of the estimated hazard rate function. Per stress factor, two test levels are used; and both
the low and the high stress levels are chosen during the optimization. A restriction to the minimum
number of failures for each stress level is given. Based on initial estimates of all the model parameters
and numerical methods for nonlinear optimization, the problem is solved. The output is the four test
levels, and their allocation proportions (Elsayed & Zhang, 2007).

Description of Additional Methods to Design a Test Plan



One failure mode, one stress factor, two or more product design variants scenario

Selection of Most Reliable Product Plan

Tseng (1994) describes a method to design a test plan for selecting the most reliable design. The method
is based on type-ll censoring; the test terminates after a predetermined number of failures per stress
level. The method uses a probability of correct selection and based on this probability and initial
parameter estimates, the test plan is edited. A two level test plan with a given low and high stress level
are assumed, only the allocation over the levels and the number of failures per level before the test
terminates are computed. The minimization criterion is the estimated standard error of the
characteristic life. The situation we use during this thesis differs from this situation, but some ideas can
be used to develop a method to design a test plan in our case.

Description of Additional Methods to Design a Test Plan
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Appendix J. Data Generator

This appendix describes the methods that are used to select the best test plan configuration per step

and illustrates how this method are validated. The steps to generate the best test plan are:

Simulation

vk wN e

Prior Information
Test Plan Configurations

Maximum Likelihood Estimation
Test Plan Evaluation

These steps are described one by one.

Step 1. Prior information

A B o D E J
1
2 Relation Use High
3 | Stress Power 73 120
4 |Xuse 4,23045%441 Number of plans
5 |Xhigh 4,787491743 96
° &
7 |Initial estimates Time Prob of failure
8 Xuse 3000 0.002
9 |Xhigh 3000 0.95
10 |sigma i 0.294117647
11
12
13 |n_simulation 2000
14
15 |Type plan Statistical Optimum Plan
16
17
18 |betal 9.83
19 |betal -2.15
20
21
22 |tc 3000
23
24 |opt criteriont_p 0.1 9624.107
25
26 |LB dzeta low 0.342107857
27 |UB dzeta low 0.64475432
28 Range
29 |LB x low 4.559904557
30 |UB x low 4.610923165
31
32 [LB pi_low 0.5
33 |UB pi_low @ >
34
35 |pi_middle 0
36
4 4 » M| Prior information Plan configurations Simulation data Testplan evaluator Bladi %2

M N P

Clear old plan ‘

Generate test plan
configurations

Run simulation ‘

Simu 2 ‘

Based on the optimization criterion the range of
the normalized stress values is computed, such that
the failure probability is between 1 and 2 times this
criterion. The normalized stress is transformed
back to the “official” stress and can take only
integer values.

Based on the type of test plan, the range of the
allocation fraction to the lowest stress level is
computed. Together with the range of the lowest
stress level values, 96 different settings are
possible.

[

The marked cells are input cells and contain the prior information. Why this information is necessary is

explained in section 5.2.1. The values of the other cells are computed based on the input values and the

configuration rules.

Data Generator




Step 2. Test Plan Configurations

A B 5 D E F G H I J

1 |Plannr StressLow Stress Middle StressHigh Proportion Low Proportion Middle Proportion High Failure prob Low Failure prob middle Failure prob High
2 1 45643482 4.290459441 4.78749174 0.5 0 0.5 0.106382114 0.002 0.95
3 2 45643482 4.230459441 4.78749174 0.52 0 0.48 0.106382114 0.002 0.95
4 3 456434532 4.230459441 4.753749174 0.54 0 0.46 G.lGﬁSﬁM— 0.002 0.35
5 4 45643482  4.290459441 4.78749174 0.56 0 0.44 0.106382114 0.002 0.95
f 5 4.5643482 4.290459441 4.787439174 0.58 0 0.42 0.106382114 0.002 0.95
7 6 456434532 4.230459441 4.73749174 0.6 0 0.4 0.106382114 0.002 0.35
8 7 45643482 4.290459441 4.78749174 0.62 0 0.38 0.106382114 0.002 0.95
9 8 4.5643482 4.290459441 4.787439174 0.64 0 0.36 0.106382114 0.002 0.95
10 9 45643482 4.230459441 4.73749174 0.66 0 0.34 0.106382114 0.002 0.95
11 10 45643482 4.290459441 478749174 0.68 0 0.32 0.106382114 0.002 0.95
12 11 4.5643482 4.290459441 4.78749174 0.7 0 0.3 0.106382114 0.002 0.95
13 12 45643452 4.25045%441 473743174 0.72 0 0.28 0.106382114 0.002 0.95
14 13 45643482  4.290459441 478749174 0.74 0 0.26 0.106382114 0.002 0.95
15 14 45643482  4.290459441 478749174 0.76 0 0.24 0.106382114 0.002 0.95
16 15 45643452 4.290453441 473743174 0.78 0 0.22 0.106382114 0.002 0.95
17 16 4.5643452 4.29045%9441 478749174 0.8 0 0.2 0.106382114 0.002 0.95
18 17 4574711  4.250459441 478749174 0.5 0 0.5 0.122779551 0.002 0.95
19 18 4.574711 4.290459441 4.78749174 0.52 0 0.48 0.122779551 0.002 0.95
20 19 4574711 4.25045%441 473745174 0.54 0 0.46 0.122779551 0.002 0.35
21 20 4574711 4.290459441 478749174 0.56 0 0.44 0.122779551 0.002 0.95
22 21 4.574711 4.290459441 4.78749174 0.58 0 0.42 0.122779551 0.002 0.95
23 22 4574711 4.25045%441 473745174 0.6 0 0.4 0.122773551 0.002 0.95
24 23 4574711 4.290459441 478749174 0.62 0 0.38 0.122779551 0.002 0.95
25 24 4574711 4.290459441 4.78749174 0.64 0 0.36 0.122779551 0.002 0.95
26 25 4574711 4.25045%441 473745174 0.66 0 0.34 0.122773551 0.002 0.95
27 26 4574711 4.250459441 478749174 0.68 0 0.32 0.122779551 0.002 0.95
28 27 4574711 4.290459441 4.78749174 0.7 0 0.3 0.122779551 0.002 0.95
29 28 4574711 4.25045%441 473743174 0.72 0 0.28 0.122779551 0.002 0.95
30 29 4574711 4.29045%441 478749174 0.74 0 0.26 0.122779551 0.002 0.95
31 30 4574711 4.250459441 478749174 0.76 0 0.24 0.122779551 0.002 0.95
32 31 4574711 4.290453441 473743174 0.78 0 0.22 0.122773551 0.002 0.95
33 32 4574711 4.29045%441 478749174 0.8 0 0.2 0.122779551 0.002 0.95
34 33 4.5849675 4.290459441 478749174 0.5 0 0.5 0.141293387 0.002 0.95
35 34 4.5843675 4.290459441 4.78749174 0.52 0 0.48 0.141293387 0.002 0.95
36 35 45849675 4.25045%441 473745174 0.54 0 0.46 0.141293387 0.002 0.35
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This sheet gives an overview of the configurations per test plan. The transformed stress is used instead
of the normalized stress, because this is easier for the maximum likelihood calculations and the
determination of the standard error of the p™ percentile estimate. The failure probabilities are stored to
calculate the expected number of failures for the best test plan at the end of the optimization.
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Step 3. Simulation

Test plan nr Transformed Ln(lifetime) Censor
stress indicator
28 1 4.564348 7.949132 1
89 1 4.564348 7.123188 1
90 1 4564348 7.850847 1
91 1 4564348 7.338224 1
92 1 4.564348 7463674 1
93 1 4.564348 7F.622656 1
94 1 4.564348 7F.972262 1
95 1 4.564348 7.826872 1
96 1 4.564348 6.882183 1
97 1 4.564348  7.65434 1
98 1 4.564348 7.962379 @
99 1 4.564348 6.804617 1
100 1 4.564348 7F.895703 E'I} 1
101 1 4.564348 7F.995377 1
102 1 4.564348 7.726968 1
103 1 4.564348 7.952473 1
104 1 4.564348  7.76847 1
105 1 4.564348 7.416663 1
106 1 4.564348 7.926715 1
107 1 4564348 B.000368 @
108 1 4.564348 B.006368 0
109 1 4.564348 B.006368 0
110 1 4.564348 B.006368 o
111 1 4.564348 B.0063638 o
112 1 4.564348 B.0063638 o
113 1 4564348 B.0063638 o
114 1 4564348 B.000368 0
115 1 4564348 B.000368 0
116 1 4.564348 B.006368 0
117 1 4.564348 B.006368 0
118 1 4.564348 B.006368 o
119 1 4.564348 B.0063638 o
120 1 4.564348 B.0063638 o
121 1 4564348 B.0063638 o
122 1 4564348 B.000368 0
123 1 4564348 B.006368 0
4 4+ ¥ Prior information Plan configurations

Item is failed

Item is not failed

Simulation data

This sheet contains the simulation data. First of all, per replication a set of n (n=sample size) lifetimes

under normal use conditions are generated based on the model derived from the prior information. Per

test plan configuration, a fraction 1 of the items is allocated to the lowest stress level, iy, to the middle

stress level and my to the highest stress level. The lifetimes of these items are transformed to the

lifetimes observed under the stress corresponding to the level. If this accelerated lifetime of an item is

larger than the test time, the item is censored and the test time becomes the censored lifetime of the

product.
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An example of the generation of the lifetime data based on the case:
In(tp) = 7.684 + 2.15¢ + &2, (p) = 0.294

The Inlifetimes are generated under normal use conditions, so & = 1. p is a random value from a
uniform distribution between 0 and 1. Based on this life-stress  relation:
Inlifetime(i) = 9.834 + In(—In(1 —p)) * 0.294 Vi =1..n, n random Inlifetimes under normal
use conditions are generated.

For a set of different test plan configurations these generated lifetimes are accelerated based on the
life-stress model and the observed lifetimes per stress can be determined. We show this for one specific
test plan configuration. The configurations we use are:

stressiow=96W (& = 0.45) stressyigae=107W (¢ = 0.22) and stressyigh=120W (¢ = 0)

allocation 14,=0.33, Mpigqle=0.2 and T;gy=0.47

sample size: 2000 items

test termination time, t.: 3000 hours

The first 660 items (0.33*2000) are allocated to the lowest stress level and the Inlifetimes for these
items become:  Inlifetime(i) = mm [In (tc), (Inlifetime(i) — 2.15 * (1 — 0.45)] Vi =1..660

The Inlifetimes for the other stress levels become:
Inlifetime(i) = min [In (tc), (lnllfétlme(i) —215%(1—-0.22)] Vi=661..1060
Inlifetime(i) = min [In (tc), (lnllfétlme(i) — 215+ (1 - 1)] Vi=1061...2000

This process is repeated for each replication. So within a replication all test plan configurations use the
same lifetime data under normal use conditions, but between replications these lifetime data is
different.

This lifetime data per test plan configuration and per replication is used in STATA to estimate the
parameter values per test plan and compute the variance and covariance of these estimated.
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Step 4. Maximum Likelihood Estimation

The program STATA uses is:

insheet using "C:\TestDesign\Simulation\simulationdata.csv", comma clear
rename v1 un_testplan

rename v2 x

rename v3 Inlifetime

rename v4 failed

file open myfile9 using "C:\TestDesign\Simulation\modelfits.txt", replace write
file write myfile9 "un_testplan;beta_0;beta_1;sigma;var_beta_o;var_beta_1;var_sigma;cov_0_1;cov_0_sigma;cov_1_sigma;" _n

foreach num of numlist 1/480 {
ml model If weibull (Inlifetime failed= x) /s if un_testplan == ‘num'
ml init x=-4.326 eq1:_cons=28.395 s:_cons=0.294
ml maximize, nolog
matrix b = e(b)
matrix v = e(V)
file write myfile9 (‘num’') ;" (el(b,1,2)) ";" (el(b,1,1)) ;" (el(b,1,3)) ";"

file write myfile9 (el(v,2,2)) ;" (el(v,1,1)) ;" (el(v,3,3)) *;" (el(v,2,1)) ";" (el(v,3,2)) ";" (el(v,3,1)) ";" _

=}

file close myfile9

The function ml init is used to speed up the MLE process. The init values are based on the prior
information. The use of these true values does not affect the parameter estimations, but speeds up the
process, because STATA starts searching for values close to the estimates.

The output is a text file with per test plan, the parameter estimated and the covariances. This is file
loaded in Microsoft Office Excel.
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Step 5. Test plan Evaluation

Best Test plan

A B c D E E 5] H 1 1 K L M N Q 2

1 |Use stress 73 Best Setting Test plan Stress Fraction Prob failure
2 |Stress relatic Power Low 37 78% 12% EEETAT
3 |transformed 4.2904594 Middle 73 0% 0%
4 |unraliability 0.1 High 120 22% 95%| Update percentile
5 [sev_1(p) -2.250367
6 |alpha 0.05
7 |zalpha 1.959564

STATA file
TOTOTT_TEsTOTarT  OETa_U heta_1 sigma var_beta_o var_beta_1 var_sigma cov_0_1 cov_D_sigma cov_1_sigma p Var tp CILB clus Bias
11 1 28.20242 -4.2853338 0.29084655 0.56340596 0.0248266 5.42E-05 -0.11826014 0.00293384 -0.00061845 9527| 418236| 8339.909 10882.45889 1%
2t 2| 29.08413 -4.4711351 0.30596999 0.61912967 0.02729449 6.31E-05 -0.1299858¢ 0.00341193 -0.00071684 10020 499562| 8726.427 11505.85505 4%
13 3 28.393815 -4.3247901 0.29587322 0.57461055 0.0253444 6.14E-05 -0.1206686 0.00331806 -0.00069709 9630 421245| 8438.514 10990.08354 0%
14 4| 28.728919 -4.3946649 0.30358039 0.5978483 0.02638534 6.70E-05 -0.12558617 0.00361725 -0.00075997 9805 446087 8579.3 11205.19326 2%
15 5| 27.631964 -4.1644099 0.28180205 0.51203268 0.0226132 5.88E-05| -0.10758529 0.00319161 -0.00067067 9233 333765| 8167.674 10438.00446 4%
16 6| 28.344031 -4.3142982 0.29475042 0.56207452 0.02483553 6.80E-05  -0.11813971 0.00368183  -0.0007736 9609 388960| 8460.784 10912.11171 0%
17 7 29.141864 -4.4862345 0.30092607 0.58404055 0.02582339 7.24E-05 -0.12275722 0.00392395 -0.00082582 10063 436538| 8847.435 11444.54551 5%
18 8 27.447949 -4.1260861 0.27820775 0.49947866 0.02209942 6.47E-05 -0.10505281 0.00350831 -0.00073723 9128 3007p4| 8113.742 10268.47898 5%
19 9| 28.529975 -4.3564872 0.29185779 0.55635824 0.02463279 7.48E-05 -0.1170554 0.0040675  -0.00085478 9719 371704| 8594.772 10990.67930 1%
20 10| 28.351737 -4.3180874 0.29036973 0.55466929 0.02457381 7.71E-05 -0.11673714 0.00418515 -0.00087949 9621 356400| 8519.422 10865.36385 0%
21 11 29.173557 -4.4914427 0.30414522 0.62232164 0.02758666 9.08E-05 -0.13101206 0.00492101 -0.00103397 10085 428358| 8880.087 11452.56747 5%
22 12 28.641824 -4.37789 0.29942186| 0.6102718 0.02707032 9.34E-05| -0.12851699 0.0050215 -0.00105492 9748.37 383232| 8607.511 11040.44076 1%
23 13| 28.58708 -4.3668753 0.29635306 0.61141038 0.02714519 9.56E-05| -0.12881409 0.00516923 -0.00108611 9742.718 374813| 8613.74 11019.66772 1%
24 14 28.496157 -4.3473117 0.29550983 0.63030417 0.02800713 1.02E-04 -0.13284906 0.0055434  -0.0011648 9693.267 371574| 8569.228 10964.74862 1%
25 15 27.303431 -4.0944484 0.27831202 0.57348711 0.02549999 9.66E-05 -0.12091452 0.00519888 -0.00109214 9045.835 287545| 8053.616 10160.34176 6%
26 16 27.110219 -4.0529257 0.27695506 0.58827622 0.02617718 1.04E-04 -0.12407839 0.00554231 -0.001164 8937.892 279456| 7959.584 10036.44319 7%
27 17 27.769471 -4.1933198 0.2844844 (.5213p433 0.022987 5.13E-05 -0.10946627 0.00273696 -0.00057511 9302.217 366505| 8188.221 10567.7718 3%
28 18 28.54286 -4.3580445 0.29361677 0.55046705 0.02428417 5.68E-05 -0.11560977 0.00304344 -0.000639533 9741.021 416775| 8554.439 11092.19382 1%
29 19| 28.095427 -4.2627347 0.28895506 0.52632304 0.02323133 5.69E-05 -0.11056788 0.00303602 -0.00063794 9471.87 370975| 8350.265 10744.12881 2%
30 20| 28.168425 -4.2777531 0.29138649 0.53167804 0.0234803 6.03E-05| -0.11172246 0.00321115  -0.0006747 9501.189 370509| 8380.031 10772.34497 1%
31 21| 28.269484 -4.2994098 0.29231468 0.53338289 0.02356844 6.34E-05 -0.11211093 0.00337126 -0.00070829 9558.874 369334| 8438.972 10827.39397 1%
32 22| 27.913614 -4.2229856 0.28952276 0.52251543 0.02310407 6.45E-05 -0.10986337 0.003433456 -0.00072143 9353.734 340056| 8277.883 10569.45439 3%
33 23 27.669546 -4.1715286 0.2849517 0.50673143 0.02242086 6.47E-05 -0.10657934 0.0024541 -0.00072579 9232.875 315375 8195.27 10401.85058 4%
24 24| 28.09641 -4.2627052 0.29004921 0.5265001 0.02331165 6.97E-05 -0.11077561 0.0037194 -0.00078157 9459.066 337388| 8386.461 10668.8552 2%
35 25 27.986182 -4.2396373 0.28696831 0.5209296 0.02308084 7.15E-05 -0.10964085 0.00382435 -0.00030364 59418.264 323893| 8366.338 10602.45035 2%
36 26/ 28.985852 -4.4515216 0.30137753 0.5843973 0.02590741 8.36E-05 -0.12303307 0.00446456 -0.00093308 9982.302 399502 8817.27 11301.27009 4%
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The data file of STATA is used in Microsoft Office Excel to select the best test plan configurations based
on the minimal standard error of the p™ percentile estimate. A functionality is created that can read the
data file of STATA and computes an estimation of the percentile of interest and the standard error of
this percentile per test plan.

The variance of the pth percentile is calculated based on equation 27:

ag ag
var (9(8)) = it (32) var(8) + T Eeion @ » 22 22-cov(5,6))
9(8) = t,(75,71,6) = exp (75 + 71x + Py (p) * 6)

var(t,) = t,% * var(yy)+(t, * x)% x var(y,) + (tp * dDS‘Elv(p)) xvar(o) + 2 * (tp * by * CDS'ElV(p)) *
cov(yy,0) + 2 * (tp * ty * x) * cov(yo, V1) + 2 * (tp * by * b (p) = x) * cov(y1,0)

The average variance over the replications per test plan configuration is calculated, and based on this
the average standard error. Microsoft Office Excel selects the test plan with the smallest average
standard error. Based on the saved settings per test plan, the configurations of this best test plan are
displayed in the block “Best Test Plan”. Also the confidence interval of the percentile of interest is
displayed and the sample size needed to obtain a certain bound ratio is computed based on the
expected variance and equation 26. The confidence level, optimization criterion and normal use stress
level can be changed, to optimize other percentiles or different use levels.
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Validation of Optimization Method and Improvements

The different parts of the simulation model are validated with use of Minitab and the software package
ALTA, Accelerated Life Testing data Analysis. Minitab is used to validate the MLE and the estimation of
the variances. ALTA is used to validate the best test plan settings. Below the functionality of both
programs and the validations are described in more detail.

Minitab has a functionality to estimate parameters of life-stress models and a given stress-relation
based on MLE. The values that are estimated based on Minitab are the same as based on the program |
made to use MLE within STATA. Also the variance and the confidence interval of the p™ percentile
calculated in Excel are the same as the one calculated by Minitab. For this research, Excel and STATA are
used instead of Minitab, because they can be adapted to more generic situations by programming and
Minitab cannot. Minitab has some functionality to develop a test plan, but only for simple situations
and stress levels cannot be computed, only the allocation over the stress levels. Therefore a more
complete procedure is developed in Excel, with use of STATA.

The resulting best settings for a certain type of test plan is compared with the test plan ALTA suggest for
the same situation. ALTA is a software package designed for quantitative accelerated life testing data
analysis. The package has the functionality to design test plans for one or two stress factors based on
some specified stress relations and test plan types. Extensions to more complicated situations are not
possible, therefore this package cannot be used for this research and an own method has to be
developed. But for the simple scenario’s, the results of the Excel simulation and the ALTA results can be
compared. In most of the situations the results are the same. Sometimes the solution of the simulation
changes if you do the simulation again. We tried to overcome these problems by:

- Use of the same failure times under normal circumstances per simulation run for all test plan
configurations, to make a fair comparison and to reduce variance.

- Make use of a sample size that generates stable results, this means that the estimation of a
percentile for a test plan configuration for one replication does not deviate that much from the
percentile estimation of another replication for the same configurations. The effect of the
estimation error on the variance is minimized in this case. Figure 20 shows the differences in
estimation error (true t, — estimated t,) for different sample sizes. Ten replications are used to show
the differences in estimations between the different runs. The values of the percentile estimates are
sorted to make the effect of the sample size increase more clear. Based on the results, we choose to
use a sample size of 2,000 items per simulation run. We can conclude that the differences in
estimations become small for a sample size of 2,000, and the difference in estimation error between
a sample size of 1,000 and a sample size of 2,000 is not that large that a further reduction by
increasing the sample size can be expected.
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Figure 20: Sorted Estimation Error for Ten Replications per Sample Size

Make use of enough replications to exclude the dependency of the variance on the simulation
values and the parameter estimates. To test the number of replications that are necessary to
generate stable results and be able to conclude which test plan settings minimize the var(t,), the
average variances over different numbers of replications are calculated. Figure 21 shows the result
of such experiment. Based on the figure, we can conclude that if a small sample size is used (<5) the
best variance is very dependent on the simulated values and it is difficult to find the best test plan
settings. For a number of replications larger than 38, the variance remains almost constant if the
number of replications increases. From the figure can be concluded that at least 10 replications

must be used to obtain stable results.
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Figure 21: Average Var(t,) over a Number of Replications
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Appendix K. Influence Scale Parameter on Sample Size

The scale parameter of a distribution has no influence on the test plan configurations, because the
variance increases or decreases proportional to the parameter change. This means that for a given test
plan, the variance increases or decreases if the scale parameter changes, but relative to other test plans,
there are no differences. Because the variance is changing, also the sample size needed to obtain certain
precision changes. We show this effect for the Weibull, Lognormal and the Normal distribution and a
precision factor of 1.5. The example based on the case is used to determine the values. For other
situations, the sample size values will change, but the effect of the scale parameter on these values do
not change.

Weibull Distribution
Weibull distribution

Lognormal Distribution
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Appendix L. Percentile Expression Two Failure Modes

F)=p=1- [1 —1—exp <_ exp (“‘(tp)a——ﬂl(x)))] \ [1 1 exp (_ exp (m(t,,)—uz(x)»] _

1 o2

1—p=exp (— exp (ln(tl’);“l(x))) * exp (_ exp (ln(tp);uz(x)»

g1 o2

= exp (— exp (—ln(tp)a_ul(x)) —exp (—ln(t”)a_uz 00)) =
1 2

In(t,)—pq (x) _ In(tp,)—p2(x)
(o) —ew (M)

02

In(1—p) = —exp

ln(— 1n(1 _ p)) — ln(tp)_ﬂl(x) + ln(tp)_ﬂz(x) _ ln(tp) () + ln(tp) (@) N

01 02 01 01 02 02

ln(tp) + lngtp) — ln(_ ln(l _ p)) + #10_(1x) + ll-z(zx)

01 2 g

An exact expression for t, only exists if 6;=0,.
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Appendix M. Example of a Test Plan Design

Two failure modes, one stress factor and one product design variant scenario

Appendix N.Lifetime Data UV-case Best Test Plan

Appendix O. UV-case Worst Test Plan

The test settings for the worst test plan become:

Stress Design Number of Stress Design Number of Stress  Design Number of
level replications level replications level replications

45 0000 4 60 0000 2 80 0000 4

45 1001 4 60 1001 2 80 1001 4

45 0101 3 60 0101 2 80 0101 5

45 1100 3 60 1100 2 80 1100 5

45 0011 3 60 0011 2 80 0011 5

45 1010 3 60 1010 2 80 1010 5

45 0110 3 60 0110 2 80 0110 5

45 1111 3 60 1111 2 80 1111 5
Total 26 16 38

The lifetimes generated with the worst test plan are:

Example of a Test Plan Design



