
Hybrid Intrusion detection
network monitoring with honeypots

Jako Fritz

April 9, 2011

Contents

1 Introduction 3
1.1 Hybrid detection . 7
1.2 Research Questions . 9

2 Literature 10
2.1 Malware taxonomy . 10
2.2 Host-based detection . 12

2.2.1 Low-interaction honeypot 14
2.2.2 High interaction honeypot 15
2.2.3 Summary . 18

2.3 Network-based detection . 21
2.3.1 Signature-based approaches 22
2.3.2 Anomaly-based approaches 25
2.3.3 Botnet detectors . 27
2.3.4 Other . 29

2.4 Network statistics and containment strategies 31
2.5 Conclusion . 32

3 Hybrid architecture 35
3.1 Design Goals . 37
3.2 Functional description . 39

3.2.1 Network traffic capture 39
3.2.2 Traffic redirector component 42
3.2.3 First stage detectors

Network-based anomaly detectors 43
3.2.4 Second stage detectors 44
3.2.5 Black hole . 45
3.2.6 Manager . 45

3.3 Detection strategy . 46
3.3.1 Initiating monitoring . 47
3.3.2 Declaring false positives 47
3.3.3 Selecting second stage detectors 47
3.3.4 Sensor placement and Mac spoofing 52

1

4 Evaluation 54
4.1 Introduction . 54
4.2 Prototype implementation . 55

4.2.1 Sandbox . 55
4.2.2 Hybrid Detector . 56
4.2.3 Traffic capture . 60

4.3 Experiments . 61
4.3.1 Limitations of the experiment 63
4.3.2 Comparison with single honeypot 64

4.4 Analysis of results . 64

5 Conclusions 68
5.1 Revisit research questions . 68

5.1.1 Honeypots as network detectors 69
5.1.2 How does it compare . 69
5.1.3 Suitable detectors . 69
5.1.4 Making errors . 70
5.1.5 Future research . 71

5.2 Conclusion . 72

2

Chapter 1

Introduction

The malware problem Malware is (malicious) code that is unwanted and
therefore is spread (or will spread itself) by any means possible while attempt-
ing to hide from existing detection mechanisms. Unfortunately malware is
often successful in avoiding detection and security systems still struggle to
prevent infections by malware from occurring, or even detecting that an in-
fection has taken place. Of particular concern is malware that spreads itself
by exploiting some software vulnerability as it can not be stopped by educat-
ing users, nor as noticeable as malware that propagates purely by user based
interactions via phishing or scare tactics.

The most well known instances of autonomous malware which directly at-
tacks other nodes via their network services are Internet worms. Prevent-
ing or containing infection by worms is something which is quite difficult to
achieve as can be seen by the persistent and continued presence of the Dow-
nadub/Conficker worm and more recent the Stuxnet and the ‘On the Move’
email worm. The latter spreads by emailing itself to email addresses present in
an address list, but requires a user to click on or execute the attachment, the
other two are fully automated. The Downadup worm was released in the fall of
2008, and was still causing significant trouble at the beginning of 2010, almost
18 months after its initial release. Stuxnets claim to fame is that it is malware
that is (assumed to be) designed to disrupt specific critical infrastructure (such
as nuclear or hydro power plants) and which exhibits evidence of being engi-
neered by a well funded team of professionals. It serves as a stark reminder
how ill quipped current systems and protection measures are at detecting and
dealing with malware.

Malware generated network traffic Malware is designed to perform one
or more functions. In most cases, at least one of these functions involves the
use of the network. Examples are functions that spread a binary file contain-
ing the malware or facilitate the uploading of the binary to other machines,
sending Spam, running proxy services for various purposes, stealing of user
credentials and snooping on network traffic on the infected node. Constants

3

of the malware life cycle are that malware must be distributed or distribute
itself, and that it must perform a malicious action at least once. This means
that determining whether a node is infected with malware can be achieved
by monitoring for the presence of traffic generated by these malicious func-
tions. However malware detection via network-based analysis is a thorough
task requiring invasive network analysis which takes either too many resources
or lacking accuracy.

example attack A memory corruption attack aims to smash through host-
based protective measures and inject some custom crafted code into a vul-
nerable (remote) process. The injected code can for instance be used to gain
control of the attacked system. Such an attack consists of a string of bytes,
commonly referred to as exploit code, which is injected into a target process
and which contains random filler data, self-contained attack code called shell
code, some glue code that diverts the execution code from the attacked process
to the crafted attack code and optionally some data that is fed to the attacked
process to ensure it is in the right state for exploitation. For example the
aforementioned Internet worms utilize, amongst others, this type of attack to
execute malicious code which ensures an instance of the malware is executed
on an attacked node. A classic example of a memory corruption attack string,
a stack based buffer overflow exploit, is depicted in Figure 1.1.

Buffer overflow The attack depicted is a stack based buffer overflow where
due to some error more data is copied onto the stack then the program allocated
space for. This typically results in the excess data overwriting data previously
stored on the stack such as various pointers and function arguments. Since
the stack also holds the instruction pointers used to resume execution when
program functions return it becomes possible to arbitrarily select from what
memory address code execution should resume

How the attack works The filler buffer and sEIP value together ensure that
the targeted application is in the right state to be successfully exploited. The
sEIP value diverts the flow of execution by changing the instruction pointer
stored on the stack to the value of sEIP. Once the exploited function returns
the malicious code is executed. The NOP sled and shellcode represent the self
contained attack code. The NOP sled is required because memory locations of
items on the stack are not fixed so the location of shellcode on the stack can
only be approximated. A NOP sled is prefixed to the actual shellcode such
that the value of sEIP will point to somewhere in between the beginning and
the end of the NOP sled. Starting from the sEIP address the NOP instructions
will be executed until we slide into the shellcode, hence the name.

4

Figure 1.1: Source:Network Security
Tools By Justin Clarke, Nitesh Dhan-
jani

Detecting malicious traffic us-
ing Network Intrusion Detec-
tion Rule-based network detection
systems aim to detect instances of
this attack by matching network traf-
fic with a description of this attack,
which is called a signature. Sig-
natures are constructed by reducing
sampled attack strings to a few key
sequence of bytes that are specific to
these attack strings and not to any
other network traffic. However the
values used in these attack strings are
coupled to the nature of the vulner-
ability. If this coupling is tight there
may only be one possible sequence of
bytes leading to a successful attack.
This is typically not the case which
reduces the monitoring for attacks on
a particular vulnerability to monitor-
ing for any known exploits targeting
that particular software vulnerability.
As the number of vulnerabilities and
exploitation techniques grow this re-
quires recreating, tuning and applying more signatures. Signatures for the
aforementioned attack would focus on the presence of any combination of the
used shellcode, the presence of a NOP sled, the memory value sEIP and any
fixed byte sequences in the filler data.

A different path towards network detection is taken by anomaly-based de-
tectors. These type of detectors focus on features of network traffic and the
variance between these features, if an observed feature is different from the fea-
tures that are normally observed this is an anomaly and could be malicious.
Examples are approaches such as Payl/Anagram [50],[36] which analyse byte
frequencies in network traffic. The attack string might be injected into a vari-
able that normally hold text data. When comparing the byte frequencies of
normal text strings and the example attack string will show a large difference.

However network analysis alone is not sufficient to detect malicious traffic
in time to prevent infection or even to detect that an infection may have
taken place. Network analysis approaches require too much tuning, a priori
information in the form of samples of malware or time to tune sensors to the
point where the ratio of false positives/negatives becomes acceptable. Tuning
is in itself no easy feat, as without additional aid it is not immediately obvious

5

what behaviour flagged by a network detector is actually malicious. Network
analysis is not a useless endeavour, far from it, but high rates of detection or
complete detection are typically not coupled with low false positive rates. To
this rule some exceptions exist, but these typically focus on particular features
present in only a subset of malware and so are not easily extended into generic
detectors. This means in practice there is not a generic detector that can be
employed, but instead multiple detectors are used that cover the spectrum of
malicious behaviour.

Detecting malicious traffic using Honeypots A different approach are
honeypots, which serve to capture malware samples and malicious behaviours.
To achieve this honeypots consist of (or emulate) vulnerable systems, which are
monitored in a variety of ways for changes made to the system. Since honeypots
serve no other function there is no reason for a real user to interact with a
honeypot. Any interaction therefore has a high probability of being malicious.
It also turns out that monitoring for changes in honeypot is relatively easy to
achieve. This makes honeypots very useful for detecting malicious behaviour
and has lead to a variety of implementations which cover every conceivable
malicious interaction or propagation method that malware can use. Honeypots
approaches are limited to detecting malicious traffic that effects a change to
the detector that is detrimental or defined to be bad behaviour, i.e. traffic that
contains attacks or abusive behaviour. Detectors exists for detecting malicious
traffic containing memory corruption and web based attacks, brute forcing of
various login credentials for services and Spam.

The attack we illustrated earlier is relatively easy to detect by a honeypot
as it smashes the stack and injects shellcode which under normal conditions
should not be occurring. Off course before such an event occurs the attack code
must first be injected into a vulnerable process, which requires an attacker to
contact the honeypot. Furthermore to allow an attacker to execute this attack
technique either a real or emulated vulnerable service must be present on the
honeypot. The values used in the attack imply that this attack can only
succeed on a Intel x86 32bit based Unix operating systems because it requires
the process stack to reside in a specific memory region.

Honeypot limitations Honeypots can only interact with traffic sent to the
IP addresses these are monitoring on, which turns out to be enough to track
worm outbreaks on the Internet as demonstrated by the Honeystat system
by Dagon et al [12]. However honeypots are not so efficient when the goal is
to detect individual malware infections within a local network, this because
observing an attack from a specific infected local node is much lower then the
chance of observing an attack by any network connected node.

A second issue that hampers honeypots in detecting infected nodes is that
any malicious action taken by such nodes must succeed, i.e. effect a measurable

6

change on a honeypot. Therefore the honeypot must be of such a type which
facilitates or induces a malware program to perform its malicious action on.
This issue is evident in memory corruption attacks which are tightly coupled
to specific operating systems and individual patch levels. But also attacks
that use loose security policies or abuse services require a specific detector.
For example, detecting brute forcing of credentials requires a honeypot with a
sufficient service implementation as to allow initial authentication exchanges to
take place. For detecting attacks on applications provided by network services,
typically web services on top of an HTTP server, some form of web application
honeypot is needed. To predict what kind of detector is of the right type we
can make use of available data on exploited vulnerabilities. In most cases
attacks and abuse gravitate to particular operating systems and or services.
This means that malicious attacks on a web server are likely to consists of
various script injection techniques and not of memory corruption attacks. It is
wrong to conclude that these attacks do not occur at all, but the probability
of these occurring is considerably lower[61]1.

Finally honeypots are not infallible, malicious activity can go undetected if
the detector focuses on specific aspects that a malicious interaction manages
to avoid. An approach that monitors for code injection based on taint analysis
may fail to detect malicious program uploads to its network storage shares.
Changes to to the honeypot as a result of backscatter traffic from the network
and operating systems creating changes may also trigger the detector compo-
nent of the honeypot and cause false positives, but this does not appear to be
a serious recurring issue in honeypot approaches.

1.1 Hybrid detection
The goal is to detect malware infected nodes on the local network by monitor-
ing and rerouting the network traffic from these nodes. By intercepting traffic
the malware is no longer effective as it can not abuse or attack other nodes.
Our initial focus will be on detecting malware by monitoring for attacks or
abusive behaviour as these traits are typically exhibited by malware and can
also be monitored for using both network analysis and honeypots.

A hybrid detection system combines network-based detection and honeypots
by redirecting network traffic to honeypot detectors using network redirection
and traffic rewriting techniques. Network alerts are used as indicators to fur-
ther investigate a node and determine what traffic is to be monitored using
honeypots. This monitoring is achieved by redirecting some or all traffic from a
node under investigation into honeypot acting as detectors of malicious attacks

1The reference is decidedly poor, but having trouble finding a paper on an empirical sta-
tistical study on exploited vulnerabilities (most focus on published vulnerabilities instead).

7

or abuse. The approach is aimed at detecting malware infections on (infected)
nodes on a local network, so when we refer to malicious traffic we mean any
traffic generated by malware originating from or flowing to an (infected) node
on a local network. It is important to note that redirecting traffic is not per-
formed on the fly, i.e. the traffic triggering the network-based detector is itself
never rerouted to a honeypot, instead subsequent traffic originating from a
node is redirected. This seems counter-intuitive, but its not our aim to cor-
roborate whether an alert was valid for the specific traffic a network detector
observed but whether this alert corresponds to an (infected) node launching
attacks on other systems.

This detection in stages is why we label detectors that monitor traffic before
redirecting as first stage detectors and honeypots, or any other applicable
detector with similar properties, as second stage detectors. With second stage
detector we mean a detector that interacts with traffic, and that provides
network services which are monitored for attacks or abusive behaviour. The
way detection is achieved should leave little room for errors, which is typically
the case with honeypot detectors or spam traps. We sometimes use the more
generic notion of second stage detectors instead of honeypots to refer to the
detectors as not all detectors are true honeypots, and because the name implies
a passive detector, where in the hybrid system we are actively routing traffic
into honeypots and other applicable detectors. In that respect the detectors
are more akin to classifiers of malicious behaviour.

Hybrid example The Threshold Random Walk (TRW) algorithm is an
network-based detector aimed at detecting scanning behaviour exhibited by a
node in the network. It monitors in an inexpensive way in terms of computation
and storage requirements making it suitable for high speed or high volume
network analysis. It operates on the basic premise that there exists a distinct
(fixed) ratio of failed and successful TCP/IP connections and that this ratio is
different for normal nodes and nodes that are scanning for vulnerable services.
The TRW algorithm continuously computes a value using the number of failed
or successful TCP connections as input values. For each node this computed
value will (eventually) converge to some upper or lower boundary based on
whether it exhibits scanning behaviour or not. Scanning behaviour can be
observed because of many reasons, not all of them malicious, but we assume
a machine that is scanning is looking for a another node to exploit, and thus
we redirect the scanning traffic to a honeypot for a second stage detector.
Should the scanning node indeed be looking for targets to exploit it is likely
that it will decide that it has found a target and try, and hopefully succeed,
in exploiting the honeypot. The event of attacking the second stage detector
provides the proof that the scanning behaviour was indeed part of an attack.
By monitoring in two stages using a network detector such as TRW it becomes
largely irrelevant how the malware is launching attacks or what its attack

8

signature looks like. Instead the only required conditions are that the first
stage detector can monitor for the divergence of normal behaviour, and that the
second stage is capable of detecting the attacks launched or abusive behaviour
exhibited by the malware.

1.2 Research Questions
• Given that honeypots are near perfect classifiers of malicious behaviour

can honeypots be extended to have a larger network view by actively
searching for and rerouting of malicious traffic to honeypot detectors?

• Rerouting traffic into honeypot detectors has a detrimental effect on
network performance as a whole because also non malicious traffic may
be affected, can we formulate a strategy that minimizes routing non-
malicious traffic into honeypots?

In this thesis we attempt to answer both research questions by formulating
an architecture that combines both network based detectors and host based
detectors like honeypots and evaluate its performance using live malware in a
controlled environment.

9

Chapter 2

Literature

Since a hybrid approach incorporates both network-based and host-based de-
tection we will investigate the state of the art of both fields.We split our dis-
cussion of the current state of the art approaches into (1) detection of malware
that spreads by abusing network services into host-based and network-based
approaches and we (2) also look into research on malware traffic characteristics
and worm containment strategies.

2.1 Malware taxonomy
Before discussing ways of detecting (automated) malware that attacks network
services it is useful to understand how these differ from other types of malware.
Malware typically is a piece of software engineered such that it can be used to
gather information, launch network attacks, or perform other nefarious tasks
like sending spam.

We distinguish two generic ways of distributing malware :

• Automatic distribution. Malware that distributes itself to other machines
without requiring interference from users or the operators that deployed
the malware. It may be the case that the malware relies on existing in-
frastructure to propagate, such as fixed locations to download malware
binaries from. Automated propagation is in most cases achieved by either
using an exploit for a vulnerable network service or program which sub-
sequently downloads the malware to the target machine, or configuration
errors that allow remote exploitation. Examples of the first are Internet
worms and malicious web pages that target web browsers or programs
used by web browsers, known as drive-by downloads. Examples of the
latter category are poorly secured windows shares or USB sticks that are
used to distribute malware.

• Manual distribution. Malware is merely software, but with a nefarious
purpose, and it can be installed just like any normal program. This can

10

be achieved by installing malware directly or by attaching the malware
to existing binaries, the latter is an example of the traditional computer
virus. Asking users to install a particular program is a practical and
simple approach for distribution and remarkably effective. Two common
ways to trick users into installing malware is by either embedding the
malware in a web page or by attaching it to an email and asking the
user to install the program while promising some functionality. Because
of attempts to educate users to not install programs distributed in this
way recently a new approach is used which involves embedding malware
into apparently normal programs and selling these to users as to give the
appearance of it being legit software. The most well known examples of
this type of approach are the various fake Anti Virus programs which
pass themselves off as legit software, but really are malware.

Aside from the method used for distributing malware we can also differen-
tiate based on the way malware is controlled and the method of propagation.
The reason for classifying malware in this way is that when monitoring for
malware it is the statistical divergence of its behaviour from the norm, and
the way it interacts with a service both properties which govern the detection
strategy and detectors that can be used.

Some malware will merely perform the function it was designed to do, such
as collect information or facilitate distributing more copies of itself, whereas
other malware is requires active control by the malware operators. For in-
stance:

• Autonomous malware such as computer worms typically operate au-
tonomously, distributing themselves to as many different machines as
possible whilst and optionally may include some malicious payload.

• Non-autonomous malware on the other hand comprises malware that
essentially functions as a server to which commands can be sent by an
attacker, when this utilizes some sort of communication channel to con-
trol multiple instances of malware at the same time this is typically
referred to as a botnet. The binaries to construct these botnets can be
distributed manually or automatically, for example by using worms to
install the botnet binary or instructing the botnet itself to target other
nodes. In the latter case the observed network traffic is similar to that
of worms, scanning for nodes running vulnerable services, and exploit-
ing these to disseminate the botnet binary. These binaries however still
are largely automated to execute a specific set of tasks, such as brute
forcing login credentials or sending spam or other nefarious tasks that
require the same set of actions over and over again, and typically are
controlled via a unified communication channel allowing the control of
many malware instances.

11

• manual malware, the classic backdoor program that allows an attacker
full access to the system comes in many forms, and may even be part
of malware that also incorporates features of botnet malware, but the
important thing is that this program allows to execute actions on the
victims machine and does not exhibit the automation features present in
botnet malware. Although at this point the lines get rather blurry, as its
perfectly viable to backdoor a remote program and leverage that access
to setup a spam machines. The distinguishing feature here is no unified
communication channel or repeated automated behaviour.

The distinction in the way these malware programs are controlled also
affects how these are spread and the manor in which these manage to infect
other nodes, worms typically attack services directly while non-autonomous
malware will typically require an intermediate service provided by some other
malware program to spread the malware such via email, web services, worms
or peer to peer networks.

A generic way of grouping malware behaviour by the way it utilizes network
services is

• Malware that directly abuse services on other nodes on a network via
their network services, for example by abusing vulnerabilities, brute forc-
ing login credentials or taking advantage of loose security policies causing
it to be executed on the victims machine.

• Malware that uses other services to perform its tasks and attack other
nodes, for instance by sending spam or trying to inject malicious URLs
or code in websites, which in turn can attack other machines who visit
those websites.

We focus on these attributes because these describe the types of malware
that can be detected using a hybrid approach, that is to say in order to be
detectable malware with a honeypot it must either directly attack a honeypot,
or attack a service it provides with a malicious payload that indirectly targets
victims. Furthermore because the hybrid approach stages detectors one after
the other it is also imperative that some form of automation be present in
the malware, it must exhibit repeated behaviour that first triggers a network
detector and again to be detected at the second stage detector. Finally malware
needs to employ some form of automation in how it spreads, for example
malware that uses scareware or fishing tactics to get installed onto a victims
machine can not be detected by a hybrid detector.

2.2 Host-based detection
Host-based (malware) detection approaches are systems that monitor specific
IP addresses and which may additionally provide (emulated) services to give

12

the appearance of a fully functional node or even an entire network. These
approaches are commonly referred to as Honeypots.

Honeypots are specifically designed to detect malicious traffic that exploits
network services or to study attacker behaviour. Because honeypots are not
used for any other functions all traffic to a honeypot is considered to be either
malicious traffic or background radiation1. This facilitates analysis of traffic,
making it easier to observe scans and attacks since these need not be separated
from non-attack traffic. But this is also the main limitation of a honeypot, it
does not actively attract attack traffic but merely sits and waits until it is
scanned or attacked.

Some relevant properties of honeypots are :

• Automation, The degree of automation of the honeypot, or how much
manual interference is required when operating it.

• Detection capabilities, The detection capabilities of a honeypot indicate
how well it is able to detect malicious activity and capture attack details.
This also includes the accuracy of detections, particularly some high in-
teraction honeypot approaches only monitor for specific actions or events
leaving them somewhat vulnerable to malware that avoids exhibiting fea-
tures the honeypot monitors for. Also the type of a detection, i.e. the
class of malicious behaviour observed can vary, we focus on memory cor-
ruption vulnerabilities, but its also possible to construct a honeypot that
for instance monitors for SQL injection attacks2.

• Risk & Reliability, The risk of a compromise of the honeypot is always
present, and can lead to serious damage if not properly contained. The
way a honeypot is constructed and how it makes a detection affects the
reliability of honeypot.

• Scalability, The resource usage of a honeypot governs many IP addresses
the solution can monitor, which in turn determines how likely it is to cap-
ture an attack. A way to subdivide honeypots is to classify them as high
interaction honeypots depending when these are constructed by using a
full OS or low interaction when just parts of an OS are emulated. Typi-
cally a high interaction honeypot implements a detector using a complete
and optionally weakened OS augmented with additionally services which
may also be weakened and aggressive monitoring of the OS. Because of
the high risk and the high degree of automation or similarity between

1Broadcast traffic is a generic designation for any traffic that arrives at a node because
of broadcasts, misconfiguration or activities that are not directly considered harmful(in that
case it would be considered attack traffic), there is a Utwente student paper on this subject
from a year or two back which i cant seem to find

2SQL injection is an attack that leverages lack of input sanitation to inject SQL sequences
into web forms in order to directly manipulate the database behind a web application.

13

certain attacks low interaction honeypots are often more practical and
easier to deploy.

We focus on these properties because we need host-based detectors that are
accurate, carry little risk, and can provide a large attack surface for malware
to abuse, so that when malware is launching an attack we can be sure it
succeeds and that we can capture the details of the attack. Unfortunately this
combination does not exist, for example really poor shell code and exploitation
skills may fail to exploit a real live system, even if its actually vulnerable, but a
low interaction honeypot that merely searches for shell code would still detect
the attack. That same low interaction honeypot may fail to detect an indirect
attack that attempts to upload a file to the service it only partly emulates,
an attack that a high interaction honeypot would have been able to detect,
provided it monitored for such events.

2.2.1 Low-interaction honeypot
Low-interaction honeypots typically are system daemons that emulate certain
network services and/or network stacks. By doing so, these can capture or
detect attacker behaviour, malicious network activity or even capture samples
of malware in an efficient way. The low resource utilization means that these
approaches are particularly suited for deployment on a large scale where many
IP addresses are monitored for malicious probes, attacks or malware.

HoneyD The low-interaction honeypot system HoneyD [40] is capable of em-
ulating operating systems at the network level in order to deceive fingerprint-
ing tools such as Nmap[23], Xprobe2[57] Furthermore it provides the means to
create a virtual network on just a single machine, which from a network per-
spective appears to be a large network containing routers and various operating
systems. The HoneyD system is capable of logging all connections and packet
signatures of those connections or attach subsystems to ports so a service can
be provided. These subsystems can be scripted in python but it is also possible
to attach systems such as Nepenthes or high-interaction honeypots as subsys-
tems instead of a scripted service. The main benefits of HoneyD is its ease of
deployment, but it is mostly limited to monitoring network activity. The au-
thor suggests that it can be used as a front-end for high-interaction honeypots
to reduce noise from scanning and other Internet background radiation.

Nepenthes Baecher et al. [4] and Wicherski [74] discuss a low-interaction
honeypot called Nepenthes. The purpose of this system is to capture self-
propagating malware in an efficient way. It operates by simulating known
vulnerabilities on certain ports and listens for connections to these vulnerable
services. Malware exploiting these simulated services will try to download
a copy of the malware which is captured by Nepenthes. The information

14

required to download these samples is obtained by feeding shell code captured
by a simulated service into a shell code emulator which attempts to extract the
download information. Because of this approach Nepenthes is very efficient,
but this comes at a price; since it emulates vulnerabilities and lacks a full
service implementation new vulnerabilities may not be simulated, and malware
utilizing these vulnerabilities will not be captured.

But since the same exploits or vulnerabilities are reused by many different
malware implementations even a single module emulating a vulnerable service
is able to capture many different samples of malware code. Furthermore be-
cause of the way Nepenthes is designed it is possible to, if traffic directed at
the honeypot fails to trigger a known vulnerability signature in one of the em-
ulated services, forward the traffic to a live high-interaction honeypot such as
Argus for analysis. The results from an analysis can then be used to construct
new emulated services for more efficient sample collection.

Network monitors Network telescopes [25] and Darknets[5][60] are an ap-
proach to monitoring the Internet for malicious behaviour based on connection
metrics. Both approaches monitor a (large) fraction of unused IP addresses
and generate statistics about the traffic observed, but do not themselves offer
any services other than accepting TCP connection requests. These statistics
can be used for instance to track the outbreak of a worm. These approaches
ignore the payload of connections altogether, thus they are more suitable as
early warning systems. The Labrea tarpit [64] employs this approach to ac-
tively combat malware. Instead of just monitoring it keeps connections open
and exhausts network resources on the nodes launching attacks in an attempt
to slow the spread of malware. An approach with a similar goal is taken in the
White Hole [15] system which is designed such that it tries to trick malware
into attacking the tarpit.

2.2.2 High interaction honeypot
High interaction honeypots are nodes running a fully functional operating
system which optionally runs virtualized to ease management. Since these
provide a full operating system(OS) context these approaches allow the ex-
ploitation of unknown vulnerabilities. To detect and/or capture these attacks
high-interaction honeypots can be monitored in a variety of ways, some ap-
proaches of which we will discuss below. However high-interaction honeypots
also have their own drawbacks. The use of an operating system, even if it is
virtualized, is quite resource intensive and since these are essentially systems
like any other network connected node these can also come under the control of
an attacker or malware. We will now list and briefly discuss some approaches
which utilize high-interaction honeypots to study attacker behaviour and de-
tect malware.

15

HoneyBow The HoneyBow toolkit [55] is able to capture malware by com-
bining three different sources of information after allowing the honeypot OS
to get infected. It operates on the premise that any binary sent to or created
on the honeypots filesystem has is likely to be malware. The three approaches
are :

• MwWatcher, a (hidden) process running on the honeypot that monitors
the filesystem for created files and saves a copy in a specific location on
the honeypot filesystem.

• MwFetcher, a process that periodically shuts down the honeypot and
checks the filesystem against a reference list for changed or created files.

• MwHunter, a process that carves binaries sent to the honeypot from
the network streams. The process of carving data out of datastreams of
any kind is usually achieved by searching for patterns in the datastream,
typically headers and tails of the filetype being carved. Once found the
offsets of these patterns in the datastream are used to extract the file
from the datastream.

Furthermore the HoneyBow toolkit provides the means to deploy on phys-
ical and virtual machines. This is an important aspect as malware today can
employ some forms of virtualization detection and sandbox detection to pre-
vent capture or analysis[6]. The use of honeypots in this way seems similar to
the HoneyMonkey[51] system although in that approach other modifications
such as changes to registry entries are also monitored and the system is geared
towards web-based malware. The major drawback of the HoneyBow approach
is that it allows an attacker or malware program full access to the system. Its
main feature is that it detects malware that makes modifications to the honey-
pot filesystem in any way. Since it is relatively simple it can easily be extended
to different types of operating systems. One of its limitations is that it pe-
riodically shuts the machine down for analysis, which affects the scalability.
Another limitation is that it does not provide a correlation between detected
malware samples and network traces that caused the malware to be created
or uploaded. Lastly it can not monitor for the actual exploit that abused a
vulnerable service causing the upload of the malware sample to the honeypot,
nor directly tell what service was abused.

Sebek Sebek[69] is best described as an advanced benevolent rootkit devel-
oped both for the Linux and Windows platform. The goal of Sebek primarily is
to allow extensive monitoring of any activities on a high interactive honeypot.
Aside from hiding itself from the operating system it monitors system calls,
network traffic and keystrokes to gain a complete picture of actions executed
on the Honeypot. An example of a deployment of a high-interaction honeypot
using Sebek is outlined in [71].

16

Argos Portokalidis et al [39] propose a different approach to detecting ex-
ploits in a high-interaction honeypot is proposed. Rather than monitoring
for file system modifications the actual execution of code is evaluated using
taint[29] analysis to detect the execution of shell code. By combining this with
recorded network traces it is able to not only detect previously unknown at-
tacks but also generate signatures of such attacks. The authors claim because
of the way exploits are detected the system does not generate false positives
and can also detect zero day attacks and respond to these quickly by generat-
ing signatures for IDS systems. A major advantage of this approach is that it
can actually prevent remote code execution on the honeypot. This does not
only reduce the risk associated with running a high-interaction honeypot, but
also provides better scalability as the OS it runs on does not need to be reset
to a previous state. But not all vulnerabilities utilize remote code execution
and can therefor go undetected. As such it may be useful to also monitor the
OS for signs of infection.

Figure 2.1: Double honeypot system, Translators ensure that attack traffic to
unused system/ports is diverted to an inbound honeypot, which in turn has
its traffic diverted to an outbound honeypot Image Source: [44]

Double Honeypot The double honeypot system [44], depicted in Figure
2.2.2 proposes to utilize two high-interaction honeypots in tandem in order to
detect malware that exploits network services on a local network. To detect

17

this kind of malware they configure one honeypot such that it is reachable
from the Internet and which monitors all unused internal IP addresses and
one internal honeypot that is shielded from the Internet. The outward facing
honeypot is configured such that by itself it generates no traffic, and all its out-
bound connections are rerouted to the internal honeypot. This should ensure
that any traffic observed at the internal honeypot is generated by malware on
the outwards facing honeypot.

Spyproxy concept by Moshchuk et al [27], a clientside honeypot in a virtual
machine prefetches URLs in order to determine if pages at these URLs launch
any browser based attacks. In essence this is the reverse version of the Shadow
Honeypot approach sharing the same advantages and disadvantages.

Other Honeypots in general are hampered by their limited network perspec-
tive and high resource usage of high-interaction honeypots. Some approaches
to tackle the limitations of the host-based perspective are Honey@Home [3]
or Collapsar[17] which utilizes distributed light sensors (distributed network
taps) to trap more traffic or HoneyStat[12] which tunes the detection engines
such that it can more accurately detect a specific worm on the Internet. To
tackle the high resource utilization problem approaches such as Potemkin[47]
have been proposed which provides the means to utilize more virtual machines
on the same hardware.

2.2.3 Summary
From our survey of honeypots we conclude that while honeypots can be pro-
ficient at detecting malware that propagates by exploiting or abusing network
services there is always a trade off between scalability and detection rates.

In general we observe the following limitations of host-based malware de-
tection techniques :

• Honeypots can be located and therefore avoided, and can only present a
view of the traffic they can observe. This makes a honeypot-based ap-
proach to protecting or monitoring a local network particularly unsuit-
able because only malware that actively scans the local subnet is likely
to launch an attack on the honeypot. Injecting honeypots at random
spots in the IP range of a network can give a higher chance of observing
an attack, but the problem is not fixable by improving the chance of
selecting a honeypot when a target is randomly selected. The assump-
tion with such an approach is that any malware attempting to exploit
other nodes on the network will scan or attack the network by randomly
selecting targets or by simply scanning the entire IP space in a linear
fashion. Other propagation models have been proposed[31] that do not
exhibit this behaviour, for instance by using hit-lists, fingerprinting for

18

honeypots or by relying on the ARP cache which allows an attacker to
avoid honeypots.

• In the case of high-interaction honeypots patch levels and the operating
system used govern if certain vulnerabilities are present. This in turn
could result in malware not being detected as such because a vulnerability
is not present.

• While some honeypot approaches are advanced, none of the approaches
are able to detect every type of malware.

• In order to be able to detect previously unknown attacks high-interaction
honeypots are essential, but high resource utilization makes it imprac-
tical to use these on a large scale, and also makes it harder to match
a suspected attack with the right honeypot, as the range of attacks a
high interaction honeypot is vulnerable to can never be as broad as an
emulated honeypot. For example its perfectly viable to implement an
emulated web service capable of detecting known attacks on both the
Apache and Microsoft IIS web servers.

Unfortunately none of the surveyed approaches will detect all possible forms
of an attack simply because an attack may fail altogether because the honeypot
was not vulnerable to begin with or because it failed to detect an attack took
place. In table 2.2.3 we summarised the various approaches. Its not sufficient
to just use the low interaction emulation based approaches, even though these
are capable of emulating every known vulnerability its the unknowns that give
rise to the most worry. Similarly the high interaction honeypots can fail to
detect an attack has taken place, Honeybow may fail because the attack avoids
touching the honeypots filesystem,or Argus may fail because the attack does
not use a memory corruption attack.

This means that to increase the chances of detecting an attack its not
sufficient to rely on just one honeypot approach, low interaction honeypots
such as Nepenthes can deal with a large number of attacks, but high interaction
honeypots monitored through a number of the approaches listed in 2.2.3 built
upon several different Operating systems seems the only way to assure a large
coverage.

19

Honeypot High/low interaction Automation Detection method Scalability Risk Remarks
HoneyD Low High Emulation High Low
Nepenthes low High Emulation High Low
HoneyBow High High Filesystem monitor low High May not detect all

malware, allows ex-
ecution of malicious
code

Sebek High Low Manual Very Low Very high More suited towards
investigating manual
attacks

Argus High High Taint analysis(of injected code) Medium Medium Prevents malicious
code execution

Double Honeypot High High Traffic analysis Low High Can detect any ma-
licious traffic, can be
safe if properly con-
tained.

Network Monitors Low High Traffic analysis High Low

Table 2.1: Comparison of malware detection and capture systems

20

2.3 Network-based detection
A network-based approach monitors any traffic being routed through a partic-
ular network link which allows for an integral approach to analysing network
traffic, as opposed to the limited perspective offered by host-based approaches.
By applying signatures or statistics these approaches try to separate network
traffic in malicious or non-malicious streams or monitor for specific events
such as attacks on network services. Network-based approaches are generally
referred to as (Network) Intrusion Detection Systems or (N)IDS for short.

Analysing network traffic is difficult because of the high volume of data
that must processed. An IDS can either be deployed in-line where it analyses
packets and makes a decision whether to forward it or be deployed in logging
mode, where the IDS does not interfere with the routing of packets but merely
logs them for inspection. In either case processing time is critical as to prevent
the network service from degrading. In in-line mode the IDS must process and
decide what to do with a packet within a certain time frame to ensure proper
network operations. In packet sniffer mode these constraints can be relaxed
somewhat, but the IDS must still be able to process traffic within a reasonable
time frame as generally problems or attacks that arise must be detected and
dealt with as soon as possible. So in order to design an IDS that can cope
with a large volume of traffic it is therefore imperative that operations used
can either be distributed easily and/or are computationally inexpensive.

In the literature two main approaches to analysing network traffic can be
observed which either employ signature matching which monitor traffic for
specific fixed features and anomaly-based approaches which build statistical
models of certain features of network traffic in order to detect malicious traf-
fic. Since we are specifically interested in detecting malware that spreads by
exploiting vulnerable services, which is a subset of the malicious traffic these
approaches can detect, we will briefly discuss these approaches in the remain-
der of this section.

21

2.3.1 Signature-based approaches
Signature-based approaches attempt to detect malicious traffic by monitoring
traffic for predefined (fixed) patterns of malicious traffic, these patterns can
consist of connection statistics, packet payload or specific protocol interactions.
The two most well known signature-based systems are discussed below.

Figure 2.2: Snort architecture (Source csdn.net)

Snort Snort [41] is a
packet-oriented signature-
based IDS, its architecture
is depicted in Figure 2.2.
The Decoder is responsi-
ble for decoding network
layer protocols and placing
these and the packet pay-
load in suitable data struc-
tures for easier processing.
The pre-processors can be
inserted as needed and can
perform various network
oriented functions such
as fragmentation reassem-
bly, anomaly detection on
traffic metrics(SPADE) or
TCP stream reassembly.

The main compo-
nent of Snort is the Detection Engine which utilizes a rule-set to detect ma-
licious signatures by matching the patterns defined in the rules with traffic
received from the pre-processors. The initial version was stateless and could
only perform signature matching, however the current versions of Snort are
also capable of maintaining protocol state which for instance allows the de-
tection of attacks that span multiple protocol interactions. To facilitate the
integration with existing IT infrastructure snort provides plugin-based output
mechanisms. Its modular design makes it also a useful framework for research
since it can easily be extended by adding pre-processors, Detection or Output
plugins.

Bro [32] is a higher level signature-based IDS system. It is high level in the
sense that it is capable of tracking and interpreting events at the application
protocol level. The architecture of Bro is depicted in Figure 2.3.1 and is divided
into four components. It utilizes Libpcap to capture packets and filter out those
that should not be forwarded to the Event engine based on destination ports.
It’s main purpose is to filter out all packets containing a higher level protocol

22

that Bro does not know how to interpret. Aside from filtering for specific
protocol ports it let’s through packets which have either the SYN,ACK,RST
flags set or packets that are fragmented, this in order to reduce the load on the
event engine while still capturing entire protocol interactions and important
network events.

The Event engine is responsible for transforming packets and/or streams
into higher protocol level events, for example HTTP GET requests observed
in a packet would be classified as an event. The policy script interpreter is
responsible for tracking events and matching these to the rule-set that defines
the characteristics to look for such as specific patterns. The dotted reverse
arrows are used to control the granularity of the filters of the lower level com-
ponent to achieve higher throughput. For example there is no point in having
the event engine generate if no rule for such an event exists in the policy.

Figure 2.3: Bro high level architecture
source :[32]

Similarly, protocols that are
not analyzed by the event en-
gine do not need to be forwarded
by the packet filter and can be
dropped there. The caveat from
the packet filter and this approach
in general is that non standard
protocols or traffic on non stan-
dard ports will not be analysed
unless these are explicitly added
to the policy or the event engine.

Signature generation Bro &
Snort rely heavily on predefined
rule-sets which describe which
patterns indicate malicious traf-
fic. In order to reduce the amount
of manual labour involved in writ-
ing these rules and reduce the re-
action time to new threats a num-
ber of approaches to automat-
ically generating signatures for
these types of systems have been
proposed. We will summarize a few well known approaches below and discuss
why these are of limited use in protecting a local network.

Host-based signature generation HoneyComb [20] utilizes Honeyd
to trap incoming malicious traffic and to generate signatures based on multiple
longest common strings found in the traffic. Sweetbait [38] utilizes a more

23

sophisticated honeypot, Argos, to trap incoming malicious traffic. By simul-
taneously monitoring the network traffic to the honeypot the system is able
to generate signatures based on string similarities or protocol features of the
observed traffic.

Network-based signature generation All the network-based approaches
to signature generation described below rely on an external detector to clas-
sify TCP streams into a pool of malignant and non-malignant streams. From
the pool of malignant streams these approaches attempt to extract signatures
based on feature similarities between streams. This approach is founded on
the notion that attack traffic, particular attacks on network services, contain
some invariant features which are always present when the attack is executed.
The PAYL[48] anomaly detection system generates signatures from the pool
of malignant traffic, it is designed such that it can detect similarities between
packets going to and from a host. If such a similarity exist there is a high
probability that this are caused by similar malware traffic, such as worm ac-
tivity and the system attempts to generate a signature for these packets based
on string similarities.

Autograph [1] also generates signatures by analysing malignant flows
for common substrings. A difference with other approaches is that it dynam-
ically computes how the TCP stream should be divided into variable length
content blocks. It will attempt to match these content blocks with other sus-
picious TCP streams, if the number of matches of content blocks is above a
certain threshold these are used to generate a signature. Because Autograph
computes the size of these content blocks dynamically these may be to short or
overly long , which is generally undesirable, and therefore also provides upper
and lower boundaries for the size of these content blocks. The approach was
criticized for having limited capabilities for dealing with polymorphic worms.

Polygraph [30] is a proposal to generate more accurate signatures for
polymorphic worms. Rather than just matching byte sequences this approach
creates signatures that describe a polymorphic worm in an ordered or non-
ordered sequence of separate byte patterns. This idea is founded on the notion
that every worm or exploit has to have some characteristic features even poly-
morphism can not eliminate, and which are heavily defined by the type of
exploit used. They combine this approach by proposing a scoring system of
certain byte patterns that can match a sample of a polymorphic worm. If the
scoring is high enough the signature is considered to match the sample under
investigation.

Hamsa [22] Is an approach that also extracts features from malignant
streams to form signatures, but claims to be more efficient at doing so than
Polygraph. It also seems to be able to deal with more noise in the data to
analyse.

24

Summary There are two main issues with signature-based approaches. First
and foremost these systems require an extensive set of signatures of malicious
traffic. Creating good signatures that only match malicious traffic in itself is
already difficult, but the problem is compounded by the fact that there is a
limit to the number of signatures can be processed. Already approaches like
snort or bro utilize a strategy which attempts to avoid applying certain groups
of signatures if these are not relevant.

Furthermore it has been shown [28],[46],[33] that there are limits to auto-
matic signature generation and that signature-based detection can be evaded.
For example, in order to detect polymorphic worms even the more advanced
approaches still rely heavily on specific features of a worm. But it has al-
ready been demonstrated that it is possible to construct worms which do not
have these fixed features, although this only seems to apply to exploits that
avoid abusing a memory corruption vulnerability[45]. Also these approaches
are pattern-based, which means that if there exists a malicious stream with
certain features, and another non-malicious stream with the same features the
signature-based IDS cannot make a distinction between the two.

To summarize, the use of signature-based IDS systems augmented with
automated signature generation does provide a high degree of detection for
some classes of malicious traffic, however these approaches still seem to struggle
with achieving high detection rates while maintaining a low false positive rate
and are particularly challenged by attacks which employ exploits and encoding
techniques which can avoid the use of fixed features.

2.3.2 Anomaly-based approaches
Another main area of research into detection of malicious network activity is
the use of anomaly-based detectors. These detectors build profiles of what
constitutes normal traffic and raise alerts if a network flow is significantly dif-
ferent from the standard network profile. For example in HTTP requests there
exists a specific distribution of ASCII characters, should a program attempt to
exploit a web server this is often followed by injecting some shell code which
alters this distribution significantly and can thus be detected. Another ex-
ample along the same line is that following an HTTP GET request there will
be a response from the server with a page of a certain size. A server that is
exploited most likely will not return such a page because its program flow is
altered. The absence of the response from the server constitutes an anomaly
and can thus be detected.

Like signature-based approaches, anomaly-based detectors need to be config-
ured prior to deployment. In this case the detectors build models of the traffic
they will be monitoring, and later will compare such models to incoming traffic
in order to detect anomalies. Clear advantages of anomaly-based approaches

25

are that these are self-learning and can detect new unknown attacks as soon
as they take place.

Anomaly detection systems can be divided into three general approaches,
systems described in literature generally employ one or more of these simulta-
neously:

• Anomaly detection based on packets headers[24][13]. These focus on
specific features in packets such as flags or build profiles of the number
of connection requests or destination distributions.

• Content(payload)-based approaches[49][50]. An approach where profiles
are constructed of the content of streams or packets, for example the
previously mentioned character distribution in an HTTP request is an
example of this.

• Correlation-based approaches.[7]. An approach which correlates inputs
from different NIDS approaches in order to provide more accurate alerts.
The principle idea here is that single alerts raised by any kind of IDS
by themselves lack context, for example one failed TCP/IP connection
does not constitute a scan in most cases. But correlating such events
may make a stronger claim that these events are part of a port scan.
The approach taken in [7] combines an existing IDS monitoring incom-
ing traffic with a correlation system and anomaly detecting observing
outgoing traffic. By correlating alerts raised on incoming traffic with
changes observed in outgoing traffic it can more accurately remove false
positives raised by the inbound traffic NIDS monitor. These correlation
based approaches are also employed specifically for detecting botnets,
this because botnets typically will exhibit several measurable features
that can be observed using NIDS systems such as scanning, exploitation
and command & control traffic. By correlating these events botnet de-
tectors can make more accurate detections then when treating each event
separately. Some approaches that employ this technique are discussed in
the next section.

Anomaly-based detection shows promise and is actively researched. For now
payload or packet header based approaches are the most common because these
are versatile, but the same approach could also be used for detecting anomalies
at the application protocol(semantic) level. Since current approaches do not
interpret data at the semantic level it is not possible to assess directly if a par-
ticular packet is indeed malicious. Instead these approaches rely on the notion
that an anomaly is caused by malicious activity as malicious activity generally
constitutes a divergence from normal behaviour. This is important for our
approach as an anomaly detector in principle can not distinguish between an
anomaly generated by a malformed GET request to a web server or anomalies
generated by a node attempting to exploit a certain vulnerable service.

26

This leaves the anomaly-based approach open to malicious traffic that mim-
ics normal traffic behaviour [19][14] or attacks on the detector where an at-
tempt is made to alter the model it uses to classify data in such a way that
attack packets are not detected as an anomaly. A second issue with anomaly-
based detectors is the learning or training phase. In this phase the detector
is fed volumes of traffic which it uses to construct a model. Depending on
the detector the traffic used to train the model may contain a certain amount
of malicious traffic, called noise. It has been demonstrated [11], [10] that the
accuracy can be improved if training data is used with little or no noise. Con-
structing a training data set free from attack traffic from real data however is
labour intensive.

Finally a difference between some approaches is the time it takes to classify
traffic as malicious, some approaches employ a scoring system or analyse entire
TCP streams rather then a packet or group of packets and or couple this with
a scoring system in order to make an accurate assessment. This improves ac-
curacy but also incurs a delay over approaches that classify individual packets
directly as they are received.

2.3.3 Botnet detectors
The distinguishing feature of botnets compared to families of malware is that
botnet malware must at least partly comprise of semi-autonomous malware
which is controlled via a (multicast) unified control structure. i.e. it is malware
programmed to automate the execution of certain malicious tasks but only
after after the malware program has been instructed to do so and been provided
with the relevant information it needs to execute a task. This entails that
there always exists a specific sequence of observable (network) events when
botnet malware is considered. For example before a malware bot can begin
sending spam it must first receive the instructions to do so via a communication
channel, then proceed to fetch the spam data and then proceed to spam the
targets on the list it received. Because botnets are common and pervasive and
are the basic building block for criminal activity on-line it pays to focus on
botnets and the specific features exhibited by botnets.

Approaches to botnet detection are a specific application of correlation-
based detection approaches leveraging multiple network-based analysis ap-
proaches for information. These correlate events generated by signature-based
and anomaly-based detectors in order to detect malicious activity in network
traffic. Botnet detectors in particular search for particular sequences or com-
binations of events indicating the presence of botnet malware.

For example malware randomly attacking other nodes often exhibits the
sequence of scanning for a vulnerable service and/or exploitation of this service
followed by subsequent downloading of malware to an exploited node. By
combining these events alerts can be generated more accurately with more
confidence and with more confidence. Some events also make a stronger case

27

for the presence of malicious traffic or malware, for example a failed TCP
connection is not as strong an indicator as an attack on a vulnerable service
on a honeypot. So correlating multiple (weighted) events allows assigning
of importance to individual events that may sum up to a real indication of
malicious activity.

The field of detecting botnets is also a special case because botnets typically
utilize a Command & Control structure. This is significant as it not only
introduces features to search for in traffic, but because it introduces traffic
not normally generated by non-malware programs. This adds an extra feature
to add to the model which describes malicious traffic generated by botnets.
We will discuss two approaches that employ these features to detect botnets
below.

Bothunter[16] The BotHunter system specifically targets botnet malware
through correlation of IDS events. It achieves this by modeling the activities
of botnet malware as a specific sequence of events to which it assigns a certain
weight. These events are generated using traditional signature and anomaly
based approaches that search for command and control traffic, scanning traffic
or traffic that contains signatures of exploits or executable binaries. By ob-
serving some of these events in the right order and whose summed weight is
higher than an a predefined threshold it is able to discern botnet traffic from
normal traffic.

This approach allows the use of indicators of malware activity which when
used by themselves are not accurate enough. For example flagging every TCP
stream that contains an executable windows binary is not a useful approach
in itself for detecting bot traffic, as the occurence of such an event does not
provide strong evidence of a malware infection. If however this event was
preceded by an scan of this machine and subsequently this machine exhibits
scanning behaviour itself then a stronger case can be made for assuming the
binary(and the scanning behaviour) was malicious.

Automatically Generating Models for Botnet Detection Another re-
cent [53] correlation based approach focuses on detecting and correlating the
initial command that causes bots to launch attacks with an observed change
in network behaviour. The approach followed is that the network flows are
monitored for changes that indicate scanning behaviour such as changes in
volume or connection count. If such a change is detected the system then tries
to correlate this with command and control commands sent at an earlier point
in time.

The signatures and models used to search for the commands sent to and re-
sponses of the botnet are constructed by profiling known botnets in a controlled
environment. Wurzinger [53] demonstrates that this approach is effective at
detecting botnets in laboratory settings and in this environment outperforms

28

the approach followed in the Bothunter system. However its detection capa-
bility relies heavily on being able to extract accurate features from command
and control flows, which more or less requires an unencrypted channel, and
requires training with captured botnet malware before deployment.

Evaluation Even though botnets are a specific subset of malware these ap-
proaches provide valuable insights towards approaches which detect malicious
network activity in general. A survey[43] of several approaches to botnet detec-
tion discusses how these approaches can be circumvented. This survey argues
that the approaches to combating botnets should focus on features that are
inherent to botnets, rather then focusing on specific traits exhibited by cer-
tain malware families. As it is focusing on universal traits, like synchronized
execution, are to be preferred over targeting string similarities in command
structures or similar target systems which. This follows from the relative ease
with which the later approach can be defeated, but changing the observable
behaviour is far more difficult and not easily hidden via obfuscation or encryp-
tion. In essence the focus should be on (observable)traits or behaviour that
are inherent to the way malware functions and achieves its goals.

A serious problem that emerges from our short survey of botnet detectors
is that there seems to be a lack of good testing data with which to com-
pare(benchmark if you will) the accuracy of the detections. Nor is it clear what
is causing the detections approaches to detect some malware samples better
then others or why samples are not detected at all. We suppose that current
techniques suffer still because of using relative high thresholds for analyzing
network traffic to avoid false positives and rely (to heavily) on signatures for
generating events. I.e. it seems the detector would discard evidence of malware
in favour of improving the false positive rate of a detector.

2.3.4 Other
Our main area of interest is accurately detecting hosts that spread malware,
in that light we will discuss some approaches that do not really fit into any
of the previously discussed categories for network intrusion detection but are
relevant for our research.

The Shadow Honeypot concept by Anagnostakis et al [2]. In this approach
anomaly-based network detectors are placed before a (web)service in order to
detect attacks launched at this service. Any traffic that triggers the detector
is directly diverted to a high interaction honeypot which provides a duplicate
of the (web) service and and the system providing the service. This high
interaction honeypot is fitted with various detectors or instrumentation such
as Argos and service specific detectors enabling it to detect a variety of attacks
that target the protected application.

29

This is an attractive approach as any false positives generated by the
anomaly detector, or failed conversions of true positives by the honeypot do not
affect the system. In case of a false positive the service is provided at a slower
pace, but it is still available to the user. In case of failed conversion either
an attack failed to execute or be detected by the honeypot. Since the context
of the honeypot and the real system is the same an attack would presumably
function on both contexts or none of the contexts. Detection is limited to
attacks which target the this system, and which make use of vulnerabilities
in the context of the service or operating system providing the service. The
idea we explore shares the same concept, but we aim to detect (any) attacks
close to the source where these attacks originate from. Not every honeypot is
capable of detecting any attack, so this entails using several (different imple-
mentations of) detectors and formulating some strategy for redirecting attacks
to the proper honeypot detector.

This approach is different from our approach because of different design
goals and resulting different architecture. In the hybrid detector we must
predict the nature of an attack and what type of context should be made
available for this attack to succeed and become detectable whereas the shadow
honeypot implicitly assumes the service/system providing the service is the
only context for an attack. This is not an issue for the approach as the focus
is on detecting (only) the attacks that affect the service, rather then localizing
malicious sources by detecting every attack.

Bait and switch A snort module that is no longer maintained implements a
scheme to switch traffic to a honeypot when firewall rules are triggered. There
exist two implementations with the same name, an original implementation
[73] and a second (re)implementation [66]. At its core our approach is similar,
though we extend the approach to anomaly based approaches and devised a
scheme which decides to select detectors to which traffic should be routed to.

Network level emulation Polychronakis et al.[35],[34] and [36] present an
approach that attempts to detect exploits in packet or TCP streams by search-
ing for signs of executable (shell) code using an emulator. It is different from
existing approaches because it deploys techniques to identify code in streams
which will actually execute without interacting with the network stream un-
der analysis. It couples this machine code identification with a basic heuristic
that looks for the usage of certain instructions to classify code as a malicious
payload. Using this type of detection false positives can effectively be elim-
inated, but not all types of malicious code may execute within the emulator
because it is missing the context of a real operating system or may not be
detected as malware because it does not employ the instructions the detector
monitors. Even though it may not be able to detect all types of malware this
approach has a significant advantage over traditional honeypots as it does not
have to provide a vulnerable service or a specific OS and patch level. Some

30

approaches [58] aim to hamper this type of detection by trying to avoid trig-
gering the heuristic rules used by the detector, try to break the code emulation
by relying on unsimulated functionality or using context only available on the
targeted machine.

A similar approach [54] combines static analysis and emulation to detect the
presence of an encryption routine in binary data. The reason this particular
feature is targeted is that it is generally only employed by programs that
attempt to evade IDS or prevent analysis. A reasonable assumption here is
that if these programs need to hide from these kind of systems they are of a
malicious nature.

Sword Li etal [21] present an approach to detecting Internet worms is dis-
cussed which tries to match network traffic patterns against predefined heuris-
tics of known worm behaviour. It flags traffic as worm traffic if there exist a
causal similarity between connections, for example a connection is observed to
a particular node and subsequently outbound connections with similar signa-
tures originate from that same node. It also analyses the traffic destinations
from individual nodes which lets it detect worm traffic based on differences
observed in the distribution of traffic destinations.

There appears to be little work done on comparing the detection capabilities
of network-based detectors and honeypot implementations. In their master
thesis Keemink and Kleij [18] survey the detection capability of Snort and
honeypot based on experiments using live traffic. The SurfIDS system has
network traps similar to Collapsar[17] that gather traffic and redirect these to
the Surfnet system. The experiment consisted of analysing this captured traffic
by diverting it to honeypots while simultaneously analysing the traffic using
the Snort detector. Their results would suggest that, for their experiments,
the detection capability of the network detector and host-based detectors only
partly overlap.

2.4 Network statistics and containment strate-
gies

A detailed evaluation of post infection network activity can be found in [37],
which surveys connections made by malware after a machine was infected. This
research is interesting because it identifies certain traits that could indicate
that a node is infected with malware. One observation they made is malware
often sends out email from the infected host or uses some other approach like
HTTP to report information back to an attacker. They observed that this is
sent directly to an SMTP host that is not the relay for the current domain,
which means this feature could be used to detect an infected host. Another

31

characteristic feature to monitor is proposed in [52] is to monitor the amount
of TCP SYN packets a node sends out. A high count could indicate malware
activity, but this approach will not detect worms that intentionally keep their
connection rates low.

Containing self propagating code [26] makes a case for containment of
self spreading malware on the Internet over patching or treating the symp-
toms.They ask themselves the question: is it even possible to contain a worm
and how effective can this be? They conclude a system has to be able to react
automatically and employ content filtering rather then source-based filtering.
Containment strategies for worms are evaluated by Brumley et al. [8] An inter-
esting conclusion is that local containment of worms via throttling connections,
even when deployed on a large scale, is not sufficient to slow down a computer
worm epidemic by more than a factor of 10. Using mathematical models it is
further demonstrated that fast inoculation against an infection via patching
or virus signatures and hardening systems to make infection more difficult will
slow down the spread of a worm more then blacklisting sources infected with
worms or local containment strategies via connection throttling. Their model
assumes that new insights into hardening operating systems and software and
the distribution of known malware signatures and patches happens uniformly
and timely, something which does not seem possible on today’s Internet.

2.5 Conclusion
Traditional host-based malware mitigation approaches such as providing ade-
quate patch management or utilizing various anti-virus software have proven
insufficient. This not just because there currently always exists malware for
which no signature is yet created but also because the time window in which
these need to be applied or updated is ever decreasing. Host-based anti-
exploitation techniques such as hardening the OS can mitigate some of the
threats these too can not yet guarantee complete resistance against malware
infection. So we surveyed approaches that focus on monitoring network traffic
for signs of malicious traffic generated by malware and observed the following:

• Host-based detection techniques are efficient at detecting malware that
launches direct or indirect attacks on their services but are not sufficient
to combat malware because of a limited network perspective, furthermore
to achieve detection the honeypot must present the right OS and service
for an exploit to function. Lastly a honeypot can only detect but not
stop malware directly, though it may be able to keep systems launching
attacks occupied with attacking the honeypot instead of real targets.

• Signature-based intrusion detection systems can detect malware in net-
work streams and additionally classify what was detected, but can be

32

evaded by employing polymorphism techniques and/or attack vectors
which lack the distinct features these approaches require to ensure a
proper detection. Some mitigation’s exist but rules must be carefully se-
lected to not match normal behaviour or non-malicious network streams.
It

• Anomaly-based approaches promise better detection of previously uniden-
tified threats with low false positives resulting in a faster reaction time
to new threats than signature-based detection approaches. A caveat
of these techniques is the limited ability to classify the nature of the
anomalous behaviour. We are only interested in a specific subset of
anomalous behaviour, namely the behaviour that is actually malicious,
whereas anomaly-based approaches will flag anything that is out of the
ordinary.

• Network detection approaches that do not actually verify the malicious
nature of observed traffic are themselves vulnerable to attacks which
attempt to generate large amounts of false positives in an attempt to
masquerade a genuine attack.

• Network level emulation techniques can detect a particular type of shell
codes rather well, but are resource intensive and only applicable to cer-
tain shell codes and malware distribution scenarios.

• We see that correlation approaches that combine inputs, for example like
employed by Bothunter, can provide a substantial improvement in the
accuracy of detections made, but for the purpose of stopping malware at-
tacking other systems these have some limitations. First of all correlating
and compounding events takes time which makes such an approach suit-
able for detection, but not for preventing attacks. Also the approaches
we surveyed are still based on traditional anomaly/signature-based based
NIDS forcing the use of thresholds and specially tuned signatures, this
to minimize false positives, resulting in a loss of detection capability.

Property Anomaly Signature Honeypot Description
Monitor scope Network Network Host Range of network traffic moni-

tored
Ability to detect unknown at-
tacks

Yes No Yes Only high interaction honeypots
can detect unknown attacks

Requires apriori attack details No Yes No
Requires training data Yes No No
Alerts provide context/attack de-
tails

No Yes Yes Anomaly detection can not indi-
cate why traffic is anomalous

Requires manual review of alerts Yes Yes No reviewing of events causing false
positives

Table 2.2: Feature comparison of anomaly and signature-based network detec-
tors and honeypot detectors

33

No approach will detect every instance of malicious traffic or be immune to
evasion, even if a detector specializes in a specific type of malicious traffic. Its
also seems that signature based approaches are not sufficient to deal with un-
known types of malware (traffic) and in many cases can be evaded. Anomaly
based approaches seem to be the most promising in this respect as evasion
or blending attacks are difficult and the dynamic nature allows detecting of
unknown threats. The detection rates of anomaly detectors are coupled to
the error rate, which is what presents some issues with these approaches. If
deviation from standard behaviour is defined very restrictively, i.e. the small-
est deviation is labeled to be malicious its likely to detect many instances of
malicious traffic, but make many errors doing so. Coupled with the character-
istic that anomalies in principle are not typed in any way this makes further
refining of detection events from an anomaly detector difficult, as it flags only
on anomalous events, not malicious events. This is why it seems anomaly de-
tectors can benefit greatly from end point detectors interacting with potential
malicious streams that are capable of confirming and classifying the malicious
traffic. Examples of end point detectors would not just be traditional honeypot
approaches but also web-application-firewalls or filtering proxies. These end-
point detectors typically classify based on rules applied to observed changes
which occur as a result of the detector interacting with the malicious stream,
as opposed to inspecting the content of the stream directly.

This makes a combination of anomaly detectors driving traffic to host-
based detectors an interesting concept to explore as it allows the extension of
the scope of host-based detectors or affords strengthening anomaly detectors by
coupling anomalous events with context information from host-based detectors.

34

Chapter 3

Hybrid architecture

Why do hybrid detection The advantage of using a hybrid approach is
that it extends the capabilities and accuracy of both the network detectors and
honeypots. This is achieved via traffic redirection. In order to perform traffic
redirection some control over the network link layer is required, we discuss
this separately in Section 3.3.4. For the remainder of this thesis we assume
that full control over this layer exists and we have full control over traffic
flowing in and out of each individual node connected to the local network.

Figure 3.1: Example graph of an (ideal-
ized) detector showing the relation be-
tween false positive rates (FPR) and
false negative rates(FNR), which are
defined as a percentage of errors made
when classifying data.

Extending scope of honeypots
By redirecting traffic into honeypot
detectors these can actively hunt for
malware traffic instead of passively
waiting to be contacted. It also
presents malware with weak targets
which should encourage attacks on
the detector and at the same time
quarantines the malware because it is
no longer attacking other targets. We
can improve the chances of observing
an attack by utilizing different hon-
eypot implementations as detectors.

Improve detection rates It is im-
possible for the second stage detector
to directly improve the detection rate
of the first stage detector since it can
only analyse traffic that is already
flagged by the first stage. Network-
based detectors however make trade-
offs between the detection rate and

35

the false positive/negative rates. It is here where improvements can be made.
Since a detection in the hybrid approach by the network detector is not final
until confirmed by a second stage detector we can eliminate some of the ”un-
certainty” regarding the accuracy of a detection. This entails that from the
set of alerts raised by a network-based detector we can filter out false positives
if alerts did not lead to a detection by the second stage. This may allow a
detector to be tuned to a higher sensitivity level which normally would lead to
an unacceptable false positive rate. This concept is illustrated in Figure 3.1,
the equilibrium is the sensitivity level where the false positive/negative rates
are still acceptable. If we can detect and correct a false positive by the first
stage detector this means the false positive curve shifts downward, affording a
higher sensitivity level and a higher sensitivity level can be used. This is not
a completely free lunch, as the false negative rate may shift upwards if second
stage detectors fail to confirm true positive alerts from the first stage detector.
The amount of confirmed true positives generated by a first stage detector we
call the conversion ratio. By conversion losses we mean the True detections by
the first stage that are not confirmed by the second stage. Ensuring a detection
if malicious traffic is present is discussed in section 3.3 on detection strategies.

Detect unknown threats Both anomaly detectors and high interaction
honeypot detection systems are capable of detecting new threats, and combin-
ing these would overcome the systems individual deficiencies, lack of accuracy
of anomaly detectors and lack of scope for honeypot based detectors.

Limitations of a Hybrid detector(why not do hybrid detection) Hy-
brid detection has the following limitations:

• Quality of Service is compromised, the system actively reroutes traffic to
different destinations thereby (temporarily) disrupting communication
flows. This is something that can only be partially mitigated by opti-
mizing detectors as anomaly based detection approaches can not avoid
making errors.

• Discerning an unconfirmed True positive from False positive. This means
that a malicious event that was not detected by the second stage, IE a
true positive which is not confirmed, is not distinguishable from a false
positive from the first stage detector.

• Limited ability to detect malicious traffic that is not part of automated
attacks. An attacker could confuse or avoid the detector by sending
enough attack traffic to trigger the 1st stage detector and then stop
until it is no longer redirected to the 2nd stage detector. This is partly
mitigated by the fact that an attacker can not predict how long or when
its attack traffic is being intercepted and redirected.

36

Observable behaviour Hybrid detection
Malicious behaviour

Network detector

First stage detector

Second staged detector

Figure 3.2: Venn diagrams demonstrating the relation between malicious be-
haviour and detectors. Left side showing the relation between malicious be-
haviour and network detectors, on the right the relation between first and
second stage detectors.

• Only malware that launches enough scans, attacks or performs malicious
actions to trigger an anomaly detector and a detection by a honeypot
can be detected by this approach. The number of attacks required for
detection is at least the number of attacks required to trigger an anomaly
detector and a connection containing an attack to a second stage detec-
tor.

3.1 Design Goals
The goal of this architecture is combining anomaly based detection with hon-
eypots such that:

• The accuracy of anomaly based system can be improved. This is achieved
by providing a way to assess decisions made by, and/or make corrections
to the model used by, the anomaly detector. This may also alleviate the
trouble with training anomaly detectors.

• The scope of honeypots is extended thereby improving the odds of honey-
pots getting attacked by malware and obtaining samples of the attacks.

• It is easy to utilize or evaluate different anomaly detectors and honeypot
systems as first and second stage detectors.

37

• Malware relying on the network to spread can be contained without
requiring prior knowledge of that malware. It achieves detection in a
generic way by using network analysis to search for patterns or anomalies
malware traffic will exhibit and redirecting traffic to detectors that must
be vulnerable. This makes it applicable to a wider range of malware
without requiring reconfiguration and makes it difficult to circumvent.

There are also some usability issues to consider:

• Maintain network connectivity, maintaining quality of service is impor-
tant. Since we are actively rerouting network traffic to a different desti-
nation this will disrupt normal communications. Disrupting communica-
tion flows is unavoidable with second stage detectors such as honeypots
so instead we must rely on a strategy that aims to minimize the impact
of a false positive generated by the first stage detector. If the system
makes many errors and takes a long time to correct these it becomes an
impractical nuisance instead of a useful defence mechanism.

• Automation, in order for systems to be useful they need to be able to
operate with a high degree of autonomy avoiding the need for constant in-
put from administrators or continuous updating. Ideally a system should
just indicate what nodes are infected, isolate these keep these quaran-
tined until the infection is removed.

• Simple to deploy, the key to limiting the spread of malware is by de-
ploying monitoring systems that limit the ability of malware to attack
other systems. The only way to create networks that hamper malware
is by simplifying the management and installation of detection systems,
as high complexity will hamper deployment.

38

3.2 Functional description
In this section we describe the hybrid architecture which implements the de-
cisional structure depicted in Figure3.3. We break the system down into in-
dividual components, depicted in Figure 3.4, based on how these components
manipulate network traffic and their responsibilities. In the image we included
control lines to indicate which different components interact and red arrows
indicating the flow and volume of traffic. For each component we enumer-
ate the input and outputs of message exchanged between components and
ingress/egress network traffic. In the remainder of the section we summarize
how we expect to be able to capture enough traffic for analysis and how we
expect to control traffic flow to and from individual nodes.

3.2.1 Network traffic capture
This component is responsible for aggregating network traffic so that it can
be analysed by network detectors or redirected to honeypots. In practice this
requires some changes to the network infrastructure or the way traffic is routed.
This can be achieved using network management functions or MAC spoofing
attacks (see Section 3.3.4). Treating the network as a black box from which we
can tap traffic and have traffic intercepted just serves as a practical abstraction.
It serves the following purposes:

• Represent a source of network traffic for network detectors to analyse.
The make up of this network traffic should be such that both internal
and external communications of local nodes can be monitored. The goal
is to provide the network detector with as large a portion of network
flows to each individual node as possible.

• Provide link layer traffic rerouting to aid in investigating and quarantin-
ing suspected nodes. This redirecting is vital because without it is not
always possible to rewrite traffic such that it can be routed into honey-
pot detectors. The effect of this rerouting is that it gives the network
redirecting component control over traffic as if it were placed between
the node under investigation and the network.

It may not be possible or practical to set up a system where all traffic is
analysed or all traffic to and from any node can be controlled at will. This
does not change how the hybrid system works, but it does mean it takes longer
and becomes harder to detect malware as network detectors have less traffic
to analyse and potentially fewer malicious connections can be intercepted and
redirected to second stage detectors.

Inputs/Outputs

39

Wait
for alert

Network Analysis

is alert a
repeated

false
positive?

Identify
suitable
honey-
pots(s)

Wait for
response

from
detectors

Honeypot

Did a
detection

occur?

Are less
likely

detectors
available?

Declare
false

positive

Adjust
model

Declare
a true

positive

no

yes

no

no

yes

yes

Figure 3.3: Decision diagram for the hybrid detection system

40

Figure 3.4: System breakdown in components. Red arrows indicating traf-
fic flows and the amount in relation to each other, black lines indicate the
(important) messages that are exchanged

41

Messages The component receives messages which set the MAC and/or IP ad-
dresses that are to have their traffic redirected to the Traffic redirector
component.

Network Traffic – Ingress Network traffic collected from one or more points in the
network.

– Egress to First stage detectors The component outputs a stream
of network traffic for analysis by network detectors. Depending on
the setup this can be live or duplicated network traffic.

– Egress to Traffic redirector component The component out-
puts a stream of traffic originating from and destined for any nodes
under investigation to the traffic redirection component. This must
be live traffic data and preferably must comprise of all the traffic
flowing to and from nodes under investigation.

3.2.2 Traffic redirector component
This component is the second step in filtering and rewriting traffic so it can
be routed to second stage detectors. It receives traffic originating from a pos-
sibly infected node from the Network traffic capture component. To redirect
it to second stage detectors changes must be made to the transport layers
and in some instances to application layers to ensure no connections are bro-
ken. Furthermore traffic is separated in malicious and non malicious parts to
(attempt to) avoid routing non-malicious traffic into second stage detectors.
This improves the performance of the system and connectivity of nodes under
investigation. We summarized its functions below:

• Filter out any traffic that is unlikely to be malicious and return this to
the network.

• Rewrite the transport and application layer of the remaining traffic using
reverse address translation and proxy techniques so it can be routed to
second stage detectors or black holes.

Redirection occurs based on destination ports and IP addresses. Once a
destination IP is mapped to a detector this mapping stays the same until it is
reset. To which detector (and if) connections are mapped to is based on the
redirection strategy used, see Section 3.3.3. Additional proxy techniques may
be used for application protocols that either do not cope well with Network
Address Translation(Nat) or which contain identifiable information such as IP
addresses or certificates.

Input/Outputs

42

Messages For each (suspected) infected node a policy is provided that specifies
the redirection rules. These redirection rules include specifying to which
detectors traffic needs to be mapped and what portion of traffic is to be
redirected.

Network traffic – Ingress The input network traffic consists of the traffic intercepted
by the Network traffic capture component.

– Egress to the network Traffic that does not need to be redirected
per the aforementioned policy is returned to the network and will
be otherwise unaffected.

– Egress to Second stage detectors The remaining (suspected)
malicious traffic will have destination IP addresses mapped to ad-
dresses of select honeypot detectors or black hole ranges.

3.2.3 First stage detectors
Network-based anomaly detectors

The first detection stage in the hybrid system are network-based anomaly
detectors. One or more anomaly detectors monitor the network traffic for signs
of malicious traffic which indicates a node is infected with malware. Indicators
are attacks that are aimed at modifying a victim in some way or actions that
abuse or scan for services. Some traffic related to malware is of less interest
because these do not cause a measurable change on the honeypot, or because
simply no honeypot/host-based detector exists. For example traffic such as
such as command an control messages or when malware is posting sensitive
information to websites is of less interest.

The goal of first stage detectors is:

• Monitor for malicious traffic indicative of malware infections. The de-
tector should raise alerts on impending or ongoing attacks, abuse or
scanning behaviour.

Type of detector The nature of detected malicious behaviour is affected by
the chosen anomaly detector. For example some detectors focus on memory
corruption attacks where others are more oriented towards detecting script
injection attacks on web based systems. This preference towards particular
attacks is useful when determining a suitable second stage detector.

Input/Output

Messages Anomaly systems raise alerts containing a source IP address, and option-
ally a destination port(s) of the observed malicious connection(s). These
alerts are sent to the Managing component.

43

Network Traffic – Ingress Input network traffic consists of the traffic aggregated by
the Network traffic capture component.

– Egress Depending on how traffic is captured and made available to
the network detector(s) traffic will either be discarded or returned
to the network.

3.2.4 Second stage detectors
The second stage detectors are detection systems which interact with (sus-
pected) malicious traffic. Therefore a detector must provide a network service
for a malicious connection to abuse or attack. The way in which the detection
of malicious activity is achieved should be accurate and immediate. Honey-
pots conform to these properties as attacks or abuse can be detected when
these are ongoing or shortly after these have occurred. Not all approaches
share these traits however. Detecting brute force attacks on authentication
mechanisms relies on counting the number of times and the time spacing of
individual password guesses, and web application honeypots typically will just
apply rule based detection mechanisms.

These systems are all setup such that these listen for incoming connections
on the detectors IP address. Depending on the type of detector it may also be
possible to integrate multiple detection systems into one detector, for example
by running a high interaction honeypot that applies taint analysis, file system
analysis and also provides an open mail relay monitoring for spam.

We discuss the selection of second stage detectors in the section on the
detection strategy in 3.3.

• A second stage detector provides a large attack surface, which is moni-
tored for any attacks or abuse.

• Minimally a detector must provide some way of notifying that some ma-
licious act was performed. Ideally it should be able to correlate this to
a specific IP address that is performing a malicious act. Other preferred
options are the ability to correlate different malicious acts to the at-
tacking IP addresses if these occur simultaneously. Also any parameters
relevant to an observed attack such as the type of the attack, any code
snippets or captured malware samples should be captured and stored.

Input/Output

Messages Every detector reports detected attacks to the managing component by
notifying which IP address is launching attacks.

Network traffic – Ingress A second stage detector will receive some of the suspected
malicious traffic from the Traffic redirector component. Recall that
the traffic is also distributed between available detectors.

44

– Egress Technically none, any traffic routed to the second stage
detectors will connect to it so can not be routed further. Honeypot
detectors themselves are allowed to initiate connections to other
systems and are not filtered.

3.2.5 Black hole
Rerouting all scans and attacks to honeypots may generate high loads on both
the attacking computer and the honeypot as malware suddenly find itself with
an unlimited supply of potential targets. To avoid wasting resources once
attacks have been detected traffic should be forwarded to lightweight monitors
like Darknets or tar pitsThese systems still afford some primitive monitoring
of the malware behaviour without generating excessive load on quarantined
nodes and second stage detectors.

Input/Output

Messages Reports on the number and frequency of connection attempts to ports.

Network Traffic Ingress Receives traffic from the traffic separator, all traffic received
originates from systems that successfully triggered a detection by a sec-
ond stage detector.

3.2.6 Manager
The Manager component serves as the central controller in the system that
controls the behaviour and monitors the output of any process in the system.
The decision tree that it implements is depicted in Figure 3.3, the way decisions
are made is detailed in the next section on the Detection strategy.

It fills two main roles:

• It selects the nodes which need to be monitored using second stage de-
tectors and which detectors are most suitable to achieve a detection. For
these decision it can utilize current and historical data obtained from first
and second stage detectors and the properties of the attacking node.

• It serves as a data logger and correlates alerts received from the various
detectors as to track which alerts yielded confirmations and by which
combination of detectors this was achieved.

The manager receives and sends the following messages:

45

Input/Output

Messages received from – First stage detectors Alerts for nodes emitting malicious traffic
containing the details of the connections that caused the alert.

– Second stage detectors Alerts from honeypots or other second
stage detectors regarding attacks and the attack details

– Blackhole Information on connection attempts and their frequency.
Used for bookkeeping.

– Traffic separator Information on which destination IP addresses
have been rerouted, to which detector and the number of connec-
tions, used for bookkeeping.

Messages sent to – First stage detectors Results of the second stage detectors can
be used to update anomaly models of first stage detectors, so we
send the results of a confirmed detection to the first stage detector.

– Second stage detectors Some detectors may need to be period-
ically reset to a new state or started on a per node basis which
requires some control messages to be sent.

– Traffic separator When a detection is confirmed or a node should
no longer have traffic rerouted the traffic separator need to adjust
its firewall rules.

– Network traffic capture The traffic capture system must receive
the MAC or IP address of nodes whose traffic is to be diverted to
second stage detectors.

3.3 Detection strategy
There are three decisions that are part of the Detection strategy:

1. When to initiate (or continue) monitoring with second stage detectors,
i.e. the decision on whether an alert from the first stage is cause for
further inspection using honeypots.

2. When to declare an initial alert a false positive, this means concluding
when no detection by a second stage detector occurs that the initial
alert(s) are false positives, or reversely that the second stage detector
was not suitable for achieving detection.

3. Which second stage detectors to utilize to achieve a detection and how
traffic is to be routed to these detectors.

46

3.3.1 Initiating monitoring
To decide whether to (continue to) monitor traffic means making a decision
based on an alert received from a network detector and historical data. Our
approach is to start redirecting traffic when an alert is received and to group
any subsequent alerts for the same node with the initial alert. If a false pos-
itive is declared all grouped alerts are declared to be false positives and any
subsequent similar alerts are ignored until a timer expires. The goal here is
to avoid permanently redirecting based on alerts that never yield any results.
This is exploitable by an attacker by triggering first stage detectors and avoid-
ing triggering second stage detectors until a false positive is declared. Then for
the duration of the timer the attacker is free from the system. This attack is
somewhat mitigated by the fact that an attacker can not predict the state the
hybrid detector is in and what portion of its traffic is redirected or monitored,
or when the timer will expire.

3.3.2 Declaring false positives
If traffic is redirected to one or more honeypots but a detection by these
honeypots does not occur we must assume either of the following to be true:

• The honeypot(s) failed a detection because there was nothing malicious
to detect.

• The honeypot(s) failed even though malicious traffic was present, but
no suitable detector was used or traffic was not redirected properly. A
detector failed to convert a true positive alert from a network detector
into a confirmation by a honeypot.

Declaring a false positive is based on a time or connection counter, when
the timer or counter elapses we assume no malicious traffic must have been
present. Conversion failures are lumped together with false positives since
there is no way to distinguish the two at this level. It may be possible that
different patterns emerge from a set of connections and alerts from first and
second stage detectors, but for now our only option is to ensure a large surface
for malware to attack as to minimize conversion errors. The threshold for the
counter affects how long nodes will have their traffic redirected to detectors
and the time detectors have to monitor for attacks.

3.3.3 Selecting second stage detectors
Selecting detectors to route traffic to starts with selecting and installing these
detectors and optimizing these for our purposes. This is the static part of
selecting the honeypot detection. When running the system for every alert
received from a first stage detector we estimate which honeypot is likely to
achieve a detection.

47

Configuring suitable detectors There are several properties relevant for
determining whether a detector can be used in a hybrid detection approach.

• Provide a large attack surface, a larger surface ensures when attacks are
made that these will succeed.

• Correlate network traffic to observed attacks, honeypots based on em-
ulation are typically capable of doing this, but not all high-interaction
honeypots can correlate an attack with the source the attack came from.

• Reporting capability, some honeypots can provide detailed attack details
such as exploit code, malware samples and or other resources associated
with an attack.

• The detector must cover some or all of the malicious behaviour the first
stage detectors are likely to detect.

High or low To ensure unlikely or unknown attacks (zeroday or 0-day)
attacks are detectable high interaction honeypots must be employed. The
objective here is to be able to monitor for attacks that target unpublished
vulnerabilities or that deploy new vectors of attack that are not detectable
with or implemented in emulation based detectors. When selecting different
detectors the main goal is to ensure that the combined attack surface of these
detectors covers all possible vectors malware attack or abuse.

However this is not achievable as only a small subset of all vulnerable ser-
vices and attacks can be detected by low interaction honeypots. Attempting
to cover all possible permutations and combinations of Operating systems and
services is also impractical. However creating high interaction honeypots cov-
ering every variation is not required to create a sufficiently large attack surface
for malware to attack.

For example a high-interaction honeypot running a flavour of Windows and
IIS is likely to come under attack, either because of old attacks still circulating,
or new attacks being encouraged because of low biodiversity (availability of
similar systems in high numbers). Reversely, a system running Android in an
emulator which provides a service using the Apache web server or something
similar is not likely to be a target of memory corruption attacks. The web
application provided by the web server might well be a target of an attack,
but such an attack could also succeed when the same web application is hosted
on a Windows/IIS server. So we can reduce the types of detectors used to cover
known attack vectors and include systems that are most likely to be targeted
by (new) malware as high-interaction honeypots. A selection would at the very
least comprise one low interaction honeypot, and we would expect to augment
this detector with various Windows revisions, and perhaps these days even
some *nix based systems such as Mac OSX, Ubuntu or even mainstream smart
phone systems may prove to be a useful addition.

48

There are also instances where it may be hard to predict whether a service it-
self is the target of the attack or the application that runs on top of the service.
For example (automatically) distinguishing between an attack that attacks a
flaw in the crypto decoding library of a web server from an attack that tries
to inject script code. Since its simply not possible to run every permutation
of services, web applications and operating systems as high-interaction hon-
eypots some trade offs must be made that reduce the number of honeypots
while maintaining a large attack surface. This means that one detector might
be able to monitor for web based attacks, and a different detector can monitor
for the memory corruption attack. This requires distributing indistinguishable
attack traffic to both these detectors.

Attack Technique Specific Network Service/OS/other Implementation Generic detector
Code injection Memory corruption specific service and OS Argus, Dionaea no(some)
Brute force Evaluate long word lists specific service any OS Fail2ban yes
Generic SQL injection Abuse of poor data checks any service and OS glasjvnost? yes
Specific SQL injection abuse via custom SQL crafting specific SQL service unknown no
Spamming abuse of mail servers any service and OS Spamassasin yes

Table 3.1: Some attack types, used techniques and whether these target specific
services/systems. Also shown are some approaches that detect the attack or
abusive behaviour. For some attacks it is not possible to define one generic
detector capable of detecting all variations of that attack type.

Identifying suitable honeypots Having selected a set of detectors that
cover a large attack surface the second issue is selecting which to use when
monitoring for malicious traffic. The amount of attacks launched by a node
is limited by the rate of which it launches attacks and the counters used for
declaring false positives. This means the total number of attacks is finite and
we therefore must select a strategy that selects an appropriate detector before
all chances of detecting an attacks are exhausted.

There are some combinations of first and second stage detectors possible that
may never yield a result, such as combining web application honeypots with
an anomaly based detector monitoring for scanning behaviour. Frequently in-
dexing services are used to locate vulnerable web applications, which avoids
triggering the anomaly detector and never leads to a result. We would ex-
pect similar results if we replace the anomaly detector with a detector aimed
monitoring for the presence of shell code.

In both these cases the chance of attacks occurring or being launched in that
particular fashion, scan first and then attack, is unlikely. This because better
attack vectors are available or because an attack is considered too difficult.
Indexing services will find vulnerable web applications faster then an attacker
can scan these out, and affords a stealthier attack. Remote code execution
attacks through memory corruption on web services are also unlikely attack
scenarios. Also the population of web server systems is quite diverse and

49

modern web servers are typically automatically patched and hardened. Most
attacks on web servers instead prefer to focus on easier means of exploitation
such as weak or poorly secured authentication mechanisms, poorly coded web
applications and loose security settings.

Selecting the most likely detector is asking to guess the type and nature of an
attack before an attack is detected. This seems impossible, but we can make
some guesses based on a few bits of information. The IP address and operating
system of the attacker, the destination port, the first stage detector that raised
the alert, whether the attacked service is also present on the attacking node
and the type of service that is attacked all govern which type of attack is most
likely being executed. For example the presence of the attacked service on the
attackers side may be indicative of worm like behaviour suggesting a honeypot
mimicking the attackers operating system is also vulnerable. The gravitation
of exploitation approaches towards the same techniques and vulnerabilities
means that by observing the targeted service and the type of detector that
certain attacks types are more likely then others. For example attacks on
port 22 or the SSH service are nearly always attacks which brute force login
credentials.

Then there are also niche attacks to consider such as attacks on vulner-
able network stacks or firmware of computing devices. A recent example is
a vulnerability in the Windows 2008 TCP/IP network stack implementation
[67], or a flaw in firmware of a network interface card [70]. The latter can be
ignored as it is too tightly coupled to specific hardware to ever be considered
for use in large scale automated attacks. with network stacks there have been
issues in the past, but issues with network stacks occur infrequently.

To select the most likely detector to route suspected attack traffic to we
assign for each first stage detector a number of probable second stage detectors
for each of the various high profile network services or ports. These probable
detectors are selected to cover the bulk of known attacks and will receive a
large portion of redirected network traffic. In a live deployment we would also
include high-interaction honeypots which receive a low fraction of traffic and
are randomly selected from a pool of detectors.

Adjusting the model If detectors with a high rating consistently fail
to detect anything we can demote these to a lower rating in favour of raising
lower rated high-interaction detectors that perform better to a high rating.

redirecting traffic There are two strategies for routing traffic to detec-
tors:
• Route traffic to different detectors sequentially , one detector at a time,

until a detection occurs or a false positive is declared in which case a
new detector is selected and traffic is routed to this new detector.

50

• Route traffic to different detectors simultaneously where traffic is dis-
tributed between the available detectors based on a predetermined ratio.
To avoid confusing malware connections to a destination IP address are
always mapped to the same detector.

The latter approach is attractive because we assume malware will attack
or abuse more then one node. This means we can distribute the same type
of attack to multiple detectors which should ensure a shorter time to achieve
detection and/or using more detectors without needing malware to launch
more attacks.

We also have to consider what portion of the total traffic from a node
we will reroute to detectors. The objective here is to separate non-malicious
traffic from the malicious traffic without limiting the attack capabilities of
malware. Too stringent filtering here could result in never observing attacks
at the second stage detectors because these are never routed to detectors, or
because attacks are never initiated at all. For example botnet malware will
require a connection to its externally hosted C& C infrastructure before it is
likely to launch any kind of attacks.

• Reroute all traffic.

• Reroute only if connections for a flagged destination port occur and
reroute any subsequent traffic with the same destination IP.

• Use white listing where only traffic to specific services and/or destina-
tions is ignored.

• Use intermediate IDS to separate attack traffic, for example to attempt
separating user generated traffic from attacks on web application/servers.
This approach of using network detectors for ad hoc rerouting of traffic
into detectors is demonstrated by Anagnostakis et al in [2]. It may seem a
bit odd to reapply an IDS at this point, but the only relevant operational
parameter here is the false negative rate. This reverses the role of the IDS
as we are not interesting in what portion of traffic is actually malicious,
but which portion of traffic definitely is not malicious.

We opted to reroute if the destination ports for which network detectors
generated alerts are contacted, this appears to be a sensible default balanc-
ing accuracy and impact on network. It means if alerts from the first stage
detectors correspond to connections that contain attacks we avoid rerouting
traffic before malware is launching attacks, and ensure that any subsequent
connections that may be required for the attack to succeed are also (re)routed
to the same detector.

51

Figure 3.5: The problem of intra network detection, nodes directly connected
to another node launching attacks, indicated by a red line are unprotected and
attacks may remain undetected until a directly connected host-based detector
is attacked. Attacks from or on Internet connected nodes must always traverse
a router which allows inspection of the traffic for signs of attacks.

3.3.4 Sensor placement and Mac spoofing
In a deployment the placement of the redirection and network detection com-
ponents governs what part of the traffic on the network can be observed. To
be able to monitor or redirect traffic it must flow through these components.
For instance communications between two nodes on a LAN will not traverse a
detector placed at the networks edge, seen depicted in Figure 3.5. In the case
of intra-net monitoring this means tapping traffic from and redirecting traffic
at every switch in the network.

It is not uncommon for malware to only select targets on the local network
instead of randomly selecting targets on the Internet. A hybrid of this also
exists where malware focuses on specific (geographical) net blocks. In terms
of detection both the hybrid way and the random target selection will not be
limited to a local network and can be monitored for at the network edge.

To ensure detection of malware that targets both external and internal host
the system must monitor traffic traversing the gateway as well as traffic be-
tween (at least some) nodes on the local network. So there are two scenarios
possible :

• Monitor at (only one of) the network edges, traffic traversing this edge
or the network switches attached to it can be monitored. The latter is

52

achieved via promiscuous mode of network interface cards or by using a
tap point on the switch.

• Traffic is tapped at every switch providing network analysis a full view
of the traffic flow on the local network.

Providing network analysis with an integral view of the traffic flowing in
and out of every node should allow a network detector to detect an infected
node and possibly be more accurate then a detector that only views a subset of
all the traffic. The trade-off is the increased volume of traffic to be processed,
a problem which may only be partly solvable by applying more hardware.
To determine if this approach is possible requires measuring the sustained
volume of traffic a detector can process. What is important is that a detector
eventually is able to monitor at least some traffic so that when a node is
infected malicious traffic can be flagged at some point. It is not required
that all malicious traffic emitted by a node is detectable via network analysis,
provided that eventually an alert is raised by part of the traffic.

Modern Ethernet switches allow extensive control over network flows sepa-
rating the actual flows from the physical links using Virtual LAN. For exam-
ple this allows creating disjoint networks using the same cables and network
switches or perform network access control. It also allows us to capture traf-
fic from specific nodes for inspection and redirection to a honeypot. In cases
where using network management is not practical methods that hack the Eth-
ernet link can be used. These attacks are known as Mac spoofing where ARP
tables on switches or on network nodes are manipulated (poisoned) such that
traffic is sent to a different MAC address. The downside of some of these
techniques are the volume of ARP packets needed to maintain the redirection,
particularly when not the node itself but the network switch ARP tables are
being poisoned.

53

Chapter 4

Evaluation

4.1 Introduction
To evaluate our architecture we built a prototype that implements the ap-
proach outlined in the previous chapter. Our staged detection approach is a
reactive system, which means the approach to monitoring network traffic is
changed based on events generated by preceding network traffic.

This, and the fact that detectors directly interact with the traffic, means
we can not utilize a typical off-line approach to evaluating this type of systems.
Thus we also built a sand-boxed environment to we recreate attacks using both
live Malware samples and simulated attacks using standard hacking tools such
as Metasploit[65]. The implementation of our prototype and lab is discussed
below.

The purpose of this prototype is to study the concept of our approach in
general. In particularly we are interested in investigating the following:

• Evaluate if and how coupling honeypots with anomaly-based network de-
tectors is a viable approach towards monitoring for (attacking) malware.

• Experiment with various attack scenarios in a (simulated to be) real
environment and relate these with existing approaches such as Snort or
single running honeypots.

• Investigate how the various type of attacks (expected to be) launched by
malware are detected by honeypots and assess the practicality of using
honeypots for detecting such attacks.

• Study the accuracy of detection, can we glean from the experiments
anything regarding accuracy of a real system.

In table 4.1 we list some use cases of malicious behaviour we aim to detect
and how we expect behaviour to be detectable. We use these to perform a
qualitative analysis of how the system functions.

54

Scenario Attack summary Exhibited network
anomaly

Exhibited be-
haviour on honey-
pot

How to detect

Brute force
scanners

Poorly monitored
systems using weak
authentication or
authentication cre-
dentials are scanned
out and compro-
mised by trying a
large number of often
reused authentication
credentials

Higher then average
number of failed con-
nections and higher
then average number
of successful connec-
tions to the same port
and IP address combi-
nation.

Application protocol
interactions are lim-
ited to just the first
stages, IE so called
banner grab is per-
formed. Also high
number of failed au-
thentications occur

Locate sources that
are likely to be scan-
ning using TRW and
redirect traffic for
these ports to a high
interaction honeypot
that can monitor the
authentication fail-
ures or the subsequent
post exploitation
behaviour by using
easily brute forced
credentials.

Malware
distribu-
tion via
direct
attacks

Malware is distributed
by scanning for and
injecting malicious
code into vulnerable
or poorly secured
services

Attacks on services
enumerate vulnerable
services by scanning
and/or directly send-
ing attack payloads to
services.

Remote code exe-
cution and malware
downloads to the
honeypot

Scanning behaviour
can be detected us-
ing TRW both low
and high interaction
honeypots for second
stage detectors

Malware
distribu-
tion via
indirect
attacks

Attacks on systems
providing services,
where the attack
turns the attacked
service into a service
that attacks its own
clients, typically with-
out the service itself
being affected

Vulnerable services
are scanned for or
found via indexing
services. In the case of
HTTP services large
amount of probes are
to be expected which
discover vulnerabili-
ties and web services
in use

On the honeypot
changes to the net-
work services are
made via injection,
file uploads and injec-
tion of various script
code into available
web applications

Web based honeypots
for detection and
anomaly detection
based on HTTP
GET and POST
parameters.

Spam Sending Spam is one
of the functions typ-
ically present in mal-
ware, and sometimes
serves not just for
generating income but
also distribution of
malware

Frequent SMTP traf-
fic that avoids using
the local relay servers
and or scanning for
open relays

There is no behaviour
to observe on the hon-
eypot, its just ex-
pected to relay traffic.

Detection relies on the
performance of the
Spam filter in use on
a honeypot, and the
accuracy with which
Spam traffic can be
detected.

Table 4.1: Comparison of malware detection and capture systems

4.2 Prototype implementation
In this section we detail how we constructed our laboratory sandbox and pro-
totype implementation.

4.2.1 Sandbox
The sandbox is a VMware ESX system which contains two virtual networks

• DMZ network, This network contains second stage detectors and utility
machines. The hosts on the DMZ are not reachable by the network
that is monitored or the Internet unless traffic is explicitly routed to
these machines by the detector. The detectors themselves can initiate
connections to the Internet, this to not disrupt any malware attacks that
need to load additional resources.

55

• Simulation network, This network is monitored using our detection sys-
tem and to which we connect infected machines or run attack simulations
on. It connects to the Internet via the gateway which hosts first stage
detectors and also implements a number of filters and redirects in order
to keep malware under control.

The simulation networks gateway filters outbound network connections to
prevent or limiting attacks on regular systems. However, not all outbound
traffic is filtered as malware must be allowed some connectivity to the Internet,
as samples may simply not function otherwise. This is an important issue as
the functioning and execution of malware code is more and more intertwined
with the availability of network services and data. For example, some of our
samples can easily mistaken for benign software simply because the network
domains these sample connect to do no longer exist. We settled upon allowing
HTTP traffic and high order ports, this still leaves some attack capability but
also minimally disrupts any essential communications. We apply rate limiting
on outbound connections to limit the attack capability of samples that are
being analysed.

Both the gateway machines as well as the machines that host the various hon-
eypots are based on Ubuntu-server 10.10 Maverick. To safely access the DMZ
and internal simulation network a VPN was created that connected directly
to the DMZ zone. We continuously monitored traffic on the DMZ gateway us-
ing Tcpdump by simply filtering all the known destinations such as the VPN
clients and the IP addresses used for updating Ubuntu and Windows systems.
This reduced the data captured by such a degree that we could safely operate
malware samples while keeping a sharp eye on any traffic that was leaked to
the Internet. A thing to note when utilizing virtualized environments is that
the ESX implementation itself filtered traffic based on MAC addresses as a
security feature, which needs to be explicitly turned off if one wants to tap or
manipulate traffic that traverses a virtual switch.

4.2.2 Hybrid Detector
The implementation of the detector comes down to:

• Selecting network intrusion detectors and honeypot implementations.

• Writing a implementation for the managing of these detectors and the
traffic redirection component.

Because our test environment contains just one virtualized network switch,
we did not need to explicitly implement a way of capturing traffic. The traffic
redirection and first stage detectors both run on the simulation network gate-
way which also hosts the logic for the manager component and web service

56

that reports on the status of the detector. We integrated the manager, redi-
recting component and reporting functionality into one package that runs on
the simulation network gateway. Detectors can leverage an XML-RPC inter-
face to interact with the managing component which itself exposes web pages
to control the hybrid detector. The choice of using XMLRCP was purely a
practical consideration, each detector or honeypot is different in the way data
is extracted, so rather then trying to writing an interface for each individual
detector we opted for wrapping the detector with XLMRPC.

Manager

The manager maintains the state of the system, tracks received alerts and
keeps track of the current redirection table. The latter is needed because
without implementing an interface to the Netfilter kernel extensions ourselves
there is no easy way to query the Netfilter firewall rules. We also encountered
some other limitations with the Iptables implementation that we had to work
around, we will discuss these in the next subsection.

The data the manager maintains is structured as a Host entity which can
be set to three states which affect how we process alerts:

• Ignore mode : In this mode we do not respond to alerts or confirmations
that are received from detectors

• Redirect mode : In this mode any alerts received from the first stage
detectors is stored and processed. If this is an alert for a new port
we add redirection rules, otherwise we just update the times occurred
counter for this alert.

• Drop mode : We engage this mode after a pre-set amount of time has
elapsed since the last confirmation was added or initial alert was raised.
For all ports for which alerts were received the redirects are removed and
drop rules put in place.

From redirect mode the system can transit back to ignore mode, or to drop
mode depending on whether confirmations occur. This process is depicted in
Figure 4.1.

State Alert Confirmation Redirection
changes made

Ignoring Ignored Ignored Never
Redirecting Added Added For new ports
Dropping Ignored Added Never

Table 4.2: Description of the way alerts and confirmations are recorded, confir-
mations may still occur when the system switches from redirect to drop mode
and are therefore recorded in drop mode as well.

57

Host
Host: IP Address
Status : String

Incident
Created : Date

AbstractAlert
Destination port: int

Alert Confirmation

incidents
1..*

attacker
1

alerts
0..*

belongs to
1

confirmations
0..*

belongs to
1

Figure 4.2: Decision diagram for the hybrid detection system

Ignore
mode

Redirect
mode

Drop mode

initial alert

Confirmation received

Timeout
End of quarantine

Figure 4.1: State transition diagram for
the hybrid detection system

Outside of the Redirection mode
we drop all first stage alerts for a
host, we could cache alerts while in
ignore mode but there seems little
incentive to do so, in table 4.2 we
list for each state how we process
alerts . An issue here is that the
first stage detectors themselves might
not repeat the same alert for a given
amount of time, so if we switch mode
just after we ignored an alert it will
take up to the expire time of the de-
tector before the alert is repeated. In
drop mode we will still add confir-
mations instead of dropping them as
these may still occur just after changing modes due to timing issues.

An incident is an abstraction that we use to track alerts and confirmations
for a host from the moment that a host is placed in redirect mode until it is
placed in ignore mode. Figure 4.2.2 depicts how these data types are related.
To the current incident for a host we add alerts and optionally confirmations.
If an alert is reported for an unknown host we create the new host, add to it
an incident and place the host in redirection mode. The most recent incident
is the current incident until replaced by a new incident. This allows us to keep
historic data on past alerts.

58

Redirection component

Redirecting traffic is performed using the Netfilter implementation in the kernel
which we manipulate using Iptables. We outlined a number of properties that
we intended to utilize for distributing traffic between second stage detectors,
but have not been able to implement all of these using the Iptables interface.
The two main limitations we encountered were:

• Setting the percentage of traffic that is directed to each detector. The
problem we encountered was that while we could randomly match a rule
and set it to trigger only after connections to certain ports were observed
we could not persist this mapping. So instead of sending traffic to the
same detector as the initial connection subsequent connections would be
distributed between the detectors as set by the ratio that we specified.
The work around in this case was to resort to fixing the ratio by not using
the random module of Iptables which was able to persist mappings, at
the cost of selecting the ratio.

• Redirecting traffic without resorting to masking source IP addresses. Be-
cause we directly apply DNAT filtering on two networks that are directly
linked through the gateway the system would try to route returning
connections instead of applying the network address translation again.
So connections were successfully rerouted but then responses would be
dropped by the gateway (because they could not be routed) instead of
having the remote address replaced by the original IP address via the
NAT tables. We have not been able to find a practical solution using
Iptables to solve this other then applying source masquerading.

Aside from these limitations we were successful in creating firewall rules
that allows us to dynamically distribute traffic evenly between various detec-
tors. The latter issue limits us to only monitoring one host on the test network
as we have to hard code the IP address. However as far as we can tell these
issues are related to the way the Iptables and routing is implemented, but not
made impossible by the TCP/UDP protocols.

Blackhole component In our test system we are not particularly concerned
with monitoring what happens when we are with monitoring a host, so we just
drop traffic to ports for which an alert exists and at least once confirmation is
associated with the incident.

First stage detectors

As first stage detectors we installed the Bro[32] and Snort [41] Intrusion detec-
tion systems which monitored the network interface attached to the simulation
network. We utilized the default snort rules as distributed with the snort pack-
age. From the Bro IDS we used the TRW implementation which was slightly

59

modified to track scanner IP address and destination port tuples instead of
just source IP addresses. Other emerging IDS implementations are Suricata
[72] but we did not integrate this detector.

Second stage detectors

We installed a number of honey-pots and host based detectors to use for second
stage detectors

• Dionaea, a low interaction honeypot, designed to capture direct attacks
via remote code injection using Libemu[63], and can also capture files
via FTP or SMB services. It itself allows registering handlers for events
generated within the honeypot, we added a handler that submits a con-
firmation when code injection is detected.

• Argos, a high interaction honeypot within which we installed a Windows
XP OS (SP2). It reports code injection attacks either directly via a
terminal or a control socket and also dumps log files of these events. We
had difficulty correlating the attacking IP address to the code injection
reported by the virtual machine, but from what we gather from available
literature this is possible. Because we are forced to masquerade the
source IP address we did not further investigate this issue.

• Fail2Ban, technically not a honeypot but a script that parses the system
log files looking for the brute-forcing of login credentials. We added a
script so it reports directly reports any login attempts it considers brute-
force attempts.

• SMTP mail server, to provide a SMTP service for sending spam we use a
short python script that implements some mail server functions. Beyond
reporting that mail is submitted it performs no other functions.

• GlastopfNG, which is a web-based honeypot aimed at detecting auto-
mated attacks and various forms of script injection.

4.2.3 Traffic capture
We experimented with redirecting of traffic at the Ethernet level using the
Ettercap and Scapy libraries. This did not give any issues during testing aside
from the Scapy library being slow and dropping packages. The tool Ettercap
did function as was expected. We did not perform any kind of load testing
with these programs.

60

4.3 Experiments
We experiment with our prototype by evaluating the use cases described at
the start of this chapter, either by simulating the use case or by using live
malware samples which exhibit behaviour that fits a use case. The purpose of
these experiments is to evaluate what kind of attacks or abuse can be detected
and also evaluate how suited individual honeypot implementations are for this
type of use.

Examples of detection We provide several examples of malware executions
and simulations by a system which is monitored by our hybrid detector below.
Each execution is allowed to continue for several minutes and we record de-
tections by first and second stage detectors. Where appropriate we also note
why behaviour is detectable and where it is not. The results of these experi-
ments are summarized in Table 4.4 and Table 4.4 at the end of this chapter.
Simulation of some behaviour is necessary due to limited availability of the
number of samples which generate malicious traffic when executed. Samples
which do not immediately generate malicious traffic may still generate traffic
at a later point in time, which could be monitored for by allowing samples
to run for longer intervals or even schedule periodic execution of a sample.
However we manually monitor the execution of malware samples so doing so
is not practical, instead we opted for simulations as a substitute. The

Sasser The Sasser worm is a typical Internet worm which aggressively scans
for targets to attack. It is an example of malware performing a direct attack
using remote scanning to find targets. Because this is an old worm honeypot
detectors based on the Windows XP SP2 OS and an Argos detector is not
vulnerable to this worm, but a low interaction honeypot like DIONAEA is
capable of detecting the attacks this worm launches. This worm is predictable
in its behaviour which makes it very useful for experimenting.

This worm performs remote scanning and direct attacks, which should be
detectable using the TRW algorithm used as a first stage detector. The worm
first pings a host before before directly attacking, the attack directly triggers
a generic snort rule for NOP sleds and also the first stage TRW detector after
several failed connection attempts. In some instances the sample launches very
few attacks which exposed a problem with the way we currently distribute
connections to the various honeypots. If the number of connections is too
low, due to the way IPTABLES seems to balance connections, only the first
detector will receive connections. When the worm attacks alerts are also raised
for port 9995 which is used to distribute the worm binary. Additionally the
Ports 138 and 137 are flagged for scanning due to UDP broadcast packets.

Blaster The blaster worm sample is a example of malware performing direct
attacks and uses local scanning to find its targets. It utilizes ARP scanning

61

to localize targets and launches attacks on the windows DCOM service on
port 135 which downloads and executes the worm binary. We do not monitor
ARP requests with TRW but if there are enough hosts on the local network
without a service on port 135 it is detectable by the first stage detector using
TRW, so we simulated with 3 such hosts on the local network. The attack
was quickly identified by both the network detector and the low-interaction
honeypot DIONAEA.

Netsky The Netsky worm is an email worm which attempts to send copies
of itself to any email addresses it can scrape from an infected machine. We
observed it attempting to (only) use Yahoo SMTP servers to send spam mes-
sages, which makes it an example of a hit list attack. Since SMTP connections
are blocked from leaving the simulation network these trigger the first stage
detector and mail is sent instead to a simple SMTP daemon which received
some spam emails. The second stage detector is not a real honeypot as it is
only capable of accepting email but can not distinguish Spam from normal
email messages. For this a traditional spam classifier would be needed.

Credentials brute forcing Using the Metasploit toolkit we simulated a
remote scanner performing SSH account brute forcing. This is an example of
the brute-forcing of credentials use case using random scanning. We expected
our system to easily detect this type of attack and behaviour but on several
attempts the scanning phase failed to trigger the TRW detector and so con-
nections were never redirected. It remains unclear why this occurred and only
occurs in a few instances.

MS08-67 simulation To test the Argos honeypot and simulate detecting
a modern remote scanning worm such as the Conficker worm we used the
Metasploit scanner tool to scan for the vulnerable port and manually launched
some attacks on some of the detected services, which (all) are the honeypot
detectors once the TRW detector is triggered. Manually launching attacks
caused the honeypot detectors to post confirmations to the hybrid detector
system.

HTTP bot (Waledac) The HTTP bot malware we evaluate is of the
Waledac variety, it did not initiate any other connections beyond HTTP re-
quests to no longer existing web-servers. Since this type of infrastructure is
commonly in use by modern malware we evaluate several similar binaries of
the Zeus malware variant with similar results, though in some instances HTTP
connections to existing web servers known as drop zones are observed. We ex-
pected to observe the downloading of addition malware binaries and/or the
launching of attacks or spam, but did not observe this behaviour. This could
be due to these samples already being published on a public malware tracker,
lack of new command instructions or infrastructure not being available. The

62

net detection result here is a false negative for all samples. Sometimes the
web requests to non existing infrastructure leads to alerts by the first stage
detector, but these never lead to detections by a second stage. Since these are
still malware samples collecting personal information which is submitted to a
server we consider this malicious traffic which is not detected as such.

P2P bot A different type of botnet is a P2P based botnet binary, this binary
does not submit or request information via web services but utilizes peer 2 peer
networking to exchange information. This malware did not launch any attacks
but it does generate significant amounts of UDP traffic which causes the first
stage detector to raise a large number of alerts, we recorded over 100 different
ports being flagged as malicious. Given that for none of those ports a second
detector is available all of those would be ignored leading to a false negative on
detection. During the five minutes we let the sample run we did not observe
it performing any other network activity beyond the UDP based traffic.

Bittorrent To simulate a use case of a legitimate program triggering network
detectors we downloaded a Linux distribution using Bittorrent, which resulted
in the high order port typically used by Bittorrent to be flagged for scanning,
as well as ports 80 and 53. Port 80 seems to be flagged because of multiple
HTTP requests to services providing peer lists which do not respond in time.
The only unexpected port to be flagged is port 53/UDP used for DNS queries
as we redirect all DNS queries to a local DNS server, and so queries always
receive a response. We attribute this to the Bro detector as this behaviour
also occurs with other UDP services like those on ports 138 and 137.

4.3.1 Limitations of the experiment
For three of our use cases we are able to recreate or simulate the described
behaviour. For the the indirect attack case no malware samples exhibited that
type of behaviour, and extensive simulation is made superfluous by the lack of
a honeypot with the facilities to detect these indirect attacks adequately. We
are however able to evaluate the direct attack and Spam use cases as well as
simulate the brute forcing of credentials behaviour use cases.

The shortage of malware samples exhibiting certain behaviour is a result
of the way modern malware or botnet malware is integrated with and the dy-
namics relation of malware and online resources. The result of this dynamic
relation is that malware alters behaviour or simply does not function at all
depending on the availability or nature of these resources. Furthermore mal-
ware can implement techniques that hamper analysing the malware or change
its behaviour when it is executed in a virtual machine or debugger. Finally
malware may only exhibit certain behaviour when it is instructed to do so.
This makes the use of botnet based malware, at least in our case, impracti-
cal. (note Recently work has been published on how to run and simulate your

63

own botnet within a research environment [9]). The only solution to this is
to utilize approaches that allow monitoring malware binaries over longer time
intervals.

4.3.2 Comparison with single honeypot
Malware target selection can be divided into four general groups of behaviour.
The local and remote scanning behaviour randomly selects targets to contact
on or off the local network. The opposite of this behaviour is the use of a hit
list for nodes to attack which distinguishes from the scanning approaches by
a much lower failed connection ratio. A special case of the hit list is where
only a single note is (repeatedly) attacked. We compare the number of con-
nections required before these attack scenarios are detectable using honeypots
and network based detectors in Table 4.3.2. In this comparison we assumed a
local network size of 255, and a global network size of 4B. The single honeypot
monitors one IP address whereas the network detectors monitor the local sub
net.

Target selection Single honeypot Hybrid detector
Local scanning (1-255) 128 (5-∞) 5
Remote scanning (1-4B) 2B (5-∞) 5
Hit list target ∞ (5-∞) ∞
Single target ∞ (5-∞) ∞

Table 4.3: (Best case - Worst case) and average number of malicious connection
required before detection occurs. Payload based detection applies signature-
or anomaly-based analysis and assumes if an initial connection does not trig-
ger the detector subsequent (similar) connections will not either. The TRW
detector counts connection attempts as well as connections.

4.4 Analysis of results
Having implemented a prototype and experimented with the various use cases
we conclude that redirecting to honeypot detectors as a means of detecting
malware infections is a viable, but not very practical approach. The reason
for these have to do with the context that attacks expect to be executed in, or
the lack for want of a specific context, and concerns regarding accuracy. We
will discuss these below and briefly revisit these issues and our initial research
questions at the end of this thesis.

Context It is definitely possible to glean from network traffic whether a
particular machine is infected, but in the cases not involving direct attacks by

64

remote code injection utilizing a host based detector presents no advantage,
and in some cases will be detrimental towards detection.

Spam and credential brute forcing We found that in cases where the
context is less relevant, such as various authentication protocol interaction we
can only redirect if no authentication of endpoints takes place, in which case
transparently proxying connections rather then redirecting allows the same
level for monitoring connections. In the case where context is relevant, say
someone is attempting to brute force a Google Gmail account we lack the
context to asses whether this is taking place. In such an instance it would
be more useful to monitor the HTTP response headers or page content. The
same example applies to detecting Spam, where spam is sent via other SMTP
servers the network stream can be observed, and samples carved directly from
the stream or the connections proxied. If a web based form is abused a detector
needed to detect such abuse is not present, and could not be detected unless
traffic is redirected to an exact duplicate of the abused web form instrumented
for measuring Spam abuse.

Indirect attacks Redirecting indirect attack traffic is very likely to be
detrimental to detecting malware infections rather then improving detection
results. Detectors exist for detecting generic forms of web attacks, but all
these fail to detect targeted attack that take into account the context of an
application or the way it integrates with other services. Reversely with the
intensive (ab)use of social networks and protection systems present on those
same social networks it is very likely that attacks can not be observed un-
til malware is logged in to the social networking site. For example there are
protections which serve to prevent attackers from abusing vulnerabilities to
perform cross site request forging attacks (CSRF). However these same pro-
tections also prevent malware from, for example, directly posting a malicious
URL to a social networking site if it were to use CSRF countermeasures. To
post an URL the malware would first have to go through the login process
and obtain the CSRF token used as a protection against CSRF attacks. This
ties detecting the malware attack to a specific sequence of actions and data
that it expects, which means without the context of the web site present the
attack is unlikely to be executed. Note that the malware could just as easily
steal the CSRF token from, however what constitutes the token is dependent
on the context of the application. So the malware could still only attack if the
service its communicating with is the original intended target, or a honeypot
that approximates the same context.

Direct attacks Remote code injection attacks on honeypot systems or
other direct attacks that upload malicious files also depend on context. How-
ever the current situation is that a large portion of Internet connect system
runs Windows XP and the majority of malware is, currently, targeting this

65

platform. Even though in the future this might change we argue that the
range of contexts we would need to present for malware to succeed remains
limited to major patch levels such as service packs. So whereas the number
of different contexts for web applications is infinite the range of operating sys-
tems or patch levels is not. This means that for every suspected direct attack
there is a limited set of contexts in the form of high interaction honeypots to
evaluate which makes redirecting traffic a viable strategy.

Accuracy Since traffic is redirected any errors that are made are costly,
though only slightly less worse then dropping traffic. However the honey-pots
can only report an attack has taken place, if no attack is reported it is unclear
whether the alert is a false positive or the attack is not detected(or unsuccess-
fully because of lacking context). Given that we can not definitively conclude
that a true positive detection by the first stage always yield to a confirmation
by the second stage, can this approach be more accurate then the detector
deployed by itself? It seems that this is only true if retuning a first stage
detector for a higher trade-off in false positives and true positives is possi-
ble, and the increase in detection rate is offset by the conversion rate of the
second stage detectors. This is not immediately obvious to be the case, nor
did we find any useful metric describing this relation between detection ratio
for network-based detectors, or were able to establish a statistically significant
conversion ratio from our own system. What we can say about this approach
is even with short redirection intervals it is likely that any intrusion detection
approach tuned more sensitive then what it is designed for yields a dispro-
portionate higher increase in false positive and thus connections that are, if
however brief, blocked. So we do not expect an improvement off detection
rates by network-based detectors that already perform well.

66

Use case Sample Target selection Detected by (1st/2nd) Result Notes
Direct at-
tack

Sasser Remote scanning TRW/DIONAEA TP very noisy

Direct at-
tack

Blaster Local scanning TRW/DIONAEA TP

Spam/IndirectNetksy Hit list TRW/MAILTRAP TP detectable because
blocked SMTP con-
nections triggering
TRW

Bruteforcing Scanner Credentials Simulation TRW/FAIL2BAN TP
Direct at-
tack

Scanner MS08-67 Simulation TRW/ARGOS TP

Indirect
at-
tack/Spam

Waledac Hit list TRW/No attack FN Only Fetched configu-
ration settings

Indirect
at-
tack/Spam

P2P bot (Gimmev or Grum) Unknown None/No detector FN P2P high order port
UDP traffic to Ru IP
addresses, file sharing

Not mal-
ware

Bittorrent Remote scanning TRW/No detector TN DHT generates many
failed connections

Table 4.4: List of evaluated use cases, the samples used and the way these select
targets to attack. In the detected by column we list the detectors that raised
any alerts, details for these alerts are in Table 4.4. No Attack or No detector
means no attack is observed or that there is no second stage detector for the
(suspected) malicious traffic. In the Result column we rate the result or failure
of detection as True or False detections. The indirect attack examples are rated
False Negatives(FN) because even though no attack s observable other (not
covered by the use cases in Table 4.1) malicious traffic is still present.

Sample 1st stage 2nd stage Notes
Sasser 138,137,445,9995 445 138,137 not part of at-

tack
Blaster 137,138,138 138,137 not part of at-

tack
Netksy 25,53,123,137,138,445 25 137,138,445 not part

of attack
Scanner
Creden-
tials

22 22

Scanner
MS08-67

445 445

HTTP bot
(Waledac)

80 None no attack observed

P2P bot 100+ high order ports None no attack observed
Bittorrent 53,80,139,6789 None not malware

Table 4.5: Alerts raised for various ports and confirmations by second stage
detector for each experiment

67

Chapter 5

Conclusions

5.1 Revisit research questions
• Given that honeypots are near perfect classifiers of malicious behaviour

can honeypots be extended to have a broader network view by actively
re-routing suspicious traffic to the honeypot detector?

Yes, in principle any system designed to function as a honeypot can have
traffic routed or redirected to it (whether based on indications provided by
anomaly-based network detectors or not). This allows constructing detection
systems using anomaly detectors and honeypots that are both resilient against
attacks on the detectors itself and capable of detecting known and unknown
attacks. We have shown this by designing and prototyping a detector that
combine these detectors. However for most of our uses cases we discovered
that using detectors in this fashion is not a practical approach for any use case
bar direct attacks as for the other approaches network analysis can achieve
similar or better results without blocking or redirecting connections.

• Re-routing traffic into honeypot detectors has a detrimental effect on
network performance as a whole, can we formulate a strategy that min-
imizes routing non-malicious traffic into honeypots?

Our design incorporates a strategy that based on the assumption of mal-
ware launching multiple attacks distributes suspected attack traffic between
likely detectors, and only diverts traffic to these detectors if connections to
suspected attack ports are initiated. This may break some attacks where the
initial connection to a different port is not flagged by a detector, but we are
not aware of any attacks that would be hampered by this approach. We were
able to recreate and simulate attacks which the system detected using worm
malware samples and simulating behaviour using the Metasploit tool-kit, ex-
cept for the indirect attack case where we resorted to published analysis of
malware samples to evaluate how well we can expect these to be detected.

68

5.1.1 Honeypots as network detectors
The first question we wanted to answer is whether we can detect malware this
way, and how well this functions. We had three worm samples that performed
direct code injection or SMTP spamming attacks and also simulated SSH
brute forcing and code injection using the Metasploit toolkit. Even though we
distribute traffic these attacks did not seem to suffer any negative effects and
in all cases we observed near instant results as soon as the anomaly detector
raised alerts for ports. We also acquired samples of the recent Conficker and
Stuxnet worms, but neither would function in our VM. We do know however
that the Conficker worm is detectable using both the low and high interaction
honeypot we deployed, so given that it also exhibits scanning behaviour should
be detectable. The Stuxnet worm is a less clear case. As we understand
it, this malware does not actively scan but utilize information from its host
computer to locate new victims. Because of this behaviour it already has some
information about its victim prior to initiating a connection, which entails that
a redirection strategy such as used in our approach is not viable.

5.1.2 How does it compare
Honeypots on a local network are likely to detect malware that scans the
local network, or uses broadcast information to locate new victims. If the
honeypot does not broadcast traffic or is not explicitly listed somewhere then
it is unlikely to get attacked by malware that does not scan for targets (for
example hit list malware). Our experiments seemed to confirm this behaviour,
the worms that scanned the local network were instantly detectable by a local
honeypot, whereas a sample that randomly selected a target IP address was
not. During the experiments we continuously ran Snort, but it did not pick
up any of the attacks from the older worms, presumably because the samples
were too old.

5.1.3 Suitable detectors
Do all honeypot approaches make suitable detectors? In our description of the
implementation we listed a number of approaches that we used or implemented
to be used as second stage detectors.What we found when using these detec-
tors is that the context a detector provides, within which attacks can be/are
executed, is typically limited. If the number of different possible contexts is
large, or even see seemingly infinite such as the variation in available web ap-
plications, detectors employ rule based approaches to achieve detection instead
of the traditional model where the honeypot itself is monitored for changes.

This distinction is important because the reliance on rules also means the
specific context that a real honeypot can provide is not used or available.
Compare for example rule based SQL injection monitoring with a detector that
monitors a real web applications database for query structures that should not

69

be occurring. Any injection attack that relies on features present in this web
application for its attack, or perhaps requires to be logged in to a certain web
page, will be much harder to detect, if detectable at all with a rule based
approach that does not provide the same context as the web application. This
issue of lacking context is less of an issue with direct attacks because here the
number of different contexts is small, and in the case of brute forcing (services)
or Spam non existent.

So monitoring traffic for indirect attacks by redirecting to detectors may
be worse then monitoring the interaction of attacks with services. We do not
argue that the implementation of the particular web based honeypot that we
used is lacking, but that it and any other rule based implementations can not
emulate the context of the web application that is attacked. However it is clear
to us that without context being a factor there is no advantage of utilizing a
host based detector over a network based detector.

So we make the argument that for the purpose of detecting indirect at-
tacks via web applications it does not appear to be desirable to redirect traf-
fic for the purpose of detecting attacks. Correlation-based approaches which
track (differences in) inputs and outputs to web applications and so externally
monitor for changes to behaviour, for example Atlantides[7], seem far more
suitable approaches. Perhaps such approaches can be augmented with client
side honeypots which monitor applications suspected of having been attacked
by malware and are suspected of now spreading malware themselves. For cre-
dential brute-forcing and Spam the reliance on rules is less of an issue as in
these instances the distinction between good and bad behaviour is relatively
well defined and so ways of evading these rules are limited. To be precise these
use cases depend on the protocols used instead of individual implementations
of these protocols.

5.1.4 Making errors
The fourth and final point of interest when experimenting was the conversion
ratio, i.e. when did alerts lead to confirmations. We observed that alerts for
the various worms that we execute in our sandbox yielded immediate results,
as soon as traffic was redirected based on an alert we would see results. This
would suggest that keeping the interval until a false positive is declared short
a good approach. Even though there is not enough data on how often a real
attack would fail to be confirmed we can show an example where an alert would
fail, where it will not be confirmed even though a legit attack took place. A
vulnerability the Stuxnet malware exploits to distribute copies of itself is the
MS10-061[68] vulnerability. We tried attacking a standard Windows XP SP2
honeypot with this attack, and this gave no results. This is expected because
the attack makes use of a particular configuration setting that leaves the system
vulnerable. This could be solved by adding more high interaction honeypots
or weakening the existing honeypot but it seems impossible to cover every

70

operating system and permutation of security settings.

5.1.5 Future research
We propose the following future research:

• Staged network-based detection, rather then redirect traffic to honeypots
use alerts to preselect (future) traffic for analysis. Several approaches to-
wards network-based detection are attractive because of high accuracy
and inherent ability to detect unknown attacks, but see limited deploy-
ment because of limited processing capacity. For example network level
shell code emulation is a very attractive approach for detecting direct
memory corruption attacks, but is not sufficiently fast enough to be ap-
plied on a large network. However if traffic were to be pre-filtered for
malicious traffic using lightweight anomaly based detectors and so re-
duced to a manageable set size this may prove to eliminate or reduce the
limitation of processing capacity. This proposal relates to our project be-
cause it applies the same two stage approach towards detection, but now
without the penalties imposed by blocking connections. Also related to
this is the application for ad hoc interception of encrypted (but unauthen-
ticated) traffic so a second stage is able to apply content based analysis.
This is a somewhat controversial approach, but acceptable within a local
network given certain conditions are met. This is a relevant considera-
tion because with the imminent (and unavoidable) large scale adoption
of IPv6 coupled with pervasive support for hardware accelerated strong
cryptographic support we may well see increased use of encrypted (but
unauthenticated) network connections. Which would make large scale
use of content based analysis difficult.

• Staged client side honeypot, Some indirect web-based attacks aim to alter
or probe web pages. In cases where pages are altered to point to mali-
cious code these changes may be detectable using statics analysis or high
interaction client honeypots. So we propose to utilize existing approaches
that can already provide indicators of possible attack behaviour and use
these for generating leads of possibly malicious web-pages, and subse-
quently analyse these pages using static/dynamic analysis approaches.
Also a reverse approach may be interesting, if a machine is suspected of
launching attacks it itself may provide services or listen on odd ports.

• Baiting malware, Instead of diverting traffic to honeypot detectors and
risking costly mistakes by (unavoidably) blocking legitimate connections
we propose to decouple the detectors by no longer diverting traffic to
detectors. Instead network based analysis is used to determine which
hosts may be utilizing external data sources to locate targets to attack
and detectors are dynamically added to these sources. This entails that
if a node queries a target list this will include a honeypot detector. For

71

example Stuxnet appears to utilize context information from its victim
to locate other systems to attack. This list is constructed by information
obtained via broadcast and peer information exchanges. Here we avoid
the negative side effects of making costly mistakes, while still actively
searching for malware within the network. It is unclear how well this
approach would extend beyond the SMB protocol, but is nevertheless
interesting approach as malware abusing the SMB protocol to attack
peer systems or distribute copies is a popular technique.

Recommendations

One of our recommendations is to improve the availability of malware samples,
specifically for making available samples for which the Internet infrastructure
is still active. While obtaining malware samples for analysis is trivial we found
that for most of our samples network infrastructure was no longer present.
While this is unavoidable we even experienced this issue with samples that at
the time of analysis were approximately two to three weeks old. Also analysing
malware behaviour, particular the network traffic generated by malware is so
far only analysed on an ad hoc basis. Several binary analysis approaches that
continuously analyze and sample new malware exist such as Bitblaze[42][59],
Anubis[56] and Joebox[62], but so far limited attention has been given to
analysing and classifying network traffic on a similar structural level.

5.2 Conclusion
In this thesis we proposed the use of honeypot detectors as network detec-
tors and designed, prototyped and evaluated a scheme that aims to extend a
honeypot into a full fledged network detector monitoring for signs of malware
infections. From our results and experiences gained when prototyping and
experimenting we conclude that while no technical objections exists this ap-
proach remains hampered by decreased accuracy as a result of failed detections
by honeypots, and decreased connectivity as a result of false positives by first
stage network detectors. Note that the alternative would be to not filter traffic
at all, or block connections outright and with that accept blocking legitimate
traffic as well.

The core of the problem is matching alerts for potential attacks from net-
work detectors to a proper second stage detector capable of detecting the
attack, either via emulation or because it provides the appropriate context in
the form of a vulnerable service and operating system. This is most evident
with the indirect attacks use case as there are many different web applications
which can be attacked, and not all of these web based services can be suffi-
ciently emulated or recreated on a local honeypot detector. Detecting direct
attacks is limited in the same way, but here a disproportionate amount of at-
tacks focus on a small subset of service implementations, operating systems

72

and vulnerabilities, which allows using a smaller set of detectors while still
being able to detect the majority of attacks.

However this means that it seems impossible to apply our approach as a
generic detector because:

• Too many different second stage detectors means we can not ensure that
suspected traffic is rerouted to detectors until detection occurs as we can
only reroute traffic for a limited amount of time.

• It is not feasible to recreate a suitable target context for every conceivable
(indirect) attack because the targeted web service does not lend itself
for recreating inside a detector, for example because the target of an
attack is behind some form of authentication. This limits the ability to
recreate the targeted context within a detector. For Network services
and operating systems this also applies but due to lower diversity the
impact is also less often felt.

The problem with using honeypots as network detectors is that the set of
detectable behaviour by a honeypot and first stage detectors are divergent. An
algorithm like TRW can not distinguish between the various use cases, which
is why we devised a scheme that allows combining several honeypot detectors
which together cover the use cases. However as we’ve seen its only partly
possible to create second stage detectors which together cover the behaviour
detected by a first stage detector. As a result second stage detectors will
always fail to detect some attacks that are flagged by first stage detectors,
which seems a problem which is not easily solved.

73

Bibliography

[1] Hyang ah Kim. Autograph: Toward automated, distributed worm sig-
nature detection. In USENIX Security ’04: Proc. 13th Usenix Security
Symposium, pages 271–286. USENIX, 2004.

[2] K.G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A.D. Keromytis. Detecting targeted attacks using shadow honeypots.
In Security ’05: Proceedings. 14th USENIX Security Symposium, pages
129–144, 2005.

[3] S. Antonatos, K. Anagnostakis, and E. Markatos. Honey@home: a new
approach to large-scale threat monitoring. In WORM 07:. Proceedings of
the 2007 ACM workshop on Recurring malcode, pages 38–45. ACM, 2007.

[4] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The ne-
penthes platform: An efficient approach to collect malware. In RAID
’06: Proc. 9th International Symposium on Recent Advances in Intrusion
Detection, pages 165–184. Springer, 2006.

[5] M. Bailey, E. Cooke, F. Jahanian, A. Myrick, and S. Sinha. Practical
darknet measurement. In ICICS ’06: Proc. 40th Annual Conference on
Information Sciences and Systems, pages 1496–1501, 2006.

[6] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, C. Kruegel, and
UC Santa Barbara. A view on current malware behaviors. In LEET
’09: Proc. 2nd USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats, 6th USENIX Symposium on Networked Systems Design and
Implementation. USENIX Association, 2009.

[7] D. Bolzoni, B. Crispo, and S. Etalle. Atlantides: An architecture for alert
verification in network intrusion detection systems. In LISA ’07: Proc.
21st conference on Large Installation System Administration Conference,
pages 141–152. USENIX, 2007.

[8] David Brumley, Li hao Liu, Pongsin Poosankam, and Dawn Song. Design
space and analysis of worm defense strategies. In ASIACCS ’06: Proc.
2006 ACM Symposium on Information, Computer, and Communication
Security, pages 125–137. ACM Press, 2006.

74

[9] J. Calvet, C.R. Davis, J.M. Fernandez, J.Y. Marion, P.L. St-Onge,
W. Guizani, P.M. Bureau, and A. Somayaji. The case for in-the-lab botnet
experimentation: creating and taking down a 3000-node botnet. In AC-
SAC’10: Proc. 26th Annual Computer Security Applications Conference,
pages 141–150. ACM, 2010.

[10] G.F. Cretu, A. Stavrou, M.E. Locasto, S.J. Stolfo, and A.D. Keromytis.
Casting out demons: Sanitizing training data for anomaly sensors. In
S&P ’08: Proc. 28th IEEE Symposium on Security and Privacy, pages
81–95, 2008.

[11] G.F. Cretu, A. Stavrou, S.J. Stolfo, and A.D. Keromytis. Data san-
itization: Improving the forensic utility of anomaly detection systems.
In HotDep ’07: Proc. of the 3rd workshop on on Hot Topics in System
Dependability, 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks,DSN’07, 2007.

[12] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen.
Honeystat: Local worm detection using honeypots. In RAID ’04: Proc.
7th International Symposium on Recent Advances in Intrusion Detection,
pages 39–58. Springer, 2004.

[13] L. Ertoz, E. Eilertson, A. Lazarevic, P.N. Tan, V. Kumar, J. Srivastava,
and P. Dokas. Minds-minnesota intrusion detection system. Published in
Data Mining, Next Generation Challenges and Future Directions, 2004.

[14] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic
blending attacks. In Proc. 15th USENIX Security Symposium, pages 241–
256. USENIX Association, 2006.

[15] G. Gu, Z. Chen, P. Porras, and W. Lee. Misleading and defeating
importance-scanning malware propagation. In SecureComm ’07: Proc.
3rd International Conference on Security and Privacy in Communication
Networks, 2007.

[16] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter:
Detecting malware infection through ids-driven dialog correlation. In
USENIX Security ’07: Proc. 16th USENIX Security Symposium, pages
1–16. USENIX Association, 2007.

[17] X. Jiang and D. Xu. Collapsar: a vm-based architecture for network
attack detention center. In SSYM’04: Proc. 13th conference on USENIX
Security Symposium. USENIX Association, 2004.

[18] S Keemink and M Kleij. Implementing snort into surfids. Master’s thesis,
Universiteit van Amsterdam, 2008.

75

[19] O. Kolesnikov and W. Lee. Advanced polymorphic worms: Evading ids
by blending in with normal traffic. In USENIX Security ’06: Proc. 15th
USENIX Security Symposium. USENIX Association, 2006.

[20] C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion detection
signatures using honeypots. SIGCOMM Computer Communication Re-
view, 34(1):51–56, 2004.

[21] J. Li, S. Stafford, and T. Ehrenkranz. Sword: Selfpropagating worm
observation and rapid detection. Technical report, University of Oregon,
2006.

[22] Z. Li, M. Sanghi, Y. Chen, M.Y. Kao, B. Chavez, and IL Evanston.
Hamsa: Fast signature generation for zero-day polymorphic worms with
provable attack resilience. In S&P ’06: Proc. 27nd IEEE Symposium on
Security and Privacy, page 15, 2006.

[23] G.F. Lyon. Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning. Insecure, USA, 2009.

[24] M. Mahoney and P.K. Chan. Phad: Packet header anomaly detection
for identifying hostile network traffic. Florida Institute of Technology
Technical Report CS-2001-04, 2001.

[25] D. Moore, C. Shannon, G. Voelker, and S. Savage. Network telescopes:
Technical report. Technical report, CAIDA, 2004.

[26] D. Moore, C. Shannon, G.M. Voelker, and S. Savage. Internet quarantine:
Requirements for containing self-propagating code. In INFOCOM ’03:
Proc. 22th Joint Conference of the IEEE Computer and Communications
Societies, 2003.

[27] Er Moshchuk, Tanya Bragin, Damien Deville, Steven D. Gribble, and
Henry M. Levy. Spyproxy: Execution-based detection of malicious web
content. In USENIX Security ’07: Proc. 16th USENIX Security Sympo-
sium, pages ??–?? USENIX, 2007.

[28] J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature
learning by training maliciously. In RAID ’06: Proc. 9th International
Symposium on Recent Advances in Intrusion Detection, volume LNCS,
pages 81–105. Springer, 2006.

[29] J. Newsome and D. Song. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In
NDSS ’05: Network and Distributed System Security Symposium (NDSS),
2005.

76

[30] James Newsome. Polygraph: Automatically generating signatures for
polymorphic worms. In S&P ’05: Proc. 25th IEEE Symposium on Security
and Privacy, pages 226–241, 2005.

[31] V. Paxson, S. Staniford, and N. Weaver. How to 0wn the internet in your
spare time. In Security ’02: Proc. 11th Usenix Security Symposium, pages
404–413. Usenix Association, 2002.

[32] Vern Paxson. Bro: A system for detecting network intruders in real-time.
Computer Networks, 31(23):2435–2463, 1999.

[33] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Misleading worm
signature generators using deliberate noise injection. In S&P ’06: Proc.
27nd IEEE Symposium on Security and Privacy, 2006.

[34] M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos. Emulation-
based detection of non-self-contained polymorphic shellcode. In RAID
’07: Proc. 10th International Symposium on Recent Advances in Intrusion
Detection, volume 4637 of LNCS, pages 87–106. Springer, 2007.

[35] M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos. Network-level
polymorphic shellcode detection using emulation. Journal in Computer
Virology, 2(4):257–274, 2007.

[36] M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos. An empir-
ical study of real-world polymorphic code injection attacks. In LEET
’09: 2nd Workshop on Large-Scale Exploits and Emergent Threats, 6th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’09), 2009.

[37] M. Polychronakis, P. Mavrommatis, and N. Provos. Ghost turns zombie:
exploring the life cycle of web-based malware. In LEET ’08: Proc. 1st
Usenix Workshop on Large-Scale Exploits and Emergent Threats. USENIX
Association, 2008.

[38] G. Portokalidis and H. Bos. Sweetbait: Zero-hour worm detection and
containment using low-and high-interaction honeypots. Computer Net-
works, 51(5):1256–1274, 2007.

[39] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for finger-
printing zero-day attacks for advertised honeypots with automatic signa-
ture generation. SIGOPS Oper. Syst. Rev., 40(4):15–27, 2006.

[40] Niels Provos. A virtual honeypot framework. In Proc. 13th USENIX
Security Symposium, pages 1–14. USENIX Association, 2004.

[41] M. Roesch. Snort - lightweight intrusion detection for networks. In LISA
’99: Proc. 13th USENIX conference on System administration, pages 229–
238. USENIX Association, 1999.

77

[42] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager,
Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam,
and Prateek Saxena. Bitblaze: A new approach to computer security via
binary analysis. In ICISS ’08: Proc. of the 4th International Conference
on Information Systems Security, Hyderabad, India, December 2008.

[43] E. Stinson and J.C. Mitchell. Towards systematic evaluation of the evad-
ability of bot/botnet detection methods. In WOOT ’08: 2nd Workshop
on offensive technologies, 17th USENIX Security Symposium (USENIX
Security ’08). USENIX Association, 2008.

[44] Y. Tang and S. Chen. Defending against internet worms: A signature-
based approach. In IEEE INFOCOM ’05: Proc. 24th Annual Joint Con-
ference of the IEEE Computer and Communications Societies, volume 2,
2005.

[45] M. Van Gundy, D. Balzarotti, and G. Vigna. Catch me, if you can: evad-
ing network signatures with web-based polymorphic worms. In WOOT
’07: 1nd Workshop on offensive technologies, 16th USENIX Security Sym-
posium (USENIX Security ’07). USENIX Association, 2007.

[46] S. Venkataraman, A. Blum, and D. Song. Limits of learning-based sig-
nature generation with adversaries. In NDSS ’08: Proc. 16th Annual
Network & Distributed System Security Symposium, 2008.

[47] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A.C. Snoeren,
G.M. Voelker, and S. Savage. Scalability, fidelity, and containment in the
potemkin virtual honeyfarm. Operating Systems Review, 39(5):148–162,
2005.

[48] K. Wang, G. Cretu, and S.J. Stolfo. Anomalous payload-based worm
detection and signature generation. In RAID ’05: Proc. 8th International
Symposium on Recent Advances in Intrusion Detection, volume 3858 of
LNCS, pages 227–246. Springer, 2006.

[49] K. Wang, J.J. Parekh, and S.J. Stolfo. Anagram: A content anomaly
detector resistant to mimicry attack. In RAID ’06: Proc. 9th International
Symposium on Recent Advances in Intrusion Detection, volume 4219 of
LNCS, pages 226—-248. Springer, 2006.

[50] K. Wang and S.J. Stolfo. Anomalous payload-based network intrusion
detection. In RAID ’04: Proc. 7th Symposium on Recent Advances in
Intrusion Detection, LNCS, pages 203–222. Springer, 2004.

[51] Y.M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King. Automated web patrol with strider honeymonkeys: Finding web
sites that exploit browser vulnerabilities. In NDSS ’06: Proc. 13th Annual
Network and Distributed System Security Symposium, 2006.

78

[52] MM Williamson. Throttling viruses: Restricting propagation to defeat
malicious mobile code. In ACSAC ’02: Proc. 18th Annual Computer
Security Applications Conference, pages 61–68, 2002.

[53] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda.
Automatically generating models for botnet detection. In ESORICS ’09:
Proc. 14th European Symposium on Research in Computer Security, vol-
ume 5789 of LNCS, pages 232–249. Springer, 2009.

[54] Qinghua Zhang, Douglas S. Reeves, Peng Ning, and S. Purushothaman
Iyer. Analyzing network traffic to detect selfdecrypting exploit code. In
ASIACCS 07: . Proc. of the ACM Symposium on Information, Computer
and Communications Security, pages 4–12. ACM, 2007.

[55] J. Zhuge, T. Holz, X. Han, C. Song, and W. Zou. Collecting autonomous
spreading malware using high-interaction honeypots. In ICICS ’07: Proc.
9th International Conference Information and Communications Security,
pages 438–451. Springer, 2007.

79

Web References

[56] Anubis: Analyzing unknown binaries. http://anubis.iseclab.org//.

[57] O. Arkin, F. Yarochkin, and M. Kydyraliev. The present and future of
xprobe2. http://boss.mikrozet.wroc.pl/˜wiesiek/123/html/scan/
next.pdf, 2003.

[58] P. Bania. Evading network-level emulation. Technical report, arXiv.org,
http://arxiv.org/abs/0906.1963, 2009.

[59] BitBlaze: Binary analysis for computer security. http://bitblaze.cs.
berkeley.edu/.

[60] T. Cymru. The darknet project. http://www.cymru.com/Darknet, 2004.

[61] SANS Institute. The top cyber security risks. Technical report, SANS
Institute, sept ’09.

[62] Joebox: Analyse your malware on windows simply and easily. http:
//www.joebox.ch/.

[63] libemu - x86 shellcode emulation. http://libemu.carnivore.it/.

[64] T. Liston. Welcome to my tarpit: The tactical and strategic use of labrea.
Technical report, Dshield, 2001.

[65] Metasploit - penetration testing resources. http://www.metasploit.
com/.

[66] Will Metcalf and Victor Julien. Snort baitnswitch.

[67] Microsoft. Microsoft security bulletin ms09-048 - critical vulnerabilities
in windows tcp/ip could allow remote code execution (. Technical report,
Microsoft, September 2009.

[68] Microsoft security bulletin ms10-061 - critical
vulnerability in print spooler service could allow remote code execution
(2347290). http://www.microsoft.com/technet/security/bulletin/
ms10-061.mspx.

80

[69] The Honeynet project. Sebek. https://projects.honeynet.org/
sebek/.

[70] SecurityTracker. Input validation flaw in intel pro/1000 linux drivers lets
remote users deny service and potentially bypass security controls. Tech-
nical report, SecurityGlobal.net LLC, 2010.

[71] L. Spitzner. Know your enemy: Genii honeynets. Technical report, The
Honeynet Project, http://old.honeynet.org/papers/gen2/, 2005.

[72] Suricata. http://www.openinfosecfoundation.org/.

[73] Jack Whitsitt. The bait and switch honeypot: An active and aggressive
part of your network security infrastructure., 2003.

[74] G. Wicherski. Medium interaction honeypots. http://pixel-
house.net/midinthp.pdf, 2006.

81

