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Summary

Design of walking robots is a challenge as walking is an inherently unstable process. The
stable gait of walking robot can be interpreted as form of oscillation as the states of the
system behave in a periodic way. From mathematics, nonlinear oscillators are known that
show a stable form of oscillation known as limit cycle oscillation. This research project
focuses on the analysis and control of this type of oscillators that may be used in future
designs of walking robots to obtain stable and robust behavior.

The Van der Pol oscillator is a nonlinear oscillator that has a globally attractive limit
cycle. This system consists of a harmonic oscillator with an addition nonlinear damping
term. This term behaves as an ordinary damping for high deflections, but it becomes
a negative damping for small deflections. This results in oscillations of small amplitude
being pumped up, while high amplitude oscillation are damped down leading to a globally
attractive limit cycle.

Based on the same principle as the Van der Pol oscillator, systems that show oscilla-
tory behavior can be brought in limit cycle oscillation by adding this type of nonlinear
feedback. This feedback can be implemented by buffer element as a spring and a modu-
lated transformer such as a continuous variable transmission (CVT). This leads to energy
efficient limit cycle oscillations as energy that otherwise would be dissipated now is stored
and can be fed back to the system when the feedback behaves generatively.

The second part of the research focused on the design of a feedback controller in such
a way that exactly the desired periodic behavior could be obtained. This can be achieved
using a Lagrange multiplier based approach, calculation of energy difference or parame-
terizing the limit cycle in time. The latter two can be implemented by an algorithm which
is simple considering the amount and complexity of calculations and therefore this can
be well implemented in a real-time controller. Parameterizing the limit cycle in time has
the additional benefit that the phase of the system is explicitly known which makes syn-
chronization between subsystems a straightforward task. This approach and the Lagrange
multiplier approach is also extensible for use in higher order systems.
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CHAPTER 1

Introduction

The motivation for this Master’s assignment comes from the research on walking robots.
One import research question in this field is how to design a walking robot that is able to
walk stable, is robust for disturbances from its environment and at the same time is energy
efficient. Involving nonlinear oscillator theory is a new approach that may provide a base
for development of future walking robots. In order to better understand the goals of this
project and the implication of its results, this report is started with an introduction on
walking robots. This introduction is finished by a presentation of the goals of the project
and the outline of this report.

1.1 Walking robots

Robots have been in use in industrial production environments for decades. They have
replaced humans working on repetitive, dangerous or heavy tasks on assembly lines and
this resulted in production processes that are more efficient, more consistent and have
a higher throughput. Over the last few years interest in robots is also increasing for
more domestic appliances such as for example vacuum cleaning, lawn mowing or floor
washing. These are relative simple tasks, but it is expected that with the development of
technology, robots will become more and more integrated in our daily life as well as being
able to perform increasingly complex tasks.

Humanoid Robots

An interesting subject in the field of walking robots is that of humanoid robots. A hu-
manoid is a type of robot which structurally resembles the human body. It has a torso
supported by legs, possibly a head and usually is equipped with arms. Research on hu-
manoid robots is still in an early stage but industry has already built some working
examples such as Honda’s Asimo and Sony’s QRIO that are shown in figure 1.1. These
have mainly been built for entertainment or proof-of-technology, but it is expected that in
the future humanoids will be built that can do useful tasks. The main reason for building
humanoids or walking robots in general is that the most suitable way of locomotion in the
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(a) QRIO (b) Asimo

Figure 1.1: Industry built humanoid robots

human environment is walking. Designs based on wheels or tracks will have difficulties on
coping with sills, stairs and doors for example. Walking on the contrary is very flexible
and that makes it suitable for more irregular shaped environments.

Research on walking robots

The main problem in the design of a walking robot is to prevent instability. Walking
inherently comes with the risk that the robot can fall over. In other forms of locomotion
this is not so much an issue as the contact with the ground is always present. With
walking, the feet of the robot alternatively lift from the ground and instability is more
likely to occur. In humanoid robots there are only two legs to support the robot which
makes ensuring stability even more difficult.

The common approach in the design for stability is to use a form of so-called static
walking. With static walking it is ensured that the center of mass of the robot is always
within the foot print of the foot that is currently on the ground. As long as the robot is
moving slowly, inertial effects will be negligible and the robot will not fall over. Ensuring
that the center of mass is over the foot on the ground can be done by means of actively
controlling the joints of the robot. An extension of this approach is to use the Zero Moment
Point (ZMP) approach. In this approach the inertial effects that occur when the robot is
moving are incorporated to calculated the center of pressure (COP). As longs as the COP
is withing the foot print of the foot on the ground the robot will be stable. This approach
is used both in Asimo and QRIO. Although static walking offers great flexibility since each
joint can be controlled individually a serious drawback is that of energy consumption. This
is a result from actively controlling all the joints but mainly from not incorporation the
robot’s natural dynamics in calculating the motion profiles.

A complete different approach initiated by McGeer [McG90] in the early nineties is that
of passive dynamic walking. He showed how a simple frame without any actuation was
capable of walking down a shallow slope. All energy needed to overcome friction and losses
due to impacts of the feet with ground is supplied by gravity. The motion of the system
results as an ensemble of the natural dynamics of the system and its environment consisting
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of the slope and gravity. Inspired by the ideas of McGeer, researchers around the world
have started to work on the design of robots that are based on passive dynamic walking
of which examples can be found [WvF03], [CR05] and [Wis04]. Actuators are added to
be able to walk also on flat terrain and accounting for the natural dynamics of the system
resulted in walkers that are very energy efficient. Compared with static walking this is a
great improvement but also this approach comes with a drawback. Although researchers
succeeded in building stable walking robots, the designs are usually not very robust. Small
disturbances such a an irregularity in the floor can destroy the stable gait of the robot
and cause it to fall.

Research at the Control Engineering group

The Control Engineering group has been involved in the research on walking robots for
about five years. The research started with the work of Vincent van Duindam [Dui06] who
worked as a PhD-student on modeling and control of bipedal walking robots. He supervised
several Master students that did an assignment that contributed to his research as listed
below:

• Niels Beekman, Analysis and development of a 2D walking machine [Bee04]

• Edwin Dertien, Realization of an energy-efficient walking robot [Der05]

• Gijs van Oort, Strategies for stabilizing a 3D Dynamically Walking Robot[vO05]

• Eddy Veltman, Foot shapes and ankle actuation for a walking robot [Vel06]

• Yanzhen Xie, Dynamic effects of an upper body on a 2D bipedal robot [Xie06]

• Michel Franken, Ankle actuation for planar bipedal robots [Fra07]

The collaborative work of these persons has resulted in the biped walking robot ’Dribbel’
shown in figure 1.2. Based on passive dynamic walking, this design can walk stable while
consuming only a small amount of power. Nowadays Vincent has finished his PhD-research
and has left the group. Gijs van Oort has become a PhD-student working on the stabi-
lization of three dimensional dynamic walkers. The ultimate goal of the research in the
group is to build a highly energy efficient and fully functional humanoid prototype.

1.2 Assignment goals

A new way to improve the stability of walking robots may be to use nonlinear oscillatory
theory. The stable gait of a walking robot can be interpreted as a form of stable oscillation.
The robot itself is a high order dynamical system of which the states are made up of the
velocities and positions of the rigid bodies that the robot consists of. When the robot is
walking in a stable gait, the states will behave periodically. This can be depicted as a
closed trajectory in the shape space of the robot.

From mathematics, nonlinear oscillators are known that show a very stable form of
oscillation. Independent on the initial condition, such an oscillator always converges to
the same periodic behavior. In other words, the trajectory in the state space that the
oscillator converges to is unique and this is known as a limit cycle. If a walking robot
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Figure 1.2: Dribbel

can be designed in a way that it behaves as a such a nonlinear oscillator this would mean
stable walking behavior is obtained automatically.

Before this can be done a better understanding of nonlinear oscillators is needed and
that is exactly what is the goal of this assignment. Starting from the well known Van der
Pol oscillator it needs to be understand how the mechanism works that ensures convergence
to the limit cycle. From there the question will be how an oscillator can be designed that
has exactly the periodic behavior that is needed. The ultimate goal will be to become
capable of designing oscillators for any possible periodic behavior.

1.3 Report outline

The results of the assignment are presented in two papers that make up the subsequent
two chapters of this report. The papers are written in such a way that they can be read
separately. The first papers deals mainly with the analysis part of the project. It shows
how nonlinear oscillators work and how stable limit cycles can be obtained in oscillating
systems. The paper was written halfway the project and has been submitted to the IEEE
conference on Intelligent Robots and Systems, but was unfortunately not selected for
publication. The second paper deals with control on nonlinear oscillators. It describes
how a system can be designed that behaves as a nonlinear oscillator with a stable limit
cycle of predefined periodic behavior. It is planned to combine the results of the two
papers into one paper and submit it for IEEE Transactions on Robotics and Automation.
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Energy Conservative Limit Cycle Oscillations

Michel van Dijk, Stefano Stramigioli

Abstract— This paper shows how globally attractive limit
cycle oscillations can be induced in a system with a nonlinear
feedback element. Based on the same principle as the Van der
Pol oscillator, the feedback behaves as a negative damping for
low velocities but as an ordinary damper for high velocities.
This nonlinear damper can be physically implemented with a
continuous variable transmission and a spring, storing energy in
the spring when the damping is positive and reusing it when the
damping is negative. The resulting mechanism has a natural
limit cycle oscillation that is energy conservative and can be
used for the development of robust, dynamic walking robots.

I. I NTRODUCTION

T HE results described in this paper are motivated by the
search for robust, energy efficient walking robots. Over

the last decade, researchers around the world in both industry
and universities have been working on walking robots and
succeeded in building numerous working examples [1], [2].
While industry mainly focuses on so-called static walkers
such as Honda’s Asimo and Sony’s QRIO, some universities
based their research on dynamic walking of which examples
can be found in [3], [4], [5]. The benefit of dynamic walking
is that it exploits the natural dynamics of the mechanics of the
walker, which results in highly energy efficient and natural
looking locomotion.

Research on dynamic walking was initiated by McGeer
[6] in the early nineties. Originally inspired by toys, he
developed several passive walking mechanisms that could
walk down a shallow slope only powered by gravity. From
his results the view emerged that dynamic walkers could be
created based on the same principle, with the addition of
actuators to provide energy instead of using gravity.

The stable gait of a dynamic walker can be interpreted
as a stable limit cycle of the system [2]. Once the walker
has converged to the stable gait it keeps repeating the same
pattern over and over again. Unfortunately the dynamic
walkers that have been built so far suffer from a lack of
robustness. The stability of the gate is easily destroyed by
even relatively small disturbances, usually resulting in the
robot falling down. Apparently the limit cycle of the system,
although being stable, has only a narrow area of attraction.
Current research is focused on improving this shortcoming
and is expected to yield more robust behavior.

The dynamics of a walking robot are generally nonlinear
and on top of that the regular impacts with the ground causes
a switching behavior that makes it hard to understand the
dynamics of these systems in an analytical way. This explains
why the current generation of dynamic walkers is more often
a result of trial and error and parameter optimization rather
than a thorough analysis of the dynamic behavior that is
responsible for the stable limit cycle oscillation. Although

also this paper does not give a full analysis of the nonlinear
dynamics, a new approach is taken in the design of dynamic
walkers that focuses on generation of stable limit cycles.
Inspired by nonlinear oscillators famous for their globally
attractive limit cycles such as the Van der Pol oscillator, a
new way is proposed for inducing limit cycle oscillation in
mechanisms based on energy feedback. The result described
in this paper is a mechanism that has a natural limit cycle
oscillation, is energy efficient and on top of that fairly easy
to implement. It is expected that this concept will enable us
to build robust, dynamic walkers that excel in a combination
of simplicity and performance.

The remainder of this paper is organized as follows.
Section II introduces some necessary background informa-
tion on nonlinear oscillators that exhibit stable limit cycle
oscillations. In section III an implementation is proposed
that is energy conservative, based on the theory of port-
Hamiltonian systems. In section IV an example is given of
how the proposed implementation can be used in a physical
system. Finally in section V this paper is concluded and
future research on this subject is discussed.

II. L IMIT CYCLES AND NONLINEAR OSCILLATORS

A limit cycle is a periodic solution of a differential
equation with the additional property that it is isolated. In the
phase space of the system a periodic solution is a trajectory
that is a closed orbit. Isolated means that any neighboring
trajectory of the limit cycle is not closed, they spiral either
towards or away from the limit cycle. Mathematically it
could also be said that there exists an open neighborhood
that contains only one periodic solution. If all neighboring
trajectories spiral towards the limit cycle it is stable or
attractive, otherwise it is unstable or half-stable in some
exceptional cases. For the design of robust walking robots
it is interesting to look at stable limit cycles, with a basin
of attraction that is as large as possible. The possibility of
a limit cycle solution is restricted to nonlinear systems. In a
linear system, ifx(t) is a solution then because of linearity
alsoc·x(t) is a solution for any constantc. In the phase space
this can be seen as an infinite number of closed trajectories
encircling the single equilibrium point in the origin, however
non of these trajectories is isolated.

A. Lienard systems

There exist nonlinear systems which are known to have
a globally attractive limit cycle. An example is the famous
Van der Pol oscillator that is described by:

ẍ + µ(x2
− 1)ẋ + Kx = 0. (1)
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It was discovered by the Dutch scientist Balthasar van der
Pol during the early development of radio technology in
which vacuum tubes were used. The equation is similar to
the damped harmonic oscillator but with a nonlinear damping
termµ(x2

−1)ẋ. For positiveµ the damping term is negative
for |x| < 1 and positive for |x| > 1. This results in
small amplitude oscillations being pumped up, while large
amplitude oscillations are damped down. Intuitively it is
understandable that this must lead to a stable oscillation
of intermediate amplitude. An oscillator closely related to
the Van der Pol oscillator is the somewhat less famous
Rayleigh oscillators that is based on the same principle.
In this oscillator the damping term only depends on the
derivative ẋ, which is also what is used in the examples
further on in this paper. The equation describing the Rayleigh
oscillator is:

ẍ + µ(ẋ2
− 1)ẋ + Kx = 0. (2)

The relation between the two oscillators described above can
be found by first differentiating (2) with respect to time and
then replacingẋ with y.

The Van der Pol equation is a specific case of a Lienard
system as described by the equation below:

ẍ + f(x)ẋ + g(x) = 0. (3)

Here f(x) and g(x) may be nonlinear functions. Lienards
theorem [7] states that (3) has a unique, stable limit cycle
surrounding the origin of the phase space if the following
conditions are satisfied:

1) f(x) andg(x) are continuously differentiable for allx
2) g(−x) = −g(x) for all x (g(x) is odd)
3) g(x) > 0 for x > 0
4) f(−x) = f(x) for all x (f(x) is even)
5) The odd functionF (x) =

∫

x

0
f(u) du has exactly one

positive zero atx = a, is negative for0 < x < a, is
positive and nondecreasing forx > a, andF (x) → ∞

asx → ∞

The conditions ong(x) ensure that its behavior is like that
of a restoring force like a spring and the conditions onf(x)
ensure a damping behavior that is amplifies small amplitude
oscillations, but damp down large amplitude oscillations.
More information on nonlinear oscillators and nonlinear
dynamics in general can be found in books as for example
[7], [8] or [9].

B. Passivity based oscillators

Another approach to the analysis of limit cycle oscillations
is taken in [10]. Here the authors use dissipativity theory
to characterize oscillators as open systems. This makes it
possible to interconnect a network of oscillators and analyze
their common behavior. For the purposes of this paper focus
is on isolated oscillators only, but the passivity approachis
useful because it allows looking at system connections from
an energy based point of view. A system is passive with
respect to its inputu(t) and outputy(t) if there exists as
storage functionS(x(t)), S(0) = 0 such that:

S(x(t)) ≥ 0 and Ṡ(x(t)) ≤ u(t) · y(t). (4)

passive system

φk(·)

yu

−

+

Fig. 1. Passive system with nonlinear feedback

Starting point for the analysis in [10] is the above described
Van der Pol oscillator and the Fitzhugh-Nagumo oscillator,
which is a simplified model of spike generation in neurons.
The author generalizes these two types of oscillators to a
form as shown in Fig. 1. The forward path consists of a
passive system and the negative feedback is formed by a
nonlinearityφk(y) that is the sum of a passive partφ(y) and
an anti-passive or active part−ky.

φk(y) = φ(y) − ky (5)

Hereφ(y) is a smooth, static nonlinearity in the sector (0,∞)
(thus passive), and moreoverφ(y) is a stiffening nonlinearity,
i.e. lim|y|→∞

φ(y)
y

= ∞. Now takeGk(s) the system formed
by the linearized passive system with negative feedback−ky.
Increasingk will eventually lead to instability ofGk(s) as
poles cross the imaginary axis and move onto the right half
s-plane. Definek∗ the smallestk > 0 for which Gk(s) has a
pole on the imaginary axis. Under the assumption of absolute
stability of the system shown in Fig. 1 fork = k∗ two
scenarios are possible:

1) Scenario 1, Van der Pol type: For k = k∗ a pair of
complex conjugate poles cross the imaginary axis at non-
zero speed causing a supercritical Hopf bifurcation. In this
bifurcation the stable origin becomes unstable and a stable
limit cycle emerges from the origin.

2) Scenario 2, Fitzhugh-Nagumo type: For k = k∗ a
single pole crosses the imaginary axis causing a pitchfork
bifurcation that results in a bistable system. Extending the
negative feedback with a slow adaptation mechanism1

τs+1
transforms the bistable system into a system with a globally
stable limit cycle.

In the isolated case where the system is not connected
(u = 0), the system will exhibit a self-sustained stable limit
cycle oscillation fork & k∗. The existence of this limit cycle
is not guaranteed for allk > k∗ since further bifurcations
may occur that alter the system behavior.

C. Port Hamiltonian Systems

Key point for the limit cycle oscillations is the nonlinear
element that is locally generative, but globally dissipative.
The interaction of the passive part of the system with the non-
linearity can be described by an exchange of energy through
a power port connecting the two parts. The amount of power
P (t) equals the productu(t) · y(t) and the total exchange of
energy is the time integral of the powerE(t) =

∫

t

0
P (u) du.

A powerful framework for modeling dynamical systems that
are described by an energy function and connections through
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powerports is that of port-Hamiltonian systems given by the
following set of differential equations:

ẋ = (J(x) − R(x))
∂H(x)

∂x
+ g(x)u

y = gT (x)
∂H(x)

∂x
+ (K(x) − S(x))u

(6)

In these equationsx represents the state,H(x) is the
energy function or Hamiltonian,J(x) and K(x) are skew-
symmetric matrices that model powercontinuous elements,
R(x) andS(x) are positive semi-definite matrices that model
dissipative elements and(u, y) is the port through which the
system can interact with the outer world. These systems have
the property thatḢ(x) ≤ uT y, so these systems are passive
with storage functionH(x).

III. E NERGY CONSERVATIVE IMPLEMENTATION

Nonlinear oscillators as the Van der Pol oscillator are gen-
erally considered nonconservative since energy dissipation
takes place in the nonlinear element. When the nonlinearity
behaves generatively, energy has to be supplied from an
external source. However it is easy to see that for every
periodic solution the change in energy of the system must be
zero because energy can be expressed as a function of the
state.

∆E = E(x(t + T )) − E(x(t))

x(t + T ) = x(t)

}

⇒ ∆E = 0 (7)

Therefore, instead of using a nonlinearity that dissipatesen-
ergy it would be useful to have an element that buffers energy
so that it can be reused later. In this section it is described
how to model an element that has the same characteristics
as the nonlinearity, but buffers energy instead of dissipating
it. The usage of this element results in oscillators that do
not dissipate any energy once converged to the stable limit
cycle.

Although not commonly known, bondgraphs as introduced
by Paynter [11] can be very useful in the analysis of systems
that are connected with powerports. The following analysis
is based on bondgraph terminology, but is presented in a
general form so that no bondgraph knowledge is required to
understand the ideas presented.

A. Power continuous transmissions

To be able to shape the characteristic of the buffer a power
continuous transmission (PCT) is used with transmission
ratio n as described by the constitutive relations below and
of which a graphical representation is shown in Fig. 2.

out1 = n · in2

out2 = n · in1

(8)

The transmission is power continuous in the sense that
the power that flows into the system at one port, flows out
at the other port in the same amount. No energy is stored

power continuous
transmission

in2

out2

out1

in1

Fig. 2. Power continuous transmission

or dissipated by the transmission. This property is easily
deduced with the constitutive relations of (8):

P1 = in1 · out1

= (
1

n
· out2) · (n · in2)

= out2 · in2

= P2.

(9)

It is good to realize that this power continuous property still
holds if the transmission factorn is not constant. Such a
transmission is referred to as being modulated by a factor
n(·). In bondgraphs, this element is known as a (modu-
lated) transformer. Physical examples of power continuous
transmissions with a constant transmission ratio are an ideal
electric transformer or a set of frictionless gears.

It can be shown that the modulation factorn(·) can be
chosen such that the power flow is always in the same
direction, that is choosingn(·) such that the PCT becomes
a one way device. The positive direction of power flow is
defined as the direction from (in1, out1) to (in2, out2).
In perspective of Fig. 2, power flows from left to right
if in1 · out1 > 0 and consequently from right to left if
in1 ·out1 < 0. Supposen = in1 · in2 is taken as modulation
factor, resulting in:

P1 = in1 · out1 = in1 · n · in2

= in2
1 · in

2
2

≥ 0.

(10)

As can be seen the flow of power is always in the positive
direction with this modulation factor. Similarly, the flow is
always in the negative direction ifn = −in1 · in2 is taken.
The structure of the PCT with this modulation is depicted in
Fig. 3.

power continuous
transmission

in2

out2

out1

in1

×

n

powerflow

Fig. 3. Modulated PCT, with powerflow from port 1 to port 2

B. Storage element

Besides the power continuous transmission to guide the
flow of power also a storage element is needed to store and
supply the energy associated with the power flows, which
in bondgraph terms is implemented by I- or C-type buffers.
Such a storage element can be modeled by a simple integrator
as shown in Fig. 4. In the storage element the input is
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out

in
∫

∂H

∂x

x

Fig. 4. Storage element

integrated to obtain a statex and the output equals the partial
derivative of the stored energy with respect to the state. In
the linear case this simplifies tox

C
, where the constantC

represents the capacity of the storage element. This describes
for example a spring with the velocity as input, length as
state, capacity1

K
and output the force, or a mass with the

force as input, impulse as state, mass as capacity and velocity
as output. The amount of energy stored in the element is
found by calculating the integral over the product of the input
and output.

∫

in · out dt =

∫

∂H

∂x
ẋ dt = H(x) (11)

In the linear case this equals:

H(x) =

∫

x

C
ẋ dt =

1

2C
x2. (12)

C. Replacing the nonlinear element

It is now possible to show how the combination of a
modulated power continuous transmission and a storage
element can be used as a substitution for the nonlinear
element. Starting from the nonlinearityφ(·) where the output
is a nonlinear function of the input, that is:

out = φ(in) (13)

and using a structure as shown in Fig. 5, the following
relation can be deduced:

out = n · bout = n ·

∂H

∂x
out = φ(in)







n =
φ(in)

∂H

∂x

(14)

That is the structure of Fig. 5 where modulation factor
n is according to (14) will have the same input-output
characteristic as nonlinearityφ(·). When the power inflow
is positive andφ(·) behaves as a dissipative element, now
energy is stored in the buffer instead of being dissipated.
Whenφ(·) would have a generative characteristic, the buffer
supplies the previously stored energy. It can do so as long as
there is energy stored in to buffer, that is as long as∂H

∂x
> 0.

At the same time it is clear thatφ(·) can be freely chosen, so

power continuous

transmission

bout

bin

out

in

×

n

∫

1
C

φ(·)

Fig. 5. Modulated PCT with storage element

∫

∫

∫

nn

passive system

nonlinearity

q

p

r

−

+

−

Fig. 6. Van der Pol oscillator in conservative form

it is possible to replace any nonlinearity with this system.In
section IV an example and possible physical implementation
of this system is given.

D. Conservative Van der Pol oscillator

Using the buffer as sketched above to replace the nonlinear
damping term in the Van der Pol equation, it can be written
in a form that is conservative. First the Van der Pol oscillator
is rewritten to equal the form of Fig. 1.

ẍ + φ(x, ẋ) + x, φ(x, ẋ) = µ(x2
− 1)ẋ (15)

A block diagram of the system is shown in Fig. 6 where
the following variables are used:q = x, p = ẋ, r the state
of the storage element with capacityC = 1 andn = φ(·)/r.
The equations describing the system in matrix form are:





q̇
ṗ
ṙ



 =





0 1 0
−1 0 −n
0 n 0









q
p
r



 . (16)

Which is a port-Hamiltonian system with state vectorx and
skew-symmetric matrixJ denoted by:

x =
[

q p r
]T

J =





0 1 0
−1 0 −n
0 n 0



 . (17)

The Hamiltonian of the system is:

H(x) =
1

2
xT

· x =
1

2
q2 +

1

2
p2 +

1

2
r2. (18)

This is a conservative system as can be seen by calculating
the time derivative ofH(x):

Ḣ(x) =
∂H

∂x
ẋ

= xT Jx

= 0

(19)

where equality to zero follows from the skew-symmetric
property ofJ .

It can be verified that the behavior of the system in
conservative form is the same as that of the normal Van der
Pol oscillator by a numerical simulation. In Fig. 7 a solution
of the system forµ = 1 is shown with initial conditions
x = [2, 2, 10]. The figure shows convergence to a limit cycle
in the (q,p,r)-space, and the projection of the trajectory on
the (q,p)-surface shows the limit cycle associated with the
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Fig. 7. Simulation of the conservative Van der Pol implementation

normal Van der Pol oscillator, thereby verifying that the
behavior of the conservative system is indeed the same.

E. Extension to systems with dissipation

In the previous example the passive part consists of
conservative elements only. If the passive part contains also
dissipative elements then the total energy flow into the
nonlinearity will be smaller than the amount of energy it
has to supply. As a result the stored energy in the buffer will
decrease as time evolves until the buffer becomes empty.
To overcome such problems energy has to be injected into
the system that compensates the dissipation of energy in the
passive part. Connecting an actuator directly to the system
however will generally influence the dynamics of the system
and thereby possibly disturb the stability properties of the
limit cycle. With the use of the storage element it is possible
to circumvent this problem in an elegant way. Instead of
injecting energy in the system, it is possible to directly
inject energy into the storage element. As the modulation
factor of the power continuous transmission compensates for
any variation of energy storage this can be done without
influencing the system behavior. Energy injection can be
done by extending the storage element to a two port system
as shown in Fig. 8 where port 1 connects to the system

out1

in1

∫

1
C

out2

in2++

Fig. 8. Two port storage element

through the power continuous transmission as before and
port 2 is used to supply the required energy. If the storage
element is implemented as a torsional spring for example,
one side of the spring connects to the system and the other
side to a motor which winds up the spring similarly like what
is done in an analogue wristwatch.

IV. A PPLICATIONS AND IMPLEMENTATION

The last part of this paper discusses an application and
possible physical implementation of the system described so
far. As the motivation for this paper comes from research on
walking robots the application will be in that field. The leg
of a walking robot can be roughly interpreted as an inverse
pendulum, or double inverse pendulum in case of legs with
knees and therefore it is chosen to look at how limit cycle
oscillations can be induced in a pendulum.

A. Pendulum

The pendulum is a classic physical example of a nonlinear
differential equation. The differential equation describing the
damped pendulum of Fig. 9 with pointmassm, length l,
dampingd and input torqueT is:

θ̈ +
d

m · l
θ̇ + g sin θ −

T

m · l
= 0. (20)

The system is passive with respect to inputT and outputθ̇,
so limit cycle oscillation is expected if a negative feedback
of the form −T = θ̇3

− kθ̇ is used. Although not strictly
a Lienard system, the system with this feedback is similar
to the Rayleigh oscillator and the nonlinearity fulfills the
conditions described in section II. It can be seen that the
term kθ̇ will compensate the damping termd

m·l θ̇ and thus
limit cycle oscillation may be expected fork > d

m·l . That
is, the system is stable for smallk, increasingk results in
a Hopf-bifurcation in which the stable equilibrium becomes
unstable and a globally stable limit cycle surrounding the
origin appears.

These expectations are verified by numerical simulation
of which the results are shown in Fig. 10 and 11. The
parameters used in the simulation are:m = 1, l = 1, d = 2
andg = 9.81. In Fig. 10k = 1, which results in a damped,
stable system as the damping of the pendulum is stronger
than the active part of the nonlinear feedback. Increasingk
results in a limit cycle oscillation as is shown in Fig. 11 for
a valuek = 4.

B. Implementation

In order to build the pendulum with nonlinear feedback
in a power continuous way, a physical implementation for
the modulated power continuous transmission and storage
element have to be found. The (input, output) combinations
of the transmission are of the form (rotational velocity,

l

m

θ

T
g

Fig. 9. Classic pendulum
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torque) so the device must transform rotation to rotation.
A set of gears would suffice if the transmission ratio would
be constant, but in this case the ratio must be variable. A
physical device with a variable transmission ratio is called
a continuous variable transmission (CVT). There are several
possible implementations to create a physical CVT. In the
automobile industry it is most common to use two adjustable
pulleys connected by a steel belt. The pulleys are created in
such a way that their radius can be increased by compressing
the pulley. The change of the radius results in a differ-
ent transmission ratio. Another possible implementation is
schematically drawn in Fig. 12. This implementation consists
of a pair of lined up conic cylinders that are connected by
a belt. By adjusting the position of the belt on the cylinders
with active control, a continuous range of transmission ratios
can be selected. The implementation with conic cylinders

n

Fig. 12. CVT implementation with conic cylinders

seems more suitable for walking robots as it can be made
long and thin, in order to fit in for example a leg or hip joint.
Besides the variable transmission ratio the device will also

have to be fitted with a reversing mechanism so that negative
transmission ratios can be accomplished as well. The storage
element can simply consist of a toroidal spring as described
in the previous section. If one end of the spring is connected
to a motor and a controller that ensures the spring is always
under tension this will provide energy injection to overcome
damping in the pendulum.

V. CONCLUSIONS AND FUTURE WORK

It was shown how stable limit cycle oscillations can be
induced in a passive system with the use of a nonlinear feed-
back. Similarly to the Van der Pol oscillator, this feedback
pumps up small amplitude oscillation, but damps down large
amplitude oscillation thus resulting in a stable oscillation of
intermediate amplitude. The passive system and the nonlinear
feedback continuously exchange energy. Whereas in the
Van der Pol oscillator energy that flows into the nonlinear
feedback is dissipated, it was shown how to convert this into
a conservative system. With the combination of a modulated
power continuous transmission and a storage element any
nonlinear characteristic can be implemented by choosing the
appropriate modulation factor. Energy that otherwise would
be dissipated can now be reused and fed back to the system.
It was also shown how the concept can be extended with a
two port storage element to compensate for energy losses in
the passive part of the system.

Systems that exhibit stable limit cycle oscillation are
interesting for the development of robust, dynamic walking
robots. Future research will focus on how the concept de-
scribed in the paper can be implemented in a walking robot.
It would be interesting to analyze what the exact influence
of the nonlinear feedback is on the shape of the resulting
limit cycle. Other points of interest are how the system can
be generalized to higher dimensions and how the oscillation
can be synchronized with impacts of the feet with the ground.
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Design of Nonlinear Oscillators with Specified Periodic Behavior

Michel van Dijk, Stefano Stramigioli

Abstract— Nonlinear oscillators can exhibit stable, self-
induced oscillations known as limit cycle oscillations. Systems
that need to perform a periodic repeating behavior can also be
seen as oscillating systems. From this point of view, nonlinear
oscillators are interesting in the control of such systems. This
paper discusses how nonlinear oscillators can be designed
with exactly the desired periodic behavior. Furthermore it is
discussed how this can be applied to higher dimensional systems
such as walking robots and how several oscillators can be
synchronized.

I. I NTRODUCTION

ROBOTS have been in use in industrial production
environments for decades. They have replaced human

workers which resulted in production processes that are more
efficient, more consistent and of higher throughput. Over
the last few years interest in robots is also increasing for
domestic appliances such as for example vacuum cleaning
or floor washing [1]. These are relatively simple tasks, but it
is expected that with the development of technology, robots
will become more and more integrated in our daily life and
being able to perform increasingly complex tasks.

Wheeled locomotion is very suitable on solid, flat surfaces,
but is not very convenient in an uneven terrain. Walking
is much more flexible and therefore more suitable for the
environment in which we live in. Furthermore, walking can
in fact be a very energy efficient way of locomotion if the
underlying dynamics of the mechanism are optimally used
[2]. There tend to be two different approaches in the control
of walking robots. Most designs, such as Honda’s Asimo [3],
use control techniques involving Center of Pressure (CoP)
and Zero Moment Point (ZMP) to calculate stable motion
profiles for each actuator in the robot. Traditional control
engineering then ensures that the robot follows exactly the
desired trajectory. While this technique offers great flexibil-
ity as each joint can be individually controlled, a serious
drawback is the energy consumption of this kind of systems.
A complete different approach is that of passive dynamic
walking as initiated by McGeer [4]. He was the first to show
that it is possible to build a mechanism that can walk down a
shallow slope without any actuation at all. All energy needed
to compensate for friction and losses that result from impacts
with the ground is supplied by gravity. The combination of
the dynamics of the system, the slope and gravity results in
a natural walking motion. This motion not only looks very
natural and smooth, it clearly is also very energy efficient.

Inspired by the ideas of McGeer, researchers have been
working on walking robots that are based on passive dynamic
walking but are equipped with actuators so that they can
walk on level ground. Examples of these types of robots
can be found in [5], [6], [7]. In our own laboratory of the

Control Engineering group of the University of Twente the
robot Dribbel has been built [8]. The main problem with
these walking robots is that it is hard to ensure robustness.
Relatively small disturbances can cause the walking pattern
to become unstable and causing to robot to fall down.
As the walking can be interpreted as an oscillation in the
shape space, our approach is to use nonlinear oscillators
for developing robust walking robots. In previous work we
showed how stable limit cycle oscillations can be induced in
systems in an energy efficient way using a nonlinear feedback
[9]. In this paper we outline how to design the feedback
system to get exactly the periodic motion that is needed.

The remainder of this paper is organized as follows.
In section II the basics of periodic systems and nonlinear
oscillators are analyzed. Sections III and IV contain the
main part of this paper. Section III discusses how oscillatory
systems can be turned into controlled oscillators and section
IV discusses how any predetermined periodic movement can
be induced in a system. In section V we discuss extensions
to higher dimensional oscillators and the synchronization
between oscillators. Finally in section VI this paper is
concluded and future research is discussed.

II. A NALYSIS OF PERIODIC SYSTEMS

In this section it is presented how periodic behavior is
obtained in systems by looking both at controlled systems
and at systems that behave as an oscillator. Also the basic
concepts of limit cycle oscillation are presented, as this is
widely used throughout this paper.

A. Periodicity in controlled systems

The most straightforward way to get a system to move
periodically is to use a standard control system setup with
a periodic reference signal as is shown in Figure 1. If the
employed position controller is stiff enough this will result
in the system following the reference signal closely. This is
the approach that is commonly used in robots that use a Zero
Moment Point type of control strategy. Motion profiles for
each joint are calculated beforehand and the control system
in each joint ensures that this profile is followed accurately.

reference u(t) controller system
+

−

periodic

Fig. 1. Control system with periodic reference
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There are however two main disadvantages of this approach
compared to oscillators:

1) Absolute time dependency:The reference signal is a
function of the absolute time and as a consequence the
motion of the system becomes dependent on absolute time.
Absolute time however is generally not relevant in the case
of a walking robot. It does not matter if the phase of the
movements is synchronized with absolute time, only the
relevant position of each joint with respect to each other
is of importance.

2) Energy consumption:By using a stiff controller the
system is forced into a motion without accounting for the
natural dynamics of the system. If the periodic reference does
not match with the natural dynamics of the system, then the
controller needs to supply energy to counteract the forces
resulting from these dynamics. In many cases this is not
necessary. Swinging a pendulum for example will consume a
minimum amount of energy if it swings in its natural motion
resulting from gravitational forces.

B. Periodicity in oscillators

An oscillator is a system that shows periodic behavior
without the need for an external reference signal. Well-
known examples are the harmonic oscillator described by
ẍ + x = 0 or the undamped pendulum̈x + g · sin(x) = 0
with unit length and mass and gravitational constantg. The
motion of a system can be represented as a trajectory in
the state space, which is[x, ẋ] for these two second order
systems. Periodic motion or oscillation is a closed orbit in
the state space. In case of a linear system the number of
possible closed orbits is infinite; The state space is filled
with a continuum of concentric orbits and it dependents on
the initial condition on what orbit the system settles. In case
of disturbances the system changes from one orbit to another.

Nonlinear systems can have the attractive property of limit
cycle oscillation. A limit cycle is a closed orbit in the state
space with the additional property that it is isolated. This
means there is no continuum of closed orbits surrounding
the limit cycle and as a consequence trajectories must either
spiral into or away from the limit cycle. In the first case
the limit cycle is stable or attractive, in the other case it
is an unstable limit cycle. Oscillators that show stable limit
cycle oscillation are of interest because for a certain range
of initial conditions known as the basin of attraction, they
always converge to the same periodic movement. Since there
is no external reference signal needed, this is also known as
self sustained oscillation.

There exist nonlinear oscillators which have a stable limit
cycle that is also globally attractive. By globally attractive-
ness it is meant that the system basin of attraction equals the
entire state space. A well known example is the famous Van
der Pol oscillator [10]:

ẍ + µ(x2
− 1)ẋ + Kx = 0 (1)

and the closely related, but somewhat less famous Rayleigh
oscillator:

ẍ + µ(ẋ2
− 1)ẋ + Kx = 0. (2)
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Fig. 2. Van der Pol oscillator

The working of these oscillators is easy to understand
intuitively. The systems consist of a harmonic oscillator with
a nonlinear damping term. In the Van der Pol case this
term behaves as an ordinary damping forx2 > 1 but it
becomes a negative damping forx2 < 1. For the Rayleigh
oscillator this is the same except withx replaced byẋ. As
a result these systems behave as a damped oscillator for
states far away from the origin with trajectories spiraling
towards the origin. On the contrary, for states close to the
origin the system becomes an unstable harmonic oscillator
and trajectories spiral away from the origin. As trajectories
in the state space cannot intersect this must result in an
attractive limit cycle surrounding the origin. The origin itself
is an unstable equilibrium in both systems. Figure 2 shows
the limit cycle of the Van der Pol oscillator with parameters
µ = 1 andK = 1, converging from initial conditions(2, 3).
Detailed information on the Van der Pol oscillator can be
found in [10], [11].

III. C ONTROL OF OSCILLATORS

Similarly as in the Van der Pol and Rayleigh oscillators,
limit cycles can be induced in an oscillatory system by means
of a nonlinear feedback that is locally generative but globally
dissipative as was explained in detail in [9]. The resulting
system consisting of an oscillating system with a feedback
controller is shown in Figure 3. The key question is what
this feedback should look like in order to obtain exactly the
limit cycle that is desired. Obviously shaping this feedback

oscillating system

feedback controller

Fig. 3. Oscillating system with feedback
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will affect the obtained limit cycle but when looking closer
to the Van der Pol and Rayleigh oscillator it can be seen that
we are limited in what resulting limit cycles we can get. The
Van der Pol oscillator divides the state space in three regions
along thex-axis whereas in case of the Rayleigh oscillator
there are three regions along theẋ-axis. The problem is that
the feedback is always actively steering the system under
control except when the system is on the border that separates
the regions. Therefore the natural motion of the oscillatory
system under control is always disturbed by the feedback. In
case of the harmonic oscillator for example, it is impossible
to get a pure sinusoidal oscillation.

The conclusion to be drawn is that in order not to disturb
the natural oscillation, the feedback should do nothing as
long as the system is on the limit cycle. So instead of dividing
the state space into regions along the axes, it should be
divided into a region inside and outside the limit cycle. If the
current state is inside the limit cycle the energy in the system
is too low and the feedback must be generative. If outside
the limit cycle, there is too much energy in the system and
the feedback must be dissipative so that the motion is forced
back to the limit cycle. This concept is basically the same
as both the Van der Pol and the Rayleigh oscillator, but by
choosing the regions in this way any desired limit cycle can
be obtained. The feedback law that realizes this concept is:

T = −κ · D · ẋ. (3)

HereD is a metric for the distance between the current state
and the limit cycle andκ a proportional gain that determines
the strength of the feedback. If the current state is outsidethe
limit cycle D is positive, inside the limit cycle it is negative.

A. Implementation with Lagrange multipliers

To implement this feedback system it is necessary to
calculate the value and sign of the distance to the limit cycle.
Assuming there exists an equationf(x, ẋ) = 0 that defines
the shape of the limit cycle, this can be done with the help
of Lagrange multipliers. Given the harmonic oscillator with
solution x(t) = A · sin( t

T
) for example, the shape of the

limit cycle is then given by:
(

x

p

)2

+

(

y

q

)2

− 1 = 0. (4)

Wherey = ẋ, p = A and q = A

T
. The situation is sketched

in Figure 4 wherep = 1, q = 2 and the pair(a, b) denotes
the current state. The goal is now to find a pair(x, y) on the
limit cycle such that the distanceD between(a, b) and(x, y)
is minimized. To simplify equations it is equally possible to
minimize D2 as this yields the same(x, y). D2 is given by:

D2 = (x − a)2 + (y − b)2. (5)

Equation (5) defines circles of radiusD around (a, b).
Starting from zero, increasing the radiusD this will lead
eventually to a situation where the circle around(a, b) is
touching the limit cycle without intersecting it. In this case
the limit cycle and the circle are tangent in(x, y) and
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Fig. 4. Limit cycle of the harmonic oscillator

therefore the gradients of both must be equal apart from a
scaling factorλ which is known as the Lagrange multiplier.

∇

[

(x − a)2 + (y − b)2
]

= λ · ∇

[

(

x

p

)2

+

(

y

q

)2
]

[

2(x − a)
2(y − b)

]

= λ ·

[

2x

p

2y

q

]

(6)

Combination of equations (4) and (6) results in the set of
three nonlinear equations shown below.

2(x − a) − 2λ
x

p
= 0

2(y − b) − 2λ
y

q
= 0

(

x

p

)2

+

(

y

q

)2

− 1 = 0

(7)

For the general case, the set of nonlinear equations is found
by differentiatingDc, the distance constrained to the limit
cycle with respect tox, y andλ, whereDc is defined as:

Dc(x, y, λ) = (x − a)2 + (y − b)2 + λ · f(x, ẋ). (8)

The problem of minimizing the distance between the current
state (a, b) and the limit cycle has thereby been reduced
to solving this set of nonlinear equations and inserting the
resulting(x, y) back in (5). Solving this set of equation how-
ever, may not be straightforward. In the example, substitution
results in a fourth order polynomial which can be solved
analytically, but this is not guaranteed for the general case.
An approximation of the solution can be found using a root
finding algorithm such as Newton-Raphson or a gradient
search [12]. Care needs to be taken when implementing
such an algorithm to prevent numeric instability. Also the
complexity of the algorithm must be within certain limits to
ensure that is applicable in a real-time controller. Instead of
using Lagrange multipliers with the necessity of numerical
algorithms a different approach can be used which simplifies
the calculations considerably.
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B. Implementation with energy control

For a certain class of systems the implementation can be
simplified with the help of an energy function or Hamilto-
nian. If the system is conservative, the energy in the system
will be constant and this energy level uniquely identifies
the limit cycle of the system. This is generally the case for
systems of the form̈x + f(x) = 0. By multiplying with ẋ
and then integrating over time we find the energy function
of the state variablesx and ẋ.

ẍ · ẋ + f(x) · ẋ = 0
∫

ẍ · ẋ + f(x) · ẋdt = E

1

2
ẋ2 + F (x) = E

(9)

Thus, if the desired energy levelEd is known and the current
energy levelEc is calculated as function of the current state,
thenD of equation (3) can be implemented as the difference
of Ed andEc. This gives the subsequent feedback rule:

T = −κ · (Ec − Ed) · ẋ. (10)

WhenEc is lower thanEd the feedback injects energy in the
system while it damps down the system ifEc is too high.
If Ec equalsEd, the system is exactly on the desired limit
cycle and the feedback leaves the system untouched.

C. Change of dynamics with feedforward control

The feedback controller can also be used to impose an
additional feedforward force on the system that is dependent
on the state but not of the distance to the limit cycle. This
relieves being restricted to the natural motion of the system
and allows for inducing any motion of the form̈x + g(x) =
0. The feedforward term will consist ofg(x) as wel as a
cancellation term for the natural dynamics of the system.
In case of a system that is defined byẍ + f(x) = T , the
feedback term becomes:

T = f(x) − g(x) − κ · (Ed − Ec) · ẋ. (11)

The first term compensates the dynamics of the system, the
second term induces the desired dynamics and the last term
is the stabilizing term that ensures convergence to the limit
cycle that is to be obtained.

In order to be able to implement this feedback, a model
of the system is necessary to know howf(x) looks like.
In practice there will be differences between the model and
the physical system. In a control setup where tracking of
a reference signal is the goal, this may cause problems as
unexpected dynamics are present. For the purpose of con-
verging to a limit cycle however, small differences between
the model and the system are acceptable. It will only result
in a limit cycle that slight deviates from the desired one.
Additionally, the stabilizing term will counteract deviations
from the desired limit cycle which makes the effect of an
inaccurate model smaller. The effects of differences between
the model and the physical system can be even further
reduced with help of a learning feedforward controller.

In the same way it is also possible to add a feedforward
term that compensates for damping in the system. Without
adding this term the damping in the system would have to
be overcome by the stabilizing term of the controller. In
that case the behavior would not follow the limit cycle but
deviate to a trajectory where the stabilizing term and the
damping cancel out. By adding damping compensation in
the feedforward term this effect is reduced.

D. Example

To conclude this section an example is given that illustrates
the proposed feedback system. Consider the harmonic oscil-
lator to be swung up to an amplitude of one. The equation
of motion is:

ẍ + x = T, (12)

and the energy function of the system is:

E =
1

2
ẋ2 +

1

2
x2. (13)

To obtain an amplitude of 1 this givesEd = 1. The feedback
law of (10) result in the trajectory of Figure 5 where we
usedκ = 2. As can be seen the oscillator is stabilized to the
desired limit cycle with amplitude 1. An example including
feedforward control to obtain different system behavior is
given in the next section.
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Fig. 5. Harmonic oscillator in limit cycle oscillation

IV. CONTROL OF PERIODIC SYSTEMS

In the previous section we looked at limit cycle oscillations
where the shape of the oscillation emerges as a consequence
of the system’s natural dynamics. Using feedforward it is
possible to change the dynamics, but one question not
answered so far is how to induce a predetermined periodic
movementx(t) in a system. As explained before the absolute
value of t is not relevant, it is only used to indicate the
phase t

T
of the system. Instead of starting from the system

dynamics it is now explained how to design a feedback
controller that gives exactlyx(t) in the system under control.
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A. Parameterization of the limit cycle

Given the desired motionx(t) it is straightforward to
calculate the velocitẏx(t) and acceleration̈x(t) by differenti-
ation. The parameterized curveC = (x(t), ẋ(t)) then defines
the trajectory we want to achieve. Projected on the state
space, this trajectory may formally not be limit cycle as for
certainx(t) the trajectory could intersect itself. Considering
the fact that the phase of the desired motion can be taken
as extra state however, a non-intersecting trajectory in the
state space is obtained and therefore it is always possible to
indicate the desired trajectory as a limit cycle.

The advantage of this approach is not only that it can
be used to specify exactly the desired motion but it also
reduces the complexity of calculating the minimum distance
between the limit cycle and the current state. Compared with
the Lagrange multiplier approach with three unknowns, the
distance now is a function oft only.

D2 = (x(t) − a)
2

+ (ẋ(t) − b)
2
. (14)

Although still nonlinear, this is just one equation in one
unknown. The Newton-Raphson method can be used to find
t̂ that minimizesD2, but this method has a risk of numerical
instability if the first guesst0 is not close enough tôt. Since
t̂ is restricted between0 andT instability is easy to prevent
by using the proposed algorithm below.

B. Outline of the algorithm

We now propose an algorithm to find̂t that is guaranteed
to give a solution without risking numerical instability.
The idea is start fromt0 and than take steps in direction
of decreasing distance until the minimum is found. This
is a stable solution becausêt must be in the interval
[t0 − T, t0 + T ].

Step 1: Determinet0
The first step of the algorithm is to determine a starting
point t0. If this is the first iteration of the algorithm then
no t̂ was estimated before and an initial guess has to be
determined based on the current state(a, b). This can be
an arbitraryt in the interval [0, T ]. If this is not the first
iteration thent̂ that was estimated in the previous iteration
is a good choice since the system’s current state will be
more or less in the neighborhood of the previoust̂.

Step 2: Step towards minimum distance
First calculate the time derivative ofD2. If it is positive,
then decreaset stepwise until the derivative changes sign.
If it is negative thent should be increased until a change
of sign is detected. The value oft̂ that gives the minimum
distance is now in the interval of the found values oft
indicated bytcurr and tcurr−1.

Step 3: Determinêt
Since the solution̂t is now bracketed betweentcurr and
tcurr−1 a simple bracketed algorithm can be used to findt̂.
The false position method or bisection algorithm [12] can
for example be used to do this.

Step 4: Apply feedback law
Substitution of̂t in the equation for the acceleration givesẍ.
With the model of the system it can then be calculated how
much the feedforward torque has to be applied to obtain this
acceleration. The stabilizing term ensures convergence to
the limit cycle in the same way as in the previous section.

C. Example

To illustrate the approach outlined above this section is
concluded with an example. As system to be controlled we
take the undamped pendulum described byẍ+g ·sin(x) = 0,
whereg is the gravitational constant. Suppose the periodic
motion to be induced isx(t) = sin(2t) + sin(t). By
differentiation the velocity and acceleration are found:

ẋ(t) = 2 · cos(2t) + cos(t)

ẍ(t) = −4 · sin(2t) − sin(t).
(15)

The feedback controller implements the algorithm as de-
scribed above to calculatêt that gives the minimum distance
Dmin between the limit cycle and the current state. The
feedback law that brings the pendulum in the desired motion
now becomes:

T = g · sin(x) +
(

−4 sin(2t̂) − sin(t̂)
)

− Dmin · ẋ. (16)

Where the first term compensates for the pendulum’s natural
dynamics, the second term feedforwards the torque needed
to get the desired acceleration and the third term stabilizes
to the desired limit cycle. The behavior of the system
was verified using numerical simulation. In Figure 6 the
convergence of the system to the limit cycle can be seen for
initial conditions (1, 1). Figure 7 shows the corresponding
time plot of x(t) from which can be seen that the system
converges to the periodic behaviorx(t) = sin(2t) + sin(t).
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Fig. 6. Pendulum in intersecting limit cycle oscillation - state space

V. EXTENSIONS

In practical situations the systems to be controlled are
usually not simple second order systems as discussed in
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Fig. 7. Pendulum in intersecting limit cycle oscillation - time plot

this paper so far. Therefore this section explains how the
introduced techniques can be applied for more advance appli-
cations. Two separated cases are discussed, synchronization
of independent systems and a direct approach for higher
order systems that are not independent.

A. Synchronization

In case of independent systems that are not mechanically
coupled, a feedback controller that brings the system in limit
cycle oscillation can be developed for each system separately.
Synchronization between the system can be obtained be com-
paring the phase difference between the systems and change
their relative speeds accordingly. The phase difference can
be calculate by a separate phase controller connecting the
systems as shown in Figure 8. The correction of the speeds of
each system can be done by each feedback controller as this
is achieved by changing the shape of the limit cycle. Increase
of speeds is achieved by stretching the limit cycle along the
ẋ-axis, while slowing down is achieved by shrinking the limit
cycle.

system 2

feedback 2

system 1

feedback 1
phase

controller

Fig. 8. Synchronization with phase controller

B. Higher order systems

In coupled mechanical systems such as for example a
double pendulum,the second order subsystems cannot be
controlled independently. This is because applying a torque
to one system also influences the motion in the other system.
For these kind of systems the limit cycle can be seen
as a trajectory in a higher dimensional state space, for

example fourth order for the double pendulum. This allows
for direct application of the Lagrange multiplier approachor
the parameterized limit cycle approach. In the last case the
optimization is still one-dimensional ast is the only unknown
variable; Only the equations for the distance become more
complex. Unfortunately the energy based approach cannot be
used for higher order system as it is not possible to express
a trajectory in a space of three dimensions or higher by
an energy function. Using an energy function in a three-
dimensional space for example would define a sphere and
not a trajectory.

VI. CONCLUSIONS

Inspired by the famous Van der Pol oscillator it was
shown how limit cycle oscillations can be induced in a
system using a nonlinear feedback. By proper design of a
feedback controller the system can be stabilized on exactly
the limit cycle that is desired. For simple systems this can
be achieved with a straightforward energy based control.
Using feedforward, the dynamics of the system can be
changed and the shape of the limit cycle is altered. It is
also possible to induce a specific periodic motionx(t) with
help of a somewhat more complicated control algorithm.
This algorithm is computationally not very complex and
therefore suitable for real-time applications. If the feedback
controller is implemented with a CVT and buffer as in [9]
this results in energy efficient limit cycle oscillations. Finally
it was argued how these techniques can be extended for
application on higher order system. Future research will
focus on application of these concepts on robust, energy
efficient walking robots. As a starting point a demonstration
setup is going to be developed to proof this concept.
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