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Summary

Design of walking robots is a challenge as walking is an inherently unstable process. The
stable gait of walking robot can be interpreted as form of oscillation as the states of the
system behave in a periodic way. From mathematics, nonlinear oscillators are known that
show a stable form of oscillation known as limit cycle oscillation. This research project
focuses on the analysis and control of this type of oscillators that may be used in future
designs of walking robots to obtain stable and robust behavior.

The Van der Pol oscillator is a nonlinear oscillator that has a globally attractive limit
cycle. This system consists of a harmonic oscillator with an addition nonlinear damping
term. This term behaves as an ordinary damping for high deflections, but it becomes
a negative damping for small deflections. This results in oscillations of small amplitude
being pumped up, while high amplitude oscillation are damped down leading to a globally
attractive limit cycle.

Based on the same principle as the Van der Pol oscillator, systems that show oscilla-
tory behavior can be brought in limit cycle oscillation by adding this type of nonlinear
feedback. This feedback can be implemented by buffer element as a spring and a modu-
lated transformer such as a continuous variable transmission (CVT). This leads to energy
efficient limit cycle oscillations as energy that otherwise would be dissipated now is stored
and can be fed back to the system when the feedback behaves generatively.

The second part of the research focused on the design of a feedback controller in such
a way that exactly the desired periodic behavior could be obtained. This can be achieved
using a Lagrange multiplier based approach, calculation of energy difference or parame-
terizing the limit cycle in time. The latter two can be implemented by an algorithm which
is simple considering the amount and complexity of calculations and therefore this can
be well implemented in a real-time controller. Parameterizing the limit cycle in time has
the additional benefit that the phase of the system is explicitly known which makes syn-
chronization between subsystems a straightforward task. This approach and the Lagrange
multiplier approach is also extensible for use in higher order systems.
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CHAPTER 1

Introduction

The motivation for this Master’s assignment comes from the research on walking robots.
One import research question in this field is how to design a walking robot that is able to
walk stable, is robust for disturbances from its environment and at the same time is energy
efficient. Involving nonlinear oscillator theory is a new approach that may provide a base
for development of future walking robots. In order to better understand the goals of this
project and the implication of its results, this report is started with an introduction on
walking robots. This introduction is finished by a presentation of the goals of the project
and the outline of this report.

1.1 Walking robots

Robots have been in use in industrial production environments for decades. They have
replaced humans working on repetitive, dangerous or heavy tasks on assembly lines and
this resulted in production processes that are more efficient, more consistent and have
a higher throughput. Over the last few years interest in robots is also increasing for
more domestic appliances such as for example vacuum cleaning, lawn mowing or floor
washing. These are relative simple tasks, but it is expected that with the development of
technology, robots will become more and more integrated in our daily life as well as being
able to perform increasingly complex tasks.

Humanoid Robots

An interesting subject in the field of walking robots is that of humanoid robots. A hu-
manoid is a type of robot which structurally resembles the human body. It has a torso
supported by legs, possibly a head and usually is equipped with arms. Research on hu-
manoid robots is still in an early stage but industry has already built some working
examples such as Honda’s Asimo and Sony’s QRIO that are shown in figure 1.1. These
have mainly been built for entertainment or proof-of-technology, but it is expected that in
the future humanoids will be built that can do useful tasks. The main reason for building
humanoids or walking robots in general is that the most suitable way of locomotion in the



(a) QRIO (b) Asimo

Figure 1.1: Industry built humanoid robots

human environment is walking. Designs based on wheels or tracks will have difficulties on
coping with sills, stairs and doors for example. Walking on the contrary is very flexible
and that makes it suitable for more irregular shaped environments.

Research on walking robots

The main problem in the design of a walking robot is to prevent instability. Walking
inherently comes with the risk that the robot can fall over. In other forms of locomotion
this is not so much an issue as the contact with the ground is always present. With
walking, the feet of the robot alternatively lift from the ground and instability is more
likely to occur. In humanoid robots there are only two legs to support the robot which
makes ensuring stability even more difficult.

The common approach in the design for stability is to use a form of so-called static
walking. With static walking it is ensured that the center of mass of the robot is always
within the foot print of the foot that is currently on the ground. As long as the robot is
moving slowly, inertial effects will be negligible and the robot will not fall over. Ensuring
that the center of mass is over the foot on the ground can be done by means of actively
controlling the joints of the robot. An extension of this approach is to use the Zero Moment
Point (ZMP) approach. In this approach the inertial effects that occur when the robot is
moving are incorporated to calculated the center of pressure (COP). As longs as the COP
is withing the foot print of the foot on the ground the robot will be stable. This approach
is used both in Asimo and QRIO. Although static walking offers great flexibility since each
joint can be controlled individually a serious drawback is that of energy consumption. This
is a result from actively controlling all the joints but mainly from not incorporation the
robot’s natural dynamics in calculating the motion profiles.

A complete different approach initiated by McGeer [McG90] in the early nineties is that
of passive dynamic walking. He showed how a simple frame without any actuation was
capable of walking down a shallow slope. All energy needed to overcome friction and losses
due to impacts of the feet with ground is supplied by gravity. The motion of the system
results as an ensemble of the natural dynamics of the system and its environment consisting



of the slope and gravity. Inspired by the ideas of McGeer, researchers around the world
have started to work on the design of robots that are based on passive dynamic walking
of which examples can be found [WvF03], [CR05] and [Wis04]. Actuators are added to
be able to walk also on flat terrain and accounting for the natural dynamics of the system
resulted in walkers that are very energy efficient. Compared with static walking this is a
great improvement but also this approach comes with a drawback. Although researchers
succeeded in building stable walking robots, the designs are usually not very robust. Small
disturbances such a an irregularity in the floor can destroy the stable gait of the robot
and cause it to fall.

Research at the Control Engineering group

The Control Engineering group has been involved in the research on walking robots for
about five years. The research started with the work of Vincent van Duindam [Dui06] who
worked as a PhD-student on modeling and control of bipedal walking robots. He supervised
several Master students that did an assignment that contributed to his research as listed
below:

e Niels Beekman, Analysis and development of a 2D walking machine [Bee04]

e Edwin Dertien, Realization of an energy-efficient walking robot [Der05]

Gijs van Oort, Strategies for stabilizing a 3D Dynamically Walking Robot[vOO05]

Eddy Veltman, Foot shapes and ankle actuation for a walking robot [Vel06]
e Yanzhen Xie, Dynamic effects of an upper body on a 2D bipedal robot [Xie06]
e Michel Franken, Ankle actuation for planar bipedal robots [Fra07]

The collaborative work of these persons has resulted in the biped walking robot 'Dribbel’
shown in figure 1.2. Based on passive dynamic walking, this design can walk stable while
consuming only a small amount of power. Nowadays Vincent has finished his PhD-research
and has left the group. Gijs van Oort has become a PhD-student working on the stabi-
lization of three dimensional dynamic walkers. The ultimate goal of the research in the
group is to build a highly energy efficient and fully functional humanoid prototype.

1.2 Assignment goals

A new way to improve the stability of walking robots may be to use nonlinear oscillatory
theory. The stable gait of a walking robot can be interpreted as a form of stable oscillation.
The robot itself is a high order dynamical system of which the states are made up of the
velocities and positions of the rigid bodies that the robot consists of. When the robot is
walking in a stable gait, the states will behave periodically. This can be depicted as a
closed trajectory in the shape space of the robot.

From mathematics, nonlinear oscillators are known that show a very stable form of
oscillation. Independent on the initial condition, such an oscillator always converges to
the same periodic behavior. In other words, the trajectory in the state space that the
oscillator converges to is unique and this is known as a limit cycle. If a walking robot
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can be designed in a way that it behaves as a such a nonlinear oscillator this would mean
stable walking behavior is obtained automatically.

Before this can be done a better understanding of nonlinear oscillators is needed and
that is exactly what is the goal of this assignment. Starting from the well known Van der
Pol oscillator it needs to be understand how the mechanism works that ensures convergence
to the limit cycle. From there the question will be how an oscillator can be designed that
has exactly the periodic behavior that is needed. The ultimate goal will be to become
capable of designing oscillators for any possible periodic behavior.

1.3 Report outline

The results of the assignment are presented in two papers that make up the subsequent
two chapters of this report. The papers are written in such a way that they can be read
separately. The first papers deals mainly with the analysis part of the project. It shows
how nonlinear oscillators work and how stable limit cycles can be obtained in oscillating
systems. The paper was written halfway the project and has been submitted to the IEEE
conference on Intelligent Robots and Systems, but was unfortunately not selected for
publication. The second paper deals with control on nonlinear oscillators. It describes
how a system can be designed that behaves as a nonlinear oscillator with a stable limit
cycle of predefined periodic behavior. It is planned to combine the results of the two
papers into one paper and submit it for IEEE Transactions on Robotics and Automation.
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Energy Conservative Limit Cycle Oscillations

Michel van Dijk, Stefano Stramigioli

Abstract— This paper shows how globally attractive limit also this paper does not give a full analysis of the nonlinear
cycle oscillations can be induced in a system with a nonlinear dynamics, a hew approach is taken in the design of dynamic
feedback element. Based on the same principle as the Van der \yqa\kers that focuses on generation of stable limit cycles.
Pol oscnle_lt_or, the feedback b_ehaves as a negative dampl_n_g for | ired b i Nat f for their al I
low velocities but as an ordinary damper for high velocities. nsplre_ y non Inéar oscillators famous for their 90?’6‘
This nonlinear damper can be physically implemented with a  attractive limit cycles such as the Van der Pol oscillator, a
continuous variable transmission and a spring, storing energy in new way is proposed for inducing limit cycle oscillation in
the spring when the damping is positive and reusing it when the  mechanisms based on energy feedback. The result described
damping is negative. The resulting mechanism has a natural i, this paper is a mechanism that has a natural limit cycle
limit cycle oscillation that is energy conservative and can be s - . .
used for the development of robust, dynamic walking robots. OS?'”at'on* 1S en('argy efficient and c_m top of that_ fairly gas

to implement. It is expected that this concept will enable us
to build robust, dynamic walkers that excel in a combination
|. INTRODUCTION of simplicity and performance.
HE results described in this paper are motivated by the The remainder of this paper is organized as follows.
search for robust, energy efficient walking robots. OveSection Il introduces some necessary background informa-
the last decade, researchers around the world in both mydustion on nonlinear oscillators that exhibit stable limit &yc
and universities have been working on walking robots andscillations. In section Il an implementation is proposed
succeeded in building numerous working examples [1], [2]hat is energy conservative, based on the theory of port-
While industry mainly focuses on so-called static walkerglamiltonian systems. In section IV an example is given of
such as Honda’s Asimo and Sony’s QRIO, some universitiggw the proposed implementation can be used in a physical
based their research on dynamic walking of which examplesystem. Finally in section V this paper is concluded and
can be found in [3], [4], [5]. The benefit of dynamic walking future research on this subject is discussed.
is that it exploits the natural dynamics of the mechanicéef t
walker, which results in highly energy efficient and natural || | \MiT CYCLES AND NONLINEAR OSCILLATORS
looking locomotion. - . - . . .

Research on dynamic walking was initiated by McGeer A I!m|t gycle IS a 'peI’IOdIC solution .Of a differential
[6] in the early nineties. Originally inspired by toys, he€duation with the additional prope_rty_that it is |so_latemlth_e
developed several passive walking mechanisms that codﬂi‘as.e space of the gystem a periodic solution is a.traject_ory
walk down a shallow slope only powered by gravity. Fro a}t is a closed c.’rb.'t' Isola_ted means that any qe|ght_)or|ng
his results the view emerged that dynamic walkers could gipiectory of the limit cycle IS npt closed, they splrgl enth.
created based on the same principle, with the addition (f’W""rdS or away from the limit .cycle. Mathemqtlcally It
actuators to provide energy instead of using gravity. could also_ be said that th_ere_ exists an open ne_lghbor_hood

The stable gait of a dynamic walker can be interpretewat con_tams qnly gne periadic s_,olgtlon. I z_ill_nelghbgnn
as a stable limit cycle of the system [2]. Once the walkef&€ctories spiral towards the limit cycle it is stable or
has converged to the stable gait it keeps repeating the saPrFHaC“_Ve' otherwise it is unstgble or half-stable. In some
pattern over and over again. Unfortunately the dynami;e’xceptlonal Cases. For the deS|gr) 9f robust wa'llkmg robpts
walkers that have been built so far suffer from a lack oft 'S mter_estlng to_ look at stable I|m|t_ cycles, with a t_)asm
robustness. The stability of the gate is easily destroyed @j“attractmn that is as large as possible. The possibility o

even relatively small disturbances, usually resulting hie t i mit cycle So.ltlit'on,'s restlrlcFed tﬁ noglmear sysft(T_msal.
robot falling down. Apparently the limit cycle of the system Inear SyStgm’ ! (t), IS a solution then because of linearity
soc-z(t) is a solution for any constant In the phase space

although being stable, has only a narrow area of attractio I Lo ! :
Current research is focused on improving this shortcomin IS can be Seen as an !r_]f"?'te nur_nb_er of cloge_d trajectories
and is expected to yield more robust behavior. ncircling the S|r_lgle e_qwh_bn_um point in the origin, hoves

The dynamics of a walking robot are generally nonlinea®" Of these trajectories is isolated.
and on top of that the regular impacts with the ground causes

a switching behavior that makes it hard to understand th& Lienard systems

dynamics of these systems in an analytical way. This explain There exist nonlinear systems which are known to have

why the current generation of dynamic walkers is more ofteg globally attractive limit cycle. An example is the famous
a result of trial and error and parameter optimization natheg/an der Pol oscillator that is described by:

than a thorough analysis of the dynamic behavior that is
responsible for the stable limit cycle oscillation. Altlybu &+ pu(2® - 1)+ Kz =0. (1)



It was discovered by the Dutch scientist Balthasar van der ¢  + i Y
Pol during the early development of radio technology in passive system
which vacuum tubes were used. The equation is similar to
the damped harmonic oscillator but with a nonlinear damping
term u(x? —1)d. For positiveu, the damping term is negative
for || < 1 and positive for|z| > 1. This results in 299
small amplitude oscillations being pumped up, while large
amplitude oscillations are damped down. Intuitively it is;
understandable that this must lead to a stable oscillation
of intermediate amplitude. An oscillator closely related t

the Van der Pol oscillator is the somewhat less famousstarting point for the analysis in [10] is the above desatibe

Rayleigh oscillators that is based on the same principl§an der Pol oscillator and the Fitzhugh-Nagumo oscillator,

In this oscillator the damping term only depends on theich is a simplified model of spike generation in neurons.

derivative 2, which is also what is used in the examplesthe author generalizes these two types of oscillators to a

further on in this paper. The equation describing the Rejlei form as shown in Fig. 1. The forward path consists of a

oscillator is: passive system and the negative feedback is formed by a
i+ p@?—1)i+ Kz =0. ) nonlinearity¢, (y) that is the sum of a passive paity) and

. . . an anti-passive or active partky.
The relation between the two oscillators described abome ca

be found by first differentiating (2) with respect to time and oi(y) = o(y) — ky (5)

then replacingt with y. y . Hereg(y) is a smooth, static nonlinearity in the sector{),
The Van der Pol equation is a s_peC|f|c case of a Llenar@hus passive), and moreowgfy) is a stiffening nonlinearity,
system as described by the equation below: i.e. limy, o 2 _ 5. Now takeGj,(s) the system formed
4 f(x)z 4+ g(x) = 0. (3) bythe linearized passive system with negative feedback
. : . Increasingk will eventually lead to instability ofG(s) as
Here f(x) and g(xz) may be nonlmea_r functions. L.'ef‘afds poles cross the imaginary axis and move onto the right half
theorem [7] states that (3) has a unique, stable limit cycl

dina th iain of the ph if the followi g—plane. Defind:* the smallesk > 0 for which G (s) has a
surrounding the origin ot the phase space It the 1o 0ngﬂ)ole on the imaginary axis. Under the assumption of absolute
conditions are satisfied:

. . , stability of the system shown in Fig. 1 fof = k* two
1) f(z) andg(z) are continuously differentiable for all  ¢cenarios are possible:
2) g(—x) = —g() for all z (9(x) is odd) 1) Scenario 1, Van der Pol type: For k = k* a pair of
3) g(z) >0forz >0 _ complex conjugate poles cross the imaginary axis at non-
4) f(=z) = f(z) for all (f(?g) is even) zero speed causing a supercritical Hopf bifurcation. I thi
5) The odd function’(z) = [, f(u)du has exactly one pifrcation the stable origin becomes unstable and a stable
positive zero atr = a, is negative for0 < z < a, IS |imit cycle emerges from the origin.
positive and nondecreasing for> a, andF'(z) — oo 2) Scenario 2, Fitzhugh-Nagumo type: For k = k* a
asr — oo single pole crosses the imaginary axis causing a pitchfork
The conditions ory(z) ensure that its behavior is like that pifurcation that results in a bistable system. Extending th
of a restoring force like a spring and the conditionsf@r)  negative feedback with a slow adaptation mechanis
ensure a damping behavior that is amplifies small amplitudeansforms the bistable system into a system with a globally
oscillations, but damp down large amplitude oscillationsstaple limit cycle.
More information on nonlinear oscillators and nonlinear |n the isolated case where the system is not connected
dynamics in general can be found in books as for examplg, — (), the system will exhibit a self-sustained stable limit

v

1. Passive system with nonlinear feedback

[7], [8] or [9]. cycle oscillation fork > k*. The existence of this limit cycle
o _ is not guaranteed for alt > k* since further bifurcations
B. Passivity based oscillators may occur that alter the system behavior.

Another approach to the analysis of limit cycle oscillason
is taken in [10]. Here the authors use dissipativity theory port Hamiltonian Systems
to characterize oscillators as open systems. This makes it

. ) ) Key point for the limit cycle oscillations is the nonlinear
possible to interconnect a network of oscillators and aely yp y

element that is locally generative, but globally dissiti
. : : - ' 10CUhe interaction of the passive part of the system with the non
is on isolated oscillators only, but the passivity approach . . :
seful because it allows looking at svstem connections froIlnearlty can be described by an exchange of energy through
;n euner gaseld oyl\wlt of !eg A g stem is asls' o .t%:power port connecting the two parts. The amount of power
gy based pol VIew. YS! IS passive wi (t) equals the product(¢) - y(¢) and the total exchange of
respect to its input:(¢t) and outputy(t) if there exists as is the time i | of th t
storage functions(z(t)), S(0) = 0 such that: energy is the time integral of the powei(t) = [, P(u) du.
’ ] ' A powerful framework for modeling dynamical systems that
S(xz(t)) >0 and S(z(t)) <u(t)-yt). (4) are described by an energy function and connections through



powerports is that of port-Hamiltonian systems given by the oul] <— - ino

. . . . power continuous
following set of differential equations:

in; —»  transmission | —— outy

i=(J(z) - R(f))aj_a[ia(f) +g(z)u Fig. 2. Power continuous transmission
OH (x) )
y=g"(z) + (K(z) — S())u

O or dissipated by the transmission. This property is easily
In these equations: represents the statef/(z) is the deduced with the constitutive relations of (8):

energy function or Hamiltonian/(z) and K (z) are skew- P = in: - out

symmetric matrices that model powercontinuous elements, ! 11 !

R(z) andS(x) are positive semi-definite matrices that model = (= -outy) - (n-iny)

dissipative elements an@, y) is the port through which the no ©)
system can interact with the outer world. These systems have = outy - iy

the property thaif (z) < u”y, so these systems are passive = Ps.

with storage functionf (). It is good to realize that this power continuous property sti
holds if the transmission factat is not constant. Such a
||| ENERGY CONSERVATIVE IMPLEMENTATION transmiSSion iS I’eferred.to as being modulated by a faCtor
. ) ) n(-). In bondgraphs, this element is known as a (modu-
Nonlinear oscillators as the Van der Pol oscillator are gefated) transformer. Physical examples of power continuous
erally considered nonconservative since energy dissipati iransmissions with a constant transmission ratio are aal ide
takes place in the nonlinear element. When the nonlinearigfectric transformer or a set of frictionless gears.
behaves generatively, energy has to be supplied from any; can be shown that the modulation factof-) can be
external source. However it is easy to see that for eveRposen such that the power flow is always in the same
periodic solution the change in energy of the system must Refrection, that is choosing(+) such that the PCT becomes
zero because energy can be expressed as a function of figne way device. The positive direction of power flow is
state. defined as the direction fromir(y, out1) to (ina, outs).
AE = E(z(t + T)) — E(x(t)) !n .perspectwe of Fig. 2, power flows from left to rlght
fT) = ot = AE=0 (7) if iny-out; > 0 and consequently from right to left if
2(t+T) = x(t) iny -out; < 0. Supposen = in; -ins is taken as modulation

Therefore, instead of using a nonlinearity that dissipates actor, resulting in:

ergy it would be useful to have an element that buffers energy Py =iny - out; = ing - n - ing

so that it can be reused later. In this section it is described —in2.in2 (10)

how to model an element that has the same characteristics v

as the nonlinearity, but buffers energy instead of dissigat

it. The usage of this element results in oscillators that das can be seen the flow of power is always in the positive

not dissipate any energy once converged to the stable lingirection with this modulation factor. Similarly, the flow i

cycle. always in the negative direction if = —in; - iny is taken.
Although not commonly known, bondgraphs as introduce@he structure of the PCT with this modulation is depicted in

by Paynter [11] can be very useful in the analysis of systenisg. 3.

that are connected with powerports. The following analysis

is based on bondgraph terminology, but is presented in a powerflow ——»

general form so that no bondgraph knowledge is required to

understand the ideas presented.

> 0.

out| +—

power continuous 2

iny transmission » outs

A. Power continuous transmissions i

To be able to shape the characteristic of the buffer a power
continuous transmission (PCT) is used with transmissior9- 3. Modulated PCT, with powerflow from port 1 to port 2
ratio n as described by the constitutive relations below and
of which a graphical representation is shown in Fig. 2.

B. Sorage element

, (8) Besides the power continuous transmission to guide the
outy =mn -1y flow of power also a storage element is needed to store and

supply the energy associated with the power flows, which

The transmission is power continuous in the sense that bondgraph terms is implemented by I- or C-type buffers.
the power that flows into the system at one port, flows ouuch a storage element can be modeled by a simple integrator

at the other port in the same amount. No energy is storesd shown in Fig. 4. In the storage element the input is

outy = n - ing
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Fig. 4. Storage element

integrated to obtain a stateand the output equals the partial
derivative of the stored energy with respect to the state. In
the linear case this simplifies tg, where the constant’
represents the capacity of the storage element. This Bescri
for example a spring with the velocity as input, length as

state, capacity;: and output the force, or a mass with thej; s possible to replace any nonlinearity with this systém.

force as input, impulse as state, mass as capacity andelodection |V an example and possible physical implementation
as output. The amount of energy stored in the element i this system is given.

found by calculating the integral over the product of theuinp

Fig. 6. Van der Pol oscillator in conservative form

and output. D. Conservative Van der Pol oscillator
/m coutdt = / 87Hx dt = H(x) (11) Using the buffer as sketched above to replace the nonlinear
O damping term in the Van der Pol equation, it can be written
In the linear case this equals: in a form that is conservative. First the Van der Pol osaHat
" 1 is rewritten to equal the form of Fig. 1.
H(z)= | Zidt = —a° 12
() / c” 20" (12) i+ olr, i) +x, ¢x,i) = pu®—1)i (15)

A block diagram of the system is shown in Fig. 6 where
the following variables are useq:= z, p = &, r the state

It is now possible to show how the combination of aof the storage element with capacify= 1 andn = ¢(-)/r.
modulated power continuous transmission and a storagée equations describing the system in matrix form are:
element can be used as a substitution for the nonlinear

C. Replacing the nonlinear element

element. Starting from the nonlinearify-) where the output a 01 (1) 01 |4 16
is a nonlinear function of the input, that is: Pl = _0 _On Py (16)
T n T

out = ¢(in) (13)  \which is a port-Hamiltonian system with state vectoand

and using a structure as shown in Fig. 5, the followingkew-symmetric matrix/ denoted by:

relation can be deduced: 0 1 0
T
OH , x:[q D 7“] J=1|-1 0 —nf|. a7)
out =n - by =n-— o(in
ot oz b n= % (14) 0 n 0
out = ¢(in) bz The Hamiltonian of the system is:
That is the structure of Fig. 5 where modulation factor 1 5 1, 145 1,
n is according to (14) will have the same input-output H(z) = QT T =50 TPt T (18)

characteristic as nonlinearity(-). When the power inflow g js a conservative system as can be seen by calculating
is positive andg(-) behaves as a dissipative element, NOWhe time derivative offl (z):

energy is stored in the buffer instead of being dissipated.

When¢(-) would have a generative characteristic, the buffer H(z) = aﬂx

supplies the previously stored energy. It can do so as long as 3T33 (19)
there is energy stored in to buffer, that is as I0ng%§(s> 0. =z Jr

At the same time it is clear that(-) can be freely chosen, so =0

where equality to zero follows from the skew-symmetric
****** property ofJ.

out e—— power continuous T é : It can be verified that the behavior of the system in
. transmission | } conservative form is the same as that of the normal Van der
m bin | J =1 Pol oscillator by a numerical simulation. In Fig. 7 a solatio
noo of the system fory = 1 is shown with initial conditions
() & x = [2,2,10]. The figure shows convergence to a limit cycle

in the @,p,r)-space, and the projection of the trajectory on
Fig. 5. Modulated PCT with storage element the (g,p)-surface shows the limit cycle associated with the
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IV. APPLICATIONS AND IMPLEMENTATION

103 The last part of this paper discusses an application and
102 possible physical implementation of the system descriloed s
far. As the motivation for this paper comes from research on
. walking robots the application will be in that field. The leg
10 of a walking robot can be roughly interpreted as an inverse
pendulum, or double inverse pendulum in case of legs with
knees and therefore it is chosen to look at how limit cycle
oscillations can be induced in a pendulum.

9.9

A. Pendulum

The pendulum is a classic physical example of a nonlinear
differential equation. The differential equation desiripthe

damped pendulum of Fig. 9 with pointmass, length,
Fig. 7. Simulation of the conservative Van der Pol implemeaotati dampingd and input torquel’ is:

é—&-ié—&-gsine—izo. (20)
normal Van der Pol oscillator, thereby verifying that the m-1 m -1
behavior of the conservative system is indeed the same. The system is passive with respect to influand outputd,
so limit cycle oscillation is expected if a negative feedbac
of the form —T' = 63 — k6 is used. Although not strictly
E. Extension to systems with dissipation a Lienard system, the system with this feedback is similar

In the previous example the passive part consists fo the Rayleigh oscillator and the nonlinearity fulfills the

conservative elements only. If the passive part contaiss alconditipns_ described in section Il. _It can be seen that the
dissipative elements then the total energy flow into thFa”_n ko will co_mp_ensate the damping ter%e an thus
nonlinearity will be smaller than the amount of energy i Imit cycle oscn_latmn may be expgcted qur = ml Thgt
has to supply. As a result the stored energy in the buffer wilP the system s s.table_for smal mcreasm_gk_ results in
decrease as time evolves until the buffer becomes emp _Hopf-b|furcatlon in which the s'Fat?Ie equilibrium be.comes
To overcome such problems energy has to be injected in stable and a globally stable limit cycle surrounding the
the system that compensates the dissipation of energy in #

B’gin appeatrs.
passive part. Connecting an actuator directly to the syster?Thﬁ.Si eﬁpectatul)ns are vherlﬂed. byF.nurTl%ncal dS'ﬂm?ﬁ?n
however will generally influence the dynamics of the systenq which the r%sg tshare. N IOW.” n E'l l—aT d—'2 €
and thereby possibly disturb the stability properties af thpa(rjam_etgr;u?e F'm tlng[nT auﬁp r?me._ It, . ’d N d
limit cycle. With the use of the storage element it is pOSSib|an g =2.51. 1N Hg. = - WhICh TESUTS 1h a damped,

to circumvent this problem in an elegant way. Instead oﬁable system as the damping_of the pendulum is strpnger
injecting energy in the system, it is possible to directl)} an th? actl_ve_ part of the_ no_nlmear_ feedback. In_c reasing
inject energy into the storage element. As the modulatiorr?su“s in a limit cycle oscillation as is shown in Fig. 11 for
factor of the power continuous transmission compensates f3 valuek = 4.

any variation of energy storage this can be done without

influencing the system behavior. Energy injection can bB. Implementation

done by extending the storage element to a two port systemin order to build the pendulum with nonlinear feedback

as shown in Fig. 8 where port 1 connects to the systef a power continuous way, a physical implementation for
the modulated power continuous transmission and storage

outs element have to be found. The (input, output) combinations
of the transmission are of the form (rotational velocity,

outq

inl ’ing

Fig. 8. Two port storage element

through the power continuous transmission as before and
port 2 is used to supply the required energy. If the storage
element is implemented as a torsional spring for example,
one side of the spring connects to the system and the other
side to a motor which winds up the spring similarly like what

is done in an analogue wristwatch. Fig. 9. Classic pendulum




12

have to be fitted with a reversing mechanism so that negative
transmission ratios can be accomplished as well. The storag
element can simply consist of a toroidal spring as described
in the previous section. If one end of the spring is connected
to a motor and a controller that ensures the spring is always
under tension this will provide energy injection to overem
damping in the pendulum.

0.5

V. CONCLUSIONS AND FUTURE WORK

It was shown how stable limit cycle oscillations can be
induced in a passive system with the use of a nonlinear feed-
P — back. Similarly to the Van der Pol oscillator, this feedback
0 pumps up small amplitude oscillation, but damps down large

amplitude oscillation thus resulting in a stable oscitiatof

intermediate amplitude. The passive system and the namline
2 ‘ ‘ ‘ ‘ ‘ ‘ feedback continuously exchange energy. Whereas in the
Van der Pol oscillator energy that flows into the nonlinear
feedback is dissipated, it was shown how to convert this into
a conservative system. With the combination of a modulated
power continuous transmission and a storage element any
nonlinear characteristic can be implemented by choosiaeg th
appropriate modulation factor. Energy that otherwise woul
be dissipated can now be reused and fed back to the system.
It was also shown how the concept can be extended with a
two port storage element to compensate for energy losses in
the passive part of the system.

Systems that exhibit stable limit cycle oscillation are
interesting for the development of robust, dynamic walking
robots. Future research will focus on how the concept de-
scribed in the paper can be implemented in a walking robot.
It would be interesting to analyze what the exact influence
of the nonlinear feedback is on the shape of the resulting
torque) so the device must transform rotation to rotationimit cycle. Other points of interest are how the system can
A set of gears would suffice if the transmission ratio woulthe generalized to higher dimensions and how the oscillation
be constant, but in this case the ratio must be variable. dan be synchronized with impacts of the feet with the ground.
physical device with a variable transmission ratio is chlle
a continuous variable transmission (CVT). There are sévera
possible implementations to create a physical CVT. In the

-0.2 0.5 06

Fig. 10.

Y L L I L L L
-0.6 -0.4 -0.2 0

Fig. 11. Pendulum in limit cycle
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Design of Nonlinear Oscillators with Specified Periodic Babav

Michel van Dijk, Stefano Stramigioli

Abstract— Nonlinear oscillators can exhibit stable, self- Control Engineering group of the University of Twente the
induced oscillations known as limit cycle oscillations. Systems robot Dribbel has been built [8]. The main problem with
that need to perform a periodic repeating behavior can also be ynage walking robots is that it is hard to ensure robustness.

seen as oscillating systems. From this point of view, nonlinear Relativel Il disturb th IKi tt
oscillators are interesting in the control of such systems. This elalively small disturbances can cause the walking patter

paper discusses how nonlinear oscillators can be designed t0 become unstable and causing to robot to fall down.
with exactly the desired periodic behavior. Furthermore it is As the walking can be interpreted as an oscillation in the
discussed how this can be applied to higher dimensional systems shape space, our approach is to use nonlinear oscillators
such as _Walklng robots and how several oscillators can be for developing robust walking robots. In previous work we
synchronized. L I . .
showed how stable limit cycle oscillations can be induced in
systems in an energy efficient way using a nonlinear feedback
|. INTRODUCTION [9]. In this paper we outline how to design the feedback
OBOTS have been in use in industrial productiorsystem to get exactly the periodic motion that is needed.
environments for decades. They have replaced humanThe remainder of this paper is organized as follows.
workers which resulted in production processes that aremoin section Il the basics of periodic systems and nonlinear
efficient, more consistent and of higher throughput. Oveoscillators are analyzed. Sections Il and IV contain the
the last few years interest in robots is also increasing fanain part of this paper. Section Il discusses how oscitiato
domestic appliances such as for example vacuum cleaniagstems can be turned into controlled oscillators and @ecti
or floor washing [1]. These are relatively simple tasks, but iV discusses how any predetermined periodic movement can
is expected that with the development of technology, robotse induced in a system. In section V we discuss extensions
will become more and more integrated in our daily life ando higher dimensional oscillators and the synchronization
being able to perform increasingly complex tasks. between oscillators. Finally in section VI this paper is
Wheeled locomotion is very suitable on solid, flat surfaceg;oncluded and future research is discussed.
but is not very convenient in an uneven terrain. Walking
is much more flex'ible anq thgrefore more suitablg for the II. ANALYSIS OF PERIODIC SYSTEMS
environment in which we live in. Furthermore, walking can ) o o o
in fact be a very energy efficient way of locomotion if the In.thls section it is preser_ned how periodic behavior is
underlying dynamics of the mechanism are optimally use@Ptained in systems by looking both at controlled systems
[2]. There tend to be two different approaches in the contr@nd at systems that behave as an oscillator. Also the basic
of walking robots. Most designs, such as Honda’s Asimo [3](’:(_)ncepts of limit cycle os_C|IIat|on are presented, as this i
use control techniques involving Center of Pressure (Coijidely used throughout this paper.
and Zero Moment Point (ZMP) to calculate stable motion
profiles for each actuator in the robot. Traditional controp  periodicity in controlled systems
engineering then ensures that the robot follows exactly the

desired trajectory. While this technique offers great fléxib The most straightforward way fo get a system to move

é)eriodically is to use a standard control system setup with

ity as each joint can be individually controlled, a seriou odi ¢ onal is sh i Fi 1 1f th
drawback is the energy consumption of this kind of systemg. periodic reterence signai as 1S shown in Hgure L. €
gmployed position controller is stiff enough this will résu

A complete different approach is that of passive dynami . . L
walkingpas initiated by I\agGeer [4]. He waslzhe first toyshOV\}n the system following the reference signal closely. This i

that it is possible to build a mechanism that can walk down %e approach that is commonly used in robots that use a Zero

shallow slope without any actuation at all. All energy nebdee;Cngegitn?Z'rgt é?l)ceuI(:;eijort])té?clxrztgzae(?);nzﬂ?ﬁgncgr:?rfgfz fsotrem
to compensate for friction and losses that result from irtgpac. joint . L Y
n each joint ensures that this profile is followed accusatel

with the ground is supplied by gravity. The combination of

the dynamics of the system, the slope and gravity results in

a natural walking motion. This motion not only looks very

natural and smooth, it clearly is also very energy efficient.
Inspired by the ideas of McGeer, researchers have bee

working on walking robots that are based on passive dynamic

walking but are equipped with actuators so that they can

walk on level ground. Examples of these types of robots

can be found in [5], [6], [7]. In our own laboratory of the Fig. 1. Control system with periodic reference

periodic +

r.Feference u(t) controller —# - system
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There are however two main disadvantages of this approa
compared to oscillators:

1) Absolute time dependencyhe reference signal is a 3l
function of the absolute time and as a consequence tl
motion of the system becomes dependent on absolute tin 2f
Absolute time however is generally not relevant in the cas
of a walking robot. It does not matter if the phase of the . i

movements is synchronized with absolute time, only th
relevant position of each joint with respect to each othe
is of importance.

2) Energy consumptionBy using a stiff controller the

system is forced into a motion without accounting for the -2t

natural dynamics of the system. If the periodic referenasdo

not match with the natural dynamics of the system, then tr By o s o o5 o o5 1 15 5 25
controller needs to supply energy to counteract the force x

resulting from these dynamics. In many cases this is not
necessary. Swinging a pendulum for example will consumeFg. 2. Van der Pol oscillator
minimum amount of energy if it swings in its natural motion

resulting from gravitational forces. _ _ .
The working of these oscillators is easy to understand

o . intuitively. The systems consist of a harmonic oscillatathw

B. Periodicity in oscillators a nonlinear damping term. In the Van der Pol case this

An oscillator is a system that shows periodic behavioterm behaves as an ordinary damping for > 1 but it
without the need for an external reference signal. Wellbbecomes a negative damping fet < 1. For the Rayleigh
known examples are the harmonic oscillator described hyscillator this is the same except withreplaced byz. As
# +x = 0 or the undamped pendulutin+ ¢ - sin(z) = 0  a result these systems behave as a damped oscillator for
with unit length and mass and gravitational constanthe states far away from the origin with trajectories spiraling
motion of a system can be represented as a trajectory tiswards the origin. On the contrary, for states close to the
the state space, which {g, ] for these two second order origin the system becomes an unstable harmonic oscillator
systems. Periodic motion or oscillation is a closed orbit imnd trajectories spiral away from the origin. As trajeaeri
the state space. In case of a linear system the numberinfthe state space cannot intersect this must result in an
possible closed orbits is infinite; The state space is filleditractive limit cycle surrounding the origin. The origtself
with a continuum of concentric orbits and it dependents o3 an unstable equilibrium in both systems. Figure 2 shows
the initial condition on what orbit the system settles. Ise&a the limit cycle of the Van der Pol oscillator with parameters
of disturbances the system changes from one orbit to anothgr= 1 and K = 1, converging from initial condition$2, 3).

Nonlinear systems can have the attractive property of limidetailed information on the Van der Pol oscillator can be
cycle oscillation. A limit cycle is a closed orbit in the stat found in [10], [11].
space with the additional property that it is isolated. This
means there is no continuum of closed orbits surrounding
the limit cycle and as a consequence trajectories mustreithe
spiral into or away from the limit cycle. In the first case Similarly as in the Van der Pol and Rayleigh oscillators,
the limit cycle is stable or attractive, in the other case iimit cycles can be induced in an oscillatory system by means
is an unstable limit cycle. Oscillators that show stableitlim 0f @ nonlinear feedback that is locally generative but dligba
cycle oscillation are of interest because for a certain eanglissipative as was explained in detail in [9]. The resulting
of initial conditions known as the basin of attraction, theysystem consisting of an oscillating system with a feedback
always converge to the same periodic movement. Since thei@ntroller is shown in Figure 3. The key question is what
is no external reference signal needed, this is also known ##s feedback should look like in order to obtain exactly the
self sustained oscillation. limit cycle that is desired. Obviously shaping this feedbac

There exist nonlinear oscillators which have a stable limit
cycle that is also globally attractive. By globally attiget
ness it is meant that the system basin of attraction equals th
entire state space. A well known example is the famous Van
der Pol oscillator [10]:

I1l. CONTROL OF OSCILLATORS

oscillating system

P+t -1)i+Ke=0 (1)

feedback controller

and the closely related, but somewhat less famous Rayleigh
oscillator:

&+ pu(@® - 1)+ Kz =0. (2) Fig. 3. Oscillating system with feedback
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will affect the obtained limit cycle but when looking closer
to the Van der Pol and Rayleigh oscillator it can be seen th
we are limited in what resulting limit cycles we can get. The
Van der Pol oscillator divides the state space in three rsgio

*@b)
along thez-axis whereas in case of the Rayleigh oscillato 15p / il
there are three regions along theaxis. The problem is that 1f 1
the feedback is always actively steering the system und o5t .
control except when the system is on the border that sejgara ol ,

the regions. Therefore the natural motion of the osciliator
system under control is always disturbed by the feedback.
case of the harmonic oscillator for example, it is impogsibl
to get a pure sinusoidal oscillation.

The conclusion to be drawn is that in order not to disturl 2l |
the natural oscillation, the feedback should do nothing ¢ 28— o5 1 15 o+ 25

long as the system is on the limit cycle. So instead of diygdin

the state space into regions along the axes, it should be

divided into a region inside and outside the limit cycle hét Fig. 4. Limit cycle of the harmonic oscillator
current state is inside the limit cycle the energy in theayst

is too low and the feedback must be generative. If outside

(6)

the limit cycle, there is too much energy in the system antherefore the gradients of both must be equal apart from a
the feedback must be dissipative so that the motion is forc&galing factorA which is known as the Lagrange multiplier.
back to the limit cycle. This concept is basically the same 9 9
as both the Van der Pol and the Rayleigh oscillator, but by [(z—a)?+(@y—b2 =V <x> + (U)
choosing the regions in this way any desired limit cycle can p q
be obtained. The feedback law that realizes this concept is: 9z

58]

T=-k-D-i ®3) 2(y —b) 24
Here D is a metric for the distance between the current stafgombination of equations (4) and (6) results in the set of
and the limit cycle ands a proportional gain that determinesthree nonlinear equations shown below.
the strength of the feedback. If the current state is out$ide x
limit cycle D is positive, inside the limit cycle it is negative. 2(z —a) - QAE =0
A. Implementation with Lagrange multipliers ) ) q
To implement this feedback system it is necessary to (fc) + <y> —-1=0

calculate the value and sign of the distance to the limiteycl p q

Assuming there exists an equatigifz, ) = 0 that defines  For the general case, the set of nonlinear equations is found
the shape of the limit cycle, this can be done with the helpy differentiating D., the distance constrained to the limit

of Lagrange multipliers. Given the harmonic oscillatortwit cycle with respect ta;, y and A, where D, is defined as:
solution z(t) = A - sin(%) for example, the shape of the

limit cycle is then given by: De(z,y,\) = (x—a)* + (y —b)> + X+ f(z,4). (8)
z ? L (Y ? 1=0 4) The problem of minimizing the distance between the current
D q o state (a,b) and the limit cycle has thereby been reduced

to solving this set of nonlinear equations and inserting the
resulting(z, y) back in (5). Solving this set of equation how-
ever, may not be straightforward. In the example, subaiitut
results in a fourth order polynomial which can be solved
analytically, but this is not guaranteed for the generakcas
An approximation of the solution can be found using a root
finding algorithm such as Newton-Raphson or a gradient
D? = (z—a)?+ (y— b (5) search [12]. C_:are needs to be takgn .when_ .implementing
such an algorithm to prevent numeric instability. Also the
Equation (5) defines circles of radiu® around (a,b). complexity of the algorithm must be within certain limits to
Starting from zero, increasing the radiud3 this will lead ensure that is applicable in a real-time controller. Ingtef
eventually to a situation where the circle aroufidb) is using Lagrange multipliers with the necessity of numerical
touching the limit cycle without intersecting it. In thiss& algorithms a different approach can be used which simplifies
the limit cycle and the circle are tangent i,y) and the calculations considerably.

Wherey = &, p= A andq = %. The situation is sketched
in Figure 4 wherep = 1, ¢ = 2 and the pair(a, b) denotes
the current state. The goal is now to find a pairy) on the
limit cycle such that the distande between(a, b) and(z, y)

is minimized. To simplify equations it is equally possibte t
minimize D? as this yields the sam@r, y). D? is given by:
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B. Implementation with energy control In the same way it is also possible to add a feedforward

For a certain class of systems the implementation can 5eerm that_compensates for_dar_nping in the system. Without
simplified with the help of an energy function or Hamilto-2dding this term the damping in the system would have to

nian. If the system is conservative, the energy in the systeflf ©vercome by the stabilizing term of the controller. In
will be constant and this energy level uniquely identifie§hat case the behavior would not follow the limit cycle but

the limit cycle of the system. This is generally the case foﬁjEEViate to a trajectory where the stabilizing term and the

systems of the forn# + f(z) = 0. By multiplying with 4 damping cancel out. By adding damping compensation in

and then integrating over time we find the energy functiof'€ feedforward term this effect is reduced.
of the state variables and z.

L ) To conclude this section an example is given that illustrate
/x it f(z)-2dt =E (9) the proposed feedback system. Consider the harmonic oscil-
1., lator to be swung up to an amplitude of one. The equation
T Fz)=E of motion is:

Thus, if the desired energy level,; is known and the current Z+z=T, (12)
energy levelE, is calculated as function of the current stategnd the energy function of the system is:
then D of equation (3) can be implemented as the difference

of E; and E... This gives the subsequent feedback rule: E= %@2 + %x? (13)
T'=-k (B~ Eyg)- 2. (10)  To obtain an amplitude of 1 this givés; = 1. The feedback

law of (10) result in the trajectory of Figure 5 where we
usedr = 2. As can be seen the oscillator is stabilized to the
desired limit cycle with amplitude 1. An example including
feedforward control to obtain different system behavior is
given in the next section.

WhenE., is lower thanE,; the feedback injects energy in the
system while it damps down the systemAf. is too high.

If E. equalsEy,, the system is exactly on the desired limit
cycle and the feedback leaves the system untouched.

C. Change of dynamics with feedforward control

The feedback controller can also be used to impose ¢

additional feedforward force on the system that is depende 15F :
on the state but not of the distance to the limit cycle. Thi:
relieves being restricted to the natural motion of the syste i ]

and allows for inducing any motion of the forihn+ g(z) =

0. The feedforward term will consist of(z) as wel as a
cancellation term for the natural dynamics of the systen -z
In case of a system that is defined by+ f(z) = T, the
feedback term becomes: o5l

0.5

T=f(x)—gx)—k-(BEg— E,) - i. (11) alb

The first term compensates the dynamics of the system, t ‘ ‘ ‘ ‘ ‘ ‘
second term induces the desired dynamics and the last te s -1 05 0 05 1 15 2
is the stabilizing term that ensures convergence to thd lim.
cycle that is to be obtaln(_ad. . Fig. 5. Harmonic oscillator in limit cycle oscillation

In order to be able to implement this feedback, a model
of the system is necessary to know hdiz) looks like.
In practice there will be differences between the model and
the physical system. In a control setup where tracking of
a reference signal is the goal, this may cause problems adn the previous section we looked at limit cycle oscillagon
unexpected dynamics are present. For the purpose of camhere the shape of the oscillation emerges as a consequence
verging to a limit cycle however, small differences betweewnf the system’s natural dynamics. Using feedforward it is
the model and the system are acceptable. It will only resuttossible to change the dynamics, but one question not
in a limit cycle that slight deviates from the desired oneanswered so far is how to induce a predetermined periodic
Additionally, the stabilizing term will counteract deviats movementz(t) in a system. As explained before the absolute
from the desired limit cycle which makes the effect of arvalue of ¢ is not relevant, it is only used to indicate the
inaccurate model smaller. The effects of differences betwe phase% of the system. Instead of starting from the system
the model and the physical system can be even furthdynamics it is now explained how to design a feedback
reduced with help of a learning feedforward controller.  controller that gives exactly(¢) in the system under control.

IV. CONTROL OF PERIODIC SYSTEMS
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A. Parameterization of the limit cycle

Given the desired motion:(t) it is straightforward to Step 4: Apply feedback law S
calculate the velocity:(¢) and acceleratioii(t) by differenti- qustltutlon oft in the equation for the acceleration givis
ation. The parameterized cur@e= (z(t), &(t)) then defines With the model of the system it can then be_ calculateq how
the trajectory we want to achieve. Projected on the stafBuch the_feedforward torque has to be applied to obtain this
space, this trajectory may formally not be limit cycle as fOIaccheratlon. The stabilizing term ensures convergence to
certainz(¢) the trajectory could intersect itself. Consideringth® limit cycle in the same way as in the previous section.
the fact that the phase of the desired motion can be taken
as extra state however, a non-intersecting trajectory én tiC. Example

state space is obtained and therefore it is always possible t 1o jj|ustrate the approach outlined above this section is
indicate the desired trajectory as a limit cycle. ~ concluded with an example. As system to be controlled we
The advantage of this approach is not only that it cafake the undamped pendulum described:hyg-sin(z) = 0,
be used to specify exactly the desired motion but it als@here is the gravitational constant. Suppose the periodic
reduces the complexity of calculating the minimum distancgotion to be induced isz(t) = sin(2t) + sin(t). By
between the limit cycle and the current state. Compared wildifferentiation the velocity and acceleration are found:
the Lagrange multiplier approach with three unknowns, the )
distance now is a function afonly. #(t) = 2 - cos(2t) + cos(?) (15)
, , , #(t) = —4 - sin(2t) — sin(t).

D7 = (x(t) —a)” + (&) —b)". (14) _ _

_ _ S o The feedback controller implements the algorithm as de-
Although still nonlinear, this is just one equation in onéscribed above to calculatethat gives the minimum distance
unknown. The Newton-Raphson method can be used to find, ;. between the limit cycle and the current state. The
¢ that minimizesD?, but this method has a risk of numericalfeedback law that brings the pendulum in the desired motion
instability if the first guess, is not close enough tb Since now becomes:
t is restricted betweef and 7T instability is easy to prevent

by using the proposed algorithm below. T = g-sin(z) + (—4sin(2f) —sin(f)) — Dyin - . (16)
Where the first term compensates for the pendulum’s natural
B. Outline of the algorithm dynamics, the second term feedforwards the torque needed

We now propose an algorithm to firicthat is guaranteed to get the desired acceleration and the third term stabilize
to give a solution without risking numerical instability, {0 the desired limit cycle. The behavior of the system
The idea is start fromt, and than take steps in directionWa@s Verified using numerical simulation. In Figure 6 the
of decreasing distance until the minimum is found. Thigonvergence of the system to the limit cycle can be seen for

is a stable solution because must be in the interval initial conditions (1,1). Figure 7 shows the corresponding
time plot of z(¢) from which can be seen that the system
[to —T,to + T p %

converges to the periodic behavieft) = sin(2t) + sin(t).
Step 1: Determing,

The first step of the algorithm is to determine a startin 4

point to. If this is the first iteration of the algorithm then

no ¢ was estimated before and an initial guess has to 3t : , .
determined based on the current stéeb). This can be

an arbitrary¢ in the interval [0, T]. If this is not the first 2r 1

iteration thent that was estimated in the previous iteratior
is a good choice since the system’s current state will b
more or less in the neighborhood of the previous ‘8

Step 2: Step towards minimum distance b i
First calculate the time derivative db2. If it is positive,
then decrease stepwise until the derivative changes sign -2f 8
If it is negative thent should be increased until a change
of sign is detected. The value ofthat gives the minimum ST s a1 s o os 1 15 >
distance is now in the interval of the found values tof x

indicated byt ,,.» andtyqr_1.

Fig. 6. Pendulum in intersecting limit cycle oscillation at& space

Step 3: Determing

Since the solutiort is now bracketed betweef).,,, and

teurr—1 @ simple bracketed algorithm can be used to find V. EXTENSIONS

The false position method or bisection algorithm [12] can In practical situations the systems to be controlled are
for example be used to do this. usually not simple second order systems as discussed in



Fig. 7.
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Pendulum in intersecting limit cycle oscillation mg plot

20

example fourth order for the double pendulum. This allows
for direct application of the Lagrange multiplier approaxh

the parameterized limit cycle approach. In the last case the
optimization is still one-dimensional ass the only unknown
variable; Only the equations for the distance become more
complex. Unfortunately the energy based approach cannot be
used for higher order system as it is not possible to express
a trajectory in a space of three dimensions or higher by
an energy function. Using an energy function in a three-
dimensional space for example would define a sphere and
not a trajectory.

VI. CONCLUSIONS

Inspired by the famous Van der Pol oscillator it was
shown how limit cycle oscillations can be induced in a
system using a nonlinear feedback. By proper design of a
feedback controller the system can be stabilized on exactly
the limit cycle that is desired. For simple systems this can

this paper so far. Therefore this section explains how tl“!ée achieved with a straightforward energy based control.

introduced techniques can be applied for more advance-apptl{
cations. Two separated cases are discussed, synchroniza
of independent systems and a direct approach for high@

order systems that are not independent.

A. Synchronization

sing feedforward, the dynamics of the system can be
ﬁhanged and the shape of the limit cycle is altered. It is
‘so possible to induce a specific periodic motig() with
help of a somewhat more complicated control algorithm.
This algorithm is computationally not very complex and
therefore suitable for real-time applications. If the feack
controller is implemented with a CVT and buffer as in [9]

In case of independent systems that are not mechanicatlyis results in energy efficient limit cycle oscillationsn&lly
coupled, a feedback controller that brings the system iit limit was argued how these techniques can be extended for
cycle oscillation can be developed for each system separateapplication on higher order system. Future research will
Synchronization between the system can be obtained be cofdeus on application of these concepts on robust, energy

paring the phase difference between the systems and chamdfécient walking robots. As a starting point a demonstratio
their relative speeds accordingly. The phase difference caetup is going to be developed to proof this concept.

be calculate by a separate phase controller connecting the
systems as shown in Figure 8. The correction of the speeds of
each system can be done by each feedback controller as tlm
is achieved by changing the shape of the limit cycle. Inareas

of speeds is achieved by stretching the limit cycle along thd?]
z-axis, while slowing down is achieved by shrinking the limit 3]
cycle. [4]

(58]

system 1 system 2
y Y [6]
— 7

feedback 1 prase feedback 2

controller
8
Fig. 8. Synchronization with phase controller 1%
[0l
[10]
B. Higher order systems

[11]

In coupled mechanical systems such as for example a
double pendulum,the second order subsystems cannot b
controlled independently. This is because applying a 'z.t:)rqdl2
to one system also influences the motion in the other system.
For these kind of systems the limit cycle can be seen
as a trajectory in a higher dimensional state space, for
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