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Management summary 
The electricity industry has changed considerably during the last decade. With new market 
participants entering the market of former monopolists and the introduction of derivatives, it has 
become increasingly important to develop accurate price models for these contracts, both for risk 
management and valuation purposes. 
 In this study we statistically analyze the German electricity future market. Research 
particularly aimed at modelling the EEX futures curve is still scarce, while innovative new 
approaches have been developed. This research creates an overview of the different approaches 
and selects a model that is the best candidate to model the German electricity futures curve. With 
the illiquidity of the EEX option market in mind, the following research question was 
formulated: 
 
  

Which price models are best suited to model the German electricity futures curve, taking 
into account our wish to have closed-form option pricing formulas? 

 
 
Based on our study of the (German) electricity market and the performed data analysis on the 
EEX futures prices, we require good futures curve models to: 

• Include seasonal patterns. Prices are higher for contracts delivering electricity during 
winter months. 

• Allow the specification of a complex volatility structure. Volatility depends on the length 
of the delivery period, the time to delivery and the time of the delivery period. 
Accurately modelling this complex structure is critical, also for option pricing. 

• Create a good fit to the initially observed futures curve. 
• Produce analytical, closed-form option price formulas. 
 
  

Based on these requirements, we consider the simplified direct swap model proposed by Benth & 
Koekebakker (2008) to be the best candidate. The main advantages of this model are that: 

• The model does not rely on a non-explicit relation between spot and futures prices nor 
on smoothing algorithms to derive the futures price dynamics. Only observations of 
actually traded futures contracts are used. 

• A perfect fit with initial futures curve is created. 
• It is possible to specify the complex volatility structure and still have analytical, closed-

form option pricing formulas. 
 
 
Drawbacks of the approach are: 

• Only market data of the futures contracts that cannot be decomposed into smaller 
contracts can be used (atomic swaps).  

• We cannot infer the spot price dynamics from the swap price dynamics. 
• We need a lognormal specification of the atomic swaps in order to have analytical, 

closed-form option pricing formulas. It is shown that this specification cannot fully 
capture the fat tails of the log-returns.   
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1 Introduction 

1.1 Motivation 
The electricity industry has undergone big structural changes over the last two decades. 
Traditionally, electricity companies were regulated or state-owned monopolies governing the 
generation, transmission, distribution and retail of electricity. In this regulated setting, power 
prices changed rarely and did so in a deterministic way. 
 With the 1989 Electricity Act, the United Kingdom was the first country in Europe to 
create a system of independent regulation, opening the electricity market by stages from 30% in 
1990 to 100% in 1998. Many countries and regions followed and although the speed and scope 
of the reforms varies across geographical locations, all liberalization processes are based on the 
same underlying concept: the separation of the potentially competitive activities of generation 
and retail from the natural monopoly activities of transmission and distribution, as well as 
creating an electricity wholesale and retail market. As a result of this restructuring, prices are now 
set by the fundamental powers of supply and demand. 
 In these new, liberalized electricity markets, national and international parties have joined 
the formerly exclusive group of market participants, creating new risks as well as new 
opportunities for utility companies, distributors and consumers alike. Electricity wholesale 
markets are now the centres of an increasing amount of trading activity in spot contacts (short-
term delivery of electricity). Because of the large price risk involved in trading spot contracts and 
the wish to hedge (price) risk in general, other contingent claims such as futures, forwards and 
options have been introduced to the electricity market. These contracts are traded bilateral, i.e., 
Over The Counter (OTC), and via organized energy exchanges such as the Nordic Power 
Exchange (Nordpool) in Scandinavia and the European Energy Exchange (EEX) in Germany. 
Due to the increasing trading activity, it has become increasingly important for all active trading 
parties to develop price models for the contracts they buy and sell, both for risk management and 
valuation purposes. The specific characteristics of electricity and electricity contracts, however, 
make that many well-known price models developed for both stock and fixed-income markets do 
not fit observed electricity prices very well. This has led to a lot of research activity in 
understanding the dynamics of electricity price processes and in developing price models that are 
able to describe these dynamics accurately.   
 Almost all scientific contributions in this research area so far focus on modelling the 
Scandinavian price curves because of the high liquidity, long price history and persistency. The 
German electricity market is less liquid, has a much shorter price history and lacks the persistence 
of the Scandinavian market and is therefore subject to a far smaller amount of theoretical studies. 
The studies on the German electricity market mainly focus on modelling the spot price by 
applying or modifying spot price models that were developed and calibrated using Scandinavian 
market data. Literature on the explicit modelling of the EEX futures is scarce; although there are 
a few studies on the pricing of derivatives based on spot price models (see Burger, Klar, Müller 
and Schindlmayr (2004)). It is interesting to take one step back and analyze the German (futures) 
market on its own. We will study the important features of the EEX futures curve and investigate 
how this curve can be modelled best.  
 

1.2 Goal of this research 
 It is our ultimate goal to accurately model the German electricity futures curve. An 
important issue we have to take into account when evaluating the German electricity market is 
the lack of liquidity of the options traded at the German power exchange, the EEX. Option 
quotes are therefore not very reliable and ideally we would like to have accurate future price 
models that give analytical, closed-form option pricing formulas.  
 To do this, we need to investigate the (German) electricity market and its characteristics, 
examine the different approaches to electricity price modelling, map the existing electricity price 
models, perform the necessary data analysis and actual fit candidate price models to historical 
data and see which one performs best. Since this is too elaborate for a bachelor’s thesis, we 
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choose to split up the research into two parts. The first part (this report) focuses on the analysis 
of the German electricity market, the mathematics behind price modelling and the different 
approaches proposed to model electricity prices. We try to find the (classes of) models that are 
the best candidates to accurately describe the unique features of the German electricity market 
and allow for closed form option pricing. The second part of the research will be done in the 
near future and covers the actual fitting of the selected model(s) by estimating the model 
parameters using historical EEX price data and stochastic filtering techniques to find out which 
model performs best. 
 

1.3 Research question & methodology 
Taking into account the motivation and goal of this research, the following research question is 
chosen: 
 

Which price models are best suited to model the German electricity futures curve, taking 
into account our wish to have closed-form option pricing formulas? 

 
From the short introduction it might already be clear that identifying these models is no easy task 
in the relative young, unique and continuously changing electricity industry. To be able to answer 
the formulated research question we start with an investigation of the (German) electricity 
market. We consider the important developments and discuss the implications of the 
liberalization processes to place this research into perspective. We discuss the important 
characteristics of the spot and futures market and identify the unique features of electricity and 
investigate how these features influence the dynamics of electricity price processes. Identifying 
these features and their influence gives us some direction when comparing different types of 
price models. 
 To see if and how the identified features influence the spot and futures price dynamics of 
the German electricity market, we analyze spot and futures price data from the German 
wholesale market, the European Energy Exchange (EEX). We identify the structure of German 
electricity price processes and identify the important factors we have to take into account when 
modelling German electricity price processes.  
 In order to understand, analyze and develop price models we present an overview of the 
development of price modelling for more mature markets such as stocks and interest rates since 
many of the proposed commodity price models are (modified) versions of models proposed for 
these mature markets. By also presenting a theoretical study of derivative pricing and discussing 
the relation between spot and futures prices we will have the mathematical baggage needed to 
weigh all the scientific contributions that have been made to this research area over the past 
decade. 
 Lastly, we will discuss several different types of electricity price models that have been 
proposed over the past decade. With the background knowledge of the first section, the 
identification of the important factors and features of the German electricity market and the 
overview of mathematical concepts and pricing mechanisms we will be able to select the model 
that is most likely to accurately model the futures curve and produces closed-form option pricing 
formulas. 
 

1.4 Outline of the paper 
In Section 2.1 we start with a description of the main activities of the electricity industry and 
discuss the liberalization processes across Europe and Germany in particular in Section 2.2. The 
unique features of electricity and their relation to price process behaviour are pointed out in 
Section 2.3. We end with the structure and products traded at power exchanges in Section 2.4. 
 The empirical data analysis of the German electricity market will be performed in Section 3. 
With data from the European Energy Exchange (EEX) we will analyze the German spot (Section 
3.1) and futures market (Section 3.2). In Section 3.3 we summarize our main findings. 
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 Section 4.1 then will introduce several approaches to the mathematical modelling of price 
processes. The developments of stochastic modelling in the stock and fixed income market will 
subsequently be discussed in Section 4.2. Because we are looking for models that produce 
analytical, closed-form option pricing formulas, we provide the mathematical theory behind 
derivative pricing in Section 4.3. Section 4.4, lastly, discusses classical theory on the relation 
between spot and futures prices and we will see if these theories are expected to hold on the 
electricity market.  
 With all the theory and analysis from Sections 2, 3 and 4 we discuss several electricity price 
models in Section 5. Two approaches prevail for the modelling of the electricity futures curve; 
the spot approach (Section 5.1) and the futures approach (Section 5.2). The (dis)-advantages for 
both approaches will be discussed. 
 In Section 6 we will present the conclusions of this research. 
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2 The electricity industry 
Electricity is an integral part of life in our modern society and, as such, we heavily rely on the 
availability of this commodity whenever and wherever we want to. As our society develops 
further, the secure supply of environmentally friendly generated electricity at competitive prices 
becomes more and more important. This section will provide a basic overview of the electricity 
industry, with a special focus on Germany. We will start with a brief discussion of the activities 
that make up the electricity industry: generation, transmission, distribution and supply of 
electricity. Then the liberalization processes that radically transformed the structure of the 
industry over the last decades will be discussed, followed by a discussion of the unique 
characteristics of electricity and the consequences for electricity price processes. We end this 
section with the structure of trading at power exchanges.   
 

2.1 From energy to electricity 
Despite the enormous changes to the world since the first power station started generating and 
transporting electricity around 1890, the electricity industry is still about the same thing: 
transforming primary energy sources into electricity and transporting and supplying it to 
consumers. This path can be divided into four activities: generation, transmission, distribution 
and supply. Figure 2.1 schematically shows how the first three activities are linked.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.1: Generation, transmission and distribution of electricity. 

2.1.1 Generation 
The generation process consists of turning non-electrical energy sources into electricity, executed 
by power stations with large electromechanical generators. Heat engines that primarily drive these 
generators are fuelled by chemical combustion, nuclear fission, the kinetic energy of flowing 
water and a growing number of other technologies. Conventional fuels such as fossil fuels (coal, 
gas and oil), nuclear fission and the kinetic energy of flowing water are still the most used fuels in 
today’s power plants, but technological developments and growing concern over environmental 
impacts have led to the introduction of other natural sources as generator fuel. Examples are 
wind and solar power, wood, geothermal heat, biomass and waste. 

Germany is a true giant looking at electricity generation and consumption in Europe. With 
generated electricity amounting to 640,000 GWh in 2008 and an installed generation capacity that 
almost doubles that figure, it leaves all other European countries behind. 
 Traditionally, Germany heavily relies on hard coal and lignite (brown coal) as fuel for their 
power production. These two sources together supplied almost 44% of the energy for power 
production in 2008. Despite lignite being a low-cost and domestic resource, environmental issues 
place limits on further expansion. With domestic production declining for the past several 
decades, Germany is increasingly relying on the import of hard coal for the supply of solid fuels.   
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 Another important source for the generation of electricity is nuclear energy. Nuclear energy 
as a source of fuel has lost market share since 2000, but in 2008 still amounted to 23,3%. The 
declining market share is mainly due to legislation aimed at gradually phasing out nuclear plants. 
 The fourth largest energy supplier for power generation is natural gas accounting for about 
13,0% in 2008.  
 The most remarkable transition in Germany is the rising production share of wind power. 
With the highest installed wind capacity in the world, wind turbines represented 13% of total 
installed capacity in 2004. Because wind power is primarily used for peak demand, it ‘only’ 
represented 6,5% of total electricity generated in 2008. The development of wind power in 
Germany, however, is very important for the market development globally.   
 Because the output of wind turbines depends on the weather, wind power is an intermittent 
source of electricity. The increasing share of wind power in the source of supply mix has some 
implications on grid management and provided a reason for the development of other, non-
intermittent, but still renewable, sources such as biomass, solar power and geothermal heat. The 
development of these new renewable sources of electricity in Germany is the most advanced in 
Europe due to favourable legislation. Germany achieved its goal of advancing renewable energy 
and together with wind power, these renewable energy sources accounted for 14% of total 
electricity generated in 2008. 
 Figure 2.2 shows German electricity generation by energy source in 1990 and 2008. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.2: German power generation by energy source in 1990 and 2008. Source: BMWI, ENS. 
 

2.1.2 Transmission  
Electric power transmission is the transfer of electricity. Via an elaborate network of power lines, 
electricity from generation plants is transported at high voltage (to cover long distances and 
reduce power losses) to substations near populated areas. The network of power lines is often 
referred to as the transmission network or “transmission grid”. Because it is practically 
impossible to store electricity in large quantities, the transmission network must be very reliable. 
By using multiple redundant lines between points on the network, power can be routed through 
a large variety of routes based on economical factors such as the economics of the transmission 
path and non-economical factors such as power line breaks. This assures the immediate, safe and 
stable transport of sufficient quantities of power to the substations at minimal power loss.  
 When it comes to the safe and secure supply of electricity, the German high voltage 
transmission grid is one the best around. With over 1.7 million kilometres, the grid is Europe’s 
largest and most reliable, resulting in the shortest length of outages resulting from breakdowns 
(see Figure 2.3). Because of the sheer size of the transmission system, Germany is divided into 
four safety cells, or balancing zones. In this setting, a major blackout would turn off the lights in 
only one of the four zones. Within each balancing zone, a system operator is responsible for the 
stability of the system by keeping the electricity frequency and voltage constant, maintaining 
safety limits, expanding the network and balancing the continuously changing supply and 
demand. In Germany, these system operators are without exception subsidiaries of the large 
utility companies currently active in Germany. Figure 2.4 shows the four balancing zones.  
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 Within Europe the transmission grids are more and more connected together in the so-
called international grid. The international connection increases profitability of all generators 
connected to it and further improves the security of supply. Being centrally located, Germany’s 
high voltage grid plays an important role as a transit grid for cross-border exchange of electricity.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig 2.3: Power outage in minutes per year due to breakdowns across Europe. 
Source: ‘Facts about the German electricity grid’, Vattenfall 04-20091. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.4: Balancing zones in Germany after liberalization. 
Source: ‘Facts about the German electricity grid’, Vattenfall 04-20091. 

 
 
 
 

                                                        
1 See www.vattenfall.com/germangrid/downloads/Electricity-grid-facts.pdf.  
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2.1.3 Distribution  
Electricity distribution is the final physical stage of delivering electricity to consumers. The 
distribution grid consists of substation transformers, medium- and low-voltage power lines, and 
low-voltage transformers distributing electricity regionally. At the substations near populated 
areas, transformers decrease the voltage of the transferred power to lower levels and via medium- 
and low-voltage power lines the electricity is transported to low-voltage transformers after which 
it is transported to the consumer. 

 
 Due to the high costs of developing, maintaining and operating transmission and 
distribution networks, the transmission and distribution network are generally considered to be 
natural monopolies.2   

 

2.1.4 Retail 
The fourth and last activity in the sequence is the retail of electricity to consumers. In the 
traditional electricity industry, one monopoly entity owns and operates the entire chain of 
activities, resulting in consumers having no choice of supplier. With the liberalization of the 
electricity industry, which will be discussed in the next section, competition is encouraged and 
companies compete to win their market share and remain in business. In this setting, consumers 
can choose the electricity provider of their liking. 
 

2.2 Liberalization  
The ‘traditional’ electricity industry we knew for nearly a century has undergone major structural 
and operational changes over the last two decades. Politicians, economists and industry 
specialists have abandoned the general consensus that generation, transmission and distribution 
of electricity are best handled centrally and argue that free and competitive markets are more 
efficient at delivering electricity to consumers. In this subsection we will shortly describe the 
‘traditional’ electricity industry after which we will discuss the ongoing liberalization processes 
across Europe and the implications thereof in more detail. We end with a discussion of the 
liberalization process in Germany. 
 

2.2.1 The traditional electricity industry  
In the days of Thomas Edison and his first commercial power plant delivering Direct Current to 
customers in lower Manhattan, small companies generated and delivered electricity in municipal 
areas to customers who were willing to pay the price. With the introduction of Alternating 
Current in 1896, it was possible to transport electricity over long distances. This system was 
efficient, fast and more reliable than Direct Current and it quickly became the standard. During 
the first decades of the 20th century more and more people were connected to the electricity 
network and it gradually became a national strategic asset, like coal and oil. 
 Besides the strategic nature of electricity and the natural monopoly aspects of transmission 
and distribution networks, economies of scale at generation plants and the technical challenge of 
coordinating generation and transmission activities were the main reasons for vertically 
integrating the industry. As a result of the vertical integration prices had to be controlled to 
protect consumers. In the case of privately owned utility companies, as was the case in the 
United States and Canada, the government enforced economic regulation in order to prevent the 
companies of exercising their monopoly power. Regulation aimed at setting reasonable prices, 
monitor costs, ensuring quality, securing supply and offering incentives to be efficient. In Europe 
most utility companies were state-owned monopolies. Either way, we see that governments 
                                                        
2  A natural monopoly exists in a particular market if a single firm can serve that market at lower cost than 
any combination of two or more firms. Definition from the Organization for Economic Co-operation and 
Development (OECD), www.OECD.org  
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played a huge role in the development, structure and operation of the traditional electricity 
industry. Vertically integrated companies own and operate all of the nation’s generation facilities 
as well as the transmission and distribution networks. Consumers have no choice of supplier and 
prices are state regulated, rarely change and do so in a deterministic way. 
  

2.2.2 Transformation of the traditional industry 
Over the last decades it has become increasingly difficult for politicians, economists and industry 
specialist to uphold the view that a system of one vertically integrated company is the only way to 
structure the electricity market. Successful deregulation and privatisation of other infrastructural 
industries, increasing plant efficiency and especially the realization that the potential competitive 
activities of generation and supply can be separated from the transmission and distribution 
activities led to the belief that a free, competitive market could also be beneficial to the electricity 
industry. It is believed that liberalization of the electricity sector should make the industry more 
responsive to changes in business and technology, attract private investment, promote technical 
growth, lead to lower electricity prices, increase efficiency and improve customer satisfaction as 
different parties compete with each other to win their market share and remain in business 
(Bajpaj & Singh, 2004). In the liberalized electricity sector prices are thus set by the fundamental 
powers of supply and demand. 
 The 1989 Electricity Act issued by the government of the United Kingdom, opening up the 
electricity market in stages towards 100% in 1998, marked the beginning of the ongoing 
liberalization processes across Europe. In December 1996 the European Union adopted the 
96/92/EC directive ‘concerning common rules for the internal market in electricity’, which was 
expired by the 2003/54/EC directive. With these directives the wish to create an internal 
electricity market that guarantees the best conceivable level of competition and free choice of 
supplier for consumers was formalised. The main requirements of these directives were the 
following. 
 

• Unbundling of activities 
At vertically integrated companies, the potential competitive activities of generation and 
supply have to be both managerially and legally separated from the transmission and 
distribution activities to avoid discrimination and competition-distortion. The 
transmission and distribution network thus remain natural monopolies. 
 

• Opening up generation and supply activities for competition 
The activities of generation of electricity and the supply of electricity to consumers 
should be opened up for competition. At the wholesale level, new market participants 
must be able to enter the market to buy and sell electricity.  
 

• Non-discriminatory third party access to network 
Non-discriminatory rules on access to the transmission and distribution network of third 
parties have to be created.  
 

• Instalment regulating authority 
An independent and competent national authority charged with settling disputes on 
contracts and negotiations has to be installed. 

 
Although the directives require the generation and supply activities to be legally and managerially 
separated from transmission and distribution activities (legal unbundling), it is not (yet) required 
to house these activities in separate entities (ownership unbundling). The opening up of 
generation and supply activities for competition created the need for organized market places 
where time varying (stochastic) demand and supply are continuously balanced. With the existence 
of such a market place and non-discriminatory access to transmission and distribution networks, 
even companies with no generation assets whatsoever can become electricity providers.  
 The need for organized market places to trade electricity led to the emergence of two main 
types of markets: power pools and power exchanges. Power pools refer to public initiatives 
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where participation is mandatory; there is no trading activity except for trading via the power 
pool. Power exchanges, on the contrary, are private initiatives to create an efficient market and 
participation is voluntary and a bilateral market usually coexists together with the exchange. 
Power exchanges are nowadays preferred over power pools because they are efficient in 
matching supply and demand at the lowest prices without compromising the reliability of the 
system. Two of Europe’s largest electricity markets, Scandinavia (Nordpool) and Germany 
(EEX), are organized by power exchanges. Due to the specific characteristics of electricity we see 
that power exchanges usually consist of several submarkets. These specific characteristics and the 
different submarkets of power exchanges will be discussed in the next two sections, respectively. 
 Other issues identified by the directives concern tariffication, market power in electricity 
generation, environmental protection, security of supply, generating capacity and different 
degrees of market opening between Member States. 
 The directives should, in theory, prevent vertically integrated companies from using control 
of their transmission network to reduce competition. The level of unbundling currently required 
by the directives (legal unbundling), however, leaves the incentives for curbing competition 
intact. Apart from the refusal of third parties accessing the network, generating companies that 
also operate the network have additional tactics such as charging unreasonably high access and 
service fees and discriminatory access requirements to hinder access of competing generators. 
The fact that many vertically integrated companies opted for legal unbundling instead of 
ownership unbundling raises the question whether or not these companies were able to 
manipulate the legislative and regulatory process in favour of this weaker form of unbundling. 
 Although Member States gradually transferred the directives into national law in the last 
decade, it thus remains questionable if it has led to competitive electricity markets. Set up by the 
European Commission in 2003, the European Regulators Group for Electricity and Gas 
(ERGEG) is charged with advising and assisting the European Commission on the creation and 
smooth functioning of internal energy markets. In the organization’s annual report of 20083 it is 
stated that the biggest result of opening up the electricity sector is the consumers’ right to choose 
their supplier. Competition in retail of gas and electricity, however, is almost non-existent and 
insufficient unbundling is still a major obstacle for competition and security of supply.  
 It is clear that there is still al long way to go and that a lot of effort from both European 
and national regulators is needed to address the key issues to grow towards an internal energy 
market. The process has not ended with directive 2003/54/EC and the European Commission 
urges stricter measures concerning the unbundling of activities, consumer protection and national 
authorities. 
 

2.2.3 Liberalization process in Germany 
With the adoption of the ‘Energiewirtschaftgesetz von 1998’, or National Energy Act 1998, 
Germany transferred the 1996/92/EC directive of the European Union into national law. With 
this act the electricity market in Germany was seamless and completely liberalized. In this section 
we discuss the traditional and liberalized German electricity industry. 

2.2.3.1 Traditional German electricity industry 
Traditionally, Germany was one of only a few countries in Western Europe without a broad 
government monopoly in the electricity sector. The German electricity sector could be 
characterized as a mixture of public, private and mixed economy companies. Within a framework 
of territorial monopolies electricity supply companies were solely active in their own ‘franchise’ 
area. German supply companies are still classified according to the size of the area in which they 
are active. 
 Large network energy supply companies operate on a supra-regional level. Before 1998, 
eight network energy supply companies generated about 79% of total generated electricity. These 
eight companies also operated transmission networks and five of them (RWE, VEW, EnBW, 
HEW and BEWAG) were large vertically integrated companies. The remaining three 

                                                        
3 www.energy-regulators.eu 
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(PreussenElektra AG, VEAG and Bayerwerk AG) were solely active in the generation and 
transmission business.  
 ‘Regional energy supply companies’ operate on the regional level. Before 1998 around 80 
regional companies were responsible for 10% of the electricity generated in the country. These 
companies delivered electricity from the large network supply companies and their own 
production facilities to end consumers, and acted as distributor for smaller ’municipal utilities’. 
 These ‘municipal utilities’ supply end consumers in their respective municipalities with 
electricity, gas and water.  In 1997 around 900 municipal utilities generated 11% of the total 
generated electricity. 
 

2.2.3.2 Liberalized German electricity industry 
The National Energy Act 1998 made an end to almost a century of territorial monopolies in the 
German electricity sector. By implementing a complete and immediate liberalization for industrial 
consumers and households, the German government went beyond the requirements of the 
1996/92/EC directive. Upon this new legislation, large network supply companies reacted 
immediately with a massive wave of mergers, starting already in 1997 with the merger of 
‘Badenwerk’ and ‘Energieversorgung Schwaben’ into the new network supply company EnBW. 
These mergers traverse the European Union’s objective to create a market with the best possible 
level of competition. The EU, however, did not hinder the market concentration due to the 
mergers and acquisitions whatsoever, mainly focusing on the legal unbundling of activities. Table 
2.1 presents an overview of the number of utility companies active in Germany and respective 
market shares before and after the process of liberalization. 
 Since 1997, the number of network energy supply companies decreased from eight 
companies with a market share of 79% of total generated electricity to only four companies with 
a massive 95.2% market share in 2004 due to the mergers described earlier. These mergers also 
implied the concentration of the number of system operators operating the transmission network 
from eight in 1997 to four in 2004. Although less dramatic, the number of companies active in 
the retail of electricity to consumers also decreased, whereas the market share of the four largest 
retailers increased to 72.8% in 2004. All in all we thus see that the German electricity industry 
exhibits significant market concentration after the process of liberalization was started. 
 Even though the liberalization of the German electricity market started about ten years ago, 
German power consumers continue to face high electricity prices. One of the possible reasons 
has to do with the abuse of market power, which for the remainder of this paper is defined as the 
ability to profitably shift up electricity prices above competitive levels. The German federal cartel 
office recently announced a forthcoming investigation into electricity producers and the 
wholesale market. They will be trying to work out why electricity prices remain high and in some 
cases are even rising, even though oil, gas and coal prices have fallen sharply. It is suspected that 
prices are kept artificially high by shutting down power plants to limit the supply of electricity, 
but this will be hard to prove. 
 A second possible explanation for the high electricity price is the lack of independent 
system operators. The same network supply companies generating 95% of the total generated 
electricity operate the entire transmission grid. It is argued that this gives them a huge advantage 
over independent producers, who struggle to gain fair access to the network and do not have the 
information about supply and demand across the grid.  
 As a possible third reason for high prices some name the inordinate political power of the 
big utility companies, e.g. by appointing former ministers to paid advisory or supervisory boards. 
 All in all we see that the German electricity market is far from being a free, competitive 
market. Perhaps change is coming with the investigation of the German federal cartel office and 
the European Commission forcing utility companies to unbundle even further by using their 
antitrust powers.  
 
 
 



 18 

 
Table 2.1: Market structure Germany before and after liberalization (Brandt, 2006). 

 

2.3 Electricity: A unique commodity 
Besides the homogenous nature of commodities, the main difference between commodities and 
pure financial products like stocks, bonds and other marketable securities is that commodities 
actually represent physical consumption goods. Because electricity is homogenous and is used for 
consumption, it is generally considered a commodity. There are, however, some specific 
characteristics that distinguish electricity from other commodities, even from the related 
commodities of natural gas and oil. In this subsection we will discuss the main characteristics of 
electricity and see how these characteristics relate to empirical observations of historical price 
data.  

2.3.1  Non- storability 
One of the unique features of electricity when we compare it with other commodities is its non-
tangible nature. It is not a material element of nature itself, but rather an engineered product 
through the use of material elements. Electricity is often described as the delivery of conducted 
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energy to consumers for direct consumption. This ‘direct consumption’ reveals one of the most 
unique and influential properties of electricity: non-storability.  
 At this moment in time we are not able to store large quantities of electricity in an 
economically efficient way. The only fairly efficient storage possibilities are hydro storage basins, 
although the storage capacity is small compared to the aggregate demand of electricity. This lack 
of efficient storage possibilities leads to less flexibility in operating the electricity market since 
electricity must be produced at the same rate as consumed to avoid a network collapse. In 
electricity markets, sudden shocks in the demand or supply of electricity due to unscheduled 
plant outages, changing weather conditions or other unforeseen events can therefore not be 
balanced by stored electricity or by cutting consumption. Because of the unpredictable nature of 
the occurrence of these events, the delicate balance between supply and demand can suddenly be 
disturbed. Although there are some generation plants that can quickly ramp production up or 
down to balance supply with demand, it is far more (cost) efficient for most plants to operate on 
a fixed level instead of being switched on and off regularly. It is thus fair to say that the supply of 
electricity is inelastic to changes in demand, especially at peak levels. On the other side, electricity 
demand is price inelastic. Consumers don’t think about using electricity and because of the lack 
of real-time metering consumers cannot react to high prices by cutting consumption. Shocks to 
the system therefore have a large impact on electricity prices, especially on day-ahead spot 
markets (delivery of electricity the next day). 
 As a result of the lack of flexibility, large price spikes are observed in the spot market. Price 
spikes are a sudden steep increase of prices, almost directly followed by a steep decline to some 
average level. Figures 2.5 and 2.6 present the hourly spot prices and the base load spot price 
(daily average of the 24 hourly spot prices) at the European Energy Exchange (EEX) 
respectively. The spiky behaviour (both negative and positive) is clearly visible in both figures, 
but is more pronounced within the hourly spot data (note the difference in the y-axis scale for 
the two figures!). This is as expected because the base load spot price data is the average of the 
hourly data and is therefore smoothed. At 07/11/2006 we can see an example of an extreme 
hourly price spike: the price for one megawatt, delivered the next day between 18.00h and 
19.00h, skyrocketed to € 2,436.  
 
 

 
 

 
Fig 2.5: EEX hourly spot price, measured in Euros per MWh, January 2002 – December 2008. 
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Fig 2.6: EEX base load spot price, measured in Euros per MWh, January 2002 – December 2008.  
 

2.3.2 Periodic behaviour 
In the previous subsection we discussed the dependence of the price of electricity on the level of 
demand at every point in time. Combined with the fact that electricity can not be stored, it is well 
known and rather obvious that electricity demand exhibits seasonal patterns due to weather 
conditions such as the temperature and the number of daylight hours, see for example Eydeland 
& Geman (1998) and Pilipovic (1998). In the colder winter season, for example, people tend to 
turn up the heating and switch on the lights earlier when compared to the warmer summer 
season. In warm summers, on the other hand, people use large amounts of electricity to power 
air-conditioners. In some countries even the supply of electricity exhibits seasonal patterns. 
Hydro plants, for example, heavily rely on the amount of snow melting and rain falling. This 
predictable periodic behaviour in the supply and demand of electricity is transferred to the 
periodic behaviour of spot prices. See for example Cartea & Figueroa (2005) for the seasonal 
pattern observed in the England and Wales spot market.  
 Although different patterns occur in different markets, generally periodic behaviour is 
visible within a calendar year (seasonal), a week (intra-week) and within a single day (intra-day). 
Within a calendar year we observe seasonal patterns related to different weather conditions for 
different seasons. Intra-week and intra-day patterns are related to business activity. On business 
days electricity prices are higher than during the weekends and holidays. Within a day we observe 
significant price differences in price levels on so called peak and off-peak hours. Peak hours are 
generally defined from 8.00am until 8.00pm, although this differs for different exchanges.  
 We do not expect the same periodic behaviour for spot and futures prices. Spot prices are 
expected to exhibit intra-day, intra-week as well as seasonal periodic behaviour. Futures prices, 
on the other hand, are not expected to exhibit intra-day and intra-week patterns. Electricity 
futures are based on the average spot price during a specific delivery period. In Germany only 
futures contracts with delivery periods equal to one month, one quarter or one year are traded for 
several months, quarters and years ahead. We therefore only expect to see seasonal periodic 
behaviour related to the specific delivery period of the contract. 
 Periodic price patterns with different periods are thus expected for both spot and futures 
prices. When modelling these price processes we should therefore not model the dynamics purely 
by a random walk, in which price processes are allowed to evolve ‘freely’. We have to incorporate 
these structural and predictable price patterns into the models (Lucia & Schwartz, 2002). 
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2.3.3 Mean reversion 
Due to the lack of extensive historical data of competitive electricity markets, there is no 
agreement on the long-run behaviour of electricity prices. However, Pilipovic (1998) argues that 
mean reversion is most suitable to model electricity prices. As opposed to stock price modelling 
with the use of a geometric Brownian motion (see Section 4.2.1), where prices are allowed to 
move ‘freely’, electricity prices tend to converge to some long run equilibrium (not necessarily 
stationary) dictated by the marginal cost of production. A sudden price shock to a geometric 
Brownian motion (GBM) will have a permanent effect because all subsequent price changes are 
uncorrelated (see Figure 2.7). From a simple visual comparison of Figures 2.5 and 2.6 with Figure 
2.7 we see that this feature makes the GBM itself not very suitable for electricity spot price 
modelling. With a mean reversion model sudden price shocks might be observed in the short run 
but will not have a permanent effect on the price level in the long run, as is observed in the 
electricity market. Economic reasoning for this mean reversion is given by adjusted supply: high 
prices will attract high cost producers to the market, putting a downward pressure on the price 
and vice versa.  
  Characteristic times of mean reversion have a magnitude of several days or at most weeks 
and can be explained by changing weather conditions or recovery from plant outages. Many 
scientific contributions support mean reversion for commodity and electricity price modelling; 
see for example Cortazar & Schwartz (1994), Schwartz (1997) and Geman & Roncoroni (2006).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

Fig 2.7: Example of a generated path of geometric Brownian motion. 
 
 

2.3.4 Extreme, time varying volatility 
In finance, the volatility of a price process refers to the degree of unpredictable change over time 
of the process and is defined as the standard deviation of the price returns. Being a unit-less 
measure, relative and absolute price movements in different markets with potentially very 
different base values can be easily compared, higher volatility indicating higher uncertainty.  
 The electricity spot market is characterized by extreme volatility and we already saw that the 
inelastic supply and demand the volatile, spiky behaviour. The positive relation between 
electricity prices and demand also acts as fuel for volatility, especially in times when there is a 
shortage of electricity. The increase in demand determines the use of more expensive energy 
sources for the production of electricity, thus increasing the marginal costs of production. The 
marginal costs rise exponentially depending on the use of wind, nuclear, hydro, coal, oil or gas 
fuelled power. At times of extreme shortage, the few generators that can still provide electricity 
can even act as monopolists, asking exorbitant prices. At times when demand is very low, the 
opposite occurs. Inflexible generation plants have a hard time getting rid of their electricity. To 
prevent the costly event of shutting down their generation plant, electricity is dumped at very low 
price levels, sometimes even becoming negative. This combination of factors leads to very high 
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and time varying volatility (heteroskedasticity) observed in the electricity spot markets. Average 
daily volatility on electricity spot markets vary between 10% and 50%, depending on the market 
considered and on price levels, whereas oil and gas average daily volatilities are only 3% and 5%, 
respectively.  
 Because electricity futures depend on the electricity price during the delivery period, they 
generally are less volatile when compared to spot prices. In his seminal article, Samuelson (1965a) 
formulated the relation between the volatility of a futures contract and the time to maturity of the 
contract. He proposes and empirically tests that the volatility of a futures contract increases when 
the time to maturity approaches zero. This proposition is well known as the ‘Samuelson 
hypothesis” or “Time To Maturity (TTM) hypothesis”. This maturity effect is consistent with the 
notion that with the expiration date coming closer and closer, more information about market 
conditions at the expiration date becomes available, which leads to an increase of volatility 
(Anderson & Danthine, 1983). In markets where this hypothesis holds, the accurate valuation of 
options and other derivatives on these futures require that estimates of the volatility of futures 
prices should depend on the time until maturity (Bessembinder, Coughenour et al., 1996). 
Evidence for the hypothesis to hold has been found in many futures markets, including 
electricity; see Allen & Cruickshank (2002) and Nakamura, Nakashima et al. (2006). It indicates 
that sudden abnormal shocks have greater influence on short-maturity contracts than on 
contracts with more time to maturity. Pricing models should therefore have a non-constant 
volatility function that at least depends on the time to maturity of the contract.  

 

2.4 Electricity trading on power exchanges 
Trading is about buying and selling goods, services or both and electricity trading is no exception. 
As an important part of the liberalization process, opening up the generation and retail activities 
to competition drove the establishment of electricity wholesale markets. In Section 2.2 we briefly 
introduced the two types of markets that emerged: power pools and power exchanges. Since the 
German electricity wholesale market is organized as a power exchange with a coexisting bilateral 
market, we will focus our attention on trading at power exchanges. 
 Several types of contracts, previously unknown to the electricity industry are now traded by 
a large variety of market participants. Generating companies may now enter bilateral contracts 
(non-standard contracts between two parties) to supply generated power to distributors and large 
industrial consumers, or sell power to a power exchange in which power brokers, speculators and 
industrial consumers also participate.  
 Power exchanges usually consist of multiple submarkets. Depending on the maturity, 
contracts are either traded on the spot or derivatives market. The essence of trading on the spot 
market is the ready delivery and acceptance of the goods sold. The derivatives market is often 
used to reduce market price risk and comprises contracts on some underlying asset with longer 
time to maturity. Contracts can be settled either physically (with actual delivery of electricity) or 
financially (no actual delivery of electricity, cash settlement).  
 This subsection will provide a structural overview of typical power exchanges by discussing 
the spot and derivatives market. Furthermore, the different types of contracts traded at these 
markets will be discussed. We end with a discussion of the German power exchange, the EEX. 
General pricing theory for the products traded at power exchanges will be discussed in Section 4. 
 

2.4.1 Spot market 
A commodity spot market (or cash market) is generally a market in which commodities are sold 
for cash and are delivered immediately, i.e., these contracts are settled physically. In order for 
spot markets to function properly, the infrastructure to conduct the actual delivery of the goods 
must be in place. Because of the immediate nature and high transaction costs, spot markets are 
usually organized exchanges on which only standardized products can be traded. 
 The electricity spot market is not organized as the immediate delivery market described 
above. Due to the non-storability of electricity, the immediate delivery of electricity is only 
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possible in exceptional cases. The electricity spot market can be divided into two markets: a day-
ahead spot market and an imbalance market for ‘immediate’ delivery. 
 Trading on the day-ahead spot market is organized on power exchanges where supply and 
demand are matched for each hour of the following day. Supply on the spot market stems from 
surplus production that cannot be sold long-term. Similarly, users obtain quantities of electricity 
not accounted for by long-term contracts due to unforeseeable demands. On the other hand, 
electricity generators buy spot electricity when delivery obligations cannot be fulfilled or when 
the market price lies below the own variable production costs.  
 The products traded on the day-ahead spot market are standardized and because trading 
rules apply to both sides of the transaction, a power exchange is a neutral market place. With 
respect to the delivery hours of a day-ahead spot contract, two load types are typically traded: 
base load (delivery of electricity the entire following day) and peak load (delivery of electricity 
during peak hours the following day). Competition between generators, distributors, speculators 
and large industrial consumers occurs when buy and sell bids are submitted to the exchange. 
Each bid specifies the quantity and the minimum price (maximum price) at which one is willing 
to sell (buy) the electricity. Directly after the deadline for submitting a bid, the exchange matches 
supply with demand and publishes the resulting system prices for each hour of the next day. 
Only bids from sell side parties with a minimum price below the system price and bids from buy 
side parties with a maximum price above the system price will effectuate and are settled at the 
system price. This procedure is called a uniform pricing auction and the system price corresponds 
to the production costs of the marginal power plant, i.e., the last power plant needed to cover the 
most recent level of demand.    
 The imbalance market is a market for the immediate sale and delivery of electricity. A 
supplier of electricity can enter this market when, for whatever reason, there is an immediate 
shortage of power in their obligation to supply a certain amount of electricity to the network. 
Since electricity is practically non-storable, a situation like this requires immediate action and an 
imbalance market facilitates this type of trading. Prices on this market are significantly higher 
than the prices on the day-ahead spot market and mostly hourly products are traded.  
  

2.4.2 Derivatives market 
Due to the very volatile behaviour of electricity spot contracts, market participants trading these 
spot contracts are exposed to several risks of which market price risk, counterparty risk and 
volume risk are the most important ones. With longer-term contracts previously unknown to the 
electricity industry, the derivatives market supports the participants in managing these risks. The 
longer-term contracts promise the delivery of spot electricity (the underlying asset) during some 
future period of time (delivery period) and are therefore also known as derivatives. Derivatives 
are traded for three reasons: 
  

• Hedging 
• Arbitrage 
• Speculation 

 
Hedgers either produce or need electricity and use derivatives to secure the position from market 
price risk, counterparty risk, etc. The sale of a futures contract, for example, can be used to hedge 
for falling electricity prices by locking the price that paid for the asset (the futures price). 
Arbitrageurs take advantage of price differences between e.g. futures that are traded on the 
exchange and similar contracts traded outside the exchange by buying the cheaper contract and 
selling the expensive one at the same time. As opposed to hedgers, speculators try to gain profits 
by taking on price risks. They provide liquidity for participants with contrary market strategies.  
 Many derivative contracts are used in electricity trading, but the most common ones are 
futures, forward and option contracts. Other contracts such as contracts for difference, 
swaptions, bulk contracts, cross commodity derivatives and many more exist, but lie outside the 
scope of this research. We will focus on standardized electricity contracts traded on exchanges 
and will not discuss the non-standardized, mostly bilateral negotiated contracts. 
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2.4.2.1 Futures contracts 
A typical futures contract is a standardized, transferable and obligatory contract to buy or sell a 
specified quantity of the underlying asset at a particular future point in time (maturity) for a 
specified price contracted today (futures price). Futures are mainly used to decrease market price 
risk, i.e., they are used to fix the price to be paid (received) for the delivery (supply) of the 
underlying asset at some future point in time. The risk to both buyer and seller of the contract is 
symmetrical and unlimited, i.e., the amount lost and gained by each party is equal and opposite.  

The maturity, quality and quantity of the underlying asset are standardized. The only 
negotiable aspect of the contract is the fixed price paid for the underlying asset at the future 
point in time: the futures price. This standardizing of contracts is done to facilitate trading on 
futures exchanges.  
 The futures price at time  for the delivery of the underlying asset with spot price process 

 at maturity of the contract , is denoted by . The payoff ( ) of such a contract at 
maturity  is given by 
 

€ 

Φ = S(T) − f (t,T). 
 
From this relation we see that in order to avoid arbitrage, the futures price negotiated at time 

for delivery of the underlying asset at  (immediate delivery) must be equal to . Any 
other price would lead to free money (arbitrage) by selling the higher priced product and buying 
the other product.     
 Because the negotiated futures price has to be paid at a future point in time, there are no 
initial costs of entering a futures contract. Due to changing market conditions, the value of a 
particular futures contract, however, does change over time. Suppose, for example, that we 
previously entered a futures contract to receive the underlying asset at December 1, 2009 for 
€100. Now assume that the current futures price for that particular contract equals € 110. When 
we now sell our futures contract for the new price we would make € 110- €100= €10. 
 The value of each futures contract is marked to market at the end of every trading day. This 
means that financial positions are valued based on the current fair market price as we did in the 
simple example above. Differences between last day’s value and the current value are settled 
immediately and the gain or loss of a position is added or withdrawn from a so-called margin 
account owned by the holder of the position. Because the risk for both parties in theory is 
unlimited, exchanges use these margin accounts to guarantee that contracts are honoured.  
 Because it is easy to buy and sell futures on exchanges, it is uncommon for futures contracts 
to end with the actual delivery of the underlying asset. Sellers and buyers usually cancel out their 
obligation by an offsetting purchase or sell. 
 There is a significant difference between the typical futures described above and the 
electricity futures that are traded on power exchanges. With typical futures the underlying asset is 
bought/sold and delivered at the same future point in time, the maturity of the contract. For 
electricity futures the maturity and delivery of the contract do not coincide. Instead of one 
particular delivery date, electricity futures deliver electricity over a period of time, known as the 
delivery period. Futures contracts for different lengths of the delivery period are traded, but the 
most common ones are contracts delivering electricity during one month, one quarter or one 
year. In other words, electricity futures require the delivery of a specified quantity of electricity  
(measured in MWh) during a future period of time. A December 2009 futures contract, for 
example, is a contract delivering one MW during every hour of the delivery period December 
2009. The electricity futures price at time  of such a contract is denoted by , where 

 and  mark the beginning and end of the delivery period, respectively. When we let  
denote the base spot price at time , then the payoff of a long position in an electricity futures 
contract is 
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We thus see that the underlying asset of electricity futures is not the spot electricity price at a 
specific future point in time, but rather the arithmetic average of the hourly spot prices during 
the delivery period. This fact complicates the modelling of electricity futures prices. Classical 
theories on pricing futures all define a relation between the underlying asset at a specific future 
point in time and the futures price. In Section 4.4 we will discuss the spot-futures relation 
further.   
 

2.4.2.2 Forward contracts 
Like a futures contract, a forward contract is an agreement between two parties to buy or sell an 
asset at a certain time in the future for a price contracted today. Unlike futures contracts, 
forwards are normally traded bilaterally, i.e., in over-the-counter (OTC) markets and contract 
parties usually customize the contract in order to make it fit their needs. Because they are private 
agreements, there’s always the risk that a party may default on its side of the agreement. Futures 
contracts, as we saw, are marked to market on a daily basis and margin accounts and 
clearinghouses are used to guarantee the transaction, drastically lowering the probability of 
default to close to zero. As with futures, buyers and sellers of forward contracts can cancel out 
their obligation by taking an offsetting position, although this is more difficult due to the 
customized, non-standard specifications of forward contracts.  
 Throughout this paper we will assume deterministic interest rates. As a consequence, 
forward and futures prices will be equal for contracts with the same maturity and the same 
underlying asset (Hull, 2006). For the remainder of this report we will focus on futures contracts 
traded on power exchanges. 

 

2.4.2.3 Option contracts 
There are two basic types of options; a call and a put. A call option gives the holder the right, but 
not the obligation, to buy the underlying asset at a certain date in the future (expiration date ) 
for a certain price contracted at the initiation of the contract (strike price ). A put option gives 
the holder the right, but not the obligation, to sell the underlying asset at the expiration date for 
the strike price. Options like these, where the holder can only exercise the option at the 
expiration date, are known as European options. Numerous other types such as American 
(exercise possible at any time up to expiration) and Asian (payoff depends on the entire path of 
underlying process during lifetime of option) exist, but are beyond the scope of this research.  
 The fact that the holder is not obliged to execute the transaction distinguishes options from 
forward and futures contracts, where the holder is obliged to buy or sell the underlying asset. At 
the expiration date the option is either exercised or expires worthlessly. Because of this right to 
exercise or not, option contracts do not come for free. The option premium paid to the seller of 
the option is done at the negotiation of the contract. In Section 4.3 we will discuss how the 
option premium can be calculated.    
 Electricity options are predominantly traded on exchanges. Basically there are two types of 
options available in the electricity market: European style options with electricity futures as the 
underlying asset and Asian style options with electricity spot price as the underlying asset. The 
focus of this research is on European style options on futures with either the average base or 
peak load spot electricity as the underlying asset. Options are usually available for a wide range of 
delivery periods and strike prices. 
 As with normal European call options, the holder of a European call option on an 
electricity future has the right, but not the obligation, to buy the futures contract for the strike 
price at the expiration of the option. With the notation of the electricity futures contracts given 
in the previous subsection, we see that the payoff function at the option’s expiration date  of a 
European call option on an electricity futures contract delivering electricity between  and  is 
given by  
 

, 
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where  is the number of delivery hours of the underlying futures contract (remember: 
futures contract deliver one MW for every delivery hour). Derived similarly, the payoff function 
of a European put option at the expiration date  is given by  
 

. 
  

2.4.3 Trading at the EEX 
In the early stages of the liberalization in Germany, energy contracts were negotiated exclusively 
bilaterally. Very soon, however, the need for a central, coordinated and standardized trading 
platform emerged and in June 1999 the “European Energy Exchange (EEX)” was founded in 
Frankfurt am Main. Actual trading started at June 2000 and in August of that same year the 
Leipzig based “Leipzig Power Exchange (LPX)” was founded. In July of the year 2002 both 
exchanges merged to establish the new Leipzig based EEX AG which has been the only energy 
exchange in Germany ever since.  
 Traded commodities at the EEX are gas, coal, electricity and CO2 allowances. The trading is 
location-independent, anonymous and conducted electronically via the XETRA trading system 
(spot market) and the Eurex trading system (derivatives market). Although the amount of 
electricity traded at the EEX increases every year, a large part of the electricity contracts is still 
negotiated bilaterally because market information is obtained from the disclosure of the 
contractual partner(s).  Traders are therefore not always interested in the anonymity of trading on 
an exchange.  
 Electricity trading on the EEX can be done on two separate markets: a spot and a 
derivatives market. Both markets have seen an increase of participants over the last years 
amounting to 145 participants on the spot market and 132 participants on the derivatives market 
as of January 2009.4 In addition to power suppliers, institutions such as industrial enterprises, 
banks, power traders and financial service providers are becoming increasingly active and are 
licensed as trading participants on the EEX.  
 

2.4.3.1 EEX spot market 
With an increasing traded volume of 154,4 TWh in 2008, which corresponds to approximately 
28% of total consumption in Germany, the EEX spot market is an active market for trading 
short term electricity products. The EEX spot market is comprised of two submarkets: a day-
ahead and an intra-day spot market.  
 On the EEX day-ahead spot market, traded instruments comprise a physical fulfilment on 
the next day(s). Individual hourly contracts and hourly block contracts (a period of several hours) 
as well as special contracts for base load, peak load and weekends are traded through the uniform 
EEX auction, which is held on every trading day. Market participants must submit their bids 
before noon, after which the EEX matches supply and demand functions and publicises the 
system price for every hour of the following day around 12.15h. In September 2008, as the first 
exchange in Europe, the EEX introduced negative electricity prices.5 Since then, day-ahead 
hourly spot prices are bounded by a minimum price of € -3,000.0 and a maximum price of € 
3,000.0 per MW and are quoted with one decimal point. 
 On the intra-day spot market, introduced in September 2006, electricity up until 75 minutes 
before the start of the delivery period can be traded continuously. Usually hourly contracts are 
traded and prices are quoted in Euro per MWh with two decimal digits, bounded by a minimum 
price of € -9,999.00 and a maximum price of € 9,999.00. 
 Because the aggregate amount of electricity traded on the intra-day spot market is very small 
compared to the amount of spot electricity traded on the day-ahead market (6,000 GWh vs. 
138,328 GWh in 2009), the day-ahead spot market will be referred to as the spot market for the 
remainder of this report.   

                                                        
4 http://www.eex.com/en/document/43531/D_Unternehmensbroschuere_2009_final.pdf 
5 http://ockenfels.uni-koeln.de/uploads/tx_ockmedia/2008-04-14_stromtip.pdf 
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2.4.3.2 EEX derivatives market 
On the EEX derivatives market, the long-term contracts that are traded comprise of futures and 
European style options on these futures. Actual transactions on the derivatives market are 
realized by matching anonymous executable orders. Buyers and sellers enter buy and sell orders 
specifying the price and quantity of a particular contract into the EEX system. The EEX displays 
the order in the participant’s order book and executes the order when possible. With an 
increasing number of new trading participants with unchecked credit standings the counterparty 
risk becomes more and more important. To reduce the risk to participants, the EEX is itself the 
central counterparty ensuring the fulfilment of all transactions. 
 The following power futures can be traded on the EEX derivatives market: 6 
 

• Phelix base futures (cash settlement) 
• Phelix peak futures (cash settlement) 
• German base load futures (physical settlement) 
• German peak load futures (physical settlement) 
• French base load futures (physical settlement) 
• French peak load futures (physical settlement) 

 
Because there is far more liquidity in cash settled futures, we will focus our analysis solely to 
these contracts.  
 The underlying security of the Phelix Base futures is the average EEX index of Phelix Base 
for all delivery days of the delivery period. The EEX index of Phelix Base is the average of the 
auction prices of the hour contracts traded on the EEX spot market for the delivery hours 
between 0:00 am and 12:00 pm of each delivery day. For the Phelix peak futures, the underlying 
security is the average EEX index of Phelix Peak for the business days of the delivery period. 
The EEX index of Phelix Peak is the average of the auction prices of the hour contracts traded 
on the EEX spot market for the delivery hours between 8:00 am and 8:00 pm on each delivery 
day. 
 With respect to the delivery period of the futures contracts, three types are traded at the 
EEX; months (month futures), quarters (quarter futures) and years (year futures). Although there 
is a base and a peak load version for every delivery period, we will not consider peak load futures 
in this paper. Not all futures contracts are traded all the time. At maximum, the next six calendar 
months, the respective next seven calendar quarters and the respective six calendar years can be 
traded. The cash settled month futures are settled on the exchange day following the last day of 
trading of the contract, which is the day for the last delivery day of the delivery month on the 
EEX spot market. In other words, during the delivery period the contract can still be traded. A 
special feature of EEX quarter and year futures is cascading. With cascading, two trading days 
before the start of the delivery period, the original future is replaced by three monthly futures in 
the case of a quarter futures contract and by three month and three quarter contracts for the year 
futures contract. Prices are quoted in Euro per MWh with two decimal points.   
 Call and put option contracts traded on the EEX have Phelix base load futures described 
above as the underlying security and can only be exercised at the maturity (also the last trading 
day) of the option, i.e., only European options are traded. The maturity is fixed according to a 
certain scheme, but usually it is the third Thursday before the start of the delivery period. At 
maturity the option either expires worthlessly or the holder exercises the option and the 
corresponding futures position is recorded. Only options on the respective five next Phelix Base 
Month Futures, the respective six next Phelix Base Quarter Futures and on the respective three 
next Phelix Base Year Futures can be traded. EEX options refer to precisely one futures contract 
and prices are quoted in Euro per MWh with three decimal points. 

 

                                                        
6 http://www.eex.com/en/document/4430/Konzept_Strom_Release_engl_01C.pdf. 
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3 Data analysis 
In this section data from the EEX spot and futures market will be analyzed. We will investigate 
both price processes and see if and how the specific characteristics of electricity discussed in 
Section 2.3 are manifested in the German electricity market. Section 3.1 analyzes the spot market, 
followed by Section 3.2 discussing the EEX futures market. Section 3.3 will lastly present a short 
summary of our findings and will conclude on the important features to take into account when 
modelling EEX price processes.   

3.1 EEX spot price analysis 
Our spot price analysis focuses on the day-ahead spot contracts traded on the EEX. Our day-
ahead spot dataset consists of daily observations of the 24 hourly prices covering the period 
between January 1st 2002 and December 31st 2008, amounting to 61.368 observations. The data 
were downloaded from the homepage of the EEX.7 To simplify the terminology, the day-ahead 
spot market is referred to as the spot market from now on. Figure 3.1 presents a plot of the raw 
data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 3.1: EEX hourly spot prices in Eur /MWh between January 2002 – December 2008. 
 

3.1.1 The data at a first glance 
It is good to start the data analysis with a visual inspection of the raw data. We look for (linear) 
trends, periodic behaviour, shifts in price levels and other non-stationary behaviour.  
 The first feature that catches our attention is the volatile and spiky behaviour exhibited by 
the hourly spot prices. Extreme price spikes are regularly observed and span the entire length of 
our data set, with the exception of 2004, were no extraordinary price spikes seem to have 
occurred. In most cases the price spikes were only short lived, falling back to normal levels 
within one or two days.  
 Secondly, we see negative hourly prices during the fourth quarter of 2008. As was 
mentioned in Section 2.4.3.1, the EEX made it possible for the prices of hourly spot contracts to 
become negative as of September 2008. The negative prices observed in Figure 3.1 mainly 
occurred during night hours and were caused by overcapacity of windmills. German law obliges 
the network-operators to use the electricity from the mills. Together with low demand, the lack 
of possibilities to freely dispose the electricity and the high start-up costs of power plants, this 
leads to a situation where paying the consumer for every Megawatt consumed is the only 
available option. 

                                                        
7 www.EEX.com 
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 We also see some preliminary evidence of volatility clustering in the data set. Volatility 
clustering, as noted by Mandelbrot (1963), is the tendency of large changes to be followed by 
large changes, positive or negative, and small changes to be followed by small changes. Our 
dataset clearly shows the clustering of price spikes, leading to very volatile periods, followed by 
stable periods of significant lower volatility. Volatility clustering should not be confused with 
mean reversion, which is also clearly visible from Figure 3.1. Mean reversion is the tendency of 
the process to return to a long equilibrium price level, whereas volatility clustering refers to the 
pattern that a period with high volatility is followed by a relative stable period and has nothing to 
do with the price level.  
 From Figure 3.1 it is hard to see if the data exhibits a deterministic (linear) trend due to the 
frequency of the observations. Smoothing the hourly data set by calculating the arithmetic 
average of the 24 hourly prices (the Phelix Base index), might help us to spot a possible trend. 
The base spot price is plotted in Figure 3.2.  
 Up until 2004 we see that, on average, the spot prices ranged from €20 to €40. In this 
period, large and relatively many price spikes are observed in 2003, whereas 2002 and 2004 show 
more stable price levels. In 2005 we see a significant price increase with spot prices increasing 
towards €70 in December. Both fundamental factors such as increasing fuel prices and the 
implementation of CO2 emission trading in January 2005, and the exercise of market power are 
named as factors underlying this significant price increase (Lang & Schwarz, 2006). Lang & 
Schwarz conclude that up until 2005, fundamental factors explain most of the price movement 
and merely establish the average level and long-term price trends for the spot market in 
Germany. The large influence of CO2 allowance prices on the spot price is caused by the fact that 
fossil fuels make up a large part of the German energy mix for the generation of electricity, as 
was discussed in Section 2.1.1. The drop in prices observed from March 2006 onwards was 
mainly due to a massive drop in CO2 allowance prices. Rising fuel and CO2 allowance prices 
underlie the steep price increase that is observed in 2008 (Böhm, Haas, Huber & Redl, 2009). It 
is thus fair to say that the overall rise of the German base spot price between 2002 and 2008 is 
for the vast part directly related to these fundamental factors.  
 To visualize the distribution of the base spot prices, a histogram is plotted in Figure 3.3. It 
is clear that the distribution of the spot prices is right-skewed, i.e., the right tail is longer 
indicating that the mass of the distribution is concentrated on the left of the probability density 
plot. When we plot the histograms of the individual years that make up our data set, a similar 
right-skewed distribution is observed for each year. 
 From a modelling perspective we prefer to work with persistent price patterns and 
symmetrically distributed time series. The price movements discussed above and the fact that the 
spot prices appear to be heavily skewed make that financial analysts often transform the time 
series to meet these statistical requirements. 

   
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.2: EEX base spot prices in Eur /MWh between January 2002 - December 2008. 
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Fig 3.3: Frequency histogram of EEX base spot price between January 2002 - December 2008. 
 

3.1.2 Data transformation  
Data transformation usually refers to the application of an invertible, deterministic and 
continuous mathematical function to each point in a data set and is applied so that the 
transformed dataset satisfies the assumptions of a statistical procedure. Another possible reason 
to transform the dataset is to improve the interpretability or appearance of graphs. The averaging 
of hourly spot prices done in the previous section, for example, was a very simple example of 
data transformation to improve the interpretability of a graph.  
 The logarithmic transformation is slightly more sophisticated and highly popular in applied 
data analysis. It boils down to taking the natural logarithm of each data point in the set and is 
used to shrink the right tail of a positively skewed distribution, rendering the distribution more 
symmetrical. When applying a logarithmic transformation we have to be aware of the fact that 
the logarithm of negative numbers is not defined. By adding a positive number such that all data 
points become positive, we can work around this problem. As an illustration of the logarithmic 
transformation and its effect on the symmetry of the distribution, Figures 3.4 and 3.5 present the 
transformed data set and the corresponding frequency histogram. We see that the variance of the 
logarithmic transformed base spot price is more stable and the distribution has become far more 
symmetrical compared to the untransformed base spot price series depicted in Figure 3.3. Note 
that we only applied the logarithm to the base spot price, strictly containing positive prices. 
 Instead of looking at absolute or logarithmic transformed price levels, financial analysts 
often investigate the return of price process. Return series are easier to handle than price levels 
because returns have more attractive statistical properties. With returns we look at the relative 
changes in the variable and that allows us to compare variables across different periods of time 
and directly with other variables with potentially very different base values. The simple return of 
a price process  is defined as 
 

 

 
The continuous compounded return, or log return is defined as 
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With the log return we again have to be aware of negative data points. For small changes over 
short periods of time, log returns are approximately equal to simple returns, as is seen by the 
relation 
 

 

 
Unless specified otherwise, we will apply the log return and not the simple return when we 
empirically test price returns. Log returns have the advantage of being time additive (multi period 
log returns are just the sum of individual log returns) and are mathematically convenient because 
logs and exponents are easy to manipulate with calculus. Figures 3.6 and 3.7 present the log 
return base spot price series and the corresponding frequency histogram, respectively. From 
Figure 3.6 we immediately see that there are no sudden price movements and that the process is 
even more stable (less fluctuation of the variance over time). The frequency histogram depicted 
in Figure 3.7 is far more symmetrical than the frequency histogram of the base spot price, 
although it appears to be less symmetrical compared to the frequency histogram of the 
logarithmic transform.  
 Except for the section where we analyze the intra-day periodic behaviour, we will focus on 
the base spot price and the log return of the base spot price for the remainder of this study. We 
thus accept the loss of information caused by switching from hourly quoted prices to the 
arithmetic average of these prices. Furthermore, it makes sense to analyze the base spot price 
since it serves as the underlying asset for all the derivatives we consider and we believe that this 
choice will not influence the general outcome of our data analysis.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 3.4: Logarithmic transformation of the EEX base spot price between January 2002 – December 2008. 
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Fig 3.5: Frequency histogram and descriptive stats of the logarithm of EEX base spot price  
between January 2002 - December 2008. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig 3.6: Logarithmic return of the EEX base spot price between January 2002 – December 2008. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig 3.7: Frequency histogram and descriptive stats of the log return of EEX base spot price  
between January 2002 - December 2008. 
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3.1.3 Descriptive statistics 
At the basis of virtually every quantitative data analysis are the descriptive statistics. It provides 
basic summaries of the sample and measures. In this section we will provide several measures of 
central tendency and dispersion using the statistical program Eviews 6 to get a general overview 
of the data analyzed. In the following two subsections we will mathematically define some of the 
measures used in this study (as defined by Eviews) and discuss the descriptive statistics of the 
EEX spot market. 

3.1.3.1 Mathematical definitions   
The sample mean is calculated as the average value of the  spot prices  available in the data 
set, i.e., 
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 The sample standard deviation is equal to the square root of the sample variance and is a 
measure of the dispersion of the data set and is defined as 
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 The skewness of a data set tells us something about the asymmetry around the mean of the 
data set. The familiar bell-shaped curve of the normal distribution is symmetric around the mean 
and has skewness equal to zero. A positive skew indicates that the distribution has a long right 
tail and a negative skew implies that the distribution has a long left tail. The sample skewness is 
defined and calculated as 
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 The kurtosis of a data set is as a measure of the peakedness or flatness of the distribution of 
a data set. The kurtosis of the normal distribution is 3. If the kurtosis exceeds 3, we say that the 
distribution is peaked (leptokurtic) relative to the normal distribution and more of the variance is 
the result of infrequent extreme deviations (fat tails); if the kurtosis is less than 3, the distribution 
is flat (platykurtic) relative to the normal distribution and more of the variance is the result of 
frequent modestly sized deviations. The sample kurtosis is defined and calculated as 
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  The Jarque-Bera (JB) test is used as a measure of normality. It tests the joint null hypothesis 
of the skewness and excess kurtosis (kurtosis-3) being zero. The test statistic is based on the 
sample skewness and kurtosis and is defined as 
 

, 



 34 

 
where  is the sample size. Under the null hypothesis of normality, the JB test statistic is 
distributed as  with two degrees of freedom. The reported P-value is the probability that the 
statistic exceeds (in absolute value) the observed value under the null hypothesis. A small 
probability value leads to the rejection of the null hypothesis of a normal distribution at a certain 
significance level. 
  

3.1.3.2 Descriptive statistics EEX spot market 
The descriptive statistics of the base spot price S(t) and the log returns Ln(S(t)/S(t-1)) are shown 
in Table 3.1. We see that both the base spot price and the log returns have high levels of standard 
deviation, indicating that both series are highly dispersed and therefore very volatile. Both series 
are positively skewed and exhibit high kurtosis compared to the normal distribution. Based on 
our data sample, we therefore find evidence that both spot price levels and log returns are not 
normally distributed. The log return series is, however, far more symmetrical (smaller skewness) 
and less peaked (smaller kurtosis) compared to the base spot price series as was already seen 
from the comparison of Figures 3.3 and 3.7. As a formality, the JB test statistic and 
corresponding P-value are calculated. Table 3.2 shows the results. From these values it is evident 
that the null-hypothesis that the data set is normally distributed is rejected for the price levels and 
the log returns.  
 
 
  
 Mean # Obs. Std. Dev Min Max SK K 
Panel A: entire sample     
St 40.16 2557 21.75 3.12 301.54 2.16 15.21 
Ln(St/St-1)  0,0004 2556 0,329 -1,96 2,37 0.78 6.00 
        
 

Table 3.1: Descriptive statistics for the base spot price and the logarithmic return. 
 
 
 

 JB-statistic P-value 
St 17888.08 0.000 
Ln(St/St-1)  1222.56 0.000 
   

 
Table 3.2: Jarque-Bera test statistic and P-value for base spot price and logarithmic return. 

 

3.1.4 Non-stationary behaviour 
From a modelling perspective we prefer to work with stationary time series, especially for 
forecasting. Stationary time series are series whose statistical properties such as mean, variance 
and autocorrelation are all constant over time which makes it relatively easy to predict: you can 
simply assume that the statistical properties of the process in the future are the same as they have 
been in the past. Non-stationary time series, on the contrary, show (stochastic) trends, periodic 
behaviour, volatility clustering and other non-stable behaviour. As a general rule, non-stationary 
time series are unpredictable and cannot be modelled or forecasted. Results obtained by using 
non-stationary time series may be flawed and may indicate a relationship between two variables 
when there does not exist one for example. Non-stationary time series can, however, be rendered 
approximately stationary by mathematical transformations that remove trends (de-trending), 
periodic patterns and other non-stationary behaviour. The predictions of the “stationarized” 
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series can then be untransformed by inverting the mathematical transformations to obtain 
predictions for the original series.  
 From our discussion of the characteristics of electricity in Section 2 it should come as no 
surprise that we cannot assume electricity time series to be stationary since periodic behaviour 
and time varying volatility are to be expected. A thorough investigation of non-stationary 
behaviour in (spot) electricity time series is therefore critically important. In this section we will 
take a close look at possible trends, periodic behaviour and time varying volatility of EEX spot 
prices. 
 

3.1.4.1 Trend analysis 
Although many would render the concept of a trend in a dataset self-evident, there is no logical 
algorithm for extracting it. Usually, ad hoc operations are used to extract the trend component 
and de-trend the original data. Examples of commonly used methods are fitting a straight line 
and calculating moving means with a predetermined time scale. However, these methods do not 
suit non-linear time series very well.  More sophisticated methods are nonlinear regression and 
the application of sophisticated mathematical filters such as the Hodrick-Prescott filter. 
 With the nature of electricity and the first visual inspection of the data described in Section 
3.1.1 in the back of our mind, we believe it will be difficult to describe the trend of the base spot 
price pure stochastically. Long-term fundamental price drivers such as fuel costs and CO2 
allowances drive long term spot prices and since these factors are highly stochastic themselves, it 
seems very difficult to describe the long term trend in spot prices purely by stochastic processes 
(i.e., without the use of exogenous data on oil and CO2 prices). Add to that the changing 
regulatory environment in which power generators operate (remember the introduction of CO2 
allowances in 2005) and we see that estimating a long run trend, if present at all, will be very 
difficult to achieve. The log-returns time series visualized in Figure 3.6, on the other hand, does 
not seem to exhibit any trend at all. Values seem to oscillate around a long run mean, equal to 
zero. To check the postulation that the log-returns do not exhibit a trend, we performed a very 
simple linear regression analysis.8 With the least squares method we estimated 
 

€ 

log− return = C(1) + C(2)t. 
. 

Figure 3.8 shows the graph of the actual series, the fitted line and the residuals (actual – fitted) 
and also provides a table with the coefficient estimates and p-values (marginal significance level) 
for the F-test testing the null hypothesis that the regression coefficient is zero against the two-
sided alternative that it differs from zero. When, for example, the test is performed at a 5% 
significance level, a p-value lower than 0.05 is taken as evidence to reject the null hypothesis. The 
p-values in our regression models are far higher than any reasonable significance level. In other 
words: the probability of obtaining a test statistic at least as extreme as the one observed under 
the null hypothesis is very high. We therefore accept the null hypothesis that the regression 
coefficient is equal to zero; there is no statistical evidence of a (linear) trend in the log return 
data.      
 
 
 
 
 
 
 
 
 
 
 
                                                        
8 Exponential, logarithmic and even the Hodrick-Prescott filter have also been applied, all with similar 
results: there’s no trend in the log returns of the base spot prices during our sample period. 
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Fig 3.8: Linear regression log return EEX base spot price. 
 

3.1.4.2 Periodic Behaviour 
In Section 2.3.2 we discussed periodic patterns in electricity price processes. As a result of the 
non-storability of electricity, temporary changes in the conditions of supply and demand for 
electricity on the spot market lead to significant price changes, even if they are perfectly expected. 
In this section we will analyse these predictable price patterns and investigate intra-day, intra-
week and seasonal patterns of spot prices at the EEX. For the figures presented in this section, 
H1 refers to the first hour of a day (0:00 - 1:00), H2 to the second hour (1:00h – 2:00h), etc.  
 
Intra-day 
In this section we investigate the hourly EEX spot prices to see if a general periodic pattern is 
visible within a single day. To do this, we calculate the average for each of the 24 hours in a day 
during our entire sample period. With this approach, infrequent extreme observations might 
disturb the general pattern and we therefore apply an iterative procedure to remove these 
extreme observations. Please note that this procedure is solely applied to the data set for this 
particular subsection.  
 The procedure involves replacing those observations that lie outside a three standard 
deviation bandwidth from the mean and repeating this five times. We first calculate the sample 
mean and standard deviation and select the observations outside the three standard deviation 
bandwidth. These observations are then replaced by the median of all prices with the same hour, 
day and month as the extreme observations. Then the next iteration is performed. In total we 
performed five iterations.   
 Significant price differences between peak hours (weekdays 8.00 am – 8.00 pm) and off-
peak hours (weekdays 8.00 pm – 8.00 am and weekends) are expected as a result of the different 
level of business activity throughout a day. Our investigation starts by investigating the hourly 
price pattern of a randomly picked date from our data set, December 13th 2005. The results are 
presented in Figure 3.9 and the expected pattern is clearly visible. Prices are significantly higher 
during peak hours, with a distinct peak around noon (H12) and at the start of the evening (H18). 
To see whether or not this pattern is typical for every year of our entire data set, Figure 3.10 plots 
the hourly averages for every year.  Regardless of the year we are looking at, the same pattern 
appears: significant higher prices during peak hours. Lastly, Figure 3.11 pictures the average 
hourly price over the entire data set. 

 

Variable Coefficient P-value 
C(1) 0.001230 0.9248 
C(2) -6.50 E-7 0.9413 
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Fig 3.9:  EEX hourly spot prices on December 13th 2005. 
 
 

   

   

 

 

 

 
Fig 3.10: Average EEX hourly spot prices per year. 
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Fig 3.11: Average hourly EEX spot price between January 2002 – December 2008. 
 
Intra-week 
To check the periodic behaviour within a week we again start by looking at a typical week. We 
again expect to see a pattern related to business activity: significantly higher prices during 
business days. We picked the week starting at Monday December 12th 2005. The hourly price 
patterns during this week and the daily arithmetic averages of the hourly prices (base spot price) 
are presented in Figure 3.12. Roughly the same pattern appears when we plot the same variables 
over the entire sample period, see Figure 3.13. The hourly price pattern observed within a day is 
roughly the same throughout the week and resembles the intraday pattern discussed in the 
previous section. As expected, the price difference between weekdays and weekends are 
significant. Prices peak at the beginning of the week (Monday / Tuesday) and are on average 
declining towards the weekend with the lowest price levels reached on Sundays.     
 
   

  
 

Fig 3.12: Hourly spot price pattern and base spot price during typical week. 
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Fig 3.13: Average hourly spot prices and average base prices per day of the week over entire sample period. 

 
 A more formal investigation of intra-week price patterns is obtained by evaluating the 
correlation between lagged observations of the same series, also known as the autocorrelation. 
This mathematical tool is often used to find periodic patterns that are buried under noise and 
shows the similarity between observations as a function of the time separation between them. 
The autocorrelation of a periodic function has the nice property of being periodic itself, with the 
same period as the original function. We are thus looking for evidence of a periodic pattern with 
a period equal to 7 lags (one week) in the autocorrelation function of EEX spot prices that would 
confirm our postulate that spot prices exhibit intra-week periodic patterns.  
 Figures 3.14 and 3.15 present the autocorrelation function (ACF) for the differenced base 
spot price and the logarithmic base spot return up to 200 lags for the entire sample period.9  
For each lag, the ACF returns the autocorrelation for observations that are separated in time by 
this number of lags (days). Note that the autocorrelation reaches values in the interval , a 1 
indicating perfect correlation and -1 indicating perfect anti-correlation.  
 

 
 

Fig 3.14 Autocorrelation function for differenced base spot prices between January 2002 – December 2008. 
 

                                                        
9 Autocorrelation functions for the base spot price and logarithmic transformation of the base spot price 
showed similar periodic behaviour but are not presented in this report. 



 40 

 
 

Fig 3.15: Autocorrelation function for log return base spot prices between January 2002 – December 2008. 
 
 For both series we clearly see a recurring and persisting pattern with a period equal to seven 
lags, in this particular case equal to seven lags. The high positive peaks occurring at lags that are a 
multiple of seven indicate that the differenced base spot prices and log return base spot prices on 
an a arbitrary day, respectively, are positively correlated to the variables exactly one week earlier. 
In the case of log returns, for example, this means that  

 

 
for  

 
is positively correlated to 

 
for , . 

 
To put it in other words: relative price changes move in the same direction as the relative price 
changes seven days earlier. We thus found compelling evidence for the expected intra-week 
periodic pattern of EEX spot prices. 
 
 
Seasonal 
Seasonal cycles differ for different markets. In the Californian power market, for example, 
summer month spot prices are significantly higher due to the use of air-conditioners. For the 
winter months in Germany, according to Janssen & Wobben (2009), the decrease of electricity 
demand due to the limited use of air-conditioning is outweighed by the increase of demand due 
to the increased use of lighting and heating. Furthermore, power plant fuels, particularly natural 
gas, are more expensive in the winter due to increased demand. We therefore generally expect 
winter spot prices to be above spot prices during summer months. To see if this predictable 
pattern is visible in our data set, Table 3.3 shows descriptive statistics for the average price levels 
according to the month of the year. The expected pattern of high winter prices is not observed 
uniformly. October, November and December show relative high average prices, as was 
expected. The average values for the summer months June, July and September, on the other 
hand, seem out of place. The relatively high prices during these months can possibly be explained 
by the obligatory yearly inspection of nuclear power generating units. These inspections are 
scheduled and distributed as evenly as possible during the low demand period between April and 
September and require the complete shutdown of the generating unit. As a result of this 
procedure, full nuclear capacity is available during winter in order to minimize price spikes 
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caused by scarcity during the months with higher levels of demand. A negative side effect is the 
decrease of supply during summer months counteracting the otherwise significant summer price 
decrease. The potential of price spikes during summer months is therefore increased, leading to 
relative high summer prices.  
 To investigate the seasonal pattern more formally we combined the non-linear regression 
function for the logarithm of the base spot price proposed by Lucia & Schwartz (2002) with a 
linear trend function. The deterministic trend function that was estimated is given by 
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f (t) =α + β * t + dWeekend *DWeekend + dMonth
Month=1..12
∑ DMonth, 

 
where and  are dummy variables defined by 
 

  and   , 

 
 
and , ,  and  are the regression coefficients. The weekend dummy variable is 
implemented to account for the significant lower prices during weekends, discussed in the 
previous section. When there is a seasonal effect in the logarithm of the base spot prices, we 
should see at least one monthly dummy variable with a significant regression coefficient. 
 The significant regression coefficients (at a 5% significance level) are presented in Table 3.4. 
As was expected we observe significant coefficients for the intercept , trend coefficient  and 

weekend coefficient . For the months April, May, August and December we also observe 
significant regression coefficients. So there is evidence of some seasonal pattern for the EEX 
spot price. The seasonal pattern, however, is not as clear and obvious as the intra-day and intra-
week patterns observed earlier. At the 1% significance level, only the intercept , trend 
coefficient  and weekend coefficient  are significant so there is no evidence of a 
seasonal pattern at the 1% significance level. A plot of the fitted non-linear regression function 
and the residual (actual – fitted regression function) is presented in Figure 3.16.  

 
 

 Mean # Obs. Std. Dev Min Max 
Panel A: base spot price, sub-sample according to month of the year  
January 38,71 217 20,77 5,80 163,46 
February 40,10 198 18,73 11,46 95,93 
March 37,62 217 18,51 9,02 104,60 
April 36,07 209 17,16 7,94 98,68 
May 32,31 217 14,96 3,12 74,67 
June 39,29 210 19,84 8,74 94,38 
July 43,48 217 30,41 9,72 301,54 
August 36,77 217 15,03 10,40 86,68 
September 43,63 210 21,58 14,27 108,92 
October 45,71 217 23,22 10,90 131,40 
November 47,04 210 28,21 7,69 162,25 
December 41,23 217 22,41 3,47 158,97 
      

  
Table 3.3: Descriptive statistics base spot price according to month of year. 
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 Estimate Std. Error 
Significant coefficients  

 3.181 0.025 
 0.0004 9.17 E-06 

 -0.422 0.014 

 -0.08 0.033 

 -0.26 0.033 
 -0.089 0.032 

 -0.095 0.032 
   

 
Table 3.4: Significant regression coefficients f(t). 

 
 

 
 

Fig 3.16: Logarithmic base spot price, fitted regression function and the residual. 
 

3.1.4.3 Time-varying volatility 
Besides the predictable patterns discussed in the previous section, there are other short term, 
unpredictable factors that play a deciding role in electricity prices on daily and hourly intervals. 
These factors are primarily concerned with weather conditions affecting the supply and demand 
of electricity. Temperature is probably the most influential factor. It determines the demand for 
cooling or heating and spot prices alter accordingly. The amount of rain falling also influences 
spot prices, especially in countries with a large hydro-electric production share. Long periods of 
drought, on the other hand, can lead to insufficient levels of cooling water in German rivers and 
could prevent generation plants from functioning at full capacity. This occurred, for example, on 
June 12 2007, when the base spot price jumped to € 85.41. In the last few years, wind intensity 
has also begun to play an important role in electricity pricing. The total capacity of windmills has 
increased dramatically in Germany. Since wind energy comes for free (when the infrastructure is 
installed, of course), European directives call for the prioritized utilization of wind energy 
regardless of the current spot market price. Strong winds can therefore lower spot prices. In 
times of little or no wind, on the other hand, the more expensive conventional generation plants 
must increase production and spot prices rise accordingly.  
 Although general weather forecasts can be established for seasons, weeks and sometimes 
even specific days, the actual conditions can only be seen on the day itself. The accuracy of the 
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forecasts, however, does converge to actual weather conditions as time advances. Since electricity 
spot prices are determined one day prior to the actual delivery, forecasts are of great importance 
and play a deciding role in pricing spot electricity. 
 All of these factors contribute to the time varying, volatile behaviour observed for spot 
prices. In our discussion of the descriptive statistics of the log returns we already saw that the 
average daily volatility over the entire sample period equaled 32,9% (see Table 3.1), which is 
exceptionally high. In this section we will see how the spot volatility varies over time. We do this 
by calculating simple rolling moving average historical volatilities. For each day the standard 
deviations of the last 30, 90, 180 and 365 observations of the log returns prior to that day are 
calculated. This gives us four sequences of daily moving average historical volatilities with 
different periods for our entire data set. Figure 3.17 shows the daily historical volatilities series. 
 

 
 

Fig 3.17: Rolling moving average daily historical volatility of EEX log returns. 
 
 As was expected, volatility is far from constant over time. Daily volatility behaves quite 
violently and with significant amplitude, reaching values between 15.5% and as much as 74.5%.  
It shall be clear that assuming constant volatility for the base spot price is usually not a justifiable 
assumption. To check whether the volatility level is also dependent on the price level we 
construct a scatter plot of the rolling moving averages of the base spot price and the 
corresponding rolling moving average of the sample standard deviations. Figure 3.18 shows the 
scatter plots for 30, 90, 180 and 365 day moving averages. From these plots we can clearly see 
that the volatility level is indeed dependent on the base price level. Higher levels for the standard 
deviation are observed for higher levels of the average base spot price.  
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Fig 3.18: Scatter plots of 30, 90, 180 and 365 day moving averages with respect to the moving average standard 
deviations.  

3.2 EEX futures price analysis 
Our futures data set comprises settlement prices of all the traded Phelix base load futures 
contracts from July 1, 2002 to December 31, 2008, totalling 1644 trading days. All the data were 
downloaded from the EEX homepage. Up until October 1, 2003 on average seven month, seven 
quarter and three year futures were traded on an arbitrary trading day. From this date onwards we 
on average recorded seven month, seven quarter and six year contracts for every trading day. 
This adds up to a total of 11.895 quotes for a total of 87 month futures, 12.024 quotes for 37 
quarter futures and 8.907 quotes for 13 year futures. The data set has no missing values but at the 
end of our sample period some spurious prices are observed. For several month and quarter 
futures quotes are equal to € 0,01 for a long period of time. These prices do not reflect real 
trading activity and are only observed for contracts with a very long time to maturity. These price 
entries were removed from the data set. For the remainder of this report we will therefore work 
with 11.622 observations for 86 monthly contracts, 11.691 observations for 34 quarterly 
contracts and 8.907 quotes for 13 yearly contracts. 
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 Figures 3.19, 3.20 and 3.21 present the raw data for the futures contracts with delivery 
periods equal to a month, a quarter and a year respectively. Since futures contracts are only 
traded for a limited amount of time, these plots show discontinuities caused by the start / end of 
trading periods.  

 
Fig 3.19: EEX month futures raw data between July 2002  - December 2008. 

 
 

 
Fig 3.20: EEX quarter futures raw data from July 2002  - December 2008. 

 
 

 
Fig 3.21: EEX year futures raw data from July 2002  - December 2008. 
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3.2.1 The data at a first glance 
The first thing that strikes when we look at the three figures depicting the futures contracts 
traded at the EEX is the fact that the very volatile short lived price movements (spikes) observed 
in the spot market are not transferred to the futures market, or at least not directly. Lower futures 
price volatility is explained by the fact that short-term changes in supply and/ or demand of 
electricity have large and immediate effects on spot prices, but have a much smaller effect on 
futures prices. Futures prices depend on the average spot price during the delivery period, 
dampening the price movements of the spot. As a result, futures prices are far less sensitive to 
the arrival of (generally short lived) shocks to the system. Futures prices will not be significantly 
influenced when these shocks occur before the start of the delivery period, unless these shocks 
are expected to persist and influence spot prices during the delivery period.  
 All three figures exhibit a similar path and show a clear upward trend during our sample 
period. During 2005, the first quarter of 2006 and 2008 we see particularly large price shifts for 
all futures contracts, independent of the length of the delivery period. The introduction of CO2 
allowances and increasing fuel prices are the most likely cause for the steep increase of prices in 
2005, averaging € 15 per MWh. During the first half of 2008 prices even seem to have increased 
exponentially, rapidly falling down again to price level reached in January 2008. To illustrate the 
co-integration of the electricity futures prices with fuel prices, Figure 3.22 shows the Brent Crude 
Oil ‘spot’ price for 2004 up until August 2009. The resemblance with the price movements 
visible on the EEX futures market is striking. The steep increase in 2005 and the first quarter of 
2006 are clearly visible. Even more striking is the almost exact copy of the price pattern observed 
in 2008. Furthermore, both economic theory and empirical research suggest that natural gas and 
oil price are related. With natural gas and oil being substitutes in consumption as well as rivals in 
production, changes in supply or demand of the oil price drove changes in the natural gas price, 
but the converse did not appear to occur. This asymmetrical relationship might be explained by 
the relative size of the two markets. The crude oil price is determined on a world market, whereas 
the natural gas markets are regionally orientated. With gas prices following the oil price, we thus 
see that fuel prices for a large part explain the long term price movement of electricity futures 
traded at the EEX.   
 When we look at the differences between the month, quarter and year futures we observe 
that price volatility seems to decrease with the length of the delivery period, i.e., month futures 
exhibit more volatile behaviour compared to quarter futures, which are more volatile than year 
futures. This can be explained by the fact that electricity futures have the average spot price 
during the delivery period as the underlying asset. Month futures will be more sensitive to 
changes in supply and/or demand during the delivery period than quarter and year futures are 
because prices are averaged over a shorter period of time. Another reason for the volatile 
behaviour of month futures might be the fact that month futures, as opposed to quarter and year 
futures, remain tradable during the delivery period. As a result, price shocks during the delivery 
period will not only directly affect the spot price but will also affect the futures price of the 
contract with delivery in this period.  
 From Figures 3.19, 3.20 and 3.21 we also observe some preliminary evidence for the 
Samuelson hypothesis (increased volatility when time to maturity decreases) discussed in Section 
2.3.4. The price processes indeed seem to become more volatile when the delivery period comes 
closer. 
 It thus seems that the volatility of futures prices is far from constant across time and 
product. Based on our first visual inspection, we expect the volatility to depend on the time to 
maturity as well as the length of the delivery period. The fact that both time to maturity and 
length of the delivery period show an inverse relation with volatility (volatility decreases with 
time to maturity and length of delivery period) and the fact that a shorter delivery period implies 
shorter time to delivery, makes it hard to separate the individual effects of these two time 
variables.  The inverse relation is consistent with mean reversion in the underlying asset, in this 
case the electricity spot price. Very high (low) electricity spot prices will result in very high (low) 
futures prices for contracts close to the start of the delivery period. But mean reversion suggests 
that a very high (low) price today will be followed by a decrease (increase) of the price in the near 
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future. Prices of futures contracts with longer time to maturity will therefore not increase 
(decrease) as much as short-term contracts, since a price reversal is expected in the future.  
 
 

 
 

Fig 3.22: Brent crude oil price between 2004 and 2009. 
 

3.2.2 Descriptive statistics 
As with our discussion of the spot price, we will focus our analysis of the futures contracts on 
the price levels and the logarithmic returns. In this section will present the descriptive statistics 
and because of the extensive futures data set we split up our discussion of price levels and the 
returns in two sections. 

3.2.2.1 Descriptive statistics of price levels  
The total sample of price levels consists of 32.220 observations. All prices are denoted in Euros 
per MWh and besides the price level, we observe the following information for every single 
observation: 
 

• Trading day 
To be able to calculate the time to delivery we report the date the price level was 
recorded for each observation.  
 

• Time to Delivery (TTD) 
For each observation in our data sample we observed the difference in calendar days 
between the start date of the delivery period and the trading day the price was recorded. 
All base Phelix futures contracts traded at the EEX start delivering electricity on the first 
day of the month of their respective delivery periods. So, the October contract starts 
delivering on October 1, the Quarter 3 contract starts at July 1 and year contracts always 
start delivery at January 1, for example.   

 
• Length of Delivery period (DP) 

For each observation we also reported the exact number of delivery days of the 
corresponding contract. With this information we will be able to see if volatility changes 
with the length of the delivery period. 

 
• Time of Delivery period (TODP) 

In order to see if futures price levels exhibit seasonal behaviour we report the delivery 
month(s) for each observation. Since we look at seasonal behaviour within a calendar 
year, the time of year is only reported for month and quarter contracts.  
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With respect to the statistics we present the mean, number of observations (# Obs.), standard 

deviation (Std. dev.), minimum, maximum, average length of the delivery period  and the 

average time to delivery .  
 The descriptive statistics for all contract price levels for the entire sample period are given 
in Table 3.5, panel A. The level of the mean and the range (maximum – minimum) suggests that 
the price levels are right-skewed. The average length of the delivery period of all the contracts 
traded during our sample period was around 5 months and the average time to delivery was well 
over one year.  
 In panel B we rearranged the data into sub-samples according to the length of the delivery 
period. We see that the average price level is increasing with the length of the delivery period. 
The upward trend in futures prices is the most likely cause. Year contracts are traded far longer 
than month contracts and therefore incorporate the higher expected price level for the entire 
future year(s), whereas month contracts are only traded for 6 months ahead. We also note that 
price levels for all delivery products are right-skewed, where the right-skewness is more 
pronounced for contracts with shorter delivery periods (and consequently shorter time to 
delivery). By looking at the standard deviation we can see that contracts with a shorter delivery 
period and shorter time to delivery show larger variability in prices, as was expected. 
 Panel C and D show the descriptive statistics with respect to the delivery month of the 
contract for all the month and quarter contracts, respectively. With these calculations we look for 
evidence of seasonal periodic behaviour in the price levels of the futures. When we look at the 
average price level of the month contracts in panel C, we observe significant higher price levels 
during the colder months from October to March. The level of the standard deviation is also 
significantly higher during these months, also when we compare the relative standard deviation 
(sample standard deviation divided by the sample mean). The relative standard deviation from 
October to March averages 38,1%, whereas it averages 35,3% from April to September. The 
same pattern is visible from the statistics for quarter contracts presented in panel D, i.e., higher 
price and standard deviation levels during quarter 1 and 4. The relative standard deviation for 
quarter 1 and 4 averages 36,3%, whereas it averages 34,3% for quarter 2 and 3. The difference 
between the (relative) standard deviation for month and quarter contracts again confirms our 
earlier findings of decreasing volatility with the length of the delivery period and time to delivery. 
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 Mean # Obs. Std. Dev Min Max   
Panel A: entire sample       
All 46,21 32220 16,72 19,27 102,75 145 434 
        
Panel B: sub-sample according to length of delivery 
period (DP) 

    

Month 45,03 11622 17,44 19,27 102,75 30 79 
Quarter 45,75 11691 16,93 21,15 100,93 91 329 
Year 48,36 8907 15,21 23,65 96,80 365 1034 
        
Panel C: month contracts, sub-sample according to time of delivery period (TODP)   
January 51,92 1025 19,99 26,13 102,75 31 82 
February 51,21 990 19,42 25,35 101,75 28 84 
March 45,01 963 16,08 23,62 86,88 31 81 
April 40,52 944 13,68 21,70 73,50 30 83 
May 36,61 909 11,89 20,24 59,50 31 81 
June 41,69 935 14,38 21,78 75,36 30 87 
July 43,18 948 16,20 21,53 92,55 31 81 
August 40,36 934 14,44 20,60 81,43 31 73 
September 43,84 959 16,66 22,90 90,23 30 73 
October 45,35 980 17,78 22,26 93,49 31 72 
November 50,49 1010 19,74 19,27 101,94 30 74 
December 48,26 1025 18,40 21,81 97,78 31 77 
        
Panel D: quarter contracts, sub-sample according to time of delivery period (TODP)   
1. Quarter 51,32 2957 18,61 26,00 100,93 90 327 
2. Quarter 40,18 2918 13,64 21,15 81,74 91 327 
3. Quarter 42,55 2846 14,71 21,15 86,09 92 328 
4. Quarter 48,73 2970 17,72 25,62 97,50 92 333 
        
 
Table 3.5: Descriptive statistics of price levels of futures contracts traded at the EEX between July 2002 and 

December 2008. Contracts are quoted in Euros per MWh and average Delivery Period  and average Time 

to Delivery are quoted in days. Each day during a delivery period represents 24 MWh. 
 
 

3.2.2.2 Descriptive statistics of logarithmic returns  
Going from price levels to logarithmic returns, one observation per traded contract is lost. 
With a total of 133 contracts traded during our sample period, our data set shrinks to 32.087 
observations. As we did for the price levels, we observe the trading day, time to delivery, 
length of the delivery period and time of the delivery period for each observation. Please 
note that in order to annualize the standard deviation of log returns (the volatility), the 
sample standard deviation is multiplied by √250, since 250 is the average number of trading 
days in our sample.  
 Descriptive statistics of the logarithmic returns for all contracts during the entire sample 
period are given in Table 3.6, Panel A. We see that the overall mean is just slightly positive, 
suggesting a very small overall positive drift for futures returns traded at the EEX. Returns 
take on values in the range between -28.68% and 42.15% and together, the mean and range 
suggest a right-skewed distribution for the returns. The average annualized volatility across all 
contracts is equal to 22.2%. Average delivery period and average time to delivery are 145 and 
434 days, respectively. 
 In panel B we sorted the data according to the length of the delivery period. As we saw 
with the analysis of futures price levels, panel B suggests right skewed returns for all delivery 
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periods, where the skewness is more pronounced for contracts with shorter delivery periods 
(and consequently shorter time to delivery). Average volatility is clearly decreasing with the 
length of the delivery period; again reinforcing our postulate that volatility and the length of 
the delivery period are inversely related. Average volatility is highest for month contracts, 
averaging 29.92% with average time to delivery equal to 78 days. For quarterly and yearly 
contracts volatility averaged 18.21% and 13.46% with on average 328 and 1033 days to 
delivery, respectively. 
   
 
 Mean # Obs. Std. Dev Min Max   
Panel A: entire sample       
All 0,0002 32087 0,2220 -0,2868 0,4215 145 434 
        
Panel B: sub-sample according to length of delivery 
period (DP) 

    

Month -0,0002 11536 0,2992 -0,2868 0,4215 30 78 
Quarter 0,0004 11657 0,1821 -0,0836 0,0994 91 328 
Year 0,0005 8894 0,1346 -0,0705 0,0884 365 1033 
        
 
Table 3.6: Descriptive statistics of logarithmic price returns of futures contracts traded at the EEX between July 

2002 and December 2008. Average Delivery Period  and average Time to Delivery  are quoted in 
days. The sample standard deviation (volatility) is annualized by multiplying the sample standard deviation with 
the square root of the average number of trading days in a year, 250. 
 

3.2.3 Periodic behaviour 
For futures contracts only seasonal periodic behaviour is expected. Prices are based on monthly, 
quarterly or even yearly averages of spot prices, hence no intra-day or intra-week price patterns 
are observed. In Section 3.2.2.1 we introduced the four different time variables that were 
recorded for every observation in our data set. When analyzing seasonality not all time variables 
are expected to be related to the seasonal behaviour of electricity futures prices. Seasonality 
corresponding to the trading date, for example is not expected. Electricity futures have the 
average spot price of a fixed future period of time as the underlying asset and all the information 
concerning this future period is already incorporated in the futures price from the day it starts 
trading. This, of course, does not mean that futures prices do not change until maturity. Both the 
time to delivery (TTD) and delivery period (DP) have no seasonal influence since contracts with 
different TTD and DP are traded throughout the year and have no relation to calendar times.  
 The time of the delivery period (TODP), on the other hand, is related to seasonal 
behaviour. Table 3.5 already presented the statistics for the month and quarter contracts 
according to the time of the delivery period and significant price changes were found for 
contracts delivering in different months. By averaging all the quoted futures prices for each 
traded contract separately and plotting it against the delivery period of the contract, we can 
visualize the structure throughout the sample period. Figures 3.23 and 3.24 present the structure 
for monthly and quarterly contracts respectively. From the figures we observe a seasonal pattern 
with a period equal to one year. Looking at the individual years in our data sample, the same 
seasonal pattern is observed for month and quarter contracts. Average prices are higher for 
contracts delivering electricity during the colder first and fourth quarter.  
 The futures price returns give a similar picture. Table 3.7 presents the descriptive statistics 
of month contracts, sorted according to the calendar time of the delivery period (TODP). Price 
returns are positive from June until November and negative from December to May, indicating 
that prices on average rise from June to November to peak in November / December and 
gradually fall down again to hit the lower prices levels in the summer months with lower demand. 
From Table 3.7 we also see some evidence of seasonal volatility. With DP and TTD quite similar 
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for all month contracts mutually, the influence of these time variables on the volatility level 
should also be quite similar across months and quarters respectively. Differences in the volatility 
might therefore be an indication of seasonal behaviour of volatility.  
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.23: Average futures prices for month futures with respect to delivery period. 
 
 

 
 

Fig 3.24: Average futures prices for quarter futures with respect to delivery period. 
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 Mean # Obs. Std. Dev Min Max   
Panel A: month contracts, sub-sample according to time of delivery period (TODP)   
January -0,0014 1018 0,2938 -0,1680 0,1477 31 81 
February -0,0009 983 0,2828 -0,1092 0,0978 28 83 
March -0,0008 956 0,3622 -0,1830 0,4215 31 80 
April -0,0005 937 0,2567 -0,0725 0,1006 30 82 
May -0,0004 902 0,2513 -0,0857 0,0929 31 80 
June 0,0001 928 0,2669 -0,0919 0,0793 30 86 
July 0,0006 940 0,3460 -0,1547 0,2107 31 81 
August 0,0002 926 0,3621 -0,2868 0,2708 31 72 
September 0,0007 952 0,2785 -0,1070 0,0981 30 72 
October 0,0007 973 0,2343 -0,0902 0,0698 31 72 
November 0,0000 1003 0,3142 -0,1503 0,1922 30 74 
December -0,0008 1018 0,3065 -0,1423 0,0860 31 76 
 
Table 3.7: Descriptive statistics of month futures logarithmic price returns according to the time of the delivery 
period (TODP). The full sample consists of all traded month contracts at the EEX between July 1, 2002 and 

December 31, 2008. Average Delivery Period  and average Time to Delivery  are quoted in days. 
The sample standard deviation (volatility) is annualized by multiplying the sample standard deviation with the 
square root of the average number of trading days in a year, 250. 
 

3.2.4 Time varying volatility 
Looking again at the time variables we see that we can distinguish two time components on 
which the volatility of a futures contract might depend. From our discussion of the descriptive 
statistics of the base spot price and log returns, we already saw that volatility seems to decrease 
with the length of the delivery period. This effect is called the term structure of volatility. From 
an economic point of view it is clear that contracts with a longer delivery period are less volatile, 
since the arrival of news such as plant outages, fuel price shocks and weather conditions generally 
influence only specific periods of time. For contracts with long delivery periods the effect on the 
price will average out with opposite news during other periods, leading to lower volatility.  
 The other time variable of influence is the time to delivery (TTD). The effects of TTD on 
the volatility of futures prices are also known as the Samuelson hypothesis, which was discussed 
in Section 2.3.4. The Samuelson hypothesis states that the volatility of a futures contract 
increases as the time to maturity approaches zero. To see the effect(s) of time to delivery on the 
descriptive statistics of the returns we sorted the data according to TTD. The results are 
presented in panel A of Table 3.8. Please note that the negative TTD corresponds to month 
contracts only, since these contracts remain tradable during the delivery period. We observe a 
slight negative overall drift for contracts close to delivery (TTD <50) and an even smaller 
positive trend for contracts with longer time to delivery. Significant differences between sub-
samples are observed for the average volatility. Contracts close to delivery exhibit significant 
higher levels of volatility. Especially the contracts with negative TTD exhibit high volatility, 
averaging 45.91%. Volatility is steadily declining for increasing TTD, averaging 13.86% for 
contracts with average TTD equal to 1033 days.  
 In order to see the effect(s) of time to delivery on the average volatility for different delivery 
periods, we repeated the calculations for monthly, quarterly and yearly contracts separately. The 
results of these calculations are given in panels B, C and D respectively. 
 The three panels show the same pattern: decreasing volatility when TTD increases. Looking 
at the level of the average volatility we again see clear differences for contracts with different 
delivery periods. Month returns exhibit significant higher levels of volatility compared to quarterly 
and yearly contracts. Returns of quarterly contracts, on their turn, are more volatile compared to 
yearly contracts. Panels B, C and D therefore confirm our postulate that the volatility of futures 
prices are indeed inversely related to DP and TTD.  
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 Mean # Obs. Std. Dev Min Max   
Panel A: sub-sample according to time to delivery (TTD)    

( – 0) -0,0013 1546 0,4591 -0,2868 0,4215 30 -15 
[0 – 50) -0,0007 3741 0,3331 -0,1547 0,1298 63 25 

[50 – 100) 0,0003 3817 0,2326 -0,0854 0,0901 66 74 
[100 – 300) 0,0005 9113 0,1910 -0,1024 0,0994 87 170 
[300 – 500) 0,0004 4528 0,1631 -0,0746 0,0991 147 400 
[500 – ) 0,0005 9342 0,1386 -0,0752 0,0744 285 1092 
        
Panel B: month contracts, sub-sample according to time to delivery 
(TTD)    

( – 0) -0,0013 1546 0,4591 -0,2868 0,4215 30 -15 
[0 – 50) -0,0010 2688 0,3657 -0,1547 0,1298 30 25 

[50 – 100) 0,0003 2688 0,2412 -0,0854 -0,0901 30 74 
[100 – 150) 0,0005 2718 0,1956 -0,1024 0,0624 30 124 
[150 – ) 0,0002 1896 0,2132 -0,0902 0,0855 30 169 
        
Panel C: quarter contracts, sub-sample according to time to delivery 
(TTD)    

[0 – 100) 0,0003 1724 0,2283 -0,0836 0,0896 91 51 
[100 – 200) 0,0006 1803 0,1865 -0,0615 0,0745 91 149 
[200 – 300) 0,0007 1813 0,1762 -0,0762 0,0994 91 249 
[300 – 400) 0,0004 1800 0,1720 -0,0738 0,0991 91 349 
[400 – ) 0,0004 4527 0,1659 -0,0752 0,0838 91 528 
        
Panel D: year contracts, sub-sample according to time to delivery 
(TTD)    
[0 – 100) -0,0001 458 0,1848 -0,0591 0,0651 365 53 
[100 – 200) 0,0005 489 0,1578 -0,0685 0,0466 365 149 
[200 – 400) 0,0009 832 0,1519 -0,0705 0,0884 365 301 
[400 – 600) 0,0004 953 0,1469 -0,0634 0,0699 365 496 
[600 – ) 0,0005 6162 0,1232 -0,0645 0,0732 365 1358 
        
Table 3.8: Descriptive statistics of month and quarter futures logarithmic price returns according to time to delivery 
(TTD). The full sample consists of all traded contracts at the EEX between July 1, 2002 and December 31, 

2008. Average Delivery Period  and average Time to Delivery  are quoted in days. The sample 
standard deviation (volatility) is annualized by multiplying the sample standard deviation with the square root of 
the average number of trading days in a year, 250. 
 

3.3 Summary and conclusion 

3.3.1 EEX spot prices 
Our analysis of the EEX spot prices is based on hourly observations of the EEX spot price from 
01/01/2002 until 31/12/2008, totalling 61.368 observations. We investigated the behaviour of 
the base spot price (2557 observations) and the logarithmic return (2556 observations). Our main 
findings are summarized below. 
 

• Co-integration: long-term developments of EEX spot prices are co-integrated with 
fundamental price drivers such as fuel costs and CO2 allowances. Determination of a 
deterministic trend for base spot price without using these fundamental variables is 
considered very difficult. For the log-return series no significant trend was found; the log 
returns oscillate around the mean (zero) during the entire sample period. 
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• Skewed distribution: the spot prices are not normally distributed. The frequency 
histogram shows a fat and long right tail, indicated by a positive skew (2,16) and excess 
kurtosis (12,21). Although more symmetrical, both the log base spot price and the log 
return are also not normally distributed according to the Jarque-Bera test statistic. 

• High volatility: the time series of the EEX spot price exhibits high price spikes. As a 
result we observe a very high daily volatility for the EEX spot, averaging 32,9% (520% 
annualized) during our sample period.   

• Time varying volatility: besides the high level of volatility we found that both the 
intensity and the frequency of price spikes change with time. As a result we observe 
hectic, unstable periods (average 30-day daily volatility around 50%) alternated with 
relative calm, stable periods (average 30-day daily volatility around 25%). This volatility 
clustering is also known as heteroscedasticity. 

• Mean reversion: EEX spot prices rapidly return to ‘normal’ levels after a price spike is 
observed.  

• Periodic behaviour: for the EEX we investigated the possible intra-day, intra-week and 
seasonal predictable pattern. 

o Intra-day: a clear and persistent pattern was observed for the hourly prices 
within a day. Prices are significantly above the base spot price on peak hours 
and below this level on off-peak hours. 

o Intra-week: we also found compelling evidence of a predictable intra-week 
pattern. On Monday and Tuesday prices are relatively high, dropping gradually 
to the lowest level, which is reached on Sunday. A stable autocorrelation 
function with high autocorrelation values and a clear and persistent periodic 
pattern endorses these findings. 

o Seasonal: although far less evident and clear compared to the intra-day and 
intra-week pattern we found evidence of a seasonal pattern using non-linear 
regression. The results are in accordance with the expected pattern of (slightly) 
higher spot prices during winter months.  

 

3.3.2 EEX futures prices 
The analysis of the EEX futures prices is based on observations of all the traded futures 
contracts for every trading days from 01/07/2002 until 31/12/2008. A total of 11,622 prices for 
86 month contracts, 11,691 prices for 34 quarter contracts and 8,907 prices for 13 year contracts 
were observed. For each of the observations the date, time to delivery, length of the delivery 
period and time of the delivery period was recorded. As with the spot price we investigated the 
price level and the logarithmic return. Our main findings are summarized below. 
 

• Co-integration: as was expected and already discussed for the spot prices, we see that the 
futures price levels are co-integrated with the fundamental price drivers such as fuel 
costs and CO2 allowances.  

• Level of volatility: the EEX futures prices clearly show lower levels of volatility. Short 
term changes or shocks in demand and/or supply have less influence on futures prices 
since futures prices are based on the average spot prices during the delivery period and 
the fact that these abnormal shocks are generally short-lived. The average annual 
volatility equals 22,2 %, significantly below the 520% average annual volatility of spot 
prices.  

• Changing volatility: volatility of futures contracts change with  
o The length of the delivery period: the volatility of the EEX futures contracts 

decreases with the length of the delivery period. Across the entire sample, the 
annualized volatility of month contracts is 30%, compared to 18% and 13% for 
quarter and year futures, respectively. 

o The time to delivery: we re-arranged the observations according to the time to 
delivery and found that the longer a contract is away from the start of the 
delivery period the lower the volatility. This is known as the Samuelson 
hypothesis. 
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o Time of the delivery period: by re-arranging the data according to the time of 
the delivery period we observed significant differences for the annual volatilities 
for different times of the delivery period. With the length of the delivery period 
and the average time to delivery being constant, these differences in volatility 
might be explained by the seasonal behaviour of volatility. 

• Periodic behaviour: the EEX futures prices exhibit a seasonal pattern. Average prices are 
significantly higher during winter months. This pattern is observed for both month and 
quarter futures price levels as well as log returns.  

 

3.3.3 Conclusion data analysis 
Our data analysis shows that many of the specific properties of electricity price processes 
discussed in Section 2.3 are also true for the EEX spot and futures data. Although the two types 
of processes are closely linked and have many properties in common, it will prove to be difficult 
to find models that can accurately capture both spot and futures price dynamics. When modelling 
electricity price processes we therefore have to decide which process we want to model or which 
product we want to price.  Since it is our goal to accurately model the futures price process, we 
are interested in the different approaches to the modelling of these prices. As we will see later on, 
this can be done by either modelling the spot price dynamics and deriving the corresponding 
futures prices, or by modelling the futures price dynamics directly. Both approaches have 
advantages and disadvantages and it is important to be aware of them. When we choose the first 
approach, for example, including very complicated mathematical functions to model the price 
spikes observed for the spot prices might unnecessarily complicate things.  

In this section we found that in order to accurately model the EEX futures curve, price 
models should take care of the seasonal pattern that was observed and above all must be able to 
capture the complex, time varying volatility structure of the futures prices. 
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4 Mathematical background 
In the previous two sections we presented a general overview of the (liberalized) electricity 
market and analyzed spot and futures prices from the EEX. We saw that with the liberalization 
process, a market place was created where generators, distributors, speculators, suppliers and 
large industrial consumers are able to trade many different types of electricity products on both 
spot and derivative markets. Due to the increasing trading activity, it has become increasingly 
important for all active trading parties to develop price models for the contracts they buy and 
sell, both for risk management and valuation purposes. This section will focus on the 
mathematics needed to understand, apply and develop electricity price models. 
 The first section will review three different modelling approaches. The second section will 
subsequently treat the developments of stochastic modelling in the more mature stock and fixed 
income markets. We end with some theory on derivative pricing and a discussion of the 
relationship between spot and futures prices.  

4.1 Modelling approaches 
When modelling price processes one can choose between three approaches (Anderson, 2004): 
 

• Fundamental approach. 
• Stochastic approach. 
• Hybrid approach. 

 

4.1.1 Fundamental approach 
The fundamental approach uses fundamental variables to construct a model that fits historical 
price data as accurately as possible. It requires a high level of understanding and insight into the 
variables that are believed to influence prices and often results in complex, non-linear 
relationships between the driving variables. Due to the fact that the fundamental approach is 
based on real, often observable, market variables these types of models are suitable for (short 
term) forecasting.  
 In the electricity industry, fundamental approaches are based on competitive equilibrium 
models for the electricity market. Prices are derived from a model for the marginal generation 
cost of electricity and the expected consumption of electricity. Initially, these models were 
primarily constrained to autoregressive effects and price responses to fluctuations in fuel prices, 
demand, weather conditions and transmission constraints (Kosater, 2006; Vehvilainen & 
Pyykkonen, 2004; Rambharat, Brockwell & Seppi, 2005; Nogales, Contreras, Conejo & Espinola, 
2002). Karakatsani & Bunn (2008) suggest that these factors should be complemented with 
aspects of plant dynamics, risk measures, market design effects, agent learning and strategic 
behaviour (e.g. exercising of market power). Advantages of the fundamental approach are the 
tractability of the factors and the fact that economic reasoning can be used to deduce properties 
of the factors. On the other hand, comprehensive data sets that are laborious to maintain are 
required and fitting the observable initial futures curve is hard. The forecasting power of 
fundamental models for electricity prices is also questionable. With continuously changing 
variables such as weather conditions being of great importance, forecasting electricity prices 
based on fundamental models usually do not look further than one week ahead.   
  

4.1.2 Stochastic approach 
The stochastic approach is, in principle, not concerned with actual (fundamental) price drivers 
but focuses on modelling the stochastic processes that represent prices directly. Historical price 
data provide estimates for the model parameters in such a way that the estimated models fit the 
historical data as accurately as possible. With these theoretical price models we are able to derive 
prices for derivative contracts such as European options with the stochastically modelled price 
process as the underlying asset.  
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 From observations of the electricity market, we suggest that the movements of electricity 
spot and futures prices are at least random to some extent, and can thus be modelled with 
stochastic models. The stochastic approach works with explicit formulas for the electricity price 
processes. In some specific cases it is even possible to obtain closed form solutions for European 
options. The construction of stochastic models is in general easier than constructing fundamental 
models, but no rigorous economic motivation for the parameters have yet been given in the 
electricity market. A problem that is often encountered is the lack of long historical time series 
that would allow for more accurate parameter estimation. Also the continuous structural and 
regulatory changes in the electricity market can have large effects on price levels, making it hard 
to estimate the influence of these market changes on the parameter values. Nevertheless the 
stochastic modelling of electricity price processes is a very active research topic.  
 

4.1.3 Hybrid approach 
Authors on hybrid electricity spot price models believe that the combination of the fundamental 
approach with the stochastic approach allows the inclusion of important behaviour particular to 
the electricity spot price. Anderson & Davison (2008), for example, develop a so-called switching 
model in which the tendency of price spikes to cluster and persist can be a result of weather 
conditions, load conditions, a shortage of supply or more likely, a combination of these 
contingencies.  
 
 In this report we choose to focus our attention on the stochastic modelling of electricity 
prices. The fundamental and hybrid approach both require large data sets and assume specific 
economic relationships in the marketplace which makes the price projections very sensitive to 
violations of the assumptions. This implies that there is a significant modelling risk when the 
fundamental or hybrid approach is applied. The fact that we choose to focus on the stochastic 
approach, however, does not mean that the variables of stochastic models are not related to 
fundamental variables per definition. We only choose to describe models purely stochastically, 
i.e., without using any external data other than the history of realised electricity prices. Chapter 5 
will provide an overview of several stochastic electricity price models. 
 

4.2 Development of stochastic modelling 
In this section we discuss the developments in stock and fixed-income markets. As we will see 
later on, many of the models used to model electricity price are modified versions of well-known 
models developed for these more mature markets. Knowing and understanding the underlying 
modelling principles is critical to review and understand electricity price models.      

4.2.1 Stochastic stock price modelling 
One of the founding fathers of the discipline we nowadays call mathematical finance is the 
French mathematician Louis Bachelier (1900). He is credited for being the first person to 
mathematically describe the Brownian motion, a stochastic process named after the Scottish 
botanist Robert Brown, who studied the motion of pollen suspended in water in 1827. Five years 
before the famous paper of Albert Einstein (1905) on Brownian motion, Bachelier derived the 
distribution function of the stochastic process underlying the Brownian motion, the Wiener 
process. Using the Wiener process, Bachelier presented the first stochastic model for random 
stock prices. For a formal definition and properties of a Wiener process the reader is referred to 
appendix A. Note that in today’s literature the terms standard Brownian motion and Wiener 
process both are used to describe a stochastic processes satisfying the conditions of definition 1, 
appendix A. In this report we will use the terms Brownian motion and Wiener process 
interchangeably. 
 A long period of theoretical and empirical research followed the work of Bachelier, mostly 
during the second half of the 20th century. The work of Samuelson (1965a), Mandelbrot (1966) 
and Fama (1970) led to the famous Efficient Market Hypothesis (EMH). The EMH asserts that 
prices of traded assets in financial markets already reflect all known information. Otherwise, 



 58 

predictable price movements could lead speculators to risk-free profits. In efficient markets these 
so-called arbitrage opportunities cannot exist and speculators cannot expect to consistently 
outperform the market. Though being a true cornerstone of modern financial theory, the EMH 
is controversial and often disputed because substantial and lasting inefficiencies are observed in 
the market. This has led to the development of alternative theories, especially by behavioural 
finance economists.  
 One obvious shortcoming of modelling asset prices with Brownian motion is the fact that 
negative price levels might occur. This is due to the normality of the Wiener process (see 
appendix A). To overcome this shortcoming, Samuelson (1965b) formulated the price 
movements of a single stock by a lognormal probability model and the geometric Brownian 
motion (GBM) was born. Because of its importance for stochastic (stock) price modelling we will 
define the GBM explicitly.  
 
Definition 4.1: The process  is said to follow a geometric Brownian Motion (GBM) if it satisfies the 
following Stochastic Differential Equation (SDE): 
    

€ 

dX(t) =αX(t)dt +σX(t)dW (t)
X(0) = a
 
 
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Or, equivalently 
 

.

 

 
 
From the last equation we see that the return of  is equal to the sum of two terms. The first 
term, , is called the drift term of the process where the deterministic variable  represents 
the expected return per unit of time. The stochastic second term, , adds randomness to 
the deterministic drift term via the volatility (standard deviation of returns)  and the Wiener 
increment . This Wiener increment can be interpreted as the difference of the Wiener 
process at an infinitesimal small period of time, i.e.,  
 

 
.  
 To find the solution  of the SDE, we need a very important concept used in stochastic 
calculus, called Itô calculus. Named after Kiyoshi Itô, it extends the methods of calculus to 
stochastic processes such as Brownian motion. One of the most important results, Itô’s lemma, 
can be found in Appendix B. 
 By using Itô’s lemma, we derive the solution for a geometric Brownian motion  as: 
 

 
 
Using the moment generating function of the Gaussian distribution we can then derive the 
expected value as 

. 
 

 Due to the normality of the Wiener process appearing in the exponent of the solution, we 
see that processes that are said to follow a Geometric Brownian Motion are log-normally 
distributed (the log of the process is normally distributed) and will thus give strictly positive 
prices (the exponential function returns strictly positive values). From the expected value we see 
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that the price process is unbounded and, on average, is growing over time. Because of its 
simplicity, the GBM is still the most widely used process for stock price modelling and was used 
by Fischer Black and Myron Scholes to derive their famous option pricing formula (Black & 
Scholes, 1973).  
 One of the disadvantages of lognormal Ito diffusion processes (of which GBM is an 
example) is its inability to capture spikes and jumps in price levels often observed in financial 
markets. Merton (1973) and Cox & Ross (1976) introduced jumps into stochastic models for 
stock price processes. Merton developed a jump-diffusion model in which the abnormal volatility 
(shocks due to rare events) in the price is modelled by a Poisson process while the ‘normal’ 
volatility is still governed by a diffusion process such as geometric Brownian motion. Cox and 
Ross modelled stock price movement by a pure jump model with a random Jump component as 
the only random source, i.e., no driving Wiener process. More recent research on jump-diffusion 
models was amongst many others done by Duffie, Pan & Singleton (2000). Opposed to the 
GBM case, the resulting stock price processes will not be continuous in time, which allows one 
to include the occurrence of rare events into the modelling of the asset price.  
 Another way to introduce extra randomness is by making volatility stochastic. Pioneering 
work of Hull & White (1987), Stein & Stein (1991) and Heston (1993) led to the development of 
stochastic volatility models. In these models the volatility process  itself is modelled by a 
stochastic differential equation with its own Wiener process as a random source.   
 

4.2.2 Stochastic interest rate modelling 
Several properties of the GBM are not satisfactory when developing stochastic interest rate 
models. The unbounded growth over time of price processes, for example, is not assumed to 
describe the development of interest rates and commodity prices very well.  
 Research on the modelling of the dynamics of interest rates focuses on either modelling the 
short rate (equivalent to modelling spot prices) or the forward rate (equivalent to modelling 
futures/forward prices). The short rate, denoted by , is the annualized interest rate at which 
an entity can borrow money for an infinitesimally short period of time from time . The forward 
rate, denoted by , can be interpreted as the annualized interest rate, contracted at , over 
the infinitesimal small interval . From these definitions it can be easily seen that the 
short rate is in fact a forward rate where the time of contracting coincides with the start of the 
interval on which the interest rate is effective, i.e., .  
 Literature reveals a large number of different stochastic models for the short rate. The 
general assumption is that the dynamics of the short rate , under the risk-neutral martingale 
measure  (see Section 4.3), is given by the stochastic differential equation 
 

, 
 
where  and  are given functions and  a Wiener increment under . Some of the most 
popular models are presented in Table 4.1. If a parameter is time dependent this is written out 
explicitly. 
 
 Dynamics 
Vasicek  

Cox-Ingersoll-Ross  

Hull-White (extended Vasicek) ,  

Hull-White (extended CIR) ,  
Table 4.1: Popular short rate models 
 
 To avoid the unbounded growth over time of the GBM, Vasicek (1977) introduced a mean 
reverting process. It has the property of reverting to the long run level , with speed of reversion 
governed by the strictly positive parameter . The economic rationale behind modelling with a 
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mean reverting process is that when the short rate becomes too high it will eventually slow the 
economy down which will bring the short rate down again and vice versa.  The Cox-Ingersoll-
Ross (CIR) model (Cox, Ingersoll & Ross, 1985) can be seen as an extension of the Vasicek 
model where they allow the volatility to be proportional to the short rate level. Hull & White 
(1990) extended both the Vasicek and the CIR model by letting some or all parameters become 
time dependent, creating an infinite dimensional parameter vector that makes these types of 
models particularly appealing for fitting initial term structures. 
 The main advantage of interest models where the short rate is the only explanatory variable 
is that it is often possible to obtain analytical formulas for bond prices and other interest rate 
derivatives. The main drawbacks of short rate models are, however, that it is unreasonable to 
assume that the entire money market can be explained by only one variable, the short rate. 
Furthermore, it is hard to obtain a realistic volatility structure for the forward rates without 
introducing a very complicated short rate model. This has led to the proposal of models that use 
more than one state variable. The Heath-Jarrow-Morton (HJM) framework (Heath, Jarrow & 
Morton, 1992) is probably the most important and influential one. 
 Instead of using the short rate as the only explanatory variable, the HJM framework 
chooses the entire forward rate curve (forward interest rate values for all time periods that are 
considered) as their (infinite dimensional) state variable. It is important to notice that the HJM 
framework does not imply a specific model for the interest rates like the short rate models 
presented earlier. It is a framework that can be used for analyzing interest rates. The HJM 
framework differs from short rate models in the sense that HJM-type models automatically 
capture the full dynamics of the entire initial forward rate curve, i.e., the initial term structure.  
 The key to the techniques developed by Heath, Jarrow and Morton is that an arbitrage free 
framework for the stochastic evolution of the entire forward rate curve can be created, where the 
forward rates are fully specified through their volatility functions. This is expressed through the 
famous HJM drift condition and implies that within the HJM framework no estimation for the 
drift parameter(s) is needed once the volatility function is specified.  
 Although highly appealing from a theoretical point of view, the HJM framework often leads 
to models which are non-Markovian and can even have infinite dimensions, which makes it hard 
or even impossible to get analytical solutions. For certain choices of volatility structures, 
however, this problem can be tackled so that the resulting models can be expressed entirely by a 
finite-state Markovian system, making it computationally feasible. The mathematical formulation 
of the HJM framework can be found in Appendix C.     
 

4.3 Derivative pricing 
In connection with the first stochastic model for stock prices, Bachelier (1900) was also the first 
to consider the mathematical pricing of stock derivative contracts. Since then, markets have 
developed and a large number of derivatives are actively traded on many different markets 
nowadays. The most common and actively traded contracts are forwards, futures and options. To 
derive prices for these derivative contracts we need some mathematical tools and concepts that 
will be discussed in this section. We will also describe different derivative pricing models, with 
the Black- Scholes model (Black & Scholes, 1973) of course being the most famous one.    
 Following the work of Bachelier, Samuelson (1965b) considered long-term stock options 
and used the Geometric Brownian Motion (GBM) to model the random behaviour of the 
underlying stock. Based on this underlying process, he modelled the random value of the option 
at the exercise date. His model required the two non-observable parameters  and  as its 
inputs. Parameter  reflects the expected rate of return of the stock and  represents the 
discount factor at which the option value at expiration is discounted. Because both parameters 
are not observable in the market, different observers might propose different values for the 
parameters, depending on their degree of risk aversion. Because of this, the option price model 
developed by Samuelson did not offer unique option prices because of the differences in risk 
aversion of market participants. 
 To attack the problem of non-unique option prices, Black & Scholes (1973) used a 
completely different approach that would lead to the famous and widely used Black-Scholes (BS) 
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option pricing formula. Their approach is based on the dynamically hedging (replicating) the 
option under consideration. They propose that, given certain simplifying assumptions, the cost of 
this replicating strategy is known in advance. In an arbitrage-free market these costs thus equal 
the option’s price. 
 The first concept that we have to grasp in order to understand and apply the BS model is 
the concept of no-arbitrage. Derivative pricing is often based on replicating the final payoff of 
the derivative with a so-called self-financing trading strategy. We define a trading strategy as a 
stochastic process adapted to the filtration . This means that the trading strategy can only be 
based on the information that is available at time . A self-financing trading strategy then is a 
trading strategy that requires no further investments after the initial investment. Now, an 
arbitrage possibility is defined as a self-financing trading strategy that has zero initial cost, a non-
negative end wealth P-almost surely and a positive end wealth with positive probability. In other 
words, an arbitrage opportunity has non-negative end value with probability 1, a positive 
probability of ending up with a positive end value, all at zero initial cost.  
 In constructing their famous option-pricing model, Black and Scholes constructed such a 
self-financing trading strategy that replicated the payoff of a European option. They assumed 
stock prices to follow a continuous process, a lognormal distribution of the stock price at any 
point in time, constant interest rate, constant volatility and a stock that does not pay out 
dividends. We already saw that the GBM model fits these characteristics and Black and Scholes 
showed that the only theoretical pricing function  that is consistent with the 
absence of arbitrage opportunities is when  is the solution to the following boundary 
value problem: 

 

,

 

  
where  denotes the deterministic risk-free interest rate,  represents the volatility of 
the underlying asset , the subscripts denote the partial derivatives of the pricing function 
and  is the payoff of the derivative at maturity . 
  
 Although subject to some weak points concerning the assumptions underlying the model, 
the reader can feel safe knowing that the pricing equation developed by Black and Scholes is 
really the ‘correct’ equation. Luckily enough, there is an alternative argument for the derivation of 
the solution to this rather horrible pricing equation. 
 This alternative argument for the pricing of derivatives was developed by Cox, Ross & 
Rubinstein (1979) and is called risk neutral valuation. They observed that if the parameters of the 
option-pricing model developed by Samuelson (1965b) were based upon the same assumptions 
of the Black-Scholes model, they would produce consistent option prices. This observation led 
them to the conclusion that both approaches were equivalent, although one required the input of 
two variables dependent on the level of risk aversion of the investor, whereas the other did not. 
They concluded that these variables must somehow cancel and that, as long as they reflect the 
same degree of risk aversion, the degree of risk aversion does not affect option prices. If the 
parameters can reflect any degree of risk aversion, Cox, Ross and Rubinstein brilliantly suggested 
that the parameters then could also be based on the assumption of no risk aversion at all. 
Investors with no risk aversion are called risk-neutral investors and don’t require excess return 
for the risk they are taking. Those investors would discount the expected payoff at the risk-free 
interest rate and do not require excess return for the risk they are taking. It is important to 
understand that the risk neutral valuation approach does not assume that investors de facto live 
in a risk neutral world. The derived formula only says that the value of the derivative can be 
calculated as if we all life in a risk neutral world. In fact, investors can have any risk preference 
they like, as long as they prefer a larger amount of money to a lesser amount.  
 The derivation of risk neutral pricing formulas requires the calculation of risk neutral 
probabilities. These are ‘artificial’ probabilities such that the theoretical price of the option is 
equal to the expectation of the option payoff under this new, risk neutral, probability measure. 
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This new probability measure is often denoted by  and is closely linked to the concepts of 
equivalent probability measures and martingales. 
 
Definition 4.2: A probability measure  is equivalent to the probability measure  for a process  if for 
all possible outcomes  of  it holds that  
 

 if and only if . 
 
 Definition 4.3: A stochastic process  is called a -martingale with respect to the probability measure 

 if the following conditions hold: 
 

• X is adapted to the filtration   
• For all   

 
. 

 
• For all  and  with  the following relation holds: 

 
. 

 
The first condition simply states that we can observe the value  at time ; the second 
condition is just a technical condition. The third condition, however, is the most important one. 
It says that the expected value of a future value of  with respect to the probability measure 

, given the information available to us at time , is equal to .  
  
  In 1979, Harrison & Kreps (1979) combined the concepts of equivalence and the 
martingale and showed that a market is arbitrage free if, and only if, there exist an equivalent 
martingale measure. They also showed that in an arbitrage free market the theoretical price  
for any derivative claim  with maturity  on the underlying asset  is given by: 
 

, 

 
where  is a martingale measure with  as the numeraire. The numeraire refers to the basic 
standard by which values are measured. In many cases we measure the value by the time value of 
money, represented by a bank account. When we take the time value of money as our numeraire, 
i.e.,  
 

, 

 
we get the risk neutral valuation formula which we will define next. 
 
Definition 4.4: Assuming the existence of a short rate , the arbitrage free, risk neutral valuation formula 

 for a derivative claim at maturity  takes the form 
 

, 

 
where  is a martingale measure with the bank account as the numeraire. 
 
When we take the short rate of interest to be a constant, it can be easily seen that the risk neutral 
valuation formula reduces to 
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. 

 
 With the general results of the risk neutral valuation approach we are now able to calculate 
theoretical prices for many different types of derivatives. The price of a European call option on 
a stock derived in this way, for example, can be shown to be consistent with the rather horrible 
partial differential equation we saw earlier and leads to the famous Black-Scholes option pricing 
formula. For a complete proof of the Black Scholes equation the reader is referred to Björk 
(1998). 
 
Definition 4.5: The Black-Scholes option price formula for a European call option at time  on the stock 

 with strike price , and maturity  is given by the formula  
 

, 
 
where  is the cumulative distribution function for the standard normal distribution, given by 

 

 

and 
 

, 

 
 

. 
 
Definition 4.6: The Black-76 option price formula for a European call option with exercise date  and 
exercise price  on a futures contract with underlying asset  and delivery date  is given by 
 

€ 

Π(t) = F(t, f (t,T1)) = exp(−r(T − t)) f (t,T1)N(d1) −KN(d2)( ). 
 

 is again the cumulative distribution function of the standard normal distribution described earlier, where 
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and 
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 Since the electricity futures and options we are interested are derivatives, we can use the risk 
neutral valuation approach to derive the pricing functions for these products. Remember 
that  denotes the futures price of an electricity futures contract on the average delivery 
spot price between  and  contracted at time , and  is the strike price of a European 
option with expiration date  with the futures contract  as the underlying security. 
Remember that the payoff function of a call option at expiration date  is given by 
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where  is the number of delivery hours of the futures contract. Applying the risk neutral 
valuation approach to the option with payoff function given above results in the following 
expression for the price  of the option: 

 
. 

  
 From the expression we see that the expected value is to be taken under the risk neutral 
probability measure . Therefore, we only need to specify the dynamics of the futures price 
under this risk neutral measure. We do not need the futures price dynamics under the ‘real world’ 
(objective) probability measure  at all. The only role played by the objective measure  is that 
it determines which events are possible and which are not. All the price models proposed in 
Section 5 will therefore be stated under the risk neutral probability measure  only. The 
question that remains is how the expected value of the futures price under the risk neutral 
measure  can be calculated. Generally this boils down to numerous calculations of tedious 
integrals. The ‘change of numeraire’ technique developed by Geman, El Karoui & Rochet (1995) 
can, however, drastically reduce the computational work needed.  
 Despite the ongoing development in derivative pricing, quantitative pricing remains a 
challenging task. Not always do derivative pricing models result in nice behaved formulas that 
can be solved analytically. In many cases numerical techniques such as Monte Carlo simulation 
are necessary to obtain a satisfying solution. In this research we are only interested in models that 
result in closed-form (analytical) option price formulas that are of the Black-Scholes type. This 
means that the underlying price process must be log-normally distributed. 
 

4.4 Relation between spot and futures prices  
Following the developments in the fixed income markets, recent literature reveals two 
approaches for the modelling of electricity futures: modelling spot prices and inferring the 
futures price process, or modelling the electricity futures directly. The latter approach has 
focused on the application of the Heath-Jarrow-Morton (HJM) framework to the electricity 
market and will be discussed in Section 5. For the ‘spot price approach’ to work, a relationship 
between electricity spot and futures prices has to be derived. This section will present some 
classical theory and results concerning this relationship and we will see whether these approaches 
are suitable to be applied to electricity and electricity contracts. 
 

4.4.1 Assumptions and notation 
There roughly are three classical views concerning the relationship between spot and futures 
prices for commodities (Fama & French, 1987). The first theory is linked to storage costs and 
benefits of holding the commodity, whereas the second and third approaches derive a 
relationship between futures prices and expected spot prices. But before we will dive into the 
derivation, we need to make the following assumptions concerning the market and its 
participants: 

 
• There are no transaction costs involved in the trading business. 
• The market participants are subject to the same tax rate on all net trading profits. 
• The market participants can borrow and lend money at the same risk-free rate of 

interest. 
• The market participants take advantage of arbitrage opportunities as they occur. 

 
Furthermore, the following notation will be used: 
 
 :    Time to maturity of the forward or futures contract 
 : Price of the asset underlying the forward or futures contract today 
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 :  Negotiated contract price to be paid at maturity   
: Risk-free interest rate per annum, expressed with continuous compounding 

 

4.4.2 Cost of Carry approach 
In a market where the spot is liquidly traded, we can perfectly hedge (replicate) a short position in 
a futures contract by a long position in the spot, financed by borrowing at the risk free rate r. 
This strategy is known as the buy-and-hold strategy and defines the futures price as 
 

. 

 
From this well known relation we see that the futures price converges to the underlying spot 
price when the time to delivery  approaches zero.  
 In the buy-and-hold strategy it is required to buy and store the underlying spot. For stocks 
this will not effect the relation, but for most commodities it will. Commodities are physical 
consumption assets and these usually do not provide income such as a dividend yield we often 
see with stocks. Actually, commodities are often subjected to significant storage costs.  Let  
denote the present value of all the storage costs, net of income, during the life of the forward 
contract. Now consider a forward contract on a consumption asset with price  with storage 
costs equal to . Using the notation above, where  is the time to maturity,  is the risk-
free rate and  is the forward price we would expect the relationship between  and 

 to be given by: 
  

. 
 
To verify the equation, we first consider the case when . In 
this case, investors can buy the underlying asset and short sell (selling an asset you do not own) 
the forward contract, hereby creating an arbitrage. When we consider 

, however, we see that there is nothing to stop this inequality 
from holding because owners of a consumption commodity keep such an asset for its 
consumption value, not necessarily because of its investment value. They are therefore reluctant 
to sell the commodity and buy the futures contract because the futures contract cannot be 
consumed. The only thing we can conclude for the relationship between spot and futures prices 
for consumption assets is 
 

. 
 
 From a price modelling perspective, we are obviously not that happy with this inequality 
relation. By finding a way of incorporating the benefits of holding the physical asset rather than 
the futures contract into the relation, we might end up with equality. The benefit of holding the 
physical asset is often referred to as the convenience yield  and was introduced for storable 
commodities by Brennan & Schwartz (1985). The cost of carry, , measures the storage costs 
plus the interest that is paid to finance the asset minus the income earned on the asset. The 
relationship between spot and futures prices can now be summarized in terms of the cost of 
carry and the convenience yield and is defined as follows: 

 
. 

 

4.4.3 Risk neutral expectation approach 
The second pricing theory explains the price of a futures contract in terms of the expected future 
spot price. To derive the mathematical expression, consider an investor to be long one futures 
contract, contracted at . The payoff of this position at maturity  is equal to 
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. 

 
Since a futures contract is a derivative, we can apply the risk neutral valuation approach discussed 
in the Section 4.3 with a constant risk free rate of interest. Hence, since a futures contract is 
entered at zero cost, the risk neutral pricing formula becomes 
 

, 
 
where  is the risk neutral martingale measure with the time value of money as the numeraire. 
The futures price  is already determined at time  and can therefore be taken outside the 
expectation, i.e., 
 

 
 

, 
 

which implies 
 

€ 

f (t,T) = EQ S(T)Ft[ ]. 

4.4.4 Risk premium Approach 
To evaluate the risk premium approach we first need to discuss the rational expectation 
hypothesis that has also been considered to relate futures and spot prices. This hypothesis states 
that the futures price is the best prediction of the spot price at delivery, or, in mathematical terms, 
 

. 
 
A quick look at this formula reveals that the rational expectation hypothesis is identical to the risk 
neutral expectation approach when . It is not to be expected that the rational expectation 
hypothesis holds for reasons we already discussed for the risk neutral expectation approach. The 
theory of normal backwardation argues that producers of commodities wish to hedge their 
revenues and are therefore willing to accept a discount on the expected future spot price. When 
we define the risk premium as 
 

, 
 
we see that the theory of normal backwardation argues that the futures are traded at a discount 
when compared to the expected future spot price leading to a negative risk premium, or, in 
mathematical terms, 
 

, 
 
which implies 
 

. 
 
 The existence of a risk premium in the electricity market can be economically explained by a 
significant difference in the degree of risk aversion between market participants on the supply and 
demand side of futures contracts. When suppliers of futures contracts are relatively risk averse, 
they are willing to accept a discount on the expected spot price at delivery to secure their 
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revenues, with a negative risk premium as a result. When buyers of futures contracts are relatively 
risk averse, on the other hand, they are willing to pay a premium on the expected spot price at 
delivery to buy a futures contract resulting in positive risk premiums. 
 For electricity generators (who generally supply futures contracts) it does not make sense to 
fix the price for their entire output. By ramping up or down the output of power plants they are 
able to benefit from price fluctuations, especially in the short term. Load Serving Entities (LSE’s), 
on the other hand, distribute and deliver electricity to consumers. They are usually on the demand 
side of futures contracts and do not have much flexibility to adjust the demand according to the 
price. Furthermore, they do not want to bear the risk of a high price spike occurring in the near 
future because these spikes lead to higher electricity prices. Hence, it does make sense for LSE’s 
to fix the price and lock in as much as expected future demand in the futures market. In general 
we can thus say that we expect the risk premium to be positive, since the buyers of futures 
contracts are expected to be more risk averse than the seller, especially for short-term contracts. 
 Recent research confirms our preliminary thoughts. In their research on the Pennsylvania, 
New Jersey and Maryland (PJM) market, Longstaff & Wang (2004) find evidence for a positive 
risk premium in the very short-term market.  
 

4.4.5 Application to the electricity market 
In this section we will discuss whether the classical approaches can be used to define the 
relationship between electricity spot and futures prices. The buy-and-hold strategy used in the 
cost of carry approach requires the storage of the underlying spot. It should come as no surprise 
that this is practically impossible for electricity due to the non-storable nature. Furthermore, the 
measurement of the convenience yield is a delicate task since it is not directly observable.  
 The risk neutral expectation approach may be more convenient and give more flexibility to 
start with. However, we should notice that electricity futures contracts deliver electricity over a 
period of time instead of at a fixed date. Consider a futures contract delivering electricity at a 
constant flow during the delivery period . The constant flow is defined as 
 

 

 
Assuming constant interest and settlement at maturity of the contract, the price of this futures 
contract becomes 
 

. 

 
    

We thus have to find the risk neutral measure . However, because real time electricity is not 
traded (only day-ahead) we must conclude that the electricity market is incomplete. As a result, 
there will not be a unique risk neutral equivalent probability measure and therefore no unique 
relation between the futures and spot price. By using historical price data the probability measure 

 the market is using can be determined, but there is no explicit relation between the futures 
contract and the expected spot price at delivery. As a conclusion, we cannot derive the futures 
dynamics based on arbitrage arguments since real spot electricity cannot be traded and stored.  
 We already saw that the rational expectation hypothesis is identical to the risk neutral 
expectation approach when we choose  as our risk-neutral probability measure. We therefore 
face the same problems with the risk premium approach as we did with the risk neutral 
expectation approach: no unique risk neutral probability measure, hence no unique price. To find 
the probability measure that is consistent with the market, the market price of risk (risk premium) 
is estimated from historical data. The probability measure to be used is selected by calibration in 
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such a way that the expressions for the futures contracts derived above hold under this new, risk-
adjusted probability measure.  
 Altogether we see that although some of the classical approaches provide some intuition for 
the electricity market, there is still no explicit relation between the futures and the (average) spot 
price. Historical data analysis on the differences between futures prices and the average spot 
prices of the respective delivery period can provide estimates for the prevailing risk premium in 
the market but this usually is very difficult. Additional assumptions have to be made to develop 
models that are consistent with observed market prices. 
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5 Electricity price models 
In this section we will discuss the two stochastic approaches to electricity futures price modelling 
and discuss several different applications for both approaches. With the basic knowledge on 
electricity and the (German) electricity market, the data analysis of the German spot and futures 
market and the mathematical and economical foundation for the derivation of price models 
provided in the previous sections, we will then be able to choose the best candidate for the 
modelling of the German electricity futures curve, given our wish for closed-form option pricing 
formulas. 

Modelling electricity futures price processes can be done by following either the ‘spot 
price approach’ or the  ‘futures price approach’. The first approach is based on the accurate 
modelling of the underlying electricity spot price process, from which the corresponding futures 
price process is derived by applying one of the relations between spot and futures prices 
discussed in Section 4.4. The ‘futures price approach’ tries to model the futures price dynamics 
directly and is based on the Heath-Jarrow-Morton (HJM) framework (Heath, Jarrow & Morton, 
1992) developed for the fixed income market and already discussed in Section 4.2.2. 

The first section will provide an overview of electricity spot price models that also have 
been used as a basis of the spot price approach to the modelling of electricity futures prices. In 
the second section we will discuss the futures price approach and its applications. 

 

5.1 Spot price approach 
The spot price approach defines the spot price dynamics explicitly and derives the corresponding 
futures price dynamics. A wide variety of spot price models have been introduced in the literature 
and we unknowingly already discussed some (versions) of them when we talked about the stock 
and fixed income markets. From the previous sections it was hopefully made clear that electricity 
price processes exhibit unique features and directly applying spot price models developed for the 
more traditional markets will therefore generally not lead to satisfying results for the electricity 
market. The spot price models discussed in this section try to capture (some of) the unique 
features of electricity spot price processes. 

 

5.1.1 Mean reversion 
As one of the characterizing features of many commodity prices, including electricity, practically 
every spot price model includes mean reversion. Originally introduced by Vasicek (1977) for 
specifying interest rate dynamics, it was soon adapted for modelling (storable) commodities. 
Schwartz (1997) provides economic reasoning for the mean reverting nature of commodity 
prices. He states that relatively high prices lead to increased supply since high-cost suppliers now 
enter the market, putting a downward pressure on the prices and vice versa, provided that there 
is no excess capacity which can serve as a barrier to entry. As we saw from our data analysis of 
the EEX spot market in Section 3.1, electricity prices show clear mean reverting behaviour. 
 The Ornstein-Uhlenbeck diffusion process is one of the simplest mean reverting models 
and is defined by 

 
 

 
where  is the rate of mean reversion,  is the long term mean of the process,  is the 
volatility and  a Wiener increment. Schwartz (1997) modelled commodity log prices 

 with this type of model. The one-factor model by Schwartz is defined by 
 

 
 
One of the possible issues with this particular model, however, is the fact that it implicates that 
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the volatility of future returns converge to zero and future prices will converge to a fixed value 
when maturity increases (Schwartz, 1997). From our data analysis of EEX spot prices we know 
that this is not a desired feature. 
 In the same paper, Schwartz also investigates a two-factor model for the development of 
the spot price. Besides the stochastic spot price, this multi-factor model has a second factor that 
is also modelled by a stochastic differential equation. He chooses to model the convenience yield 
as a second factor and defines his two-factor model as: 
 

 
 

 
where the increments of the Wiener process are correlated with correlation coefficient , i.e., 
 

 
 
 Compared to Schwartz’ one-factor model, this model implies that the volatility of futures 
will decrease with maturity but will converge to a value different from zero. Schwartz concludes 
that empirical evidence on oil forward curves implies that this property is more desirable.  
 

5.1.2 Periodic behaviour 
The mean reverting models introduced by Schwartz (1997) are in theory able to capture the mean 
reverting nature of electricity prices.  To further enhance the possible fit to market data, Lucia & 
Schwartz (2002) add a periodic component to a mean reverting model. They investigate a one-
factor model for the base spot price defined by 
 

 

 
and a one-factor model for the logarithm of the spot price making use of the same stochastic 
differential equations. This model is defined by 
 

 

 
We see that in both cases the dynamics of  are modelled by an Ornstein-Uhlenbeck process 
with µ equal to zero (i.e., zero long-run mean). The deterministic function  is used to 
incorporate periodic effects (intra-week and seasonal). In their study of the Nordic electricity 
market they conclude that the first model gave the better fit to futures prices. 
 In the second part of their paper they also investigated two-factor models based on the 
two-factor model of Schwartz & Smith (2000). Schwartz & Smith stochastically model the price 
dynamics as having a short-term mean reverting component and a long-term equilibrium price 
level. The two-factor model for the base spot price proposed by Lucia & Schwartz (2002) is 
defined by: 
 

 

 
A similar two-factor model for modelling the logarithm of the spot price, is defined by: 
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The mean reverting models (with and without periodic component) we considered so far are not 
able to capture the observed spikes and jumps in the electricity spot price process. In Section 3.1 
we observed that these price spikes are the cause of the high level of volatility and the high 
kurtosis (fat tails). Two modifications to the mean reverting, periodic models can be applied to 
capture the spike behaviour: adding jump components or introducing stochastic volatility.  
 

5.1.3 Jump diffusion 
The introduction of jump terms implies the adding of at least one extra stochastic factor and 
several extra parameters, which makes the estimation and fitting to market data more difficult. 
One of the simplest jump diffusion processes is given by Clewlow & Strickland (2000) and is 
defined by the equation 
 

, 
 
where  is again the mean-reversion rate,  is the long-run mean of ,  represents the 
average number of jumps per year,  is the mean jump size,  denotes the spot price 
volatility,  is a log-normally distributed jump and  denotes a Poisson process. A particular 
shortcoming of this model, though, is that the occurrence positive and negative jumps are 
independently distributed over time due to the Poisson process. It is therefore not possible to 
ensure that a large upward jump is shortly followed by a downward jump, a pattern we see in 
electricity markets. It instead uses the mean reversion rate to force price spikes back to the mean. 
Increasing the mean reversion rate to ensure a fast return to the mean of price spikes leads to 
unrealistic mean reversion during more stable periods. One way to solve this problem is by 
applying so-called regime-switching models. Regime switching models divide the time series into 
separate phases or regimes with different underlying processes. The occurrence of a jump in 
electricity spot prices can then be considered as a change to another regime. The switching 
mechanism is usually governed by a random variable that switches between regimes which 
themselves are driven by independent stochastic processes.   
 Further research on (multi-factor) jump-diffusion models was performed by Deng (1999) 
and Geman & Roncoroni (2006). 
 

5.1.4 Stochastic volatility 
Another approach to capture high kurtosis is to introduce the stochastic volatility as a second 
stochastic factor. In general, these models can be expressed as 
 

 

 
From this structure we see that we can fit these types of models to particular markets and price 
data by choosing the deterministic functions  and  in such a way that the volatility structure is 
fitted as accurately as possible. 
 Several authors have proposed different choices for the functions  and . Hull & White 
(1987) model the squared volatility (variance) as a Geometric Brownian Motion, Stein & Stein 
(1991) model the volatility with the standard Ornstein-Uhlenbeck process, whereas Heston 
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(1993) models the variance with a mean-reverting process similar to the Ornstein-Uhlenbeck 
process. 
 

5.1.5 Conclusions spot price approach 
The spot price models discussed in the previous section have all been considered as a basis to 
derive the futures price dynamics and several studies have acknowledged their ability to model 
(several) specific features of electricity spot price processes. However, the spot price process is 
not our main interest.  It is our goal to find a set of models for the German electricity futures 
curve that allow for analytical, closed form option pricing formulas. In this context, introducing 
very complicated mathematical functions to accurate model the observed spot price spikes, as is 
done by Deng (1999) for example, will unnecessarily complicate the derivation of the futures 
prices further on which could make the model unusable in practise. These spikes are not 
observed for the EEX futures market and might be accounted for by the high volatility, without 
imposing an extra factor. 
 The main drawback of the spot price approach in general is that it is very hard to specify 
the spot price dynamics in such a way that the theoretical futures prices are consistent with 
observed market prices, as was discussed in Section 4.4.5. Many additional assumptions, that 
might not be true in practice, must be made to derive the futures price dynamics and it is very 
difficult to create a fit with the observed initial futures curve. Furthermore, this approach may 
lead to very complicated expressions for risk management and option pricing, where numerical 
methods are called for (Benth & Koekebakker, 2008). 
 
 

5.2 Futures price approach 
Instead of using the spot price and assuming a relation between spot and futures prices, the 
futures price approach models the dynamics of electricity futures prices directly based on the 
Heat-Jarrow-Morton (HJM) framework (Heath, Jarrow & Morton, 1992)(see appendix C). 
Instead of using the short rate dynamics to derive the forward rate dynamics, the HJM 
framework in fixed income markets directly models the forward rate dynamics and uses the 
observed initial forward rate curve as a condition, creating a perfect initial fit.  
 There are two types of applications of the HJM framework for futures price modelling. The 
first one models the instantaneous-delivery futures contract (no delivery period, delivery on fixed 
maturity time) and subsequently derives the corresponding dynamics for futures delivering 
electricity during the delivery period . The second approach models the electricity futures 
with a delivery period directly. We will now discuss both types. 
 

5.2.1 Instantaneous delivery approach 
A direct analogy of the HJM framework to electricity markets would be to assume that the 
futures/forward price dynamics for futures delivering electricity at a specific point in time, under 
the risk-neutral martingale measure  are modelled by either one of two types of models 
(Koekebakker & Ollmar, 2005).  
 
Type 1:  Futures price dynamics in which the volatility function(s) are deterministic (but time 

dependent) and independent of the futures price level. The dynamics are given by 
 

, 

 
where  is the number of factors included in the model, ,  are independent 
Brownian motions under the martingale measure  and ,  are time dependent 
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volatility functions. Notice that since it is costless to enter in a futures or forward contract, it 
must have zero expected return under the martingale measure  (Black, 1976). This implies that 
the drift parameter  is set equal to zero and therefore disappears from the expression for 
the dynamics. 
 The solution is given by 
 

, 

 
where  denotes the observed initial curve. Using the Ito isometry (Bjork, 1998, Ch. 4)  
 

, 

 
we easily see that this implies that the futures prices are distributed as:  
 

 

 
 
Type 2: Futures price dynamics in which the volatility function(s) are deterministic (but time 
dependent) and proportional to the futures price level. The dynamics are given by 
 

, 

 
with solution 
 

 
 
Similar to the derivation of the Geometric Brownian motion in Section 4.2.1 and again using the 
Ito isometry, we see that the futures prices are distributed as 
 

 

 
 Because we have the freedom to choose the volatility function(s) as we like, we are able to 
construct a wide variety of futures price dynamics. To illustrate the fact that the HJM framework 
itself does not imply a specific model for the electricity prices but rather provides a framework 
for analyzing them, it can be easily shown that the mean reverting one-factor spot price models 
proposed by Lucia & Schwartz (2002) discussed in Section 5.1.2, are consistent with the HJM 
models discussed in this section with one factor  and a volatility function defined by 
 

 
 
where  and  are positive constants. From this equation we see that the volatility function in 
these models is decreasing with maturity , approaching zero when .  
 Besides Koekebakker & Ollmar (2005), Bjerksund, Rasmussen & Stensland (2000) and 
Keppo, Audet, Heiskanen & Vehvilinen (2004) also considered the HJM framework for the 
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electricity market. They all consider modelling a continuum of instantaneous-delivery futures 
contracts (no delivery period!), as was specified above. This all seems to work out quite nicely, 
but we have to be aware of the fact that the dynamics derived according to this procedure are the 
dynamics for instantaneous-delivery futures and not for the futures delivering electricity over a 
period of time, the ones actually traded. As a result, when fitting the model to data from 
electricity markets, a continuous curve of instantaneous-delivery futures contracts has to be 
created from the observed curve of real electricity futures prices by using some smoothing 
algorithm.10  
 A one-factor model by Bjerksund et al. (2000) developed using this approach is given by 
 

,
 

 
with ,  and  positive constants. With good estimates of the parameters, we see that this 
volatility function produces a sharply falling volatility curve when  becomes larger, approaching 

 as . This is a more desirable property than the volatility function approaching zero 
when .  
 Although we can recapture the dynamics of the actually traded contracts, Benth & 
Koekebakker (2008) argue that the implied dynamics will become very complicated. 
Furthermore, the analytical tractability for option pricing is lost. They show using arbitrage 
arguments that, with some technical conditions on the coefficient functions, when the 
instantaneous-delivery futures dynamics are modelled by the one factor model 

 
, 

 
the implied dynamics for electricity futures delivering electricity during the period , which 
they refer to as swaps because the delivery of electricity over a period of time resembles a swap 
(swapping fixed for floating cash flows), is given by 
 

. 

 
Here,  denotes partial differentiation with respect to the second variable and  is 
related to the settlement of the contract. The important thing to notice about this equation is the 
fact that the swap dynamics  are not multiplicative and not even Markovian since 
the swap dynamics depend on the dynamics of all other swaps delivering electricity over the 
period , . Furthermore, we see that the only way we end up with lognormal 
swap dynamics (needed for Black-Scholes type analytical closed-from option pricing formulas!), 
is when  is not a function of the maturity, i.e., . We then obtain the lognormal 
swap dynamics: 
 

. 
 
 Our data analysis of EEX futures prices showed that the volatility of EEX futures depends 
on the length of the delivery period, the time to delivery and the time of the delivery period. 
Since we are looking for accurate future price models producing analytical closed-form option 
pricing formulas, we must therefore conclude that the HJM approach using instantaneous-
delivery futures does not fit our needs since we cannot have lognormal swap dynamics and a 
desirable volatility structure at the same time. 
 

                                                        
10 See for example Adams & van Deventer (1994) for an approach based on the maximum smoothness 
criterion 
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5.2.2 Direct swap approach 
Because the instantaneous-delivery contracts are not traded and the difficulties pointed out, it is 
tempting from a HJM-framework perspective to model the swap dynamics directly. Benth & 
Koekebakker (2008) developed this approach and argue that modelling these swaps directly 
allows one to utilise the information present in swap prices without relying on some ad hoc 
smoothing algorithm.  
 A problem encountered when modelling the swap dynamics directly with the HJM-
framework, is that the swap dynamics are specified for all delivery times, i.e., it is assumed that 
the market trades in futures with delivery at all times between today and some specified future 
point in time. The resulting dynamics under the equivalent risk-neutral martingale measure  are 
such that there are no arbitrage opportunities by trading futures with different times to maturity. 
Since we are dealing with swaps delivering electricity over a period of time, this no-arbitrage 
requirement becomes rather complicated and is very hard to achieve in practise when we want 
flexible, tractable models for option pricing (Benth & Koekebakker, 2008). In this setting, Benth 
& Koekebakker show that a lognormal model for the swap dynamics cannot satisfy the no-
arbitrage condition and at the same time possess a volatility structure depending on the delivery 
period. In conclusion, the only lognormal model for the swaps dynamics, which is arbitrage-free, 
is again given by 

 
. 

 
 The assumption restricting us from achieving our goal of having lognormal swaps dynamics 
with a maturity dependent volatility structure is the assumption that we want to model swaps 
consistently for all possible delivery periods. Benth & Koekebakker show that when we relax the 
no-arbitrage condition to hold only for actual traded swaps, we can have lognormal swap 
dynamics and a desirable volatility structure. 
 This approach focuses on the stochastic modelling of traded swap contracts that cannot be 
decomposed into other traded swap contracts. Given the stochastic dynamics of these “atomic 
swaps”, a no-arbitrage condition is used to derive the dynamics of the swaps that can be 
composed by different atomic swaps. In the specific case of the EEX, where monthly, quarterly 
and yearly contracts are traded, monthly futures are the smallest contracts and therefore become 
the atomic swaps. 
 In a lognormal model, the one factor atomic swap dynamics under the equivalent risk-
neutral martingale measure  is given by 
 

, 

 
where  is a continuously differentiable and positive function representing the 

volatility,  is the price of an atomic swap contract delivering electricity during the 
delivery period  and  a Wiener increment. When we assume settlement at maturity 
of the contract, the swap volatility associated with the instantaneous-delivery futures volatility 
function  as  
 

. 

 
By this equation, well known volatility functions proposed for instantaneous-delivery futures in 
many different (commodity) markets can now be related to electricity futures contracts. Benth & 
Koekebakker (2008) investigate six different volatility functions, all inspired by instantaneous-
delivery futures models. Similar to our results, they find a strong maturity effect for the volatility 
that cannot be modelled with a simple negative exponential function. They also find evidence of 
seasonal changing volatility and state that the two effects together are best captured using an 
additive volatility function.  
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 By using the change of numeraire technique developed by Geman, Karoui  et al. (1995), they 
also derive an expression for European options. In the case of a lognormal specification of 

 with volatility function , the price of a European call option with 

maturity  and strike  on the swap  with  is given by, 
 

. 
 
Here  is the cumulative distribution function for the standard normal distribution, given by 

 

, 

 
and 
 

, 

 
 

 

 

5.2.3 Conclusions futures price approach 
Comparing the two futures price approaches that were discussed, we must first conclude that the 
approach using instantaneous-delivery futures will not satisfy our needs, as was already pointed 
out in Section 5.2.1. The direct swap approach, on the other hand does fit our needs. The 
simplified ‘market model’ using only atomic swaps that was proposed by Benth & Koekebakker 
(2008) allows us to specify the desired volatility function and produces Black-Scholes type, 
closed-form option pricing formulas for a lognormal specification of the atomic swaps. The fact 
that we can only use data from the atomic swaps is a disadvantage of this particular model 
because the market information present in the discarded observations is lost. We believe, 
however, that because relative little contracts overlap, not that much information is lost. A 
disadvantage of the futures price approach in general is the fact that it is not possible to infer 
spot prices from the futures price dynamics. However, this is of minor care to us since we are 
interested in the futures market and not the spot market per se. Lastly, Benth & Koekebakker 
show that although the lognormal specification of the swap dynamics produces analytical, closed-
form option pricing formulas and allows for a volatility structure that depends on the delivery 
period, the lognormal specification is not able to fully capture the fat tails of the log returns. 
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6 Conclusion  
At the start of the research the following research question was formulated: 
  

Which price models are best suited to model the German electricity futures curve, taking 
into account our wish to have closed-form option pricing formulas? 

 
To answer the question we first presented an overview of the specific properties of electricity and 
the implications on price processes. Stylised facts of electricity spot price processes include price 
spikes, periodic behaviour with different periods, mean reversion and time varying high levels of 
volatility. Futures prices are expected to exhibit periodic patterns and show lower, but still time 
varying volatility.  
 From our data analysis we conclude that the EEX price processes exhibit many of the 
stylised facts. Our main findings for spot prices include very high levels of volatility and intra-day 
as well as intra-week periodic patterns. We also found some evidence for seasonal patterns, 
although less explicit. The main finding of our analysis of the EEX futures prices is that the level 
of volatility depends on the length of the delivery period, the time to delivery and the time of the 
delivery period. In order to accurately model the EEX futures price curve our candidate model 
must be able to capture this complex volatility structure. 
 Given our aim of stochastically modelling the electricity futures price and based on the 
extensive number of scientific contributions that were read, we conclude that electricity futures 
prices are stochastically modelled using either the spot price approach or the futures price 
approach.  
 With the spot price approach we rely on a relation between the spot and futures prices to 
derive the futures price process. However, due to the non-storability of electricity we found that 
there is no explicit relation between spot and futures prices. Fitting the parameters as well as 
creating an accurate fit of the model with observed data is very difficult. Furthermore, it may lead 
to very difficult expressions for option prices, where numerical methods are needed. Therefore, 
we believe that the spot price approach is not ideal to model the EEX futures curve. 
 As an alternative to the spot price approach two types of the futures price approach were 
discussed: the instantaneous-delivery futures approach and the direct swap approach. We found 
that with the instantaneous-delivery approach we only end up with analytical, closed-form option 
pricing formulas by modelling the volatility as being independent of the delivery period. Because 
we showed that the volatility structure of EEX futures prices is a complex function depending on 
the delivery period we discard the instantaneous-delivery futures approach. 
  Finally, the model that we consider to be the best candidate to the modelling of the EEX 
futures price curve, while producing closed-form option pricing formulas is the direct swap 
approach proposed by Benth & Koekebakker (2008). With this approach we do not rely on non-
explicit price relations and smoothing algorithms but only use the information of the EEX 
futures market prices. We can furthermore specify the complex volatility structure, create a 
perfect initial fit and still have analytical, closed-form option pricing formulas for a lognormal 
specification of the swaps. 
 There are, however, also some disadvantages of this approach. We can only use market data 
for those traded swap contracts that cannot be decomposed into other traded swap contracts, the 
atomic swaps. We thus loose the information contained in other prices, but we believe that 
because relative little contracts overlap, not that much information is lost. We furthermore need 
the lognormal specification of the atomic swaps in order to have closed-form option pricing 
formulas. In an application to futures price data from Nordpool, the lognormal model is not able 
to capture the fat tails of the log returns, leaving room for improvement. A disadvantage of the 
futures price approach in general is the fact that it is not possible to infer spot prices from the 
futures price dynamics. However, this is of minor care to us since we are interested in the futures 
market and not the spot market per se.  
 In future works we will analyze the complex volatility structure of futures prices further, will 
actually fit the direct swap approach to the EEX futures data using stochastic filtering techniques 
and find out which model performs best. 
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Appendix A – Stochastic Modelling 
 
This appendix will present some basic results from stochastic modelling. For a more detailed 
review we refer to Bjork (1998). 
 
When modelling asset prices in continuous time, the most complete and elegant theory is 
obtained if we use diffusion processes and stochastic differential equations as our building 
blocks. A stochastic process  is said to be a diffusion equation (or difference equation) if its 
local dynamics can be approximated by a stochastic difference equation of the following type: 
 

. 

 
With  a normally distributed disturbance (noise) term which is adapted to the filtration 
generated by the process up until time , while  (drift term) and  (diffusion term) given 
deterministic functions. We say that a process is adapted to the filtration  if its future value is 
independent of the history of the process up until time . To model the normal disturbance term 

 we need to specify a Wiener process.  
 
Definition A.1: A stochastic process  is called a Wiener process if the following conditions hold: 

1.  
2. the process W has independent increments, i.e., if  then  

and  are independent stochastic variables. 
3. For  the stochastic variable  has the Gaussian distribution 

. 
4.  has continuous trajectories. 

 

Remark A.1: We use the notation  for the Gaussian distribution with expected value 

 and variance . 
 

With the definitions of the Wiener process and the stochastic difference equation we can now 
write: 
 

, 

 
where  is defined by 
 

. 

 
Our goal is to find an expression for the diffusion equation that describes the infinitesimal 
changes of the process . It is then tempting to divide by  and let  go to zero. 
However, it can be shown that with probability 1 a Wiener process trajectory is nowhere 
differentiable which implies that the time derivative of a Wiener process does not exist. We 
therefore just let  go to zero and we obtain the expression 
 

. 

 
This stochastic differential expression is the building block for all the analysis done in this paper 
and the models can all be considered to be variations of this expression. 
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Appendix B – Itô’s Lemma 
 
Theorem B.1 (Itô’s Lemma): Assume that the process  has a stochastic differential given by 
 

, 
 
Where  and  are adapted processes, and let  be a -function. Define the process  by 

. Then  has a stochastic differential given by 
 

, 

 
where we use the following formal multiplication table. 
 

€ 

(dt)2 = 0
dtdW (t) = 0

dW (t)( )2 = dt

 

 
 

 
 
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Appendix C – HJM framework 
 
In this appendix we will discuss the Heath-Jarrow-Morton (HJM) framework (1992) for the 
stochastic modelling of interest rate dynamics. Before we discuss the HJM itself we first have to 
understand how short rates, forward rates and zero-coupon bonds are defined and related.  
 
Definition C.1: The short rate, the instantanuous forward rate and zero-coupon bond are defined as follows 
 

Short rate 
The short rate, denoted by , is the annualized interest rate at which an entity can 
borrow money for an infinitesimally short period of time from time . 

 
Instantaneous Forward rate 
The forward rate, denoted by , can be interpreted as the annualized interest rate, 
contracted at , over the infinitesimal small interval . 

 
Zero-coupon bond 
A zero-coupon bond with maturity date  is a contract that guarantees the holder 1 
Euro to be paid on the date . The price at time  of a zero-coupon bond with maturity 

 is denoted by . 
 
Definition C.2 
 

1. The instantaneous forward rate  can be defined by 
 

. 

 
2. The instantaneous short  is can be defined by 

 
. 

 
 
As an immediate consequence of these definitions we see that 
 

. 

 
We now turn to the HJM framework itself and start by assuming the following for the forward 
rate dynamics. 
 
Assumption C.1: 

Under the martingale measure  we assume that the forward rates are specified as 
 

,
 

 
where is a Wiener process under the measure ,  represents the drift of the 
forward rates,  represents the volatility of the forward rates and  is the 
observed initial forward rate curve.  
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Since we modelled the forward rate dynamics directly under the martingale measure , we 
automatically have arbitrage free prices and we don’t have the problem of checking whether the 
market is arbitrage free. We do, however, now have two expressions for the same zero-coupon 
bond price today. 
 

 

 
In order for these two formulas two hold simultaneously a famous relation between  and  in 
the forward rate dynamics was developed. This relation is known as the HJM drift condition. 
 
Proposition C.1 (HJM drift condition) under the martingale measure , the processes   and 

  must satisfy the following relation, for every  and every . 
 

 

 
From this proposition we see that when we specify the forward rate dynamics under the 
martingale measure , we can freely specify the volatility structure. The drift parameters are then 
uniquely determined 
 
Schematically, the use of the HJM model can now be written as follows: 
 

1. Specify, by own choice, the volatilities    
2. The drift parameters of the forward rates are then uniquely determined by 
 

.
 

 
3. Go to the market and observe today’s forward rate structure 

 

.
 

 
4. Integrate the forward rate dynamics to get the forward rates as 

 

.
 

 


