
Properties Relevant for Inferring
Provenance

Author:
Abdul Ghani
Rajput

Supervisors:
Dr. Andreas Wombacher

Rezwan Huq, M.Sc

Master Thesis

University of Twente
the Netherlands

August 16, 2011

Properties Relevant for Inferring
Provenance

A thesis submitted to the faculty of Electrical Engineering, Mathematics and
Computer Science, University of Twente, the Netherlands in partial fulfillment

of the requirements for the degree of

Master of Sciences in Computer Science

with specialization in

Information System Engineering

Department of Computer Science,

University of Twente
the Netherlands

August 16, 2011

Contents

Abstract v

Acknowledgment vii

List of Figures ix

1 Introduction 1
1.1 Motivating Scenarios . 2

1.1.1 Supervisory Control and Data Acquisition 2
1.1.2 SwissEX RECORD . 3

1.2 Workflow Description . 3
1.3 Objectives of Thesis . 4
1.4 Research Questions . 5
1.5 Thesis Outline . 6

2 Related work 7
2.1 Existing Stream Processing Systems 7
2.2 Data Provenance . 8
2.3 Existing Data Provenance Techniques 8
2.4 Provenance in Stream Data Processing 9

3 Formal Stream Processing Model 13
3.1 Syntactic Entities of Formal Model 14
3.2 Discrete Time Signal . 14
3.3 General Definitions . 18
3.4 Simple Stream Processing . 22
3.5 Representation of Multiple Output Streams 22
3.6 Representation of Multiple Input Streams 24
3.7 Formalization . 24
3.8 Continuity . 25

4 Transformation Properties 29
4.1 Classification of Operations . 29
4.2 Mapping of Operations . 31

iii

4.3 Input Sources . 31
4.4 Contributing Sources . 32
4.5 Input Tuple Mapping . 32
4.6 Output Tuple Mapping . 33

5 Case Studies 35
5.1 Case 1: Project Operation . 35

5.1.1 Transformation . 35
5.1.2 Properties . 38

5.2 Case 2: Average Operation . 40
5.2.1 Transformation . 40
5.2.2 Properties . 42

5.3 Case 3: Interpolation . 43
5.3.1 Transformation . 43
5.3.2 Properties . 46

5.4 Case 4: Cartesian Product . 47
5.4.1 Transformation . 47
5.4.2 Properties . 50

5.5 Provenance Example . 51

6 Conclusion 55
6.1 Answers to Research Questions 55
6.2 Contributions . 57
6.3 Future Work . 57

References 59

iv

Abstract
Provenance is an important requirement for real-time applications, especially
when sensors act as a source of streams for large-scale, automated process con-
trol and decision control applications. Provenance provides important informa-
tion that is essential to identify the origin of data, to reproduce the results in
real-time applications as well as to interpret and validate the associated scien-
tific results. The term provenance documents the origin of data by explicating
the relationship among the input samples, the transformation and the output
samples. In this thesis, we present a formal stream processing model based on
discrete time signal processing. We use the formal stream processing model to
investigate different data transformations and the provenance relevant charac-
teristics of these transformations. The validity of the formal stream processing
model and transformation properties is demonstrated by providing the four case
studies.

v

Acknowledgment
Over the last two years, I have received a lot of help and support by many
people whom I would like to thank here.

I would not have been able to successfully complete this thesis without the
support of supervisors during past seven months. My sincere thanks to Dr.
Andreas Wombacher, Dr. Brahmananda Sapkota and Rezwan Huq. They have
been a source of inspiration for me throughout the process of the research and
writing. Their feedback and insights were always valuable, and never went
unused.

I owe my deep gratitude to all of my teachers, who have taught me at Twente.
Their wonderful teaching methods enhanced my knowledge of the respective
subject and enabled me to complete my studies in time. I also like to extend
my sincere thanks to the staff of international office. Special thanks go to Jan
Schut because without his support it is not possible for me to come here and
complete my studies.

My roommates at the third floor at Zilverling provided a great working environ-
ment. I thank them for the laughs and talks we had. I would like to thank the
following colleagues and friends whose help in the study period has contributed
to achieve this dream. Thanks to Fiazan Ahmed, Fiaza Ahemd, Irfan Ali, Irfan
Zafar, M.Aamir, Martin, Klifman, T.Tamoor and Mudassir.

Of course, this acknowledgment would not complete without thanking my mother,
brother and sister. Having supported me throughout my university study, I can-
not express my gratitude enough. I hope this achievement will cheer them up
during these stressful times.

My family (Nida, Fatin and Abdullah) more than deserves to be named here
too. Throughout the process of my studies and my graduation research, they
have been loving and supportive.

ABDUL GHANI RAJPUT

August 16, 2011.

vii

List of Figures

1.1 Workflow model based on RECORD project scenario 4

2.1 Taxonomy of Provenance . 10

3.1 Logical components of the formal model and the idea of figure is
taken from [18] . 15

3.2 The generic Transformation function 16
3.3 Unit impulse sequence . 17
3.4 Unit step Sequence . 17
3.5 Example of a Sequence . 18
3.6 Sensor Signal Produces an Input Sequence 19
3.7 Input Sequence . 20
3.8 Window Sequence . 21
3.9 Simple stream processing . 22
3.10 Multiple outputs based on the same window sequence 23
3.11 Example of increasing chain of sequences 26

4.1 Types of Transfer Function . 34

5.1 Transformation Process of Project Operation 36
5.2 Input Sequence and Window Sequence 37
5.3 Several Transfer Functions is Executed in Parallel 38
5.4 Average Transformation . 41
5.5 Interpolation Transformation . 44
5.6 Distance based interpolation . 46
5.7 Cartesian Product Transformation 48
5.8 Example for overlapping windows 52
5.9 Example for non-overlapping windows 53

ix

Chapter 1

Introduction

Stream data processing has been a hot topic in the database community in
this decade. The research on stream data processing has resulted in several
publications, formal systems and commercial products.

In this digital era, there are many real-time applications of stream data process-
ing such as location based services (LBSs identify a location of a person) based
on user’s continuously changing location, e-health care monitoring systems for
monitoring patient medical conditions and many more. Most of the real-time
applications collect data from source. The source (sensor) produces data con-
tinuously. The real-time applications also connect with multiple sources that
are spread over wide geographic locations (also called data collection points).
The examples of sources are scientific data, sensor data, wireless and sensor
networks. These sources are called data streams [11].

A data stream is an infinite sequence of tuples with the timestamps. A tuple is
an ordered list of elements in the sequence and the timestamp is used to define
the total order over the tuples. Real-time applications are specialized forms of
stream data processing. In real-time applications, a large amount of sensor data
is processed and transformed in various steps.

In real-time applications, reproducibility is a key requirement and reproducibil-
ity means the ability to reproduce the data items. In order to reproduce the
data items, data provenance is important. Data provenance [23] documents
the origin of data by explicating the relationship among the input data, the
algorithm and the processed data. It can be used to identify data because it
provides the key facts about the origin of the data.

The research on data provenance has focused on static databases and also in
stream data processing, which are discussed in Chapter 2. But there is still a lot
to be investigated such as reproducibility in real-time applications. Suppose in a
stream processing setup, we have a transformation process T . It is executed on

1

CHAPTER 1. INTRODUCTION

an input stream X at time n and produces output stream Y . We can re-execute
the same transformation process T at any later point in time n0 (with n0 > n)
on the same input stream X and generate exactly the same output stream Y [1].
The ability to reproduce the transformation process for a particular data item in
a stream requires transformation properties. The transformation has a number
of properties for instance constant mapping. For example, if a user wants to
trace back the problem to the corresponding data stream then he needs to have
a constant rate of output tuple otherwise user can not handle that. Therefore
one important property for inferring provenance is constant mapping or fixed
mapping and we have more properties which are discussed in Chapter 4. These
transformation properties are used to infer data provenance.

To this end, this thesis will present a formal stream processing model based on
discrete time signal processing theory. The formal stream processing model is
used to investigate different data transformations and transformation properties
relevant for inferring data provenance to ensure reproducibility of data items in
real-time applications.

This chapter is organized as follows. In Section 1.1, two motivating scenarios
are presented. In Section 1.2, we give a detailed description of a workflow model
which is based on a motivating scenario Section 1.1.2. In Section 1.3, we present
the objectives of the thesis. In Section 1.4, we state our research questions and
sub research questions followed by Section 1.5 that states the complete thesis
outline.

1.1 Motivating Scenarios

Due to the growth in technology, the use of real-time application is increasing
day-by-day in many domains such as environmental research and medical re-
search. In most of these domains, the real-time applications are designed to
collect and process the real-time data which is produced by sensor. In these ap-
plications, provenance information is required. In order to show the importance
of data provenance in stream data processing we will present two motivating
scenarios in the following subsections.

1.1.1 Supervisory Control and Data Acquisition

The Supervisory Control And Data Acquisition (SCADA) application is a real-
time application. The SCADA application collects data from multiple sensors
and these sensors produce data continuously. The SCADA is a data-acquisition-
oriented and an event-driven application [4]. The SCADA is a centralized system
which performs process control activities. It also controls entire sites (electri-
cal power transmission and distribution station) from a remote location. For
instance, the SCADA electrical system contains up to 50,000 data collection

2

CHAPTER 1. INTRODUCTION

points and over 3,000 public/ private electric utilities. In that system, failure
of any single data collection point can disrupt the entire process flow and cause
financial losses to all the customers that receive electricity from the source, due
to a blackout [4].

When a blackout event occurs, the actual measured sensor data can be com-
pared with the observed source data. In case of a discrepancy, the SCADA
system analysts need to understand what caused the discrepancy and have to
understand the data processed on the basis of the streamed sensor data. Thus,
analysts must have a mechanism to reproduce the same processing result from
past sensor data so that they can find the cause of the discrepancy.

1.1.2 SwissEX RECORD

Another data stream based application is the RECORD project [28]. It is a
project of the Swiss Experiment (SwissEx) platform [6]. The SwissEX platform
provides a large scale sensor network for environmental research in Switzerland.
One of the objectives of the RECORD project is to identify how river restoration
affects water quality, both in the river itself and in the groundwater.

In order to collect the environmental changes data due to river restoration,
SwissEX deployed several sensors at the weather station. One of them is the
sensorscope Meteo station [6]. At the weather station, the deployed sensors
measure water temperature, air temperature, wind speed and some other factors
related to the experiment like electric conductivity of water [28]. These sensors
are deployed in a distributed environment and send the data as streaming data
to the data transformation element through a wireless sensor network.

At the research centre, the researchers can collect and use the sensor data to
produce graphs and tables for various purposes. For instance, a data transfor-
mation element may produce several graphs and tables of an experiment. If
researchers want to publish these graphs and tables in scientific journals than
the reproducibility of these graphs and tables from original data is required to be
able to validate the result afterwards. Therefore, one of the main requirements
of the RECORD project is the reproducibility of results.

1.2 Workflow Description

In the previous section, a motivating scenario SwissEX RECORD has been
introduced. In which the researchers want to identify how river restoration
affects the quality of water. To achieve this objective, a streaming workflow
model is required. This section illustrates how the streaming workflow model
works. Figure 1.1 shows a workflow model which is based on the RECORD
project scenario.

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Workflow model based on RECORD project scenario

In Figure 1.1, three sensors are collecting the real-time data. These sensors
are deployed in three different geographic location of a known region of the
river and the region is divided into 3 × 3 cells of a grid. These sensors send
readings of electric conductivity of water to a data transformation element. In
order to convert the sensor data in a streaming processing system, we propose
a wrapper called source processing element. Each sensor is associated with a
processing element named PE1, PE2 and PE3 which provides the data tuples
in a sequence x1[n], x2[n] and x3[n] respectively. A sequence is an infinite set
of tuples/data with timestamps. These sequences are combined together (by a
union operation) which generates a sequence xunion[n] as output. It contains
all data tuples sent from all the three sensors. The sequence xunion[n] will work
as input to the transformation element. The transformation element processes
the tuples of the input sequence and produces an output sequence or multiple
output sequences y[n], depending on the transformation operations used.

Let us look at a concrete example, at the transformation element (as shown
in Figure 1.1), an average operation is configured. The average operation ac-
quires tuple from xunion[n] and computing last 10 tuples/time space of the
input sequence and it executed every 5 seconds. The tuples/time space which
is configured for the average operation is called a window and how often aver-
age operation is executed, we call a trigger. The details of the trigger and the
window are discussed in Chapter 3.

For the rest of the thesis, the example workflow model is used to define the
transformation of any operation and answer the potential research questions.

1.3 Objectives of Thesis

The following are the objectives of the thesis.

4

CHAPTER 1. INTRODUCTION

• Define a formal stream processing model to do calculations over stream
processing which is based on an existing stream processing model [9].

• Investigate the data transformations of SQL operations such as Project,
Average, Interpolation and Cartesian product using the formal stream
processing model.

• Define the formal definitions of data transformation properties.

• Prove the continuity property of the formal stream processing model.

F (∪χ) = ∪F (χ)

1.4 Research Questions

In order to achieve the objectives of the thesis, the following main research
questions are addressed.

• What are the formal definitions of the basic elements of a stream process-
ing model that can be applied to any stream processing systems?

• What are the suitable definitions of transformation properties for inferring
provenance?

In order to answers the main research questions, the following sub questions
have been defined.

• What is the mathematical formulation of a simple stream processing model?

• What are the mathematical definitions of Project, Average, Interpolation
and Cartesian product transformations?

• What are the suitable properties of the data transformations?

• What are the formulas of the data transformation properties?

The formal stream processing model is a mathematical model and an important
property of this mathematical model is the continuity property. It is used to
provide a constructive procedure for finding the one unique behavior of the
transformation. Therefore, we have another research question which is:

• How to prove the continuity property for formal stream processing model?

The answers of these sub-questions provide the answer to the main research
questions.

5

CHAPTER 1. INTRODUCTION

1.5 Thesis Outline

The thesis is organized as follows

• Chapter 2 gives a short review of existing stream data processing systems.
It will describe what provenance metadata is, why it is essential in stream
data processing and how this can be recorded and retrieved. Chapter 2
also provides the review of provenance in streaming processing.

• To derive the transfer functions of the operations, we need an existing
simple stream processing model. In Chapter 3, we presented a short in-
troduction to discrete time signal processing for the formalization of the
formal stream processing model. Based on discrete time signal, we provide
the definitions of basic elements of the formal stream processing model and
discrete time representation of the stream processing.

• Chapter 4 provides the details of transformation properties and formal
definitions of properties relevant for tracing provenance.

• In Chapter 5, four case studies are described where the formal stream
processing model has been used and tested. At the end of the chapter,
two examples are given for the case of overlapping and non-overlapping
windows.

• Finally in Chapter 6, conclusions are drawn and future work is discussed.

6

Chapter 2

Related work

This chapter introduces preliminary concepts which is used throughout this
thesis. Section 2.1 starts with a brief discussion on existing stream processing
systems. This includes discussions on how stream processing systems handle
and process continuous data streams. Section 2.2 introduces the concept of
data provenance and the importance of data provenance in stream processing
systems. Section 2.3 introduces existing data provenance techniques. This chap-
ter is concluded in Section 2.4, which discusses the data provenance in stream
processing system.

2.1 Existing Stream Processing Systems

Stream data processing systems are more and more supporting the execution of
continuous tasks. These tasks can be defined as database queries [12]. In [12]
data stream processing system is defined as follows:

Data stream processing systems take continuous streams of input data, process
that data in certain ways, and produce ongoing results.

Stream data processing systems are used in decision making, process control
and real-time applications. Several stream data processing systems have been
developed in the research as well as in the commercial sector. Some of which
are described below.

STREAM [16] is a stream data processing system. The main objective of the
STREAM project was memory management and computing approximate query
results. It is an all purpose stream processing system but this system can not
support reproducibility of query results.

TelegraphCQ at UC Berkeley [17] is a dataflow system for processing continues
queries over data streams. The primary objective of the Telegraph project is

7

CHAPTER 2. RELATED WORK

to design for adaptive query processing and shared query evaluation of sensor
data. CACQ is an improved form of the Telegraph project and it has the ability
to execute multiple queries concurrently [14].

Another popular system in the field of stream data processing is the Aurora sys-
tem. Aurora system allows users to create the query plans by visually arranging
query operators using boxes (corresponding to query operators) and links (cor-
responding to data flow) paradigm [18]. The extended version of Aurora system
is the Borealis [21] system. It supports distributed functionality as well.

IBM delivers a System S [19] solution for the commercial sector. The System S
is a stream data processing system (it is also called stream computing system).
The System S is designed specifically to handle and process massive amounts
of incoming data streams. It supports structured as well as unstructured data
stream processing. It can be scaled form one to thousands of computer nodes.
For instance, System S can analyze hundreds or thousands of simultaneous data
streams (such as stock prices, retail sales, weather reports) and deliver nearly
instantaneous analysis to users who need to make split-second decisions [20].

The System S does not support the data provenance functionality and in this
system data provenance is important, because later on users may want to track
how data are derived as they flow through the system.

All of the above approaches do not provide the functionality of data provenance
and cannot regenerate the results. Therefore, a provenance subsystem is needed
to collect and store metadata, in order to support reproducibility of results.

2.2 Data Provenance

Provenance means, where is the particular tuple/data item coming from or the
origin of data item or the source of a data item. In [7] provenance also defined
as the history of ownership of a valued object or work of art or literature. It
was originated in the field of Art and it is also called metadata. Provenance can
also help to determine the quality of a data item or the authenticity of a data
item [13]. In stream data processing , data provenance is important because it
not only ensures the integrity of a data item but also identifies the source or
origin of a data tuple. In decision support applications, data provenance can be
used to validate the decision made by application.

2.3 Existing Data Provenance Techniques

In the domain of information/data processing, [27] is one the first to use the
notion of provenance. In [27], authors introduce two ideas of data provenance
i.e. where and why provenance. When executing a query, a set of input data

8

CHAPTER 2. RELATED WORK

items is used to produce a set of output data items. To reproduce the output
data set, one needs the query as well as the input data items. The set of input
data items are referred to as Why-provenance. Where-provenance refers to the
location(s) in the source database from which the data was extracted [27]. In
[27], authors did not address how to deal with streaming data and associated
overlapping windows. It only shows case studies for traditional data.

In [29], authors proposed a method for recording and reasoning over data prove-
nance in web and grid services. The proposed method captures all information
on workflow, activities and all datasets to provide provenance data. They cre-
ated a service oriented architecture (SOA), where they use a specific web service
for the recording and querying of provenance data. The method is only works
for coarse grained data provenance (the coarse grained data provenance can be
defined on relation-level) ; therefore this method cannot achieve reproducibility
of results.

In [30], authors recognized a specific class of workflow called data driven work-
flows. In data driven workflows, data items are first class input parameters
to processes that consume and transform the input to generate derived output
data. They proposed a framework called Karma2 that records the provenance
information on processes as well as on data items. While their proposed frame-
work is closer to the stream processing system than the majority of the research
papers on workflows, it does not address the problem, specifically related to
stream data processing.

To design a standard provenance model, a series of workshops and conferences
have been arranged. During these workshops and conferences participants have
discussed a standard provenance model, which is called the Open Provenance
Model (OPM)[31]. The OPM is a model for provenance which allows provenance
information to be exchanged between systems, by means of a compatibility
layer based on a shared provenance model [1]. The OPM define a notion of
graphs. The provenance graph is used to identify the casual relationship between
artifacts, processes and agents. A limitation of the OPM is that it primarily
focuses on the workflow aspect. It is not possible to define what exactly a process
does. It also has an advantage that it might to be working with interoperability
of different systems [31].

In [32] authors did a survey on data provenance techniques that were used in
different projects. On the bases of their survey, they provide a taxonomy of
provenance as shown in Figure 2.11.

2.4 Provenance in Stream Data Processing

In this era, lots of real-time applications have been developed. Most of the ap-
plications are based on mobile networks or sensors networks. Sensor networks,

1Figure 2.1 is taken from [32].

9

CHAPTER 2. RELATED WORK

Figure 2.1: Taxonomy of Provenance

which are a typical example of stream data processing and commonly used in di-
verse applications, such as applications which monitor the water like RECORD
project, temperature and earthquake [13].

In these real-time applications, data provenance is crucial because it helps to
ensure reproducibility of results and also determining the authenticity as well
as quality of data items [13]. Provenance information can be used to recover
the input data from the output data item. As described earlier, reproducibility
is the key requirement of streaming applications and it is only possible if we can
document the provenance information such as where particular data item came
from, how it was generated.

First research on data provenance in stream data processing was done by IBM
T.J. Watson’s Century [13]. In [15], a framework is provided (referred to as
Century) with the purpose of real time analysis of sensor based medical data
with data provenance support is provided. In the architecture of Century, a
subsystem called data provenance is attached. This subsystem allows users to
authenticate and track the origin of events processed or generated by the sys-
tem. To achieve this, authors designed a Time Value Centric (TVC) provenance
model, which uses both process provenance (defined at workflow level) and data
provenance (derivation history of the data) in order to define the data item
and input source which contributed to a particular data item. However, the
approach has only been applied in the medical domain. This paper did not
mention formal description of properties (discussed in Chapter 4) relevant for
inferring provenance.

Low Overhead Provenance Collection Model [34] is proposed for near-real time

10

CHAPTER 2. RELATED WORK

provenance collection in sensor based environmental data stream. In this paper,
authors focus on identifying properties that represent provenance of data item
from real time environmental data streams. The three main challenges described
in [34] are given below:

• Identifying the small unit (data item), for which provenance information
is collected.

• Capturing the provenance history of streams and transformation states.

• Tracing the input source of a data stream after the transformation is
completed.

A low overhead provenance collection model has been proposed for a meteorol-
ogy forecasting application.

In [5], authors report their initial idea of achieving fine-grained data provenance
using a temporal data model. They theoretically explain the application of the
temporal data model to achieve the database state at a given point in time.

Recently [1], proposed an algorithm for inferring fine grained provenance in-
formation by applying a temporal data model and using coarse grained data
provenance. The algorithm is based on four steps; first step is to identify the
coarse grained data provenance (it contains information about the transforma-
tion process performed by that particular processing element). Second step is to
retrieve the database state. Third step is to reconstruct the processing window
based on information provided by the first two steps. The final step is to infer
the fine grained data provenance information. In order to infer fine grained data
provenance, authors have provided the classification of transformation proper-
ties of processing elements, i.e., operations only for constant mapping opera-
tions. Such properties are the input sources, contributing sources, input tuple
mapping and output tuple mapping. Authors have implemented the algorithm
into a real time stream processing system and validated their algorithm.

This thesis is based on the transformation properties of processing elements de-
scribed in [1]. The details and formal definitions of these properties are discussed
in Chapter 4.

11

Chapter 3

Formal Stream Processing
Model

The goal of this chapter is to provide a mathematical framework for stream data
processing which is based on discrete time signal processing theory. It can be
named as formal stream processing model.

The discrete time signal processing is the theory of representation, transforma-
tion and manipulation of signals and the information they contain [22]. The
discrete time signal can be represented as a sequence of numbers. The discrete
time transformation is a process that maps an input sequence into an output
sequence. There are a number of reasons to choose discrete time signal pro-
cessing to formalize the stream data processing. One important reason is that,
the discrete time signal processing allows for the system to be event-triggered,
which is often the case in stream data processing. Another reason is that, one of
the objectives of the stream data processing is to perform real-time processing
on real-time data. Therefore, the discrete time signal processing is common to
process real-time data in communication systems, radar, video encoding and
stream data processing [22].

This chapter is organized as follows. Section 3.1 provides an overview of the
syntactic entities, their graphical representation and symbols used in the formal
stream processing model. Section 3.2 introduces the basic concepts of discrete
time signal processing theory. This theory can be used to solve the research
questions stated in the previous chapter. Section 3.3 provides the general defi-
nitions of the input sequence, transformation, window function and the trigger
rate. Based on these general definitions, the simplest data stream processing
is defined in Section 3.4. The representation of multiple outputs and multiple
inputs is illustrated in Section 3.5 and Section 3.6 respectively. Section 3.7 pro-
vides the formalization of the model with and without considering the complex
data structure. Finally in Section 3.8, a proof of continuity property of formal

13

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

stream processing model is given.

3.1 Syntactic Entities of Formal Model

The symbols, formulas and interpretation used in formal stream processing
model are syntactic entities [24]. The syntactic entities are the basic require-
ments to design a formal model [24]. Figure 3.1 shows that the formal stream
processing model is based on symbols, string of symbols, well-formed formulas,
interpretation of the formulas and theorems. In order to define a trasformation
element, syntactic entities of the formal stream processing model are required
because syntactic entities are used to define the transformation element.

The list of symbols, used in our formal stream processing model, and their
description [25] are given in Table 3.1.

S.No Symbols Description
1 x[n] Represents an input sequence, generated by

an input source.
2 y[n] Represents the output of the transformation.
3 n Particular point in time in the input sequence.
4 w(n, x[n]) Represents a window function.
5 nw Is used to represent the window size of the

window sequence.
6 τ Is used to represent the trigger in the formal

model.
7 o Used to represent the offset.
8 I Represents the number of input sources.
9 T{.} Shows a transformation function T, that maps

an input to an output.
10 m Shows the total number of transformation or

output
11 j′ Represents the particular output and it value

goes to 1,2,3...,m.
12 l Represents the particular transformation and

it value goes to 1,2,3,...,m.

Table 3.1: List of Symbols used in FSPM

3.2 Discrete Time Signal

The formal stream processing model is based on discrete time signal theory,
which is a theory of representing discrete time signals by a sequence of number

14

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

Figure 3.1: Logical components of the formal model and the idea of figure is
taken from [18]

15

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

and the transformation of these signals [22]. The mathematical representation
of the discrete time signal is defined below:

Discrete time signal : n ∈ Z→ x[n]

Where

index n represents the sequential values of time,

x[n], the nth number in the sequence, is called a sample.

the complete sequence is represented as {x[n]}.

In the used stream processing model, a stream is called a sequence. The formal
model is process stream or set of streams. Therefore we can say that, a stream
is simply a discrete time sequence or discrete time signal.

A transformation is a discrete time system. A discrete time system maps an in-
put sequence {x [n]} to an output sequence {y[n]}; An equivalent block diagram
is shown in Figure 3.2.

Figure 3.2: The generic Transformation function

In order to define a transformation of an operation, some basic sequences and
sequence of operations are required.

Unit Impulse

The unit impulse or unit sample sequence (Figure 3.3) is a generalized function
depending on n such that it is zero for all values of n except when the value of
n is zero.

δ[n] =

{
1 n = 0
0 otherwise

16

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

Figure 3.3: Unit impulse sequence

Unit Step

The unit step response or unit step sequence (Figure 3.5) is given by

u[n] =

{
1 n ≥ 0
0 n ≤ 0

The unit step response is simply an on-off switch which is very useful in discrete
time signal processing.

Figure 3.4: Unit step Sequence

Delay or shift by integer k

y[n] = x[n− k] - ∞ < n <∞

when, k ≥ 0, sequence of x[n] shifted by k units to the right.

k < 0, sequence of x[n] shifted by k units to the left.

Any sequence can be represented as a sum of scaled, delayed impulses. For
example the sequence x[n] in Figure 3.5 can be expressed as:

x[n] = a−3δ[n+ 3] + a1δ[n− 1] + a2δ[n− 2] + a5δ[n− 5]

17

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

Figure 3.5: Example of a Sequence

More generally, any sequence can be represented as:

y[n] =

∞∑
k=−∞

x[k]δ[n− k]

Finally, these concepts of discrete time signal theory help us to represent the
formal definitions of stream processing model. The formal model will allow us
to define the properties relevant for inferring provenance.

3.3 General Definitions

The fundamental elements of any stream processing system are data streams,
transformation element, window, trigger and offset. There are number of defini-
tions available in the literature for these fundamental elements. In this thesis we
try to provide the formal definition of these elements. The element definitions
are as follows.

Input Sequence

In our model, the input data arrives from one or more continuous data streams.
Normally, these data streams are produced by sensors. These data streams are
represented as input sequences in our model. The input sequence represents
the measurement/record of a sensor. The input sequence contains more than
one element. Each of these elements is called a sample which represents one
measurement [22].

Definition 1 Input Sequence: An input sequence is a data stream used by a
transformation function. It is a sequence of number x, where the nth number
in the input sequence is denoted as x[n]:

x = {x[n]} −∞ < n <∞ (3.1)

18

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

Figure 3.6: Sensor Signal Produces an Input Sequence

Where n is an integer number which represents the measurement/record of a
sensor.

Note that from this definition, an input sequence is defined only for integer
values of n and refers to the complete sequence simply by {x[n]}. For example,
the infinite length sequence as shown in Figure 3.6 is represented by the following
sequence of numbers.

x = {..., x[1], x[2], x[3]......}

Transformation

The transformation is a transfer function which takes finitely many input se-
quences as input and gives finitely many sequences as output. The number
of input and output depends on an operation. The formal definition of the
transformation is given as:

Definition 2 Transformation: Let {xi[n]} be the input sequences and {yj′ [n]}
be the output sequences for 1 ≤ i ≤ I and 1 ≤ j

′ ≤ m. A transformation is a
transfer function T defined as:

m∏
j′=1

yj′ [n] = T{
I∏
i=1

xi[n]}.

Where m is the total number of output and I is the total number of input se-
quence.

Window

For the processing of sensor data, most of the real-time applications are in-
terested in the most recent samples of the input sequences. Therefore, a time

19

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

window is defined to select the most recent samples of the input sequence. A
window always consists of two end-points and a window size. The end-points
are moving or fixed. Windows are either time based or tuple based [1]. In this
thesis, we used time based window. Why we used time based window? Because
we have a model that supports only time instead of tuple which is based on
IDs. The formal stream processing model supports time based sliding window
because a time stamp is associated with each sample of the input sequence. The
sliding window is a window type in which both end-points move. In the sliding
window, the window size is always constant. To represent the window in our
formal model, we have defined a window function. The formal definition is given
as follows:

Definition 3 Window Function: A window function is applied on the input
sequence (Definition 1) in order to select a subset of the input sequence {x[n]}.
This function selects subset of nw elements in the sequence where nw is the
window size. Window function is defined as:

w(n, {x[n]}) =

nw−1∑
k=0

x[n′]δ[n− n′ − k] −∞ < n′, n <∞

which is also equivalent to:

w(n, {x[n]}) =

n∑
k=n−nw+1

x[n′]δ[n′ − k] −∞ < n′, n <∞ (3.2)

The output of the window function w(n, {x[n]}) is called the window sequence.
The window sequence is nothing more than a sum of delayed impulses (defined
in Section 3.2) multiplied by the corresponding samples of the sequence {x[n]}
at the particular point in time n. The resulting sequence can be represented in
terms of time. Example 3.1, describing the working of window function.

Example 3.1 Suppose we have an input sequence {x[n]} as shown in the Figure
3.7. To select subset of the sequence, window function is applied on the input
sequence.

Figure 3.7: Input Sequence

20

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

The samples involved in computation of the window sequence are k = 3 to 5
with window size nw = 3 and n = 5. The result of the window function is shown
in Figure 3.8. By putting these parameters to the window function formula, we
get:

Figure 3.8: Window Sequence

w(5, {x[n]}) =

5∑
k=5−3+1

x[n′]δ[n′ − k]

w(5, {x[n]}) =

5∑
k=3

x[n′]δ[n′ − 3]

w(5, {x[n]}) = x[n′]δ[n′ − 3] + x[n′]δ[n′ − 4] + x[n′]δ[n′ − 5]

when n′ is 3 from replicated sequence therefore, we get:

w(5, {x[n]}) = x[3]

Similarly the output of the w(5, {x[n]}) = x[4],when n′ = 4 and w(5, {x[n]}) =
x[5],when n′ = 5.

Trigger Rate

A trigger rate represents the data driven control flow of the data workflow. Data-
driven workflows are executed in an order determined by conditional expressions
[8]. Triggers are important in a stream processing. It is used to specify when
a transformation element should execute. In general, there are two types of
triggers, namely time based triggers and tuple based triggers. A time based
trigger executes at fixed intervals, while a tuple based trigger executes when a
new tuple arrives [1]. The formal model is based on time based triggers since
the formal model is based only for time (we do not have a model for IDs).

Definition 4 Trigger Rate: τ is a trigger rate over a sequence which specifies
when a transformation element is executed. It is defined for all values of n and
applied again with a unit impulse function. The Trigger Offset, (o) determines

21

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

how many samples are skipped at the beginning of the total record before samples
are transferred to the window. Which is defined as:

δ[n%τ − o]

The transformation element is defined for all values of n, based on the trigger
the transformation element is only supposed to be defined at the moments where
the trigger is enabled. Thus, for a transformation T{.}, a trigger is applied with
a unit sample(i.e. δ[n%τ − o] = 1).

3.4 Simple Stream Processing

The simple stream processing is based on a transformation function that maps
input data contained in a window sequence producing an output sequence, where
the transformation function is executed after arrival of every τ elements of the
input sequence. It shows how to process and integrate the input sequence to
produce the output sample as shown in Figure 3.9.

Figure 3.9: Simple stream processing

Based on the above definition, the simple possible stream processing can be
defined mathematically as,

y[n] = δ[n%τ − o]T {w(n, {x[n]})} −∞ < n <∞ (3.3)

with window size nw, trigger offset o and trigger rate τ.

3.5 Representation of Multiple Output Streams

Equation 3.3 shows that when we execute a transformation function based on
the same window sequence (where window size is one) that contained a single
sample, it produces a single output value. The window sequence contains more
than one sample, the transformation element produces different outputs. All
these outputs must be associated with the same time index n. Since it is not
possible, it is modeled as several transformation functions performed in parallel
thereby producing several output sequences [9]. Thus,

22

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

y1[n] = δ[n%τ − o]T1{w(n, {x[n]})}

:

yl[n] = δ[n%τ − o]Tl{w(n, {x[n]})}

To represent the multiple outputs of the transformation element, we used the
concept of the direct product. The direct product is defined on two algebras X
and Y, giving a new one. It can be represented as infix notation ×, or prefix

notation
∏

. The direct product of X ×Y is given by the Cartesian product of

X,Y together with a properly defined formation on the product set.

Definition 5 Multiple outputs: Let y1[n], y2[n], y3[n]......ym[n] be the outputs of
T1{.}, T2{.}, T3{.},Tm{.} based on the same window sequence w(n, {x[n]})
of input sequence for all values of n, then multiple output can be represented by

m∏
j′=1

yi[n] =

m∏
l=1

Tl{.}

m∏
j′=1

yi[n] =

m∏
l=1

δ[n%τ − o]Tl{w(n, {x[n]})}

where m is the total number of output.

Figure 3.10 shows the graphical representation of multiple outputs based on
the same window sequence. The direct product of the output sequence can be
interpreted as a sequence of output tuples. In definition 5, we assumed that the
number of output is fixed to m.

Figure 3.10: Multiple outputs based on the same window sequence

23

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

3.6 Representation of Multiple Input Streams

The concept of multiple input streams is common in stream data processing
and in mathematics. For instance, union and Cartesian Product can take more
than one sequence as input. In order to carry out the transformation of these
processing elements, we have to extend the simple stream processing model to
support multiple input streams.

Definition 6 Multiple input streams: Let us we have multiple window sequences
w(n1, {x1[n]}),w(ni, {xi[n]}) and each window has a different window size
nw1

...nwi. Let these windows are input to a transformation function such as:

y[n] = δ[n%τ − o]T{w(n1, {x1[n]}),w(ni, {xi[n]})} −∞ < n′, n <∞

Multiple input streams can also be defined in terms of a direct product again,
that is:

y[n] = δ[n%τ − o]T{
I∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

where I is the total number of input stream/source.

3.7 Formalization

This section combines the definitions introduced before in order to define the
formal stream processing model. Equation 3.4 shows the mathematical descrip-
tion of the formal stream processing model. This formal model will be used to
do calculations over stream processing. In Equation 3.4, the structure of the
input sequence and the output sequence is not considered. It is, therefore, pos-
sible to include the more complex data structure of yj′ [n] and xi[n] in Equation
3.4. The resulting formal stream processing which includes more complex data
structure is given in Equation 3.5.

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl{
I∏
i=1

w(ni, {xi[n]})} −∞ < n <∞ (3.4)

m∏
j′=1

dj′,y
j′∏

j′′=1

yj′,j′′ [n] = δ[n%τ−o]
m∏
l=1

Tl{
I∏
i=1

w(ni,

dxi∏
ji=1

{xi,ji [n]})} −∞ < n <∞

(3.5)
Where,

24

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

j′and l = 1, 2, 3...m, where m being the maximum number of outputs
of the processing element

dj′,yj′ is the dimensionality of the data structure of the j′th output
sequence yj′

I is the number of input sequences

dxi
is the dimensionality of the data structure of the ith input se-

quence xi

In this thesis, dimensionality of the input data is not considered because the
data structure information of the input data is not available in advance. The
formal model (without considering the complex data structure) Equation 3.4
is used to identify the data transformation and transformation properties for
inferring provenance, which are discussed in next chapter.

3.8 Continuity

In this section, we provide a simple proof of a continuity property of the formal
stream processing model. The proof of the method is essentially the same as
in [26] but the contribution here the proof of continuity property using the
notations of formal stream processing model.

As per the Kahn Process Network [26], let {x[n]} denotes the sequence of values
in the stream, which is itself totally ordered set. In our formal stream processing
model, the order relationship is not present because every sequence is defined
from −∞ to ∞, as shown in Figure 3.11.

To define a partial order relatioship in our formal model, let us consider a prefix
ordering of sequences, where x1[n] v x2[n], if x1[n] is a prefix of x2[n] (i.e., if
the first values of x2[n] are exactly those in x1[n]) in X. Where X denotes the
set of finite and infinite sequences as shown in Equation 3.6.

X = {x1[n], x2[n], x3[n], ...} =

∞⋃
i=1

{xi[n]} 1 ≤ i ≤ ∞ (3.6)

In Equation 3.6, X is a complete partial order set, if it holds the following
relationship between sequences.

xi[n] v xj [n]⇔ xi[n] = xj [n] · u[−i]

The above relationship is defined as the complete partial order (CPO) in our
formal stream processing model. Therefore, the set X is a complete partial order
with the prefix order defining the ordering. A complete partial order is a partial
order with a bottom element where every chain has a least upper bound (LUB)

25

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

Figure 3.11: Example of increasing chain of sequences

[26]. A least upper bound (LUB), written tX, is an upper bound that is a
prefix of every other upper bound. The term (xj [n] · u[−i]) indicates that when
xj [n] is multiplied with the unit step sequence then we get the xi[n] sequence.

In our formal stream processing model, usually T is executed on a sequence.
Now we can extend the definition of T in order to execute and support chain of
sequences such as:

T (X) =
⋃

x[n]εX

T{x[n]}

Definition: Let X and Y be the CPO’s. A transformation T : X → Y is
continuous if for each directed subset x[n] of X, we have T (tX) = tT (X).
We denote the set of all continuous transformation from X to Y by [X → Y].

In our formal stream processing model, a transformation takes m input and n
outputs such as T : Xm → Y n. Let a transformation is defined as below:

T (x[n]) =

{
y[n], if x[n] v X
0 otherwise

Theorem: The above transformation is Continuous.

Proof. Consider a chain of sequences X = {x1[n], x2[n], x3[n], ...}, we need to

show that T (tX) = tT (X). Write T (X) =
⋃

x[n]εX

T{x[n]}.

26

CHAPTER 3. FORMAL STREAM PROCESSING MODEL

Taking R.H.S:

tT (X) = t{T (x1[n]), T (x2[n]), ...}

Since X is an increasing chain, it has a least upper bound as per the partial
order relationship defined above. Suppose the LUB is x[n], then output is:

tT (X) = t{T (x1[n]), T (x2[n]), ..., T (x[n])}
tT (X) = x[n] = y[n]

Similarly for L.H.S:

T (tX) = T (t{x1[n], x2[n], ..., x[n]}
T (tX) = x[n] = y[n]

Thus, in both cases, T (tX) = tT (X), so T is continuous.

27

Chapter 4

Transformation Properties

The goal of this chapter is to provide the formal definitions of transformation
properties for inferring provenance. In Section 1.2, a workflow model was de-
scribed, in which transformation is an important element. The transformation
has a number of properties that makes it useful for inferring provenance. These
transformation properties are: input sources, contributing sources, input tuple
mapping, output tuple mapping and mapping of operations. These are classified
and discussed in [1] as required for reproducibility of results in e-science applica-
tions. Based on this classification, the formal definitions of the transformation
properties are provided in this chapter.

The remainder of the chapter is organized as follow. Section 4.1 provides the
classification of operation. Section 4.2 explains the mapping of operations
and provides the formal definition of mapping. Section 4.3 describes the in-
put sources property and its formal definition. Section 4.4 discusses about the
contributing sources property and provides the formal definition. Section 4.5 ex-
plains and defines the formal definition of input tuple mapping. Finally, Section
4.6 defines the output tuple mapping and its formal definition.

4.1 Classification of Operations

To formalize the definitions of transformation properties, the data transfor-
mation of four SQL operations are considered. These are: Project, Average,
Interpolation and Cartesian product. Each of these data transformations have
a set of properties, such as the ratio of mapping from input to output tuples is
a transformation property. The explanation of all these properties is described
in Table 4.1.

In Figure 4.1, the graphical representation of considered transformation is pro-
vided. The transformation of Project, Average, Interpolation and Cartesian

29

CHAPTER 4. TRANSFORMATION PROPERTIES

product are constant mapping operations, which are separated by black solid
line. The Select operation is a variable mapping operation which is not consid-
ered in this thesis.

Figure 4.1 shows that the Project, Average and Interpolation operation are
single input source operations. The Cartesian product operation is a multiple
input source operation.

It also shows that Project transformation takes a single element of the input
sequence and produces a single element at the output sequence. Thus, the ratio
is 1 : 1. The Average transformation takes three input elements of the input
sequence and produced single output, therefore the ratio is 3 : 1.

Since the Cartesian product is a multiple input source operation it takes one
input element from each source and produces one output element as shown in
Figure 4.1. Therefore, the ratio of Cartesian product is (1,1) : 1. These ratios
are again reflected in the input and output tuple mapping criteria in Table 4.2.

30

CHAPTER 4. TRANSFORMATION PROPERTIES

4.2 Mapping of Operations

Based on the classification of operations described in Section 4.1, the formal
definition of a mapping is defined in this section. The two types of transfor-
mations are possible: constant mapping and variable mapping transformations.
The constant mapping transformations have a fixed ratio. The variable map-
ping transformations do not maintain a fixed ratio of input to output mapping
as described in Table 4.1. Let us give the formal definition.

Definition 7 Constant Mapping Transfer Function: T : {w(n, {x[n]})} → {y[n]}
is called constant mapping transfer function if the mapping ratio of {w(n, {x[n]})}
to {y[n]} is fixed for all values of n. If it is not fixed, then it is a variable map-
ping.

4.3 Input Sources

In our formal stream processing model, one of the important transformation
properties is input sources. This property is used to find the number of input
sources that contribute to produce an output tuple.

The input sources are input sequences (see Definition 1). The transfer functions
takes one or more input sources, processes them and produces one or more
derived output sequences. The single input source transfer functions do have
a single input sequence, while multiple input source transfer functions have
multiple input sequences as inputs. Let us give a formal definition.

Definition 8 Input Sources: Let y[n] be an output sequence of a transfer func-
tion T, where T is applied on one or more input sequences as per Definition 6,
then:

y[n] = δ[n%τ − o]T{
I∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

31

CHAPTER 4. TRANSFORMATION PROPERTIES

where I is used to denote the number of input sources contributing to T to
produce the output, I ∈ N, where N is the natural number. Therefore:

Input sources =

{
Multiple if I > 1
Single else

4.4 Contributing Sources

The formal definition of this property will be used to find the creation of an
output sample is based on samples from a single or multiple input sequences.
This property is only applicable for those transformations which takes I > 1
input sequences as an input. The formal definition of the property is given
below.

Definition 9 Contributing Sources: Let T be a transfer function which have
multiple input sources as input, such as w(n1, {x1[n]}) × ... × w(n′i, {xi[n′]}),
then contributing sources property defined as:

T {w(n1, {x1[n]})× ...× w(n′i, {xi[n′]})} = T

{
I∏
i=1

w(ni, {xi[n]})

}

Contributing sources =

Multiple For I > 1 and

each I is contributed in T
Single For I > 1 and

only a single source is contributed in T
Not Applicable For I = 1

4.5 Input Tuple Mapping

The input tuple mapping property is used to find a given sample, related to the
input source that is used by the transfer function. The formal definition is as
follows:

Definition 10 Input Tuple Mapping (ITM): Let T be a transfer function and
applied on a window (see definition 3) {w(n, {x[n]})},which is equivalent to:

T {w(n, {x[n]})} = T

{
n∑

k=n−nw+1

x[n
′
]δ[n′ − k]

}
−∞ < n′, n <∞

If the output of the transfer function is an accumulated sum of the value at index
n and all previous values of the input sequence {x[n]} then input tuple mapping
is multiple else input tuple mapping is single.

32

CHAPTER 4. TRANSFORMATION PROPERTIES

4.6 Output Tuple Mapping

The most important and difficult property is the output tuple mapping for
inferring provenance data. It depends on input tuple mapping as well as on an
input source. In this property, dimensionality of input data is important beacuse
the output data dimensionality is different from the input data dimensionality.
But In this thesis, we did not consider the dimensionality of the input data.
Output tuple mapping distinguishes whether the execution of a transformation
produces a single or multiple output tuple per input tuple mapping [1]. The
output tuple mapping is a decimal or a fractional number when it is calculated.
The formal definition is given as:

Definition 11 Output Tuple Mapping (OTM): Let T be a transformation that
maps the nw(window size) samples per source to produce the m number of output
samples, then the output tuple mapping is defined as:

OTM = r ×
I∑
i=1

ITMi

{
Multiple OTM > 1
Single otherwise

where OTM = output tuple mapping

ITMi = input tuple mapping per source

r =
m

I∑
i=1

nwi

where I is the total number of input sources

33

CHAPTER 4. TRANSFORMATION PROPERTIES

Figure 4.1: Types of Transfer Function

34

Chapter 5

Case Studies

The primary goal of this chapter is to derive the transformation of the Project,
Average, Interpolation and Cartesian product to exemplify the formal stream
processing model and formal definitions of transformation properties described
in the previous chapters.

5.1 Case 1: Project Operation

5.1.1 Transformation

This section derives the transformation definition of Project operation using the
formal stream processing model. We begin by explaining the concept of Project
operation.

The Project operation is a SQL operation which is also called projection. A
project is an unary transformation that can be applied on a single input se-
quence. The transformation process takes the input sequence (see Definition 1)
and computes the sub-samples of the input sequence. In other words, it reduces
the nth sample from the input sequence. Similarly in the databases, projection
of a relational database table is a new table containing a subset of the original
columns.

Figure 5.1 shows the graphical representation of the project transformation
process and also shows that the sensor produces an input sequence which is
x[n]. The input sequence is passed to the project transformation (in Figure
5.1, big square box represents the project transformation process). The window
function (see Definition 2) is applied on the input sequence to cover the most
recent samples of the input sequence since the sensor is producing the data
continuously. The output of the window function is the window sequence. Based
on the window size of the sequence, the multiple outputs are produced by project

35

CHAPTER 5. CASE STUDIES

transformation i.e. Y1[n], Y2[n] and Ym[n] as shown in Figure 5.1. All outputs
are associated with the same time n.

Figure 5.1: Transformation Process of Project Operation

Now using the concept of project operation which is defined above, the transfer
function of project can be derived using the formalization Equation 3.4 which
is:

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl{
I∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

Put the value of I = 1 in the above equation, because the project is an unary
operation. we get:

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl{
1∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

As we have described earlier that the total number of outputs for the project
operation is equal to the window size which is m = nw, therefore the above
equation becomes:

nw∏
j′=1

yj′ [n] = δ[n%τ−o]
nw∏
l=1

Tl

{
1∏
i=1

(
n∑

k=n−nw+1

xil [n
′]δ[n′ − k]

)}
−∞ ≤ n′, n ≤ ∞

The project transformation simply takes the input sequence {x[n]} to the right
by l − nw samples to form the output where Tl denotes the total number of
transformation. Therefore, the final transformation of the project is defined by:

36

CHAPTER 5. CASE STUDIES

nw∏
j′=1

yj′ [n] = δ[n%τ − o]
nw∏
l=1

1∏
i=1

xil [n− nw + l] −∞ < n <∞ (5.1)

where

xil is the input sequence, where the value of i = 1 which means that
single input source is participating and l represents the particular
point sample in time.

nw is the window size and being the maximum number of outputs
by the project operation.

o is the offset value initially we consider offset to be zero and τ is a
trigger rate.

Example 5.1 Suppose an input sequence (as shown in Figure 5.2) is applied
on a project transformation. The window function is applied on input sequence
with nw = 3 at the point in time n = 5. The transfer function is executed after
arrival of every 3 elements in the sequence and the trigger offset is 2.

Figure 5.2: Input Sequence and Window Sequence

By putting the values nw = 3, I = 1, τ = 3 and o = 2 in Equation 5.1, we get:

3∏
j′=1

yj′ [n] = δ[n%τ − o]
3∏
l=1

x1l [n− nw + l]

The output of the above equation is multiple as per the Definition 5. It can be
modeled as transformations in parallel producing several outputs as shown in
Figure 5.3.

In Figure 5.3, Tl takes the window sequence as an input sequence and it pro-
duces multiple outputs which are T1, T2 and T3. Therefore, the general output
is described by:

37

CHAPTER 5. CASE STUDIES

Figure 5.3: Several Transfer Functions is Executed in Parallel

3∏
j′=1

yj′ [n] = x11 [n− nw + 1]× x12 [n− nw + 2]× x13 [n− nw + 3]

Let us start with the definition of T1. It takes window sequence with the fol-
lowing parameters nw = 3, l = 1 and n = 5 and translate it in the following
steps.

y1[n] = x11 [n− nw + 1]
y1[n] = x11 [5− 3 + 1]
y1[n] = x11 [3] = T1

The transformation function T2 executes the next sample with the following
parameters nw = 3, l = 2 and n = 5, the output becomes:

y2[n] = x12 [n− nw + 2]
y2[n] = x12 [5− 3 + 2]
y2[n] = x12 [4] = T2

This process is performed continuously until all the transformations are exe-
cuted.

5.1.2 Properties

In the previous section, the project transformation is defined to test the formal
definitions of transformation properties (as we have defined in Chapter 4). We
have to test the following properties:

• Input Sources

• Contributing Sources

• Input Tuple Mapping

• Output Tuple Mapping

38

CHAPTER 5. CASE STUDIES

Input Sources

This property checks that transfer functions take single or multiple input sources
as input that contributes to produce an output sample. According to Definition
8, the value of I in our formal model is used to identify the number of input
sources that contribute to produce the output. The derived project transforma-
tion is:

nw∏
j′=1

yj′ [n] = δ[n%τ − o]
nw∏
l=1

1∏
i=1

xil [n− nw + l] −∞ < n <∞

Now compare the project transformation definition with the formal stream pro-
cessing model, which is

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl{
I∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

As we can see, the value of I in the project transformation is equal to 1, therefore
the project transformation is a single input source operation.

Contributing Sources

According to Definition 9, the contributing sources property is only applica-
ble for those transformations which have multiple input sources. In case of
the project transformation this property is not applicable because the project
transformation has a single input source as shown in Equation 5.1.

Input Tuple Mapping

According to Definition 10, the input tuple mapping of the project transfor-
mation is single. The project transformation Equation 5.1 indicates that the
output of the project transformation is a single sample i.e. xil [n−nw+l] instead
of accumulated sum of the value at index n and all previous values of the input
sequence {x[n]}.

Output Tuple Mapping

It distinguishes whether the execution of a transformation produces a single or
multiple output tuples per input tuple mapping. To check this, a formula is
defined (see Definition 11) to calculate the output tuple mapping. The general
formula is:

39

CHAPTER 5. CASE STUDIES

OTM = r ×
I∑
i=1

ITMi

{
Multiple OTM > 1
Single otherwise

where OTM = output tuple mapping

ITMi = Input tuple mapping per source

r =
m

I∏
i=1

nwi

where I is the total number of input sources

Therefore to calculate the output tuple mapping of the project transformation,
the value of m and the value of the input tuple mapping is required. The input
tuple mapping has been already calculated in previous section. The input tuple
mapping is one. The total number of output can easily derived from the project
transformation equation:

nw∏
j′=1

yj′ [n] = δ[n%τ − o]
nw∏
j′=1

1∏
i=1

xil [n− nw + l] −∞ < n <∞

The above equation indicates that the total number of output produced by the
project transformation is m = nw, therefore by putting the values in the output
tuple mapping formula. we get:

OTM = r ×
I∑
i=1

ITMi

OTM =
m

1∏
i=1

nwi

×
1∑
i=1

ITMi

OTM =
nw
nw
× 1 = 1

The result of Definition 11 is interpreted that the output tuple mapping of
project transformation is 1.

5.2 Case 2: Average Operation

5.2.1 Transformation

The goal of this section is to derive the transformation of average operation
using the formal stream processing model given in Equation 3.4. The average is

40

CHAPTER 5. CASE STUDIES

a SQL aggregate operation and returns a single value, using the values in a table
column [35]. Figure 5.4 shows the generic process of the average transformation.
It also shows that the average is calculated by combining the values from a set
of input and computing a single number as being the average of the set.

Figure 5.4: Average Transformation

From the concept of the average operation, the average transformation can be
derived using the following equation:

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl{
I∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

In the above equation, we can put the value of I = 1 and the value of m = 1
since the average returns a single sample, using samples in an input sequence.
So, the resulting equation is:

1∏
j′=1

yj′ [n] = δ[n%τ − o]
1∏
l=1

Tl{
1∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

1∏
j′=1

yj′ [n] = δ[n%τ − o]
1∏
l=1

Tl

{
1∏
i=1

(
n∑

k=n−nw+1

xil [n
′]δ[n′ − k]

)}
−∞ ≤ n′, n ≤ ∞

In mathematics, the average of n numbers is given as 1/n

n∑
i=1

ai where ai are

numbers with i = 1, 2, 3...n. Similarly, the average transformation is defined as:

41

CHAPTER 5. CASE STUDIES

1∏
j′=1

yj′ [n] = δ[n%τ − o]
1∏
l=1

1∏
i=1

1

nw

(
n∑

k=n−nw+1

x1[k]

)
−∞ < n <∞ (5.2)

where

x1 is the input sequence and yj′ [n] is the output sequence where j′

is the number of output which is equal to 1.

nw is the window size and n is the point in time at which we are
interested to start calculating the average.

o is the offset value, initially it is considered to be zero and τ is a
trigger rate.

5.2.2 Properties

Input Sources

The input sources property checks whether the average transformation takes
single or multiple input sources as input (as per Definition 8). The property
can be checked by looking at the average transformation Equation 5.2. In
Equation 5.2, the value of I = 1. Therefore, average is a single input source
transformation.

Contributing Sources

Same as the project transformation, the contributing sources property is not
applicable on the average transformation because Equation 5.2 indicates that
the average transformation has a single input source as input.

Input Tuple Mapping

The input tuple mapping property of the average transformation is multiple
since output of the average transformation is the accumulated sum of the value
at index n and all previous values of the input sequence x[n] that is:

n∑
k=n−nw+1

x1[k] = x1[n− nw + 1] + x1[n− nw + 2] + ...+ x1[k]

The value of k goes to n, therefore

42

CHAPTER 5. CASE STUDIES

k = (n− n+ nw + 1)− 1

k = nw

So, the average transformation has multiple input tuple mapping i.e. nw.

Output Tuple Mapping

To calculate the output tuple mapping of the average transformation, Definition
11 is used. The formula for output tuple mapping is:

OTM = r ×
I∑
i=1

ITMi

OTM =
m

1∏
i=1

nwi

×
1∑
i=1

ITMi

OTM =
1

nw
× nw = 1

The result of the OTM formula is 1 which means that the output tuple mapping
of the average transformation is 1.

5.3 Case 3: Interpolation

5.3.1 Transformation

The Interpolation is an important function in many real-time applications such
as the RECORD project (described in Section 1.2) and has been used for years
to estimate the value at an unsampled location. It is important for visualization
such as generation of contours.

There exist many different methods of interpolation. The most common ap-
proaches are weighted average distance and natural neighbors. The deatials
of these approaches are available in [36]. In this thesis only weighted distance
based interpolation transformation is described.

In Section 1.2, we described how the streaming workflow model use sensor data
and combine them into a grid and how transformation element, interpolation
are used to construct new samples. The RECORD case (defined in Section 1.2)

43

CHAPTER 5. CASE STUDIES

is used to derive the transformation of interpolation operation using the formal
stream processing model.

Figure 5.5 shows the generic process of the interpolation transformation. It
shows that the interpolation transformation takes a number of input samples
from an input sequence and produces a set of output samples. In Figure 5.5,
the interpolation takes 2 input samples and produces 6 output samples. Sim-
ilarly, if it takes 3 input samples then it produces 9 output samples therefore
interpolation is a constant mapping operation (as we have described in Section
4.1).

Figure 5.5: Interpolation Transformation

To derive the interpolation transformation, we can use the formal model Equa-
tion 3.4:

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl{
I∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

As we know that the interpolation transformation takes a single input sequence
as input, therefore we can put the value of I = 1 in the above equation, the
resulting equation is:

44

CHAPTER 5. CASE STUDIES

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl{
1∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl

{
1∏
i=1

(
n∑

k=n−nw+1

xi[n
′]δ[n′ − k]

)}
−∞ < n.n′ <∞

Suppose that we have an input sequence {x[n]} and we can apply the window
function on the input sequence to select a subset of the samples (of window size
nw) at the given point in time n, therefore the above equation become,

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

1∏
i=1

(
n∑

k=n−nw+1

x1[k]

)

Given a set of samples to which a point P(x,y) is attached as shown in Figure 5.6.
The point P is user-defined. In Figure 5.6, black circles are samples involved in
the interpolation and gray circle is a new sample which is being esitmated. The
weight assigned to each sample is typically based on the square of the distance
from the black to gray circle. Therefore the above equation becomes:

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

1∏
i=1

(
n∑

k=n−nw+1

λi,l · x1[k]

)

where

λi,l =
1/C+d2n,l∑n

k′=n−nw+1
1/C+d2n,l

λi,l the weight of each sample (with respect to the interpolation
sample i.e. gray circle) used in the interpolation process,

d2i,l is the distance between sample n and the location being esti-
mated

C is the small constant for avoiding ∞ condition

So, the interpolation transformation is defined as,

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

1∏
i=1

(
n∑

k=n−nw+1

1/C + d2n,l∑n
k′=n−nw+1 1/C + d2n,l

· xi[k]

)
(5.3)

45

CHAPTER 5. CASE STUDIES

Figure 5.6: Distance based interpolation

5.3.2 Properties

Input Sources

The input sources property is a transformation property which is used to find the
number of input sequences participating in the transformation process. The in-
terpolation transformation Equation 5.3 shows that the value of I = 1 therefore,
the interpolation is a single source transformation. The interpolation transfor-
mation can take multiple input sources as input but with some assumption such
as window size is one for each input sources. The alternative of the interpolation
transformation is not chosen because it depends on the window size. On the
other hand, all the case studies are independent of the window size.

Contributing Sources

The contributing sources property is not applicable to the interpolation trans-
formation because the value of I = 1 in Equation 5.3.

Input Tuple Mapping

Same as the average transformation, the input tuple mapping property of the
interpolation transformation is multiple since the output of the transformation
is the accumulated sum of the value at index n and all previous values of the
input sequence x[n] that is:

46

CHAPTER 5. CASE STUDIES

n∑
k=n−nw+1

x1[k] = λ1,l · x1[n− nw + 1] + λ1,l · x1[n− nw + 2] + ...+ λ1,l · x1[k]

The value of k goes to n, therefore

k = (n− n+ nw + 1)− 1

k = nw

The input tuple mapping of interpolation transformation is nw which is multiple.

Output Tuple Mapping

The output tuple mapping of the interpolation transformation is multiple as
per Definition 11. Equation 5.3 shows that the number of outputs is m. The
input tuple mapping property defines that the interpolation transformation has
multiple input tuple. Therefore, the output tuple mapping is:

OTM = r ×
I∑
i=1

ITMi

OTM =
m

1∏
i=1

nwi

×
1∑
i=1

ITMi

OTM =
m

nw
× nw = m

As a result of the OTM formula, the output tuple mapping of the interpolation
transformation is multiple.

5.4 Case 4: Cartesian Product

5.4.1 Transformation

The Cartesian product is the direct product of two or more sources. It is also
called the product set. Suppose we have two input sources {x1[n]} and {x2[n]},
the Cartesian product of these sources is defined as the set of all ordered pairs
whose first sample is an element of source x1[n], and whose second sample is

47

CHAPTER 5. CASE STUDIES

an element of source x2[n]. The Cartesian product is written as (x1[n]×x2[n]).
The order of the input sources can not be changed because the ordered pairs is
reversed. Although its elements remain the same but their pairing gets reversed.

In the workflow model described in Chapter 1, the Cartesian product operation
is considered a transformation element. Figure 5.7 shows the Cartesian product
transformation process. It takes two input sequences as input and produces four
output samples i.e. T1..4. Figure 5.7 also shows that the Cartesian product has
a ratio of (1, 1) : 1 which means it takes one input sample from each source and
then produces one output tuple. Therefore, it belongs to the constant mapping
operations.

Figure 5.7: Cartesian Product Transformation

We can define the Cartesian product transformation using the formal model
equation which is:

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl{
I∏
i=1

w(ni, {xi[n]})} −∞ < n <∞

The above equation also equal to:

48

CHAPTER 5. CASE STUDIES

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl

 n∑
k=n−nw1

+1

x1[n′]δ[n·′ − k]

× n∑
k=n−nw2

+1

x2[n′]δ[n·′ − k]

× ..
.×

 n∑
k=n−nwi

+1

xi[n
′]δ[n·′ − k]

Now suppose we have 2 input sources, therefore the value of I = 2 and each
source has constant window size i.e. nw1, nw2 = 2. The number of output (m =
nw1×nw2 = 4) is fixed which is a multiple of each source window size. Therefore,
the above equation becomes:

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

Tl

 n∑
k=n−nw1

+1

x1[n′]δ[n·′ − k]

× n∑
k=n−nw2

+1

x2[n′]δ[n·′ − k]

The Cartesian product of two input sequences {x1[n]} and {x2[n]} with window
size nw1, nw2 is the set of all possible combinations of (x1[n−nw1 + 1] , x2[n−
nw2 + 1]) where x1[n − nw1 + 1] is a sample of input sequence {x1[n]} at
the particular point in time and x2[n − nw2 + 1] is a sample of {x2[n]} at the
particular point in time. We can define the Cartesian product of two input
sequences as follows:

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

{(x1[n− nw1 + l])× (x2[n− nw2 + l])}

The generalized form of Cartesian product for I number of input sources is given
as:

m∏
j′=1

yj′ [n] = δ[n%τ − o]
m∏
l=1

(
I∏
i=1

xi[n− nwi + li]

)
(5.4)

Where

m is the total number of output i.e. m = nw1 × nw2 × ...nwi.

I is the total number of input sources.

li shows the position of a sample in the ith source window which is
li = 1, 2, ...nwi

49

CHAPTER 5. CASE STUDIES

5.4.2 Properties

Input Sources

According to Definition 8, the transformation of the Cartesian product takes
multiple input sources i.e. I as input to produce an output as shown in Equation
5.4. The value of I ε N where N is the natural number. Therefore, the Cartesian
product is a multiple input sources operation.

Contributing Sources

The contributing sources property is applicable on the Cartesian product trans-
formation since the value of I > 1 in Equation 5.4. According to Definition 9, If
the value of I > 1 and each I is contributed to produce an output sample then
the contributing sources property is multiple. In the Cartesian product trans-
formation each source is participating to produce an output sample, such as
two input sequences {x1[n]} and {x2[n]} are contributed to produce an output.
Therefore the contributing sources property of Cartesian product transforma-
tion is multiple.

Input Tuple Mapping

From the definition of the Cartesian product transformation, the input tuple
mapping is single per input source. The derived transformation of Cartesian
product is:

m∏
j′=1

yj′ [n]= δ[n%τ − o]
m∏
l=1

(
I∏
i=1

xi[n− nwi + li]

)
m∏
j′=1

yj′ [n]= δ[n%τ − o]
m∏
l=1

(x1[n− nwi + l1]× x2[n− nwi + l2]...× xi[n− nwi + li])

The above equation shows that each source is contributing a sample to exactly
produce the multiple output samples. Which means that each source is con-
tributing a single sample and those samples are combined together to produce
multiple output samples. So, the input tuple mapping is one per input source
as per Definition 10.

Output Tuple Mapping

When the transformation of the Cartesian product is executed, it produces
multiple output tuples as define by [1]. Now, we can prove it easily by using

50

CHAPTER 5. CASE STUDIES

Definition 11, which is:

OTM = r ×
I∑
i=1

ITMi

OTM =
m

I∏
i=1

nwi

×
I∑
i=1

ITMi

The value of the input tuple mapping is 1 per input source and the total number
of output m = nw1 × nw2 × ...nwi. Therefore, the above formula becomes:

OTM =
nw1 × nw2 × ...nwi
nw1 + nw2 + ...nwi

× (1 + 1 + 1 + ...1i)

OTM =

(
nw1 × nw2 × ...nwi
nw1 + nw2 + ...nwi

× (1 + 1 + 1 + ...1i)

)
> 1

OTM = Multiple

As a result, the output tuple mapping of Cartesian product is multiple.

5.5 Provenance Example

In this section, we provide two examples for inferring provenance of a given
sample for the case of overlapping windows and non-overlapping windows. The
idea of the examples is taken from [1]. We can use transformation properties
to infer provenance information for any particular output sample at a specfic
point in time n.

Example 1: Case of Overlapping Windows

For this case, we have considered a simple workflow where a project transfor-
mation takes one input sequence as input and produces an output sequence. In
Figure 1, we considered that the window size is 3 and the transformation will
be executed after arrival of every single sample (i.e. τ = 1). In Figure 5.8,
the starting time is 1 and 2,3,... are different points in time. For overlapping
windows, we get the same type of output sequence.

Now, we have to choose the output sample for which the provenance information
is inferred. Assume y3[4] (point in time 4) sample of the output sequence is
chosen for inferring provenance information as shown in Figure 5.8. In Figure

51

CHAPTER 5. CASE STUDIES

5.8, the project transformation processess 3 samples (which are x1[2],x1[3] and
x1[4]) of the window sequence as input and produces the multiple outputs . After
that the transformation processes the next window sequence (from x1[3], x1[4]
and x1[5]) and produces the next outputs.

Figure 5.8: Example for overlapping windows

According to the transformatin properties, first we have to get the total number
of input sources using input sources property (see Definition 8). Here, single
input sources is contributing, which is x1. Now, we check the value of input
tuple mapping. In this example, the input tuple mapping is 1 as per the ITM
property. At last, we have to check which input sample is contributing from
input source at a point in time 4. In order to check the input sample, we have
to reconstruct the processing window. As we know that the window size is 3
and trigger rate is 1, so y3[4] (point in time 4) sample should be produced from
input samples x1[2] to x1[4]. We are interested in provenance information of y3
at point in time 4. Now, we can count 3 samples of the input sequence which is
started from x1[2] to x1[4] as shown in Figure 5.8. Therefore, the input sample
x1[4] contributed to produce y3[4] at the output sequence.

Example 2: Case of Non-Overlapping Windows

For this case, we consider the project transformation to process the non-overlapping
windows. Figure 5.9 shows an input sequence with 2 windows (in dark small
square box), each window contains three samples and the project transformation
is executed after arrival of every three samples.

The output sample, i.e. y3[7] is chosed for which provenance data is inferred.
The project transformation processes first window and produces three output
as the output sequence. Similarly, it processess second window and producess
three more output, as shown in Figure 5.9.

Same as the first example, the single input sources x1 is contributing and the
input tuple mapping is also one as per the definition of ITM porperty. Now inferr
the provenance information of y3[7], since we know the window size and trigger
rate. The samples y3[7] is produced from input sample x1[5] to x1[7]. From
point in time 7 of the input sequence, subtract three samples since window size

52

CHAPTER 5. CASE STUDIES

Figure 5.9: Example for non-overlapping windows

is 3, we get the desired window. The desired window sequence (x1[5] to x1[7]) is
processed by the project transformation to produce y3[7]. So, the input sample
x1[7] contributed to produce y3[7] at the output sequence as shown in Figure
5.9.

53

Chapter 6

Conclusion

This chapter summarizes the thesis by briefly discussing the conclusions of the
previous chapters followed by discussing the contributions and the most impor-
tant directions for future work.

This chapter is structured as follows: Section 6.1 gives answers to research
questions, Section 6.2 explains the scientific contribution of this research and
Section 6.3 identifies some potential research issues for future work.

6.1 Answers to Research Questions

This thesis discusses the properties relevant for inferring provenance in stream
data processing. It introduced the formal definitions of the input sequence,
transformation, window function, trigger rate and representation of multiple in-
put and output streams using discrete time signal processing. Based on these
definitions, a formal stream processing model and data transformation prop-
erties are given. These data transformation properties are one of our main
contributions with regard to inference of provenance.

Now, we reflect on the results of our research by explicitly answering each re-
search question presented in Chapter 1.

What are the formal definitions of the basic elements of a stream pro-
cessing model that can be applied to any stream processing systems?

In Chapter 2, several stream processing systems have been summarized with
their advantages and drawbacks. We identified that most of the data stream
models consist of the input streams, stream transformer, trigger and windows.

55

CHAPTER 6. CONCLUSION

There are many definitions of these elements available in the literature. We
tried to provide the most general definitions of these elements.

In Chapter 3, the formal definitions of the basic elements for any stream pro-
cessing model were defined. In the following Chapters 4,5 it was shown that
these definitions are suitable to derive the definition of any transformation.

What are the formal definitions of transformation properties for in-
ferring provenance?

In Chapter 1, a streaming workflow model was described. One of the important
elements of the model is the transformation element. The transformation ele-
ment has a number of properties that are useful for inferring provenance, such
as a transformation consists of one or more input sequence as input and one or
more output sequence as outputs. An input sequence can be an input source
which originates and provides data to transformation element. A transformation
element processes the input source and produces the output sequence. Based
on the number of input sources, a classification of operations are provided in
Chapter 4.

In Chapter 4, data transformation properties are introduced for tracking prove-
nance. In this chapter, the formal stream processing model was used to provide
the formal definitions of input sources, contributing sources, input tuple map-
ping, output tuple mapping and mapping type. These definitions were presented
only for constant mapping operation.

What is the mathematical formulation of a simple stream processing
model?

In Chapter 3, a simple stream processing model formula is introduced. In this
model, we did not consider the dimension of the input data because we do not
have any infromation about the input data in advance. For instance, when we
apply m×n matrix as an input to a transformation. The output of the transfor-
mation has different dimensionality as compare to the input data dimensional-
ity. Therefore the input and output data structure has an impact output tuple
mapping property. In the later chapters, it was shown that this mathemati-
cal formula of stream processing model is suitable to derive any transformation
definition.

What are the mathematical definitions of Project, Average, Interpo-
lation and Cartesian product transformations?

Four case studies were presented in Chapter 5. The case studies were a very im-
portant part of this research. First, case studies proved that the formal stream

56

CHAPTER 6. CONCLUSION

processing model can be used to derive any transformation such as Project, Av-
erage, Interpolation and Cartesian product. Second, the derived transformation
is used to test the formal definitions of transformation properties.

In Chapter 5, transformation definitions of Project, Average, Interpolation and
Cartesian product are provided.

Can we prove the continuity property for formal stream processing
model?

In Chapter 3, we have proved that our formal stream processing model is con-
tinuous by given the proof of continuity theorem.

6.2 Contributions

This section summarizes the contributions of the thesis in the field of stream
data processing and data provenance.

The main contribution of this master project is to formalize the transformation
properties for inferring provenance information in stream processing. The for-
malization of transformation properties was done using the formal definitions
of stream processing model. These properties allow scientists to reproduce the
results in real-time applications. The generic properties can then be used in
many domains such as monitoring systems, control systems and in academic
settings.

The second contribution and difficult task of this thesis is to provide the defi-
nition of Project, Average, Interpolation and Cartesian product transformation
to test the formal stream processing model. It has been shown that the formal-
ization Equation 3.4 could be used to analyze and derive the definition of any
transformation element for any streaming processing.

The third contribution is to prove the continuity property of the formal stream
processing model using the notation of the discrete time signal processing.

We believe that the proposed formalism of transformation properties is a first
step towards a unique theory for inferring provenance in stream processing.

6.3 Future Work

In this section, we provide a couple of interesting oppourtinities for data trans-
formation properties that are left out from this thesis due to time constraints.
The directions for future resarch are given below.

57

CHAPTER 6. CONCLUSION

More research can be done by considering the input and output data structure
in the formal stream processing model. In the output tuple mapping property,
the dimensionality of input and output data structure is important, for instance
when the average transformation is executed it combines multiple elements into
one element in the output by reducing the dimension of the input data structure.
Therefore, it would be interesting to add a dimensionality factor in the formal
definitions of transformation properties.

The formalization of data transformation is not completed yet. More trans-
formation elements could be distinguished, like variable mapping operations.
Those operations which do not maintain a fixed ratio of output to input map-
ping are called variable mapping operations such as Select and Join operations.
The Select operation may map an input sample to an output sample depending
on the Select criteria, these operations have no fixed ratio. Therefore, future
work could entail to find out how to derive the variable mapping transformation
using the formal stream processing model.

58

References

[1] Mohammad Rezwanul Huq, Andreas Wombacher, Peter M. G. Apers: ”In-
ferring Fine-grained Data Provenance in Stream Data Processing: Reduced
Storage Cost, High Accuracy”. In DEXA 2011, Toulouse, France. Lecture
notes in Computer Science (LNCS), Vol: 6861, part II, pp. 118-127.

[2] P. Buneman and W. C. Tan, “Provenance in databases,” in SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international conference on Man-
agement of data. New York, NY, USA: ACM, 2007, pp. 1171– 1173.

[3] http://en.wikipedia.org/wiki/Syntax %28logic%29, Retrieved on
16/05/2011.

[4] J. D. Fernandez and A. E. Fernandez, SCADA Systems: Vulnerabilities and
Remediation,” Journal of Computing Sciences in Colleges, Vol. 20, No. 4,
pp. 160-168, Apr. 2005.

[5] Mohammad Rezwanul Huq, Andreas Wombacher, Peter M. G. Apers: ”Fa-
cilitating fine-grained data provenance using temporal data model”. In:
Proceedings of the Seventh International Workshop on Data Management
for Sensor Networks, DMSN 2010, 13 Sep 2010, Singapore. pp. 8-13. ACM.
ISBN 978-1-4503-0416-0.

[6] http://www.swiss-experiment.ch/index.php/Main:Home, Retrieved on
12/07/2011.

[7] M.Webster Online - The Language Center. http://www.m-
w.com/home.htm, Retrieved on 18/05/2011.

[8] A. Wombacher, “Data workflow - a workflow model for continuous data
processing,” http://eprints.eemcs.utwente.nl/17743/, Centre for Telemat-
ics and Information Technology University of Twente, Enschede, Technical
Report TR-CTIT-10-12, 2010.

[9] A.Wombacher, M.R.Huq and J.Amiguet, ”Formal stream processing
model”, Database group, University of Twente, Enschede The Netherlands.

[10] http://en.wikipedia.org/wiki/Direct product, Retrieved on 08/04/2011.

[11] http://moa-datastream.posterous.com/, Retrieved on 10/07/2011.

59

REFERENCES

[12] M. Branson, F. Douglis, B. Fawcett, Z. Liu, A. Riabov, and F. Ye, “CLASP:
Collaborating, autonomous stream processing systems,” in Proc. ACM
Middleware, 2007.

[13] H.Lim, Y.Moon and E.Bertino, ”Research issues in data provenance for
streaming environments” Proceedings of the 2009 ACM SPRINGL, Novem-
ber 3, 2009, Seattle, WA, USA, pp. 58 - 62.

[14] S. Madden, M. Shah, J. Hellerstein, and V. Raman: ”Continuously adap-
tive continuous queries over streams”, in Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. ACM, 2002,
pp. 49,60.

[15] Blount, M., Davis II, J.S., Ebling, M., Kim, J.H., Kim, K.H., Lee, K.,
Misra, A., Park, S., Sow, D.M., Tak, Y.J., Wang, M., Witting, K. ”Cen-
tury: Automated Aspects of Patient Care” In Proc. of the 13th IEEE Int’l
Conf. on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2007), Daegu, Korea, pp.504-509, August 21-24, 2007.

[16] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and
issues in data stream systems,” in Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
ACM, 2002, pp. 1–16.

[17] S. Chandrasekar an, O. Cooper, A. Deshpande, M. Franklin, J. Heller-
stein,W. Hong, S. Krishnamurthy, S. Madden, F. Reiss, and M. Shah,
“TelegraphCQ: continuous dataflow processing,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data. ACM,
2003, p. 668.

[18] L. Golab and T. Ozsu: ”Processing sliding window multi-joins in continuous
queries over data streams”, In Proc. of the 2003 Intl. Conf. on Very Large
Data Bases, Sept. 2003.

[19] http://public.dhe.ibm.com/software/data/sw-
library/ii/whitepaper/SystemS 2008-1001.pdf, Retrieved on 18/07/11

[20] http://www.eweek.com/c/a/IT-Infrastructure/IBM-Debuts-System-S-
Stream-Computing-Platform-614980/, Retrieved on 18/07/11

[21] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.
Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina et al., “The design
of the borealis stream processing engine,” in Second Biennial Conference
on Innovative Data Systems Research (CIDR 2005), Asilomar, CA, 2005,
pp. 277–289.

[22] A. V. Oppenheim. (1999). Introduction. In: T. Robbins Discrete-Time Sig-
nal Processing. 2nd ed. USA: Prentice-Hall, Inc. p1-70.

[23] Y. L. Simmhan, B. Plale, and D. Gannon, ”A survey of data provenance
in e-science,” SIGMOD Rec., vol. 34, no. 3, pp. 31-36, 2005.

60

REFERENCES

[24] D. Miller. (1992). Abstract Syntax and Logic Programming. Logic Pro-
gramming. Volume 592/1992, (2), p322-337.

[25] http://en.wikipedia.org/wiki/Syntax %28logic%29#cite note-1, Retrieved
on 18/05/2011.

[26] E. A. Lee, “A Denotational semantics for dataflowwith firing,” Electron.
Res. Lab., Univ. of Cal., Berkeley, Tech. Rep. No. UCB/ERL M97/3, 1997.

[27] P. Buneman, S. Khanna, and T. Wang-Chiew, “Why and where: A char-
acterization of data provenance,” in Database Theory – ICDT 2001, 2001,
pp. 316–330.

[28] Website: Record project http://www.swissexperiment.ch/index.php/Record:Home,
Retrieved on 10/03/2011.

[29] Szomszor, M., Moreau, L.: Recording and reasoning over data provenance
in web and grid services. In: On The Move to Meaningful Internet Systems
2003: CoopIS, DOA, and ODBASE. (2003), pages 603 - 620.

[30] Y. L. Simmhan, B. Plale, and D. Gannon, “Karma2: Provenance man-
agement for data driven workflows,” International Journal of Web Services
Research, Idea Group Publishing, vol. 5, pp. 1–23, 2008.

[31] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson,
“The open provenance model: An overview,” Provenance and Annotation
of Data and Processes, pp. 323–326, 2008.

[32] Y. Simmhan, B. Plale, D.G. (2005). A Survey of Data Provenance Tech-
niques. Technical Report IUB-CS-TR618, Indiana University.

[33] M. Stonebraker, U. Cetintemel, and S. Zdonik, ”The 8 Requirements of
Realtime Stream Processing.” SIGMOD Record, 34(4):42–47, 2005.

[34] N. Vijayakumar and B. Plale, ”Towards low overhead provenance tracking
in near real-time stream filtering”. Lecture Notes in Computer Science, vol.
4145, I. Moreau and I. T. Foster Eds, Springer, pp.46-54.

[35] http://en.wikipedia.org/wiki/Average, Retrieved on 22/06/2011.

[36] I. Amidror. Scattered data interpolation methods for electronic imaging
systems: A survey. Journal of Electronic Imaging, 2(11):157–176, 2002.

[37] http://www.tutornext.com/cartesian-product-two-sets/729, Retrieved on
9/07/11.

61

