
1

Faculty of Electrical Engineering,

Mathematics & Computer Science

Automatic Gain Control ADC
based on signal statistics

for a cognitive radio
cross-correlation spectrum analyzer

A. J. van Heusden

MSc. Thesis
August 2011

Supervisors
prof. ir. A.J.M. van Tuijl

dr. ing. E.A.M. Klumperink
dr. ir. A.B.J. Kokkeler
M.S. Oude Alink, MSc.

Report number: 067.3415
Chair of Integrated Circuit Design
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede
The Netherlands





1

Abstract

For integration purposes of a cross-correlation spectrum analyzer for
cognitive radio, the use of low-resolution ADCs is investigated. In radio
astronomy cross-correlation is exploited intensively together with low
resolution ADCs and therefore a 2-bit ADC concept originating from
ASTRON is analyzed and implemented. This ADC has automatic gain
control and offset canceling based on estimates of the cumulative distri-
bution function of the input signal. The ADC is worked out at system
level and simulated to verify its correctness. The comparator is a critical
component in the ADC and it is implemented on circuit level in a 90
nm CMOS process. Performance dependencies on both system level and
circuit level are analyzed. The ADC allows a SFDR of the spectrum
analyzer of 60 dB when the measurement time is 0.2 seconds, the sample
frequency is 1536 MHz and the resolution bandwidth is 6 MHz. In prac-
tical cases this SFDR is lowered to 55 dB. The implemented comparator
allows a SFDR of 54 dB. The AGC mechanism causes input signal de-
pendency which degrades performance. The required measurement time
to achieve substantial SFDR results in less efficient spectrum estimation
than when higher resolution ADCs are used.
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Chapter 1

Introduction

More and more electronic devices use wireless communication to send or receive
data. Cellphones, WLAN connected devices, wireless digital television and
blue-tooth connected devices all communicate by sending and receiving electro-
magnetic signals. The signals sent and received by these devices occupy a part
of the electro-magnetic spectrum. More wireless communication means more
spectrum occupation. Due to the traditional fixed spectrum assignment policy
many parts of the spectrum are reserved for a specific type of user, but are
used only for about 15% to 85% of the time [1]. The utilization not only varies
in time, but also per geographic location. Thus spectrum is used inefficiently.
Because of the increasing use of wireless communications, available parts in the
spectrum are getting scarce. To utilize the electro-magnetic spectrum more
efficiently, a new networking paradigm is emerging: Cognitive Radio. Certain
licensed parts of the spectrum may now be used by unlicensed users as long as
the licensed user is not interfered with. In order to determine whether a part
in the spectrum is used or not, the electronic device must sense the spectrum
very accurate. Then it must adapt its transmission parameters in order to use
the spectrum. The sensing of the spectrum is required by current cognitive
radio standards to be very accurately. This requirement results in many design
challenges.

1.1 Cognitive Radio

Cognitive radio was first introduced by Mitola [2] in 1998 and in the following
decade FCC, Ofcom and IEEE started developing regulations and standards
for cognitive radio. A cognitive radio device senses the spectrum, detects li-
censed users and adjust its transmission and reception parameters accordingly.
Sensing and detecting are often referred to as one task: spectrum sensing.

Spectrum holes The main goal of spectrum sensing is to find spectrum
holes. A spectrum hole is the absence of a primary user signal at a certain
frequency, at a certain place on a certain moment. When a cognitive radio de-
vice communicates, it must sense the spectrum frequently (e.g. every second),
detect spectrum holes and ’jump’ to another spectrum hole when it’s current
hole is no longer available. This is illustrated in Figure 1.1.

5



6 CHAPTER 1. INTRODUCTION

Figure 1.1: A cognitive device jumps from spectrum hole to spectrum hole [1].

Another dimension in which a spectrum hole can be defined is direction.
With the use of beam-forming techniques the direction of an incoming signal
can be determined and direction from which no signal is received can be used.
This type of spectrum sensing is not addressed in this thesis.

The chance of rightfully identifying a spectrum spot as occupied and the
chance of wrongfully identifying a spot as occupied are referred to as probability
of detection and probability of false alarm. Required probabilities of a cognitive
radio system are defined by cognitive radio standards.

Types of spectrum sensing Different methods of estimating the spectrum
are proposed in literature. For some methods multiple nodes share their spec-
trum sensing information and for some methods the spectrum occupancy is
predicted, based on their previous observations. There are methods which re-
quire prior knowledge of the signal characteristics to detect primary users [1],
[3], but the most straight forward method only senses the power density in
the electro-magnetic spectrum. This method is referred to as energy detection
spectrum sensing, which is a form of blind spectrum sensing.

A CMOS integrated cognitive radio sub-system Since cognitive radio
is used in wireless communicating devices, most of these devices will be battery
powered. A cognitive radio sub-system must therefore be power and chip area
efficient and will be integrated as a part of a system on chip. When the sub-
system is used in relatively cheap devices which are produced in large numbers
it is most likely realized as an integrated circuit on a chip fabricated in CMOS
technology. So, in this theses implementation in CMOS is aimed for.

1.2 Spectrum analyzers

In this thesis the focus is on energy detection spectrum sensing. A spectrum
analyzer estimates the spectral power distribution after the electro-magnetic
signal is picked-up by the antenna. Many different spectrum analyzers exist:
expensive high performance spectrum analyzers are found in electrical labo-
ratories, but cheaper hand-held spectrum analyzers are also available. More
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expensive spectrum analyzers perform better in terms of for instance, linear-
ity or amplitude accuracy. In general: the higher the price, the better the
performance .

Figure 1.2: Different spectrum analyzers

Spectrum analyzers can also be categorized by type. Over the last few
decades different types of spectrum analyzers have emerged, each having its
advantages and disadvantages. The Fast Fourier Transform (FFT) analyzers
which have a digital back-end are of interest for integration on chip. This spec-
trum analyzer first converts the input signal to a suitable format 1, then the
signal is converted to the digital domain. In the digital domain the spectrum
is obtained by a Fast-Fourier-transform.

Power consumption and chip area are important cost factors but for cog-
nitive radio sensitivity is also very important. This sensitivity is limited by
a device’s Spurious Free Dynamic Range (SFDR), which is a measure for the
pollution of the estimated spectrum due to non-linearity and noise of the spec-
trum analyzer. This is elaborated in Section 2.1. Cost and sensitivity trade off
against each other and finding a cheap solution with acceptable sensitivity is
one of the motivations for this thesis.

1.3 Previous work

The work in this thesis is carried out in the context of the research project Ad-
hoc Dynamic Radio-spectrum Exploitation via Multi-phase Radio (AD-REM).
For this project a cross-correlation spectrum analyzer is designed and proto-
typed. In this thesis a part of this spectrum analyzer is zoomed in to. Because
there are similarities between the spectrum analyzer and techniques applied
in radio astronomy, an ADC concept of ASTRON is described. ASTRON is
Netherlands Institute for Radio Astronomy.

1.3.1 Cross-correlation spectrum analyzer

As a way to more accurately sense the spectrum, a new type of spectrum
analyzer is proposed in recent work [4], [5], [6]. The key requirement SFDR
is increased by adding the factor measurement time to its trade-off between
noise and non-linearity. This spectrum analyzer uses two analog front-ends
and cross-correlation to increase SFDR. The spectrum analyzer is elaborated

1Downmixed to intermediate frequencies and properly scaled.
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in Section 2.3. As part of this recent work a prototype of the spectrum analyzer
is realized to proof the concept.

1.3.2 Radio Astronomy

Traditionally, cross-correlation is exploited intensively in radio astronomy: the
output of multiple antennas is converted to the digital domain and cross-
correlated to detect signals which are buried in noise. In these applications
low-resolution ADCs are used, like 1, 1.5 or 2 bits [7]. For these applications
the performance degradation when using a low-resolution ADC is minimal,
because of specific signal characteristics.

1.4 Project description

In order to integrate the cross-correlation spectrum analyzer on-chip for the
use in low-power wireless communicating devices, a potentially cheap Analog
to Digital Converter (ADC) is required. The cost is expressed in power con-
sumption and chip area. The problem statement is as follows:

• For integration purposes of a cross-correlation spectrum analyzer for en-
ergy detection spectrum sensing for the use in cognitive radio, a low cost
on-chip ADC is required.

To reduce the cost of an ADC, its resolution can be decreased. In radio astron-
omy systems low resolution ADCs have been used frequently. Because of the
characteristics of the input signals, the decrease in system performance due to
the lower resolution of the ADC is acceptable. The input signal has a nearly
white spectrum and a Gaussian amplitude distribution. Because these systems
also use cross-correlation in their spectral analysis, the question arose whether
a low resolution ADC applied in a cognitive radio spectrum analyzer would also
lead to a feasable system with an acceptable decrease in system performance.

The research question is defined as follows:

• Is a low resolution ADC suitable for the use in a cross-correlation spec-
trum analyzer for cognitive radio?

To this end a 2-bit ADC concept originating from ASTRON is investigated
[7], [8]. Apart from the low-resolution, it has offset canceling and Automatic
Gain Control (AGC). These two features contribute to maximization of system
performance. The offset canceling and AGC is achieved by variable decision
levels of the ADC. The decision levels determine the output code of a sample.
The value of the decision levels are based on the Cumulative Distribution Func-
tion (CDF) of the input signal. The ADC is therefore referred to as CDF-based
AGC ADC. The relation between the input CDF and the reference levels is
illustrated in Figure 1.3. The probabilities at the y-axis ([pn, p0, pp]) are set by
a system controller, through the cumulative distribution function of the input
signal the ADC’s decision levels are set.

To investigate the suitability of low resolution ADCs in general and the
CDF-based AGC ADC specifically, the following sub-questions are defined:

1. How does spectrum analyzer performance depend on the ADC resolution?
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Figure 1.3: CDF-based AGC ADC principle: decision levels depend on system
settings and input CDF

2. Is a CDF-based AGC ADC suitable as a low resolution ADC in cross-
correlation spectrum analyzer for cognitive radio?

3. What is at circuit level the critical component in the CDF-based AGC
ADC and how does system performance depend on circuit level behavior?

4. What performance is achievable and what are the costs?

The ADC concept is revisited and an architecture is proposed which bal-
ances sensitivity, measurement time, power consumption and complexity.

The achievable SFDR is decreased by the limited resolution, but this is
compensated to a certain extent by utilizing the cross-correlation spectrum
analyzer and using the measurement time allowed by the current cognitive
radio draft standards.

1.5 Thesis outline

The second chapter describes the cross-correlation spectrum analyzer and the-
ory on how it breaks the SFDR trade-off. The third chapter addresses sampling
and quantization and the effect on performance of a cross-correlation spectrum
analyzer. It describes different ways of using dither to increase system perfor-
mance and one dithering scheme is described extensively for a 2-bit quantizer.

Chapter four describes the cognitive radio standard used, it discribes theo-
retical system performance and the CDF based AGC ADC concept is analyzed
and implemented on system level. Implementation choices are described and
the concept is validated by system level simulations.

In chapter five the comparator of the ADC is identified as the most criti-
cal component and this component is implemented at circuit level. Non-ideal
properties are identified and their effect on performance are investigated.

In the last chapter conclusions are presented and elaborated. Then recom-
mendations are presented.





Chapter 2

Integrated cross-correlation
spectrum analyzer

The task of an energy detection spectrum analyzer for the use in a cognitive
radio application is to find spectrum holes. The performance of the spectrum
analyzer determines the chance of successfully finding spectrum holes. When
strong narrow-band signals are present at the input of a spectrum analyzer,
the performance of the spectrum analyzer is limited by its SFDR. The SFDR is
increased by the cross-correlation spectrum analyzer with respect to traditional
spectrum analyzers. This chapter provides insight in the increased performance
of the cross-correlation spectrum analyzer with respect to traditional spectrum
analyzers. The mechanism used by the spectrum analyzer is introduced and the
spectrum analyzer itself is described. First the SFDR trade-off is described and
the conventional equation for SFDR is extended with the variable measurement
time. Then cross-correlation is described, starting from a mathematical point
of view and ending with an estimator which can be easily implemented digitally.
Then the cross-correlation spectrum analyzer is described. The role of the ADC
and the dependency of its cost on word-size is described.

2.1 The SFDR trade-off

A big challenge in cognitive radio spectrum sensing is that the power of very
small signals should be measured while the overall signal can also contain strong
narrow band signals. This problem can be characterized in terms of the SFDR.
SFDR is a performance measure of an analog system. It gives the ratio between
the strongest and the weakest signal that can be detected at the same time [9].
The SFDR results from the trade-off between linearity and noise. This trade-
off can be extended by the factor measurement time by lowering the noise by
cross-correlation [4], [5].

The SFDR of a system depends on noise power and non-linearity. The
noise power added by a system is expressed as the noise factor, which is the
ratio of input Signal to Noise Ratio (SNR) and output SNR. For most systems
the noise figure is specified, which is the noise factor expressed in dB. The
non-linearity is expressed as Input referred third order Intercept Point (IIP3),
which is a measure for distortion in a system.

11
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Spurious Free Dynamic Range For an analog front-end the Dynamic
Range (DR) is defined as the ratio between the noise floor and the maximum
input signal. However, due to non-linearity the maximum attainable dynamic
range can be limited by distortion components. When the strongest distortion
component power is equal to the noise floor, the ratio between input signal and
the input referred strongest harmonic is the SFDR. Figure 2.1 illustrates the
SFDR for an arbitrary spectrum analyzer.

The noise in Figure 2.1 is white and the magnitude of the noise depends

on the bandwidth in which the noise power is expressed, for instance V 2

kHz . In
that case the resolution bandwidth is 1kHz.

SFDR

F1
Frequency

M
a
g
n
it
u
d
e

Noise
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Figure 2.1: Spurious free dynamic range

If the IIP3 approximation is acceptable and if the noise floor is white, then
the SFDR is expressed as [10]:

SFDR =
2

3
(IIP3− Pnoisefloor − 10 · log10(RBW ) + 174) [dB] (2.1)

Where RBW is the resolution bandwidth and Pnoisefloor is the power of the
noise floor per Hertz. If it is possible to reduce the noise and keep the IIP3
unchanged, this trade-off is broken and yields higher SFDR. This is possible
with cross-correlation.

Noise factor The noise factor (F ) expresses the amount of noise added by
a system:

F =
SNRoutput
SNRinput

(2.2)

When subsystems are cascaded, where block i is followed by block i + 1, con-
tributions to the total system noise depends on the gain of the other blocks.
The contribution of the subsystems to the noise factor of the total system is
calculated as follows:

Ftotal = 1 + (F1 − 1) +
F2 − 1

Ga,1
+ ..+

Fm − 1

Ga,1 ·Ga,2..Ga,m−1
(2.3)
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Where Ga,i are available power gains: the input and output impedances are
matched. For unmatched sub-blocks the formula gets more complicated [11, ,
pg. 45] but the following effect remains: Noise added in early stages contribute
more to total system noise factor, when the gain of the sub-blocks is > 1.

Input referred third order intercept point Most integrated circuits in
analog front-ends are differentially implemented, such that second order dis-
tortion is canceled out. For these cases the third harmonic is in general the
largest distortion component. The linearity of a circuit is therefore often ex-
pressed in the IIP3, which is the theoretical intercept point of the input referred
first harmonic power and the input referred power of the strongest distortion
component. The strongest distortion component is either the third harmonic
of a single pure sine wave, or the component of a 2-tone test which falls in the
measured bandwidth. For narrow-band systems, for the strongest distortion
component the strongest distortion component is introduced by aplying two
frequencies such that the

When the non-linearity of a system is modeled as:

y(t) = α0 + α1 · x(t) + α2 · x2(t) + α3 · x3(t)... (2.4)

so when x(t) = A · cos(t) this results in the equation: [11]

y(t) =
α2A

2

2
+

(
α1A

3α3A
2

4

)
cos(ωt) +

α2A
2

2
cos(2ωt) +

α3A
3

4
cos(2ωt)

(2.5)

Because of differential circuitry the even order terms disappear. Because of
small values of A, higher powers of A then n for term n can be neglected.

Then the IIP3 is the input power of x(t) for which holds:

var(x(t)) =
α3

4 · α1
var(x3(t)) (2.6)

This approach uses harmonic distortion components to determine IIP3. For
small band systems an approach based on intermodulation of two sine waves
can be used [11].

Real interception of the first and third harmonic does not happen in practice
due to limited gain at large input signal powers. The gain is limited when other
non-linear effects dominate such that Equation 2.4 is not valid anymore, for
example saturation or compression.

When subsystems are cascaded its contribution to the total system noise
depends on the gain of the other sub-blocks. A approximation of the total
system IIP3 is [11, pg. 24] :

1

IIP3total
=

1

IIP31
+

Ga,1
IIP32

+ ...+
Ga,1 ·Ga,2..Ga,m−1

IIP3m
(2.7)

(2.8)

Where IIP3# denote the ratio of first and third signal harmonic powers at a
linear scale. Although Equation 2.7 is an approximation the following effect
remains: Non-linearity added in later stages contribute more to total system
non-linearity, when the gain of the sub-blocks is > 1. The effect is the opposite
of the effect of the noise figure in cascaded stages, which is the reason for the
SFDR trade-off.
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The trade-off The trade-off between non-linearity and noise in a system
consisting of cascaded subsystem can be influenced by choosing the location
of the gain. This can be seen in Equations 2.7 and 2.3. When more gain is
located in later stages the noise is increased and IIP3 is reduced.

This trade-off between noise and linearity is broken when a cross-correlation
front-end is used. Such an analog front-end is described in [4]. This front-end
consists of two parallel paths, where the uncorrelated noise floor introduced in
both paths is reduced by cross-correlating the two output signals.

When a cross-correlation front-end is used, the SFDR also depends on mea-
surement time. If the amount of correlated noise in the front-end is small
compared to the amount of uncorrelated noise, then 2.1 changes to:

SFDR ≈ 2

3
(IIP3− Pnoisefloor − 10 · log10(RBW ) + 174

+10 · log10(
√
Tm ·RBW )

) (2.9)

Where Tm is the measurement time in seconds. When for instance an RBW of
1 kHz is required and the measurement time is 2 ms, the last term in Equation
2.9 adds 1.5 dB to the SFDR. Figure 2.2 illustrates the lowered noise floor by
using the cross-correlation front-end.

SFDR

F1
Frequency

M
a
g
n
it
u
d
e

Noise

F3 F5 F7

Figure 2.2: Spurious free dynamic range improvement by the cross-correlation
front-end

2.2 Cross-correlation

Cross-correlation of two signals gives information on their similarity. Cross-
correlation is a statistical property, which in practice often can only be es-
timated. Time-averaged statistics are then used instead of ’true’ ensemble
averages (which are obtained from different realizations).
First the statistical definition of cross-correlation is given, then the continuous
time cross-correlation function is presented, which is easily transformed to the
frequency domain. The discrete-time and discrete-frequency cross-correlation
functions are presented and one cross-correlation estimator is introduced. This
cross-correlation estimator is a function to be implemented digitally. Although
an analog implementation is a possible choice, only digital correlation estimator
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issues are addressed because an analog implementation would introduce more
correlated noise sources. Finally, spectral averaging is addressed as a way to
actually benefit from the cross-correlation estimation.

2.2.1 Statistical representation

The cross-correlation ρXY of two signals X and Y is the normalized version of
the cross-covariance [5]:

ρXY (t, τ) =
E
[(
X∗(t)− µX∗(t)

)
·
(
Y (t+ τ)− µY (t+τ)

)]
σX(t) · σY (t+ τ)

· (2.10)

Where ∗ denotes the complex conjugate. The scaling factor σX(t) · σY (t +
τ) is often not known or assumed 1, making the cross-covariance and cross-
correlation equal. In this document the term cross-correlation is used for both
metrics. The cross-correlation function becomes the auto-correlation function
when Y = X in Equation 2.10.

Joint ergodicity of input signals The input signals X and Y are assumed
to be jointly ergodic, which means [12]:

1. The signals are wide sense stationary, i.e. their first and second order
moments are time invariant.

2. Ensemble average and time average are equal: the first and second order
moments along the time dimension are equal to the first and second order
moments across the space of different realizations.

2.2.2 Continuous time and frequency representation

Because of the assumed ergodicity of the input signals the result of Equation
2.10 can also be obtained by the following time dependent function:

γXY (τ) = lim
T→∞

1

2T

∫ ∞
−∞

x∗(t) · y(t+ τ)dt (2.11)

An important property of the cross-correlation function is that its Fourier trans-
form yields the cross-power spectrum:

ΓXY (f) = F (γXY (τ)) (2.12)

ΓXY (f) =

∫ ∞
−∞

γXY (τ)e−j2·πfτdτ (2.13)

(2.14)

Convolution and cross-correlation are very similar:

x(t) ∗ y(t) =

∫ ∞
−∞

x(τ) · y(τ − t)dτ (2.15)

x(t) ? y(t) =

∫ ∞
−∞

x∗(τ) · y(τ + t)dτ (2.16)

x(t) ? y(t) = x∗(−t) ∗ y(t) (2.17)
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Where ? denotes the cross-correlation operation and ∗ denotes convolution.
Because convolution in the time domain is multiplication in frequency domain,
the cross power spectrum of signals x and y is:

ΓXY (f) = X∗(f) · Y (f) (2.18)

where X(f) and Y (f) are the spectra of x and y respectively, obtained via the
Fourier transform:

X(f) = F (x(t)) (2.19)

Y (f) = F (y(t)) (2.20)

2.2.3 Discrete-time and -frequency representation

A discrete-time version of the above described cross-correlation function exists.
The input signal is sampled with frequency fs. The estimated cross-correlation
function then becomes:

rXY (n) = lim
M→∞

1

2 · (M + 1)

M∑
m=−M

x∗(m) · y(m+ n) (2.21)

(2.22)

Analogous to the continuous time case, the discrete-time cross-correlation func-
tion can be converted to the frequency domain by the discrete-time Fourier
Transform:

RXY (f) = F (rXY (n)) (2.23)

RXY (f) =

∞∑
n=−∞

rXY (n) · e−j2π
f
fs
n (2.24)

When the result of this transform is estimated by a digital system, a discrete-
frequency representation is required. This is obtained by applying a discrete
Fourier transform (DFT):

RXY (k) = DFT (rXY (n)) (2.25)

RXY (k) =

N−1∑
n=0

rXY (n) · e−j 2π
N nk (2.26)

Again analogous to the continuous case, the cross-power spectrum can also
be obtained by the product of the conjugate spectrum of x(n) and the spectrum
of y(n):

RXY (k) = X∗(k) · Y (k) (2.27)

For a practical implementation this function has to be estimated. There are
different estimators of the discrete cross-correlation function found in literature
[12], of which two are widely used: the biased estimator and the unbiased
estimator [5]. The unbiased estimator yields larger mean-square error. The
biased estimator is focused on and is described in Section 2.2.4. Under plausible
assumptions both estimators give comparable performance, so choosing one or
the other is does not make a difference. For detailed information, see [5].
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2.2.4 Estimation of the discrete-time and -frequency
cross-correlation function

The estimator for cross-correlation is described in discrete-time and discrete-
frequency domain in following paragraphs.

Time domain cross-correlation estimator When the summing interval
of Equation 2.21 is reduced to a realistic value, a biased estimator appears.
When samples are available for 0 < n < N − 1 and all other samples are set
zero, the summation interval reduces to 0 < n < N − 1:

cXY (k) =
1

N

N−1∑
n=0

(x∗(n) · y(n+ k)) (2.28)

(2.29)

The estimator gives output values for (−N + 1) < k < (N − 1). For large |k|
a relatively small number of products is available. The estimation is then less
accurate because the factor 1

N does not correspond to the number of available
products. This error is referred to as the estimator bias and is described in [5].
When N is large with respect to k, the bias is small and as N goes to infinity the
bias converges to zero. The estimated cross-power spectrum is now obtained
by Discrete Fourier transforming cXY :

CXY = DFT (cXY ) (2.30)

Obtaining the cross-power spectrum by correlation prior to Fourier trans-
formation is referred to as XF correlation.

Frequency domain cross-correlation estimator The frequency domain
version of the estimator calculates the spectra of parts of signal x(m) and y(m)
and multiplies them:

X(f) =

∞∑
n=−∞

x(n) · e−j 2π
N nf (2.31)

Y (f) =

∞∑
n=−∞

y(n) · e−j 2π
N nf (2.32)

CXY = X∗(f) · Y (f) (2.33)

Obtaining the cross-power spectrum by discrete Fourier transformation
prior to correlation is referred to as FX correlation.

2.2.5 Auto-correlation, Cross-correlation and spectrum
estimation

In traditional spectrum analyzers the Power Spectral Density (PSD) is a re-
sult of auto-correlation and is equal to the cross-correlation front end when
no uncorrelated components are present in the input signals. When two sig-
nals x(t), y(t) are composed of correlated components s(t) and uncorrelated
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components u1(t), u2(t), their cross-correlation function is:

γXY (t) = lim
T→∞

1

2T

∫ ∞
−∞

x∗(τ) · y(t+ τ)dτ (2.34)

= lim
T→∞

1

2T

∫ ∞
−∞

(s(τ) + u1(τ))∗ · (s(t+ τ) + u2(t+ τ))dτ (2.35)

= γss(t) + γsu2
(t) + γu1s(t) + γu1u2

(t) (2.36)

= γss(t) (2.37)

And thus the resulting power spectrum converges to the power spectrum of
s(t).

When multiple spectra of the cross-correlation front-end are averaged, the
correlated components of the two input signals converge to their actual values
and the uncorrelated components of the input signals converge to zero.

Power spectrum variance Due to randomness of noise and limited mea-
surement time, the noise floor in an estimated spectrum is not the same in
different measurements. For Gaussian distributed noise the distribution of the
noise PSD components is also Gaussian. To express the noise floor, the stan-
dard deviation of the power spectrum components is used.

Noisefloor = σPSDn =
√
var(PSDn) (2.38)

where PSDn denotes the PSD of the noise. In order to estimate the noise
floor in auto- and cross-power spectra, the mean and standard deviation of the
signal’s PSD must be estimated.

For the variance of the cross-power estimator in Equation 2.33, the variance
of the estimated cross-power spectrum converges to the squared cross-power
spectrum of signals x and y [5]. In other words, as the measurement time
increases, the variance per Hertz does not decrease:

lim
N→∞

var(CXY (f)) = |ΓXY (f)|2 (2.39)

As the variance of the signal does not converge to zero, the estimation output
does not converge to the value being estimated. The variance per resolution
bandwidth remains constant: The estimator is inconsistent. To get a consistent
cross-power spectrum estimator, spectral averaging is applied.

Spectral averaging Spectral averaging is applied to the output of the cross-
correlation estimation to reduce the variance per resolution bandwidth such
that it results in a consistent estimation. There are several methods of spectral
averaging, the method described below is the Bartlett-method (also used for
the cross-correlation spectrum analyzer of the previous work). The Bartlett-
method splits a measurement in L sequences of length K and averages the
spectra of those sequences.

CXY (f) =
1

L
·
L∑
l=0

(Xl(f) · Y ∗l (f)) (2.40)
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For the true cross-power spectrum, the spectral variance reduces when the
measurement time is increased and the cross-power spectrum will converge to
the power spectrum of its correlated signal components:

var(ΓXY ) =
1

L
var (Γss + Γsu2 + Γu1s + Γu1u2) (2.41)

The noise floor standard deviation thus decreases by the square root of the
relative increase in measurement time.

σ(ΓXY ) =

√
1

L

√
σ(Γss) + σ(Γsu2 + Γu1s + Γu1u2) (2.42)

The reduction of spectral variance of the cross-power spectrum is approximately
equal to the reduction of spectral variance of the estimated spectrum:

σ(CXY ) ≈
√

1

L

√
σ(Css) + σ(Csu2

+ Cu1s + Cu1u2
) (2.43)

because:

ΓXY ≈ CXY (2.44)

When a cross-spectrum is averaged, its components converge to their actual
values: the variance is reduced. For an uncorrelated signal, the cross-spectrum
power is 0, so according to Equation 2.42 the uncorrelated components decrease

by
√

1
L . So as a rule of thumb, the standard deviation of the noise floor in a

power spectrum decreases by 1.5 dB per doubling of measurement time. This
in contrast to auto-correlation, where the mean of the noise floor is non-zero
and the absolute noise floor converges to that mean. Figure 2.3 depicts a block
diagram of a cross-correlation spectrum averaging front-end.

Figure 2.3: Block diagram of the operation of a cross-correlation spectrum
averaging front-end. [4]

Auto-correlation and Cross-correlation spectrum For autocorrelation,
X and Y in Equation 2.42 are equal. This results in a sequence of absolute real
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values. The expected value is non-zero and thus the noise floor converges to
a non-zero value. Figure 2.4 illustrates the convergence of an auto-correlation
spectrum to its expected value. For cross-correlation, X and Y in Equation 2.42
are unequal. This results in a sequence of complex values. The expected value
is zero if the noise signals are fully uncorrelated and the noise floor converges
to zero. Figure 2.4 illustrates the convergence of a cross-correlation spectrum
to its expected value.
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Figure 2.4: Convergence of power spectra when spectrum averaging is applied.
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2.3 Cross-correlation spectrum analyzer

This section describes the specific front-end which is used in the previous work
[4] and on which assumptions and system calculations are based. First an
FFT spectrum analyzer is described and then the cross-correlation spectrum
analyzer is described. The latter can be seen as an extension to the FFT
spectrum analyzer.

2.3.1 FFT spectrum analyzer

The FFT spectrum analyzer obtains spectrum information by Fast-Fourier-
Transforming the input signal. The input signal is first filtered, amplified
and down-mixed before it is converted to the digital domain where the FFT
is calculated. Figure 2.5 shows a block diagram of this front-end. (In this
figure the noise floor is a bit exaggerated to emphasize the benefit of the cross-
correlation spectrum analyzer in following figures).

A

D

LO

LNA FFTLPF

Figure 2.5: Typical analog front-end

By choosing the mixing frequency, the Intermediate Frequency (IF) band
can be selected. A number of possible ranges are identified, each having their
advantages. In the following sections zero-IF range is elaborated, as it is used in
previous work and allows the largest bandwidth to be converted to the digital
domain.

2.3.2 Cross-correlation spectrum analyzer

The cross-correlation spectrum analyzer consists of two FFT spectrum ana-
lyzers placed in parallel. The FFT outputs are cross-correlated and averaged.
It consists of a passive splitter to divide the signal power over the two sig-
nal paths. Because of the noise-linearity trade-off described in section 2.1 the
signals are not amplified by Low Noise Amplfiefiers (LNA) but attenuated in
both paths. Both signals are then down-mixed to zero-IF and converted to the
digital domain by the ADCs. The digital section consists of two Fast Fourier
Transform blocks, one of the results is conjugated and the two spectra are
multiplied element-wise. Multiple spectra are then averaged. Figure 2.6 shows
a simple representation of the spectrum analyzer. The increased noise floor,
due to the lack of LNAs, will be reduced when the output signals are cross-
correlated. The theory from section 2.2 can be applied to this front-end. The
effect of uncorrelated noise sources such as thermal noise from the mixer, ADC
and attenuators is reduced in the power spectrum. The noise added by the
attenuators is partially correlated [6], so the correlated noise originates from
the antenna, the passive splitter and attenuator.

In Figure 2.6 the uncorrelated noise power is represented by the gradient-
filled areas and is reduced in the final spectrum. The correlated noise power is
represented by the solid-filled gray area and is not reduced.



22
CHAPTER 2. INTEGRATED CROSS-CORRELATION SPECTRUM

ANALYZER

A

D
FFT

A

D
FFT

AVG

G< 1

G< 1

G> 1

G> 1

LO

conj

Figure 2.6: Cross-correlation spectrum analyser

The signal is down-mixed to zero-if, such that both negative and positive
frequencies contain information. By using quadrature mixing the negative fre-
quencies can be distinguished from the positive frequencies. Each path of the
front-end thus consists of an I and a Q path resulting in four ADCs for the
total front-end. Figure 2.7 shows the spectrum analyzer with quadrature mix-
ing. Although not shown in the figure, the analog part of the front-end is

A

D

FFT

A

D

FFT

AVG

G> 1

G> 1

LO*

conj

A

D

A

D

G> 1

G> 1

LO

G<1

G<1

LO*

LO

path 1

path 2

Figure 2.7: Quadrature mixing FX cross-correlation spectrum analyzer (LO*
denotes the 90 degrees shifted oscillator signal phase)

differential.

2.3.2.1 Gain location

Cross-correlation reduces the uncorrelated noise in the signal spectrum, so the
input signal is attenuated just after the signal has been split into two paths to
increase linearity. The splitting itself also attenuates the power by 6 dB per
path [4]. Because the power of the incoming signal is not exactly known, a
variable attenuator is required to scale the signal properly and have maximal
benefit of the cross-correlation and spectrum averaging. The attenuator de-
scribed in this section is based on the splitter described in [4] with adjustable
resistor values as described in [5].
The passive splitter divides the power of the incoming signal over the input
impedances of the mixers. It also attenuates the signal. By choosing resistor
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values of the passive splitter, the attenuation can be set. Figure 2.8 shows the
differential passive splitter.

2Zmixer

2Zmixer
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Vy-

Vx-
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Balun

Splitter 2

Splitter 1

2Rb

Vs,a

Figure 2.8: Passive splitter [6]

The splitter (Rs1 to Rs3) together with the attenuator Rai , Rbi , Rci allows
to attenuate the signal and control the system IF bandwidth [5].

The attenuation of the signal before the mixer reduces the amount of distor-
tion produced by the mixer. For proper conversion to the digital domain, the
signal must be scaled to fit the ADC input range. The signal is thus amplified
before the ADC conversion.

2.3.2.2 XF and FX correlation spectrum analyzer

As described in Section 2.2.4 the cross-power spectrum can be estimated in two
ways: using an FX- or an XF cross-correlation spectrum analyzer. Until this
paragraph the front-end illustrations show spectrum analyzers where the signal
is transformed to a discrete spectrum prior to the cross-correlation. Figure 2.9
shows the XF correlation spectrum analyzer.
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path 1

path 2

cXY

Figure 2.9: Quadrature mixing XF cross-correlation spectrum analyzer (LO*
denotes the 90 degrees shifted oscillator signal phase)

2.3.2.3 Cost of the ADC and digital back-end

The cost of a spectrum analyzer is partially determined by the ADCs and the
digital back-end. The cost in this context is power consumption and required
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silicon area. Following paragraphs discuss the dependency of cost on digital
signal resolution.

ADC The cost of an ADC depends on topology, sample frequency and resolu-
tion. When the resolution is lowered the number of comparisons per conversion
is reduced and thus the power per conversion is reduced. Reduction of resolu-
tion decreases complexity in a way which depends on the topology of the ADC.
A flash ADC for instance consists of a comparator for each , the number of
comparators is reduced and therefore the amount of silicon area is reduced.

Digital back-end For the digital back-end, a higher sampling frequency
leads to more dynamic power consumption, because parasitic capacitances are
charged and discharged more often [13]. Higher resolution leads to more digital
logic and thus to more parasitic capacitances and more silicon area. When the
dependency of cost on resolution is considered, the digital implementation be-
comes important. For the cross-correlation spectrum analyzer the dependence
of cost on resolution may be different for a FX or a XF correlation. When the
XF correlator is used, the digital signals are correlated just after the analog to
digital conversion. The signal resolution is determined by the resolution of the
ADC. When the output of the correlator is transformed to a discrete spectrum,
the signal resolution is determined by the desired sensitivity of the spectrum
analyzer. For a lower resolution, the reduction of cost is clearly located in the
XF correlator.

When the FX correlator is used, the lower resolution also leads to cost
reduction. The FFT modules have low resolution input signals and high res-
olution output signals. The resolution of internal nodes will increase as the
signal travels trough the FFT module. The exact reduction of cost is less obvi-
ous than in the XF correlator case. Also, to compare the cost the time-domain
correlator cost must be compared to the frequency-domain correlator. More
information on both and other correlators can be found in [5] and [14]

2.4 Summary and conclusions

Summary The cross-correlation spectrum analyzer increases the SFDR by
adding the factor measurement-time to the trade-off between noise and lin-
earity. Cross-correlation is a statistical property which can be estimated in
discrete-time and discrete-frequency domain. The latter is done by the cross-
correlation spectrum analyzer. This spectrum analyzer attenuates the input
signal to reduce non-linearity introduced by the mixer. After the mixer the sig-
nal is amplified to meet the ADC input range before conversion to the digital
domain. In the digital domain the spectrum estimate is calculated. The power
and silicon-area cost of the digital processing largely depend on the input signal
word-size.

Conclusions Cross-correlation is an effective way to increase the SFDR of a
spectrum analyzer when the noise power per spectrum bin limits SFDR. Noise
power added in the parallel paths of a cross-correlation spectrum analyzer is
reduced at the cost of measurement time. The mixer in the analog front-end
introduces distortion, which is reduced when the signal is attenuated prior to
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entering the mixer. At the output of the mixer, an amplifier is required to
scale the signal for proper AD conversion Reduction of ADC resolution will
clearly reduce the digital complexity in the case of the XF correlator. For an
FX correlator it is less straight-forward to determine the complexity reduction
.





Chapter 3

Low resolution analog to digital
conversion

In the previous chapter the concept of cross-correlation estimation and the
cross-correlation spectrum analyzer are introduced. When the cross-correlation
spectrum analyzer is integrated on chip, a low-cost ADC is preferred. The
cost of ADCs can be reduced considerably by reducing the resolution. A low-
resolution ADC will consume less power and occupy less chip area in contrast
to higher resolution ADCs. Quantization is a non-linear function. The IIP3
of a quantizer largely depends on its resolution. Reduction of ADC resolution
results in increase of the non-linearity. When the resolution is decreased too
much, the SFDR of the spectrum analyzer is degraded to an unacceptable
level. A possible counter measure to the non-linearity is to deliberately add
noise to the input signal (dithering the input signal). The effect of lowering the
resolution of an ADC is described by first describing the effect of quantization
in general. Then the effects of low-resolution quantization and dithering are
described. Different dithering approaches exist, of which one is described more
extensively, as it is implemented on system level for this thesis (see Chapter
4).

3.1 Analog to digital conversion

Converting a signal from the analog domain to the digital domain consists of
two orthogonal operations: quantization and sampling. Figure 3.1 shows the
two operations. The order in which they are executed does not affect the result.

3.1.1 Sampling

Sampling converts a continuous-time signal to a discrete-time signal. At a
single moment per period, the input signal is represented by a dirac pulse with
a strength proportional to the input signal at that moment. In the ideal case
these moments are spaced uniformly. When the Nyquist criterion is satisfied
[15], the original signal can be reconstructed from the sampled signal and no
information is lost.

27
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Figure 3.1: Analog to digital conversion: Sampling and Quantization

3.1.2 Quantization

A digital signal is described by a finite set of values. A quantizer rounds the
analog signal to the nearest digital representation. In practice this means that
the input signal is compared to decision levels to determine the digitized out-
put. The possible quantizer output values are referred to as quantization values.
The space between two decision levels is called the Least Significant Bit (LSB).
Figure 3.2 illustrates the naming conventions. Quantization approaches exist
where the decision levels are not located at equal distance, but for this thesis
only quantizers with uniformly spaced decision levels are described. This type
of quantization is referred to as uniform quantization.

There are two types of quantizers: midtread and midrise quantizers. Figure
3.3 shows a part of the transfer function of a midtread and a midrise quantizer.

The description in following sections apply to a quantizer of type midrise,
which is used in this thesis because the midrise quantizer is symmetrical around
zero. (the formulas have obvious analogs for midtread quantizers and all con-
clusions are also valid).

The symbolic representation of a quantizer is shown in Figure 3.4. The
output of a midrise quantizer is given in Equation 3.1. In this equation the
rounding is realized by applying the floor operator to the normalized input and
adding a half LSB after scaling the result to an LSB:

y = Q(w) = ∆ ·
⌊w

∆

⌋
+

∆

2
(3.1)

where

• w: the input signal to the quantizer

• Q(w): The quantization operation on input signal w

• ∆: The spacing between decision levels: an LSB

And the following is defined:

• q = Q(w)− w: The quantization error.
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Figure 3.5: Quantization error signal of a two bit midrise quantizer



30
CHAPTER 3. LOW RESOLUTION ANALOG TO DIGITAL

CONVERSION

3.1.2.1 Quantization error

The quantization error q is the difference between the quantizer input and
output. Figure 3.5 shows the quantization error as a function of the quantizer
input w of a 2-bit quantizer. When the input signal is outside the input range
of the ADC, the error signal is referred to as clipping error. This type of error is
not addressed in this thesis, but conditions are obtained such that the influence
is limited when the error is unavoidable. Detailed analysis of this type of error
is found in [16].

Distortion Each input signal value has one quantization error value associ-
ated with it: i.e. for a given input signal, the quantization error is a deter-
ministic signal. As a result the quantization error signal is correlated with the
input signal. This correlation is inversely propertional to the resolution of the
quantizer. When the input signal is periodic, the quantization error signal is
periodic and will give distortion components in the output signal spectrum. In
the spectrum of the distorted signal, harmonic distortion and inter-modulation
products appear.

For instance when the input to the quantizer is a sine wave with frequency
f , the output spectrum will contain frequency components at multiples of f .
Figure 3.6 shows the quantization of a sine wave, the quantization error has
distinct frequency components with higher frequencies.
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Figure 3.6: 2-bit Quantization of a sine wave and the quantization error.

For a uniform quantizer, based on a full scale sine wave input, the SFDR is
[17]:

SFDR ≈ 8.07 ·D + 3.29 (3.2)

where b is the number of bits of the quantizer.

3.1.3 Models of quantization

There are different ways to look at quantization. A simplistic view is the
classical model of quantization, which linearizes the quantization operation [18].
Another vies is to analyze the effect of non-linearity. Blachman describes an
approach to calculate distortion components [19]. In practical situations noise
is present which improves the SFDR. This improvement in SFDR is exploited
when the signal is dithered. Dithering is deliberately adding a noise signal to
the input signal to control distortion components.
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3.1.3.1 Classical model of quantization

The classical model of quantization [18] approximates the effects of quantization
by assuming that the quantization noise is uncorrelated with the input signal,
has a white spectrum and is uniformly distributed. The result of quantization
is then easily described by white noise added to the input signal. The power of
the quantization error is [20] a function of its Probability Distribution Function
(PDF) (pq(q)):

pq(q) =
1

∆
, for

−∆

2
< q <

∆

2
(3.3)

(3.4)

such that the power is:

E(q2) =

∫ ∆
2

−∆
2

q2 · pq(q)dt =
∆2

12
(3.5)

3.1.3.2 Spectrum of quantized signals

The exact magnitude and phase of distortion components can be calculated
with the method described in [19]. The quantization error for a single sine wave
input is expressed by its Fourier series [19]. The mathematical derivations are
found in [19] for a midtread quantizer. The modification to this derivation for
a midrise quantizer can be found in Appendix A. The result is:

w = A · sin(θ(t)) (3.6)

q(w) =

∞∑
p=1,3,5,7,...

( ∞∑
n=1

2

πn
Jp(2π · n ·A)sin(p · θ(t))

)
(3.7)

where Jp(2π · n ·A) is the Bessel function of the first kind.
When the input signal is a sum of multiple sine waves, the number of

distortion components increases exponentially. As an example, the Fourier
series for two sine waves is obtained by extending the approach of [19]:

w = A1 · sin(θ1(t)) +A2 · sin(θ2(t)) (3.8)

q(w) = imag {
∞∑

p=−∞

∞∑
q=−∞

( ∞∑
n=1

1

nπ
Jp(2π · n ·A1) · ei p θ1 ·

Jq(2π · n ·A2) · ei q θ2
)
}

(3.9)

If the input signal remains within the quantizer input range, the expected

quantization error power cannot exceed
(

∆
2

)2
, as the error has a maximum

value of ∆
2 . The number of distortion components in the spectrum increases

exponentially with respect to the number of sinusoids at the input, so the
power per distortion component decreases: adding more frequency components
reduces the average power per distortion frequency component. When white
noise is added this effect is maximally utilized, because it contains an infinite
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number of sinusoids. How well the power of the quantization error is dis-
tributed across the spectrum depends on the amount of power of the white
noise and whether it is statistically independent of the input signal. As a
conclusion, adding white noise to the signal is an effective way to decrease
distortion components and thus increase linearity. Adding a signal to reduce
distortion components is known as dithering.
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3.2 Dither

Quantization of a signal is a non-linear process which adds undesired distor-
tion and inter-modulation components to the signal. Dithering is a process
applied to the signal before the non-linear operation to control these undesired
components. In many applications dithering adds a random signal to an input
signal.

For energy detection spectrum sensing the power and spectral distribution
of the dither signal and quantization noise must be known, such that signal
power can be distinguished from the noise power. This is achieved when the
ADC generates an error with a white spectrum. The noise floor of the out-
put signal is then also white. This is achieved by dithering the input to the
quantizer.

This section discusses different dithering schemes. Each scheme has its
advantages and disadvantages and its suitability depends on the application it
is used in. First dithering is explained intuitively.

3.2.0.3 Dither, intuitive approach

Without dithering, an input value can result in only one error value, so when the
input signal is periodic the quantization error signal is periodic. The periodicity
would not be present when an input value could result in any quantization
error with equal probability. This is achieved with proper dithering. Figure
3.7 shows that the periodicity of the error signal is not present when a sine
wave is dithered with uniform distributed dither with a range of 1 LSB. With
this kind of dither each quantization error value is equally probable.
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Figure 3.7: Quantized undithered and dithered sine wave with an amplitude
of 3

4 full scale, the error signal and spectrum. The spectrum of the undithered
signal only contains odd harmonics of the fundamental frequency, the spectrum
of the dithered signal also has frequencies at even harmonic frequencies.
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3.2.1 Dithering schemes

Many different dithering schemes can be found in literature [18], [21], [22], [23].
The most important differences between the schemes are:

1. Subtractive or non-subtractive dither

2. Type of dither signal PDF

3. Bandwidth of the dither signal

The advantages and disadvantages of these differences are described. At the
end of this section the approach is selected which fits the goals of this thesis
best.

3.2.1.1 Subtractive or non-subtractive dither

Adding dither to the input signal decreases distortion components, but the
quantized signal also contains the dither signal. Figure 3.13 shows the block
diagram of a non-subtractive dithered quantizer.

Dither
Generator

yx
v

w Q(w)

Figure 3.8: Dithered quantizer

In subtractive dithering the dither signal power is removed from the quan-
tizer output signal by subtracting a digital version of the dither signal from the
quantizer output signal. In [24] the concept of subtractive dither is introduced.
In this paper digital images are dithered and quantized before they are trans-
mitted over a channel with limited capacity, then after reception the dither is
subtracted. This way the bandwidth of the transmitted signal can be reduced
while the distortion in the image is acceptable. Figure 3.9 shows a subtractive
dithered quantizer.
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Figure 3.9: Subtractive dither quantizer. The dither source can be in: a) digital
or b) analog domain.
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For a spectrum analyzer subtractive dithering leads to an increase of digital
resolution just after the quantization, so the benefit from resolution reduction
of the ADC is decreased when the dither is subtracted. I.e. the resolution
reduction leads to only little complexity reduction as the digital processing
complexity is not reduced. The ADC resolution is reduced, but not the digital
word resolution. However, because the ADC resolution is lowered, this may still
be a interesting option. Comparing non-subtractive dithering to subtractive
dithering; the latter results in less noise power, but the first achieves more
complexity reduction.

3.2.1.2 Type of dither signal

Most natural noise sources produce signals with an amplitude which has a
Gaussian distributed PDF. For instance, the voltage and current amplitude of
the thermal noise of a resistor is Gaussian distributed. However, dither signals
with other specific PDFs lead to a higher SFDR.

Gaussian distributed noise In [17] the effect of Gaussian distributed noise
is analyzed. Adding a Gaussian distributed noise signal increases the SFDR,
Equation 3.2 is extended to:

SFDR ≈ 8.07 ·D + 3.29 + 171.5 · σ2
LSB (3.10)

where σ2
LSB is the power of the noise in LSB2. This might look very promis-

ing, however two performance limiting effects are introduced when increasing
Gaussian distributed dither signal power:

1. The noise floor is raised.

2. Signal values falling outside the quantizer input range introduce clipping
distortion.

The clipping distortion problem is reduced by attenuating the input signal,
but the noise floor becomes more dominant and the SFDR is reduced. Figure
3.10 shows the dithered quantizer with attenuated input signal.

Dither
Generator

y
v

Q(w)
w

<1x

Figure 3.10: Dithered quantizer with attenuated input signal.

In [17] the allowed probability of a value being clipped is coarsely estimated.
According to this estimation, for an 8-bit quantizer, the probability of clipped
values must be less than 0.13 % to have no discernible distortion. For lower
resolutions, for example 2 bits, the resulting distortion and required attenuation
results in unacceptable SFDR values. The estimation of [17] does not correctly
approximate the allowed clipping for a 2-bit quantizer when the target SFDR
is 60 dB. This is concluded from simulation results. Time domain simulations
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in MATLAB show the relation between Gaussian distributed noise power and
required attenuation of the input signal to allow a certain SFDR. The result of
this simulation is shown in Figure 3.11. The SFDR is obtained for an amount
of noise power and a certain amplitude of the sine wave input. The amount of
noise power results from equation 3.10:

σ2
LSB =

SFDRtarget − 3.29− 8.07 ·D
171.5

(3.11)

For a SFDR of 60 dB the input signal must be attenuated by 20 dB, relative
to a full scale sine wave. The amount of dither power is roughly equal to
the dithering alternatives of next paragraphs, thus the resulting dither and
quantization noise floor is roughly equal. However, the 20 dB attenuation
makes this dithering option not attractive.
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Figure 3.11: Achievable SFDR for Gaussian distributed dither and signal at-
tenuation. MATLAB code snippet can be found in Appendix C.2.

Non-Gaussian distributed noise Dither signals with other distributions
lead to less required signal attenuation and a fixed amount of noise power.
Finding a signals with specific distributions in the analog domain is not trivial,
therefore the dither signal is generated in the digital domain and then converted
to the analog domain by a Digital to Analog Converter (DAC), this is illustrated
in Figure 3.9.b. Section 3.3 elaborates these types of dither signals extensively,
the required signal attenuation is 2.5 dB or 6 dB depending on the exact dither
signal.

3.2.1.3 Bandwidth of the dither signal

A dither signal can have a bandwidth which is a fraction of the measurement
bandwidth. This is referred to as band-limited dither or narrow-band dither.
When the used dither signal has a bandwidth equal to the measurement band-
width, this is referred to as wide-band dithering. When the dither signal band
is only a part of the measured band, the other part of the band does not suffer
from higher noise power levels. This might sound promising, but generation
of band-limited dither with a specific non-Gaussian PDF is difficult or may be
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impossible. The signal must be for instance uniformly distributed (see section
3.3.1.2 for more details). When a white signal with a uniform PDF is filtered,
the resulting PDF becomes more Gaussian like. This can be explained by
the fact that filtering is summing time delayed versions of the same white sig-
nal, which is adding multiple independent signals with a uniform distribution.
The creation of band-limited dither signals with specific PDF requirements is
considered out of scope of this thesis and is not further investigated.

Figure 3.12 illustrates the principle of subtractive, non-subtractive and
band-limited dithering: non-subtractive dither increases SFDR, but it is lim-
ited by the increased noise floor. Subtractive dither results in a lower noise
floor. In the case of band-limited dither a part of the spectrum is dedicated
for the dither signal power.
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Figure 3.12: Dithering schemes and effect on SFDR: a) no dither. b) non-
subtractive dither. c) band-limited dither. d) subtractive dither.

3.2.1.4 Dithering for an energy detection spectrum analyzer

The use of a Gaussian distributed dither signal results in a relatively high
dither noise floor and thus a limited maximum input signal (compared to the
quantizer full scale). A high SFDR then requires a longer measurement time
or a smaller resolution bandwidth of the spectrum analyzer. The resolution
bandwidth and a maximum measurement time is often defined per application,
such that the achievable SFDR is acceptable. Dither signals with other proba-
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bility distributions allow higher SFDR with less measurement time relative to
the resolution bandwidth. I.e. these dither signals are more effective.

Subtractive dithering counteracts the complexity reduction of lowering the
quantizer resolution to some extent and is therefore not chosen as an option
for the energy detection spectrum analyzer.

Band-limited dithering requires a large part of the measured bandwidth
and gives exceptional requirements for the dither signal PDF. Therefore non-
subtractive wide-band dithering is the best option for the cross-correlation
spectrum analyzer and is described in next sections.

3.3 Non-subtractive dithered 2-bit Quantizer

This section describes the most effective fundamentals for making a proper
choice of which dither signal is used. Because the intuive approach as de-
scribed in 3.2.0.3 does not reveal all relations of the dither signal and the total
error spectrum, a mathematical approach found in literature is summarized.
Requirements for the dither to render the quantization noise floor white are
described.

Rectangular PDF and triangular PDF dither are described and rectangular
PDF dither is described more intensively. Digital generation of these dither sig-
nals is described and the effect of quantizer non-linearity in a digital dithered
quantizer is described. To this end the concept equivalent quantizer is intro-
duced which provides a clear view on the SFDR of a dithered quantizer.

A non-subtractive dithered quantizer For a non-subtractive dithered
quantizer the following signals are defined.

• x: the input signal of the system

• v: the dither signal

• w , x+ v: the input signal to the quantizer

• Q(w): The quantization operation on input signal w

• y = Q(w): the output signal of the system

• ε , y − x is the total error of a quantizing system.

• q , Q(w)− w is the quantization error.

Dither
Generator

yx
v

w Q(w)

Figure 3.13: Dithered quantizer
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By adding dither (v) to the input signal (x) of a quantizer, the system input
is unequal to the quantizer input(w): x 6= w. As a result the quantization error
(q = y − w) is unequal to the total error (ε = y − x). The latter is called the
total error and is the error in the resulting spectrum estimate. It should have
a white spectrum in order to maximize the SFDR.

3.3.1 Dither signal statistics

The ultimate goal of dithering is to make the total error signal independent
of the input signal. For a non-subtractive dither this is not possible, as will
become clear in this section. However, certain moments of the error signal
can be made independent of the input signal. In an energy detection spectrum
analyzer, the task of dithering is to generate a total error with a white spectrum.
Via the ’independence of moments theory’ spectral whiteness can be assured
for a certain type of dither. First the condition for moment independence is
described and then the condition for spectral whiteness is given.

3.3.1.1 Independence of total error moments

The mth moment is the expected value of εm [20]:

E[εm] =

∫ ∞
−∞

εm · pε dε (3.12)

Where pε is the PDF of ε. The mth moment of the total error ε is made
independent of the input signal by adding a dither signal which is the sum of
m or more independent uniformly distributed random signals with a range of
one LSB, which follows from the next description (summarized from [18]). The
characteristic function of a signal is the inverse Fourier transform of the PDF
of the signal. In [18] a requirement for the dither signal statistics is given such
that it renders specific moments of the error signal independent of the input
signal. When the characteristic function of the dither signal is Pv, then the
mth moment of the total error signal is independent if [18]: 1

G(m)
v

(
k

∆

)
= 0,∀k ∈ Z0 (3.13)

where

G(m)
v (u) =

dm

dum
(sinc∆(u) · Pv(u)) (3.14)

sinc∆(u) ,
sin(π∆u)

π∆u
(3.15)

and Z0 is the set of all integers except 0. This condition thus defines a re-
quirement for Pv. This requirement is fulfilled when Equation 3.13 is fulfilled
[18]:

Pv(u) = sincm∆(u) (3.16)

1the mth power of x is denoted by xm, the mth derivative is denoted by x(m)
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Because then

Gv = sincm+1
∆ (u) =

(
sin(π∆u)

π∆u

)m+1

(3.17)

and in the mth derivative of this function each term contains the product with

sin(π∆u), which is 0 for (u = k
∆ ,∀k ∈ Z). So then G

(m)
v

(
k
∆

)
= 0 for all

nonzero integers.
When Equation 3.13 is satisfied for m, the mth moment is [18]:

E(εm) =

(
j

2π

)m
G(m)
v (0) (3.18)

Which is zero for m ≥ 1 and Gv = sinc2
∆(u).

From characteristic function to dither signal pv is obtained by Fourier
transforming (F) Pv [20], [18]:

pv = F (Pv) (3.19)

= F (sinc∆(u)m) (3.20)

=

[
?

m−1∏
l=0

]
F (sinc∆(u)) (3.21)

=

[
?

m−1∏
l=0

]
Π∆ (3.22)

where ?
∏m−1
l=0 denotes the convolution of m statistically independent functions.

The Fourier transform of the sinc∆ function is the Π function, which is:

Π∆(ω) =

{
1
∆ , if− ∆

2 < ω ≤ ∆
2

0, otherwise
(3.23)

Summation of independent signals results in convolution of their PDFs, thus
for the mth moment of ε to be independent of x, v should be the sum of m
statistically independent uniform distributed signals with a range of [−∆

2 ,
∆
2 ].

Complete independence of the total error signal on the input signal is only
achieved when an infinite number of uniform distributed functions are added,
which results in a Gaussian distributed function with infinite power.

3.3.1.2 Rectangular and Triangular dither

When m = 1 and m = 2 in Equation 3.22 the resulting dither signals are
referred to as rectangular and triangular PDF dither respectively. Rectangular
PDF dither renders the first moment of the total error signal independent of
the input signal, but not the second moment, i.e. the total error power depends
on the input signal. When triangular PDF dither is applied, also the second
moment of the total error signal is independent of the input signal, i.e. the
total error power is constant. This is illustrated in Figure 3.14. In this figure
the PDF of w is given for two values of x, for both dither functions. It can be
seen that the total error power in the case of the rectangular dither depends
on the input signal.
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Spectral whiteness and noise uncertainty In [18] is proven that the total
error spectrum is white, when triangular PDF dither is used (m = 2). However,
simulation results show that for rectangular dither (m = 1) the spectrum is also
white for an input signal which is the sum of any number of sinusoids. Figure
3.15 shows the whiteness of the total error spectrum. All simulation ran for
this thesis with rectangular PDF dither confirms that the resulting total error
spectrum is white.

Error power dependence of rectangular dithered signals When rect-
angular PDF dither is applied, the total error power depends on the input

signal, but never exceeds ∆2

4 . However, when the mean and power of the input

signal is controlled, the total error power can be lowered to below ∆2

6 .Figure
3.16 shows the total error power of a dithered quantized sine wave and a Gaus-
sian distributed signal as function of its mean and power. This is concluded
from analysis of [18] (elaborated in Appendix B.2) and simulation. The power
of other signals in an energy detection spectrum analyzer are expected to also

result in a total error power below ∆2

6 ,
Using rectangular dither has an advantage and disadvantage. Whether

the performance is better for rectangular or triangular dither, requires more
research. Using rectangular PDF dither results in a noise floor uncertainty,
causing a SNR wall [25]. This has a negative effect on the probability of
detection and probability of false alarm [26]. When mean and power of the
input signal are controlled, the exact degradation of these probabilities depends
on the input signal. As is elaborated in section 4.3, a rectangular PDF dither
results in a larger ADC input range compared to triangular PDF dither. The
lower noise power and large ADC input range are advantages of rectangular
dither, but the noise uncertainty is a disadvantage. Knowledge on the type
of input signal is required to calculate the theoretical performance of a energy
detection spectrum analyzer. This calculation is not done in this thesis.

In following chapters the effects of digital dithering is elaborated. The
effects on system non-linearities is elaborated using rectangular PDF dither.
Most reasonings can be applied to triangular dither as well. System level
simulations prove that the theoretical performance is a good estimate of the
system level simulation performance for both types of dither.

3.3.1.3 Spectra of Dithered signals

Proper dithering gives a spectrum of a (low-resolution) quantized signal with
a raised noise floor, but without distortion components. It causes the expected
value of an output signal to become equal to the input signal. This is true in
the time and in the frequency domain.

Time domain According to Equation 3.18 the first moment of ε is 0, for a
dither signal which is the sum of one or more normal distributed signals:
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Figure 3.14: Illustration of dependency of total error power on input signal.
For rectangular dither the total error power depends on the input signal.

a) Rectangular PDF dither, x = 0: maximal total error power: Whatever

the dither value is, ε2 = |y − x|2 is always ∆2
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Figure 3.16: Total error depending on mean (µ) and power of Gaussian dis-
tributed signal (top) and sine wave (bottom) when dithered with a rectangular
dither signal.
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v =

[
?

m−1∏
l=0

]
Π∆

E(ε) = 0

E(y) = E(Q(w))

= E(Q(w + x))

= E(ε+ x)

= E(ε) + E(x)

E(y) = E(x) (3.24)

Figure 3.17 illustrates the conclusion of 3.24 for rectangular dither (v =
Π∆). It shows the expected statistical output of three arbitrary values. The
input values (x) are represented by black dots and for that value the value
range of the quantizer input (w) is indicated by the black lines connected to
the dot. The probabilities of the output values corresponding to x are shown
by the circles on the quantization value lines. Suppose that x is a static value,
w then produces two possible output values. The occurrence of both output
values translate to E(y).

Frequency domain To prove the equal expected values for the frequency
domain, the expected values are written as the ensemble average. y(s) repre-
sents sample s of y taken from ensemble S.

E(y) = lim
S→∞

1

S

S∑
s=1

y(s) (3.25)

(3.26)

The expected value of a frequency component is:

E(Y ) = lim
S→∞

1

S

S∑
s=1

F (ys) (3.27)

(3.28)

Filling in the Fourier transform, and rewriting the expression:

E(Y (f)) = lim
S→∞

1

S

S∑
s=1

∫ ∞
−∞

ys(τ)e−j·2π·f ·τdτ (3.29)

=

∫ ∞
−∞

[
lim
S→∞

1

S

S∑
s=1

ys(τ)

]
e−j·2π·f ·τdτ (3.30)
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The term between square brackets is the expected value of y, which is equal to
the expected value of x, thus:

E(Y (f)) =

∫ ∞
−∞

[
lim
S→∞

1

S

S∑
s=1

xs(τ)

]
e−j·2π·f ·τdτ (3.31)

= lim
S→∞

1

S

S∑
s=1

∫ ∞
−∞

xs(τ)e−j·2π·f ·τdτ (3.32)

= E(X(f)) (3.33)

The same can be done for the Discrete Fourier Transform (DFT), such that:

E(Y (k)) = E(X(k)) (3.34)

In a practical system, the frequency components Y (k) are calculated from the
values y(n). The output resolution of Y (k) is much higher than y(n), but is
limited. Y (k) is then an estimate of y(n): the estimated frequency component
strength approximates the actual component strength.

Y (k) ≈ X(k) (3.35)
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Figure 3.17: Statistical representation of three arbitrary values

3.3.2 Digitally generated dither

As described in the previous section, the condition of a dither signal to render
the quantization error spectrum white is that the dither signal is the sum of
one or more independent uniform distributed random signal with range of 1
LSB.

In the following sections the achievements of dither and non-linearity effects
are discribed for rectangular PDF dither. On some points also triangular PDF
dither is addressed. The exact achievements for triangular dither must can be
derived using this approach. The effects of non-linearity are expected to hold
the same relations with rectangular dither.

In the previous section the uniform distribution is assumed to be a contin-
uous function. When the dither signal is generated in the digital domain, its
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distribution function is discrete: the signal can assume only a finite number of
values. Figure 3.18 shows the discrete and continuous PDF of a rectangular
dither signal.
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Figure 3.18: Continuous and discrete rectangular PDF dither. a) eight discrete
dither values (M = 8), b) seven discrete dither values (M = 7).
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Figure 3.19: Digitally dithered quantizer

The digital dither must be converted to the analog domain such that it can
be added to the analog signal before AD conversion. A basic digitally dithered
quantizer system is shown in Figure 3.19.

3.3.2.1 Achievements of digital dithering

When the dither signal is digital, the starting situation differs from the con-
tinuous case discussed in section 3.3.1.3. The expected total error (ε) may be
unequal to zero. Because the dither signal can only have a finite number of
values, so can the expected value of y.

Figure 3.20 illustrates how an input signal is converted to an expected
output value of the dithered quantizer. The granularity of the digital dither is
very low in this figure for clear illustration. The black dots represent arbitrary
input values, the horizontal bars connected to the dot represent the possible
values for w, given x. In this figure the range of the dither is 1 LSB, but due
to the low number of discrete values, the maximum value is clearly less than
1
2 LSB. The cause of this difference is shown in Figure 3.18: the outer most

dither values are ∆
2M spaced from the corresponding continuous PDF range. A

very important point is that the dither range is exactly 1 LSB. If this is not
exactly the case, distortion is introduced.

When digital dither is applied there is a range for the input signal which
produces the same value of E(y). In Figure 3.20 this is indicated by the gray
areas. The possible values of E(y) is the combination of the possible dither
values and the quantizer decision levels.

The fact that the input signal may vary, without a change of E(y) can
be translated to a totally different quantizer with the same number of output
values as possible values of E(y). For this totally different quantizer, the input
signal may also vary in the same range, without a change of output signal.
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Figure 3.20: Effect of: a) 3 valued dither signals. b) 2 valued dither signals.

To continue this reasoning, this totally different quantizer is referred to as
equivalent quantizer. The relations for an equivalent quantizer and the dithered
quantizer depend on the type of dither used. In following section the equivalent
quantizer is described for rectangular PDF dither.

3.3.2.2 Rectangular PDF dither equivalent quantizer

The digitally dithered quantizer can be represented by an undithered quantizer
with a number of possible output values equal to the number of possible values
for E(y). This equivalent quantizer yields the same non-linearity, but the noise
floor of the dithered quantizer is higher due to the dither. The equivalent
quantizer concept is used to analyze the effects of non-linearity in a dithered
quantizer.

SFDReq ≈ SFDRdithered 2−bit

SNReq > SNRdithered 2−bit

Figure 3.21 illustrates the resemblance of the dithered quantizer and the
equivalent quantizer. The output of this equivalent quantizer is denoted as yeq
and the operation of the equivalent quantizer is denoted as Qeq(x). Suppos-
ing that the input signal to both quantizers is a static value, the relations of
expected values between the equivalent quantizer and the dithered quantizer
are:

E(y) = E(Q(x+ vdigital)) (3.36)

≈ E(Qeq(x)) (3.37)

≈ E(yeq) (3.38)

and thus:

E(Y ) ≈ E(Yeq) (3.39)

This holds under the constraint that x + v fall inside the quantizer input
range.
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Figure 3.21: Equivalent quantizer resulting in equal distortion component mag-
nitude

Rectangular PDF dither When the dither signal can assume M values,
vd is the PDF of the dither signal:

vd(x) =

M−1∑
c=0

1

M
δ

(
x− (

−∆

2
+

∆

2 ·M
+
c ·∆
M

)

)
(3.40)

and dD−bit is the set of decision levels for a D-bit quantizer:

dD−bit(x) =

2D−1∑
d=0

(
1

2D − 1
δ

(
x− 2D − 1

2
·∆ + d ·∆

))
(3.41)

The set of possible values for E(y) is separated by a set of equivalent quantizer
decision levels which are defined as the convolution of vd and d2−bit:

dE(y) = vd ∗ d2−bit (3.42)

So while y can only assume 2D values, the number of expected values of y is
increased by the digital dither. This effect is illustrated in Figure 3.22. For
this type of dither, the maximum input signal range is equal to the range
of the convolution result. As will become clear, for other dither signals, the
convolution result will contain values which are out of the allowed input signal
range and therefore not used. For a D-bit quantizer and a rectangular PDF
dither signal with M discrete values, the number of quantizer decision levels
are:

(2D − 1) ·M (3.43)

and the number of possible values of E(y) is:

(2D − 1) ·M + 1 (3.44)

The use of the concept of the equivalent quantizer is illustrated by simula-
tion for rectangular PDF dither. A spectrum plot of a dithered quantizer and
its equivalent undithered quantizer is shown in Figure B.3.
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Figure 3.22: Convolution of rectangular dither PDF and quantizer decision
levels result in decision level distribution.
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Figure 3.23: Spectra of a log(25)-bits equivalent quantizer and the 3-bit rect-
angular dithered 2-bit quantizer: they have approximately the same SFDR.
(MATLAB code in appendix C.3)

Triangular PDF dither. For triangular dither a similar relations exist.
These are worked out to certain extend and are listed in appendix B.4, but
due to time limitations correctness cannot be guaranteed. Simulation show
that the equivalent quantizer SFDR approximates the SFDR of the dithered
quantizer.

Theoretical SFDR The theoretically achievable SFDR of a rectangular
dithered quantizer can be expressed by modifying 3.2. The resolution of the
equivalent quantizer is the log2 of the number of quantization values (Equation
3.44):

(2D − 1) ·M + 1

The SFDR of a dithered D-bit quantizer, with M different dither values
has a maximum value of:

SFDR ≈ 8.07 · log2((2D − 1) ·M + 1)) + 3.29 (3.45)

3.3.3 Non-linearity

Until now the non-linear behavior of a (dithered) quantizer is discussed when
all components are assumed ideal. In practice other non-linearities will also
be present. The dithered quantizer consists of a dither DAC and a quantizer.
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The effect of non-linearity for both sub-systems are discussed in this section.
Because of the variable decision levels of the targeted ADC concept, the non-
linearity of the quantizer is discussed in more detail. The non-linearity effects
are analyzed by looking using the equivalent quantizer concept. The analy-
sis is done for rectangular dither, because of time constraints. The relations
identified in next sections are not directly applicible to triangular dither.

Errors of the output values of the dither DAC and errors of the decision
values of the 2-bit quantizer can be translated to multiple errors in the decision
values of the equivalent quantizer. When rectangular PDF dither is used, in
the ideal case, each equivalent quantizer decision level is determined by a single
2-bit quantizer decision level and a single dither DAC output value. Although
in this section the low-resolution quantizer is assumed to be 2-bit quantizer,
the line of reasoning is valid for quantizers with a other resolutions as well.

3.3.3.1 Dither DAC non-linearity

The dither DAC error results in errors for multiple decision levels of the equiva-
lent quantizer. Equation 3.42 shows that the dither range affects the equivalent
quantizer output for each 2-bit quantizer decision level. For example, when one
possible dither DAC output value is higher than intended, the equivalent quan-
tizer has 3 decision levels which are higher than expected.So the non-linearity
of the dither DAC has a repetitive effect on the non-linearity of the dithered
quantizer. Figure 3.24 illustrates this repetitiveness for a 2-bit quantizer and
a 3-bit digital dither signal. It shows the Integral Non-Linearity (INL) of the
equivalent quantizer (and thus also the possible expected output values of the
dithered quantizer).

INL

Output

INL

Output

a)

b)

Figure 3.24: Repetitive INL due to INL of dither DAC and quantizer. a) INL
of the dither DAC. b) INL of equivalent quantizer.

3.3.3.2 Quantizer non-linearity

When a 2-bit quantizer decision level deviates from its intended value, this
results in multiple decision levels of the equivalent quantizer to deviate from
their intended values. For the dithered quantizer this means that all expected
values of the output depending on the deviating 2-bit quantizer decision level
deviate by the same amount, this can be concluded from Equation 3.42.

Figure 3.25 illustrates the INL for a 2-bit quantizer and a 3-bit digital dither
signal where the lower decision level has a higher value than intended.

Any change in the decision levels can always be translated to an increase
of the lower decision level value and scaling of the signal for a 2-bit quantizer.
Therefore only the case of an increase of lower decision level value is considered.



3.3. NON-SUBTRACTIVE DITHERED 2-BIT QUANTIZER 51

INL

Output

INL

Output

a)

c)

b)

INL

Output

Figure 3.25: Repetitive INL due to INL of dither DAC. a) INL of the dither
DAC. b) INL of the 2-bit quantizer. c) Statistical INL of the dithered quantizer.

The effects of this error are analyzed in next paragraphs by looking at the effects
on the equivalent quantizer.

Equivalent quantizer with decision level error. An error in decision
levels add distortion to the quantized signal. In order to calculate the added
distortion caused by an error in the lower decision level, the concept of the
equivalent quantizer is used. The function of the equivalent quantizer is denoted
as EQ(). A decision level error of the 2-bit quantizer (Q) changes the ranges
for which the input value has the same output value: the quantizer transfer
function is changed. The change in the equivalent quantizer input signal ranges
is illustrated in Figure 3.26. The gray areas represent ranges of the input signal
which produce equal output values. In this figure the output values defined by
the lower decision level of the 2-bit quantizer are shifted by the same amount as
this decision level is changed. Thus when a sine wave is input to the equivalent
quantizer (EQ), the output signal is distorted because of the changed quantizer
function.

Decision level

Range boundary

Decision level

Decision level

Range boundary

2-bit quantized signal No decision level error Decision level error

Figure 3.26: Decision level error effect on input signal ranges (gray areas),
which lead to an output value

To analyze the effect of non-linearity, the ideal equivalent quantizer is com-
pared to the equivalent quantizer with an error (caused by the error in the 2-bit
quantizer decision level). To distinguish between the ideal equivalent quantizer
and the one with the error, the following transfer functions are defined:

• EQ: the ideal quantization function of the equivalent quantizer.

• EQe: the equivalent quantizer adjusted for the decision level error.
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SFDR degradation In this paragraph an expression is presented, by which
the SFDR can be found of the 2-bit dithered quantizer with an error in a
decision level.

The SFDR of EQe can be calculated by applying a sine wave to the input
and Fourier transforming the output signal. A nice description of the output
signal depending on the decision level error is not easy to find. A description for
frequency components of a sine wave quantized by EQ is available in literature
[18]. To find a nice expression for the SFDR of the equivalent quantizer, the
equivalent quantizer non-linearity error signal is defined:

• eEQ(x) = EQ(x)− EQe(x): The equivalent quantizer error due to deci-
sion level error.

The error signal value as a function of an input sine wave is given in Equa-
tion 3.46. The derivation is given in Appendix B.3.1. This expression allows
to calculate the added distortion due to a decision level eror.

eEQ(sin(2π · t)) =


1 if [b(c,M)] > sin(2π · t) > [b(c,M) + (1− α)∆] ,

∀c ∈ {M2 ,
M
2 + 1, ...( 3·M

2 − 1)}
0, otherwise

(3.46)

In this expression b(c,M) is decision level c and (1 − α)∆ is the shift of this
decision level due to the error in the 2-bit quantizer decision level.

b(c,M) = −
[

∆ · c
2M

· 4∆

A∆

]
(3.47)

Where 2M is the number of dither values, α is the decision level error in LSB
and A∆ is the amplitude of the input sine wave in LSBs. For rectangular dither
this is 3

2 . Figure 3.27 shows how eEQ(sin(2π · t)) relates to sin(2π · t).
The frequency components of the sine wave quantized by EQ are expressed

by Blachman’s approach [19] and the frequency components of the error eEQ
presented. When this is summed, the total spectrum is obtained and the SFDR
is calculated.

The magnitude of frequency components of EQ(sin(2π · t)) [18]:

EQ(p) = ∆

(
A∆ · δ(p− 1) + 2 ·

∞∑
n=1

(−1)n

πn
Jp(2π · n ·A∆)

)
(3.48)

For p is positive and odd. The magnitude of frequency components of eEQ(sin(2π·
t)) are calculated by applying the Fourier transform to eEQ(sin(2π · t)):

F (eEQ(sin(2π · t)))(p) =

M∑
c=1

[∫ π+A(c,M)

π+B(c,M)

∆ · e−i·p·tdt

]
+

M∑
c=1

[∫ 2π−B(c,M)

2π−A(c,M)

∆ · e−i·p·tdt

] (3.49)

Where the integration borders are b(c,M) scaled by the sine wave amplitude
and input to the arcsin function:

A(c,M) = sin−1 (b(c,M)) (3.50)

B(c,M) = sin−1 (b(c,M) + (1− α)∆) (3.51)
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This approach is only valid when α is smaller than an equivalent quantizer
LSB, i.e. when the equivalent quantizer is monotonic.

The method of finding SFDR degradation is verified by calculating the fre-
quency components of the error signal and constructing a time-domain signal.
The result is shown in Figure 3.27.
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Figure 3.27: Time domain representation of decision level variation. Obtained
by calculating the frequency components of eEQe , when D = 2 and α = 0.8.
MATLAB code in Appendix C.4

With the equations presented above, the SFDR depending on the 2-bit
quantizer decision level error (α) can be calculated. This is done in MATLAB
and the SFDR are shown in Figure 3.28. The figure shows three signals:

1. The theoretical upper limit of the SFDR for the dithered quantizers
(Equation 3.45). The SFDR values obtained are 0.5 to 1.1 dB below
the theoretical performance (which is in accordance with [17]).

2. The frequency domain approach result, as described in this section.

3. Time domain simulation results. The lower decision level of an ideal 2-bit
quantizer is adjuste by α. A rectangular PDF dithered sine wave is then
quantized.

The figure shows the SFDR as a function of α for D = 4, 5, 6, the x-axis range
is one LSB for each plot. It can be seen that the frequency domain approach
simulation result follows the same trend as the time-domain simulation, al-
though the first one is a bit optimistic. The value of α at which the SFDR
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starts decreasing is roughly equal. The error of α becomes noticeable when the
error is bigger than 1

3 an LSB of the equivalent quantizer.
From these results a certain allowed decision level deviation is found. For

instance, when the targeted SFDR is 60 dB for instance, a dither resolution
of 6 bits is required and that the the decision level error error may not exceed
half a dither signal LSB.
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Figure 3.28: SFDR as a function of α. The x-axis range is 1 LSB.

3.3.4 Random number generators

A dither signal is a signal with random values. True random values are non-
deterministic, which is difficult to generate by a digital system because oper-
ations of a digital system tend to be deterministic. A pseudo-random number
generator can be used for dithering purposes. The output of this generator
is deterministic, but its statistical properties can be sufficient to be used as a
random number generator. The output will cycle through all its possible values
in a pseudo-random order.

Many pseudo random generators consists of a Linear Feedback Shift Regis-
ter (LFSR). A LFSR generates linear recursive sequences: they cycle through
2n − 1 output values, where n is the number of registers used for the LFSR.
The two most well known types of LFSR are the Fibonacci and Galois gener-
ator [27], both types are shown in Figure 3.29. In this figure the states of the
switches are denoted by gm.

The Galois generator can operate faster, because it has less logic gates in
the feedback loop. The generators will output all possible values if the values
for gm are chosen properly [28].
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Figure 3.29: Linear shift feedback registers. a) the Fibonacci generator. b) the
Galois generator

3.4 Summary and conclusions

Summary Analog to digital conversion involves sampling and quantization.
Quantization is a non-linear operation and introduces distortion. The magni-
tude of the distortion components in the spectrum depend on quantizer reso-
lution. Adding dither to the input signal of a quantizer reduces the distortion
components.

Non-subtractive dithering increases the noise floor in the measured spec-
trum, but does not consume bandwidth as with band-limited dither or increase
digital complexity as with subtractive dither. A mathematical approach is in-
troduced which allows the derivation of the expected performance of a 2-bit
dithered quantizer. For dithering with a signal with a rectangular or triangu-
lar PDF, the total error of the dithered quantizer has a white spectrum which
allows highest SFDR. The concept of the equivalent quantizer is introduced,
which gives insight in the achievable performance of a dithered quantizer. Also
the the effects of non-linearity of the quantizer can be investigated using the
equivalent quantizer concept.

Non-linearity introduced by error in the quantizer decision levels leads to
degradation in SFDR. An approach to find the SFDR based on the equivalent
quantizer concept, for a decision level error, is presented. A maximum allowed
deviation of the decision level for a certain SFDR is found. In this analysis, the
effects of rectangular PDF dither are examined. Rectangular dither results in
a varying noise floor and thus some noise uncertainty. However, the noise floor
is lower than when triangular dither is applied and rectangular dither allows
larger input signal swing. Generation of digital dither can be done by using a
linear feedback shift register, which produces a pseudo-random digital signal.

Conclusions Different dithering schemes are discussed and one is most suit-
able for an energy detection spectrum analyzer: non-subtractive wide-band
dithering with rectangular or triangular dither PDF. This dithering scheme
allows low-resolution digital processing and does not consume measurement
bandwidth, but it raises the noise floor.

Triangular dither results in a higher noise floor in the measured spectrum
than rectangular dither. However, rectangular dither results in a dependency
between signal and added noise power. When the mean and power of the input
signal is controlled, the variation of noise floor power is limited to a small range.



56
CHAPTER 3. LOW RESOLUTION ANALOG TO DIGITAL

CONVERSION

Whether this noise uncertainty dominates the achievable system performance
depends on the total system it is used in. The noise uncertainty introduced by
rectangular dithering is assumed to be acceptable for this thesis. The equivalent
quantizer concept is an effective tool to analyze the performance of a digitally
dithered quantizer.



Chapter 4

System level design

Chapter 2 described the cross-correlation spectrum analyzer and how it in-
creases the SFDR compared to traditional spectrum analyzers. Then Chapter
3 described sampling and quantization and zoomed in to a 2-bit quantizer and
described dithering as a countermeasure for distortion.

The goal of this chapter is to introduce the revisited ADC concept, originat-
ing from ASTRON, and to investigate the suitability for the use in a cognitive
radio energy detection spectrum analyzer. The performance dependency of the
spectrum analyzer on ADC characteristics are investigated.

This chapter describes the system level design and simulation results of a
digitally dithered 2-bit ADC with automatic gain control and offset canceling
for the use in this cross-correlation spectrum analyzer. Uncorrelated dither
is added in both signal paths and the dither and quantization noise floor is
lowered by utilizing the cross-correlation spectrum analyzer. Thereby a higher
SFDR is achieved than for a traditional spectrum analyzer with a dithered
2-bit ADC.

In the following sections, first system level choices and calculations are
presented. Based on the expected performance of the ADC, a SFDR of 60 dB
is expected to be achieved after cross-correlation, for a resolution bandwidth of
6 MHz . The ADC concept is introduced, then an abstract view on the loop is
presented and an implementable block diagram is presented. Specifications and
settings are derived for the ADC sub-blocks. The ADC concept is implemented
in SIMULINK, the simulation results are shown and discussed. Also some
expectation for a CDF-based AGC ADC with a higher resolution are discussed.

4.1 Cognitive radio standard

The ADC concept described in this chapter is designed for the use in a cog-
nitive radio system. In this section relevant numbers from one cognitive radio
standard are presented.

FCC, Ofcom and IEEE are working on standards for cognitive radio. The
standards differ a little and therefore the IEEE 802.22 standard is used for sys-
tem calculations. Depending on geographic location, the DTV band is divided
into channels with three different widths [29].

1. DTV band: 54MHz− 862MHz

57
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2. Channel width: 6, 7 or 8 MHz.

3. Sensitivity limit: −116dBm in a 6MHz wide channel

4. Back-off time: 2s: When the used channel becomes occupied, the system
has this time to switch to another channel.

Solutions proposed in literature, where the goal is to meet the sensitivity
limit requirement of −116dBm/6MHz often use knowledge on the signal, such
as pilot tones or other cyclostationary properties [30]. The spectrum analyzer of
this thesis is designed as being a part of a cognitive radio system where possibly
also other spectrum sensing techniques are applied. In this case, the energy
detection spectrum analyzer gives a first coarse estimation of the spectrum.
Then a more advanced spectrum sensing mechanism determines if one of the
potential channels are free.

4.2 Spectrum analyzer front-end

The cross-correlation spectrum analyzer consists of an analog front-end and a
digital back-end, separated by the ADCs. In order to derive specifications and
requirements of the ADC, the characteristics of the analog front-end must be
defined. First two concepts for the analog front-end are discussed

4.2.1 Analog front-end concepts

In many analog front-ends, the signal picked up by the antenna is mixed down
to the IF band. This is done because the bandwidth of the signal of interest
lies beyond the bandwidth of the ADC and digital back-end, or because such
the bandwidth leads to large power consumption.

In previous work [4], the cross-correlation spectrum analyzer consists of a
quadrature mixer concept. The advantage of quadrature mixing is that nega-
tive frequencies can be distinguished from positive frequencies, because of the
complex input signal representation.

The frequency range of the DTV band is relatively low: it starts at 54 MHz
and stops at 862 MHz. When quadrature mixing is used, the sample frequency
is reduced but at the cost of another mixer, anti alias filter and ADC.

Choosing for a zero-IF quadrature mixer concept instead of a mixer-less
concept is justified when the power consumption reduction outweighs the cost
of additional hardware, for equal performance. Because in previous work a
zero-IF mixer concept is used and because a mixer-less concept might be a
good solution, both cases are addressed in this section.

4.2.2 Expression of signal power

The input signal power received at the antenna is expressed in Watt. When
the signal is amplified using automatic gain control, the ratio between analog
input signal power and output signal power is variable. Therefore, the output
signal power is expressed in a different unit than the input signal power. The
input signal is often expressed relative to one milliwatt. The output signal will
be expressed in decibels relative to a full scale (complex) sine wave (dBFs).
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The output signal is referred to a complex sine wave or a non-complex sine
wave, depending on the system discussed.

Power expressed relative to a full scale sine wave When a full scale
real signal is expressed in dBFs, the amplitude is half full scale and its power
is:

P =

(
FS
2

)2
2

(4.1)

=
1

8
· FS2 (4.2)

where FS denotes full scale. The power of a full scale sine wave is then:

10 · log10

1
8 · FS

2

1
8 · FS2

= 0[dBFs] (4.3)

Relative to a full scale complex sine wave When a full scale complex
sine wave is converted to the digital domain, both its real and imaginary parts
are converted by separate ADCs. The amplitude of the real and imaginary part
are then half the input range of the ADC. The power of a full scale complex
sinusoid is thus:

Preal + Pimaginary =

(
FS
2

)2
2

+

(
FS
2

)2
2

(4.4)

=
1

4
· FS2 (4.5)

The power in decibels of a full scale complex sine wave is then:

10cdot log10

1
4 · FS

2

1
4 · FS2

= 0[dBFs] (4.6)

4.3 Theoretical system performance

This section presents the system calculations for the two front-ends in mind.

4.3.1 Choices and calculations

First the choices are presented on which the theoretical performance calcula-
tions are based.

Choices

1. Maximum frequency.

• In case of zero-IF mixer concept: If the spectrum analyzer consist of
a quadrature mixing zero-IF front-end (in accordance with previous
work), then the DTV band is down-mixed to around 0HZ, For
instance with an oscillator frequency of 460MHz. The maximum
frequency is then approximately 405MHz.
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• In case of mixer-less concept: The maximum frequency is defined
by the cognitive radio standard: 862MHz

2. Sample frequency and resolution bandwidth: The channel bandwidths for
DTV vary per country and the channels are not uniformly distributed
over the DTV band. However, for the validation of the ADC concept,
the resolution bandwidth is chosen to be 6 MHz.

When the signal is down-mixed to around 0 Hz, the IF bandwidth ranges
from − 862−54

2 to 862−54
2 . The minimal sample frequency is:

862− 54 = 808MHz (4.7)

Because the anti-aliasing filter requires some bandwidth, the sample fre-
quency is chosen higher. The sample frequency is chosen based on the
resolution bandwidth of 6MHz and taking into account convenient FFT
implementation (i.e. the number of channels is a power of two). The
sample frequency for a zero-IF mixer concept is then:

fs = 1536MHz (4.8)

When the mixer-less concept is used, the frequency is doubled:

fs = 2 · 1536 = 3072MHz (4.9)

The number of channels in one spectrum is then:

#channels = 2dlog2( 862−54
6 )e = 256 (4.10)

3. Analog front-end gain The zero-IF front-end used in previous work [4]
consists of a passive splitter to divide the signal power over the two
parallel front-ends. In [5] a variable attenuator is described as part of a
cross-correlation spectrum analyzer. The front-end in mind, for which the
CDF-based AGC ADC is worked out, consists of this variable attenuator.
The attenuation is tunable in steps of 6 dB.

4. ADC concept: The analog to digital conversion is done by a dithered
2-bit CDF-based AGC ADC. This is the revisited ADC concept from
ASTRON. It includes automatic gain control and offset canceling. The
offset canceling suits the zero-if mixer concept, because this concept in-
troduces offset when input signal frequency components are close to the
mixer local oscillator frequency. The input signal is properly scaled by
the automatic gain control. The ADC uses dithering to remove distortion
components when strong narrow-band signals are input to the spectrum
analyzer.

5. Dither signal: The dither added to both parallel input signals are statisti-
cally independent complex valued signals with a rectangular or triangular
PDF. The noise floor is now raised by quantization noise and dither noise.
Uncorrelated dither signals are added to both signal paths such that the
quantization and dither noise floor is lowered by cross-correlation.
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6. SFDR determination: The theoretical SFDR is based on a zero mean
sine wave with amplitude 3

4 (rectangular PDF dither) and 1
2 (triangu-

lar PDF dither) of the input range of the quantizer, depending on the
type of dither used. For the calculation no other noise than dither and
quantization noise is present.

system calculations

1. Noise and distortion (in case of no dither): For a 2-bit ADC the power
of the quantization noise power, when assumed white, is:

q(w)2
white =

∆2

12
(4.11)

The resulting noise floor is then:

NoiseF loorq = 10 · log10(
∆2

12
)− 10 · log10(#channels) (4.12)

The worst case SFDR of a 2-bit quantizer is, according to equation 3.2:

SFDRwc = 8.07 · 2 + 3.29 = 19.43[dB] (4.13)

2. Noise and Distortion (in case of dither) Rectangular dither and triangu-
lar dither power respectively:

v2
r =

∆2

12
(4.14)

v2
t =

∆2

6
(4.15)

When added to the input signal of the quantizer, the noise floor is dom-
inated by the quantization noise power and dither power (total error
power, see 3.2). For the rectangular PDF, dither this depends on the
input signal. Although this is subject to recommended further research,
the total error power is approximately ∆

12 + ∆
12 when the input signal is

properly scaled, thus:

NoiseF loorεr = 10 · log10(
∆2

12
+

∆2

12
)− 10 · log10(#channels) (4.16)

NoiseF loorεt = 10 · log10(
∆2

12
+

∆2

6
)− 10 · log10(#channels) (4.17)

3. SFDR (in case of dither): For rectangular PDF dither, the input sine
wave is scaled by 3

4 and for the triangular PDF dither it is scaled by 1
2 .

When proper dithering is applied, the distortion components are reduced
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to below the noise floor. The SFDR in both cases then is:

SFDRr = 20 · log10(
3

4
)−NoiseF loorεr (4.18)

= 20 · log10(
3

4
)− 10 · log10(

∆2

12
+

∆2

12
)− 10 · log10(#channels)

(4.19)

SFDRt = 20 · log10(
1

2
)−NoiseF loorεt (4.20)

= 20 · log10(
1

2
)− 10 · log10(

∆2

12
+

∆2

6
)− 10 · log10(#channels)

(4.21)

4. Cross-correlation Thus the increase in SFDR due to cross correlation is
(equation 2.9):

I = 10 · log10(
√
Tm ·RBW ) (4.22)

(4.23)

5. SFDR (in case of dither and cross-correlation) Which gives a theoretical
achievable SFDR for rectangular PDF dither and triangular PDF dither
of:

SFDRr = 20 · log10(
3

4
)− 10 · log10(

∆2

12
+

∆2

12
)− 10 · log10(#channels)

+10 · log10(
√
Tm ·RBW )

(4.24)

(4.25)

SFDRt = 20 · log10(
1

2
)− 10 · log10(

∆2

12
+

∆2

6
)− 10 · log10(#channels)

+10 · log10(
√
Tm ·RBW )

(4.26)

Table 4.6 shows the achievable SFDR values based on the calculations pre-
sented above, for a measurement time of 0.2 seconds. In general: the smaller
the Resolution Bandwidth (RBW), the higher the SFDR, but the measurement
of a spectrum takes more time and thus the cross-correlation effect is smaller.
Based on these numbers, the ADC concept is worked out for a resolution band-
width of 6 MHz. A margin for the SFDR is used for the noise uncertainty due
to limited measurement time: the targeted SFDR for the ADC concept is 60
dB when rectangular dither is used.

The utilization of the cross-correlation allows a significant increase in SFDR
for a 2-bit ADC.

4.4 The ADC concept

The ADC concept originates from ASTRON [8], where it was implemented
with discrete components. In this section the concept is revisited and designed
for on-chip integration. The ADC is referred to as CDF-based AGC ADC.
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RBW Number SFDR, no XC [dB] SFDR, XC [dB] XC Gain
of channels (Rect,Triang) (Rect,Triang) [dB]

200 kHz 7680 47.1, 41.9 69.6, 64.3 23
6 MHz 256 32.4, 27.1 62.7, 57.4 30.4
7 MHz 220 31.7, 26.4 62.33, 57.0 30.7
8 MHz 192 31.1, 25.8 62.0, 56.8 31

Table 4.1: Achievable SFDRs for different resolution bandwidths

4.4.1 The use in radio astronomy

In radio astronomy knowledge on the input signal to the ADC is available, as
opposed to cognitive radio. In radio astronomy the input signal is Gaussian
distributed and white over the entire measured band. In cognitive radio the
input signal can be Gaussian distributed with a bandwidth which is a fraction
of the measured band. This is the reason that dithering is not required in these
radio astronomy applications. The input signal provides the dithering effect
itself: the quantization noise is white because the input signal is white. Not
only is the quantization noise white, but also clipping distortion is white.

This difference in input signals is the reason why the ADC concept for cog-
nitive radio yields different results than for radio astronomy. System settings
derived in the decision probability rules section (Section 4.4.6) are different
than system settings in [8], [7].

4.4.2 Introduction to the ADC concept

The CDF-based AGC ADC is a 2-bit ADC with automatic gain control and
offset canceling. When a signal is digitized, the amplitude ratio between the
analog and digital signal is determined by the ADC. To achieve variable gain
there are two possibilities. The first is amplifying the input signal by a variable
gain block prior to AD conversion. The second is adjusting the full-scale range
of the ADC. The CDF-based AGC ADC is based on a flash ADC and has a
variable full-scale range. The full-scale range is adjusted based on estimations
of the CDF of the input signal. A CDF of a signal is a function (CDF (x)) that
will give the probability that the signal is less than or equal to x. The CDF
of a signal thus also provides information on its amplitude. When the CDF is
estimated, this amplitude information is estimated and the full-scale range of
the ADC is adjusted accordingly.

The expected input signal to a cognitive radio system is a strong narrow-
band signal (e.g. FM signals), a combination of a few strong narrow-band
signals (e.g. Multiple FM signals) or Gaussian distributed signals (e.g. OFDM
signals). The CDF of sinusoidal or Gaussian distributed signals are known.
For signals with known CDFs, the relation between decision level probability
and amount of clipped distortion is known. Clipping distortion is present when
input signal samples fall outside the ADC input range. Because instantaneous
values of a Gaussian distributed signal can have any value theoretically, there
is always some clipping distortion. The ADC must make sure that the amount
of clipping distortion is small enough such that it does not degrade the targeted
SFDR. Thus the decision levels of the ADC are set such that maximal SFDR
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is achieved.
A signal consisting of multiple sinusoids can have many different CDFs

because of phase differences between the sinusoids. The CDF then must be
predicted or estimated, such that the amount of distortion is limited to accept-
able levels. This issue will be elaborated in section 4.4.6.
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Figure 4.1: Flash ADC with decision levels set through the input signal CDF.

Figure 4.1 shows the concept of the ADC. Three comparators convert the
analog signal to a digital signal, like a flash ADC. The reference level of each
ADC is determined through the input signal CDF. The probabilities are deter-
mined by a digital subsystem, referred to as the system-controller. Each deci-
sion level corresponds to a certain probability that the input signal is higher
than that decision level, as shown in Equation 4.27. This equation reveals a
kind of loop, as dout is proportional to a function of din and dout determines
din.

dout ∝ px(x > din) (4.27)

Assumptions The ADC acts on estimations of the CDF of the input signal.
A starting point of the energy detection spectrum analyzer for cognitive radio is
that it has no information on the input signal. However to say something about
the expected behavior of any ADC, some assumptions have to be made. For the
system level design of the CDF based AGC ADC, the following assumptions
are made:

1. The PDF of the input signal is symmetric around the mean of the signal.
This is a necessary condition to have uniform quantization.

2. The input signal statistics are constant during the measurement of one
spectrum. When this is not the case, the estimated spectrum is ambigu-
ous because signals with different statistics are averaged.
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During system design it turned out that the first assumption is not valid for
certain signals. This problem is addressed in section 4.4.8.

Automatic gain control and offset canceling The desired decision level
probabilities are predefined by the system. The decision level values then
result via the CDF of the input signal. The three decision levels are denoted
as [dn, d0, dp]. When the input signal has less pwoer, the range of its CDF is
smaller and the decision levels are changed accordingly. Also when an offset
is added to the signal, its CDF changes and so do the decision levels. This is
illustrated in Figure 4.2.
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Figure 4.2: Reference levels are adapted to CDF changes: a positive offset is
introduced and the amplitude is decreased.

From CDF estimate to decision level loop For three decision levels,
three points in the CDF are estimated. Each probability can be estimated by
counting the number of input values that are higher than the corresponding
decision levels in a certain interval. Another representation of the probabilities
is obtained when this counter signal is low pass filtered.

The result of the low pass filtered counter signal is compared to a reference
set by the controller. The decision level is then adapted accordingly. When
the results of the quantization are then fed-back to the decision level a decision
level loop is created.

4.4.3 Power estimation

To give any meaning to the resulting spectrum, a power reference is needed.
The value of an LSB is equal to the distance between two adjacent decision
levels, so each ADC defines an LSB in twofold. In the proposed implementation
in the following sections the value of an LSB is available in the digital domain.
Figure 4.3 illustrates the two LSBs known to the system. The two definitions
of an LSB are expected to be equal and their average is used as the power
reference. The spectrum analyzer consists of multiple ADCs (two for direct-
conversion and four for quadrature-conversion), so there are multiple power
references available, which can again be averaged.
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Figure 4.3: Quantizer LSBs known to system

4.4.4 Decision level loop

As became clear from Equation 4.27, each decision level is determined by a
feedback loop. A single ADC consists of three decision levels and thus three
decision level loops. Each loop sets that decision level independently. The
input signal and the desired decision level probability are inputs to this loop.
In the following sections, first an abstract view is presented on the decision
level loop and then an implementable block diagram of the loop is presented.

4.4.4.1 Abstract view

When looking at the decision level loop by looking at Equation 4.27 and Figure
4.2, only two signal expressions are of interest: decision level values(d) and em-
phthe probability of a signal being less then or equal to d (px(x > d)) . Those
units are related to the CDF of the input signal, so in the abstract view only
those units are considered. Figure 4.4 shows the abstract decision level loop.

A decision level loop has three tasks:

1. Compare the input to the decision level.

2. Estimate the probability that the input signal is higher than the decision
level: estimate px(x > d) .

3. Adapt the decision level value.

The comparison results in an estimation of the probability that the input
signal is larger than the decision level. This probability is denoted as pd. pref
is the reference probability (which is the desired probability for pd) and is set
by the system controller. The difference between these two probabilities is the
error probability ∆p, and must converge to zero. To let the error converge to
zero, ∆p is integrated before it is converted to a decision level. The integration
also filters out the high frequencies of ∆p, which bears relevance when the
implementation is concerned.

4.4.4.2 Decision level loop blocks

The abstract blocks of Figure 4.4 are filled in with realistic functions, such that
an implementable version of the decision level loop emerges. This decision level
loop is shown in Figure 4.5. The following choices are made:

1. The signal (w(t)) entering a decision level loop is a voltage, so the decision
level (d(t)) is also a voltage.
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Figure 4.4: Abstract representation of CDF-based decision level loop. (The
compare function is in this abstract representation not a comparator.) The in-
put signal is compared to d(t), which results in a probability pd, this probability
differs from the reference probability pref . The difference is integrated (

∫
∆p)

and converted to a decision level (d(t)). Because the difference is integrated,
pd converges to pref , as is indicated by the small CDF plots.

2. The comparison block is a clocked comparator, the clock frequency equals
the sample frequency of the total ADC. The output of this comparator
(pd(t)) is combined with other comparator outputs and results in the
digital output signal of the total ADC.

3. The output of the comparator (pd(t)) is low-pass filtered which results in
a higher-resolution digital signal (pd(t)).

4. The difference between (pd(t)) and the reference probability (pref ) is the
probability error (∆p) and is obtained by subtracting those digital signals.
The result is integrated by a digital integrator. The digital integrator is
followed by a gain block to control the dynamics of the loop.

5. The decision level is converted from the digital domain to the analog
domain by a DAC.

Figure 4.5 shows the implementable decision level loop block diagram.
The resolution of (pd(t)), pref and ∆p and the DAC are derived when the

total ADC is addressed (Section 4.4.5).

4.4.4.3 Frequency behavior

The low-pass filter and integrator limit the bandwidth of the decision level.
Because the filter and integrator are part of the feedback, the loop itself is
a high-pass filter. Figure 4.6 shows the effect of the decision level loop in
the frequency domain: the low-frequency components of the input signal are
filtered out and the reference probability signal is added.
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Figure 4.5: Decision level loop with realistic function blocks.
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Figure 4.6: Decision level loop effect in frequency domain. The low-frequency
content of the input signal is filtered out and the reference signal is added.
The reference signal sets the decision level. The small spectra illustrate how
frequency content is subtracted and added.

Bandwidth settling time trade-off The low pass filter and integrator en-
able the offset canceling of the input signal and comparator, because all offsets
can be translated to low-frequency components in the input signal. The conse-
quence is that the resulting spectrum is not estimated for frequencies around
zero Hertz. When this waste of bandwidth has to be reduced, the filter cut-
off frequency must be lowered. As a result the time for the loop to settle
will increase. Thus a trade-off exists between loop settling time and waste of
bandwidth.

4.4.4.4 Decision level loop transfer function

In order to determine the loop characteristics, the transfer function is linearized.
A transfer function from w to d is presented, such that the frequency compo-
nents in d can be defined. To linearize the loop, the comparator is replaced by
a summing point and gain Gc, the integrator has no upper limit and the DAC
resolution is assumed to be infinite.

Figure 4.7 shows the linearized decision level loop. In this figure the addition
of noise by the comparator is denoted by qc. For the determination of the
transfer characteristics the noise is neglected.
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Figure 4.7: Linearized decision level loop

The loop consists of the following functions:

d = Gl ·Gdac ·
∫

∆p (4.28)

∆p = pd − pref (4.29)

pd = Hlpf (pd) (4.30)

pd = Gc · (w − d) (4.31)

The transfer function of w to d is:

d

w
(s) =

GdacGlGc ·Hlpf

s+GdacGlGc ·Hlpf
(4.32)

(4.33)

The frequency behavior of the loop can now be defined by choosing Hlpf and
Gl.

The transfer function of w to y has a high-pass characteristic:

y

w
=

s ·Gc
s+GdacGl ·Hlpf

(4.34)

(4.35)

Loop settings The loop filter is determined by defining the filter order, stop-
band and stop band attenuation and phase margin. The stop-band depends
on the mixer concept used. For the mixer-less concept, frequencies higher
than 54 MHz must be attenuated properly. For a zero-IF mixer concept the
channel mixed to around 0 Hz cannot be measured by the spectrum analyzer.
To have minimal waste of sensed spectrum, the oscillator frequency is located
in the middle of this channel. The filter stop band starts at half the channel
bandwidth (RBW2 = 3MHz).

Because the theoretically achievable SFDR is 62.7 dBFs, The maximum
gain of the loop in the stop-band is −62.7dB. The phase margin is set to 60
degrees to have just a little overshoot and acceptable settling time. For the
design a settling time of maximal 1% of the measurement is considered to be
sufficient. For a measurement time of 0.2 seconds, the maximal settling time
is 1 ms. This allows a first order filter and instability issues are not introduced
by the linear behavior of the loop.
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The first order loop filter is of the form:

Hlpf =
1

sτ + 1
(4.36)

The transfer function of w to d becomes:

∆d

∆w
=

GdacGlGc
s2τ + s+GdacGlGc

(4.37)

Values for GdacGlGc and τ such that the requirement are satisfied are:

• GdacGlGc = 3 · 105

• τ = 1
6·105

For the implementation the filter is converted to a digital filter by the bilinear
transformation, resulting in a second order digital filter of the form:

H(z) =
b0 + b1 · z−1 + b2 · z−2

a0 + a1 · z( − 1) + a2 · z−2
(4.38)

where

[a0, a1] = [1.000,−1.9996, 0.9996] (4.39)

[b0, b1] = [0.1907, 0.3814, 0.1907] · 10−7 (4.40)

4.4.4.5 Non-linear effects

The linearization in the previous section excludes some important behavior of
the loop which is now addressed:

• The comparator was linearized as a summing point and gain. However,
the comparator introduces variable gain. The gain depends on the voltage
difference at the input. As a result, large variations in the input signal
CDF have longer settling times than according to the linear model and the
loop has become potentially unstable. The longer settling times become
visible in simulation, but in those simulations the loop does not become
unstable. To avoid large overshoots due to this non-linearity, a margin
must be used for setting the gain. Because the attenuator in the analog
front-end can be set by steps of 6 dB, the margin of the gain must be at
least a factor 2.

• The digital integrator can saturate. The effects are the same as for the
comparator. When the integrator saturates, the settling time will become
even larger than when only the comparator saturates.

Analysis of the non-linear behavior of the loop is required to be able to
assure that the loop does not become unstable. This analysis is not done for
this thesis and is listed as a recommendation in section 6.
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4.4.5 Total ADC

When multiple decision level loops are placed in parallel and each loop has
different reference probabilities, a multi-bit ADC is created. This section deals
with a 2-bits ADC mainly, based on the observations, expectations and con-
clusions are drawn about the possibility of ADCs with higher resolutions.

A single 2-bit ADC consists of three decision level loops. Figure 4.8 shows
the block-diagram of a total ADC. Each loop has its own reference probability,
denoted as pref [p, 0, n] for the high, middle and low decision levels respectively.
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Figure 4.8: Total ADC consisting of three decision level loops

The output of the three loops must be converted to the desired representa-
tion, for instance 2’s complement. This can be done by a small Look-up Table
(LUT).

When dither is added to the ADC, the block diagram is changed. The
dither can be added in multiple ways, as is elaborated in next section.

4.4.5.1 Implementation choices

When the decision level loops are implemented, the dither and decision level
resolution must be defined. For the total ADC the way dither is added to the
input signal must be defined.

Dither resolution As described in Section 3.3.3, the required dither resolu-
tion depends on the required SFDR and quantizer resolution. When an SFDR
of at least 60 dB is required, the dither should be 6 bits (see section 3.3.3).
For ideal decision levels and a rectangular PDF dither signal, the theoretical
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SFDR is:

SFDRr = 8.07 · (2 + 6 + log2(
3

4
)) + 3.29 = 64.5[dB] (4.41)

and for a triangular PDF dither signal:

SFDRt = 8.07 · (2 + 6 + log2(
2

4
)) + 3.29 = 59.8[dB] (4.42)

For these expressions it is assumed that the noise does not limit the SFDR.
The sample frequency of the dither DAC must be equal to the sample

frequency of the comparator. If the sample frequency is lower, there is a cor-
relation between time-separated dither values. The dither signal statistics do
not fulfill the requirements as described in section 3.3.1. The spectrum of the
analog dither signal is then not white anymore and neither is the spectrum of
the quantization error: distortion is present.

Decision level DAC According to the results of Section 3.3.3 the decision
level may have a maximal error of 1

3 dither LSB for rectangular dither, oth-
erwise a SFDR of 60 dB cannot be guaranteed. For triangular dither it is
assumed that the same holds (this is subject to recommended future research).
Thus the precision of the decision level must be better than 1

3 of a dither LSB.
The resolution of the dither DAC is 6 bits, and the quantizer consists of 22

quantization values, thus the decision level DAC resultion must be 6 + 2 = 8
bits.

The output bandwidth of the decision level DAC must accommodate the
loop bandwidth and is 3 MHz for a front-end with a zero-IF mixer concept and
54 MHz for a mixer-less concept.

Dither DAC implementation Dither is added to the input signal of the
ADC. The digital dither signal must have the same bandwidth as the total
measurement. Because of the variable decision levels, the value of an LSB is
variable and the dither must be scaled accordingly. Thus the dither must be
scaled before it is added to the signal. There are two options:

1. The dither signal (v) is added to the digital decision level signal (d) before
the decision level DACs. The dither signal is then converted to the analog
domain for each decision level. Figure 4.9 shows the block diagram of this
solution. The dither signal is thus added to the feedback signal for each
comparator. When the dither is added in the digital domain before the
decision level DAC, the decision level DAC requirements are increased.
The bandwidth of the decision level signal is significantly lower than
the bandwidth of the dither signal. So when the dither signal is added
to the decision level prior to DA conversion, the DA converted signal
bandwidth is equal to the dither bandwidth. Also the resolution of the
DAC is increased, because the dither value is scaled to the decision level
spacing. The required resolution of the DAC then depends on the lowest
expected value of an LSB. Because of the increased requirements,. the
power consumption and silicon area of this DAC are increased. Because
the dither is added to all three decision level loops in the ADC, the power
consumption and silicon area is increased in threefold.
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2. A single dedicated dither DAC is added to the ADC. The dither signal is
then added to the input signal before it enters the ADC. Figure 4.10 shows
the block diagram of this solution. In this case a fourth DAC is added
to the ADC, but only this fourth DAC must have the high bandwidth
requirements for the dither signal.

The best option is the second, because it costs only one extra DAC with
bandwidth requirements. The first option introduces three DACs with higher
bandwidth and resolution requirements.
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Figure 4.9: Total ADC with scaled dither added in the digital domain.

Another advantage of the second option is that dither scaling can be done
in the analog domain. The proposed solution is connecting the reference of
the dither DAC to the difference of the upper and lower decision level. This is
illustrated in Figure 4.11.

Stability Adding and scaling of the dither solution might be identified as a
potential stability problem. The dither amplitude is a function of the value of
an LSB and the value of an LSB is influenced partially by the dither signal.
When the value of an LSB increases, the dither signal amplitude increases
and the value of an LSB increases again. However the dither solution is not
unstable for rectangular and triangular dither. For rectangular PDF dither
the maximum amplitude is a half LSB and for triangular dither the maximum
amplitude is one LSB. The probability that the amplitude of the input signal
exceeds an LSB by the dither only is 0. So the gain of this loop is smaller than
1: the loop is stable.

4.4.6 Decision probability rules

The decision probabilities are set by the system controller. For different type
of signals, different rules must be applied for optimal performance. When an
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Figure 4.10: Total ADC with scaled dither added to the input signal
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Figure 4.11: Scaling the dither while converting to analog domain. b) is the
proposed implementation of a)

optimal rule for a specific signal type is applied, the SFDR is largest. For a
sine wave for instance, the decision level rules are optimal when the dithered
signal ampltitude exactly spans the input range.

In practice when the ADC is used in the spectrum analyzer, the most
conservative decision probability rules must be applied. Only in that case it
can be guaranteed that distortion components for any type of input signal are
below the noise floor.

For a sine wave, this conservative setting results in a raised noise floor and
thus SFDR is degraded. However, for analyzing the behavior of the ADC, the
optimal rule per signal type can be applied.

This section describes optimal decision probability rules for a sinusoidal
signal and Gaussian distributed signal. Finding optimal decision level rules for
other types of signals is a bit more complicated and is briefly addressed (finding
optimal decision rules for these signals is expected to be quite a study and is
considered out of scope of this thesis):
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Decision level rules for a sine wave as input The PDF of a sine wave:

px(x) =
1

π ·
√
A2 − x2

(4.43)

(4.44)

where A is set to 3
2LSB for rectangular dither and 1LSB for triangular dither.

For rectangular dither:

pv = ΠLSB (4.45)

pwr = px ∗ pv (4.46)

and for triangular dither:

pv = ΠLSB ∗ΠLSB (4.47)

pwt = px ∗ pv (4.48)

Non-linearity is minimized when all the possible input values are within the
ADC range. The null-decision level must correspond to a probability of 0.5,
because of PDF symmetry. The positive decision probability must correspond
to half the maximum input value, the negative decision level must correspond
to half the minimum input value.

The optimal decision are, for rectangular dither:

p−1
w ([

1

2
, 0,−1

2
]) = [0.2542, 0.5, 0.7457] (4.49)

The optimal decision are, for triangular dither:

p−1
w ([

1

2
, 0,−1

2
]) = [0.1250, 0.5, 0.8750] (4.50)

These results are verified by simulation.
The MATLAB snippet for obtaining these rules can be found in Appendix

C.5.1.

Decision level rule for a Gaussian distributed signal A Gaussian dis-
tributed signal can have any value theoretically. In practice the input signal
range will be bounded, but a decision level rule for which all the possible input
values fall into the ADC range results in a lot of attenuation.

For this decision level rule the percentage of samples falling outside the
ADC range is chosen such that the SFDR is not degraded to below 40, 50 and
60 dB.

A relation between distortion and signal power is determined by simulation.
Figure 4.12 shows the relation between the power of a Gaussian distributed
signal and the maximum power of a clipping error frequency component. The
input signal is shown in Figure 4.13. The simulation is repeated for various
input signal bandwidths with different locations in the spectrum, yielding ap-
proximately the same result. The MATLAB code is listed in Appendix C.5.2.1.

The PDF of the input signal:

px =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.51)

pw = px ∗ pw (4.52)
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Figure 4.13: Gaussian distributed band-limited input signal.

The input signal power allowed is:

σ(40dB) = 0.215[
1

FS
] (4.53)

σ(50dB) = 0.174[
1

FS
] (4.54)

σ(60dB) = 0.146[
1

FS
] (4.55)

This gives the following decision level probabilities (MATLAB code of ob-
taining these number is found in Appendix C.5.2.2):

p
(40dB)
ref = p−1

w ([
1

2
, 0,−1

2
]) = [0.1354, 0.5, 0.8646] (4.56)

p
(50dB)
ref = p−1

w ([
1

2
, 0,−1

2
]) = [0.0925, 0.5, 0.9075] (4.57)

p
(60dB)
ref = p−1

w ([
1

2
, 0,−1

2
]) = [0.0626, 0.5, 0.9374] (4.58)

These decision probabilities differ from the probabilities used in astronomy
applications [8], [7] for reasons explained in section 4.4.1. In those applications
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the optimal decision level probabilities are:

∆ = 0.91 · σ (4.59)

p
(radioastronomy)
ref = CDF−1(−0.91, 0, 0.91) (4.60)

= [0.1814, 0.5, 0.8186] (4.61)

4.4.7 Uncorrelated quantization and dither noise

The performance of the 2-bit AD conversion is increased by utilizing the cross-
correlation spectrum analyzer: the quantization and dither noise in the spec-
trum is decreased. To achieve this reduction, uncorrelated dither is added to
both parallel signal paths and the dither and quantization noise floor is lowered
by cross-correlation and spectral averaging.

In case of an analog front-end with a zero-IF mixer concept, generation
of two uncorrelated complex dither signals is done by four dither generators
(a,b,c,d):

v1 = va + i · vb (4.62)

v2 = vc + i · vd (4.63)

For a mixer-less concept two dither signals are required, as the dither signals
are not complex.

For each dither signal a dither DAC is required and the signal is scaled to
the LSB of that ADC. Figure 4.14 shows the block schematic of the analog to
digital conversion for a zero-IF mixer concept.
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Figure 4.14: ADCs in a total system in case of an FX correlator. Decision level
feedback to dither DAC, attenuator and averaging not drawn. For each ADC
one dither DAC is introduced.

4.4.8 Input signal dependency

During system level design, dependencies of the system performance on the
input signal have been found. Because not all characteristics of the input
signal are known, the exact impact on system performance is not presented
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and further research on this topic is listed as a recommendation in chapter 6.
The following paragraphs elaborate these dependencies

Dependency due to sampling When the input signal PDF is symmetrical
around its mean, the PDF of the sampled version is not exactly symmetrical
in most cases. In Figure 4.15 this is illustrated for a sine wave. This results in
distortion when the signal is quantized by the CDF based AGC ADC, because
the decision levels will not be spaced with equal distances. The estimated PDF
becomes more symmetrical when the input signal frequency is lower, thus the
decision level spacing difference reduces when signal frequency is reduced.
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Figure 4.15: A sampled sine wave and its non-symmetrical PDF of a sampled
sine wave.

For a sine wave, the unequal spacing of the decision levels depends on its
frequency and phase related to the sample frequency and phase. Figure 4.15
shows a case where the effect is very clearly visible. The frequency is 1

3 of the
sample frequency.

In case of the CDF-based AGC ADC the PDF of a sine wave is estimated
by observing a number of samples in the time domain. Because of the problem
described above, the estimated PDF of a sine wave can vary periodically in
time. The period of this variation is the common period of the sine wave and
the sample frequency. Figure 4.16 illustrates this variation of the PDF over
time.

Dependency in case of sum of several sine waves Another dependency
of the performance of the ADC on the input signal becomes visible when the
input signal is the sum of small number of sine waves. Such a signal can result
in non-symmetrical PDFs as is illustrated in Figure 4.17. The asymmetry is
present when the initial phases of the sine waves differ.

The chance that such a signal is picked up in practice may be very small,
such that it can be considered not a problem. This requires further research.

Solutions Some potential solutions are shortly discussed:
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• Increasing the oversample factor. The PDF of a sine wave resulting from
an estimation becomes more symmetrical when the sample frequency is
higher. The variation in the PDF estimates also is reduced.

• Detect unequally spaced decision levels. When an input signal results in
unequally spaced decision levels, the system controller can detect it and
disregard the estimated spectrum.

4.4.9 Multi-bit CDF based AGC ADC

Until now only a 2-bit ADC is considered. In this context, a multi-bit ADC
is an ADC with more than 2 bits. An ADC with a larger resolution is easily
constructed when more decision level loops are placed in parallel. Decision
levels closer to the range boundaries of the ADC will become a problem. The
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probability that the input signal crosses that decision level will become smaller
as the ADC resolution increases. The time required to properly estimate those
points in the CDF is thus increased as the probabilities move closer to 0 or 1.

Suitability of such a multi-bit CDF based AGC ADC depends on system re-
quirements. To have insight in a multi-bit ADC, additional research is required
on this topic.

4.4.10 Applicability of the CDF-based AGC ADC

Theoretically the dithered CDF-based AGC ADC allows a SFDR of 60 dB when
a pure sine wave is input to the spectrum analyzer. However, this performance
requires knowledge about the signal received, which is in contradiction with the
design goals: the energy detection spectrum analyzer must sense the spectrum
without having knowledge on the input signal.

Three problems arise when the ADC is used in an energy detection spectrum
analyzer for cognitive radio.

• The decision level probabilities for optimal performance differ per type
of input signal. In practice the most conservative settings must be used,
which are the probabilities for Gaussian distributed noise. When a sine
wave is input to spectrum analyzer, the signal will not be full scale and
the SFDR is degraded by 5 dB (which is obtained from simulation), so
the achievable SFDR is 55 dB.

• Signal frequency component phase differences. When the input signal to
the ADC consists of one or a few pure sine waves, the phase difference
between the sine waves may introduce non-symmetrical PDFs, which
degrade the SFDR seriously. It may be that signals picked up by an
antenna prove to have symmetrical PDFs, but this is then knowledge
about the input signal, which is in contradiction with the design goals.
The impact on performance when real signals picked up by an antenna is
subject to future research and is listed as a recommendation in Chapter
6.

• Sine wave and sample clock phase differences. For a sine wave with a
frequency close to the sample frequency, the estimation of a symmetrical
PDF can result in a non-symmetrical PDF. If this is the case, decision lev-
els are spaced non-uniformly and SFDR is degraded seriously.This prob-
lem is reduced when the input signal is oversampled. The exact impact
of oversampling is listed as a recommendation in Chapter 6.

The SFDR degradation because of non-ideal decision levels may be accept-
able but the need for oversampling and the knowledge required about signals
picked up by an antenna make this ADC less attractive for the use in an energy
detection spectrum analyzer.

4.5 Simulation

The theoretical performance of the proposed CDF-based AGC ADC is verified
by system level simulations. An ADC and zero-IF mixer front-end are simu-
lated to verify that the ADC can work for energy detection spectrum sensing in



4.5. SIMULATION 81

cognitive radio. The results in the frequency domain are presented as spectra
of complex valued signals.

The expected behavior and performance of the ADC are verified by simu-
lation using SIMULINK and MATLAB. The decision level loop is built out of
SIMULINK blocks. Input signals are generated in MATLAB and imported in
SIMULINK, output signals are exported to and analyzed in MATLAB.

This section consists of two subsections:

1. Functional simulations. The expected function of the ADC is verified.
The settling of the ADC is shown and discussed and estimated spectra
of different input signals are discussed.

2. Non-linearity simulations. Because the comparator is worked out at sys-
tem level in Chapter 5, three sources of additional non-linearity are mod-
eled at system level: comparator offset, comparator hysteresis and com-
parator noise. Maximum allowed values for these non-linearities are found
as they are expected to be present at the circuit level.

4.5.1 Functional simulations

Following paragraphs show and discuss the simulation results. The time do-
main simulation results are shown for a single ADC, as each ADC in the cross-
correlation front-end behaves the same. The spectra presented are based on a
zero-IF mixer concept front-end. I and Q signals are AD converted and thus
is the frequency range [− 1

2fs,
1
2fs].

In the following paragraphs three cases are discussed:

1. A sine wave is the input signal, the dither signal has a rectangular PDF
and the probabilities are set to the optimal values for a sine wave. In
practice, for the cognitive radio energy detection spectrum analyzer these
setting cannot be used, because it is not known whether the signal is a
sine wave or not.

2. A sine wave is the input signal, the dither signal has a triangular PDF
and the probabilities are set to the optimal values for a sine wave.

3. A sine wave is the input signal, the probabilities are set to the optimal
values for a Gaussian distributed signal. With these settings unacceptable
clipping is avoided for sinusoidal or Gaussian distributes signals. Because
these are the most conservative settings, in practice these setting must
be used.

4. A Gaussian distributed signal is the input signal.

4.5.1.1 Sine wave input, Rectangular dither, optimal sine wave
probability rules applied

To investigate the SFDR of the loop, a sine wave is used as input signal to
the total ADC. The probability levels for this sine wave are set to the optimal
values for a sine wave.

Figure 4.24, 4.19 and 4.20 show the result of simulation in SIMULINK.
The SFDR in Figure 4.20 is 60.1 dB. The frequency component with strength
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-62.66 dB limits the SFDR. The achieved SFDR is thus 2.5dB lower than the
theoretical SFDR of 62.7 dB.

The settings used for the simulation are shown in Table 4.2. As the decision
levels climb to their intended levels, the dither signal scales accordingly. The
output signal also changes according to the decision levels. The settling time
is about 3.6 · 104 samples: 23.4µs for a sample frequency of 1536MHz. This is
only 0.12% of the measurement time.
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Figure 4.18: Settling of the ADC, settings used shown in Table 4.2. The input
signal shown is the input signal at each comparator.
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Observations The non-linearity effects as discussed in Section 4.4.4.5 can
be seen in this simulation. The simulation shows a CDF step response. This
is because the initial state of the loop does not corresponds with the CDF of
the input signal. The effects which can be seen are elaborated:

• The comparator output is limited,so the maximum slope of a decision
level is limited. The gain of the comparator of the lower decision level
is smaller, because the target decision level voltage is closer to the low
output voltage of the comparator.

• The dither signal amplitude has more relative overshoot than either of
the decision levels. The upper decision level increases faster than the
lower, such that the difference signal has more overshoot.

Spectrum averaged XC result, long measurement time Figure 4.21
shows the simulation result of the full measurement time of 0.2 seconds. The
SFDR is 58.2 dB.
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Figure 4.21: Total IF front-end simulation, spectrum (when settled), settings
used shown in Table 4.2

4.5.1.2 Sine wave input, triangular dither, optimal probability
rules applied

When triangular dither is used, the result is as expected: the noise floor is
higher and the settling time is longer. Figure 4.22 shows the settling of one
ADC. When the system would be implemented and the positive voltage is 1
volt, then for this input signal, dither signal and loop settings, the input signal
to the ADC would clip. The dither is amplified such that the sum of the
input signal and the dither leads to values outside the range of supply voltage.
Figure 4.23 shows simulation results when the clipping is modeled. Nothing has
changed, because the input signal is above the upper decision level, whether it
is being clipped or not: the ADC output does not change.
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Setting Value

Input signal Sample clock 1.536 GHz
Input signal type Sine wave
Input signal frequency 48 MHz
Input signal offset 0.65
Input signal amplitude 0.15
Dither signal Rectangular
pn 0.75
p0 0.5
pp 0.25
Hlpf

1
s·6·10−5+1

Gl 3 · 105

Table 4.2: Simulation settings for ADC simulation
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Figure 4.22: Settling of the ADC, settings used shown in Table 4.3
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Setting Value

Input signal Sample clock 1.536 GHz
Input signal type Sine wave
Input signal frequency 48 MHz
Input signal offset 0.65
Input signal amplitude 0.15
Dither signal Triangular
pn 0.875
p0 0.5
pp 0.125
Hlpf

1
s·6·10−5+1

Gl 3 · 105

Table 4.3: Simulation settings for ADC simulation

4.5.1.3 Sine wave input, optimal Gaussian distribution probability
rules applied

When the probability are set to the optimal probabilities for a Gaussian dis-
tributed signal, the power of the sine wave is reduced by 5.2 dB and the settling
time has increased to

Setting Value

Input signal Sample clock 1.536 GHz
Input signal type Sine wave
Input signal frequency 48 MHz
Input signal offset 0.65
Input signal amplitude 0.1
pn 0..09374
p0 0.5
pp 0.0626
Hlpf

1
s·6·10−5+1

Gl 3 · 105

Table 4.4: Simulation settings for ADC simulation

4.5.1.4 Gaussian distributed signal input

The simulation results in case of sinusoidal signals at the input show a smaller
resolution bandwidth then the intended 6 MHz. This is done to show that
no harmonic distortion components appear in the spectrum, while limiting the
simulation time. For a Gaussian distributed signal, this cannot be done because
due to the wide input signal bandwidth, the distortion components are a lot
more distributed across the spectrum.

Figure 4.27 shows the result of simulations in SIMULINK. The decision
levels are set for no distortion components above -60 dBFs (obtained in Section
4.4.6).
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Figure 4.24: Total ADC simulation, settings used shown in Table 4.4
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The settling time in this case is about 6 · 104 samples: 39µs for a sample
frequency of 1536MHz.

The settings used for the simulation are shown in Table 4.5. The settling
time per decision level is different than in the case of a sine wave, resulting in
more overshoot of the dither signal amplitude.

The spectrum of this short measurement time simulation is not shown, be-
cause it does not give a lot of information. In the case of a Gaussian distributed
signal, reducing the resolution bandwidth does not provide more information.

In the following paragraph, the resulting spectrum is presented when the
measurement time is increased.

Setting Value

Input signal Sample clock 1.536 GHz
Input signal type Gaussian distributed
Input signal frequency 64-96 MHz
Input signal offset 0.65
Input signal power 0.0466
pn 0.9374
p0 0.5
pp 0.0626
Hlpf

1
s·6·10−5+1

Gl 3 · 105

Table 4.5: Simulation settings for ADC simulation
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Figure 4.27: Gaussian distributed signal, settling behavior. Settings shown in
Table 4.5.

Spectrum averaged XC result, long measurement time Figure 4.28
shows the result of a simulation of the full measurement time of 0.18 seconds.
It is clearly seen that the resulting spectrum noise floor is non-white. The
strongest distortion components are located at −3 times the fundamental tone
frequencies. The non-whiteness of the noise floor is because of the clipping
noise which is present. It is interesting to note that the distortion components
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at −3 times the fundamental tones decrease when measurement time increases.
The clipping distortion of the parallel paths is thus partially uncorrelated.

In the spectrum, spectral leakage is clearly visible. This effect can be re-
duced by applying a tapering window. Unfortunately this technique decreases
resolution bandwidth [5]. Choosing a suitable window is subject to future
research.
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Figure 4.28: Total IF front-end simulation, spectrum (when settled), settings
used shown in Table 4.5.

4.5.2 Modeling of non-linearities

Because the circuit level design in the next chapter zooms in to the comparator,
three non-linearity effects are investigated at system level: comparator offset,
comparator hysteresis and comparator noise. Offset is a problem when the
dither is scaled to the decision levels. When the offset differs between decision
levels, the dither is not scaled properly which leads to distortion.Hysteresis is
a memory effect, the outcome of a comparison between two values depends on
the previous values. This effect introduces additional distortion components
and thus decreases the SFDR of the system.

4.5.2.1 Comparator offset

An ideal comparator gives a high output value when the voltage at the positive
terminal is higher than the voltage at the negative terminal. When a compara-
tor suffers from offset, the output of the comparator is high when the voltage
at the positive terminal is at least the offset voltage higher than the voltage at
the negative terminal

The CDF-based AGC ADC has offset canceling for each of the decision
levels. When the offset of a comparator is canceled, the decision levels will
differ in value with respect to the intended value. The dither signal is scaled
to the upper and lower decision levels. If the offset for those decision levels are
equal, the offset is canceled as well:

LSB =
(dp + vo)− (dn + vo)

2
=

(dp)− (dn)

2
(4.64)
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Where dp and dn denote the input voltages at negative terminals of the upper
and lower comparator of the ADC. vo denotes the offset voltage. When the
upper and lower decision levels have different offsets, the dither range deviates
by half the difference in offset:

LSB =
(dp + vop)− (dn + von)

2
=

(dp)− (dn)

2
+
vop − von

2
(4.65)

where vop and von denote the offset voltages for the upper and lower compara-
tors respectively. In this case the dither range is not equal to one LSB and will
cause additional distortion.

It may seem a plausible countermeasure to increase the dither signal range
such that the range of the dither is larger than decision level spacing in any
case. However, the conditions for independent moments and spectral whiteness
of Section 3.3 are not satisfied.

Also simulation results show that the added distortion is not reduced by
this countermeasure: would there be no offset in the system, increasing the
dither range not only leads to more noise but also to additional distortion.

Allowed offsets Offsets are canceled without SFDR degradation when each
comparator in the ADC has equal offsets. So only offset-mismatch is looked
at: comparator offset relative to the other comparator offsets. In case of offset-
mismatch, the dither signal is not scaled properly to an LSB. Allowed offset
values are obtained by simulation.
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Figure 4.29: Total ADC with offsets added to upper and middle comparator.

Three comparators give two relative offsets. In this case the offset of the
lower comparator is fixed and the other two are varied. The comparator offsets
are denoted by [von, vo0, vop] and von = 0. For a SFDR of 60 dB the allowed
offsets are found by simulation. Figure 4.29 shows the simulation set up. The
offset is swept and the maximum allowed value is found for which the distortion
components in the resulting spectra are below 60 [dBFs].
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1. vo(0) = vo(p) and vo(0, p) > 0: The resulting dither amplitude is too
large. Allowed offset: vo(0, p) < 1mV

2. vo(0) = vo(p) and vo(0, p) < 0: The resulting dither amplitude is too
small. Allowed offset: vo(0,p) > −0.7mV

These numbers are a starting point for circuit level design optimization.

4.5.2.2 Comparator hysteresis

Hysteresis is defined as the maximum difference in the values of a code transi-
tion, when the transition level is approached by a changing input signal from
either side of the transition [21]. Hysteresis is non-linear effect, so distortion
components in the spectrum are expected. In many applications hysteresis is
deliberately added to a comparator to get stable output signals: when the dif-
ference voltage at the comparator is very small, the noise in the signal causes
an fast alternating output. For the CDF-based AGC ADC the essential infor-
mation is contained in the statistics of the fast alternating comparator output.
Therefore, the hysteresis must be as small as possible.

Hysteresis is subdivided in dynamic and static hysteresis effects. Dynamic
hysteresis is the non-linearity which depends on input signal frequency. Static
hysteresis is caused by memory effects which exist at circuit level. Allowed
static hysteresis values are obtained by system level modeling of the hysteresis
effects. In this case only static hysteresis effects are modeled, because dynamic
hysteresis effects depend on the exact implementation of the comparator. Static
hysteresis is modeled as:

wh(n) = w(n) + h · 2 · (wh(n− 1)− 1

2
) (4.66)

w(n) is the original comparator input sample at moment n, wh is the changed
input sample due to the hysteresis and h is the allowed hysteresis. The output
is thus wh compared to the decision level. Figure 4.30 shows the modeling of
the hysteresis effect.
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Figure 4.30: Model of decision level loop with comparator with hysteresis effect.

The allowed value for h is determined by simulation. A SFDR of at least
60 dB is achieved when:
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• h < 0.3[mV ]

Thus when a comparison results in a high output of the comparator and the
next comparison will results in a low output, the input signal difference must
be larger than h for this next comparison. This value h is used as a starting
point for circuit level optimizations.

4.5.2.3 Comparator noise

Noise added by the comparator may lead to additional clipping distortion and
may degrade the SFDR. For the case of a sine wave with optimal decision level
rules, the allowed amount of noise is obtained by simulation. For each com-
parator in the an ADC, statistically independent random Gaussian distributed
noise is added. When the input signal is smaller, the noise of the comparators
is relatively larger, thus the smaller the input signal amplitude, the smaller the
allowed noise is: this is the traditional noise and linearity trade-off. Table 4.6
shows the allowed noise levels for optimal sine wave probability settings.

Input amplitude [V] Allowed noise σ [mV]

0.15 1.6
0.1 0.9
0.075 0.3
0.05 0.1

Table 4.6: Allowed noise per input sine wave amplitude, for optimal sine wave
probility settings.

For a Gaussian distributed signal, the noise added by the comparator can
be translated to increased amplitude of the input signal. The allowed noise can
than be obtained

4.6 Summary and conclusion

Summary The system level implementation of the CDF-based AGC ADC
is described in this chapter. System choices are made and the theoretical
performance is calculated. The CDF-based AGC ADC concept is introduced
and its automatic gain control and offset canceling mechanism is described.

Dither is added to the input signal to reduce distortion components in the
spectrum at the cost of a higher noise floor. Because the values of an LSB are
variable for the ADC, the dither is scaled to the value of an LSB.

Optimal settings for the ADC are derived for different signal types. Because
the energy detection spectrum analyzer does not have knowledge about the
input signal, in practice the most conservative setting must be applied for any
type of signal.

The theoretical performance is achieved when optimal settings for a sine
wave are used. However, because conservative settings must be used in practice,
the practical performance will be less.

The correct functioning of the ADC is verified by simulation. The theoret-
ical SFDR is achieved when a sine wave is input to the system and when the
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corresponding optimal settings are used. With the most conservative settings,
the SFDR is decreased by 5.2 dB.

During this verification, the assumption of the input signal having a sym-
metrical PDF appeared to be a problem. When several strong narrow-band
signals are present in the input signal, the PDF becomes non-symmetrical.
Also the frequency and phase of narrow-band input signals related to the sam-
ple frequency and phase influence the performance. For sinusoidal signals with
frequencies close to the sample frequency, the sampled version of the signal has
a non-symmetrical or slowly varying non-symmetrical PDF.

The performance of the ADC thus depends on the input signal. For larger
oversample factors this dependency reduces and the practical performance ap-
proximates the theoretical performance (for equal system settings).

When the practical performance is reduced by the non-uniform decision
level spacing, this can be detected by a system controller. Thus, when the
measurement is corrupted due to this effect, it is known by the system controller
and the spectrum can be disregarded, although this is not acceptable in a
cognitive radio application.

The ADC is simulated to verify the expected behavior of the ADC and
to see if the theoretical SFDR can be achieved. The dither signals added
to the (quadrature mixing) cross-correlation IF front-end are two statistically
independent (complex) uniform distributed random signals. This allows the
cross-correlation to reduce the dither and quantization noise floor. Thus a
higher SFDR is possible than would be possible for a conventional dithered
ADC with the same dither resolution, quantization resolution and resolution
bandwidth.

Because the comparator is analyzed on circuit level, hysteresis and offset
are modeled at system level, as they are expected circuit level non-linearities.
This way maximum allowed values are obtained.

With this system level design, the performance dependencies at system level
are investigated and circuit level components, such as the comparator, can be
implemented on circuit level.

Conclusions When the resolution of the ADCs for a cognitive radio spec-
trum analyser is lowered, several problems are introduced. The ADC proposed
in this chapter is able to tackle those problems, but other problems appear.

The problem of distortion due to the low resolution is reduced by adding
dither to the input signal. The result is that the measurement noise floor
is raised. This problem is reduced by utilizing the cross-correlation concept,
thus the measurement noise floor is lowered by increasing measurement time.
To do this two statistically independent dither signals with specific PDFs are
required, which must be generated in the digital domain. The dither signal
must be added to the analog input signal, thus additional hardware is required
to convert this digital signal to the analog domain.

Another problem is, to achieve maximal SFDR, signal clipping must be
avoided or limited to acceptable values. The CDF-based AGC ADC solves
this problem by the AGC and offset canceling. These features are realized
by adjustable ADC decision levels based on the CDF estimate of the input
signal. This approach introduces new problems. Due to the coarse estimation
of CDF, different signals cannot be distinguished. Thus in practice, the most
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conservative ADC settings must be used, which decreases the sensitivity of
the spectrum analyzer. An assumption was made that input signal PDFs are
symmetrical, but the estimate of a symmetrical PDF can be non-symmetrical.
This is the case for input signals with frequencies close to half the sample
frequeny. The assumption may be not realistic as the PDF of a sum of a few
strong sinusoids can be non-symmetrical.

Digitally dithering a 2-bit ADC is an effective way to increase its SFDR.
When decision levels are varried to create AGC and offset canceling, the dither
can be scaled accordingly to approximate the theoretical allowed performance.
The utilization of the cross-correlation concept and statistically independent
digitally generated dither effectively increases the SFDR of the dithered ADC
at the cost of measurement time.

The AGC and offset canceling realization of the CDF-based AGC ADC,
introduces problems which counteract the design goals of the energy detection
spectrum analyzer. Because of the dependency of performance on the input
signal, the CDF-based AGC and offset canceling is not considered to be a good
choice for a cognitive radio energy detection spectrum analyzer. The scaled
dithering and cross-correlation utilization can be applied to 2-bit ADCs with
other AGC mechanism, such as in [7].





Chapter 5

Circuit level design

The previous chapters described the system level design and the theory required
to make proper design choices. To have insight in the impact of implementing
the ADC components on circuit level, the most critical component is selected
and implemented. The comparator is implemented in Cadence using UMC090
MOSFETs. This is a 90 nm process with 1v supply voltage MOSFETs, the
models used are BSIM4 models. The first part of this chapter describes the
comparator, how it works and the expected causes for performance degradation.
The second part presents ADC simulation results with ideal components except
for the comparator. The comparator is worked out for a sample frequency of
1.536 MHz.

5.1 Critical ADC component

The ADC consists of the following blocks in the analog domain:

1. Comparator, sample frequency: 1536 MHz

2. Dither DAC, resolution: 6 bits, frequency: 1536 MHz

3. Decision level DAC, 8 bits, frequency: 3 MHz

DACs with requirements compaale to the dither DAC are found in litera-
ture and is considered to be not critical, Table 5.3 gives an overview of some
DAC characteristics from literature. The decision level DAC has a relative low
output frequency and is even less critical. The comparator is more critical.
In system level design, the influence of offset, hysteresis and common-mode
dependency became clear. To get a view on the influences of an implemented
comparator on the system performance by these factors, a comparator is se-
lected and implemented on circuit level. The selected comparator is previously
implemented for the use for long on-chip wires and the specifications are in the
same range as the target comparator.

The comparator may not have too much hysteresis, which adds distortion
to the measured spectrum of the energy detection spectrum analyzer. When
its offset is too large the effect of dither is reduced and distortion components
appear. Also power estimation becomes a problem when the offset depends on
the input common mode voltage.

95
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Reference Resolution sample rate Power process year

[31] 6 Bits 1.25 GHz 6 mW 1.8 V, 0.18 um 2008
[32] 6 Bits 2.7 GHz 28 mW 1.2V, 0.13 um 2006
[33] 6 Bits 5.4 GHz 20 mW 1.5V, 0.13 um 2005
[34] 6 Bits 1 GHz 7.5 mW 1.5 V,0.13 um 2005

Table 5.1: CMOS DAC characteristics from literature.

5.2 The comparator

The selected comparator is the double tail voltage sense amplifier by D. Schinkel
et. al.[35]. The implementation described in [35] allows a sample frequency of
up to 3 GHz, fabricated in a 1.2V 90nm CMOS process. The comparator was
designed for being a part of a low-swing on-chip data transceiver, with input
signals biased around 1.1V . The operating characteristics thus differ from the
ones in this thesis.

5.2.1 The circuit

Figure 5.2 shows the comparator used in the circuit level modeling. It is a
clocked comparator, each half period it is reset and the next half period it
compares the input signals. The parasitic capacitances play a crucial role in
the way the comparator functions. Therefore figure 5.2 shows the comparator
with parasitic capacitances connected to the internal nodes and the negative
supply rail.

Both phases are described in next paragraphs.
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In+ In-

Clk

Di- Di+

Di+Di-

Clk

Out+
Out-

M12

M1

M2

M3
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M10 M11

M7

M9

M8

M5 M6

Figure 5.1: Double tail voltage sense amplifier [35], consisting of an input stage
(left) and a latch (right).

Reset phase. When the Clk signal is low, nodes Di− and Di+ are connected
to the positive supply rail and CDi− and CDi− are charged. As a result M10
and M11 start conducting and will discharge COut− and COut+. M12 and M9
are not conducting during reset.

Compare phase. Nodes Di− and Di+ are ‘high‘ and nodes Out+ and Out−
are ‘low‘. At the rising edge of the Clk signal, M9 starts to conduct and the
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Figure 5.2: Comparator with parasitic capacitances.

voltages on In+ and In− will make M5 and for M6 conduct. As a result nodes
Di− and Di+ are discharged to the negative supply rail with a rate depending
on the input voltages.

The resulting voltage difference on nodes Di− and Di+ cause different
currents through M10 and M11. One of the output nodes will discharge faster
and the positive feedback of the latch amplifies this difference such that one
output node will be pulled to the negative supply rail and one to the positive
supply rail.

Figure 5.3 shows the Di and output nodes of the comparator.
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Figure 5.3: Internal and output nodes of comparator for a voltage difference of
150 mV. 1) reset phase. 2) compare phase

5.2.2 Input signal properties

Because the input MOSFETs are N type devices, the input signal is biased such
that the input MOSFETs are in strong inversion. The input signal swing....

5.2.3 Block diagram

To have insight in the behavior of the comparator during the compare phase,
a block diagram is derived, which shown in Figure 5.4. This block diagram
shows the location of gain and the integrations. When the differential paths are
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assumed to be perfectly symmetrical, the comparator behavior can be depicted
as shown in Figure 5.5 (this block diagram is also presented by D. Schinkel on
a poster at ICD). The gain blocks do not have a fixed gain, thus the block
diagram does not represent a linear model of the comparator.

cs
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cs
1

IM10

I M11I M1,M2

I M3,M4

VOut+

VOut-

cs
1 VDi-I M5Vin+

cs
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M10M5 M3,M4

M1,M2 M11 M6

Figure 5.4: Block diagram representation of comparator
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1 VDiVin I
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Figure 5.5: Block diagram representation of comparator, assuming perfect sym-
metry between parallel branches.

5.2.4 Dimensioning the comparator

To aim at minimal silicon area, the components of the comparator are ini-
tially sized with the minimal values allowed by the process. The necessary
adjustments are made for proper operation. For convenient description the
comparator components are grouped:

1. Latch: M1, M2, M3, M4

2. Input stage: M5, M6

3. Input stage reset MOSFETs: M7, M8

4. Input stage tail MOSFET: M9.

5. Intermediate stage: M10, M11

6. Latch top MOSFET: M12

Following paragraphs describe the considerations which are taken into ac-
count when the comparator is dimensioned.

Compare phase Component sizes influence the behavior of the comparator
in the compare phase. The following list important aspects when the compara-
tor components are dimensioned.

1 Wider MOSFETs increase power consumption due to larger currents and
large parasitic capacitances which need to be charged and discharged.
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2 For the comparator the input signal is integrated and the integration
saturates at some point, so that the input MOSFETs (M5, M6) gain
should not be too large. Would the gain be too large, the integration at
the Di nodes saturate and the voltage difference on these nodes is reduced
quickly. As a result, the voltage difference due to the integration at the
output nodes is then limited. Because of the large input signal swing, the
saturation point in time depends on the common mode voltage. For worst
case, the saturation moment must be controlled such that it is within the
compare phase time.

3 The latch (M1, M2, M3, M4) gain should not be too large with respect
to the gain of the intermediate MOSFETs (M10, M11). Then the com-
parator decision would be influenced by the voltages at the imperfectly
discharged output nodes too much, i.e. hysteresis is increased. The inter-
mediate stage gain trades-off to the latch gain. Larger intermediate phase
gain reduces hysteresis, but it takes longer for the latch to determine the
output voltages.

4 The Di node integration must saturate at the end of the compare phase
time, because at the end of the phase one output must be high and
therefore the intermediate MOSFETs (M10,M11) must not conduct.

5 To reduce the common mode dependency, the W
L of the input stage tail

MOSFET (M9) can be decreased such that the MOSFET will act as a
degeneration load to the common-source input phase. The gain of the
input stages is then reduced.

6 To let the inverters of the latch (M1, M2, M3, M4) operate properly,
in the compare phase the PMOS source voltages must be equal to the
positive supply rail. M12 must be wide enough to supply the current
which is conducted by the latch PMOSs. M12 must be approximately
two times wider than M2 and M4.

Reset phase In the reset phase all comparator nodes are set to a specific
value: all parasitic capacitances are (dis)charged. When this is not properly
done, hysteresis is present. The Di nodes and output nodes are (dis)charged:

7 The Di nodes are charged such that the voltage is equal to the posi-
tive supply rail at the end of the reset phase. At the start of the reset
phase both nodes will be approximately equal to the negative supply rail.
Therefore, the Di nodes will not cause much hysteresis.

8 The output nodes are discharged. One of the nodes is approximately
equal to the positive supply rail. When the output nodes are discharged
in the reset phase, improper discharging will cause hysteresis.

9 The discharge current is limited by the intermediate phase MOSFETs
(M10, M11). Di is their gate-source voltage, so when Di are not charged
fast enough, the output nodes are discharged even worse.
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5.2.4.1 Sizes

Based on the above performance dependencies, the following adjustments are
made to the minimal sized MOSFETs:

1. LATCH PMOSs are sized 3 times wider than the latch NMOSs, to com-
pensate for the electron and hole mobility difference.

2. The Latch top PMOS is size 2 times wider than the latch PMOSs, such
that the source voltage is largely independent of the currents.

3. The input phase tail NMOS is made longer, such that it acts as a degener-
ation impedance. Figure 5.6 shows the effect of a longer input phase tail
NMOS. Not only the dependency of offset due to mismatch on common
mode voltage is reduced, but also the absolute offset is reduced.
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Figure 5.6: Illustration of common mode dependent offset. The offset is in-
troduced by increasing the length of M5 by 10%. In the plot the three lines
correspond to the three lengths of the input phase tail NMOS (M9).

Table 5.2 lists the component sizes.

Component Width [nm] Length [nm]

M1 120 90
M2 360 90
M3 120 90
M4 360 90
M5 120 90
M6 120 90
M7 120 90
M8 120 90
M9 120 360
M10 120 90
M11 120 90
M12 720 90

Table 5.2: Comparator MOSFET Sizes
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5.2.5 Comparator simulation

Offset, hysteresis and metastability, are investigated by simulation. The com-
parator is implemented with components sized as listed in Table 5.2. Each of
the differential outputs is connected to an inverter to include capacitative load.
The inverters are then connected to an ideal differential-to-single-ended block
followed by an ideal flip-flop to get a valid digital signal. Figure 5.7 shows the
simulation set up for the comparator.

Figure 5.7: a) Simulation of the comparator. b) Inverter to take into account
capacitative load. c) Ideal differential to single ended conversion.

5.2.6 Non-ideal properties

The comparator is a non-linear component. Conceptually it is non-linear which
is modeled at system level, but a real comparator has other non ideal prop-
erties which introduce additional non-linearities. The sources of non-linearity
described and investigated in this section are:

1. Noise

2. Offset

3. Hysteresis

4. Metastability

5. Voltage slope dependency

6. Clock feed-trough
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5.2.6.1 Noise

Noise is added to each node by the components of the comparator. The input
signal to the comparator is dithered and the system it is used in extracts its
information from output signal statistics, so noise may seem to be not problem.
However, with the optimal probability rules for a sine wave and a sine wave
amplitude of 150 mV, clipping may occur which results in distortion. On
the system level a maximum input referred standard deviation for zero-mean
Gaussian distributed noise is derived for this case, which is 1.6 mV. This value
is worst case, because for practically more relevant settings the allowed noise
is larger. So worst case, the comparator noise must not exceed this value.

The analysis of noise in a clocked comparator is not as straightforward as
the usual steady-state analysis for amplifiers [36]. In [37] the effect of noise
is analyzed for a latched comparator. The comparator operation is described
by identifying 3 phases and for each phase the noise effects are calculated. To
know the noise of the double tail voltage sense amplifier, a similar analysis is
required. For this thesis such an analysis does not fit in the time budget and is
listed in the recommendation section in Chapter 6. A standard deviation of the
input referred noise of 1 mV is presented in [37], although device dimensions
are not presented. The comparator is comparable to the double tail voltage
sense amplifier. Both comparators are designed for the use in an integrated
ADC realized in a 90 nM process.

5.2.6.2 Offset

Offsets in the comparator are canceled by the ADC, but the dither signal is
improperly scaled when the offsets of the comparators in the ADC differ too
much.

The comparator is fully differential, thus offsets are only present because of
component mismatch. In the case of mismatch one of the differential branches
will be slightly different than the other. The resulting offset will be depending
on the common mode voltage of the input signal. Thus the worst case offset
must be controlled to be within the allowed value.

Investigation by simulation The dependency of the offsets on common
mode is investigated by the circuit shown in Figure 5.8;

G

D Q

1

Vcm

Vcm

Figure 5.8: Test-bench for investigating offset

The allowed offset difference is 0.7mV . Based on process spread informa-
tion, the latch PMOS area can be increased and proper precautions can be
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Figure 5.9: Common mode dependent offset for 5nM difference in MOSFET
length for components shown in figure 5.2.

taken during layout [38], such that the expected mismatch does not degrade
SFDR too much.

5.2.6.3 Hysteresis

Hysteresis is present when the reset transistors do not fully discharge the para-
sitic capacitances of the Di and output nodes. The CDi parasitic capacitances
are both discharged in the compare phase and charged in the reset phase.
Therefore there will be hardly any difference voltage at these nodes at the end
of the compare phase, when the capacitances are not fully charged in the reset
phase. So the contribution to hysteresis is considered negligible.

The output nodes have opposite voltages after the compare phase. When
the capacitor is not fully discharged, one output node will have charge left at
the start of the compare phase. Therefore the output node parasitic capaci-
tances are dominant in determining the hysteresis. It is thus important that
the load capacitance of the comparator is taken into account when hysteresis
dependency is analyzed.

Investigation by simulation In reset the intermediate phase MOSFETs
(M10, M11) will reset the output nodes. So the input phase reset transistors
(M7, M8) must pull the Di nodes high fast enough such that the intermediate
transistors pull the output nodes low fast enough. The minimal sized transis-
tors appear to be sufficient for the comparator. Figure 5.10 shows the behavior
of the comparator for very large common mode and little differential mode
input signal. One clock period the input voltage difference is 200 mV and the
next period it is only 1 mV. For this worst case input signal, the output nodes
are reset properly. The difference voltage at the output nodes is smaller than
1uV . The hysteresis effect is thus obscured by noise and assumed to be not of
any influence.

5.2.6.4 Metastability

The problem of metastability for a comparator is that for very small input
voltage differences, the output does not reach a valid logic output voltage in
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Figure 5.10: Static hysteresis is obscured by noise and not degrading the per-
formance below toleration. The Di and output nodes are reset properly as
indicated by the ellipses. The voltage difference is < 1uV at the end of the
reset stage.

the time available. The range in which the input signal does not lead to a valid
logic output is referred to as the dead-zone.

When the comparator compares a difference voltage in the dead-zone, one
of the differential output nodes will not reach a logic ’1’, because the latch is
not able to pull one of the outputs high in the available time. The available
time is half a sample clock period. When the input voltage difference is within
the dead-zone, noise in the circuit will cause the logic signal to assume a valid
value [13].

To have a logic output value, the differential output is converted to a single
ended output. When the differential-to-single-ended block is not symmetri-
cal, i.e. it tends to output more logic ’1’s than ’0’s when the input is in the
dead-zone, an offset is created. So either the dead-zone must be small, or the
differential-to-single-ended block must be very symmetrical.

Investigation by simulation In order to limit the dead-zone, it must be
defined: in this case a dead-zone is defined as the range of the input signal
difference for which either of the outputs is not at 80% of the expected output
value. Thus, when the difference is a very small negative value in the dead
zone, the negative output voltage is below 0.8 V.

The dead-zone of the comparator can be visualized by determining the offset
when only looking at one of the differential outputs. The simulation flip-flop
threshold is then set to 0.8 V.

Figure 5.11 shows the dead-zone of the input signal as a function of the
common mode voltage. When the input voltage difference is greater than
30uV over the whole range, the comparator will produce a valid logic output
value.

Also, the dead-zone will be obscured by noise. Because the σ of the noise
may not exceed 0.7mV , the dead-zone must be also less than 0.7mV . As is
clear from Figure 5.11, the comparator dead-zone is small enough.
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Figure 5.11: Dead-zone: range in which the comparator output is not between
0.2 and 0.8 of supply voltage of 1V.

5.2.6.5 Input voltage slope dependency

The voltage slope of the input signal will influence the performance of the
comparator for two reasons:

• Parasitic capacitances of the input MOSFETs cause crosstalk between
gate and drain.

• The Di node capacitances are discharged and as a result the input MOS-
FETs cycle through different operating regions. The non-linear transcon-
ductance of the input MOSFETs cause different integration results at the
parasitic capacitances of the Di nodes for different signal slopes.

A countermeasure to dynamic hysteresis is placing a track-and-hold circuit
before the comparator. An ideal track-and-hold holds the input to the com-
parator constant during the compare phase. The voltage slope is then zero
and above effects are circumvented. Section 5.3.2 elaborates on track-and-hold
circuits.

5.2.6.6 Clock feed-through

Because of the parasitic capacitances between the clocking MOSFETs, the
steep edges of the clock signal will result in added voltages to internal nodes.
Because of the differential nature of the comparator this will not degrade com-
parator performance. However, due to mismatch between M7 and M8, the
clock feed-trough will lead to offsets.

Investigation by simulation The clock feed-trough is clearly seen in figure
5.10 and 5.3. The Di nodes and output nodes voltage rise above the positive
supply voltage during the clock edges. The effect on offset is shown in Figure
5.9.

5.3 Simulation of multiple ADCs

The sources of distortion in the comparator are investigated in previous section.
In this section the simulation results are presented of the ADCs in a zero-IF
front-end. Because of extremely long simulation time, the performance of the
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ADC is evaluated for a single sine wave as input up to a SFDR of 58 dB. The
output is directly Fourier transformed without cross-correlation or spectral
averaging. When cross-correlation and spectral averaging are included in the
simulation, a measurement time of 0.2 seconds would take more than a year to
simulate with the settings used and the simulation hardware available.

5.3.1 Simulation set up

The circuit level simulation in spectre are the analog equivalent of the system
level simulations. To focus on the comparator, the decision level DACs and
dither DACs are omitted and the low pass filter and integrator are constructed
from ideal analog components. Figure 5.12 shows the analog implementation
of the decision level loop in spectre. The performance of the loop is equal to
the system level design in MATLAB when an ideal comparator was used, this
is verified by simulation.

Figure 5.12: a) Single decision level loop. b) Ideal low pass filter. c) Ideal
analog integrator

For the simulation a complex sine wave is generated by MATLAB. Also four
statistically independent dither signals are generated with maximum amplitude
of 0.5. The results of the simulation are processed in MATLAB after the
simulation.

5.3.2 Spectra

In the following paragraphs, the resulting spectra are shown when different
track and hold circuits are used. First an ideal track and hold is used, to show
how well the comparator performs when the voltage slope effects are reduced.
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The then spectra is shown for when no track and hold circuit is used to show
what the effects are. The simplest form of a track and hold is then implemented
to see how much this improves the ADC.

Because of long measurement times, the measurement is stopped when it
become visible that the SFDR was limited, thus the noise floor in the spectra
are not below 62.5 dBFs.

First a spectrum is obtained when the signal is directly connected to the
ADC. The SFDR appears to be limited to 46.5 dB. Then an ideal track and
hold is placed before each ADC. The SFDR is then increased to 54.14 dB, but
still not the target SFDR of 60 dB.
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Figure 5.13: Spectrum when no track and hold is used.

No track and hold Strength of distortion components seriously increase
when to track and hold is used. Figure 5.13 shows the resulting spectrum.
This confirms that the performance of a comparator depends on the voltage
slope of the input signal. The conclusion is that the comparator still has
non-linear behavior which degrades the SFDR. The approach to optimize the
comparator for this SFDR is too optimistic and must be revisited. Because of
time constraints, this work is listen as recommendation in Chapter 6.

Ideal sample and hold When the ideal sample and hold is used, the re-
sulting spectrum is expected to have a SFDR of at least 60 dB. The resulting
spectrum however shows that the SFDR is not achieved. A spurious peak is
present of 56.74 dB which limits the SFDR to 54.14 dB. Figure 5.14 shows the
spectrum in case of the ideal sample and hold.

5.4 Power consumption

The power consumption of the CDF based AGC ADC is estimated and com-
pared to the power consumption estimation of a 8-bit ADC. Also for both the
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Figure 5.14: Ideal sample and hold

XF and XF correlators a coarse power consumption estimate is calculated in
order to draw a conclusion on the efficiency of a cross-correlation spectrum
analyzer with CDF-based AGC ADCs.

The energy consumption depends on the measurement time of both ADCs.
Because for the CDF based AGC ADC the noise floor is expected to be domi-
nated by quantization noise and dither noise, 0.2 seconds is needed to obtain a
spectrum estimate with a SFDR of about 60 dB. For an 8-bit ADC the noise
floor is determined by the analog front-end components, which determines the
required measurement time.

5.4.1 This design

Comparator Circuit level simulations show that the power consumption per
comparator, at a frequency of 1.536 MHz, 1 volt supply voltage in a 90 nm
process is:

E = 58fJ/conversion (5.1)

Per ADC the comparators consume:

P = 58 · 10−15 · 3 · 1.536 · 109 = 265µW (5.2)

DACs The power consumption of the DACs is very coarsely estimated by
linearly scaling the power consumption of DACs from literature to the sample
frequency, resolution and to process size and scaling quadratically to supply
voltage [13]:

PDither DAC = P · 1.536

f
·
(

0.09

p

)
·
(

1.0

v

)2

(5.3)

PDecision level DAC = P · 0.003

f
·
(

0.09

p

)
· 28−6 ·

(
1.0

v

)2

(5.4)

where f , p and v are the reference design sample frequency in GHz, process
resolution in µm and process voltage in volt respectively.
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Table 5.3 shows the DACs from literature with scaled power consumption.
From this data the power consumption of the dither DAC is approximated to
be 2 mW and the decision level DAC is 0.2 mW.

Ref. Resolution sample rate Power process year scaled power
(f = 3 MHz,

f = 1536 MHz)

[31] 6 Bits 1.25 GHz 6 mW 1.8 V, 0.18 um 2008 0.009, 1.14
[32] 6 Bits 2.7 GHz 28 mW 1.2V, 0.13 um 2006 0.060, 7.66
[33] 6 Bits 5.4 GHz 20 mW 1.5V, 0.13 um 2005 0.014, 1.75
[34] 6 Bits 1 GHz 7.5 mW 1.5 V,0.13 um 2005 0.028, 3.54

Table 5.3: CMOS DAC characteristics from literature.

Total ADC power consumption A total ADC contains 1 dither DAC,
3 decision level DACs and three comparators. Such an ADC would consume
approximately:

2 · 10−3 + 3 · (265 + 0.2) · 10−6 = 2.77mW (5.5)

5.4.2 Reference ADC

ADC A high resolution ADC yielding an SFDR of 60 dB must have 8 bits
(Equation 3.2). The power consumption of an 8 bit ADC with a sample fre-
quency of 1536 MHz is estimated by comparison to ADC from literature. To
find an approximate power consumption of a 8-bit ADC with a sample fre-
quency of 1536 MHz, the power numbers are scaled to frequency (based on [13]
and [39]):

PADC = P · 1.536

f
·
(

0.09

p

)
· 28−b ·

(
1.0

v

)2

(5.6)

Table 5.4 shows three reference ADCs and the scaled power consumption.
Based on these scaled powers, the power consumption of an 8-bit ADC is
estimated to be at least 200 mW.

Ref. Resolution Sample rate Power Process Year Scaled power

[40] 6 Bits 1.6 GHz 350 mW 1.8 V, 0.18 um 2006 207 mW
[41] 8 Bits 0.25 GHz 150 mW 1.8 V, 0.18 um 2004 142 mW
[42] 8 Bits 1.25 GHz 207 mW 1.0 V, 0.09 um 2008 254 mW

Table 5.4: CMOS ADC specifications from literature.

5.4.2.1 Correlator power consumption

XF correlator To find an approximate power consumption of the XF cor-
relator, the implementation data and approach of [5] is used. The dynamic
power consumption of the XF correlator dominates the overall power consump-
tion. The approach scales the power consumption of two implementations with
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different dimensions. The difference between the two implementations is the
number of correlator stages. The two implementations operate at 100 MHz,
have a resolution of 8 bits and 257 or 7 correlation stages.

The XF correlator in this design operates at 1536 MHz, has a resolution of
2 bits and requires 257 correlation stages. The estimated power consumption
then is ( a term is added for different voltage supply, with respect to [5]):

Pdyn,1 ≈ 0.108 · 1536

100
·
(

2

10

)2

· 257

257
·
(

1.0

1.2

)2

= 0.072[W ] (5.7)

Pdyn,2 ≈ 0.0024 · 1536

100
·
(

2

10

)2

· 257

7

(
1.0

1.2

)2

= 0.058[W ] (5.8)

Thus averaged the approximate power consumption is:

P =
Pdyn,1 + Pdyn,2

2
≈ 65[mW ] (5.9)

FX Correlator As concluded in [5], the power consumption of an FX corre-
lator is a factor 13 lower than that of an XF correlator. Thus to approximate
the power consumption of the FX correlator, Equation 5.7 (from [5]) is ad-
justed:

Pdyn,1 ≈
0.108

13
· 1536

100
·
(

8

8

)2

· 257

257
·
(

1.0

1.2

)2

= 0.0882[W ] (5.10)

Pdyn,2 ≈
0.0024

13
· 1536

100
·
(

8

8

)2

· 255

7
·
(

1.0

1.2

)2

= 0.0715[W ] (5.11)

Averaged, the approximate power consumption is:

P =
Pdyn,1 + Pdyn,2

2
≈ 80[mW ] (5.12)

5.4.3 Energy consumption

Per ADC solution, the measurement time defines the energy consumed per
spectrum estimate. The estimated power consumption of the CDF-based AGC
ADC is rougly 70 times less, thus it can measure 70 times longer than the
8-bit ADC to consume the same amount of energy. However, the correlator
following the ADC also consumes a substantial amount of energy. Thus for
equal energy consumption, the measurement time of the CDF-based AGC ADC
is about eight times longer. The dither and quantization noise floor can thus
be lowered by 4.5 dB Equation 4.22), achieving a SFDR of approximately 37
dB (see Table 4.6). An 8-bit ADC is assumed to achieve a much higher SFDR
in one measurement.

This indicates that the CDF based AGC ADC it is less energy efficient than
an undithered high-resolution ADC.

5.5 Summary and conclusion

Summary In this section the double tail voltage sense amplifier is intro-
duced. This comparator is implemented in the UMC090 process. The ex-
pected non ideal properties of the comparator are described. Offset, hysteresis,
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metastability and clock feed-through are investigated by simulation. It has
been verified per non ideal property that the comparator does not introduce
an unacceptable amount of distortion due to these properties. The second
part of this chapter presents quadrature ADC simulation results. Because of
long simulation times, the SFDR is limited by the noise floor to 58 dB. The
correctness of the simulation set up is verified by simulation with ideal com-
parators. The results of simulations of two quadrature connected ADCs with
implemented comparators with and without an ideal track and hold circuit are
presented. The track and hold circuits are added to reduce the input voltage
slope dependency of the comparator, i.e. to idealize the sample function. A
coarse estimation of the power consumption of the CDF-based AGC ADC is
made and compared to the estimated power consumption of a 8-bit ADC. Be-
cause of relative long measurement time of the CDF-based AGC ADC it is less
energy efficient than a solution with high-resolution ADC.

Conclusions Different non-ideal properties are investigated, but the non-
linearity of the comparator is dominated by voltage slope dependency. An
effective solution is adding a track-and-hold circuit. Still the SFDR of the
ADC is limited by the comparator. Offset, hysteresis, metastability or other
non-ideal properties cause this performance limit. The approach presented in
this chapter is not sufficient for dimensioning the comparator such that the
dithered CDF-based AGC ADC results in the target SFDR of 60 dB. More
research is required to determine the source of the performance degradation.
Based on power consumption estimations, using the CDF-based AGC ADC for
spectrum estimation is less efficient than using high resolution ADCs.





Chapter 6

Summary and Conclusions

For integration of an energy detection cross-correlation spectrum analyzer for
the use in cognitive radio, a low cost ADC solution is investigated. In radio
astronomy, cross-correlation is a technique exploited intensively, often together
with low-resolution AD conversion.

In this thesis an ADC concept from radio astronomy is explored for the use
in cognitive radio application. The concept is referred to as the CDF-based
AGC ADC, because it contains Automatic Gain Control (AGC) by adjusting
ADC decision levels based on estimates of the input signal Cumulative Distri-
bution Function (CDF).

6.1 Summary

The work carried out is summarized by addressing the subquestion of this
thesis. The subquestions for this thesis are:

1. How does the performance of a spectrum analyzer depend on the resolu-
tion of its ADCs?

2. Is a CDF-based AGC ADC suitable as a low resolution ADC in cross-
correlation spectrum analyzer for cognitive radio?

3. What is at circuit level the critical analog component in the CDF-based
AGC ADC and how does system performance depend on circuit level
behavior?

4. What performance is achievable and what are the costs?

Reflection on sub questions

1. How does the spectrum analyzer performance depend on the ADC resolu-
tion?
When distortion components dominate the SFDR of the spectrum ana-
lyzer, the SFDR reduces by approximately 8 dB per reduced bit [17]:

SFDR ≈ 8.07 ·D + 3.29

Where D is the number of bits of the quantizer. When digital dither
is applied in a cross-correlation spectrum analyzer and the dither signal

113
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fulfills the requirements of rectangular dither (Section 3.3), the reduction
of distortion components is expressed by Equation 3.45, which is:

SFDR ≈ 8.07 · log2

(
(2D − 1) ·M + 1

)
+ 3.29

Where M is the number of dither values. Thus the SFDR of a spectrum
analyzer can be reduced when the ADC resolution is reduced, but this is
compensated to certain extent when dither is added.

As a tool to address performance and non-linearity issues of a digitally
dithered quantizer, the rectangular PDF dithered equivalent quantizer
concept is introduced in Section 3.3.2.2. This concept provides insight
in the performance dependencies of rectangular PDF digitally dithered
quantizers. For triangular PDF dither similar relations can be found.
This is partially done, but the correctness was not fully verified due to
time limitation. This work can be found in appendix B.4,

When noise dominates the SFDR, possibly due to dither and quantization
noise, cross-correlation can be utilized to lower the noise floor and increase
SFDR (see section 4.3). This utilization of cross-correlation is an effective
solution to SFDR limitations when using dithered quantizers.

The use of rectangular PDF dither results in variation in the noise floor,
which is minimized by the AGC and offset canceling. In the case of
triangular PDF the noise floor does not vary, but it is in any case higher
or equal to the noise floor when rectangular PDF dither is used.

2. Is a CDF-based AGC ADC suitable as a low resolution ADC in cross-
correlation spectrum analyzer for cognitive radio?
The performance of the CDF-based AGC ADC depends on the input
signal (Section 4.4.8). Therefore, the CDF-based AGC ADC is not very
suitable as a low resolution ADC in a cross-correlation spectrum analyzer
for cognitive radio. An energy detection spectrum analyzer must correctly
sense the spectrum regardless of the type of input signal. How much the
performance is degraded in practical situations requires more research.

When the resolution of the ADCs for a cognitive radio spectrum analyzer
is lowered, several problems are introduced. The CDF-based AGC ADC
tackles those problems, but other problems are introduced.

Problems

a) Resolution reduction increases distortion components

b) Dithering raises the noise floor

c) Signal clipping introduces distortion components

d) Highest SFDR is achieved when signal specific settings are used

e) A signal with a non-symmetrical PDF results in non-uniform quan-
tization

f) Assumption on symmetry of PDF is questionable

The problem of increased distortion components is reduced by applying
proper dither and utilizing the cross-correlation concept. Signal clipping
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must be avoided or limited such that the intended SFDR is achieved. The
CDF-based AGC ADC solves this problem by the AGC and offset cancel-
ing. These features are realized by adjustable ADC decision levels based
on the CDF estimate of the input signal (section 4.4.2). However, this
approach introduces new problems. Maximal performance is achieved
when optimal system settings are applied. Optimal system settings differ
per type of input signal. Because the energy detection spectrum analyzer
has no knowledge on the input signal, only the most conservative settings
can be used, which result in less SFDR.

An assumption is made that the PDF of an input signal is symmetrical,
but the estimate of a symmetrical PDF can be non-symmetrical. Also,
the assumption may be non-realistic, as the PDF of a sum of a few strong
sinusoids can be non-symmetrical (Section 4.4.8).

Dithering and cross-correlation utilization is an effective way to increase
SFDR of a low resolution quantizer. In case of non-white spectra, it
should be applied to 2-bit ADCs with other AGC mechanisms, such as a
signal power-based AGC ADC (for instance as in [7]).

3. What is at circuit level the critical analog component in the CDF-based
AGC ADC and how does system performance depend on circuit level be-
havior?
The comparator is considered the critical component at circuit level.
DAC implementations with required specifications exist and are found
in literature (Chapter 5). A comparator is implemented at circuit level
in a 90 nm technology. The non-linearity of the comparator is domi-
nated by voltage slope dependency (or referred to as dV

dt dependency).
An effective solution is adding a track-and-hold circuit. Still the SFDR of
the ADC is limited by the comparator. Offset, hysteresis, metastability
or other non-ideal properties cause this performance limit (Section 5.1).
More research is required to determine the exact source of the perfor-
mance degradation.

4. What performance is achievable and what are the costs?

Performance Theoretically a SFDR of 62.7 dB can be achieved for a
resolution bandwidth of 6 MHz, sampling at 1536 MHz and measuring
for 0.2 seconds (Section 4.3). Simulations show that a SFDR of 60.1
is achieved, which is lower than the theoretical value because of noise
uncertainty due to limited measurement time (Section 4.5). However,
these numbers are based on system settings which require knowledge on
the input signal and can therefore not be used in practice. When practical
relevant settings are used the SFDR is reduced by 5.2 dB (Section 4.5).
After circuit level integration of the comparators the achievable SFDR
with optimal system settings is reduced to 54.14 dB (Section 5.3.2). For
practical relevant settings SFDR is reduced more. Because of limited
time, the comparator is not fully optimized on circuit level and a track-
and-hold circuit still must be designed.
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Power consumption In Section 5.4 a coarse estimation is made on the
expected power consumption of the CDF-based AGC ADC operating at
1536 MHz. The estimation is based on scaled performance of DACs found
in literature. This estimation indicates that a large part of the power is
consumed by the dither DAC. Incorporating a low-power DAC is subject
to future research. The power consumption estimation of the CDF-based
AGC ADC is compared to a power consumption estimation of an 8-bit
ADC, based on scaled performance of ADCs found in literature. Because
of the long measurement time of the CDF-based AGC ADC and because
of the relative high expected power consumption of the dither DAC, it is
more power efficient to use a higher resolution ADC.

6.2 Conclusions

The research question for this thesis was:

• Is a low resolution ADC suitable for the use in a cross-correlation spec-
trum analyzer for cognitive radio?

With respect to the research question, the following is concluded:

1. Low-resolution quantization is not very suitable for an energy-detection
cross-correlation spectrum analyzer. In order to achieve reasonable SFDR,
a high speed DAC is required because of the PDF requirements of the
dither signal. The power consumption of this DAC, in combination with
long measurement time leads to large energy consumption per spectrum
estimation.

With respect to the work carried out in general, the following is concluded:

2 The CDF-based automatic gain control and offset canceling mechanism
is not very suitable for a spectrum analyzer for cognitive radio. The
performance of the CDF-based AGC ADC depends on the type of input
signal and an energy detection spectrum analyzer does not have knowl-
edge on the input signal. The performance which is aimed at cannot be
guaranteed.

3 When the input signal is digitized by a low resolution ADC, dithering
must be applied in the case of cognitive radio. In order to achieve rea-
sonable SFDR with a low-resolution ADC, digitally dithering the input
signal and utilizing cross-correlation is effective.

4 The equivalent quantizer concept is an effective tool to investigate the
performance of digitally dithered quantizers.

5 When AGC is realized by adjusting the ADC’s decision levels, the ADC
can be properly dithered by scaling the dither amplitude to the decision
levels.
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6.3 Recommendations

For the analysis and implementation of the CDF-based AGC ADC choices are
made to limit the time-span of the work. When the remaining alternatives
are worked out, this may introduce new insights or better performing ADCs.
Also some performance dependencies are not investigated thoroughly, because
of time limitation. More research on this topics may lead to better characteri-
zation of the ADC concept.

Recommended research is listed as research questions for future work:

1. What is the performance limitation of the noise uncertainty introduced
by using rectangular PDF dither. When does the noise certainty of tri-
angular dither lead to a higher performance.

2. How does the performance of the ADC depend on decision level errors
when triangular PDF dither is used. For this thesis this is only worked
out for rectangular PDF dither.

3. Can the decision level loop of the CDF-based AGC ADC become unsta-
ble. What is the dependency of loop stability on system parameters.

4. To what extend is the input signal dependency of the CDF-based AGC
ADC a problem when used in a cognitive radio energy detection spectrum
analyzer. And how does the dependency relate to oversampling?

5. What is the expected power consumption of the CDF-based AGC ADC,
when all analog components are worked out at circuit level. And what
will the contribution of the digital processing.

6. What dominates the performance degradation in the comparator, when
voltage slope dependency is excluded by applying an ideal track-and-
hold?

7. What track-and-hold circuit is required to reduce voltage slope depen-
dency of the comparators to acceptable levels.

8. What is the effect of noise in the comparator and how does it relate to
settings of the CDF-based AGC ADC.





Appendix A

Quantization error in frequency
domain

This chapter gives the mathematical derivation of distortion component strength
for a uniform midrise quantizer, based on Blachmans derivation [19] for a
midtread and midrise quantizer.

A.1 Midrise quantizer

• the quantizer starcase function now is described by:

y(t) = x+

∞∑
n=1

1

πn
sin(2nπx) (A.1)

= x+ im{
∞∑
n=1

1

πn
e2nπx} (A.2)

• The Jacobi-Anger expansion is used:

ei·z·sinθ =

∞∑
p=−∞

Jp(z)e
i p θ (A.3)

• the spectral components of the error are:

q(t) = im{
∞∑
n=1

1

πn

( ∞∑
p=−∞

Jp(2π · n ·A)ei·p·θ(t))

)
} (A.4)

• Because the quantization staircase is odd, only odd harmonics are present,
so p is odd. Also negative and positive harmonics are added, such that
when rewriting the equation:

q(t) =

∞∑
p=1,3,5,...

( ∞∑
n=1

1

πn
Jp(2π · n ·A)sin(p · θ(t))

)
(A.5)
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A.2 Midtread quantizer

• the quantizer starcase function now is described by:

y(t) = x+

∞∑
n=1

(−1)n

πn
sin(2nπx) (A.6)

= x+ im{
∞∑
n=1

(−1n)

πn
e2nπx} (A.7)

• The Jacobi-Anger expansion is used:

ei·z·sinθ =

∞∑
p=−∞

Jp(z)e
i p θ (A.8)

• the spectral components of the error are:

q(t) = im{
∞∑
n=1

(−1)n

πn

( ∞∑
p=−∞

Jp(2π · n ·A)ei·p·θ(t))

)
} (A.9)

• Because the quantization staircase is odd, only odd harmonics are present,
so p is odd. Also negative and positive harmonics are added, such that
when rewriting the equation:

q(t) =

∞∑
p=1,3,5,...

( ∞∑
n=1

(−1)n

πn
Jp(2π · n ·A)sin(p · θ(t))

)
(A.10)



Appendix B

Dither

B.1 Characteristic function

Via the characteristic function statistical properties of a signal can be obtained
easily. The characteristic function for a probability distribution of variable z
is the expected value of the function ejωz and is denoted by P (ω). ω can have
any real value.

P (ω) = E(ejωz) =

∫ ∞
−∞

pze
jωzdz (B.1)

The characteristic function is the inverse Fourier transform of the probability
distribution of z, all properties of ordinary Fourier transforms are also valid.

Although the physical meaning of the characteristic function may not be
evident, it is very useful in deriving properties of stochastic processes. The
characteristic function allows to get the moments of the stochastic variable.
The derivatives of the characteristic function:

dP (ω)

dω
=

∫ ∞
−∞

(jz)ejωzp(z)dz (B.2)

The derivative of P (ω) is easily obtained by deriving ejωz expressed as its
series expansion. After the mth derivation for ω = 0, the mth order moment
appears:

P (ω) = E(ejωz) (B.3)

= E(1 + jωz +
−1 · ω2z2

2!
+
−j · ω3z3

3!
) (B.4)

(B.5)

Then taking the mth derivative:

dmP (ω)

dmω
= E

(
dm

dmω
(1 + jωz +

−1 · ω2z2

2!
+
−j · ω3z3

3!
)

)
(B.6)

= E(zm) (B.7)

And thus for differentiating P (ω) k times, the moment k can be obtained by
taking the absolute value of P (ω) for ω = 0
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When ω = 0, dP (ω)
dω = jE(z). For higher derivatives this gives higher

moments. in General:

dnP (ω)

dωn
= jnE(zn) (B.8)

B.2 Total error moment dependence on input signal

In this section the following variables are used:

• x: input signal

• v: dither signal

• w: quantizer input

• y: output signal

• ε Total error (y − x)

B.2.1 Properties of the total error

B.2.1.1 Conditional PDF of ε

The dependence of the total error on the system input can be analyzed in terms
of its PDF as a function of a specified input value, this function is referred to
as the conditional PDF:

pw|x(w, x) = pv(w − x) (B.9)

Where pw|x(w, x) is the probability that the input to the quantizer is w when
the input to the system is x. Because w = x+v this is equal to the probability
pv(v) = pv(w − x) . For a given value of x, the PDF of ε is a series of delta
functions, because the error is equal to −x + k · ∆ where k is an integer and
represent all the quantization values. The conditional PDF of ε|x is:

pε|x(ε, x) =

∞∑
k=−∞

δ(ε+ x− ∆

2
− k∆) ·

∫ k∆+∆

k∆

pv(w − x)dw (B.10)

This relation is illustrated in Figure B.1. In this figure an arbitrary PDF of v
is centered around the value of x. The area per quantization value is integrated
and represented by a dirac pulse at the value of the corresponding total error
values ε.

B.2.1.2 Unconditional PDF of ε

The integral in function B.10 can be written as the product of a dirac pulse
and a convolution of pv(w − x) and a shifted rectangular function ∆Π∆.

δ(ε+ x− ∆

2
− k∆) ·

∫ k∆+∆

k∆

pv(ε)dw = δ(ε+ x− ∆

2
− k∆) · [∆Π∆ ∗ pv](ε)

(B.11)
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Figure B.1: Illustration of obtaining pε|x(ε, x) from pv(w − x)

this gives for pe|x(e, x):

pε|x(ε, x) = [∆ ·Π∆ ∗ pv](ε)W∆(ε+ x) (B.12)

where

W∆(ε) ,
∞∑

k=−∞

δ(ε− k∆− ∆

2
)

Given the value of x, the PDF of ε is a series of dirac pulses: because
x is known the possible error values are known. When x is unknown, the
possible error values are unknown. Obtaining the conditional PDF of e from
the unconditional PDF of e is integrating the product of pε|x and px:

pε(ε) =

∫ ∞
−∞

pε|x(ε, x)px(x)dx (B.13)

=

∫ ∞
−∞

([∆ ·Π∆ ∗ pv](ε)W∆(ε+ x)) · px(x)dx (B.14)

= ([∆ ·Π∆ ∗ pv](ε))
∫ ∞
−∞

W∆(ε+ x) · px(x)dx (B.15)

= [∆Π∆ ∗ pv](ε)[W∆ ∗ px](−ε) (B.16)

Characteristic function of ε The Fourier transform of a rectangle is a
sinc function. The width of the rectangle ∆ is inversely proportional to the
frequency axis scaling of the sinc function.

The characteristic function of the total error is obtained by Fourier trans-
forming the PDF of the total error :

Pε(u) = [sinc(u)Pv(u)] ∗ [F(W∆) · Px(−u)] (B.17)

(B.18)



124 APPENDIX B. DITHER

The series of dirac pulses results is known as a dirac-comb and has the
property that its fourier transform is again a dirac-comb:

F(

∞∑
k=−∞

δ(ε− k∆− ∆

2
)) =

1

∆

∞∑
k=−∞

δ(u− k

∆
) · e−i·∆2 u (B.19)

The the convolution of equation B.17 becomes:

Pε(u) = [sinc(u)Pv(u)] ∗ [
1

∆

∞∑
k=−∞

δ(u− k

∆
)Px(−u)e−i

∆
2 u] (B.20)

=

∞∑
k=−∞

1

∆
[sinc(u)Pv(u)] ∗ [δ(u− k

∆
)Px(−u)e−i

∆
2 u] (B.21)

The second argument of the convolution is a series of dirac pulses and thus
the convolution becomes a sum of products:

Pε(u) =

∞∑
k=−∞

1

∆
sinc(u− k

∆
)Pv(u−

k

∆
) · e−i∆

2
k
∆Px(− k

∆
) (B.22)

Condition for independent moments The derivation of conditions for
independent moments is found in [18]. The description in this section is more
elaborate and illustrated. In Equation B.22 only Pv can be chosen. In [18] a
condition for independence of moments is given. For this condition the a part
of Equation B.22 si denoted by Gv(u):

Gv(u) , sinc(u)Pv(u) (B.23)

Then the mth moment is independent of x when:

G(m)
v

(
k

∆

)
= 0∀k ∈ Z0 (B.24)

If this condition is satisfied for the first and second moment, the total error
depend on the moments of the dither signal:

E[ε] = E[v] (B.25)

E[ε2] = E[v2] +
∆2

12
(B.26)

where ∆2

12 is the quantization error power.

B.3 Decision level variation

B.3.1 Error function integration intervals.

This section describes the integration intervals to calculate the error funcion
of a equivalent quantizer (EQ) and a decision level error adjusted equivalent
quantizer (EQe). The error is:

eEQe(x) = EQ(x)− EQe(x) (B.27)
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The frequency components of eEQe(x) when x = 3∆
2 sin(2π · t) determine the

degradation ion SFDR for a 2-bit quantized full-scale rectangular PDF dithered
sine wave.

In this derivation only an increase in the lower decision level of a 2-bit
ADC is considered. This number of decision levels of the equivalent quantizer
affected by this error is 1

3 of 3 ·M .
The integration intervals starts at the decision level of EQ and stops at the

decision level of EQe or vice versa (depending on the quadrant of the sine wave
it applies to). The number of integration thus is 2M .

In this derivation M is even and the quantizer is of type midrise, the re-
sulting equivalent quantizer is of type midtread.

Because the input signal is a sine wave, the integration ranges are found
by determining the signal values related to the decision levels. The phase is
obtained by applying the arcsin operation and gives the integration ranges.

An LSB of the equivalent quantizer is:

∆EQ =
∆2−bit

2M
(B.28)

d denotes the equivalent quantizer decision levels affected. c is positive for
decision levels above zero and negative for decision levels below zero. Thus the

decision levels affected are defined by: c = [− 2M

2 ,− 2M

2 − 1, ... − ( 3·2M
2 + 1)].

Relative to full scale the decision levels are located at:

bFS(c,M) = −c ·∆2−bit

2M
(B.29)

The decision levels are scaled to unitary scale in order to apply the arcsin
operation. Because the amplitude of a sine wave is half full scale and the sine
wave amplitude is 3

4 :

b(c,M) =
c ·∆2−bit

2M
· 8

3
(B.30)

The error of a 2-bit quantizer is denoted by α:

edeclevel = declevelEQe − α · declevelEQ (B.31)

The shift of decision levels of EQe relates to the error (α) of 2-bit quantizer
decision level as:

(1− α) ·∆2−bit (B.32)

And thus the integration range is :

eEQ(x) =

{
1 if [b(c,M)] > x > [b(c,M) + (1− α)∆2−bit] , ∀c ∈ {1, 2, .., 2D}
0, otherwise

(B.33)

In this expression b(c,M) is decision level c and (1 − α)∆ is the shift of this
decision level due to the error in the 2-bit quantizer decision level.



126 APPENDIX B. DITHER

B.4 Triangular dither equivlent quantizer

This section discribes the approach of section 3.3.2.2 applied to triangular
dither. Because of time constraints the correctness of the approach cannot be
guaranteed, although it certainly points to the right direction.

For triangular PDF dither, vd is now:

vd(x) =

M−1∑
c=0

2

M
·
(

1− | 2c
M
|
)
· δ
(
x− (−∆ +

∆

M
+

2 · c ·∆
M

)

)
(B.34)

When vd is convoluted, the resulting decision level distribution is only valid for
the range of the input signal where no clipping occurs. This means that some
decision levels resulting from the convolution are not part of the set of decision
levels.

dE(y) =

{
vd ∗ d2−bit, when −∆ < E(y) < ∆ }
0, otherwise

(B.35)

This is illustrated in Figure B.2. The number of decision levels are:

(2D − 2) ·M (B.36)

and the number of possible values of E(y) is:

#E(y) = (2D − 2) ·M + 1 (B.37)

pr
ob
ab
ili
ty

2 2
0* = vd

d2-bit

E(y)d

Figure B.2: Convolution of triangular dither PDF and quantizer decision levels
result in decision level distribution.

The use of the concept of the equivalent quantizer is illustrated by simula-
tion for triangular PDF dither. A spectrum plot of a dithered quantizer and
its equivalent undithered quantizer is shown in Figure B.3.
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Figure B.3: Spectra of a log(17)-bits equivalent quantizer and the 3-bit tri-
angular dithered 2-bit quantizer: they have approximately the same SFDR.
(MATLAB code in appendix C.3)





Appendix C

MATLAB code snippets

C.1 General MATLAB scripts

C.1.1 Time domain - Uniform quantizer

The following lists the MATLAB code for time domain ADC simulation.

Listing C.1: Time domain - Uniform quantizer

Fu l l s c a l e = 1 ; % ADC input range
ADCbits = 2 ; % Reso lut ion in b i t s
% Quantizat ion l e v e l s ( can be more than 2ˆ4 , to exc lude c l i pp i n g e f f e c t s )
Qleve l s = 4 ;
LSB = Fu l l s c a l e / 2ˆADCbits ; %
% se t o f quant i za t i on l e v e l s
book = (−(Qleve ls −1)/2 ∗ LSB) : LSB : ( ( Qleve ls −1)/2 ∗ LSB) ;
% se t o f d e c i s i o n l e v e l s
p a r t i t i o n = (−(Qleve ls −2)/2 ∗ LSB) : LSB : ( ( Qleve ls −2)/2 ∗ LSB) ;
% quant i za t i on o f s i g n a l x
[ index , y ] = quant iz (x , pa r t i t i on , book ) ;

C.1.2 Ideal band-pass filtered Gaussian distributed noise
generation

Creation of ideal band-pass filtered gaussian distributed noise:

Listing C.2: Create bandpass Gaussian distributed noise

%s e t t i n g s f o r input s i g n a l
channe ls = 2 ; %channe ls occupied with Gaussian no i s e
c h o f f s e t = 9 ; %f i r s t channel to s t a r t at . . .

windo = [ zeros (1 , f loor ( NrOfSamples/targetRBW)∗ c h o f f s e t ) , . . .
ones (1 , ce i l ( NrOfSamples/targetRBW)∗ channe ls ) , . . .
zeros (1 , f loor ( NrOfSamples/targetRBW) ∗( targetRBW−(channe ls+ch o f f s e t ...

) ) ) ] ;
windo = [ windo , zeros (1 , NrOfSamples − length ( windo ) ) ] ;

%c r ea t e s i g n a l
s i g = randn (1 , NrOfSamples ) ;
s i g = real ( i f f t ( windo .∗ f f t ( s i g ) ) ) ;
s i g = ( s i g . / sqrt (mean( s i g . ˆ 2 ) ) ) ∗( l /max( Steps ) ) ;

C.2 Gaussian distributed noise and SFDR

The following lists the MATLAB code for looking at distortion components
due to clipping. The code can be iterated over s and p to get the dependency

129
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of SFDR on signal and noise power. The code snippet for the ADC is found
in Appendix C.1.1.

Listing C.3: Gaussian distributed noise and SFDR

% time
time = [ 0 : 1 : NrOfSamples−1]∗Period ;

% c r ea t e input s i g n a l
PsigdBFs = p ;
Psig = 10ˆ( PsigdBFs /10) ;
x = sqrt ( Psig )∗ ( Fu l l s c a l e /2)∗ sin ( time∗ 2 ∗ pi ∗ f requency ) ;

SFDRtarget = s ;
Pnoise = ( ( SFDRtarget−8.07∗b−3.29) /171 .5 ) ∗(LSBˆ2) ;
Pnoisedb = 10∗ log10 ( Pnoise ∗8) %in dBFs

%averag ing to lower the no i s e f l o o r
avgMax = 2ˆ14;
f f t z = zeros (1 , NrOfSamples ) ;
for avg = 1 : 1 : avgMax
%crea t e d i th e r s i g n a l
v = sqrt ( Pnoise )∗randn (1 , NrOfSamples ) ;
%c r ea t e quant i z e r input
w = x+v ;
%do conver s ion
[ index , z ] = quant iz (x , pa r t i t i on , book ) ;
%averag ing
f f t z = f f t z + ( f f t ( z ) /avgMax) ;
end ;

C.3 Equivalent quantizer

The following lists the MATLAB code to show that the SFDR of a dithered
system is approximately equal to it’s equivalent quantizer.

Listing C.4: equivalent quantizer concept proof

%time domain s imu la t ion to prove s t a t i s t i c a l r e s o l u t i o n
% A. J . van Heusden , 07−2011
close a l l ; clear ;

%Simulat ion s e t t i n g s
NrOfSamples = 2ˆ19;
per iod = 1e−9;
time = [0 : 1 : NrOfSamples−1]∗ per iod ;

D = 2 ;
M=2ˆ4;
%quant i z e r s e t t i n g s
Fu l l s c a l e = 1 ;
%ADCbits = log2 ((2ˆD −1)∗M+1) ;
ADCbits = log2 ( (2ˆD −2)∗M+1) ; %t r i a ngu l a r d i th

%ADCbits = 5 ;
Qleve l s = 2ˆ(ADCbits ) ;
LSB = Fu l l s c a l e / 2ˆADCbits ;
%book = (−(Qleve ls −1)/2 ∗ LSB) : LSB : ( ( Qleve ls −1)/2 ∗ LSB) ;
%pa r t i t i o n = (−(Qleve ls −2)/2 ∗ LSB) : LSB : ( ( Qleve ls −2)/2 ∗ LSB) ;
book = (−(Qleve ls −2)/2 ∗ LSB) : LSB : ( ( Qleve ls −1)/2 ∗ LSB) ;
p a r t i t i o n = (−(Qleve ls −3)/2 ∗ LSB) : LSB : ( ( Qleve ls −2)/2 ∗ LSB) ;

%s c a l e = 3/4 ;
s c a l e = 1/2
x = Fu l l s c a l e /2 ∗ s c a l e ∗ sin ( time∗2∗pi ∗ (31 .25 e6 /4) ) ;

% equ iva l en t quant i z e r
[ index , y1 ] = quant iz (x , pa r t i t i on , book ) ;

%quant i z e r s e t t i n g s : 2−b i t Quantizer
Fu l l s ca l eQ = 1 ;
ADCbitsQ = 2 ;
Qleve l s = 2ˆADCbitsQ ;
LSBQ = Fu l l s c a l e / 2ˆADCbitsQ ;
bookQ = (−(Qleve ls −1)/2 ∗ LSBQ) : LSBQ: ( ( Qleve ls −1)/2 ∗ LSBQ) ;
part i t i onQ = (−(Qleve ls −2)/2 ∗ LSBQ) : LSBQ: ( ( Qleve ls −2)/2 ∗ LSBQ) ;
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%quant i z e r s e t t i n g s : d i th e r
Fu l l s ca l eD = 1/2ˆADCbitsQ ;
ADCbitsD = log2 (M) ;
Qleve l s = 2ˆ(ADCbitsD) ;
LSB = Fu l l s c a l e / 2ˆADCbits ;
bookD = (−(Qleve ls −1)/2 ∗ LSB) : LSB : ( ( Qleve ls −1)/2 ∗ LSB) ;
par t i t i onD = (−(Qleve ls −2)/2 ∗ LSB) : LSB : ( ( Qleve ls −2)/2 ∗ LSB) ;
%d i the r s i g n a l :
%v = LSBQ∗( rand (1 , NrOfSamples ) −0.5) ;
v = LSBQ∗(rand (1 , NrOfSamples ) −0.5) + LSBQ∗(rand (1 , NrOfSamples ) −0.5) ; %...

t r i a n gu l a r d i th
%quant ize d i th e r s i g n a l :
[ index , vq ] = quant iz (v , part i t ionD , bookD) ;

%quant ize 2−b i t
[ index , y2 ] = quant iz ( ( x+vq ) , part i t ionQ , bookQ) ;

%get FFT in dBFs
p l o t f f t y 1 = 20∗ log10 (abs ( f f t ( y1 ) /NrOfSamples ∗(2/ Fu l l s c a l e ) ∗2) ) ;
p l o t f f t y 2 = 20∗ log10 (abs ( f f t ( y2 ) /NrOfSamples ∗(2/ Fu l l s c a l e ) ∗2) ) ;

%c a l c u l a t e SFDRs :
f f t c = p l o t f f t y 1 ( 1 : NrOfSamples /2) ; [ maxy1 , l o c ] = max( f f t c ) ; f f t c ( l o c ) = ...

−300;
SFDRy1 = maxy1 − max( f f t c ) ;
f f t c = p l o t f f t y 2 ( 1 : NrOfSamples /2) ; [ maxy2 , l o c ] = max( f f t c ) ; f f t c ( l o c ) = ...

−300;
SFDRy2 = maxy2 − max( f f t c ) ;

xax = [ 0 : 1 : NrOfSamples−1]/NrOfSamples ;
subplot (1 , 2 , 1 ) ;
plot ( xax , p l o t f f t y 1 ) ;
xlabel ( ’ Re la t ive f requency [ f / f s ] ’ ) ; ylabel ( ’Magnitude [ dBFs ] ’ ) ;
t i t l e ({ [ ’ l og2 ( ’ num2str(2ˆADCbits ) ’ )−b i t s quant ized s i n e wave spectrum ’ ] ; [ ’ ...

SFDR: ’ num2str(SFDRy1) ’ [ dB ] ’ ]} ) ;
axis ( [ 0 0 .3 −60 0 ] ) ;
subplot (1 , 2 , 2 ) ;
plot ( xax , p l o t f f t y 2 ) ;
xlabel ( ’ Re la t ive f requency [ f / f s ] ’ ) ; ylabel ( ’Magnitude [ dBFs ] ’ ) ;
t i t l e ({ [num2str(ADCbitsQ) ’−b i t s quant ized s i n e wave ’ ] ; [ ’ with 3−b i t d i th e r ...

spectrum ’ ] ; [ ’SFDR: ’ num2str(SFDRy2) ’ [ dB ] ’ ]} ) ;
axis ( [ 0 0 .3 −60 0 ] ) ;

C.4 Decision level variation

The following code shows the method of calculating the frequency components of the equivalent
quantizer error function

Listing C.5: Decision level variation error signal

% To show the dependence o f an undithered quant i z e r SFDR on va r i a t i o n s in
% i t s d e c i s i o n l e v e l s .
% A. J . van Heusden , 08−2011

%cyc l e through Mr : number o f harmonics
for m = Mr

i d e a l = 0 ;
sumr = 0 ;

%blachman implementation f o r m i s odd (Nr i s f o u r i e r terms )
i f (mod(m, 2 ) ˜= 0)

i d e a l = i ∗imag( sum((2./(− i ∗pi .∗Nr) ) .∗ b e s s e l j ( (m) ,Nr∗2∗pi∗A∗2ˆD/LSB...
) ) ) ) ;

else
i d e a l = 0 ;

end ;

%c a l c u l a t e added e r r o r :
added = 0 ;
%cyc l e through de c i s i o n l e v e l s
for d = 2ˆD/2 : 1 : ( 3∗2ˆD/2 − 1)

%Amp i s amplitude in LSB
A = −2∗(2∗LSB/Amp) ∗ (d) ∗(LSB/2ˆD) ;
B = or i g + LSB∗(1−alpha ) ;

%wr i t t en out i n t e g r a t i o n :
added = added + (3∗Amp/(4∗LSB) ) ∗ (1/(− i ∗2∗pi∗m) ) ∗ ( . . .

− exp(− i ∗m∗(2∗pi−asin (A) ) ) + exp(− i ∗m∗(2∗pi−asin (B) ) ) + . . .
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+exp(− i ∗(m) ∗(pi+asin (A) ) ) − exp(− i ∗(m) ∗(pi+asin (B) ) ) ) ;
end
Eidea l = [ Eidea l i d e a l ] ;
Eadded = [ Eadded added ] ;

end ;

E idea l = Eidea l ∗LSB∗2 ; %s c a l e the output
Eidea l (1 ) = Eidea l (1 )+i ∗A∗2ˆD∗2 ; % add fundamental

C.5 Decision level rules

C.5.1 Decision level rule, sine wave

The following lists the MATLAB code to obtain optimal decision levels for sinusoidal inputs.

Listing C.6: Obtain decision level probabilities

%th i s c a l c u l a t e s the d i s i c i o n l e v e l s f o r a pure s i n e as input
%se t d i th e r type , o therwi se d i th e r i s r e c tangu la r
d i th e r = ’ t r i ang ’ ;

LSB = 0 . 2 5 ; %LSB d e f i n i t i o n

i f (sum( d i th e r == ’ t r i ang ’ ) )
A = LSB∗1 ; %s i g n a l amplitude

else
A = LSB∗ 1 . 5 ; %s i g n a l amplitude

end

s tep = LSB/10000; %nummerical approximation accura t ene s s
xSine = [−A: step :A ] ; % value ax i s f o r s i n e PDF

h1 = (A∗2) . / ( pi .∗ sqrt ( (A) ˆ2 − xSine . ˆ 2 ) ) / length ( xSine ) ;
%co r r e c t the i n f i n i t e va lues
h1 ( length ( h1 ) ) = 0 ; h1 (1) = 0 ;
h1 (1) = (1−sum( h1 ) ) /2 ;
h1 ( length ( h1 ) ) = (1−sum( h1 ) ) ;

%c r ea t e the d i th e r PDF
xPDF = [−1∗LSB+step : s tep :1∗LSB ] ;
h2 = ( ( (xPDF > (−LSB/2) ) + (xPDF < (LSB/2) ) )−1) ;
i f (sum( d i th e r == ’ t r i ang ’ ) )

%c r ea t e t r i a n gu l a r PDF
h2 = conv (h2 , h2 ) ;

end
h2 = h2/sum( h2 ) ;
h2 = h2 ( length ( h2 ) /4 : 3∗ length ( h2 ) /4) ; %chop o f f z e ro s

%cr ea t e t o t a l PDF
h3 = conv (h1 , h2 ) ;
%get the va lues
d min = sum( h3 ( 1 : ( length ( h3 ) /4) ) )
d nul = sum( h3 ( 1 : 2∗ ( length ( h3 ) /4) ) )
d max = sum( h3 ( 1 : 3∗ ( length ( h3 ) /4) ) )
check = sum( h3 ( 1 : 4∗ ( length ( h3 ) /4) ) )

C.5.2 Band-pass Gaus clipping distortion vs. SFDR

C.5.2.1 Maximum allowed sigma

Listing C.7: Clipping distortion of bandlimited Gaussian distributed signal

%th i s c a l c u l a t e s the d i s i c i o n l e v e l s f o r a Gaussian d i s t r i bu t ed s i g n a l with
%a c e r t a i n sigma
%A. J . van Heusden , 08−11

%s e t t i n g s :
LSB = 0 . 2 5 ;
s tep = 1/1000;
fsRange = 16 ;
xGaus = [−( fsRange /2)+step : s tep : ( fsRange /2) ] ; %16 sigma . .
%se t the sigma :
%sigma = %0.215;
%sigma = 0 . 1 74 ;
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sigma = 0 . 1 46 ;
%c r ea t e input s i g n a l PDF
h1 = 1/(2∗pi∗ sigma ˆ2) ∗ exp( −((xGaus ) . ˆ 2 . / ( 2∗ sigma ˆ2) ) ) ;
h1 =h1 . /sum( h1 ) ;
%c r ea t e d i th e r PDF
h2 = ( ( ( xGaus > (−LSB/2) ) + (xGaus < (LSB/2) ) )−1) ;
h2 = h2/sum( h2 ) ;
%convolute and chop o f f the unused part s
h3 = conv (h1 , h2 ) ;
h3 = h3 ( length ( h3 ) /4 : 3∗ length ( h3 ) /4) ;
%obta in the p r o b a b i l i t i e s
d min = sum( h3 ( 1 : ( ( length ( h3 ) /2)−(LSB/ step )−1) ) )
d nul = sum( h3 ( 1 : ( length ( h3 ) /2)−1) )
d max = sum( h3 ( 1 : ( length ( h3 ) /2+(LSB/ step )−1) ) )
check = sum( h3 ( 1 : 4∗ ( length ( h3 ) /4) ) )

C.5.2.2 Decision levels

The following lists the snippet for determination of decision levels for a certain sigma

Listing C.8: Calculation of decision level probabilities

%th i s c a l c u l a t e s the d i s i c i o n l e v e l s f o r a Gaussian d i s t r i bu t ed s i g n a l with
%a c e r t a i n sigma
%A. J . van Heusden , 08−11

%s e t t i n g s :
LSB = 0 . 2 5 ;
s tep = 1/1000;
fsRange = 16 ;
xGaus = [−( fsRange /2)+step : s tep : ( fsRange /2) ] ; %16 sigma . .
%se t the sigma :
%sigma = %0.215;
%sigma = 0 . 1 74 ;
sigma = 0 . 1 46 ;
%c r ea t e input s i g n a l PDF
h1 = 1/(2∗pi∗ sigma ˆ2) ∗ exp( −((xGaus ) . ˆ 2 . / ( 2∗ sigma ˆ2) ) ) ;
h1 =h1 . /sum( h1 ) ;
%c r ea t e d i th e r PDF
h2 = ( ( ( xGaus > (−LSB/2) ) + (xGaus < (LSB/2) ) )−1) ;
h2 = h2/sum( h2 ) ;
%convolute and chop o f f the unused part s
h3 = conv (h1 , h2 ) ;
h3 = h3 ( length ( h3 ) /4 : 3∗ length ( h3 ) /4) ;
%obta in the p r o b a b i l i t i e s
d min = sum( h3 ( 1 : ( ( length ( h3 ) /2)−(LSB/ step )−1) ) )
d nul = sum( h3 ( 1 : ( length ( h3 ) /2)−1) )
d max = sum( h3 ( 1 : ( length ( h3 ) /2+(LSB/ step )−1) ) )
check = sum( h3 ( 1 : 4∗ ( length ( h3 ) /4) ) )
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