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Abstract

The enhanced Maximum Likelihood method (EML), proposed by Jaskowski

and Verleger (2000), is a template-based approach for detecting signals in

a continuous EEG measurement. This study compared the ability of three

analysis techniques - peak picking, Woody's method and the EML - to deter-

mine amplitude and latency of a pain-evoked P3a component. A pseudo-real

dataset was constructed from pain-related EEG data and deliberately con-

taminated with noise. There were two objectives to this research: �rst, to

con�rm the validity of our EML implementation; and second, to determine

whether the EML is suitable to detect P3a amplitude habituation in single

trials. 15 pseudo-simulated ERP sets were used for validation, and habitua-

tion was determined in four realistic sets of single trials. The original EML

was modi�ed twofold: �rst, a wavelet-transformed signal space was used in-

stead of the fourier-transformed signal space; and second, the solver used

the direct method instead of iterating. Both changes addressed issues (a

lack of temporal resolution and oscillating results, respectively) that limited

the original study. Comparison of the three techniques yielded results that

were consistent with the prior study, validating our implementation. While

the EML method proved e�ective to determine P3a latency in single trials,

amplitude estimation was unreliable. The low accuracy of the EML results

seems to be caused by the small signal-to-noise ratio. Pain habituation re-

mained undetected in 53% of all subjects, unless single trials were binned

in larger chunks. Because of the inherent limitations of template-based ap-

proaches, templates have to be tailored carefully when considering clinical

applications.



Introduction

Event-related potentials (ERPs) have traditionally been studied under the assump-

tion that each measurement contains a stationary part (stable in relation to the stimulus

event) and a non-stationary part (varies independently from the stimulus event). From the

assumption that ERPs remain stable over time if all environmental factors stay constant, the

stationary part has been considered far more valuable than the non-stationary part. This

assumption made it acceptable to sacri�ce non-stationary information, in order to improve

the accuracy of stationary information. Partly due to this paradigm, the widely used pro-

cedure has been to examine the average of several ERPs - instead of examining single trial

ERPs. Event-related averaging has mainly been used to raise the - very low - signal-to-noise

ratio (SNR) in single trials. However, continuing technological advances caused the physical

noise to decline during the decades. This development is met by advancements in analysis

algorithms that become more e�ective at separating the signal from background activity.

History of the EML

One of these algorithms, the Enhanced Maximum Likelihood (EML) method, will be

the main subject of this study. Initially, Pham et al. proposed (Tuan, Möcks, Köhler and

Gasser, 1987) and evaluated (Möcks, Köhler, Gasser and Tuan, 1988) a method for estimat-

ing the latency of ERP components in stimulus-locked trials. This method, initially called

�iterative Fisher scoring�, relies on two references: a template contained an idealized signal

with the expected ERP component, and a noise pro�le provided an idealized representation

of real-world background activity. Template-based models are considered more robust than

feature-based models (which search for signi�cant features such as lines, slopes or edges)

when encountering strong sample variance. The principle of a template approach is based

on a comparison between the template and a measured sample ERP. In addition to the

signal, the sample also contains background noise:

rj(t) = s(t) + ej(t),
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where t denotes the single time points of the analyzed waveshape (from 1 to T ), rj(t) is the

activity measured at time t, s(t) is the constant event-related signal, and ej(t) is the noise

signal. This simpli�ed model assumes that the signal s(t) is invariant between trials and

uncorrelated to the noise set.

Woody's method. Woody's method (Woody 1967) uses statistical correlation to com-

pare between sample and template (see �gure 1). The time o�set between template and

sample is shifted until the correlation ρs,r becomes maximal:

ρs,r =
cov(s(t+ τj), rj(t))

σsσr

Relying on a full-length template makes Woody's method very robust to noise contamination

and localized artifacts (Jaskowski and Verleger, 1999). Smulders, Kenemans and Kok (1994)

improved this method when �nding that using covariation instead of correlation resulted in

slightly increased performance.

Figure 1. Illustration of Woody's method. A low-noise template (left) is cross-covariated against
a noise-contaminated sample (middle). The cross-covariation is yielded as function of time o�set
between sample and template (right). Note that, in the central chart, the noise-induced peak at
1700ms yields a much smaller covariation value than the correct one at 280ms - despite its larger
amplitude.

Maximum Likelihood method. Jaskowski and Verleger (1999) refered to the �iterative

Fisher scoring� method by Tuan et al. as �Maximum Likelihood method� (ML), acknowl-

edging the mathematical core of this method. The ML can be used to extract signal and

noise components separately, as long as the simpli�ed signal model applies and if there is
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no overlap between the frequency distributions of signal and noise. Although the ML also

relies on an idealized signal template, it employs a fundamental improvement over Woody's

method (Jaskowski and Verleger, 2000): acknowledgment and usage of background noise as

a data source. The simpli�ed model is Fourier-transformed to �t the frequency-domain ML:

Rj(ω) = S(ω)−iωτj + Ej(ω),

where ω = 0, (2πT ), (4πT ), ... describes a �nite set of frequencies, and capital letters stand for

Fourier transforms of time-domain data. There are two data sources available, one with the

idealized signal S(ω) and one that describes the underlying noise sweep Nj(ω):

Nj(ω) = (S(ω)−iωτj −Rj(ω))

The unknown latency τj can be estimated by maximizing
1 the log likelihood function LLF(for

a complete description, see Tuan et al., 1987):

maxτj
Nj(ω)

LLF (S(ω)−iωτj −Rj(ω))

Enhanced Maximum Likelihood method. The enhanced ML (EML) removes a limita-

tion of the simpli�ed signal model: the underlying signal is no longer amplitude-invariant.

To allow for changing waveform amplitude between trials, Jaskowski and Verleger (1999)

added an optimization variable to the previous model:

Nj(ω) = (ajS(ω)
−iωτj −Rj(ω)),

1This maximization problem was originally solved by iterative Fisher scoring, providing the name for this
procedure.
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where aj stands for the amplitude of the jth trial. Accordingly, the maximization problem

uses a second parameter:

maxτj ,aj
Nj(ω)

LLF (ajS(ω)−iωτj −Rj(ω))

Jaskowski and Verleger (2000) reported severe problems when using the iterative Fisher

solver, which allowed them to maximize both variables simultaneously. Iterations failed to

converge to a stable result or converged in a local maximum. Preliminary analysis over our

dataset indicated that there was no correlation between both parameters, allowing us to use

a two-step direct approach:

maxajmaxτj
Nj(ω)

LLF (ajS(ω)−iωτj −Rj(ω))

The original paper relied on Fourier-transformed data for the EML calculation, a compro-

mise2 between temporal resolution and frequency bandwidth (see Jaskowski and Verleger,

2000: �ML method�). This approach limited the analysis to the principal (low-frequency)

components of the P3 waveform, and severely reduced the accuracy of the latency estima-

tion results. To resolve this compromise and maximize EML accuracy and performance, we

adapted the algorithm to accept wavelet-transformed data:

maxajmaxτj
∑
f

log(Inoise(f))

LLF (ajsf (t+ τj)− rf,j(t))
,

where f denotes a single frequency component in the wavelet-transformed domain. Phase

information and trial dependency were removed from the noise sweep Nj(ω), resulting in a

general noise intensity spectrum Inoise(f). The logarithmic scaling of the noise pro�le was

required to match the LLF output.

2Jaskowski and Verleger (2000) used a Fourier bandwidth of 10 frequency components, corresponding to
a low-pass �ltering with a cut-o� frequency of 3.9Hz.
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Previous study

Jaskowski and Verleger (2000) compared three distinct computational models in their

performance to detect P3 peak latencies. All models were based on earlier studies, but had

not yet been used in P3 detection. In addition to Woody's method and the EML, peak

picking was also used in the performance comparison. Peak picking scans the ERP for the

largest positive amplitude and returns the time position of this peak. The authors con-

trolled P3 amplitudes, latencies and background noise levels using �pseudo-real� simulations

(Gasser, Möcks and Verleger, 1983; Möcks, Gasser and Pham, 1984). Accuracy deteriorated

strongly with increasing noise levels. The EML produced the most accurate results by a

small margin. The authors also stress the limitations of a template-based approach, mainly

due to the rigid signal model.

Study goals

The current paper is an update of the study performed by Jaskowsi and Verleger

(2000). The �rst goal was to establish the validity of our EML implementation. While the

previous study mainly focused on the determination of P3 latency, this paper extended the

focus to include peak amplitude estimation (as suggested by Jaskowski and Verleger, 1999).

As result of more recent research e�orts (introduced by Falkenstein, Hohnsbein and

Hoormann, 1994; for an overview see Quevedo and Coghill, 2007; Polich, 2007), the P3

event was shown to consist of two independent components: the classic P3b, and the more

physiologically-focused P3a. Pain stimuli are known to cause an unusually strong P3a am-

plitude. This e�ect is bene�cial for the detection of small signals in single-trial analysis. In

contrast to the traditional P3 production by oddball task (Donchin, Ritter and McCallum,

1987), the P3a creation is unrelated to the current task (Polich, 2003; Polich, 2007). Com-

ponent onset is earlier and more intense when stimulus intensity is increased (Bromm and

Scharein, 1981). Because of these features, we used pain-evoked P3a samples exclusively.

To create their pseudo-real simulations, Jaskowski and Verleger (2000) extracted the

noise sweeps from a separate set of task-related ERP sweeps. Because no additional noise
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measurements were required (which didn't exist in our data) we adapted this procedure to

create noise sweeps.

The validation procedure consisted of two parts: the arti�cial condition and the real-

istic condition. Focus lay on the in�uence of noise contamination on the estimated results.

The �rst - arti�cial - condition examined the models' performance under ideal conditions,

using a pseudo-real dataset that contained only one prototypical P3a waveform (sampled

from an illustration in Polich, 2007). The second part introduced ERP variation between

trials. In the realistic condition, the pseudo-real dataset contained subject-speci�c grand-

average ERPs.

The two traditional models (Peakpicking, Woody's method) were expected to perform

similarly to those described by Jaskowski & Verleger (2000), showing a close link between

noise contamination and model error rate. The two new models (ML, EML) were expected

to yield more accurate results than the two traditional models, and to perform at least as

well as the implementations described in the previous study.

The second goal was to test whether EML performance was su�cient to connect P3a

amplitude to stimulus intensity. For this purpose, we prepared an ERP set that resulted

from various amounts of painful stimulation. We wanted to see whether the EML amplitude

estimations correctly detected the stimulation intensity.
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Method

Data recording

The study included data from 16 subjects (students between 19 and 25 years) who

produced 102 trials during each of four experimental blocks. The data for this study was

created and provided by Blom and Braukmann. Participants received pain stimuli and

responded according to stimulus intensity and location. Subcutaneous electrical stimulation

on each forearm delivered the stimuli. Stimulus intensity was controlled by varying the

number of impulses (spaced at 5ms) per pulse train. In the data for our �rst analysis,

there were two intensity conditions, �high� and �low�. We used only data from the �high�

condition. The dataset for our second analysis contained responses to increasingly intense

electrical stimuli. We used only trials that exceeded the subjects' pain threshold.

The measurement (BrainVision format, sampled at 500Hz) contained recordings from

63 EEG channels (electrode layout according to the 10-20 system), two EOG channels (mea-

suring horizontal and vertical eye movements) and one ECG channel. In order to stay con-

sistent with Jaskowski and Verleger (2000), the channel Cz was downsampled to 100Hz for

the �rst dataset. Trials were extracted from an interval of 1s before stimulus onset and

2s after stimulus onset. Baseline-corrected trials (baseline sampling between -50ms and 0s)

were then screened for artifacts by searching for blinks and values larger than ±100µV. Only

data recorded from the Cz channel was used in this study. After screening, the �rst (second)

dataset consisted of a total of 5176 (1809) trials.

Filter settings

Jaskowski and Verleger (2000) removed frequency components above 3.5Hz from their

data. The original study supports this setting with three reasons: tradition, robustness of

results (Smulders, Kenemans and Kok, 1994) and the low-frequency nature of the principal

P3 portion. Peak picking and Woody's method yield the best results with pre-�ltered data

(e.g., Pfe�erbaum, Christensen, Ford and Kopell, 1986; Pfe�erbaum, Ford, Wenegrat, Roth

and Kopell, 1984). Consistent with Jaskowski and Verleger (2000), data was subjected to
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a zero-phase lowpass �ltering (cuto� frequency of 3.5Hz) for the �rst analysis. However,

the decision to use low-pass �ltering before employing the EML was mainly caused by the

resolution limitations of the Fourier transformation. Having removed this limitation, we

decided to process the dataset in full temporal and frequency resolution during the second

analysis.

When processed by the EML, data were wavelet-transformed into the lower 250 (50

in the �rst analysis) frequency components. Frequency values were assigned from a linear,

evenly-spaced interval. Wavelet forms which follow the ERP peak shape provide maximum

detection capabilities with minimal contrast artifacts at the peak boundaries (Mahmood-

abadi, Alirezaie and Babyn, 2007). A symmetric, second-order reverse biorthogonal spline

wavelet (Cohen, Daubechies and Feauveau, 1992; also used by Quiroga and Garcia, 2003)

achieved the best �t3 with a prototypical P3a event, and was used as �lter for the continuous

wavelet transformation.

Creation of the pseudo-real dataset

Template. The two template-based detection methods required a reference ERP sweep.

For this purpose, a separate template was generated for each subject.

Template formation consisted of four steps: First, a random selection (25%) of all trials

was separated from the remaining dataset. Second, the P3a latency di�erence τ̂ between

each trial and a prototypical P3a waveform was estimated with Woody's method. Third,

all trials were time-shifted by −τ . Fourth, the event-locked samples were combined into a

grand-average ERP.

Noise. The procedure to create noise sweeps (Jaskowski and Verleger, 2000) consisted

of �ve steps. All noise-related trials were taken from a separate, random dataset selection

(25% of all trials). (a) Woody's method was used to determine the P3a latency shift τ̂

between each sample r(t) and the subject-speci�c grand-average ERP s(t). (b) The template

3The similarity was measured by calculating the covariance between the wavelet shape and an idealized
P3a waveform. The Matlab wavelet bior2.2 showed a covariance of 11.2% (relative to P3a autocovariance),
followed by sym4 at 8.45% covariance.
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was time-shifted by −τ̂ and multiplied by a variable factor â. The factor â was varied until

the sum of squared di�erences between sample r(t) and scaled and shifted template â s(t− τ̂)

was minimal4. (c) A raw noise sweep nraw(t) was formed by subtracting â s(t − τ̂) from

r(t). (d) The Fourier-transformed noise sweep N(ω) was split into phase and magnitude

information. The magnitude channel determined the noise intensity spectrum and was

unaltered. Randomization of the phase channel removed undesirable event-locked traces.

(e) The inverse Fourier transformation of the combined channels created the �nal noise

sweep n(t).

Noise pro�les were required as reference data for the EML. For this purpose, the

magnitude channels from Fourier-transformed noise sweeps N(ω) were combined into a

grand average. The resulting intensity spectrum Inoise(f) was calculated for each subject,

and subsequently used as noise pro�le.

Figure 2. An examplary ERP, contaminated with three variations of the same noise sweep. The
noise sweep was scaled by factors of 0.001 (red line), 0.1 (green line), and 10 (blue line). Note that
the initially clear peak at 200ms shifts towards 130ms under increasing noise in�uence.

4In contrast to the original procedure, we used the interior-re�ective Newton method to solve the mini-
mization problem (Coleman, 1996). This large-scale approach, in comparison to the iterative Fisher solver
used by Jaskowski and Verleger (2000), is less prone to produce oscillating results or to become trapped in
local maxima.
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Simulated trials. The �rst analysis used two distinct sample sets. The �rst sample

�set� consisted of a grand average ERP of all trials in the dataset. The second sample set

contained the 16 subject-speci�c templates (from the previous section, �Templates�. Each

sample rj(t) from both sample sets was contaminated with 13 levels of noise in two steps:

(a) One noise sweep nj(t) scaled exponentially with a series of factors νi (i ranging between

1 and 13, νi ranging between -3.0 and +3.0). (b) The resulting series of noise sweeps was

then combined with the sample (see �gure 2) to create a series of trials xij(t):

xij(t) = rj(t) + 10νi nj(t).

Because noise sweeps were only randomized between trials, not between noise levels, models

could produce consistent results across all noise rates.

Methods for P3a estimation

Peak Picking. We used the approach described by Jaskowski and Verleger (2000)

verbatim. Both sample and template are examined for the largest positive amplitude. The

time di�erence between both peaks is de�ned as estimated P3a latency5.

Woody's method. We implemented the approach by Jaskowski and Verleger (2000)

unaltered. The time o�set of the template is varied along the whole timerange, while the

covariation between template and sample is calculated. The o�set for which the covariation

value is maximal was de�ned as estimated P3a latency.

EML. The implemented method consisted of three parts: the log likelihood function

(LLF), the comparison with the noise pro�le, and the maximum search.

(a) The LLF (Tuan, Möcks, Köhler and Gasser, 1987) estimates which parameter

is most likely to describe a given data �eld. A frequency component of both sample and

template was selected. The two parts were time-shifted across the whole time range and

5Note that these methods yield a relative value. To determine the absolute P3a latency in a sample,
exact knowledge about the template P3a latency is required.
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subtracted from each other. The Matlab implementation MLE yielded a log likelihood 6

and a con�dence interval. Only the log likelihood was used. This operation was conducted

for each frequency component, resulting in a likelihood spectrum.

(b) The noise pro�le (from the previous subchapter, �Noise�) was divided by the like-

lihood spectrum: ∑
f

log(Inoise(f))

LLF (sf (t+ τj)− rf (t))

Each frequency component was again processed separately. If the time o�set τj was perfect,

the signal component would be eliminated from the sample, only leaving noise. This would

make the LLF minimal, yielding a maximum result for the formula. For any other time o�set

τj , a signal trace remains in the sample, rendering the LLF result larger than minimal.

(c) After establishing the conditions for �nding the perfect time o�set τj , the goal

was to maximize the division between noise spectrum and LLF result. Including the two

variables from before, we had to solve:

maxajmaxτj
∑
f

log(Inoise(f))

LLF (ajsf (t+ τj)− rf,j(t))

A direct approach was used, varying the values τj and aj one after another. Range and

resolution of τj were straightforward: the length of the whole sample, one datapoint at a

time. The �rst step varied only τj , leaving aj at a value of 1. The τj that yielded the

maximum result was considered �nal. The factor aj was then varied between 10−1and 101

in 100 linear steps, while searching for a maximum result with the previous τj . The resulting

optimal aj was then used for a third, more accurate search around aj±0.1 in 39 steps. This

�nal aj and the previous τj then de�ned the estimated P3a latency and amplitude.

Statistics

Two sets of statistics were used to evaluate the validity and performance of the EML,

respectively. (a) The three computational models compared samples from two simulated

6Speci�cally, the Matlab MLE calculates the likelihood of the sample to be non-zero.
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datasets, against the respective templates. Yielded were the mean squared errors between

template-template (�expected�) and template-sample (�estimated�) comparisons, as de�ned

by the formula:

MSE =
1

N

∑
j

(τj − τ̂j)
2

where τj are the expected and τ̂j the estimated latencies. The average MSE over

all subjects was then compared between methods and against the results of the previous

study. (b) The EML compared single-trial data from all subjects to a set of subject-speci�c

templates. Results were subjected to bivariate correlation between stimulus intensity and

estimated P3a amplitude.

Results

First analysis: Validity of the improved EML

During the �rst analysis, accuracy of the three algorithms (peak picking, Woody's

method and EML) was compared to the results of Jaskowski and Verleger (2000). Figure

3 (below) displays the e�ect of noise contamination on the mean squared error of latency

estimations. Estimation error from using the arti�cial dataset is displayed in the left-hand

chart. Estimation error from using the realistic dataset is presented in the right-hand chart.

Figure 3. Error rate of P3a latency estimations from three analyses, as a function of noise contami-
nation. Note that the X-axis describes an exponential series. Left: results from our implementations
in the arti�cial condition. Middle: original results from Jaskowski and Verleger (2000) in the 70ms-
condition. Right: results from our implementation in the realistic condition.
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The arti�cial condition directly re�ected on the noise-robustness of the implemented

algorithms. Results were accurate in all methods during low-noise conditions. Performance

started to degrade at a ν of -1.5 (equivalent to a SNR of 30). Error rates increased equally

for all three models, until leveling o� at ν-values between +0.5 and +1.0. In high-noise

conditions, models unanimously detected a P3a-similar complex in the noise sweep. Strong

di�erences between estimation errors in high-noise conditions mainly result from the low

number of random noise sweeps and don't re�ect on the performance of the algorithm.

The realistic condition was designed to be compared to results from Jaskowski and

Verleger (2000). Results were near-perfect in the low-noise region, similar to both the

previous condition and the previous study. Degradation started at ν-values between -1.0

and 0.0, which is more diverse than in the previous study (degradation begin at a ν of -0.5).

Results from peak picking started to degrade �rst. Both peak picking and Woody's method

started degrading earlier than the EML, but the rate of degradation was lower. Due to this

e�ect, the EML provided the most accurate results up to a ν-value of +0.5. For ν-values

of +1.0 and above, the EML yielded the least accurate results for all three models. This

result is consistent with the �ndings of the previous study: the EML performed best at a ν

of +0.66 and below, worst at a ν of +1.0 and above. In high-noise conditions, peak picking

performs slightly worse than Woody's method but better than the EML. Except for the

high-noise EML error rate - which was even higher in the previous study - our results are

very similar to those of Jaskowski and Verleger (2000).

Second analysis: Connection between pain intensity and detected P3a amplitude

In this step, the EML estimated P3a peak amplitudes from the second dataset. Esti-

mations from single trials were then compared to stimulus intensity. We removed 16.9% of

the trials, for which the estimated P3a latency was outside of the time window 100-400ms

(relative to stimulus onset). Because both P3a amplitude and stimulus intensities varied

strongly between individuals, these variables were standardized per subject (see �gure 4).

Also, the mean amplitude was removed from individual P3 amplitudes.
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Figure 4. Comparison between stimulus intensity and EML results. Left: Single trials from 9
subjects. Estimated amplitudes are plotted against stimulus intensity. Right: Selection of subjects
from the normalized data set; amplitudes are again plotted against stimulus intensity. Note: Appar-
ent grouping along the horizontal axis is an artifact from low rounding precision. The correlation
analysis is not a�ected.

The amplitude estimations show large variance between trials. When comparing

amplitude estimations against stimulus intensity, no clear pattern or inclination emerges.

The bivariate correlation between the two variables doesn't yield signi�cant results either

(r = .038, p(1045) = .225). Post-hoc analysis on a per-subject basis indicates strong indi-

vidual di�erences: two subjects reached signi�cance (r = .208, p(118) = .024; and r = .194,

p(138) = .023) with opposite correlation coe�cients.
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Discussion

An algorithm was examined for its ability to estimate latency and amplitude in pain-

related P3a events. The level of background noise was varied systematically using �pseudo-

real� simulations. The validity of our implementation was con�rmed by comparing the

results against those of a previous paper. P3a amplitudes were then estimated in a real

dataset, failing to detect a connection between stimulus intensity and P3a amplitude.

The EML indicated to produce correct results, when compared to the similar study

by Jaskowski and Verleger (2000). Contrary to the �ndings during the second analysis, P3a

amplitude is generally linked to stimulus intensity (Lorentz and Bromm, 1997) - even in

similar settings (Bromm and Scharein, 1991; Kanda, Fujiwara, Xu et al., 1996; Houlihan,

McGrath, Connolly et al, 2004). To resolve this contradiction, a number of speculations can

be o�ered: (a) The range of stimulus intensity was too small to produce a distinct di�erence

in P3a amplitude; (b) the amplitude estimation had been implemented inaccurately; or (c),

the noise pro�le provided insu�cient grounds for separating signal from background activity.

Subjects in the study of Blom and Braukmann received stimuli that increased from

indiscernible to the limit of pain tolerance, which refutes the �rst speculation. To examine

the second speculation, we employed a post-hoc analysis. Trials from the �rst dataset were

organized in a series of sequential trials, where stimulus intensity varied only between two

conditions. According to Bromm and Treede (1991), repeated exposure to pain stimuli

decreases the connected ERP amplitudes. We extracted the original single trials from the

high-intensity condition and analyzed the in�uence of repeated stimulation on estimated P3a

amplitudes. Amplitude estimations of single trials from 15 subjects were subjected to (one-

tailed) bivariate correlation against trial number. References (subject-speci�c templates and

noise pro�les) were re-used from the simulated dataset. The correlation (see �gure 5) yielded

a signi�cant decrease over time (r=-0.061, p < 0.001), showing the e�ectiveness of the EML

in principle. However, this correlation was based on the complete data set. When the data

set was examined per subject - as would be the case in a clinical setting (Turk and Dworkin,

2004) - the correlation reached signi�cance only in 7 subjects (equivalent to a detection rate

16



Figure 5. P3a amplitudes from a series of repeated, invariant stimulation. Chart represents stan-
dardized and binned data from all subjects.

of 47%).

This �nding provides evidence for the third speculation, indicating that EML perfor-

mance was limited by the high level of background noise in combination with a low amount

of trials.

The vulnerability to low signal-to-noise ratios can be explained by a fundamental

limitation of template-based approaches. As ERPs consist of the added e�ect of a multitude

of neuronal clusters, the waveform will inevitably vary strongly between trials - and even

more so between subjects. In order to optimize template-based estimations, the template

ERP should be as personalized and as noise-free as possible. This poses the �rst practical

limitation to the application of pain quanti�cation - a large amount of trials is neccessary

just to prepare the template and noise pro�le. Employing a more sophisticated de-noising

algorithm (e.g., Quiroga and Garcia, 2003) for each trial could potentially decrease the

amount of necessary trials. Another potential remedy to this problem is provided by binning

several trials to a less noisy average before employing the amplitude estimation (in our

dataset, we reached a 100% detection rate for habituation when combining 4 trials).

The major reason for the poor amplitude results could be the paradigm of a �xed

ERP template. The di�erent evoked components contain di�erent latencies and intensities,

before being combined to a ERP measurement. Optimally, a computational model would

be able to separate, recognize and quantify the di�erent components which add up to the
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speci�c response that appears to be a single positive peak. If the template approach is desir-

able (either in terms of computational e�ort or robust algorithms), its accuracy potentially

could be enhanced by performing a ICA (independent component analysis) which provides

localized information to the template. With this compromise, the rigidity problem of the

general template is resolved, without having to resort to more complex algorithms. And

as the results from the EML estimation have shown, optimization can improve the original

algorithm by orders of magnitude - even if the optimization is implemented as �nal re�ne-

ment. From this point of view, it would seem bene�cial to the �nal accuracy to vary the

components in every possible way - not only amplitude, but also latency, length or even DC

o�set and frequency baseline.

Of course, each extension to current algorithms would have to be implemented very

carefully: the exponentially increasing capacity demands quickly pose the need for the use

of iterative solvers and search guidelines. Each decision that is made with the �nal result in

mind will introduce a hypothesis into the analysis, and promote trials that conform to the

original assumption. The risk of committing a self-full�lling prophecy can't be prevented

easily. Ideally, the analysis would be guided by a �exible algorithm that knows about

the general conditions of the experiment (e.g., that two trials are always approximately

4 seconds apart) and can adapt to the individual connection between stimulus and ERP

components.Neuronal networks (Gallistel, Mark, King and Latham, 2002), for example,

could employ a combination of feedforward and feedback learning to excel at this task.

After the initial phase of trial-and-error learning, such a model could emulate future results

and adapt from the error of prediction (feedforward model). The current top candidate

in the area of unsupervised learning is regularly used in computer science and uses a less

limited approach: Each degree of freedom is represented as a separate dimension in a high-

dimensional vector �eld, and every possible variation is potentially represented in it. The

approach of support vector machines (SVM ; Ranzato, Huang, Boureau and LeCun, 2007)

describes an iterative process with the goal to �nd an optimal separation between two

sets of values (e.g., signal and noise) within the vector �eld. Employing this paradigm
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in P3 detection would combine the positive abilities of all above models (highly adaptive,

maximum input granularity, blindly improving process) without many of the drawbacks

(templates: rigidity; neuronal networks: scale problems). However, this luxury comes at the

cost of very high needs for computational capacity - a common limiting factor in cognitive

science.
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