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Management Summary

In this thesis, the problem of hosting a database with sensitive information on an honest
but curious server is explored. Simply stated, the problem is the following: how can
we store information and perform queries in such a way that the server cannot learn
the contents of the information or the queries. Although in an ideal situation the stored
information would be a relational database, the scope of this thesis is limited to the
storage and querying of metadata.

Two of the general approaches to solving this problem are Hidden Vector Encryp-
tion (HVE) and Inner Product Encryption (IPE). The former allows for conjunctions
of a wide variety of queries in a relatively efficient manner, but has some innate prob-
lems regarding the confidentiality of search queries; the latter allows for disjunctions
of an even wider variety of queries and can prove confidentiality of search queries, but
suffers some efficiency problems.

In this master thesis, a solution is constructed that incorporates both the efficiency
of HVE and the security of IPE. In order to do this, current HVE and IPE implementa-
tions and the intuitions behind these implementations are studied to retrieve their innate
strengths and weaknesses and to understand their interrelations. This creates a context,
within which a main intuition is designed.

This intuition involves employing the main ideas behind Seghi’s HVE construc-
tion to give IPE’s shorter input vectors. This would make the computational cost of
performing a query on a ciphertext linear to the maximum number of wildcards in a
query instead of linear in twice the total number of elements in a query. Especially in
HVE schemes that allow a relatively low number of wildcards, this would be a great
improvement.

The intuition had one problem, however, as it was not fully compatible with existing
IPE constructions.

Two attempts were made at creating a construction that compensates for this incompat-
ibility.

The first attempt revolved around extending an existing IPE scheme, but was ul-
timately proven insecure. The second attempt uses one insight from the first attempt
to amend the main intuition in such a way that the incompatibility is removed. This
results in our main construction.

Additionally, the same technique that is used in the second attempt is used to create
an alternative construction that is more efficient than the main construction in two
specific situations.
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Chapter 1

Introduction

This chapter contains the motivation and the setup of this master thesis. Starting with
a general background and context description, it continues to explain the basics of
searchable encryption and the problem within this domain that this thesis tackles. Hav-
ing identified the problem, the chapter continues to formulate the main research ques-
tion and the approach to finding an answer.

1.1 General background

1.1.1 General introduction
If you have paid attention to the media during the last decade, you have probably come
across stories about “the need for cyber security”, or “the importance digital privacy”,
or maybe even “the need for data protection strong encryption”. Clearly there exists a
desire, some may say even a need, to protect information.

Luckily, there are almost as many solutions that provide ways to protect informa-
tion as there are situations where this need is expressed. We can surf anonymously
to a website, download files through a secured connection and store them in a hid-
den volume on an encrypted USB stick, which may only be accessed after two-factor
authorization using a hardware token and our own biometrics.

There are many solutions, but there are still open questions.

1.1.2 Context
The specific context of this master thesis is the scenario where a database with sensi-
tive information has to be stored on an honest but curious server, without losing the
database’s query functionality.

By “honest but curious” we mean that even though the server will stick to the
protocol and it will not tamper with the integrity of our data (honesty), it may try to use
any of the information it sees to learn and spread information about stored content or
scheme-specific secrets (curiousity).

To illustrate this problem, imagine a company that uses a database to store its client
administration. Because this company does not want to spend unnecessary resources
on the database storage, they want to outsource the storage to a specialized hosting
provider, that offers excellent availability and integrity guarantees (honesty) against
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very competitive prices. However, because the hosting provider offers the storage as
a cloud service, with servers stationed around the world, it cannot guarantee that the
data is stored in a country with the kind of privacy legislation that the company needs
to meet its own privacy policy (so servers could be curious).

What the company would like in this scenario, is a way in which it can store and
retrieve the information from the provider without exposing said information to the
server. Ideally, the company would like some Solution, with which it could communi-
cate like it would with a regular database, and which would handle information storage
and retrieval in such a way that only the company would be exposed to the information.

Figure 1.1 shows typical interaction between a user and a locally hosted database.
The orange arrows show how data is stored, the blue arrows how data is retrieved.

Figure 1.2 illustrates the same interaction within the ideal situation, with an exter-
nalized database that never sees any plaintext information.

Figure 1.1: Typical situation: database is hosted locally; server sees plaintext data.

Traditionally, the Solution consisted of allowing the server to decrypt portions of
the database in memory and perform searches in memory while leaving all informa-
tion on the hard disk encrypted. Within the context of a curious server, this approach
becomes useless as the server cannot be trusted to keep the contents of its memory (or
the decryption keys themselves) secret.

A simple solution to this problem would have the Solution store the database in an
encrypted form at the hosting provider and retrieve, decrypt and re-encrypt the whole
thing for every request by the company. Although this could work if the database is
small, it does not scale and largely defeats the purpose of outsourcing the data storage
in the first place.

Fortunately, a considerable amount of research has been performed recently con-
cerning encryption schemes that try to tackle this problem. This has resulted in a wide
variety of searchable encryption schemes, each with their respective advantages and
disadvantages.
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Figure 1.2: Ideal situation: database is hosted externally; server only sees encrypted
data.

1.2 Searchable encryption
Searchable encryptions schemes can be roughly divided into two categories:

Category 1 Schemes that focus on searching through document content

Category 2 Schemes that focus on searching through document metadata

Category 1 schemes are designed to encrypt the full content of a document in such
a way that every bit of information in it can be made queryable. The major advantage
of this approach is that it allows for very detailed searches, making them perfect for
content-oriented applications. However, this advantage comes at the cost of making
the complexity of the search process dependent on the size of each individual docu-
ment. This means that these schemes are not suitable for applications where documents
may be of arbitrary sizes or where the number of documents to be searched should be
allowed to continually grow.

Category 2 schemes are designed to only encrypt specific properties of a document
and make these queryable. In these schemes, the actual content of a document is con-
sidered to be outside the scope of the scheme and is assumed to be safely encrypted
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before being stored. Instead, the user is allowed to define specific characteristic prop-
erties that can be used to identify documents. These properties are commonly referred
to as a document’s metadata, as they are information (data) about (meta) the document.
Metadata may include the time of a document’s creation, a document’s author, a list of
keywords related to the document’s subject, a document’s rubrication or any other type
of user-defined information.

The major advantage of this approach is that it reduces and fixes the amount of
information that needs to be queryable per document, so the complexity of the search
process only depends on the number of documents being stored.

Figure 1.3 shows two documents with content and metadata. The blue rectangles de-
note the scope of category 1 schemes, the orange rectangles denote the scope of cate-
gory 2 schemes. It can be readily seen that category 2 schemes scale much better than
category 1 schemes, which is why this thesis focuses solely on category 2 schemes.
From hereon, the term “searchable encryption” will be used synonymously with cate-
gory 2 schemes.

Figure 1.3: Scope difference between categories 1 and 2.
(Blue represents the scope of category 1. Orange represents the scope of category 2.)

1.2.1 High level overview
Looking at searchable encryption schemes from a high level of abstraction, they usually
consist of four parts, or algorithms.

Setup This is the part that sets up the scheme and gives its participants the information
they need top operate it.
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Encrypt This is the part that encrypts metadata in such a way that it can be safely
stored on an untrusted server.

Generate Token This is the part that transforms a search query into something un-
recognizable called a token, which can be given to the server to identify which
encrypted information matches the query.

Decrypt / Test This is the part that actually tests whether a piece of encrypted meta-
data matches the query that is represented by a token by trying to decrypt it with
the token.

Figure 1.4 illustrates how these algorithms fit within the ideal solution.

Figure 1.4: Searchable Encryption algorithms within the ideal situation

As mentioned before, a considerable amount of research has been performed on the
creation of searchable encryption schemes, leading to a large diversity of schemes that
fit the aforementioned construction. Broadly speaking, this diversity is the consequence
of a trade-off between three factors:

Efficiency: This relates to the resource usage of the scheme, which can be expressed in
a variety of ways. Common ways to measure the efficiency of a scheme include
the sizes of ciphertexts and tokens, the number of computations needed for the
various steps and the number of communication rounds between client and server
during a search.

Expressiveness: This relates to the types of search queries which are supported by the
scheme and the types of keys the scheme uses. Query types can be expressed by
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the types of predicates a scheme supports, the ways in which they can be com-
bined and any possible limitations to the aforementioned inherent to the scheme.

Security: This relates to the types of security that a scheme can (or cannot) guarantee
and the assumptions on which these guarantees rely. More information about the
types of security will be given in 2.2.3.

1.2.2 Key settings
Just like regular encryption schemes, searchable encryption schemes come in (roughly)
two types of key settings: the Public Key Setting (also known as the asymmetric key
setting) and the Private Key Setting (also known as the symmetric key setting).

In the context of searchable encryption, a public key setting implies that:

• everybody who knows the public parameters can use the Encrypt algorithm to
prepare and send documents for storage

• everybody who knows the public parameters can use the Decrypt / Test algorithm
to evaluate prepared query tokens on such prepared documents

• only the holder of the secret key can use the Generate Token algorithm to create
query tokens

A private key setting, on the other hand, implies that:

• everybody who knows the public parameters is able to use the Decrypt / Test
algorithm

• only the holder of the secret key can use the Encrypt and Generate Token algo-
rithms.

Although a public key setting can be useful for specific applications, such as the
labelling of emails by the sender, it also has an inherent disadvantage: the content of a
token can never be completely hidden. This has to do with the fact that a server is able
to test the token on arbitrary ciphertexts [ABC+08].

Private key schemes do not suffer from this inherent weakness and, although they
may be highly impractical for applications that call for efficient key management,
they are a perfect fit for the context of outsourcing databases, where the owner of the
database should be the only party capable of adding or retrieving documents.

1.2.3 Predicate encryption
As current databases rely on expressive query languages like SQL, there is a demand
for similar expressiveness in searchable encryption schemes. The subfield of search-
able encryption that is focussed on providing such expressiveness is also known as
Predicate Encryption, named after its aim to support any arbitrary type of predicate.

Two well-established Predicate Encryption primitives are Hidden Vector Encryp-
tion (frome hereon also referred to as HVE) and Inner Product Encryption (from hereon
also referred to as IPE).

HVE schemes support all predicates that can be expressed as wildcard queries,
which (through the use of clever data representation methods) includes conjunctions of
(almost) arbitrary predicates. However, due to the way that all current HVE schemes
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rely on the plain text communication of the location of (non) wildcard elements (more
on this later), they inherently suffer from information leakage in queries.

IPE schemes support an even wider range of predicates. Because IPE can be used
to implement Hidden Vector Encryption (more on this later), IPE supports all of the
predicates that are supported HVE. Additionally, IPE schemes support disjunctions,
which makes IPE more flexible than HVE. IPE does not suffer from the aforemen-
tioned leakage problem and one of the IPE constructions has been proven to provide
query privacy in a private key setting [SSW09]. However, all of this comes at a price
concerning efficiency.

1.3 Problem description
The main problem that this thesis focuses on is the issue of efficiency.

As briefly mentioned in the subsection on predicate encryption, there is an effi-
ciency gap between Hidden Vector Encryption and Inner Product Encryption. This gap
is most evident when IPE is used to implement HVE. One of the most efficient regular
HVE constructions [LL11] has a test algorithm that only needs a fixed three pairings.
This contrasts heavily with the standard HVE implementation using IPE1, from hereon
referred to as the KSW Approach [KSW08], where inputs to the IPE algorithms are
twice as large as their regular HVE counterparts, and the number of pairings in the test
algorithm depends on those inputs linearly.

From an efficiency standpoint, HVE is a good candidate solution to the outsourced
database problem. However, the fact that efficient HVE constructions inherently leak
information about their queries2 makes them unsuitable for this task.

IPE on the other hand, although less efficient, has at least one construction (from
hereon referred to as the SSW construction[SSW09]) which has been proven to provide
all the security features needed for such a task.

1.4 Research Question
The main research question that this thesis explores is the following:

Research Question How to construct a searchable encryption scheme with:

• the same security guarantees as the SSW Construction;

• greater efficiency than the KSW Approach in conjunction with the SSW
Construction;

• at least the same expressiveness as HVE.

Although this formulation of the research question (in terms of the end result’s
comparison to other schemes) gives a clear indication of the research goal, it does not
define how such comparisons can be made or measured. That is why in the next few
sections, such definitions will be given.

Giving these definitions, however, introduces a slight dilemma, as it involves refer-
ring to properties that will not be explained until later in this thesis. This may make the

1This will be discussed in more detail in chapter 3
2Also discussed in more detail in chapter 3
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definitions hard to understand. Still, it is better to include them here, both for complete-
ness and for future reference. Therefore, do not be alarmed if some of the following
terms may not seem familiar; they will be explained in due time.

1.4.1 Security
As mentioned in the research question, the solution should provide the same security
guarantees as the symmetric SSW construction, which has been proven to be selective
single challenge secure.

A solution is said to satisfy the security requirement if it offers at least both selective
single challenge plaintext privacy and selective single challenge predicate privacy.

See section 2.2 for more information on security. See subsection 2.2.3 specifically
for information on selective single challenge security.

1.4.2 Efficiency
The choice of how to measure efficiency is not a trivial one. Typical options include:

• size of ciphertext

• size of token

• number and type of computations during encryption

• number and type of computations during decryption

• mathematical context (e.g. group descriptions)

The use case we consider is that of databases being outsourced. As it is not unusual for
current databases to be of a considerable size and the searchable encryption schemes
need to test every entry in the database, the focus should be to minimize the cost of the
test algorithm. Therefore, efficiency is taken as the computational cost of decryption.
As pairings are considerably more expensive than regular group operations (multipli-
cations), their number shall be used as the basis for comparison.

In the SSW Construction, the number of pairings necessary for decryption is 2N +
2, where N represents the length of the vectors, upon whose inner product the matching
algorithm is based. For a standard IPE implementation of HVE, this N equals 2L, where
L represents the length of the HVE vectors.

Assuming a solution that supports HVE(-like) queries, it is said to meet the efficiency
requirement if the Decrypt / Test algorithm uses fewer than 4L+ 2 pairings, where L
represents the length of a regular HVE vector.

1.4.3 Expressiveness
The expressiveness constraint says that a solution should be at least as versatile as
HVE. Given that HVE is ultimately nothing more than simple wildcard matching, a

solution is said to meet the expressiveness constraint if it can support wildcard queries.
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1.5 Approach
The approach to solving the main research question consists of two steps:

Step 1: Analysis In this step, the concepts behind HVE, IPE and their respective con-
structions are studied for their respective strengths and weaknesses.

Step 2: Solving In this step, the results from the previous step are used to formulate
and test intuitions for improved schemes or constructions.

This division into two steps is a natural result of the fact that the main research question,
its goal and the constraints of the solution are defined through comparisons with HVE
and IPE.

As both HVE and IPE are high level approaches that are not necessarily bound to
specific mathematical constructions, the analysis in step 1 will contain both an analysis
of the approaches in their high level form and of their current constructions.

The result of Step 1 can be found in chapter 3.

Because the development of a solution is a creative process and creative processes carry
the risk of unnecessary time losses (e.g. through the pursuit of dead ends or through
creative block) when left uncontrolled, the following cycle is used during Step 2:

1 Formulate an intuition based on the results from Step 1 (and if possible, of earlier
iterations).

2 Guesstimate the feasibility of success within the time frame of a masters thesis.
If success is highly unlikely within the set time frame, document the intuition
and the reason that success will be unlikely, reject the intuition and start over.

3 Formulate a first concept construction of the intuition

4 Attempt to prove the concept construction secure under the constraints as defined
in the problem description.

I If successful, try to optimize the solution / minimize the strength of the
assumptions used and document it

II If unsuccessful, find out whether this is due to the intuition of due to the
construction.

a If the reason is that the intuition is flawed, try to prove it, document
the failure and (if time permits) return to 1

b If the reason is a construction error, try to fix the error and return to 4.
c If running out of time, document the current results and extrapolate

consequences for potential future research

The result of Step 2 can be found in chapter 4.

Following this approach should yield an account of the search process for an adequate
solution, which either leads up to such a solution or at least offers an overview of failed
approaches, including the reasons for failure, which may be used by future researchers
to avoid pitfalls and dead ends. Additionally, if potential intuitions have been rejected
based on the available time frame, a list of such intuitions can be used in future research
as a source for initial inspiration.
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1.6 Layout and organization
The rest of this thesis is organized as follows:

Chapter 2 Gives an introduction to the subjects of group algebra, security proofs and
predicate types. This chapter is focused at giving an intuition on these subjects
as they will be recurring throughout the thesis.

Chapter 3 Gives an analysis of both HVE and IPE, following Step 1 of the approach
formulated in 1.5.

Chapter 4 Describes the results of Step of the approach formulated in 1.5. This in-
cludes a description of the main intuition, one failed iteration resulting in an
insecure construction and one successful iteration resulting in a secure construc-
tion.

Chapter 5 Formulates a conclusion based on the based on the results.
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Chapter 2

Preliminaries

This chapter provides readers with an introduction to some of the core concepts that
appear throughout this thesis. These introductions are aimed at giving an intuition of
these concepts, with a focus on readability.

Topics discussed include group algebra, bilinear mappings, security proofs and var-
ious predicate types.

To realize an intuition for all of these fields within the context of a master’s thesis,
a lot of formal definitions and technical details are skipped. This means that, although
the explanations will give an intuition of what is going in the rest of the thesis, they
by no means offer a qualified introduction into the respective topics. For qualified
introductions, the reader is referred to their local library.

2.1 Introduction to Algebra

2.1.1 Abstraction
Mathematical expressions often take the following form :

A�B =C

Where A, B, and C may be either values or other expressions.
In such an expression, the � represents some operation and is called the operator,

while A and B represent the the elements that are subject to the operations and are
called the operands. Common operations and their respective operators are additions
(+), subtraction (−), and multiplication (∗).

Algebra is the field of mathematics that uses abstract properties and relations of
operations to deduce new rules or schemes that apply to all operations with similar
properties.

For example, when considering the simple example of adding numbers, algebra
says that the operation addition, denoted by the operator +, has some properties known
as associativity and commutativity:

associativity: (A+B)+C = A+(B+C)

commutativity: A+B = B+A

It is easy to see that there are other operations that share these properties (such as
multiplication), but that there are also operators that do not (such as division).
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By focusing on the abstract properties, algebra can formulate rules and formulae
that apply to all operations that share those specific properties. For instance, by com-
bining the properties of associativity and commutativity, we can deduce that for every
operation that is both associative and commutative the following holds:

A�B�C =C�B�A

This is a direct consequence of the aforementioned properties

A�B�C = (A�B)�C (associativity)
= (B�A)�C (commutativity)
= B� (A�C) (associativity)
= B� (C�A) (commutativity)
= (B�C)�A (associativity)
= (C�B)�A (commutativity)
=C�B�A the new rule

Of course, this ‘rule’ can be ‘discovered’ for individual operations through trial and
error, but using algebra that is no longer necessary. It provably applies as soon as the
operation is both associative and commutative. That is the power of abstraction.

2.1.2 Groups
Just like algebra uses abstract properties to describe operations, it uses abstract prop-
erties to describe the operands and their relation to the operation. To do this, algebra
uses a few different constructions, the most basic of which is the Group.

Basically, a Group is a combination of two things:

• a set of elements

• an operation that can take elements from the set as operands.

Of course, not just any set and any operation form a Group. There are a few prerequi-
sites that have to hold before the elements and the operation may be called a Group:

• Every combination of two elements in the set using the operator should result in
another element of the set

• The operation should be associative (as explained above)

• There should be an element ε in the set which, when combined with any other
element a should produce that same element a. This element is also known as
the identity element.

• For every element in the set, there should be an element in the set that can act as
its inverse, i.e. with which it can be combined to produce the identity element.

As a practical example, consider the set of integers {. . . ,−3,−2,−1,−0,1,2,3, . . .}
together with addition

• Any addition of two integers is itself another integer;
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• Associativity is known to hold for addition of integers;

• For any integer a, a+0 = a, so 0 is the identity element;

• For any integer a, −a is also an integer and a+(−a) = 0, so every element has
an inverse.

In a similar fashion, it can be shown that the set of all integers multiplied by 2 (that is
{. . . ,−6,−4,−2,0,2,4,6, . . .}) together with addition is also a Group (give it a try).

Although the group of integers under addition has an infinite size, there is no reason
that groups cannot have a finite size. A simple example of groups of finite size is, for
any integer x≥ 1, the integers modulo x under addition.

It is important to realize that, although the groups mentioned above are all sets of
integers under addition, the definition of a group does not specify what an operation
should be, or even that the members of the set in question should be numbers1. How-
ever, because the set elements often are numbers, the group notation can become a bit
confusing. The reason for this is that, although a group only knows a single opera-
tion, application of the operation on multiple instances of the same element is usually
shortened in some way.

In the two most wide spread notation styles, the additive (Abelian) notation and the
multiplicative notation, this is done in the following way:

• Additive

– application on distinct elements a and b: a+b

– repetitive application on single element a: a+a+a = 3a

• Multiplicative

– application on distinct elements a and b: a ·b
– repetitive application on single element a: a ·a ·a = a3

The important thing to remember here is that, although a and b are set members and
therefore can be combined with other set members, the 3 in the above examples is just
a shorthand for repetition and cannot be treated as another set element (even when the
group set may contain an element 3).

Taking into account the above, it may be evident that mixed usage of the additive
and multiplicative styles can lead to confusing situations. That is why in this thesis,
only the multiplicative style will be used.

2.1.3 Bilinear Maps
Bilinear maps are, like the name implies, mapping functions. That means that they
take elements from one or more different groups and associate them with one or more
elements from another group. To be more specific, bilinear mapping functions asso-
ciate two input elements with a single output element from a different group. In some
cases the input elements come from a single group, in which case the mapping is called
symmetric. In other cases, the input elements come from different groups, in which
case the mapping is called asymmetric.

What makes bilinear mapping functions special is the term bilinear, which means
that the the function is linear in both of its input elements. So what does that mean?

1The interested reader could look up dihedral groups, whose set elements are polygons
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Practically, it means that if the input elements grow linearly (in an additive notation;
exponentially in a multiplicative notation), then so does the output element. To put it in
a formula (using the multiplicative notation), with e representing the mapping function

e(ax,by) = e(a,b)xy

This behavior is useful because it allows some problems that are supposed to be
hard in one of the input groups to be solved in the output group.

For example, it is generally a hard problem to tell whether some element t is com-
pletely random or of the form axy, when you only know a, ax and ay. However, with a
bilinear map, this check is quite easy:

e(ax,ay) = e(a,a)xy

e(axy,a) = e(a,a)xy

2.1.4 Group Order
Each group has an order, which is the number of elements in its set. The reason that
it is mentioned here, is that for any group of order n and any element x inside that
group’s set, xn = e, where e is the identity element (as explained above). For example,
in the group ({0,1,2,3,4},+) (that is, the integers modulo five, under addition), we
have that the order of the group n = 5, e = 0, and for any of the elements x, xn =
(x+ x+ x+ x+ x) mod 5 = 5x mod 5 = 0.

In the previous example, the order of the group was a prime number. If the order n
is not prime then it can be written as a product of prime numbers n = p1 · . . . · pi, and
the group is said to have a composite order. In such a group, it is possible to define
subgroups whose order is a combination of one or more of the order’s prime factors.

The reason for this can be explained as follows. Suppose that there is a group
({x1, . . . ,xn−1,ε},�) of an order n that can be rewritten as n = ab. Then for ev-
ery element x in that group, it holds that xab = ε. However, because xab can be
rewritten as (xa)b, you can say that there is a subgroup of order b that looks like
({(xa)1,(xa)2, . . . ,(xa)b−1,ε},�).

After all, the operation is the same as in the larger group so all of its prerequisites
hold; the set contains the identity element; and every combination of elements (xa)c�
(xa)d is contained within the set.

To see this last property, note that the combined element is determined by the ex-
ponent i = c+ d, which always can be rewritten as i = r+ qb with r ≤ b− 1, so the
combination can be rewritten as (xa)r�(xa)qb = (xa)r�((xa)b)q = (xa)r�(e)q = (xa)r

with r ≤ b−1.
Supposing that either a or b can be further factorized, such that n = abc, the same

logic can be used to define subgroups of order a, b, c, ab, ac and bc. This continues
until n is completely factorized into primes.

Within the setting of bilinear mappings, there is another curious property that is
related to group order. If the group in question has a composite order n = p1 · . . . · pi
(all p prime) and we define subgroups Ga and Gb of orders a and b respectively as
before, then if a and b do not share a common factor px, pairing two elements from
these different subgroups results in the identity element of the target group εT . So, for
any ga ∈ Ga,gb ∈ Gb we would have that e(ga,gb) = εT

The reason for this stems from two things. First, the fact that with bilinear map-
pings, the order of the target group is the same as the order of the input groups, i.e. n.
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Second, the fact that if the two subgroups do not share a common prime factor, then
their elements can be rewritten such that the product of their exponents will contain all
prime factors of n. 2

To illustrate, suppose n = p1 p2 p3, a = p1 and b = p2, then for any ga ∈ Ga and
gb ∈ Gb:

e(ga,gb) = e((xp2 p3)c,(xp1 p3)d)

= e(xp2 p3c,xp1 p3d)

= e(x,x)p1 p2 p3 p3cd

= (e(x,x)p1 p2 p3)p3cd

= (e(x,x)n)p3cd

= (εT )
p3cd

= εT

As a corollary, using different subgroups it is relatively easy to add a sort of “noise”
to elements that can be removed with a pairing:

Suppose we have a group of order n = abc with subgroups Ga, Gb and Gc, two
secret values s1 and s2 ∈Ga and some public test value T = e(s1,s2). Now suppose we
want to communicate s1 and s2 without exposing their values such that the test value
can still be evaluated. In that case, we can take random elements B ∈ Gb and C ∈ Gc
and communicate the values x = s1B and y = s2C.

As long as B and C are indeed random, the values of x and y should be sufficiently
random to hide the values of s1 and s2. At the same time, their pairing still gives the
same result:

e(x,y) = e(s1B,s2C)

= e(s1B,s2) · e(s1B,C)

= e(s1,s2) · e(B,s2) · e(s1B,C)

= e(s1,s2) · e(B,s2) · e(s1,C) · e(B,C)

= e(s1,s2) · εT · εT · εT

= e(s1,s2)

This masking using different subgroups is extensively used in predicate encryption
schemes.

2.1.5 Generators
The last thing to mention, although some would argue that it should be the first, is the
concept of generators.

When the complete set of a (sub)group of order n can be expressed as the powers
of some element g (i.e. {g1, . . . ,gn−1,ε}, as was done in the creation of subgroups),
then g is called a generator of that (sub)group.

2If the orders a and b share a prime factor, then rewriting the elements from the respective subgroups will
show that the shared prime factor is missing.

If a = ∏i∈Ja pi, then all ga ∈ Ga can be rewritten as (xma )c , with ma = ∏i<Ja pi.
If b is described in a similar way and a and b share a prime factor xs, then s ∈ Ja and s ∈ Jb, so neither ma

nor mb will contain prime factor xs, which means their product is not divisible by n.
This is assuming n consists of distinct prime factors. Otherwise, a and b could be chosen such that their

product does contain a prime factor xs. This, however, would not change the divisibility by n as divisibility
by n would still require an additional multiplication with xs.
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Generators are useful elements because of two things:

• For any set that can be defined as {g1, . . . ,gn−1,ε}, the operation � acts in the
same way, regardless of the value of g: ga�gb = ga+b.

• It is possible for a single group to have multiple generators.

First of all, this means that generators can be used to define algebraic schemes
which will hold for any group with a generator, simply by defining all elements in the
scheme by their relation with the group’s generator.

Secondly, this means that even though two implementations of the same function
may perform exactly the same calculations on an algebraic level, the values of the
actual elements used may be completely different when different generators are used.
This is important, as it means that elements of different constructions can only be
meaningfully exchanged if they agree on the generator(s) being used. This problem
will return in 4.2.

2.2 Security
Whether a cryptographic scheme can be considered secure or not is determined by
several factors, two major ones of which are:

• Correctness of the scheme

• Hardness of breaking the scheme

The correctness property says that a scheme does not produce false positives or
false negatives. In the context of searchable encryption, this means that the scheme is
constructed in such a way that the Decrypt / Test algorithm always manages to correctly
determine whether a ciphertext’s plaintext matches a token’s query.

If a scheme is not correct, then it may happen that a token is used to retrieve more
information than it should, possibly leading to information leakage.

Proof of correctness consists of two things:

• Showing how a correct decryption is derived in the case of matching ciphertext
and token

• Enumerating the cases in which a false positive or negative might occur and
showing that the probability of such a case is below some predetermined accept-
able level.

Showing the hardness of breaking the scheme is a bit more complex. This is because
there are various interpretations of both what is considered hard and what is considered
breaking a scheme.

To deal with this problem, schemes often explicitly declare their interpretations
in the form of hardness assumptions and security theorems, which are consequently
proven in similar fashion to regular formal proofs.
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2.2.1 Formal proofs
The essence of formal proofs is simple: starting out with some assumptions (axioms),
and a theorem that you want to prove, you either try to derive the theorem directly from
the assumptions or you try to show that if the theorem is false, then one or more of the
assumptions must be false too (contradiction).

For example, say we have the following assumptions:

• everything that uses math is too hard to understand

• algebra is a part of math

• Inner Product Encryption uses algebra

If you now want to prove the theorem that you cannot understand Inner Product En-
cryption, then you could argue one of the following:

Direct derivation Because algebra is part of math and all math is too hard to under-
stand, algebra is too hard to understand; because Inner Product Encryption uses
algebra and algebra is too hard to understand, Inner Product Encryption is too
hard to understand

Proof by contradiction If Inner Product Encryption weren’t too hard to understand,
then because Inner Product Encryption uses algebra, algebra wouldn’t be too
hard to understand; if algebra wouldn’t be too hard to understand, and all math
would be too hard to understand, algebra couldn’t be part of math; but algebra
is assumed to be a part of math, so there is a contradiction if we assume Inner
Product Encryption is not too hard to understand

2.2.2 Security proofs
In the world of security proofs, both assumptions and theorems tend to have a specific
format.

Security assumptions

Security assumptions can take one of two forms:

Computational We assume that given information I , value x is very difficult to com-
pute

Decisional We assume that given information I about a situation and the fact that the
situation could belong to one of the following two scenarios, it is very difficult
to correctly guess the right scenario

Where the definition of “very difficult” usually means that there is no significantly
better way of finding an answer than to just start guessing at random. Usually, such
assumptions (also known as hard problems) are borrowed from mathematical fields
like algebra.

Note that there is a relation between computational and decisional assumptions. If
it is easy to compute some secret value x, then any decisional problem based on the
value of x is trivial. This means that if a decisional problem based on x is provably
hard, then the computational problem of finding x must be hard too (and may be even
harder!). This is why most security proofs focus on decisional assumptions.
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Security theorems

Security theorems are usually defined in the context of so called games.
Just like regular games, a security game (challenger) sets a goal for the player

(attacker) to achieve and a few rules that have to be obeyed in trying to reach the goal.
Just like with the assumptions, goals are often of a decisional nature, asking the

attacker to make a guess about which of two scenarios (usually decided by a fair coin
toss) the game was played in. However, where assumptions are usually kept as generic
as possible, the goal of a security game is usually about one or more specific compo-
nents of the scheme. For instance, a common goal is to guess the correct metadata
vector given two vectors and a ciphertext.

The rules of the game define the implicit restrictions placed on an attacker. Often
these pertain to which algorithms may be accessed when and in what manner by the
attacker. For instance, the rules may state that an attacker can use the GenerateToken
algorithm to generate tokens for any query that doesn’t match some ciphertext, or that
the Encrypt algorithm may be used only once and only before the first token has been
generated.

Typically, the rules of a security game shape a game such that it fits the following
format:

Initialization The initial phase, in which the challenger and adversary define the con-
text of the game

Setup The phase in which the challenger sets up the encryption scheme

Query I The first phase in which the attacker can query algorithms as specified by the
rules

Challenge The phase in which the challenger presents the attacker with one or more
instances of the decisional problem (often based on some input from the attacker)

Query II The second phase in which the attacker can query algorithms as specified by
the rules

Response The phase in which the attacker gives its guess concerning the decisional
problem

Generally a theorem states that, given one of the assumptions, the chance that any
attacker outputs the correct guess and wins the game is not significantly greater than
that given by the fair coin toss.

Proofs

Actual proofs of a theorem are then given using a proof by contradiction. In order to
provoke such a contradiction, the game is set up in such a way that it does two things:

1 It requests a challenge from the given assumption’s hard problem and sets up the
encryption scheme in the same mathematical context (same group order, same
generators, etc.)

2 It uses the assumption’s challenge to effectuate the difference between the two
scenarios of the game’s own decisional challenge.

This way, if an attacker manages to discriminate between the two scenarios, he implic-
itly distinguishes between the two options of the assumed hard problem, which forms
a contradiction with the assumption.
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2.2.3 Security types
Security types are promises that can be defined by two things:

• What is actually promised (secrecy, indistinguishability, etc.) about which com-
ponent (plaintext, ciphertext, token, etc.)

• The conditions under which the promise holds

Taking these in the context of games, the actual promise is reflected in the goal of the
game, while the conditions are reflected in the rules.

Within the predicate encryption, there are two main promises of interest:

Plaintext privacy The promise that a ciphertext does not leak any information about
the metadata vector it was made for.

Predicate privacy The promise that a token does not leak any information about the
query vector it was made for.

Although the ultimate goal of any cryptographic scheme is to provide plaintext
and/or predicate privacy without having to place any restrictions on the attacker, such
a full security is often difficult to prove. This is why many constructions put specific
restrictions on the abilities of an attacker, such that the scheme can be proven to pro-
vide plaintext and / or predicate privacy and that the restrictions can be argued to be
acceptable.

Two of such restrictions that return in this thesis revolve around the number of times
that the attacker may request a challenge and the time that the attacker has to provide
its input for the challenge.

Single challenge security The attacker is limited to requesting a single instance of the
decisional problem.

Selective security The attacker has to choose its input(s) for the challenge phase be-
forehand and provide them to the challenger during the Init phase (so that they
may already be used during the Setup and Query I phase).

Single challenge security is used in the SSW IPE construction, as it can be shown
that a single challenge secure IPE scheme for vectors of size 2N can be used to provide
a fully secure IPE scheme for vectors of size N.[SSW09]

Selective security originally comes from the field of Identity Based Encryption
(IBE) is used in a variety of HVE and IPE constructions. The motivation behind
selective security is that any selective secure IBE scheme can be transformed into
a non-selective (fully) secure IBE scheme (even though this transformation is not
efficient).[BB04] The reason that this notion of selective security is carried over from
IBE to various predicate encryption schemes is that predicate encryption schemes can
be considered to be elaborate (anonymous) IBE schemes, with metadata vectors func-
tioning as identities.

2.3 Predicate types
Predicate types are grouped into two categories: literals and compositions.
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2.3.1 Literals
Literals are the basic building blocks of a predicate encryption scheme and correspond
to the evaluation of Boolean comparison functions over a single metadata variable and
a query variable. 3

Three distinctive types of literals are distinguished

• Equality comparison

• Ordered comparison

• Set comparison

Equality comparison

The equality predicate is the simplest predicate and checks whether a metadata vari-
able is equal to the query variable. A special case of the equality predicate is wildcard
equality, where either the variable or the value may contain special “don’t care” ele-
ments called wildcards, which will match any other single element. For example, if ?
denotes the wildcard element and the predicate is used for string comparison, where a
string is represented as a vector of character elements, the search string “a?c” (repre-
sented as (a,?,c)) should match both “abc” and “aqc”, but not “abbc”. Similarly, if the
predicate is used to compare tuples of keywords, where each keyword is represented
by a single element, the tuple (email, secret, ?) should match both (email, secret, wife)
and (email, secret, mistress).

Ordered comparison

Ordered comparison predicates compares whether the metadata variable is or is not
greater than the query variable based on some scheme supported ordering mechanism
(i.e. metadata > value for some definition of >).

A special case of the comparison predicate occurs when either the metadata vari-
able or the query variable represents a range, in which case the ordered comparison
checks whether the range includes the compared variable (i.e. whether rangeEnd >
comparedVariable > rangeStart for some definition of >). Note that this means that
range queries can be implemented either with the range in the token or with the range in
the ciphertext. This choice reflects the choice of access policy location in ABE: range
in ciphertext corresponds to CP-ABE and range in token corresponds to KP-ABE4

Set comparison

Set comparison predicates are comparisons where at least one of the two input vari-
ables is a set (the encompassing set) and determines the set membership of the other
(the compared variable). When both variables represent sets, set membership may be

3Note the emphasis on Boolean, indicating that this overview only discusses functions who return either
True or False. This is because, within searchable encryption, most queries can be reduced to a logical
combination of such functions. Readers who are interested in queries that cannot be reduced in such a way
are referred to the more general field of Functional Encryption, of which Predicate Encryption is a special
case. There are currently no concrete schemes that allow for non-Boolean Functional Encryption, but there
have been some advances regarding the privacy notions and (im)possibilities that are native to this subject
[BSW10, O’N10].

4Note that this correspondence works both ways, and that any access policy that can be expressed in an
anonymous ABE, could be translated to a predicate in a predicate encryption scheme.
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interpreted either as the compared variable being a subset of the encompassing set or as
having a non-empty intersection. Similar to the range query, the subset predicate can
be implemented with the encompassing set in the ciphertext or with the encompassing
set in the token. Subset in the token allows for versatile matching, whereas subset in
the ciphertext allows for broadcasting mechanisms, as alluded to in [BW07].

2.3.2 Compositions
Compositions refer to logical combinations of other predicates, which may be either
literals or compositions themselves. Compositions can be divided into two categories.

• Conjunctions

• Disjunctions

Conjunction

Conjunction predicates evaluate a Boolean AND combination of predicates. This
means that a conjunction holds iff every one of its sub predicates holds. A special
case of conjunction predicates are predicates in the Conjunctive Normal Form (CNF).
CNF means that the predicate is a conjunction of one or more compositions, where
each composition is a disjunction of literals (i.e. they do not contain conjunctions or
other compositions).

Note that there is a difference between evaluating a conjunction of predicates and
simply evaluating them individually (and combining the results), as conjunctions are
evaluated as a whole and do not release information about individual clause(s) or lit-
eral(s) upon failure.

When an encryption scheme supports conjunctions of a variable number of lit-
erals (i.e. the number of literals in a conjunction is not fixed a priori by the num-
ber of distinct metadata variables), then conjunction queries can be used to create a
trivial implementation of the wildcard query. This is done by creating a conjunc-
tion query over the non-wildcard elements: Given an encryption scheme that uses a
tuple of three elements to represent metadata (metadataa,metadatab,metadatac), a
wildcard query for (elementa,?,elementc) could be implemented as the conjunction
(metadataa = elementa)∧ (metadatac = elementc).

Disjunction

Disjunction predicates evaluate a Boolean OR combination of predicates. This means
that a disjunction holds as soon as one of its sub predicates holds. A special case of
disjunction is the Disjunctive Normal Form (DNF). Similar to the CNF, DNF means
that the predicate is a disjunction of one or more compositions, where each composition
is a conjunction of literals. Again, note that there is a difference between evaluating a
conjunction and evaluating individual predicates, as evaluating a conjunction does not
release information about individual clause upon success.
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Chapter 3

An analysis of predicate
encryption

This chapter provides the results of the first step of the approach defined in section 1.5,
i.e. an analysis of HVE and IPE. The former is a form of encryption that supports all
queries that can be expressed as a wildcard query, which includes conjunctive queries
over any preset collection of arbitrary predicates. The latter is a form of encryption that
supports all queries that can be expressed as the evaluation of the inner product of two
vectors. Together, they form the main approaches towards predicate encryption.

In the following two sections, HVE and IPE and their relation are discussed in more
detail. This is done by analyzing each approach on the following three subjects:

1 Its high level approach and intuitions, which are construction-independent;

2 How it can be applied to achieve high expressiveness;

3 The characteristics of actual constructions.

3.1 Hidden Vector Encryption

3.1.1 Basics
Hidden Vector Encryption (from here on denoted as HVE) was first proposed in [BW07]
and is, in essence, a simple wildcard encryption scheme. What this means is that search
queries are not restricted to exact matching, but that they may include special wildcard
characters ? in the query that will match any one element in the metadata. That is, meta-
data and queries are somehow represented as a collection of elements and metadata is
said to match a query if the metadata and non-wildcard query elements correspond.

For instance, by representing the keyword “bat” as a collection of three letters, a
wildcard query could use the wildcard element ? to search for similar words by ignoring
specific characters . That is, to find all keywords starting with “ba” the query would
“ba?”, or to find all keywords with an “a” as the middle character the query would
be “?a?”. Similarly, by interpreting a document description “type: email, sensitivity:
top-secret” as a collection of two elements representing type and sensitivity, a wildcard
query “email, ?” would match emails of every sensitivity level.
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To put it a bit more formally: in HVE metadata attributes are encoded in an at-
tribute vector (the collection) and predicates are encoded in a query vector of equal
alignment (and consequently of equal length), where each vector contains elements
from a scheme-specific alphabet Σ. In the first example, this Σ simply represents the
26 letters in the alphabet and can be chosen as the range (1 . . .26). In the second exam-
ple Σ is a bit more complex, as it represents both the range of possible document types
and the range of sensitivity levels. In this case, Σ could be either a large single-purpose
range of numbers, where each number represents a type or a sensitivity (i.e. (1 . . .x)
for all x types and (x+ 1 . . .x+ y) for all y sensitivity levels) or it could be a short
multi-purpose range, with the meaning of the number depending on the location in the
vector (e.g. the number 1 could refer to both the type “email” and the sensitivity level
“junk”).

Note that this description of HVE mentions that attributes are encoded in a (sin-
gle) vector. This means that if there are multiple metadata attributes, their individual
encodings need to be combined somehow. The easiest way to do this is simply by
concatenating the individual representations. So, considering a scheme with two meta-
data attributes “id” and “date”, where “id” is represented by six elements representing
characters and “date” by three elements representing day, month and year, an attribute
vector could be of the form (c1,c2,c3,c4,c5,c6,dd,mm,yy). The advantage of this
construction is that it ensures that all attributes are taken into account during query
evaluation, resulting automatically in conjunctive queries.

Note too, that the description mentions that all metadata and query vectors should
be of equal alignment. What this means is that the partitioning of a vector to corre-
sponding attributes should be identical for each metadata and query vector. That is, the
location of an attribute’s representation inside the metadata or query vector should be
the same throughout the scheme. This is to ensure that queries are correctly interpreted.
Of course, by fixing the location of attributes inside a vector, the maximum length of
an attribute’s representation is automatically restricted. In some cases, where metadata
attributes to be encoded are not of a naturally fixed length (e.g. when encoding variably
sized keywords as collections of characters), this may prove to be a problem. In such
a case, a default length has to be chosen and individual items have to be padded or
truncated to fit this length.

Translating these characteristics into strengths and weaknesses:

Strength HVE schemes have an inherent support for conjunctive queries.

Weakness Metadata and query vectors have to adhere to a strict scheme-specific vec-
tor layout

3.1.2 Binary HVE
The expressiveness of HVE lies in the way that simple wildcard queries can be elevated
to enable more expressive queries by using creative representations. The most generic
way of doing this is through a construction that will be referred to in the rest of this
thesis as binary HVE.

The intuition behind a binary HVE scheme is simple: if you want to support some
query for a given attribute, then represent that attribute by the collection of outcomes
of all such queries.

For instance, suppose there is a metadata attribute describing a person’s family ties
and you want to support queries of the type “does this person have a family member of
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type t”. Then you could represent the attribute by a series of yes/no answers (or ones
and zeroes), with one answer for every value of t.

So, suppose t can be one of the values {mother, father, brother, sister, son, daugh-
ter}, then a person with just a father and a brother could be represented as (0,1,1,0,0,0)
and person with both parents and a daughter as (1,1,0,0,0,1). Consequently, queries
can be constructed using specific values to select preferred outcomes and wildcards to
ignore the rest. That is, adding more specific values to the query acts as a conjunction
over that specific attribute: where the query (?,1,?,?,?,?) returns all persons with a
father, the query (?,1,1,0,?,?) returns only those persons with a father and a brother
but no sister.

To put it a bit more formally, a binary HVE scheme can be created for any given context,
where the context consists of (at least) one:

Metadata attribute — the raw metadata information that the scheme wants to make
queryable. The set of all possible values of a metadata attribute is denoted by X .

Universe U — a finite indexed set of size n of possible secondary input values to the
query.1

Predicate p : X×U →{0,1}— the Boolean (yes/no) function over the (value of a)
metadata attribute and universe that the scheme needs to support.

Given such a context, a binary HVE scheme defines the metadata and query vectors as
follows:

Metadata vector — the n dimensional binary vector ~V B (v1, . . . ,vn) that represents
the value x of a metadata attribute by setting vi = p(x,ui) for each ui ∈U

Query vector — the n dimensional vector ~QB (q1, . . . ,qn) that represents a query for
specific outcomes ri of the predicate p on specific secondary input values ti ∈U
by setting

for each u j ∈U : q j =

{
ri if u j = ti
? otherwise

To illustrate this using the aforementioned example.

Step 1: Defining the context To begin, define the metadata attribute as the descrip-
tion of a person’s family relations and set X to be the set of all combinations of the
values {mother, father, brother, sister, son, daughter}.

Next, define the predicate that checks whether the metadata attribute contains a
specific family member as

p(x,u) = u
?
∈ x

and define the universe U = {u1,u2,u3,u4,u5,u6} of size n = 6 with u1 = mother,
u2 = father, u3 = brother, u4 = sister, u5 = son and u6 = daughter.

1Note that this is not the same as the alphabet Σ, which in the case of binary HVE is {0,1}
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Step 2: creating vectors Using the predicate p and the universe U of size 6, we can
construct the metadata vector ~V B (v1, . . . ,v6) that represents the family description x
as follows:

for each ui ∈U, vi =

{
1 if ui ∈ x
0 otherwise

To create a query for all records with specific requirements on the family description,
first translate that query into specific predicate outcomes. To do this, define two sets T
and F , where T contains all family members that should be in the description and the
set F contains all members that should not be in the description according to the query
(i.e. T = {ui | p(x,ui) should be 1} and F = {ui | p(x,ui) should be 0}. Then, construct
the query vector ~QB (q1, . . . ,q6) as follows:

for each ui ∈U, qi =


1 if ui ∈ T
0 if ui ∈ F
? otherwise

So, suppose there is a record with a family description that contains a brother, sister,
son and daughter (so x = {u3,u4,u5,u6}) and a query is performed for all records with
a family description that specifically contains a sister (i.e. T = {u4},F = {}), this gives
the following vectors:

i = 1 2 3 4 5 6
x = {u3,u4,u5,u6}→~V = (0 ,0 ,1 ,1 ,1 ,1)
T = {u4},F = {}→ ~Q = (?,?,?,1,?,?)

In this case a match occurs, as every non-wildcard element in the query vector matches
the corresponding element in the metadata vector.

Condensing this information into strengths and weaknesses gives:

Strength Binary HVE schemes can support any arbitrary predicate of the form p :
x×U →{0,1}

Weakness The type of predicates supported in a query are predetermined by the results
encoded in the metadata vectors

Weakness Metadata vectors grow linear in each of the universes used by supported
predicates

3.1.3 Constructions
Although the previous sections give a good impression of the general capabilities and
functionality of HVE, they have not yet dealt with the actual encryption of metadata
and queries. More specifically, the previous sections have only discussed the format
of the inputs to the Encrypt and the GenerateToken algorithms without discussing the
algorithms themselves. The main reason for this is that, while the original paper about
HVE does provide a construction, the concept behind HVE is construction indepen-
dent. That is, any scheme that supports wildcard queries as described in the previous
sections can be rightfully called an HVE.

Of course, this does not mean that there are no similarities between individual
HVE constructions that may be analyzed. After compiling a list of HVE schemes that
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have been devised since the introduction of HVE [BW07, IP08, BIP09, BIP10, LL11,
SvLN+10, CIP11] and comparing them, the following high level standard approach
can be described for the individual algorithms:

Encrypt

1 Create a ciphertext with for each individual value in the metadata vector
x≥ 1 elements that hide the respective value in their exponent:
~V = (v1, . . . ,vn)→CT = {C1,i, . . . ,Cx,i}n

i=1;

2 Randomize each element:
CT = {C1,i, . . . ,Cx,i}n

i=1→CT = {C1,iR1,i, . . . ,Cx,iRx,i}n
i=1;

3 Add z ≥ 1 additional elements that will help with canceling the random-
ness:
CT = {C1,iR1,i, . . . ,Cx,iRx,i}n

i=1→
CT = {C1,iR1,i, . . . ,Cx,iRx,i}n

i=1 ,{C0,1, . . . ,C0,z}.

GenerateToken

1 Define the set J of the indexes of non-wildcard values in the query:
~Q = (q1, . . . ,qn)→ J =

{
j |q j , ?

}
;

2 Create a token with for each non-wildcard value in the query vector x ≥ 1
elements that hide the respective value in their exponent:
~Q = (q1, . . . ,qn)→ T K = J,{T1,i, . . . ,Tx,i}i∈J ;

3 Randomize each element:
T K = J,{T1,i, . . . ,Tx,i}i∈J → T K = J,{T1,iR1,i, . . . ,Tx,iRx,i}i∈J ;

4 Add z ≥ 1 additional elements that will help with canceling the random-
ness:
T K = J,{T1,iR1,i, . . . ,Tx,iRx,i}i∈J →
T K = J,{T1,iR1,i, . . . ,Tx,iRx,i}i∈J ,{T0,1, . . . ,T0,z} .

Test / Decrypt

1 Use the indexes J =
{

j |q j , ?
}

from the token to find the relevant cipher-
text elements:
CT = {C1,iR1,i, . . . ,Cx,iRx,i}n

i=1 ,{C0,1, . . . ,C0,z}→
CT = {C1,iR1,i, . . . ,Cx,iRx,i}i∈J ,{C0,1, . . . ,C0,z}

2 Use bilinear mappings to combine the different elements of the ciphertext
and the token in such a way that the resulting element of the target group
evaluates a predetermined function in its exponent.

3 This function should be chosen such that it evaluates to a static value in the
case of a match and to random in the case of a non-match.

Three of the studied approaches deviate from this generalized standard approach:

[LL11] deviates slightly by not using individual elements to hide individual non-wildcard
values, but by hiding them combined in a single element through multiplication.

[BIP10] deviates more, by appending dummy elements to the token for each wildcard in
the query. These dummy elements are treated as if they were created using non-
wildcard elements and are necessary to reach the threshold value of the secret
sharing scheme that is used as the evaluation function.

30



[SvLN+10] deviates the most, by basing the ciphertext size on the maximum number of
wildcards allowed in a query vector and hiding all of the values of the metadata
vector combined in the exponents of individual elements. Similarly, it bases
token size on the actual number wildcards used in a query and hides all of the
non-wildcard values of the query vector combined in the exponents of individual
elements.

When looking at the aforementioned standard approach more closely, two char-
acteristics become apparent. First, the size of a token is proportional to the number
of non-wildcard elements in the query vector. This means there is no strict relation
between ciphertext size and token size (and with token size, the complexity of the De-
crypt / Test algorithm). This is nice, because it allows HVE schemes to use ciphertexts
of arbitrarily large sizes without suffering a penalty in efficiency as long as the amount
of non-wildcard elements in a query stays low (e.g. as in binary HVE schemes).

However, since the independence of ciphertext size relies on the ability to determine
which elements of a ciphertext are relevant for a given query (i.e. by communicating the
positions of non-wildcard elements), the structure of the query vector is by definition
public.

This means that in the earlier examples, the server knows that a query is for a word
of two letters of which the first two are fixed (without knowing what these letters are)
or that a query is for documents of all sensitivity levels for some specific (but unknown)
type.

In such cases, it may be argued that the leakage is somewhat acceptable. However,
in the case of a binary HVE the position of the non-wildcard elements determine the
inputs to the predicate, so knowing the location means knowing which yes/no question
was asked (just not which answer is expected). To illustrate this, recall the situation
used to illustrate binary HVE:

i = 1 2 3 4 5 6
x = {u3,u4,u5,u6}→~V = (0 ,0 ,1 ,1 ,1 ,1)
T = {u4},F = {}→ ~Q = (?,?,?,1,?,?)

Here, just knowing that the query only has some value y at index 4 and that y ∈ {0,1}
means that the query was either u4

?
∈ x = 1 or u4

?
∈ x = 0, giving the attacker a fifty-

fifty probability of guessing the right query (maybe more if one of the two queries is
nonsensical in the given context).

Moreover, because this advantage depends only on the outcome of the query (0 or
1) and not on the actual value in the query, the attacker would still have a fifty-fifty
probability of guessing the right query if the universe was {u1, . . . ,u1042} instead of
just {u1, . . . ,u6} .

So, condensing these characteristics of the standard approach into strengths and
weaknesses:

Strength The Test / Decrypt algorithm is efficient for queries with relatively few non-
wildcard elements.

Weakness Tokens leak the structure of their input query vectors (which in the case of
binary HVE means most of the query).

Although [BIP10] and [SvLN+10] deviate from the standard, they do both con-
tain the same weakness as the standard approach. By communicating the locations
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of all wildcard elements, [SvLN+10] automatically exposes the locations of the non-
wildcard elements, while in [BIP10] the locations can be found by filtering all indexes
in the token that fall within the range of query vector positions.2

Because [BIP10] uses the aforementioned padding mechanism, its tokens are al-
ways of the same size and proportional to the metadata / query vector length. This
means it does not offer the same efficiency advantage as the standard approach.

[SvLN+10] does offer an increased efficiency, but does it in a sort of inversed
way when compared with the standard approach, as in [SvLN+10] the token size is
proportional to the number of wildcards, instead of to the number of non-wildcards.

3.2 Inner Product Encryption

3.2.1 Basics
Inner Product Encryption (IPE), first proposed in [KSW08], is a response to HVE in
the sense that it was created to fill some of the gaps that were left by HVE.

Inner Product Encryption is, just like HVE, a vector based approach, meaning that
both metadata and queries are represented by vectors. The way that IPE constructs
and uses these vectors, however, is very different from HVE. Depending on the query
types that the IPE scheme should support, metadata and query vectors are constructed
in such a way that their inner product3 evaluates to zero in the case of a match.

This means that unlike HVE matching, which is based on a relation between in-
dividual elements (i.e. that for every individual element in the query vector it either
equals the corresponding element in the metadata vector or the wildcard element), IPE
matching does not care about (possible relations between) individual elements of meta-
data and query vectors, just as long as the matches occur if and only if they satisfy the
zero inner product property.

By removing the constraint of a specific relation between individual elements, IPE
has opened a path to new imaginative usages of the metadata and query vector.

A simple example of such a new usage is the use of polynomial evaluation to sup-
port disjunctions. Suppose that an IPE scheme wants to support queries over a single
metadata attribute x, with a maximum of n literals (i.e., queries are of the form “x = v1
or . . . or x = vi” with 1 ≤ i ≤ n). Such a scheme would need to evaluate a function
that can be represented by an inner product which evaluates to zero for each of the
values in {vi |1 ≤ i ≤ n}. One function that satisfies that requirement is the function
f (x) = (x− v1) · · · · · (x− vi). The truth of this can be easily verified:

• The function’s roots correspond to {vi}, so the function evaluates to zero as soon
as x = vi for some i, 1≤ i≤ m.

• The function can be rewritten as a polynomial of degree i: f (x) = a0x0 + . . .+
aixi, which corresponds to the inner product of the two vectors ~V = (x0, . . . ,xi)
and ~Q = (a0, . . . ,ai).

Although this shows that disjunctive queries of length i can be achieved for arbitrary
values of i, this is not yet enough. This is because inner products can only be calculated

2In [BIP10], indexes may be of the range (1 . . .2l−1) where l is the length of a metadata / query vector.
Here, indexes in the range (l + 1 . . .2l− 1) correspond to the aforementioned dummy values while indexes
in the range (1 . . . l) correspond to actual non-wildcard elements.

3The inner product of two vectors ~x and ~y of length n, also written as 〈~x,~y〉, is the total sum of the pair
wise multiplication of two vector’s elements: 〈~x,~y〉= ∑

n
i=1 xiyi.
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for vectors of equal length, which means that a scheme with ~V = (x0, . . . ,xi) and ~Q =
(a0, . . . ,ai) implicitly fixes i to some specific value. To overcome this problem, for
i < n the vectors ~V and ~Q are extended in the following manner: ~V = (x0, . . . ,xn) and
~Q = (ā0, . . . , ān), with ā j = a j for 0 ≤ j ≤ i and ā j = 0 for i < j ≤ n. The additional
zeroes in the query vector cancel the metadata vector elements with index greater than
i, allowing the usage of any i≤ n.

Additionally, conjunctions can be achieved by concatenation in the same way that
concatenation achieved conjunction in HVE. Moreover, as will be seen in the next
section, IPE supports arbitrary predicates by offering its own HVE implementation.

This leads to the following strengths and weaknesses:

Strength A broad spectrum of query types, including both conjunctions and disjunc-
tions.

Weakness Fixed metadata and query vector lengths.

3.2.2 HVE in IPE
As briefly alluded to in the previous section, HVE can be implemented inside IPE.
[KSW08] shows a straightforward way of doing this by representing elements in an
HVE vector by two elements in the corresponding IPE vector. This approach is referred
to as the KSW Approach throughout this thesis.

In the KSW Approach, metadata vector elements are represented by two elements
of the form (−viri,r), where ri is some random non-zero value and vi is the value of
the element in position i.

Similarly, non-wildcard query vector elements are represented by two elements of
the form (1,qi).

As can be readily seen, their inner product 〈(−viri,ri),(1,qi)〉 = −viri + riqi =
ri(qi− vi) = 0 if and only if qi = vi.

To implement the wildcard behaviour, a wildcard element is represented by (0,0),
which always results in a zero inner product.

So, to give the formal construction:
Given an HVE scheme with a metadata vector ~V HV E and a query vector ~QHV E ,

define l as the length of each vector, i.e. l =
∣∣∣~V HV E

∣∣∣.
Then define the corresponding IPE metadata and query vectors ~V IPE and ~QIPE as

follows:

~V IPE =
(
vIPE

1 , . . . ,vIPE
2l
)

, with for i = 1 . . . l :

vIPE
2i−1 =−vHV E

i ri ; vIPE
2i = ri

ri ∈ R

~QIPE =
(
qIPE

1 , . . . ,qIPE
2l
)

, with for i = 1 . . . l :

qIPE
2i−1 =

{
1 if qHV E

i , ?

0 if qHV E
i = ?

; qIPE
2i =

{
qHV E

i if qHV E
i , ?

0 if qHV E
i = ?
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As an illustration, consider the following HVE metadata and query vectors:

~V HV E = (5,6,8,9)
~QHV E = (5,?,8,?)

Then, using a random vector (r1, . . . ,r5) = (3,8,9,2) we get

~V HV E = ( 5 , 6 , 8 , 9 )

~V IPE = ( −5 ·3 , 3 , −6 ·8 , 8 , −8 ·9 , 9 , −9 ·2 , 2 )

= ( −15 , 3 , −48 , 8 , −72 , 9 , −18 , 2 )

~QHV E = ( 5 , ? , 8 , ? )

~QIPE = ( 1 , 5 , 0 , 0 , 1 , 8 , 0 , 0 )

〈
~V IPE , ~QIPE

〉
=

 −15
·
1

+
3
·
5

+
−48
·
0

+
8
·
0

+
−72
·
1

+
9
·
8

+
−18
·
0

+
2
·
0


= −15+ 15+ 0+ 0+−72 + 72 + 0 + 0
= 0

Note that the randomness that is introduced by the {ri} is essential to the correct-
ness of the matching function, and not just a way to make encryption probabilistic.
Although the aforementioned scheme is correct in the sense that a match occurs when-
ever it should, it is theoretically possible to get false positives. This is due to the nature
of IPE, which only cares about the result of the entire inner product (and not about
the pairwise sub inner products). The random numbers {ri} are there to reduce the
probability of such false positives to the point where it becomes negligible. As an il-
lustration, consider the HVE vectors ~V HV E = (2,3) and ~QHV E = (4,1) and a random
vector (54,21). Clearly the HVE vectors should not match, and they do not when us-
ing the aforementioned random vector. But they would in the special case of “random”
vector (1,1)):

Random vector (54,21): ~V IPE = (−108 ,54,−63 ,21)
~QIPE = ( 1 ,4 ,1 ,1)〈

~V IPE , ~QIPE
〉
= −108+216 −63+21

= 66
, 0 (true negative)

Special case (1,1): ~V IPE = ( −2 ,1 ,−3 ,1)
~QIPE = ( 1 ,4 ,1 ,1)〈

~V IPE , ~QIPE
〉
= −2 +4 −3 +1

= 0 (false positive)

As can be readily seen, the lower the impact of individual HVE elements is on the
total of the inner product, the higher the probability of a false positive. By picking
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the ri from a sufficiently large range, the impact of individual HVE elements can be
increased and the probability of false positives can be reduced to an acceptable level.

Finally notice that, because there is no such thing as a wildcard element within IPE,
there is no communication of (non-)wildcard indexes. On the positive side, this means
that the KSW Approach does not suffer from the inherent information leakage that was
found in the HVE schemes mentioned before. On the negative side, this also means
that it cannot use index information to reduce the number of necessary computations,
as seen in the standard approach to HVE schemes.

Condensing the aforementioned into strengths and weaknesses:

Strength No information leakage through (non-)wildcard indexes.

Weakness Complexity of decryption is always linear in the length of the metadata and
query vectors.

Weakness Metadata and query vectors are twice as long as their HVE counterparts.

3.2.3 Constructions
Just as with HVE, IPE as described above only deals with the creation of and relation
between metadata and query vectors. And just as with HVE, this has led to the creation
of a variety of constructions. After compiling a list of IPE schemes [KSW08, SSW09,
LOS+10, SBGN10] and comparing them, the following high level standard approach
can be described for the individual algorithms:

Encrypt

1 Create a ciphertext with for each individual value in the metadata vector
x≥ 1 elements that hide the respective value in their exponent:
~V = (v1, . . . ,vn)→CT = {C1,i, . . . ,Cx,i}n

i=1;

2 Randomize each element using one or more common randomization factors
CT = {C1,i, . . . ,Cx,i}n

i=1→CT = {C1,iR1, . . . ,Cx,iRx}n
i=1;

GenerateToken

1 Create a token with for each non-wildcard value in the query vector x ≥ 1
elements that hide the respective value in their exponent:
~Q = (q1, . . . ,qn)→ T K = {T1,i, . . . ,Tx,i}n

i=1 ;

2 Randomize each element using one or more common randomization factors
T K = {T1,i, . . . ,Tx,i}n

i=1→ T K = {T1,iR1, . . . ,Tx,iRx}n
i=1 ;

Decrypt / Test

1 Use bilinear mappings to combine the different elements of the ciphertext
and the token in such a way that the resulting element of the target group
evaluates a function in its exponent of the form r · 〈~v,~q〉+c, where r repre-
sents a combination of the random factors in the ciphertext and token.

Due to the form of the function, an inner product of zero (i.e. a match) will always
cancel out whichever random factors are combined in r and result in some value that
is predetermined by c. If that value is known at the time of decryption, it can be used
to recognize a correct match. If it is not known at time of decryption but is at the time
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of encryption, it can be used as an encryption key. Non-matches, on the other hand,
will always result in a value that is seemingly random due to the influence of r. The
main differences between the aforementioned IPE constructions lie in the familiar three
dimensions of security, efficiency and expressiveness:

[SSW09]
Security: selective plaintext and predicate privacy
Efficiency: composite group order of four primes, 2L+2 token elements.

[LOS+10]
Security: full (non-selective) plaintext privacy.
Efficiency: group order of a single prime, 2L+3 token elements.

[SBGN10]
Expressiveness: support disjunctions of multiple zero inner products by creating
a single monolithic inner product.
Efficiency: new metadata and query vector size LSBG = Ln for disjunction over n
IPE vectors of size L.

What is interesting about the high level approach as described here, although it may
be a bit of an oversimplification, is that the Encrypt and GenerateToken algorithm seem
to be identical. This is because in an inner product, both input vectors are treated the
same way functionally and can be switched without affecting the outcome (i.e. the inner
product operation is commutative). [SSW09] use this similarity in their symmetric IPE
construction to prove predicate privacy and perhaps it may be possible to reuse their
approach with other IPE constructions.

As the construction in [SSW09] is currently the only IPE construction with proven
predicate privacy, it is chosen as the prime example of symmetric IPE and is from
hereon referred to as the SSW Construction.

Strength Proven predicate privacy for a specific construction

Strength Potential predicate privacy for future constructions in symmetric settings
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Chapter 4

Results

This chapter provides the results of step two of the approach defined in section 1.5,
ultimately leading to an answer to the main research question. Following the iterative
process of step two, section 4.1 defines the main intuition; section 4.2 details the first
attempt at a construction, which is consequently proven to be inherently broken; and
section 4.3 details the final construction, which is proven to meet the requirements of
the research question. Additionally, section 4.3 provides an alternative to the main
construction, that may be more efficient than the main construction in two specific use
cases.

4.1 High level intuition

4.1.1 The approach
The main goal of this thesis is to create a searchable encryption scheme that meets the
following three requirements:

• the same security guarantees as the SSW Construction;

• greater efficiency than the KSW Approach in conjunction with the SSW Con-
struction;

• at least the same expressiveness as HVE.

After studying the overall strengths and weaknesses of HVE and IPE, it is clear that
designing a solution that fits all these requirements is going to be tricky:

• In order for the solution to meet the expressiveness requirement it needs to sup-
port wildcard queries, so the solution should allow for an implementation of
HVE

• In order for the solution to meet the security requirements it cannot communicate
wildcard positions, so the Test / Decrypt algorithm will have to utilize all of the
elements in a ciphertext and token

• In order for the solution to meet the efficiency requirement, its token should be
smaller than its counterpart in the KSW Approach within the SSW construction.1

1Assuming that the Test / Decrypt algorithm performs one pairing per element in the token, which holds
for all current IPE constructions.
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This means that there are broadly three ways of approaching the problem:

1 Find a way to reduce the token size of the SSW construction and keep the KSW
approach;

2 Keep the SSW construction, but use an alternative way to implement HVE that
reduces metadata / query vector size within IPE;

3 Find a more efficient yet equally secure alternative to IPE.

As the first and third option do not seem feasible within the scope of a Master thesis2,
this leaves the second approach.

4.1.2 The intuition
The second approach imposes several limitations on the choice of representation:

1 Matching has to be based on an inner product(due to IPE)

2 The representations have to be of a fixed length (due to IPE)

3 When representing an HVE input vector, all elements of said vector should in-
fluence the result(no information may be discarded)

4 The inner product should somehow provide a mechanism to cancel the effects of
HVE metadata values in wildcard positions.

While studying current HVE constructions, one construction attracted specific at-
tention by basing its matching method on a calculation that matches all four require-
ments. This was the HVE construction of Sedghi e.a. in [SvLN+10].

The main intuition behind [SvLN+10] can be explained in the following steps:

Step 1
Given some vector ~V = (v1, . . . ,vL) and a set of wildcard locations J, the follow-
ing equality holds:

L

∑
i=1

vi ∏
j∈J

(i− j) =
L

∑
i=1
i<J

vi ∏
j∈J

(i− j)

This holds because whenever index i equals a wildcard location j in J, the cor-
responding value vi gets canceled as the product ∏ j∈J (i− j) evaluates to zero.
This means that the summation ∑

L
i=1 is only influenced by values of i that are not

in the set of wildcard locations, so it can be rewritten as ∑
L
i=1
i<J

.

Step 2
The above equality can be used to detect whether two vectors ~V = (v1, ,̇vL) and
~Q = (q1, ,̇qL) agree on all elements in non-wildcard positions:

L

∑
i=1

vi ∏
j∈J

(i− j) =
L

∑
i=1
i<J

qi ∏
j∈J

(i− j)

if vi = qi for all i < J
2These are popular open questions that have already received quite a bit of attention from people with a

lot more resources to their disposal.
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Step 3
The product ∏ j∈J (i− j) can be rewritten as a polynomial of the form ∑

n
k=0 akik,

where n is the number of wildcard locations. This means the left hand side of the
equality can be rewritten:

L

∑
i=1

vi ∏
j∈J

(i− j)→
L

∑
i=1

vi

n

∑
k=0

akik→
n

∑
k=0

ak

L

∑
i=1

viik

Moreover, the coefficients ak of the polynomial are completely determined by J
and can be calculated using one of Viète’s formulas.3

Step 4
As the right hand side can be calculated at the time of token generation, ∑

L
i=1 viik

can be calculated for every possible value of k at the time of ciphertext generation
and the ak can be calculated at the time of decryption as long as J is known, the
equality can also be tested when the values are hidden in exponents and will only
need n elements in the ciphertext.

The interesting bit here is step 3, because it shows that the left hand side of the equation
has a form which can be rewritten as an inner product:

n

∑
k=0

ak

L

∑
i=1

viik = 〈~x,~y〉 , with

~x = (x0, . . . ,xn), xi =
L

∑
j=1

v j j i, for 0≤ i≤ n

~y = (y0, . . . ,yn), yi = ai, for 0≤ i≤ n

This means that the calculation fits within the first limitation.
Moreover, if we define a maximum number of wildcards N ≤ L, this is equivalent

to the inner product 〈~x,~y〉, with

~x = (x0, . . . ,xN), xi =
L

∑
j=1

v j j i, for 0≤ i≤ N

~y = (y0, . . . ,yN), yi =

{
ai for 0≤ i≤ n
0 for m < i≤ N

which results in a fixed vector length of N +1, fitting the second limitation.
Step 2 shows that the calculation also fits the third and fourth limitation.
Although it may sound like we are done, this is not yet the case. Because even

though the above shows how the left hand side of the equation can be made into an
inner product, this inner product does not evaluate to zero upon a match. Instead, it
evaluates to a specific value t that depends on the query.

The problem of compensating for this t is left open for actual constructions.

3The formula will not be discussed here in detail. For more information, read the paper [SvLN+10].
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4.1.3 Efficiency, expressiveness and security
Note that if the problem of compensating for t can be solved, the aforementioned in-
tuition results in an HVE implementation that is at least almost twice as efficient as
the KSW Approach as the input to the underlying IPE scheme would be of size N +1
instead of 2L, with N ≤ L. This would instantly satisfy the efficiency requirement.

Similarly, as it would effectively be an HVE scheme, the expressiveness require-
ment would be satisfied too.

Whether the security is satisfied too depends heavily on the way the t is compen-
sated. If the compensation does not change the SSW Construction, its security can be
inherited. Otherwise, an additional security proof is needed.

4.2 First attempt

4.2.1 Intuition
The first attempt at compensating for the value t revolves around adapting the SSW
Construction to allow for specific-value non-zero inner product matching, the idea
being that a generic adaptation to non-zero inner products could be reused in future
constructions.

The first step in adapting the SSW Construction to allow for specific-value non-zero
inner product matching, is to analyze how the SSW Construction works.

In the SSW Construction ciphertext object are of the form

CT =

(
C = S ·gy

p, C0 = S0 ·gz
p{

C1,i = h1, iy ·uz
1,i ·g

αvi
q ·R1,i, C2,i = hy

2,i ·u
z
2,i ·g

βvi
q ·R2,i

}n

i=1

)
and tokens are of the form

T K =

 K = R ·∏n
i=1 h−r1,i

1,i ·h
−r2,i
2,i , K0 = R0 ·∏n

i=1 u
−r1,i
1,i ·u

−r2,i
2,i{

K1,i = g
r1,i
p ·g f1qi

q ·S1,i, K2,i = g
r2,i
p ·g f2qi

q ·S2,i

}n

i=1


where the vi represent values from a metadata vector, the qi represent values from a
query vector, all other exponents are freshly picked random integers, hi, j and ui, j are
fixed elements from Gp and all capital letters X represent fresh random values from
subgroup Gx.

The SSW Decrypt / Test algorithm consists of the following test:

e(C,K) · e(C0,K0) ·
n

∏
i=1

e(C1,i,K1,i) · e(C2,i,K2,i)
?
= εT

which basically does the following:

• cancel out the various masking elements from subgroups Gr and Gs;

• perform a function over the elements in Gp that will evaluate to the identity
element if the ciphertext and token are well-formed (whether the correct h and u
elements are used, etc.);

• perform a function over the elements in Gq that will evaluate to the identity
element if the inner product of metadata and query vector evaluates to zero.
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This last part consists of calculating the element

g(α f1+β f2)〈~v,~q〉
T q

where α and β are random exponents from the ciphertext, f1 and f2 are random expo-
nents from the token and gT q is the generator e(gq,gq) of subgroup GT q in the target
group.

As can be readily seen, if the inner product 〈~v,~q〉 evaluates to zero, then so does the
total of the exponent, resulting in the identity element of the target group.

The intuition behind the first attempt is to add a few elements to both the ciphertext and
the token that will allow the algorithm to evaluate the function in two separate ways
and base a match on whether the result of these two evaluations are equal. This new
evaluation is based on the following equality:

(α f1 +β f2)〈~v,~q〉= α f1 〈~v,~q〉+β f2 〈~v,~q〉

Because the intended result of 〈~v,~q〉 can be calculated during token generation and
fixed to some value π, it is possible to split the information of the new form into ci-
phertext parts ci and token parts ti:

α f1 〈~v,~q〉+β f2 〈~v,~q〉

α( f1 〈~v,~q〉)+β( f2 〈~v,~q〉)

α( f1π)+β( f2π)

c1(t1)+ c2(t2)

Because single multiplication in the exponent can be done using a pairing and ad-
dition in the exponent can be done using multiplication, the function can be evaluated
in exponents:

gα f1π+β f2π

T q

gα f1π

T q ·g
β f2π

T q

e(gq,gq)
α f1π · e(gq,gq)

β f2π

e(gα
q ,g

f1π) · e(gβ
q ,g

f2π
q )

e(c1, t1) · e(c2, t2)

So, with two extra ciphertext elements and two extra token elements, it should be
possible to create a functional scheme for non-zero inner products.

4.2.2 Construction
Given the aforementioned intuition, a construction can be made as follows:

Setup: Identical to SSW

Encrypt: Generate SSW ciphertext CT = (C,C0,{C1,i,C2,i}n
i=1), return:

(CT,C3 = gα
q ,C4 = gβ

q)
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GenerateToken: Generate SSW ciphertext T = (K,K0,{K1,i,K2,i}n
i=1), return:

(T,K3 = g f1π
q ,K4 = g f2π

q )

Decrypt / Test: Return:

e(C,K) · e(C0,K0) ·
n

∏
i=1

e(C1,i,K1,i) · e(C2,i,K2,i) · (e(C3,K3) · (C4,K4))
−1 ?

= εT

4.2.3 Security
Although the functionality of the scheme can be shown in a straightforward manner,
the security of such a scheme is a completely different matter.

Two different approaches were taken to proving the security and both of them have
failed. The first approach consisted of following the security proof of the SSW Con-
struction. This seemed like a logical choice as the scheme is based on SSW. When
this proved to be impossible, the second approach consisted of testing the construction
against Katz, Sahai and Waters’ “Master Theorem” for hardness in composite order
bilinear groups. Although passing the test would not result in a security guarantee for
concrete group implementation, it would offer some plausibility to the scheme’s hard-
ness. Furthermore, if the scheme could be shown to be easy in the generic group model,
then it would be provably broken.

Following the security proof of the SSW Construction.

The first step in following the security proof of the SSW Construction is reproducing
the proof of plaintext privacy.

The SSW Construction proves its plaintext privacy by showing that breaking their
scheme implies breaking the original IPE construction by Katz, Sahai and Waters
[KSW08] (from hereon referred to as the KSW Construction). To do this, they show
that they can extend the ciphertexts and tokens generated by the KSW Construction to
their respective counterparts in a scheme they call SchemeQ, which is indistinguish-
able from their main construction, using nothing more than the information in KSW’s
public key. This way, if there exists an attacker which has an advantage of attacking the
SSW Construction (and hence SchemeQ), they can use that attacker to attack the KSW
Construction. Without going into too much detail on the way SchemeQ is constructed,
the reason that the KSW elements can be extended is due to availability of both the
generator gp of Gp and an element gqR, where gq is the generator of group Gq and R a
random element from Gr.

In order to extend the KSW ciphertexts and tokens further and go from SchemeQ
to the first attempt, we need to add elements that hide information in the exponent of
gq. These elements may be masked by any number of other elements, as long as these
masks can be removed using pairings.

When inspecting the public key of the KSW construction,

PK = (gp,gr,gqR,{H1,i,H2,i})

where all H j,i are of the form g
r j,i
p R j,i, with R j,i random elements in Gr, it is easy to

see there is a problem: the only element that exposes gq in some way is gqR. This is
bad, because it means that we cannot create elements purely of the form ga

q and, even
though we may be able to create masked elements of the form ga

qR, we do not have
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access to any elements that may remove the masking. That is, there are no elements of
the form gqX where X is not in Gr, so for any element b that can be created we have
that either b does not contain a factor gq or b contains a factor from Gr. This means
that for any pairing e(ga

qR,b), the result will either have the information in a canceled
as e(ga

q,b) = εT or be indistinguishable from random as e(ga
qR,gx

qR2) = gax
T qRT , where

RT is random in GTr.
This means that we cannot recreate the first attempt from the public parameters of

KSW. Therefore we cannot recreate the security proof of SSW and we will need to
create a security proof from scratch, possibly having to invent new assumptions along
the way.

As creation of a novel security proof will never fit within the time frame of a Mas-
ter’s thesis, this approach is abandoned.

Note that this does not yet mean that the scheme is therefore insecure. Especially
since the scheme is supposed to run in a symmetric key setting, with no public com-
ponents to abuse, it could still be that the new scheme is secure (especially if the new
elements are masked with elements from Gr and Gs).

Testing the scheme against the “Master Theorem” of hardness.

The second attempt at proving the security tries to deduce the likelihood of the security
by testing it against Katz, Sahai and Waters’ “Master Theorem” for hardness in com-
posite order bilinear groups [KSW08]. If the scheme passes this test, then it should be
hard to break within the generic group model as long as the problem of factorizing the
group order is hard.

The idea behind the “Master Theorem” is fairly simple: if two elements are in-
dependent of all other public elements4 and if all pairings using (one of) these two
elements are either independent of all other possible pairings with public elements or
the same for both elements, then it is very hard to distinguish between them in a deci-
sional problem.

To be a bit more precise, we make use of Theorem A.2 from [KSW08], which states
that the decisional problem is hard if

. . . each of T0 and T1 is independent of {Ai}, and furthermore that
for all k ∈ S it holds that e(T0,Ak) is independent of {Bi}∪{e(Ai,A j)}∪
{e(T0,Ai)}i,k, and e(T1,Ak) is independent of {Bi}∪{e(Ai,A j)}∪{e(T1,Ai)}i,k

where

• Ai represents all public elements from G;

• T0 and T1 are the test elements from G;

• Bi represents all public elements from GT ;

• S is the collection of indexes i for which e(T0,Ai) , e(T1,Ai).

The following iterative approach is used in testing the first attempt against the mas-
ter theorem:

1 Set {Ai} to contain all ciphertext and token elements of the regular SSW Con-
struction;

4Here, independence means that they cannot be reproduced using a linear combination of the other ele-
ments
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2 Set T0 to the next element to be added to either ciphertext or token and T1 to a
random element from G;

3 Test the independence requirements posed by the theorem;

a If the requirements hold:

I If there are more elements to add, add T0 to {Ai}, and return to 2;
II If there are no more elements to add, the construction has passed the

test

b If the requirements do not hold:

I If this can be fixed by changing masking method, change the construc-
tion and return to 1;

II If this cannot be fixed, describe a possible attack and accept failure.

Following this approach, it turns out that the addition of any one element of the
form QX , where Q is an element in Gq and X is an element of some Gx that gets
canceled when paired with either ciphertext elements Ci, j (or token elements Ki, j), will
break the plaintext (or predicate) privacy of the SSW Construction.

A possible attack using an element QS:
Given:

• two known metadata vectors ~X = (x0, . . . ,xL),~Y = (y0, . . . ,yL), for which an at-
tacker knows for some i and j that xi/x j = z mod q and xi/x j , yi/y j mod q

• SSW ciphertext CT = (C,C0,{C1,k,C2,i}n
k=1), which may be of either ~X or~Y

• some element T of the form QS

Assume that CT is made using ~X and test that e(C1,i,T ) = e(C1, j,T z ). This should
hold because:

e(C1, j,T z) = e(C1, j,QSz )

= e(g
αx j
q ,Qz )

= e(gα
q ,Q)zx j

= e(gα
q ,Q)xi

= e(gαxi
q ,Q)

= e(C1,i,T )

If this equality doesn’t hold, the CT was made using~Y .

In the SSW Construction, this leaves only elements that contain a factor QP as elements
with a factor from Gq that could be added safely.

As the usage of random elements from Gp would make de-masking impossible,
this means that Gp factors would have to be specially constructed in such a way that
they cancel each other during the test algorithm. However, if this is done in a way that
also allows an attacker to cancel the Gp factor in other ciphertext or token elements,
the scheme is broken once again.

Given that the only operations available (i.e. the regular group operation and the
pairing) either result in multiplication or addition of exponents and the final result
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should cancel the effect of the masking element, the mechanism will need to use either
gp1

T pgp2
T p = g0

T p or e(gp1
p ,gp2

p ) = g0
T p. Given that the latter will only happen for p1 = 0

or p2 = 0, which are not allowed (as it would effectively return the construction to one
which we already know to be broken), the construction would need to use gp1

T pgp2
T p =

g0
T p.

Recalling the format of the first attempt, e(c1, t1) · e(c2, t2), both p1 and p2 would
be of the form pci pti, with pc1 pt1 + pc2 pt2 = 0. This leaves two possibilities:

1 all exponents are static

2 at least one of the exponents is chosen at random

If the exponents are static, then the scheme can be broken using any combination
of two ciphertexts or tokens, as two instances can be used to compute an element of
Gq.

For instance, using a static pc1:

gpc1
p Q1/gpc1

p Q2 = Q1/Q2 = Q3 ∈ Gq

If one of the exponents is chosen at random, then the other values of the have to be
picked in such a way that they support arbitrary values.

Supposing that pt1 is chosen at random, designated as r, this means that:

pc1r+ pc2 pt2 = 0
pc2 pt2 =−pc1r

pc2 =−pc1r/pt2

The only way to guarantee that this equation holds is to pick pt2 = r, resulting in
pc2 =−pc1.

Sadly, such a construction allows an attacker to cancel the Gp factor of a cipher-
text or token and enables a similar attack as before. Given some query vector ~Q =
{q0, . . . ,qL}, T1 = gpc1

p Q1, T2 = gpc2
p Q2, with qi/q j = x (like before), it holds that:

e(K1, j,T x
1 ) · e(K1, j,T x

2 ) = e(g
r j
p g

f1q j
q ,gxpc1

p Qx
1) · e(g

r j
p g

f1q j
q ,gxpc2

p Qx
2)

= e(g
r j
p ,gxpc1

p ) · e(gr j
p ,gxpc2

p ) · e(g f1q j
q ,Qx

1) · e(g
f1q j
q ,Qx

2)

= e(g
r j
p ,gxpc1

p ) · e(gr j
p ,g−xpc1

p ) · e(g f1q j
q ,Qx

1) · e(g
f1q j
q ,Qx

2)

= e(g
f1q j
q ,Qx

1) · e(g
f1q j
q ,Qx

2)

= e(g
f1q j
q ,gxz1

q ) · e(g f1q j
q ,gxz2

q )

= e(g f1
q ,gq)

xq jz1 · e(g f1
q ,gq)

xq jz2

= e(g f1
q ,gq)

xq j(z1+z2)

= e(g f1
q ,gz1+z2

q )xq j

= e(g f1
q ,gz1+z2

q )qi

= e(K1,i,T1) · e(K1,i,T2)

4.2.4 Result
Although there are various ways to functionally extend the SSW construction in such a
way that it could support non-zero inner products, there is no way of doing so without
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compromising the security of the scheme. This is because any such extension would
require the usage of elements that allow for a new calculation in the exponent of gq
and it can be shown using Katz, Sahai and Waters’ Master Theorem of hardness that
any combination of elements that allow such a calculation can be used to detect linear
relations in the plaintext metadata or query vector.

This result can be generalized to serve as a warning for creators of new schemes
within a bilinear setting:

Any scheme

• in a bilinear setting of (possibly composite) order n = p1 · . . . · pp,

• which hides secret information X in at least two elements C1,C2 of the format
Ci = gxi

x R, where each xi is an exponent depending on X , gx is the generator
of common subgroup Gx and R is an element of a different subgroup Gm of
(possibly composite) order m,

• in such a way that depending on X there may be a linear relation between the
exponents xi

may leak said linear relation if it exposes any combination of elements Tj

• that can be used to create a pairing with both Ci such that the results ri are in the
target subgroup GT x.

This includes all elements of the format XL, where X ∈Gx and L ∈Gl , such that l does
not share any prime factors with m.5

4.3 Main construction

4.3.1 Intuition
The intuition behind the main construction differs from the first in the fact that it is not
focused at changing the SSW Construction. Instead, it focuses on the main intuition
itself and changes it such that it produces a compatible zero inner product.

The change is based on the realization from the first attempt that the intended inner
product can be calculated at the time of token generation. Because the intended inner
product can be during token generation, it can be appended to the input query vector.
Then, if metadata vectors are extended such that the last element of the query vector is
deducted, the result is once more a zero inner product.

That is, given a metadata vector~V =(v0, . . . ,vn) and a query vector ~Q=(q0, . . . ,qn)

if 〈(v0, . . . ,vn),(q0, . . . ,qn)〉 = v0q0 + · · ·+ vnqn = π

then 〈(v0, . . . ,vn,−1),(q0, . . . ,qn,π)〉 = v0q0 + · · ·+ vnqn +(−1π) = 0.

Note that this notation is very generic, which means that any specific-value (π-)
inner product scheme can be transformed to a corresponding zero inner product scheme
as long as the specific value can be determined at token generation.

5Note that this description also covers the KSW Construction, which encodes the query vector in elements
of the form gxi

q P and includes an element gqR in its public key, which can be paired with these elements to
produce elements of target subgroup GT q. Although this does not necessarily break the KSW Construction,
as KSW make no claims regarding predicate privacy, it is interesting to see that the KSW Construction is
open to more attacks than the trivial ciphertext generation attack of [ABC+08].
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In the case of our main intuition, the π corresponds with

L

∑
i=1
i<J

qi ∏
j∈J

(i− j) .

4.3.2 Construction

Using this new intuition, the following generic construction can be defined:

Setup(HVE Alphabet Σ, HVE vector length L, Number of wildcards N)

• Setup a plaintext and predicate private IPE scheme IPE for vectors of
length N +2 and alphabet Σ

• Publish public components of the IPE scheme

Encrypt(HVE metadata vector ~V HV E )

• Calculate all vk = ∑
L
i=1 vHV E

i ik for k = 0 . . .N

• Set ~V IPE = (v0, . . . ,vN ,−1)

• Return ciphert C = IPE.Encrypt(~V IPE)

GenerateToken(HVE query vector ~QHV E )

• Create the set J of all k wildcard positions in ~QHV E

• Use Viète’s formula to calculate the coefficients ai for i = 0 . . .k

• Calculate π = ∑
L
i=1
i<J

qHV E
i ∏ j∈J (i− j)

• Set ~QIPE = (a0, . . . ,ak,0k+1, . . . ,0N ,π)

• Return token T = IPE.GenerateToken(~QIPE)

Decrypt / Test(Ciphertext C, Token T )

• Return result R = IPE.Decrypt(C,T )

Although the SSW Construction is currently the only IPE construction offering
both plaintext and predicate privacy, this generic definition allows the usage of any
future scheme that support IPE.

4.3.3 Security
In order to prove the construction’s security, both the correctness and the privacy re-
quirements need to be met.

Correctness of the scheme depends on both the correctness of the inner product that
is used for matching and the correctness of the encryption scheme. The former can be
derived directly from the correctness of [SvLN+10], the latter can be derived directly
from the correctness of the Decrypt / Test algorithm of the underlying IPE scheme.
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Plaintext and predicate privacy are directly determined by the Encrypt and Gen-
erateToken algorithms of the underlying IPE scheme. This is because the scheme is
purely focused on preprocessing inputs to the IPE and the result of the preprocessing is
a valid inner product matching algorithm. As there exists at least one IPE construction
that provides both plaintext and predicate privacy (the SSW Construction), the setup
algorithm ensures plaintext and predicate privacy for the entire construction.

As the solution is correct and provides plaintext and predicate privacy, it satisfies the
security requirement of the research question.

4.3.4 Efficiency
By extending the input vectors with an additional element, the total length of the in-
put vectors becomes N + 2, where N is the maximum number of allowed wildcard
characters. This is shorter than the 2L, where L is the length of an HVE input vector,
demanded by the KSW Approach for all L > 2 as N ≤ L.

If L is sufficiently large, then in the worst case with N ≈ L the vector length is
roughly halved, as (N + 2)/2L = (L+ 2)/2L ≈ L/2L = 1/2. More generally, if L is
chosen large enough to make the +2 negligible and N is chosen as a specific percentage
p of L (N = Lp), then the vector length in this construction is only Lp/2L= p/2 percent
of the vector length in the KSW Approach. In binary HVE schemes, the percentage
p will either approach or equal 100%, as searches for a single specific outcome prob-
ably need to be supported (which requires L− 1 ≈ L wildcards). In non-binary HVE
schemes, the percentage may be chosen lower in a trade-off between efficiency and
expressiveness.

As the solution provides significantly shorter IPE input vectors than the KSW Ap-
proach even for N = L, and the number of pairings needed for a single test is linear in
the length of the IPE input vectors, the solution is said to meet the efficiency require-
ment.

4.3.5 Expressiveness
As the solution creates a correct HVE implementation within IPE, it offers the same
expressiveness as regular HVe. Therefore, the solution also meets the expressiveness
requirement.

4.3.6 Result
This solution offers a way to preprocess HVE input vectors in such a way that they
can be used within IPE constructions. By choosing an IPE construction with proven
plaintext and predicate privacy, this can be used to provide the same plaintext and
predicate privacy for HVE schemes. For HVE schemes with vector length L and a
maximum number of wildcards N = Lp ≤ L, the resulting IPE input vectors are of
length Lp+ 2, which is significantly shorter than the standard KSW Approach vector
length of 2L.
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4.4 Alternative construction

4.4.1 Intuition
After formulating the main construction, we realized that the same technique used
in compensating for π could be used to modify original KSW approach such that it
produces vectors of length L+1 instead of 2L.

In the original KSW approach, every element in an HVE vector is represented by
two elements in the corresponding IPE vector. Metadata elements vi are represented by
a tuple containing its multiplication with a fresh random value ri and the random value
itself: vi→ (−viri,ri). Query values qi are represented by either the tuple (0,0) if qi is
a wildcard or by the tuple (1,qi) if it is not.

The ri in this construction are used to spread the values inside the metadata vector
to reduce the probability of false positives (see also section 3.2.2). However, to achieve
such a spread these ri do not necessarily have to be picked fresh.

If the ri are fixed for the scheme, then the same trick that is used in the main
construction can be used to reduce the size of the IPE vector.:

Original KSW:

~V IPE =
(
vIPE

1 , . . . ,vIPE
2L
)

, with for i = 1 . . .L :

vIPE
2i−1 =−vHV E

i ri vIPE
2i = ri

ri ∈ R

~QIPE =
(
qIPE

1 , . . . ,qIPE
2L
)

, with for i = 1 . . .L :

qIPE
2i−1 =

{
1 if qHV E

i , ?

0 if qHV E
i = ?

qIPE
2i =

{
qHV E

i if qHV E
i , ?

0 if qHV E
i = ?

Using a fixed set of ri:

~V IPE =
(
vIPE

1 , . . . ,vIPE
L ,−1

)
, with for i = 1 . . .L, vIPE

i = vHV E
i ri

~QIPE =
(
qIPE

1 , . . . ,qIPE
L ,π

)
, with π =

l

∑
i=1

(qiri)
2, and for i = 1 . . .L, :

qIPE
i =

{
qHV E

i ri if qHV E
i , ?

0 if qHV E
i = ?

The only disadvantage here is that this approach does not allow vi with a value
of zero. In the original KSW Appraoch, a zero vi representation would include the
standalone ri, which assures that searches for non-zero values would not result in a
zero inner product. In this reduced form, however, a zero vi would always result in a
zero inner product for the element in said location. Therefore, the alphabet Σ of the
HVE to be implemented should be mapped to an alphabet Σ∗ that does not contain a
zero value. However, as this is a trivial operation, this is not considered an obstacle.
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4.4.2 Construction
Applying this intuition gives the following construction:

Setup(HVE Alphabet Σ, HVE vector length L, Number of wildcards N)

• Map Σ to an alphabet Σ∗ that does not contain a zero value

• Define ri for 1≤ i≤ L

• Setup a plaintext and predicate private IPE scheme IPE for vectors of
length L+1 and alphabet Σ∗

• Publish public components of the IPE scheme

Encrypt(HVE metadata vector ~V HV E )

• Substitute all vi in ~V HV E with their counterparts wi from Σ∗

• Set ~V IPE =
(
vIPE

1 , . . . ,vIPE
L ,−1

)
, with for i = 1 . . .L, vIPE

i = wiri

• Return ciphert C = IPE.Encrypt(~V IPE)

GenerateToken(HVE query vector ~QHV E )

• Substitute all non-wildcard qi in ~QHV E with their counterparts wi from Σ∗

• Calculate π = ∑
l
i=1(wiri)

2

• Set ~QIPE =
(
qIPE

1 , . . . ,qIPE
L ,π

)
, with for i = 1 . . .L, qIPE

i = 0 if qi = ? and
qIPE

i = wiri otherwise

• Return token T = IPE.GenerateToken(~QIPE)

Decrypt / Test(Ciphertext C, Token T )

• Return result R = IPE.Decrypt(C,T )

4.4.3 Security and Expressiveness
Just like with the main construction, the plaintext and predicate privacy of this con-
struction are fully determined by the plaintext and predicate privacy of the chosen IPE
scheme. As there is at least one IPE scheme that provides plaintext and predicate pri-
vacy, this construction satisfies the security requirement.

The expressiveness requirement is satisfied as the construction implements HVE.

4.4.4 Efficiency
In this construction, HVE input vectors of length L are transformed into vectors of
length L+ 1. Although this means it is not necessarily more efficient than our main
construction, it is more efficient than the KSW Approach for all L > 1.

When comparing the alternative construction with our main construction, there are
two specific cases in which it is more efficient. These are:

1 The case that the maximum number of wildcards equals the total number of
elements in a query. In this case, the main construction produces vectors of size
L+2 while the alternative construction produces vectors of size L+1

2 The case that the cost of computing Viètes formula and the expected result π

exceeds the cost of the pairings that are avoided due to decreased vector size.
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4.4.5 Result
The alternative construction offers an HVE scheme with roughly half the vector length
of the KSW Approach and without the computation of Viète’s formula. This makes it
a viable candidate for schemes with no restriction on the number of wildcards, such as
binary HVE schemes.
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Chapter 5

Conclusion

Regarding the question whether it is possible to construct an encryption scheme that is
more efficient than the KSW approach within the SSW construction while retaining its
security and expressiveness, the answer is yes.

Just like the KSW approach, the two HVE constructions proposed in this thesis
preprocess HVE input vectors in such a way that they can be used within a secure
IPE construction. The efficiency gain lies in the length of the IPE vectors that the
constructions produce. For any HVE scheme that uses input vectors of length L, The
KSW Approach produces IPE vectors of length 2L.

The main construction of this thesis is based on the work of Sedghi e.a. and provides
IPE vectors of a length N+2, where N is the maximum number of wildcard characters
in an HVE query vector. As N is by definition no more than the full length of an
HVE input vector, this means vector lengths of at most L+2, which is roughly half the
vector length of the KSW Approach. This worst case scenario is most likely to occur
for binary HVE schemes, where query vectors mostly consist of wildcards. For non-
binary HVE schemes, however, this dependence on the maximum number of wildcards
can be used to create a suitable balance between expressiveness and the efficiency on a
scheme to scheme basis.

The alternative construction of this thesis is based on the work of Katz, Sahai and Wa-
ters themselves and uses one of the tricks of the main construction to create IPE vectors
of length L+1. Although the alternative produces vectors of roughly the same length
as the main construction does in its worse case scenario, it does so with less compu-
tations during preprocessing. This makes it more attractive than the main construction
for the specific case of binary HVE schemes.

One of the key insights that allowed the creation of both the main and the alternative
construction is that any non-zero inner product matching algorithm can be transformed
to a zero inner product matching algorithm if the non-zero result can be predicted at
the time of token generation.

In the main construction this is used to turn an equation in Sedghi’s basic intuition
into a zero inner product matching algorithm. This is done by translating the left-hand
side of the equation into an inner product and using the right hand side of the equation
as the predictable result.

In the alternative construction, the zero inner product of the KSW Approach is first
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reduced to a non-zero inner product of half its length and then given a predictable result
by fixing its randomization values.

In addition to the successful attempt to find a solution, there was one failed attempt.
This attempt was based on extending the symmetric IPE scheme of Shi, Sahai and
Waters in such a way that it would allow for non-zero inner products. This attempt
first failed during the proving stage, as it could not reproduce the SSW security proof.
It was then further debunked and proven to be broken using Katz, Sahai and Waters’
master theorem of hardness.

Interestingly enough, the attack on the first attempt can be generalized to find po-
tential attacks against other schemes in a bilinear setting. These attacks allow an ad-
versary to detect a specific linear relation between plaintext query values and do not
require the generation of ciphertexts, which means they can be used to detect not just
specific queries, but also ranges of queries that only agree on that specific relation.

5.1 Future Research
As the constructions in this thesis are focused on preprocessing of inputs to IPE schemes,
their contribution is largely as a tool to creating more efficient, secure HVE construc-
tions using IPE. The existence of these constructions shows the possibility of construct-
ing efficient HVE schemes within any IPE compatible construction, allowing future
researchers to focus on new advances on either IPE itself or on entirely new but IPE
compatible constructions.

One thing to keep in mind is that the efficiency of the main construction largely
relies on pairing operations being considerably more expensive than regular modular
multiplication and addition, making the cost of calculating of the various precomputa-
tions acceptable. As research into more efficient bilinear mapping functions advances,
this premise may need to be revised and the alternative construction may become over-
all more efficient.
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