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Abstract

In order to perform interference nulling (through beamforming), for an in-
terferer with variable angular position, the radiation pattern of an array
antenna has to be adjusted electronically.

This thesis deals with a beamforming algorithm that rotates the beams of a
Butler Matrix beamforming network (BFN), such that one of the beams is
able to ’capture’ an interferer. This beam is strongly attenuated, such that
the interferer is nulled out. In this way the signal-to-interference ratio (SIR)
is improved. Subsequently, a vector modulator performs phase shifting in
order to optimize the signal-to-noise ratio (SNR).

Based on an existing platform, a circuit level implementation, using Op-
Amps and resistors, is proposed to verify the nulling performance of the
beamforming algorithm.

Circuit simulations demonstrate, for low resolutions, a minimum rejection
of 17.56 dB, such that the SIR is improved by this number.
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Chapter 1

Introduction

Nowadays the radio-frequency (RF) spectrum becomes increasingly filled
with transmitters operating in the same frequency-band. Modern radio re-
ceivers need to support a variety of (mobile) communication standards, each
using a different frequency-band. Due to this ’crowded’ spectrum, receivers
need to accommodate quite a few highly selective analog filters in order to
select the right frequency-band.

High-order analog filters typically operate in a single fixed frequency-band.
This is undesired for upcoming applications, such as software-defined radio
(SDR) and cognitive radio (CR), which require a high degree of flexibility.

Cognitive radio operates in unused spots in the frequency spectrum. Fixed
transmitters (e.g. TV channels) are closely spaced to these empty spots
and are considerably stronger. Strong interferers, nearby the wanted signal
(band), are hard to reject by means of frequency-domain filtering. Still,
these blocking signals or blockers can desensitize the receiver.

Consider Figure 1.1 where a piece of unused spectrum (between two strong
interferers) is available for cognitive radio applications. A band-pass filter
might be used to select this ’piece of spectrum’.

f
Unused Spectrum

Figure 1.1: Unused spectrum in between two strong interferers.
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Chapter 1. Introduction

Although the interferers are located outside the passband of this filter, they
cannot be suppressed adequately, due to the finite steepness of the band
filter. Therefore another approach should be exploited, in order to reject
these kind of strong interferers.

1.1 Beamforming

Antennas can be configured as an array of antenna-elements. When the
signals from these elements are amplified and/or phase-shifted and subse-
quently summed, the radiation pattern is modified. In this way the radiation
pattern of the array can be adjusted electronically. This is called beamform-
ing. Beamforming is also referred to as spatial filtering. If, as in the case
of Figure 1.1, a wanted signal and an interferer are spatially separable, it
might be possible to obtain sufficient rejection. Beamforming can also be
used in order to increase the signal-to-noise ratio (SNR).

1.1.1 Antenna Array Basics

Consider a linear array of K omnidirectional equally spaced radiators. It is
assumed that the radiators have an isotropic radiation pattern and mutual
coupling between the elements is neglected for simplicity. Consequently, the
radiation pattern of the array is described by the array factor (F) [Visser,
2005, p. 127], that is:

F (θ) =
K∑
i=1

ejk0(i−1)dsin(θ) (1.1)

where
k0 =

2π
λ0

• λ0 is the wavelength in free space.

• k0 is the angular wave number in free space, i.e. the magnitude of the
wave vector.

• d is the inter-element distance.

• θ is the angle relative to the array normal (broadside or z-direction).

So, when the contributions from the elements are summed, the radiation
pattern of the array is obtained. In Figure 1.2b the radiation pattern of a
4-element linear array with 1

2λ0 inter-element spacing (d) is plotted.
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1.2. Project Description

(a) Array configuration
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(b) Radiation pattern

Figure 1.2: Configuration and radiation pattern of a 4-element linear array.

The radiation pattern is plotted for θ = [−90◦ . . . 90◦], i.e. visible space,
because the array factor for the interval θ = [90◦ . . . 270◦] is mirrored with
respect to the interval θ = [−90◦ . . . 90◦].

1.1.2 Complex Weights

In the expression for the array factor (1.1), it is assumed that the amplitudes
received by the elements of the array are equal. That is, the array exhibits
a uniform aperture distribution. It is also assumed that the summation
network introduces no additional phase differences or time delays.

Most array systems incorporate ’weights’ in order to perform beamforming.
These weights can provide amplification and/or phase shifting. Hence the
name complex weights. Amplitude weighting is often referred to as amplitude
tapering [Visser, 2005, §4.6]. An amplitude taper lowers the sidelobe level
at the cost of broadening the main beam. Phase tapers are used to phase
shift the antenna signals such that they coherently add up. In this way, the
SNR can be improved for a certain direction of arrival, as in the case of a
Phased Array.

1.2 Project Description

This thesis examines the feasibility of implementing a beamforming system
to perform interference nulling. This work is performed in the framework
of beamforming for consumer electronics, i.e. personal communications for
frequencies of 1 - 5 GHz.

At system level it is investigated if beamforming is suitable to perform in-
terference nulling according to some specifications. Subsequently, a possible
implementation of the beamforming system is examined at circuit level.

3



Chapter 1. Introduction

1.3 Previous Work

In previous work [Soer et al., 2011], a beamforming system based on a Vec-
tor Modulator was proposed. A vector modulator performs phase shift-
ing and/or amplification, by modulating the magnitudes of two quadrature
phases (orthogonal vectors) and summing the results.

Consider Figure 1.3. Summing two orthogonal vectors, i.e. I & Q, yields
the resulting vector, which experiences a phase shift with respect to I & Q.
In this way the complex weights can be adjusted in order to steer a beam
to a desired direction.

I

Q

Figure 1.3: Phasor Diagram.

[Wang and Hajimiri, 2007] presented a digital linear Phase Rotator, in which
the I & Q components of the local oscillator (LO) signal each serve as input
to a variable gain amplifier (VGA). These VGAs are transconductor stages,
sensing the LO signal and producing an output current. Their gains are 5 bit
digitally controlled and can be set independently from each other. Adding
the outputs of the VGAs in the current domain results in an interpolated
signal with the desired phase and amplitude.

[Raczkowski et al., 2010] reported a wideband beamformer, in which the
output currents of a quadrature mixer serve as input to a phase shifter.
These phase shifters are implemented using 4 digitally controlled variable-
gain current amplifiers, as currents are easily summed to produce the phase-
shifted output signal. The phase shifts are derived from a lookup table,
which contains the gains of a single VGA.

The complex weights of the beamforming system proposed by [Soer et al.,
2011] were implemented using capacitor ratios. In this work, an alternative
idea is investigated to realize a beamforming system in order to perform
interference nulling.
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1.4. Idea

1.4 Idea

In this work the implementation of complex weights based on the combi-
nation of Op-Amps and resistors is examined. This could save power con-
sumption and die area compared to using capacitors as in [Soer et al., 2011].
Consider Figure 1.4.

RI

RQ

RFB
VI

VQ

VOUT

Figure 1.4: Possible implementation of a Vector Modulator.

The voltages VI & VQ, which are 90◦ out of phase (i.e. I/Q signals), are
converted to current through the variable resistors and added at the summa-
tion node at the inverting input of the Op-Amp. Subsequently the summed
current flows through the feedback resistor (RFB) and hence converted back
to voltage. So the resulting voltage (VOUT ) experiences a phase shift with
respect to the input voltages. In this way a vector modulator can be con-
structed.

This work examines if the implementation of complex weights, using resistors
and Op-Amps, is suitable for a beamforming algorithm in order to perform
interference nulling. This leads to the following research questions.

1.5 Research Questions

1. Given a linear phased array configuration, can the radiation pattern
be adjusted in a structured way to perform interference nulling (with
sufficient accuracy) through beamforming?

2. Based on the proposed beamforming system, is an Op-Amp imple-
mentation with resistive feedback feasible for synthesizing the complex
weights necessary to generate the desired radiation pattern?
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1.7 Outline

This thesis is organized as follows:

• Chapter 2 introduces a beamforming network (BFN), which is used to
perform interference nulling in a structured way.

• Chapter 3 describes a beamforming algorithm, which performs inter-
ference nulling and SNR improvement.

• Chapter 4 examines an existing platform for the beamforming system.

• Chapter 5 evaluates the performance of the system model, due to
constraints imposed by a circuit implementation.

• Chapter 6 proposes circuit implementations, suitable for synthesizing
the complex weights of the beamforming system.

• Chapter 7 provides simulation results, obtained with SpectreRF.

• Chapter 8 presents the conclusions.

• Chapter 9 offers some recommendations.
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Chapter 2

Interference Nulling

2.1 Multiple Beams

As elucidated in Chapter 1, the main function of the beamforming system
is to perform interference nulling. It is hereby assumed, that the angular
position of the interferer, which is random, is known a priori. However, in
the absence of interference the array should be sensitive in all directions. As
depicted in Figure 1.2b, the array is most sensitive in broadside direction
(i.e. 0 ◦), whereas in endfire direction (i.e. ± 90 ◦) the array is not sensitive
at all. The four-element array has natural pattern nulls at ± 30 ◦. If an
incoming signal enters the array at an angle of ± 30 ◦ or ± 90 ◦, the array
will not notice its presence.

In order to satisfy these sensitivity conditions, multiple beams are needed.
Multiple beams can be created by means of a beamforming network (BFN)
or via quasi-optical lenses [Hansen, 2009, §10.2]. The latter is not further
described here. The next section introduces an often used BFN.

2.2 Butler Matrix

A Butler Matrix 1, named after his inventor [Butler and Lowe, 1961], is a
beamforming network, which can mathematically be represented by a square
matrix: 

0◦ −45◦ −90◦ −135◦

−90◦ 45◦ 180◦ −45◦

−45◦ 180◦ 45◦ −90◦

−135◦ −90◦ −45◦ 0◦

 (2.1)

1Within this work, this beamforming network is referred to as Butler BFN, while the
mathematical representation - as in (2.1) - is referred to as Butler matrix, even though a
Butler matrix is in fact a type of beamforming network!

7



Chapter 2. Interference Nulling

In Figure 2.1 an often encountered representation of a Butler BFN is given
[Litva and Lo, 1996, §2.2] [Rajagopalan, 2006].

0°

-90°

0°

-90°

A1 A2 A3 A4

1R 2L 2R 1L

45° 45°

Figure 2.1: Antenna array feeding a Butler BFN.

The BFN in Figure 2.1 consists of 4 hybrid junctions and 2 fixed phase
shifters. A 4-element array antenna feeds the upper hybrid junctions, which
perform a -90 ◦ phase shift when a signal propagates to the other branch in
the hybrid. The outputs of the lower hybrids are referred to as beam ports.
A Butler BFN connects N = 2n (where n = 1, 2, 3, . . .) array elements to
an equal number of beam ports. The signals present at these beam ports
represent a beam. The Butler BFN in Figure 2.1 results 4 beams, which are
shown in Figure 2.2.
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(b) Radiation pattern

Figure 2.2: Butler beams.

As becomes clear from Figure 2.2, 1R represents the first beam positioned
right from broadside direction. 2L represents the second beam positioned
left from broadside direction, and so on. . .
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2.3. Motivation for the Butler Matrix

A Butler BFN is often recognized as the calculation flowchart (a.k.a. FFT
butterfly) of the fast Fourier transform (FFT) [Hansen, 2009, §10.2.1.2]
[Mailloux, 2005, §1.3.2]. From this point of view, it could be said that a
Butler BFN performs a spatial fast Fourier transform. That is, the Butler
BFN performs an FFT on a discrete number of antenna elements, giving a
discrete number of ’direction of arrival’ bins.

2.3 Motivation for the Butler Matrix

Next to the Butler Matrix in the general sense, there exists other types
of beamforming networks, such as the Blass Matrix and the Nolen Matrix
[Hansen, 2009, §10.2.1.3]. A ’classical’ Blass matrix BFN uses a set of array-
element transmission lines, which intersect a set of beam port lines via power
dividers to generate multiple beams. The Blass matrix BFN can have a
number of beam ports unequal to the number of antenna elements.

The Nolen matrix BFN is in fact a generalization of both the Butler and
the Blass matrices, such that the Nolen matrix can be reduced to the Butler
matrix when N = 2n. Just like the Butler BFN can be considered an
implementation of the FFT, the Nolen matrix BFN can be considered an
implementation of the discrete Fourier transform (DFT).

So, more types of beamforming networks exist. Why not use those?

• A Butler BFN generates beams, which cover the complete visible space
of the array (in case of 1

2λ spacing).

• As already mentioned above, the Butler BFN can be considered as an
implementation of the FFT. Hence it can be expected that this BFN
requires a minimum number of components. Compared to the Butler
BFN in Figure 2.1, a Nolen matrix BFN would require 6 phase shifters
& 6 hybrids for a 4-element array.

• A Butler BFN can be implemented using switches driven by different
phases. So it is suitable for implementation in CMOS, which offers
good switches.

Based on the above points, the Butler BFN is chosen in order to create
multiple beams. This thesis focusses on a linear array of 4 antenna-elements
(i.e. K = 4). Therefore a 4x4 Butler matrix is analyzed. Consequently
N = 4. An inter-element distance of half the wavelength (i.e. d = 1

2λ) is
assumed in order to avoid grating lobes [Visser, 2005, §4.5.2].

9



Chapter 2. Interference Nulling

2.4 Analysis of the Butler Matrix

In this section the mathematical representation of the Butler BFN is ad-
dressed. For clarity, Figure 2.3 visualizes the (direct) relation of the matrix
with the beamforming network. Each box (Bi,j) represents a phase shift
corresponding to the elements of the matrix.

B1,1 B2,1 B3,1 B4,1 B1,2 B2,2 B3,2 B4,2 B1,3 B2,3 B3,3 B4,3 B1,4 B2,4 B3,4 B4,4

1R 2R 1L2L

A1 A2 A3 A4

Figure 2.3: Direct implementation of the Butler matrix.

Radiation patterns, such as Figure 1.2b, are often plotted as function of the
variable u. Commonly referred to as u-space. The relation of u with the
angular variable θ is described by:

u = sin(θ)

In array theory it is customary to describe the mathematics in u-space, since
beamwidth is invariant in u-space [Visser, 2005, §7.2]. In addition, the phase
term in expression (1.1) becomes linear with u.

2.4.1 Beam Position

In u-space, the beams of a Butler matrix are located at [Hansen, 2009, p.
346] [Mailloux, 2005, p. 392]:

ui =
iλ

2Nd
(2.2)

for

i = ±

{
1, 3, 5, . . . , (N − 1) when N is even
0, 2, 4, . . . , (N − 1) when N is odd

So, in case of 1
2λ spacing and a 4x4 Butler matrix, (2.2) simplifies to:

ui =
i

4
(2.3)

10



2.4. Analysis of the Butler Matrix

In u-space, the 4 beams (i.e. N is even) are located at:

u =


−0.75 when i = −3
−0.25 when i = −1
0.25 when i = 1
0.75 when i = 3

(2.4)

2.4.2 Phase Progression

The phase progression between the elements of the matrix (i.e. Bi,j) is
described by [Mailloux, 2005, p. 392]:

δi = − i

N
π (2.5)

In words, δi represents the increase/decrease in phase with respect to the
previous row-element of the matrix. For N = 4 and i = 1 the phase pro-
gression becomes:

δ1 = −1
4
π (2.6)

2.4.3 Matrix Synthesis & Orthogonality

With the aid of (2.6), the first row of the matrix (i.e. B1,j) can be con-
structed. Starting from broadside direction (i.e. ej0π) the row-elements
become: [

ej0π e−j
1
4
π e−j

1
2
π e−j

3
4
π
]

The second row of the matrix should contain the phases necessary to create a
beam ’orthogonal’ to the first beam (1R). Orthogonal, meaning in geometric
sense (perpendicular).

In Figure 2.4 the beams, at the positions given by (2.4), are represented by
four impulses. For i = 1 expression (2.4) resulted a beam at u = 0.25. In
order to be orthogonal with 1R, the second beam should be ±90 ◦ out-of-
phase with the first beam. In u-space this corresponds to:

u = sin(±90 ◦) = ±1 (2.7)

In Figure 2.4 the result of (2.7) is indicated with ∆u. So the first beam
located at u = 0.25 is orthogonal with the second beam located at u = −0.75.

11



Chapter 2. Interference Nulling

Figure 2.4: Beams located in u-space.

For u = −0.75 it follows from (2.4) that i = −3. From (2.5) the phase
progression for the second row of the matrix is:

δ−3 = −−3
4
π =

3
4
π (2.8)

Again, starting from broadside direction, the row-elements become:[
ej0π ej

3
4
π e−j

1
2
π ej

1
4
π
]

In a similar way the phase progression for i = 3 and i = −1 result the phases
of the third and fourth row. Hence the Butler matrix becomes:

B =


ej0π e−j

1
4
π e−j

1
2
π e−j

3
4
π

ej0π ej
3
4
π e−j

1
2
π ej

1
4
π

ej0π e−j
3
4
π ej

1
2
π e−j

1
4
π

ej0π ej
1
4
π ej

1
2
π ej

3
4
π

 (2.9)

The Butler beams can be calculated as:


1R
2L
2R
1L

 =


ej0π e−j

1
4
π e−j

1
2
π e−j

3
4
π

ej0π ej
3
4
π e−j

1
2
π ej

1
4
π

ej0π e−j
3
4
π ej

1
2
π e−j

1
4
π

ej0π ej
1
4
π ej

1
2
π ej

3
4
π



A1

A2

A3

A4

 (2.10)

A represents the element signals of the array. A multiplication with B,
results the phases - apart from a rotation - as defined in (2.1).

Beams that are mutually orthogonal, are commonly referred to as beam
pairs. In case of (2.10), these beam pairs are 1R & 2L and 2R & 1L.

12



2.5. Beam Summation

2.5 Beam Summation

The beams generated by the Butler BFN can be summed in order to form
a radiation pattern P (u):

P (u) =
[
1 1 1 1

] 
1R
2L
2R
1L

 (2.11)

Figure 2.5 illustrates the summing operation. The Butler BFN is represented
by a black box, which could contain an implementation as illustrated in
Figure 2.1.

Σ

Butler Matrix BFN

A1 A2 A3 A4

1R 2L 2R 1L

P

Figure 2.5: Summing the Butler beams yields the radiation pattern P.

The beams, formed by the BFN in Figure 2.1, are generated from the element
signals as:

1R = A1 6 0◦ +A2 6 −45◦ +A3 6 −90◦ +A4 6 −135◦ (2.12a)
2L = A1 6 −90◦ +A2 6 45◦ +A3 6 180◦ +A4 6 −45◦ (2.12b)
2R = A1 6 −45◦ +A2 6 180◦ +A3 6 45◦ +A4 6 −90◦ (2.12c)
1L = A1 6 −135◦ +A2 6 −90◦ +A3 6 −45◦ +A4 6 0◦ (2.12d)

Summing these beams according to (2.11), results the radiation pattern
shown in Figure 2.6a. Summing the beams, given by (2.10), yields the
radiation pattern shown in Figure 2.6b. This Figure shows that different
implementations of the Butler matrix represent the same Butler beams.
However, when these beams are summed according to (2.11), the resulting
radiation patterns (P) differ!

The signal from one of the array elements, should always experience the
same phase shift for every Butler beam. Thus, one column of the matrix
should always represent the same phase shift. When the Butler matrix does
not satisfy this condition, the Butler beams do not sum up to a constant
value for every angle, as can be observed from Figure 2.6a. This is undesired,
as will become clear from the next section.
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(b) Using beams of (2.10)

Figure 2.6: Radiation patterns of summed Butler beams.

2.6 Beam Cancellation

A Butler BFN distributes the received signal power of the array equally over
its beam ports to form orthogonal beams. As depicted in Figure 2.2b, the
angle where one of the beams is at its maximum, the other beams are zero.
As an example, consider u = 0.25, where the element signals are given by:

A =


ej0π

ej
1
4
π

ej
1
2
π

ej
3
4
π

 (2.13)

At u = 0.25, beam 1R is maximal according to Figure 2.2b, as verified by
this calculation:

1R = ej0πej0π + e−j
1
4
πej

1
4
π + e−j

1
2
πej

1
2
π + e−j

3
4
πej

3
4
π= 4

2L = ej0πej0π + ej
3
4
πej

1
4
π + e−j

1
2
πej

1
2
π + ej

1
4
πej

3
4
π = 0

2R = ej0πej0π + e−j
3
4
πej

1
4
π + ej

1
2
πej

1
2
π + e−j

1
4
πej

3
4
π= 0

1L = ej0πej0π + ej
1
4
πej

1
4
π + ej

1
2
πej

1
2
π + ej

3
4
πej

3
4
π = 0

When all beams - except 1R - are summed according to (2.11), the radiation
pattern (P) contains a null at u = 0.25. So, if a Butler beam points into
the direction of an interferer, and this beam is cancelled2, the interferer is
nulled out. In this way the radiation pattern gets a null at the position of
the cancelled beam.

2For the moment it is of no importance how this beam is actually cancelled.
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2.7. Broadside Butler

Figure 2.7 illustrates the principle of interference nulling used within this
work. Note that the radiation pattern in Figure 2.7b does not remain flat
when a beam is cancelled. That is, the antenna gain is lowered in certain
directions.
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(b) Sum of the beams in
case 1R is cancelled
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(c) Sum of the beams in
case 2R is cancelled

Figure 2.7: Principle of interference nulling.

The question may arise which Butler beam should be cancelled, when an
interferer is present at a direction just in between two neighboring beams.
Consider an interferer at u = 0.5. Which beam, i.e. 1R or 2R, should be
cancelled? Figure 7.2c illustrates the case when beam 2R is cancelled. As
can be seen from Figures 2.7b & 7.2c, it follows that no interferer can be
nulled at u = 0.5, when either 1R or 2R is cancelled. To cancel an interferer
at an arbitrary angle (i.e. from an arbitrary direction), a Butler beam should
be shifted to that particular direction. This implies that all Butler beams,
i.e. the whole matrix, should be shifted such that one of the beams can
’capture’ the interferer.

2.7 Broadside Butler

Expression (2.2) defines the position of Butler beams in u-space. Increasing
i by 1 in (2.2) shifts the beams to:

u =


−0.5 when i = −2
0 when i = 0
0.5 when i = 2
1 when i = 4

(2.14)

The beam at u = 1 (i.e. 90 ◦) has a mirror beam at u = −1 (270 ◦). This
can be observed from Figure 2.8.

Within this thesis, the Butler matrix that renders beams as presented in
Figure 2.8, is denoted as Broadside Butler, because one beam points to
broadside direction (i.e. 0 ◦).
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Figure 2.8: Beams of the Broadside Butler.

The broadside Butler matrix can be constructed in a similar way as described
in section 2.4.3.

B0 ◦ =


0◦ 0◦ 0◦ 0◦

0◦ 180◦ 0◦ 180◦

0◦ 270◦ 180◦ 90◦

0◦ 90◦ 180◦ 270◦

 (2.15)

Note that due to the symmetry of this matrix only 4 phases are needed.
Therefore, the broadside Butler matrix can be considered as a special case
of the generic Butler matrix.

As exemplified in the previous section, it was not possible to reject an in-
terferer at u = 0.5. However, Figure 2.8 clearly shows that beam 2R (red)
points at 30 ◦, i.e. u = 0.5. So, using the broadside Butler matrix, the
interferer located at u = 0.5 can be nulled. Note that the broadside Butler
matrix is in fact a shifted version of the generic Butler matrix.

By rotating the (generic) Butler matrix such that one of its beams points
into the direction of an interferer, this interferer can be nulled.

2.8 Beamforming Function

In order to perform interference nulling, a Butler beam, which points into
the direction of an interferer, is cancelled. In this way the interferer is nulled
and the signal-to-interference ratio (SIR) is improved. Figure 2.9 presents
a beamforming system which is able to perform interference nulling. The
gain blocks in Figure 2.9 are used to cancel a Butler beam.

It is also desired to improve the sensitivity of the array in the direction of
the signal to be received. In other words, the beamforming function should
also improve the signal-to-noise ratio (SNR).
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A1
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Butler

Matrix
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1/0

1/0

1/0

1/0

1R

2L

2R

1L

Figure 2.9: Beamforming system to perform interference nulling.

The next chapter describes a beamforming algorithm which performs inter-
ference nulling (i.e. SIR improvement) and directivity (SNR improvement).
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Chapter 3

Beamforming Algorithm

As mentioned in section 2.8, the beamforming system should perform two
functions:

1. Interference Nulling

2. Signal-to-Noise optimization

As explained in the previous chapter, interferers can be nulled by cancelling
a Butler beam and summing the other Butler beams. By applying a phase
shift to the other beams, such that they coherently add up, the SNR can be
improved according to the principle of a phased array. In order to perform
both functions, i.e. SIR & SNR optimization, a beamforming algorithm is
used.

First, the complex weights, for the SIR & SNR optimized beamforming
algorithm, are mathematically derived. Secondly, these complex weights are
decomposed into magnitudes and phases, which are consecutive applied to
the Butler beams.

3.1 Howells-Applebaum Algorithm

The Howells-Applebaum algorithm performs signal-to-noise optimization
[Mailloux, 2005, p. 160]. This algorithm uses a so-called Quiescent Steering
Vector. ’Quiescent’ refers to the case that no interferers are present, such
that this vector describes the complex weights, which are responsible for
steering the main beam to receive some desired signal at angle θ0.

From Figure 1.2b it can be observed that the main beam peaks at θ = 0 ◦.
Due to the fact that sin(0 ◦) = 0, the whole exponent in expression (1.1)
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Chapter 3. Beamforming Algorithm

becomes zero. A certain angle of incidence gives a phase difference between
the elements of the array. By phase shifting the element signals by the same
- but negative - amount, the array becomes most sensitive to that direction.
Therefore, to steer the main beam to a random angle, it should hold:

k0(i− 1)d sin(θ0) = 0 (3.1)

where i is the element number.

Defining a complex weight as:

wi = aie
−jφ (3.2)

Normalizing the magnitude and applying a phase shift according to (3.1):

ai =
1
K

φ = k0(i− 1)d sin(θ0)

Such that (3.2) becomes:

wi =
1
K
e−jk0(i−1)d sin(θ0) (3.3)

When expression (3.3) is multiplied with the array factor - as defined in
(1.1) - the main beam is steered to θ0. The radiation pattern P (θ) becomes:

P (θ) =
K∑
i=1

wiF (θ)

P (θ) =
K∑
i=1

wie
jk0(i−1)dsin(θ)

P (θ) =
K∑
i=1

1
K
e−jk0(i−1)d sin(θ0)ejk0(K−i)dsin(θ)

P (θ) =
K∑
i=1

1
K
ejk0(i−1)d(sin(θ)−sin(θ0))

In u-space:

P (u) =
K∑
i=1

1
K
ejk0(i−1)d(u−u0) (3.4)

So, the main beam peaks at u0.
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3.2. Synthesis of the Complex Weights
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Figure 3.1: Quiescent beam pattern with main beam at u = 0.6.

When written in vector form, expression (3.3) is known as the - already
mentioned - quiescent steering vector (QSV). According to the Howells-
Applebaum method [Mailloux, 2005, p. 163], the SIR is maximized by using
complex weights to move one of the natural pattern nulls to the position
of the interferer. This principle can be forced by subtracting a so-called
cancellation pattern from the quiescent beam pattern (i.e. the radiation
pattern where the main beam is steered to receive some desired signal at
angle θ0).

Figure 3.1 illustrates the quiescent beam pattern as a result of applying the
QSV for u0 = 0.6.

3.2 Synthesis of the Complex Weights

The quiescent beam pattern is the result of applying complex weights (i.e.
the QSV) to the array factor as presented by expression (3.4). In a similar
way a cancellation pattern can be synthesized. The cancellation pattern
is defined as the radiation pattern where the main beam is steered to the
position of the interferer. In order to force a null, the cancellation pattern
is normalized to the level of the side lobes of the quiescent beam pattern
at the position of the interferer. Subsequently, the (normalized) complex
weights for the cancellation pattern are subtracted from the QSV. In this
way the complex weights for the interference nulled radiation pattern are
determined.

Summarizing the above described procedure:

1. Next to the quiescent beam pattern, a second radiation pattern is used
with the main beam steered to the position of the interferer, such that
u0 = uint. This pattern is defined as the cancellation pattern.
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Chapter 3. Beamforming Algorithm

2. The cancellation pattern is normalized to the quiescent beam pattern
at the interferer position (uint).

3. The complex weights of the normalized cancellation pattern are sub-
tracted from the QSV. The resulting complex weights render the in-
terference nulled radiation pattern, such that interference nulling is
performed.

Figure 3.2 illustrates the principle for an interferer at u = −0.7.
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Figure 3.2: Synthesis of the interference nulled radiation pattern (in green).
Main beam steered to u = 0.6. Null created at u = −0.7.

Defining the Interference Steering Vector (ISV), being the complex weights
for the cancellation pattern and the QSV as:

QSV =
1
K
e−jk0Mdu0

ISV =
1
K
e−jk0Mduint

where
M =

[
0 1 2 (K − 1)

]T
In order to normalize the cancellation pattern to the level of the side lobes of
the quiescent beam pattern (as depicted in Figure 3.2), the ISV should be
normalized. That is, the complex value of the cancellation pattern should
become equal to the complex value of the quiescent beam pattern at the
position of the interferer, i.e. P (uint). When both patterns are equal at the
position of the interferer and their complex weights (i.e. QSV & ISV) are
subtracted from each other, a null is created.

The complex weight, as defined by expression (3.3), already normalizes the
magnitude of the radiation pattern, such that the main beam peaks to 0 dB
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3.3. 2-Step Beamforming

(i.e. 1). This is convenient in order to obtain the same complex value
for both patterns at the interferer position. The quiescent beam pattern,
evaluated at the position of the interferer (uint) is:

P (uint) =
K∑
i=1

1
K
ejk0(i−1)d(uint−u0) (3.5)

Thus P (uint) provides the normalization factor, such that the complex
weights (W) for the interference nulled radiation pattern become:

W = QSV− P (uint)ISV (3.6)

As a result, the interference nulled radiation pattern becomes:

P (u) =
K∑
i=1

Wie
jk0(i−1)du (3.7)

The interference nulled beamforming algorithm performs SNR optimization
by steering the main beam to the direction where the wanted signal is to be
received and performs SIR optimization by forcing a null via a subtraction
of complex weights.

3.3 2-Step Beamforming

In Chapter 2 is described how interference nulling is performed by cancelling
a Butler beam. The previous section described a beamforming algorithm
which also performs interference nulling. What is the relation between the
principle of interference nulling as defined in Chapter 2 and the above de-
scribed beamforming algorithm?

The principle of interference nulling only gives SIR optimization, while the
previously discussed beamforming algorithm performs both SIR and SNR
optimization. Consequently, beam cancellation can be considered a subset
(i.e. only SIR optimization) of the beamforming algorithm. However, the
principle of beam cancellation can be used for beam weighting. When the
Butler beams are weighted, the magnitudes of the complex weights - as
determined by the algorithm (see section 3.2) - can be synthesized.

3.3.1 Beam Weighting

In order to obtain the magnitude weights for the Butler beams, these weights
have to be solved, using:
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1. The Butler matrix.

2. The complex weights determined by the algorithm, i.e. W (3.6).

That is, a system of linear equations has to be solved. According to (3.7),
the wanted interference nulled radiation pattern is:

P (u) =
K∑
i=1

WiAi (3.8)

where
Ai = ejk0(i−1)du

So, in order to synthesize the magnitudes of W, the Butler beams have to
be weighted. Defining a column vector C and using expression (2.10), the
wanted interference nulled radiation pattern can be written as:

P (u) = CT


1R
2L
2R
1L

 (3.9)

Equating expressions (3.8) & (3.9), such that the pattern to be synthesized
with weighted Butler beams equals the wanted pattern:

CT


1R
2L
2R
1L

 = (W∗)TA (3.10)

Recall that the Butler beams are the result of multiplying the Butler matrix
(B) with the element signals (A), as derived at (2.10):

CTBA = (W∗)TA (3.11)

CTB = (W∗)T (3.12)

In expression (3.12) a matrix equation of the form Ax=b may be recognized.
From (3.12), the solution vector C can be solved:

CT = (W∗)TB−1 (3.13)

Expression (3.13) defines the complex weights for the Butler beams, of which
the magnitudes are:

ai = |Ci| =
√
<(Ci)2 + =(Ci)2 (3.14)
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3.3. 2-Step Beamforming

When the Butler beams are shifted (i.e. rotating the matrix), such that
one of the beams points into the direction of an interferer, one element of
|C| is always zero. Consequently the Butler beam is cancelled and thus
the interferer, just like the principle of interference nulling as introduced in
Chapter 2.

Solving the linear system as presented by (3.12), not only results the weighted
magnitudes for the Butler beams, but a whole new set of complex weights.
Consequently, also phase shifts are introduced. This implies a new system
function, i.e. phase shifting.

3.3.2 SNR Optimization

According to equation (3.12), a phase shifting function should be added to
the beamforming system in order to synthesize the complex weights (C)
using orthogonal (i.e. Butler) beams.

ϕi = arg(Ci) = arctan
(
=(Ci)
<(Ci)

)
(3.15)

Therefore, beamforming is performed in two steps. In the first step the
Butler matrix is rotated such that one of the beams captures an interferer.
When the beams are weighted according to expression (3.14), interference
nulling is performed.

The function of the second step is to improve the SNR. This is achieved by
phase shifting the Butler beams in a way that they coherently add up, just
like the principle operation of a phased array. Figure 3.3 illustrates the total
interference nulled beamforming system.
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Butler

Matrix

BFN

a1

a2

a3

a4

Σ
P

Step 1 Step 2

φ1

φ2

φ3

φ4

Figure 3.3: 2-step interference nulled beamforming system.
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Chapter 3. Beamforming Algorithm

When the complex weights of the Butler matrix (ejφ) and the magnitude
weights (ai) are quantized (i.e. limited in resolution), the phase shifters also
improve the SIR. In contrast to a phased array, the proposed beamform-
ing system in Figure 3.3 performs interference nulling prior to the phase
shifters. In this way the nulling requirements, in terms of resolution, for
the phase shifters are relaxed. So the phase shifters not only perform SNR
optimization, but also SIR optimization.
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Chapter 4

Beamforming Platform

In this chapter the functions of the beamforming system are reviewed. In ad-
dition, an existing platform is introduced which is suitable for implementing
the beamforming system.

4.1 System Functions

As illustrated in Figure 3.3, the radiation pattern of the proposed beam-
forming system can be written as:

P (θ) =
K∑
i=1

aie
jϕiB ·Ai(θ) (4.1)

As becomes clear from expression (4.1), the elements of the beamforming
system are easily recognized:

• Butler matrix B

• Magnitude weights a, i.e. |C|

• Phase weights ϕ, i.e. arg(C)

• Summation of the antenna signals

As exemplified in section 1.4, a phase-shifting function - which is typical for
a phased array - by means of a vector modulator, can be implemented via
a combination of resistors and an Op-Amp. Thus, the complex weights of
a phased array can be implemented using resistors and Op-Amps. However,
the magnitude weights should also be implemented using a combination of
Op-Amps & resistors.
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Chapter 4. Beamforming Platform

Part of this work is to examine if the above listed functionalities can be
implemented in a similar way. In other words:

How can these functions be mapped to a circuit level implementation?

Apart from a single antenna input, the receiver - as reported in [Ru et al.,
2009] - provides the hardware for a potential implementation, and thus can
serve as a platform for the proposed beamforming system. This front-end is
shown in Figure 4.1.
Chapter 5   Downconversion Techniques Robust to Out-of-Band Interference 
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Figure 5.4   Block diagram of the chip implementing  
the 2-stage polyphase HR and the low-pass blocker filtering 

 
 

shown in (5.1). The additional more accurate HR follows in the 2nd stage, aiming to 
bring residual harmonic images below the noise floor.  

 

5.3.2   Working Principle 

We will now show how to accurately approximate 1:√2:1 via 2:3:2 and 5:7:5. A 
key point is that the output of the TIA1 stage has 8 IF-outputs with equidistant 
phases, i.e. 0° to 315° with 45° step, instead of the conventional 4 phases, i.e. 
quadrature. This enables iterative HR by adding a 2nd stage. Fig. 5.5 shows the 
weighting factor for the 8 outputs of the 1st-stage HR versus time (t) for one 
complete period of the LO (T). If we weight and sum three adjacent-phase outputs 
of the 1st-stage HR via the 2nd-stage weighting factors 5:7:5, as shown in Fig. 5.6,  

Figure 4.1: Software defined radio receiver as reported in [Ru et al., 2009].

4.2 Motivation

The main features of this front-end for beamforming purposes are:

• Low-noise transimpedance amplifier (LNTA), providing 50 Ω input
impedance and V → I conversion

• 8-phase passive mixer

• 2 transimpedance amplifier (TIA) stages

• High linearity
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4.2. Motivation

4.2.1 Mixer Array

The passive mixer array is driven by an 8-phase local oscillator (LO). The
passive mixer simply consists of NMOS switches, which perform the fre-
quency translation. In a similar way, i.e. using switches, a Butler BFN can
be constructed. Since the LO provides 8 phases, different mixer outputs can
be combined to form a Butler beam (in case of multiple antennas). Since the
mixer operates in the current domain, the down-converted & phase-shifted
signals from multiple antenna-elements are easily summed to form a Butler
beam.

4.2.2 TIA Stages

Both Op-Amp stages are configured as a transimpedance amplifier (TIA) via
resistive feedback. The transimpedance is largely defined by the feedback
resistor. The R-net in between the TIA stages serves as a weighting network
for harmonic rejection (HR).

TIA1

In the proposed platform, the first TIA stage is driven by the down-converted
LNTA current. When the transimpedance is programmable, the output
voltage (1st-stage outputs in Figure 4.1) can be adjusted. In this way a
Butler beam can be attenuated by lowering the transimpedance. Thus the
first TIA stage can be extended as implementation for the magnitude weights
(a) of the beamforming system.

TIA2

The second TIA stage performs the weighted summation of currents via a
resistor network (R-net in Figure 4.1). As introduced in Chapter 3, a phase
shifter is required in order to improve the SNR of the beamforming system.
In other words, a phase shifting function is needed to cohere the antenna
signals. When these synchronized signals sum up, the SNR is improved.
Since differential in-phase (I) and quadrature (Q) signals are present at the
input of TIA2, a phase shifter can be constructed by means of a vector
modulator. In this way the phase weights (ϕ) of the beamforming system
can be implemented. In addition, the antenna signals can be summed to
generate the radiation pattern (P ).
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Chapter 4. Beamforming Platform

4.2.3 Linearity

As becomes clear in the above sections, this architecture is well suited for
implementation of the system functions, i.e. the proposed beamforming
system. However, the most important feature of this receiver - in the context
of beamforming - is high linearity.

Especially this property fits the main goal of this work, namely interference
nulling. Because of high linearity, this front-end is highly tolerant to strong
interferers. In order to prevent clipping to the supply (which is very limited
in modern CMOS processes) voltage gain is avoided at RF. Consequently,
these blockers can be processed in the current domain from RF to IF and
subsequently be suppressed at the first TIA stage where voltage gain occurs.

Figure 4.2 presents the proposed beamforming system, utilizing the features
of the above described front-end. In Figure 4.2, n represents the number of
phase-shifted mixer outputs, which are summed in the summation network
to form a Butler beam.
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Σ

Σ
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Figure 4.2: Beamforming system mapped onto the platform.
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Chapter 5

System Model Evaluation

The previous chapter described a receiver front-end, suitable for implemen-
tation of the proposed beamforming system. This chapter evaluates the
performance of the beamforming system, subject to constraints imposed by
a circuit implementation. In order to model the circuit implementation as
shown in Figure 4.2, the complex weights of the proposed beamforming sys-
tem are quantized. In this chapter, simulations of the system model with
quantized weights are presented. It will become clear that a circuit imple-
mentation imposes constraints to the system performance.

5.1 Circuit Constraints

The proposed platform described in Chapter 4 imposes constraints, which
limit the performance. This section addresses these limitations with respect
to the (ideal) system design.

5.1.1 Butler Beamforming Network

The proposed front-end provides an 8-phase LO (1
8 duty-cycle clock) for

down conversion. These phases can also be used for the Butler BFN.
Switches, driven by different LO phases, can be used to perform phase shift-
ing. More phases enables more possible Butler matrix implementations and
hence better null steering (as explained in Chapter 2). However, dividing
the master clock signal (CLK in Figure 4.1) into more phases (e.g. 16),
will result a lower LO frequency. In that case, RF signals cannot be down
converted to baseband anymore. Therefore a maximum of 8 phases can be
used for the Butler BFN.
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Chapter 5. System Model Evaluation

5.1.2 Weight Quantization

The complex weights (C), as determined by the beamforming algorithm (see
section 3.3), should be implemented using resistors. A variable resistance
can only have a finite number of values. Thus, the complex weights (i.e.
resistors) should be quantized. Keeping a circuit implementation in mind,
realistic quantization levels are chosen. The beamforming algorithm results
magnitude weights (aq) normalized between 0 and 1 and phase weights (ϕq)
normalized between 0 ◦ and 360 ◦. Expressing the number of quantization
levels in bits (b) results:

aq =
q − 1
2b − 1

(5.1)

ϕq =
q − 0.5

2b
360 ◦ (5.2)

where
1 ≤ q ≤ 2b

Consider a phasor diagram with a phasor at 0 ◦ in the first quadrant and a
phasor at 90 ◦ in the fourth quadrant. These vectors overlap. Therefore, ϕq
has an 1

2 LSB offset from the I/Q axis.

5.2 Model Simulations

The interference nulled radiation pattern (P) is evaluated for various quan-
tization settings. Figures 5.1 - 5.3 present benchmark curves, to identify
the performance of the beamforming algorithm. In each figure, the main
beam is steered to u = 0.61, while the position of an interferer is swept
from u = −1 (endfire) to u = 0.5, i.e. 30 ◦. The blue curves represent the
magnitude of one of the Butler beams, which is maximal at the position of
the interferer. This curve can be considered the nulling performance of the
first stage in Figure 4.2. The green curves represent the total nulling per-
formance, so including phase shifting and beam summation. The red curves
represent the level of the main beam. All curves are relative to 0 dB.

5.2.1 Quantized Butler Phases

Figure 5.1 presents the nulling performance of the beamforming algorithm
as a result of constructing the Butler matrix with a limited number of LO

1This value is chosen because, for low resolutions (i.e. strong quantization), a Butler
beam does not point to u = 0.6
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5.2. Model Simulations

phases. The Butler phases are quantized to 2, 3 & 4 bits. In this way
a rotational broadside Butler (i.e. using 4 LO phases) and a rotational
standard Butler (using 8/16 LO phases) can be constructed. The algorithm
rotates the Butler matrix such that one of the beams captures the interferer.
The magnitude weights (i.e. aq) and the phase weights (i.e. ϕq) are both
quantized to 5 bit.
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(a) 2-bit Butler matrix
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(b) 3-bit Butler matrix
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(c) 4-bit Butler matrix

Figure 5.1: 2-stage nulling performance due to quantized Butler phases.

As mentioned above, the blue curve represents the nulling performance of
the first stage. More bits, i.e. more phases, means that a Butler beam can
be steered more accurately into the direction of the interferer. Figure 5.1
clearly shows that more Butler phases result more nulls (see the blue dips),
which are located at the positions of the Butler beams (see Figure 2.4). The
green curve shows a large rejection for each scenario, due to the relatively
high resolution (5 bit quantization) of aq & ϕq. The red curve is ideally 0 dB,
but shows some variation due to overall quantization. When the interferer
approaches the main beam at u = 0.6, the red curve falls off.

Simulations of the system model result the (minimum) interference rejection
figures and the main beam loss for each quantization level. Table 5.1 presents
these figures, which apply to the interval u = [−1 . . . 0.1], since from u = 0.1
the red curve starts to fall off because the interferer approaches the main
beam.

Number of quantization bits 2 bit 3 bit 4 bit
First stage rejection [dB] -10.07 -11.53 -16.04
Second stage rejection [dB] -34.02 -34.39 -35.10
Main beam loss [dB] -0.80 -0.85 -0.86

Table 5.1: Minimum rejection values due to quantized Butler phases.
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5.2.2 Quantized Magnitude Weights

In a similar way, as described in the previous section, the effect of quantizing
the magnitude weights (aq) is evaluated. Figure 5.2 presents the nulling per-
formance of the beamforming algorithm for various quantization levels. The
Butler phases are quantized to 3 bit (i.e. 8 phases) and 5 bit quantization
is used for the phase weights.
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(a) 3-bit magnitude weights
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(b) 4-bit magnitude weights
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(c) 5-bit magnitude weights

Figure 5.2: 2-stage nulling performance due to quantized magnitude weights.

The blue curves, i.e. first stage rejection, remain relatively constant. How-
ever, more bits result smoother curves due to finer quantization steps. The
total interference rejection (green curves) improves with approximately 6 dB
for each bit that is added. The ripple of the red curve becomes smaller for
each bit that is added.

Table 5.2 presents the (minimum) interference rejection figures and the main
beam loss for each quantization level. Again, the presented values in Table
5.2 apply to the interval u = [−1 . . . 0.1].

Number of quantization bits 3 bit 4 bit 5 bit
First stage rejection [dB] -11.32 -11.57 -11.53
Second stage rejection [dB] -22.39 -28.67 -34.39
Main beam loss [dB] -1.10 -0.93 -0.85

Table 5.2: Minimum rejection values due to quantized magnitude weights.

5.2.3 Quantized Phase Weights

Finally, the quantization of the phase weights (ϕq) is examined. Figure
5.3 presents the nulling performance. Both Butler phases and magnitude
weights are quantized to 3 bit.

The blue curves remain equal, while the green curves lower with approxi-
mately 6 dB for each bit that is added. Due to the interference nulling in the
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(a) 1-bit phase weights
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(b) 2-bit phase weights
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(c) 3-bit phase weights

Figure 5.3: 2-stage nulling performance due to quantized phase weights.

first stage, the (quantization) requirements for the phase weights (i.e. the
vector modulator) are heavily relaxed. Therefore, using more bits, does not
result better nulling performance. The ripple of the main beam is smoothed,
in case more bits are used.

Table 5.3 presents the (minimum) interference rejection figures and the main
beam loss for each quantization level. Once again, the values in Table 5.3
apply to the interval u = [−1 . . . 0.1].

Number of quantization bits 1 bit 2 bit 3 bit
First stage rejection [dB] -11.32 -11.32 -11.32
Second stage rejection [dB] -9.14 -14.58 -22.39
Main beam loss [dB] -1.63 -1.36 -1.10

Table 5.3: Minimum rejection values due to quantized phase weights.
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Chapter 6

Circuit Level Design

In this chapter, circuits are proposed to implement the beamforming system.
As addressed in Chapter 5, a circuit implementation imposes constraints,
in terms of performance, compared to the ideal system model. These con-
straints (i.e. quantization) serve as specification for the circuit implementa-
tion. These circuit specifications are:

• Maximal 8 LO phases for synthesizing the Butler BFN.

• 3-bit linear transimpedance setting in the first TIA stage.

• 5-bit uniform phase setting in the second TIA stage.

6.1 Beamforming Front-End

In Figure 6.1, a four-element linear array feeds the front-end, which ac-
commodates four signal paths. Each path consists of a low-noise transcon-
ductance amplifier (LNTA), providing 50 Ω input impedance and V → I
conversion. Subsequently, a passive mixer array, operating in the current
domain, performs frequency translation. Each transconductance block con-
sists of four small LNTAs, driving the mixer blocks. At IF, a summation
network constructs four Butler beams. The passive mixer array together
with the summation network, implement the Butler BFN.

The first TIA stage, with programmable transimpedance, implements the
magnitude weights (aq), weighting the Butler beams and performing I → V
conversion. Next, a programmable resistor network (weighting in-phase &
quadrature versions of each signal such that phase shifting is performed)
together with a second TIA stage (summing the antenna signals and per-
forming I → V conversion) forms a vector modulator.
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Figure 6.1: Front-end based on [Ru et al., 2009] suitable for beamforming.

Figure 6.1 shows the proposed beamforming system using 4 LO phases,
such that a broadside Butler BFN can be implemented. In a similar way
an 8-phase system can be constructed, using 8 signal paths. However, on
behalf of circuit complexity and to save simulation time, a 4-phase system
is actually implemented and simulated, in order to verify the functional
operation. Therefore, the following sections apply to the ’4-phase version’
of the proposed beamforming system.

6.2 Mixer Block

The passive mixer array in Figure 6.1 consists of 16 mixer blocks. Figure
6.2 shows such a mixer block, which is used on behalf of down conversion.
Each mixer block is driven by a separate LNTA (which has a high output
impedance), in order to prevent current flowing back, via the Butler BFN,
to other virtual grounds of the Op-Amps in the first TIA stage.
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6.3. Butler BFN

In case these mixer blocks would not be driven by separate LNTAs, an
undefined current distribution between the virtual grounds of the first TIA
stage would occur, leading to a pre-weighting of the Butler beams, which is
unwanted. In addition, noise & offset problems can arise.

CLK0

CLK90

CLK180

CLK270

OUT_0

OUT_90

OUT_180

OUT_270

IN

Figure 6.2: Passive down-conversion mixer.

Note that the phases for the Butler BFN are generated in these mixer blocks.

6.3 Butler BFN

A Butler beamformer is implemented as shown in Figure 6.3. Four of these
configurations, implement the whole Butler BFN.

Σ

A11

A21

A31

A41

1R

Figure 6.3: Implementation of a Butler beamformer.

As mentioned before, the LNTAs, driving the mixer blocks, prevent current
flowing back to other virtual grounds.
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6.4 TIA Stage

As already suggested in section 4.2.2 and described in section 6.1, the first
TIA stage in Figure 6.1 implements the magnitude weights (aq) of the beam-
forming system. To map these magnitude weights to this resistor - Op-Amp
arrangement, the feedback resistance should be made programmable. The
feedback resistance can either be a series network or a parallel network of
resistors. To obtain a linear increase in transimpedance, a series network is
a natural choice.

6.4.1 Proposed Circuit Implementation

Figure 6.4 presents the circuit implementation of magnitude weights in the
first TIA stage.

CFB

M0

P0

a0

a0

RR

M1

R

M2M7

a1a2a7

IIN

VOUT

Figure 6.4: TIA with 3-bits programmable transimpedance.

According to the circuit specifications, the transimpedance should be lin-
early adjustable and 3-bits programmable. A resistor string of 23−1 resistors
(R) is used as feedback network. Each node between two successive resistors
can be switched to virtual ground at the inverting input of the Op-Amp.
NMOS switches M1-M7 are used to set the transimpedance. M0 and (com-
plementary driven) P0, are used for setting the lowermost magnitude weight,
i.e. 0, simply by dumping the input current to ground. Only one switch
at a time can be on, since the input vector aq is thermometer coded. The
total feedback resistance is determined by the number of resistors in series.
As an example, if M2 is on, the total resistance is 2R. A feedback capacitor
(CFB) is used for 1st order low-pass filtering.
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6.4. TIA Stage

6.4.2 Transimpedance

RF input power typically ranges from -40 to -30 dBm. However, accord-
ing to [Ru et al., 2009], in-band interference can be as strong as -30 to -
20 dBm. Consider an in-band interferer of -20 dBm, i.e. 10 µW input power.
Since the LNTA stage performs a transconductance of 20 mS, i.e. 50 Ω tran-
simpedance, it can be derived what the maximum transimpedance for the
first TIA should be, in order to prevent clipping to the supply.

According to P = V 2

R , 10 µW input power results an rms voltage of approxi-
mately 22.36 mV when dissipated in a resistor of 50 Ω. Assuming a sinusoidal
input signal, this corresponds to an amplitude of 31.62 mV. Consequently
20× voltage gain (i.e. VTOP = 632 mV) can clip an in-band interferer of
-20 dBm to a 1.2 V supply, when biased at 1

2VDD (i.e. VCM = 600 mV).

6.4.3 MOST Switches

When an NMOS transistor operates in triode region, its drain current is
[Razavi, 2001, p. 17]:

ID = µnCox
W

L

[
(VGS − VTH)VDS −

1
2
V 2
DS

]
(6.1)

To let a MOS transistor operate as a switch, the device must be in deep
triode region. That is VDS << 2(VGS − VTH). Hence the quadratic term in
(6.1) can be neglected, so (6.1) becomes:

ID ≈ µnCox
W

L
[(VGS − VTH)VDS ] (6.2)

The drain current has become a linear function of the drain-source voltage,
hence the transistor operates as a linear resistor. Writing Ron = ID

VDS
results:

Ron =
1

µnCox
W
L (VGS − VTH)

(6.3)

An ideal switch has an on-resistance (Ron) of 0 Ω. To operate as a switch,
a MOS transistor should have an Ron as small as possible. According to
(6.3), a low on-resistance can be obtained by increasing the width of the
transistor (W ) or increasing the gate-source voltage (VGS). In practice,
both parameters are used to lower Ron.

Furthermore it is desired to keep Ron constant. Note the position of the
switches, i.e. M0-M7, in Figure 6.4. Consider Figure 6.5 where the positions
of a resistor and an NMOST are interchanged.
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CFB

M7R

VOUT

a7

IIN

Figure 6.5: Voltage swing modulating Ron.

The input current (IIN ) causes voltage swing at the source of M1, due to the
resistor. Consequently the gate-source voltage of M1 is modulated according
to IIN . Thereby changing Ron and hence introducing nonlinearity. In Figure
6.4 all NMOSTs have their source tied at the inverting input of the Op-Amp,
i.e. virtual ground. In this way the gate-source voltage is relative constant
and thus Ron remains relatively constant.

6.4.4 Charge Pump

In order to obtain a relatively low Ron compared to the total feedback resis-
tance, a high gate-source voltage is desired. Since the common-mode level
is half VDD, i.e. VCM = 600 mV, the gate-source voltage is limited to:

VGS = VDD − VCM = 1.2− 0.6 = 600 mV

The used NMOS transistors have a threshold voltage (VTH) of 415 mV.
Consequently, the maximum overdrive (VGS −VTH) is 185 mV, which is too
low for Ron. Therefore, a voltage higher than VDD is necessary in order
to obtain a sufficiently low Ron. A common solution is to employ a charge
pump, which can generate a voltage higher than the supply from which it
is operating. A useful introduction is given by [Pylarinos].

Figure 6.6 presents a charge pump. Note that this thesis does not focus on
charge-pump design. However, an example is presented to illustrate that
such a circuit can be used in order to obtain voltages well above the supply.

When VCLK goes low (i.e. 0 V), point A is grounded such that C1 is charged
to VDD − VTH . When VCLK goes high (i.e. VDD), the gates of M2 & M3
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Figure 6.6: Charge pump from [Baker, 2010, §18.4.1].

sense a voltage of:

VDD + VC1 = VDD + (VDD − VTH) = 2VDD − VTH

This causes M2 & M3 to turn on, so that points B & C are pulled to VDD.
When VCLK returns back to zero (i.e. VCLK =⇒ VDD), the sources of M2
& M3 swing up to 2VDD, such that CLOAD is charged to 2VDD − VTH .

The output voltage reaches 1.77 V with a 1.4 mV ripple using minimum
sized transistors and a load capacitor of 150 fF. Due to non-idealities, the
simulated output voltage is 215 mV lower than the theoretical value.

6.4.5 Bandwidth

The bandwidth of the first TIA stage is limited to 20 MHz. This should be
sufficient in order to accommodate most mobile communication standards
[Ru et al., 2009, §5.4.4]. The feedback capacitor (CFB) limits the bandwidth
for a fixed resistance according to:

B−3 dB =
1

2πRCFB
(6.4)

6.5 Vector Modulator

As concluded in section 3.3.1, a phase shift function is required for the
beamforming system. The proposed platform provides differential in-phase
(I) and quadrature (Q) signals, so that the phase shifter can be implemented
as a vector modulator (as introduced in section 1.4).
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6.5.1 Vector Modulation

Figure 6.7 presents a phasor diagram, in order to illustrate the phase shifting
function by means of vector modulation. A phasor (or phase vector) can be
defined as the sum of a horizontal component (i.e. vector I) and a vertical
component (vector Q). In Figure 6.7, the lengths of these I & Q vectors are
linearly modulated via uniform steps (denoted by ∆L). The I/Q vectors
are complementary in length, so when vector I increases by ∆L, vector Q
decreases by ∆L and vice versa.

Magnitude

Error

I

Q

ΔL

0°180°

90°

270°

Figure 6.7: Phasor Diagram with linear modulated I & Q vectors.

As becomes clear from Figure 6.7, using uniform steps (i.e. weights) for
the I & Q vectors, results into a magnitude error (i.e. a deviation from
the unit circle). This error is undesired, since the contributions of each
signal path in the front-end of Figure 6.1 need to be properly summed, in
order to render the correct radiation pattern. Figure 6.8 presents a phasor
diagram illustrating a proper vector modulator function, which is described
by Euler’s formula:

ejϕ = cos(ϕ) + j sin(ϕ) (6.5)

0° 22.5° 45° 90°67.5°

I

Q

Figure 6.8: Phasors corresponding to a uniform phase step.
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6.5. Vector Modulator

In Figure 6.8, the length of the Q vector is modulated according to the sine
function. Likewise, the length of the I vector is modulated according to the
cosine function (not illustrated). So, the horizontal & vertical components
of the phasors are modulated by sinusoidal steps. In other words:

A uniform phase step requires non-uniform weights for the I & Q vectors.

This property of a vector modulator was already presented in [Soer et al.,
2011], where the weights, modulating the lengths of the I/Q vectors, approx-
imate the sine/cosine curves via a switched-capacitor charge distribution
network. In this work the idea, as introduced in section 1.4, is to imple-
ment the weights via resistors. According to the circuit specifications, the
vector modulator should have a 5-bit uniform phase setting (for comparison
purposes).

6.5.2 Synthesis of the Weights

To obtain the result of (6.5), the I & Q vectors have to be weighted according
to the cosine & sine functions respectively. As shown in Figure 6.1, the
vector modulator senses (differential) in-phase & quadrature components of
the output voltage of the first TIA stage, i.e. VI & VQ. Since currents need
to be summed at the virtual ground of the second TIA stage, VI & VQ need
to be weighted by resistors, which perform V → I conversion, writing:

I =
VI
RI

+
VQ
RQ

(6.6)

In order to describe RI & RQ, a resistor R0 is defined:

RI =
R0

cos(ϕ)
(6.7a)

RQ =
R0

sin(ϕ)
(6.7b)

Such that (6.6) becomes:

I =
VI
R0

cos(ϕ) +
VQ
R0

sin(ϕ) (6.8)

Since V → I conversion is performed, i.e. conductance, the inverse of R0

can be considered the length of the phasor:

1
R0

=

√(
1
RI

)2

+
(

1
RQ

)2

(6.9)
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Using (6.7) and a value of 1207 Ω1 for R0, gives the values for RI & RQ,
which are listed in Table 6.1:

R0 = 1207 Ω RI [Ω] RQ[Ω]
5.625 ◦ 1213 12315

16.875 ◦ 1261 4158
28.125 ◦ 1369 2561
39.375 ◦ 1562 1903
50.625 ◦ 1903 1562
61.875 ◦ 2561 1369
73.125 ◦ 4158 1261
84.375 ◦ 12315 1213

Table 6.1: Resistor values for RI & RQ weighting the I/Q signals.

6.5.3 Implementation of the Weights

In order to implement the I & Q resistors, their values as presented by Table
6.1 have to be round off. It is assumed that the maximum difference between
the smallest and the largest resistance is 6 bit (i.e. 64×). A numerical
analysis (using Matlab) is performed in order to find a resistor value R, of
which integer multiples approximate the resistor values listed in Table 6.1
with minimal deviation. The analysis results that multiples of R = 116 Ω
yields, on average, the smallest deviation.

Table 6.2 presents the (rounded) values for RI2, using a resistance of 116 Ω.

R = 116 Ω n nR[Ω] RI [Ω] Abs. Error [Ω] Rel. Error [%]
5.625 ◦ 10 1160 1213 53 4.37

16.875 ◦ 11 1276 1261 15 1.19
28.125 ◦ 12 1392 1369 23 1.68
39.375 ◦ 13 1508 1562 54 3.46
50.625 ◦ 16 1856 1903 47 2.47
61.875 ◦ 22 2552 2561 9 0.35
73.125 ◦ 36 4176 4158 18 0.43
84.375 ◦ 100 11600 12315 715 5.81

Table 6.2: Rounded resistor values of RI .

1The value of 1207 Ω would appear strange. When following a slightly different design
procedure, as presented in this section, this value was numerically convenient.

2RQ is not included in Table 6.2, because RI & RQ are complementary.
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6.5. Vector Modulator

6.5.4 Proposed Vector Modulator Implementation

The first TIA stage in Figure 6.1, provides voltage outputs. Using resistors
to perform V → I conversion, the quadrature vectors (i.e. I/Q currents) are
weighted and subsequently summed to obtain the desired phase shift.

Figure 6.9 presents the circuit implementation of the vector modulator.

VI

x7x1x0

y0 y1 y7

VQ

RFB

10R R 64R

10R R 64R

VOUT

Figure 6.9: Circuit implementation of the vector modulator.

The entire resistor ladder is illustrated in Figure 6.10, synthesizing the values
for RI . Note that the total resistance accumulates to 100 · 116 = 11600 Ω.

VI

10R R 64RR R 3R 6R 14R

Figure 6.10: Resistor ladder.
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Chapter 7

Simulation Results

The circuits, as proposed in Chapter 6, are simulated using SpectreRF.
These circuits are not optimized to meet a specific design parameter, such
as noise, power consumption, etc. The circuits are simulated in order to ver-
ify the functional operation of the proposed implementation. This chapter
first describes the simulation setup. Subsequent sections present simula-
tion results of the effects of non-linearity; the performance of the vector
modulator and finally the interferer rejection.

7.1 Simulation Setup

In Figure 6.1, the transconductance of each of the 16 small LNTAs is set to
5 mS. Since 4 of these LNTA currents are summed (to form a Butler beam),
an equivalent transconductance of 20 mS is observed, i.e. 1× current gain
in a 50 Ω system.

A quad-phase 25 % duty-cycle non-overlapping clock signal is used as local
oscillator (LO). The LO signal is used for down conversion. In addition, the
LO provides the phases for the Butler BFN. The specifications of the LO
are listed in Table 7.1.

Period 1.25 ns
Frequency 800 MHz
Duty-cycle 25 %
Rise-time 50 ps
Fall-time 50 ps
Series resistance 10 Ω

Table 7.1: Specifications of the LO.
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Switches are used for the:

• Butler BFN, i.e. the passive mixer blocks.

• Gain (i.e. transimpedance) setting in the first TIA stage.

• Phase setting in the vector modulator.

The switches are implemented using NMOS transistors, with bulk tied to
source to avoid body effect. Table 7.2 presents the device properties:

Width 60 µm
Length 0.06 µm
Fold 60
On resistance 8 Ω
Bulk-Source voltage 0 V

Table 7.2: Device properties of an NMOST.

7.2 Gain Compression

Since voltage gain is avoided at RF, the gain compression of the first TIA
stage is an important measure to indicate what power level can be pro-
cessed. Therefore, the 1 dB compression point (CP) is a suitable figure to
characterize the linearity of the front-end.

Consider the case that a strong interferer is fully captured in one Butler
beam. In that case, all interference current is processed over one path of
the receiver. In order to null this interferer, the gain setting (i.e. the
transimpedance) of the involved TIA stage is set to the lowest value (a0).
As shown in Figure 6.4, this implies that the interference current is simply
dumped to ground.

However, it could occur that the interferer is not fully captured by a Butler
beam, but for about 95 %. In that case, the beamforming algorithm will
result a magnitude weight unequal to zero, for the involved TIA stage. So,
not the lowest gain setting (a0), but one setting higher (i.e. a1) is used.
In this case, still a considerable amount of (interference) current has to be
processed by the involved TIA stage.

An interferer located at u = 0.04, is such a case. The algorithm results gain
setting a1 for the center beam. This can be considered a worst-case scenario
in terms of gain compression. Figure 7.1a presents the compression curve
for this scenario, resulting a 1 dB, input-referred CP of -8.34 dBm. The 1 dB
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output-referred CP is -8.65 dBm. When the Op-Amp cannot sink/source
the input current, due to a low feedback resistance, internal clipping can
occur. This is probably the case when setting a0.

Figure 7.1b presents the compression curve in case of no interference, such
that all signals can be processed with maximum gain. The simulation yields
a 1 dB, input-referred CP of -8.81 dBm and a 1 dB output-referred CP of
6.69 dBm.
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(a) Transimpedance setting a1
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(b) Transimpedance setting a7

Figure 7.1: Compression curves for 2 transimpedance settings.

7.3 Third-Order Intermodulation Distortion

Intermodulation (IM) products limit the linearity of the implemented beam-
forming system. The linearity of the proposed circuits is examined by sim-
ulating the third-order intercept point (IP3). A circuit simulation of the
implemented broadside Butler BFN, demonstrates an input-referred third-
order intercept point (IIP3) of 26.83 dBm. This high IIP3 is due to high
linearity offered by passive mixers [Ru et al., 2009]. The first TIA stage is
linearized by negative feedback and demonstrates an IIP3 of 11.98 dBm. The
Butler BFN together with the first TIA stage show an IIP3 of -1.06 dBm.
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(a) IP3 Butler BFN
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(b) IP3 First TIA Stage
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(c) IP3 Butler BFN & TIA1

Figure 7.2: IP3 plots.
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7.4 Vector Modulator

Figure 7.3 presents the phase shifts provided by the vector modulator. For
higher frequencies, the curves start to bend. This can be viewed as a rotation
of the constellation points in a phasor diagram. Though, the relative phase
difference, between two successive phase settings, remains constant. This is
more clearly seen, when the phases are plotted on a linear frequency scale.
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Figure 7.3: Phase shifts provided by the vector modulator.

Figure 7.4 presents the phase and magnitude errors of the vector modulator.
These errors are the result of quantization. Simulations result an RMS phase
error of 0.32 ◦ and an RMS magnitude error of 0.22 dB.
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(b) Vector modulator magnitude error

Figure 7.4: Phase & magnitude errors due to quantization.
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7.5 Nulling Performance

In order to verify the nulling performance of the implemented beamforming
system, two scenarios are examined, i.e.:

• Worst-case interference rejection after the 1st TIA stage.

• Worst-case interference rejection after the 2nd TIA stage (i.e. the
vector modulator).

The beamforming algorithm provides the interferer position and the corre-
sponding rejection for each cases, which are summarized in table 7.3.

TIA stage Interferer position Rejection [dB]
1st u = -0.86 9.22
2nd u = -0.37 22.02

Table 7.3: Worst-case rejections determined by the algorithm.

Figure 7.5 presents the weighted Butler beams, in case an interferer is located
at u = −0.86. The Butler beam, which is maximal at this position, serves as
a measure for the SIR improvement. From Figure 7.5, it follows that beam
1R (in blue), which is shifted to u = −1 to approach the interferer, has the
largest magnitude at u = −0.86. The SpectreRF simulation results a SIR
improvement of 7.36 dB.
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Figure 7.5: 1st stage worst-case rejection, uint = −0.86.
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Note that the main beam (in cyan) in Figure 7.5, does not peak to 0 dB.
This is due to the maximal quantization value, which is set to 0.875. Con-
sequently, the main beam peaks to:

0 dB− 20 log
(

1
0.875

)
= −1.16 dB

Figure 7.6 presents the interference nulled radiation pattern, i.e. the rejec-
tion after the vector modulator. At u = −0.37, a rejection of 17.56 dB is
observed.
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Figure 7.6: 2nd stage worst-case rejection, uint = −0.37.

7.6 A Word about Noise

As mentioned before, the proposed circuits are not optimized for noise. If
only the Butler BFN, the first TIA stage and the vector modulator are
considered, the largest contributor of noise is the vector modulator. This is
because the weighting network of the vector modulator consists of resistors,
which add a noise voltage to the input voltage. Since noise power (V 2

n =
4kTR) linearly increases with resistance, high impedance levels yield major
noise contributions.

7.7 Power Consumption

The implemented beamforming system draws 39.61 mW from a 1.2 V sup-
ply.
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Chapter 8

Conclusions

• The beams of a Butler Matrix beamforming network (BFN) can be
used to ’capture’ and reject an interferer. A beamforming algorithm,
utilizing these Butler beams, can be used to solve the complex weights,
which yield a SIR & SNR improved radiation pattern.

• Evaluations of the system model show, that forcing a null at different
angular positions, results a small loss of gain for the main beam.

• A passive down-conversion mixer, driven by a non-overlapping 25 %
duty-cycle clock signal, can be used to implement a Broadside Butler
BFN. When the passive mixer operates in the current domain, the
phase-shifted & and down-converted signals can be summed at the
virtual ground of a transimpedance amplifier (TIA) stage, to form a
Butler beam.

• A circuit implementation based on Op-Amps & resistors is suitable
for synthesizing the complex weights of a linear array antenna. The
magnitudes and phases of these complex weights can be separately
implemented over two TIA stages, such that an orthogonal mapping
of complex weights to a circuit implementation is possible.

• A TIA stage can be used to implement the magnitude weights, weight-
ing the Butler beams in order to provide a first-stage interference re-
jection.

• A vector modulator can be constructed using NMOS switches, resis-
tors and an Op-Amp in order to implement a phase shifter. Circuit
simulations demonstrate an RMS phase error of 0.32 ◦ and an RMS
magnitude error of 0.22 dB, due to the quantization of the used resis-
tor.

55



Chapter 8. Conclusions

• Circuit simulations demonstrate a first-stage interferer rejection of
7.36 dB (worst-case). A second stage demonstrates a worst-case re-
jection of 17.56 dB. System model and circuit simulations show good
correspondence.

• The number of phases, used for the Butler BFN, and the number of
quantization bits dictate the nulling performance. For low resolutions
(i.e. large quantization steps), process spread and device mismatch
are of less concern, since the used quantization steps are larger than
these variations.
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Chapter 9

Recommendations

• Consider the case that the TIA goes into compression and the out-
put voltage does not clip to the supply. It could be investigated if a
larger current drive of the Op-Amp can avoid compression. In addi-
tion, it can be investigated if the linearity of the used Op-Amp can
be improved, or that another design yields better results in terms of
linearity/compression.

• The way in which quantization is applied to the magnitude weights,
can be investigated. In this work, a uniform distribution of quantiza-
tion levels is used, for linear gain setting. However, the beamforming
algorithm rarely results magnitude weights a3, a4&a5, i.e. the center
values. It could be that these values can be omitted, such that more
quantization levels can be used for the higher & lower gain settings,
using the same number of bits.

• Consider the case that the first TIA stage provides a minimum rejec-
tion of 30 dB (using more phases for the Butler BFN & more bits for
the magnitude weights), such that a 0 dBm interferer is attenuated to
the signal level. In that case, an analog-to-digital converter (ADC)
can be placed directly after the TIA stage, such that phase shifting &
beam summation can be performed in the digital domain.
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