
ASSEMBLER
A BGP-COMPATIBLE MULTIPATH

INTER-DOMAIN ROUTING

PROTOCOL

Universidad Carlos III de Madrid/University of Twente
June 2011

José Manuel Camacho Camacho

Supervisor: Francisco Valera Pintor (UC3M)
Co-Supervisor: Geert Heijenk (UT)

Contents

1 Introduction 9

2 The Border Gateway Protocol 12

3 Protocol Requirements 17

3.1 Flexible Multipath Routing . 17

3.2 BGP-Compatible Advertising Scheme . 18

3.3 Controlled Routing Table Growth . 18

3.4 Stable under Common Configurations . 19

4 Path ASSEMBLER 20

4.1 Decision Process: The K-BESTRO Algorithm 21

4.2 Route Dissemination: Path Assembling . 23

4.3 Example: An ASSEMBLER-Capable Autonomous System 25

4.3.1 Downstream Advertisement . 26

4.3.2 Upstream Advertisement . 26

5 Deployment Considerations 27

5.1 Deployments with Legacy Routers . 27

5.2 Multipath Routing Policies . 28

5.3 Enhanced Traffic Engineering . 28

6 Stability Analysis 30

5
Contents

6.0.1 On Dispute Wheels in Unipath and Multipath Scenarios 30

6.0.2 Synchronous Model of Path ASSEMBLER 33

6.0.3 Path ASSEMBLER Convergence . 36

6.0.4 Asynchronous Convergence . 38

6.0.5 Stable Multipath Policy Guidelines 40

7 Implementation of an ASSEMBLER-Capable Router 43

7.1 The Evaluation Testbed . 44

7.2 The Control Plane . 44

7.2.1 The Standard BGP Daemon . 45

7.2.2 Path ASSEMBLER Extensions in XORP 46

7.2.3 Modifying the RIB and FEA Processes 48

7.3 The Data-Forwarding Plane . 49

7.4 Disclosed Path-Diversity . 50

8 Related Work and Conclusions 53

8.1 Conclusions . 54

8.2 Future Work . 54

Bibliography 58

Abstract

Multipath routing offers several potential advantages compared to unipath in terms of re-
sources usage, reliability and security. The idea of using several paths concurrently to send
traffic towards a destination has already been explored and deployed for cost-based routing
solutions, like those typically found in intra-domain routing. Nevertheless, in policy-based
routing scenarios, like inter-domain routing, existing multipath solutions have not been em-
braced yet, mainly because of the backwards compatibility requirements with BGP and the
impossibility of performing a global coordinated upgrade of the whole Internet.

This work presents the design and implementation of a multipath inter-domain routing
protocol that is backwards compatible with BGP and does not require any kind of inter-AS
coordinated deployment. The protocol supports the current policies of ASes and defines a
more flexible set of path selection rules to fully exploit the multipath infrastructure of an AS.

The protocol is shown to advertise multipath information consistently in regular unipath
BGP updates. In addition, the protocol stability analysis is provided to characterize its be-
havior and which policies are supported without creating oscillations.

The second part of the work presents an implementation of the protocol in a real software
router using XORP. The implementation of the protocol is combined with a multipath FIB
designed using CLICK in a testbed to carry out performance measurements of the protocol.

Chapter 1

Introduction

The provision of multiple paths between two nodes has been envisioned for many years as
a natural way to enhance communication networks. Once multiple paths are in place, nodes
can divert traffic from failed links or split load among them, achieving fast recovery [37] and
load balancing [19, 15] respectively. Those techniques should improve the reliability and the
performance of the network.

Recent contributions [36, 25, 27] point out that the usage of multipath routing can be
advantageous in inter-domain scenarios. Since most of the ASes through the Internet already
have redundant connections with their neighbors [24], by embracing multipath inter-domain
routing they could benefit from a more flexible use of their resources [35]. The reachability
information advertised through these redundant connections should provide ASes with mul-
tiple alternatives to route the traffic towards a destination. Those alternative paths could be
used simultaneously and enable the aforementioned recovery and balance techniques. Un-
fortunately, in most cases the unipath nature of the Border Gateway Protocol [28] impedes
making use of those multiple paths concurrently.

Most ASes have no choice but to rely on techniques such as prefix deaggregation [28]
or load sharing [8] to relax the constrains of BGP. Nevertheless, those techniques present
their own limitations. By deaggregating prefixes, and autonomous system can handle the
traffic corresponding to each sub-prefix differently and forward each split traffic flow through
different ASes. In the case of load balancing, the balancing is widely used in intra-domain
among equal-cost paths. Each packet, or a flow of packets (e.g. packets sharing the same
origin and destination transport addresses) are routed through the available paths. However,
with the current load sharing approach [7, 13, 15] used in BGP, the egress point for a certain
prefix can be changed periodically in terms of minutes, but it cannot be changed for each
packet or flow. The control plane of the network cannot keep up with the necessary changes
since every time a packet follows an alternative path, the control plane of BGP generates a
new BGP advertisement to avoid routing inconsistencies and loops. The generated churn in
the network makes load balancing unfeasible. In practice, only stub ASes exploit their multi-
homing connections to perform load balancing among different egress ASes, given that they
do not have to re-advertise BGP information.

The previous example shows that ASes are keen on more flexible routing configurations.
However, in spite of the potential benefits that using multipath routing can bring about in
inter-domain scenarios, so far, the lack of economic incentives to replace BGP has hindered

10 Chapter 1
Introduction

Internet-wide multipath deployments. Moreover, the latter imposes that any approach to
deploy multipath inter-domain must be BGP-compatible.

Aimed at hastening large-scale deployments, some backwards compatible solutions have
appeared in the literature in the latest years. BGP extensions such as [18, 6] provide multipath
capabilities by taking advantage of the multiple interconnections between two ASes. Those
paths have the same BGP attributes, such that every selected path can be advertised with
the same BGP update. Whereas the latter ensures backwards compatibility with BGP, the
multipath set yielded by these solutions is rather limited, e.g. traffic cannot be forwarded
across different egress ASes simultaneously even though available paths exist.

An alternative to use richer sets of multiple paths (i.e. multipath sets) is forwarding
packets among all available paths and advertise only one. That would require additional
mechanisms to detect traffic loops [37, 25] or advertise paths that may be less attractive to
legacy routers (e.g. routers advertise the longest received path [31]). Other solutions rely on a
separate protocol to incrementally request or advertise additional paths [36, 32] and they can
provide more flexible multipath configurations. Yet, they require that at least two neighbor
ASes must coordinate to deploy that type of solutions, which represents a main drawback for
those approaches.

In this work, a novel protocol for multipath inter-domain routing, ASSEMBLER, is pre-
sented. ASSEMBLER stands for AS-SEt-based Multipath BLending Routing since the pro-
tocol operation resembles a mixing of paths. It is the first inter-domain routing protocol that
features both, flexible multipath routing and backwards compatibility with BGP, without any
kind of coordination between ASes or additional protocols.

Furthermore, not only is ASSEMBLER backwards compatible with BGP, but also it ad-
heres to its philosophy. It is able to support and map to routing policies the existing business
relationships among ASes. Current routing policies, path import and export rules, and traffic
engineering techniques are supported and in some cases extended. ASSEMBLER advertise-
ments do not incur in any penalization when compared to BGP thanks to its path assembling
technique and the selection process (so-called K-Best Routing Optimizer) can be locally tuned
to cover a myriad of multipath configurations ranging from unequal AS path length multi-
path through different egress ASes to a fallback configuration that mimics exactly the BGP
behaviour.

This work is an original unpublished contribution that began with the early idea pointed
out by Dr. Alberto Garcia-Martinez suggested in [27] of exploiting prefix aggregation to de-
ploy multipath solutions compatible with BGP. The contribution of this work is the result of
a series of discussions among the main author, the supervisor and Dr. Garcia-Martinez. The
enumeration of requirements for a backwards compatible multipath inter-domain routing pro-
tocol, the evolution of the original idea to the current definition of the assembling technique,
the analysis of the implications of adding the assembling technique to BGP, analysis of in-
teroperability in mixed environments, the definition of a proof-of-concept multipath decision
process, implementation of the protocol in a state-of-the-art software router and the stability
analysis and resulting stability guidelines can be fully attributed to the main author.

The structure of the work is as follows, after reviewing briefly BGP in Chapter 2, Chapter
3 introduces the requirements that are aimed for the protocol design. The protocol itself in
presented in Chapter 4 along with an example to show the flexibility supported by ASSEM-
BLER in its configurations. A group of important deployment considerations are detailed in
Chapter 5. The stability of the protocol is proven and configuration guidelines to guarantee
stability are given in Chapter 6. Chapter 7 presents the implementation of the protocol and

11
Introduction

the validation using a virtual testbed. The work is completed with a comparison between AS-
SEMBLER and the existing multipath inter-domain proposals in the related work in Chapter
8 along with the conclusions and future work.

Chapter 2

The Border Gateway Protocol

This chapter is aimed at introducing the basics of the Border Gateway Protocol used in inter-
domain routing. The terminology and the concepts presented in this chapter are used through-
out the work to describe the multipath extensions for BGP. The Border Gateway Protocol
(hereafter BGP [28]) is the de-facto standard for advertising reachability information in the
Internet, where several independent organizations interconnect to create a large scale net-
work and profit from the exchanged traffic between end-hosts. Those organizations are the
so-called Internet Service Providers (i.e. ISPs). Each ISP runs one or more Autonomous Sys-
tems (i.e. AS) or domains, which are networks that hauls traffic according to an economic-
driven policy. The AS networks interconnect among them and exchange traffic. When the
exchanged traffic between two ASes is uneven or one of them has a better location in the
network (e.g. a main provider or tier-1), it is said that they keep a transit relation, one AS
plays the role of the provider, offering hauling service towards a destination to the other AS,
its customer. The provider charges a per-bit rate to the customer for the coursed traffic from
and to the customer network. On the other hand, when the exchanged traffic is roughly the
same or both ASes are of similar importance, the two ASes have a peering relation, they both
act as peers without charging each other.

Hence, the fact that some paths may provide larger profit than others makes that cost-
based protocols such as OSPF cannot be used in this context, since the path with lowest sum
of weights is not necessarily the most profitable. In inter-domain scenarios ISPs must define
routing policies according to their business model, such that routers select the most profitable
path for the ISP. Moreover, the advertisement of some paths may cause the ISP to incur in
extra losses for carrying undesired traffic, therefore in addition to the import policy, ISPs
must also define an export policy that states to which ASes a path must not be announced.
The BGP standard provides the necessary mechanisms to disseminate the reachability infor-
mation, techniques to implement routing policies and path attributes to enforce them. To that
extent, BGP defines for each path which attributes may be used to describe the path charac-
teristics. The attributes are used in a decision process to select the bests path according to the
policy.

The dissemination of reachability information happens in three different steps. Firstly,
one or more neighbor ASes advertise reachability information to different border routers in
the AS through external BGP (i.e. eBGP) sessions. Secondly, after the eBGP dissemination
happens between ASes, the internal BGP (i.e. iBGP) redistribution takes place, such that
every BGP router inside the AS is aware of the available paths learnt at different border

13
The Border Gateway Protocol

Adj-RIB-In Adj-RIB-Out
In

gr
es

s
Fi

lt
er

in
g

E
gr

es
s

Fi
lt
er

in
g

D
ec

is
io

n
P
ro

ce
ss

RIB

FIB

Figure 2.1: BGP Process Architecture

routers and the path selection becomes a distributed process, with every BGP router taking
a consistent decision according to all the received announcements. The decision process
carried out at each router selects the best path for that router. In some cases, a router will play
the role of egress traffic point (i.e. it has learnt its most suitable paths through eBGP) and in
others the routers will play the role of an intermediate node or an ingress point (i.e. their best
path comes from an iBGP session). The third step consists in advertising further the decision
made by each router to neighbor ASes.

The regular operation of each BGP router in the AS consists in establishing and maintain-
ing a session with other BGP routers and exchanging BGP updates with them for different
prefixes. Upon the reception of an advertisement for a prefix, the BGP router receives the path
to that prefix along with a set of values for the different BGP attributes such as preference val-
ues, the neighbor advertising the path and the ASes that the traffic will cross. BGP attributes
are rewritten by the router depending on their scope, e.g. an attribute can be meaningful to
the border router, to the entire AS, to the neighbor ASes or end-to-end.

The received paths are passed from left to right through the blocks depicted in Fig.2.1
starting at the import filter, which checks that the paths are compliant to the routing policy
and tags some of their attributes, such as the local preference. Afterwards, if multiple paths
are available for the same prefix, the decision process is carried out to select which is the
most suitable given the routing policy. Every path received from any BGP session towards the
same prefix is compared with other paths for that prefix. The selection of one path or another
depends on the attribute values assigned to each path. The paths are compared on different
attributes following the rules defined in Table 2.1, which represents the BGP decision process
[28]. The process executes rules sequentially until only one path is left within the candidate
set, i.e. the winner. Then, the winner is passed onto the Routing Information Base RIB in
order to be deployed in the FIB.

The first decision rule (the WEIGHT attribute is typically not used) is based on the LO-
CAL_PREF attribute value. The latter reflects the preference of the network administrator
for a certain path or set of paths and overrides the values of other attributes since it is the first
decision rule. According to the typical business relations between ASes mentioned above, the
paths coming from customer ASes are preferred over paths coming from peers, since the AS
relaying the traffic earns money using them. Paths from peer ASes are preferred over paths
from providers since no money is either paid or received per coursed traffic. Finally, paths
coming from providers are economically less attractive since that implies that the AS using
them pays for the coursed traffic. These preferences are mapped to numeric integer values of

14 Chapter 2
The Border Gateway Protocol

Table 2.1: BGP Decision Process
1.- Keep paths with highest LOCAL_PREF value

2.- Keep paths with shortest AS path

3.- Keep paths with lowest ORIGIN value

4.- For each advertising AS, select the path with lowest MED value

5.- If there is a remaining path with session TYPE eASSM, delete paths with
TYPE iASSM

6.- Keep paths with lowest IGP cost

7.- Keep paths with lowest BGP_ID

8.- Select the path advertised from the lowest network address

the LOCAL_PREF (e.g. 60 to a provider paths and 100 to customer paths).

Since two paths may have the same LOCAL_PREF value, e.g. two paths coming from
two different customer ASes or two path coming from the same AS but received at two differ-
ent border routers, additional rules are required to decide on one path. Before analyzing the
next rule, the AS_PATH concept must be introduced. The necessity of hiding connectivity
information consistently to avoid the economic losses as pointed out above and the scale of
the network conditioned the design of BGP to be an extension of distance vector protocols
called path vector protocols. In particular for BGP, the path vector is an AS-level represen-
tation. Each AS is assigned with a unique identifier called AS Number such that each time a
border router of an AS advertises a path outside its own AS, it appends the local AS Number
to the path. The collection of AS Numbers of ASes crossed along the path is the value of
the AS_PATH attribute. The AS_PATH is in turn formed by a collection of segments. Each
segment can be either an ordered sequence of AS Numbers, called AS_SEQUENCE or an
unordered set of AS Numbers delimited by braces, called AS_SETs. The AS_PATH length
is computed by counting the length of each AS_SEQUENCE as the number of ASes within
the sequence and the length of AS_SETs as length one.

The third rule is related to the way the reachability information is generated by the first
AS. If the advertisement was dynamically generated by redistributing intra-domain routing
information into BGP, the ORIGIN attribute gets a lower value. Otherwise (e.g. statically
configured) the ORIGIN is higher. The reason for this comes from the idea that in case
something fails, a dynamic configuration will advertised that the reachability information
formerly propagated is not valid anymore, whereas static configurations are not responsive to
network failures.

If at this point of the decision process there is more than one path available, either they
come from the same AS but from different border routers or from different ASes but having
the same AS_PATH length. In the former case, if the AS receives the same path through
different routers (exit points), it may have to satisfy the preferences of the neighbor AS. Think
for instance in the case of a customer AS advertising one path through two different BGP
sessions with the same provider, the provider should respect the preferences of its customer.

15
The Border Gateway Protocol

To that extent, some BGP attributes are used to influence the treatment received by a path in
a neighbor AS, like the multi-exit discriminator, i.e. MED. The paths coming from the same
AS and not removed until here have the same LOCAL_PREF and the same AS_PATH length.
Then, the advertising AS can suggest that it prefers to receive traffic over one path or another
by properly setting the MED value. Rule 4 removes paths coming from the same AS that are
not of minimum MED value.

Another way of influencing the decision of a neighbor AS is the use of BGP Communities,
which are designed to give an homogeneous treatment to the paths containing them (e.g.
assign a certain LOCAL_PREF value). BGP Communities are optional attributes and not
every AS support them. Typically, the actions taken over a path with a certain community
are posted publicly by provider ASes such that its customer can use them. Communities used
between peers are typically negotiated privately between the peers. BGP Communities are
processed before the decision process is executed and they do not have an specific rule in
the process, although they can influence the outcome of a certain rule by modifying the BGP
attributes of a paths.

After the preferences of the customers are processed taking into account the MED values,
the BGP router by means of Rule 5 gives preferences to paths learned from a BGP session
with a router in an external AS to paths received from an iBGP session. Otherwise, all the
routers may end up selecting an internal advertisement and loops and oscillations may occur.

Rule 6 perform what is known as hot-potato routing, this is if there are several alternatives
compliant with the routing policy of the AS, try to course the traffic towards the closest egress
point of the AS, since the traffic will stay as less time as possible and the operational costs
per bit will be the lowest. Therefore, among the multiple possibilities those with the lowest
internal cost are chosen.

The remaining decision rules do not enforce a given preference or an optimization over the
selected paths but they perform a tie-break, such that only one path is left after the decision
process. Rule 7 selects the routes coming from the BGP neighbor router with the lowest
BGP_ID exchanged in the BGP session establishment. If there is more than one path coming
from the same neighbor router (e.g. two routers have two connections in parallel) then the
path advertised from the network interface with the lowest network address is chosen, as
stated in Rule 8.

After the decision process, exporting rules are configured per BGP session. When the
router selects a certain path, there are some BGP session through which the path must not be
advertised. Regarding external connections with other BGP border routers, the router config-
uration usually follows export rules as defined in [10]. For instance, if a router selects and
eBGP path coming from a provider AS, it must advertise that path only through customers,
since the AS will pay the provider for the traffic towards that destination and the customers
are paying to the AS. Otherwise, if the AS announces to the rest of its providers it pays for
relaying the traffic to the advertising provider and it is charged by the rest of the providers
for sending traffic to it. The case in which the AS announces the path to its peers is similar
except for the fact that the AS is not charged by the peers. Paths coming from peers can be
only advertised to customers for the same reason. Only paths coming from customers can be
advertised to providers and peers.

For iBGP, the export rules are typically simpler and the most relevant is the one that
states that paths learned by means of an iBGP session must not be re-advertised through
another iBGP session. Notice that paths advertised through iBGP does not add any kind of
information about the hops that would be performed inside the AS, therefore there is no way

16 Chapter 2
The Border Gateway Protocol

to detect internal loops among iBGP speakers.

If the selected rule does not match any of the discarding egress filters, it can be advertised
through that BGP session in a BGP update message. BGP updates contains typically multiple
entries, each of them regarding a different prefix. Since BGP is designed as a unipath routing
protocol, each router is expected to select and use only one path per prefix. Therefore, two
advertisements regarding the same prefix are included in the same update (this should not
happen in practice since the routers update the information of a prefix if it has not been
advertised yet) or an update is received after another, the last information received overwrites
the previous information announced by that peer.

Finally, to conclude with this brief description of BGP, although internal scalability tech-
niques such as route reflectors, route servers and confederations are not covered in this work
and no multipath extensions are proposed to them, the multipath protocol proposed in this
work is able to co-exists (under certain conditions) with legacy BGP routers within the same
AS and interoperate with already existing multipath intra-AS solutions like BGP-AddPaths
[32].

Chapter 3

Protocol Requirements

The main goal of ASSEMBLER is to provide ASes with a backwards compatible solution for
inter-domain routing that enables multipath routing. In this chapter, the defining requirements
for ASSEMBLER are introduced prior to describing the relevant parts of the protocol in
depth. Those requirements motivate the design choices that are presented in the next chapter
and provide a clear view of the main features of the protocol. The discussion addresses the
issues of target multipath configurations, backwards compatible updates, stability and data
plane growth.

3.1 Flexible Multipath Routing

ASSEMBLER must flexibly let administrators choose the characteristics and the amount of
paths used in the routing system. The multipath protocol must feature enough flexibility to
concurrently select paths that, (1) have different next AS, (2) have different AS path length
and (3) have different internal cost. Moreover, the protocol must be able to select a subset
of the paths matching the previous conditions using a deterministic tie-break. ASSEMBLER
must empower administrators with the tools to implement such a broad range of routing
policies. In some cases, the administrator would like to provide a router with the whole set of
paths and in other cases, administrators may prefer keeping only those with certain attributes,
(e.g. shortest AS path length).

The first requirement that we impose on ASSEMBLER is that regardless how the selec-
tion process of multiple paths is tuned, the BGP winner path is always included in the multi-
path set. In addition to the BGP winner, according to criterium (1), a router can either include
paths through different egress ASes or limit the multipath set to go through the same next AS.
The criterium (2) defines if equal AS length multipath (i.e. ELMP) is enabled or additional
paths, longer than the shortest one, can be selected. Criterium (3) implies that internal equal
cost multipath routing (i.e. ECMP) is supported and additionally, the administrator can tune
how much the internal paths deviates from the hot-potato routing behaviour [30]. A strong
requirement is that ASSEMBLER must allow every AS to select the type of multipath that
they need independently from other ASes, i.e. without any type of coordination.

18 Chapter 3
Protocol Requirements

AS1

AS2 AS4

AS5

R2
R4

R6
R7

R5

150.0/16
AS10,AS9

150.0/16
AS9

AS3

160.1/16
AS30

160.1/16
AS30

7{6,10,9}

1,7{6,10,9}

1,7{6,10,9}
1,7,9

1,7,9

AS7AS6

R9
R8

7,9

7,9

7,9

Figure 3.1: Model of a transit AS with Path ASSEMBLER Routers

3.2 BGP-Compatible Advertising Scheme

ASes advertise each other reachability information by means of BGP updates. Whereas pro-
cessing regular BGP updates should not present any shortcoming for multipath routers, ad-
vertising multiple paths per network prefix in a single BGP update is not a trifle. Multipath
routers should respect the structure and the semantic of the attributes included in the updates,
such that legacy routers can keep on processing them. Concatenating multiple paths to the
BGP message is not enough, provided that the update of a path has implicit the withdrawn of
previous updates.

Therefore, ASSEMBLER must carry out some additional processing to merge informa-
tion from multiple paths and accommodate them into regular BGP updates. To that extent,
path assembling (Section 4.2), a particular case of prefix aggregation [28] seems an outstand-
ing candidate. It is a crucial requirement that generated advertisements must be representative
of the aggregated paths, such that a router (legacy or not) can perform any regular BGP pro-
cessing over the advertisement, as if the paths were announced separately. For instance, when
a router receives an announcement containing an aggregate of paths, it must be able to derive
the local preference for the aggregate or apply MED values comparison consistently. The
protocol must identify those cases in which the advertisements are not representative and do
not perform aggregation. Even for BGP, RFC4271 [28] identifies different situations where it
is not consistent to aggregate multiple prefixes due to conflicting attributes. Thus, the proto-
col must avoid those situations in which inconsistent network advertisements may be created
as a consequence of the aggregation process.

3.3 Controlled Routing Table Growth

The design must address the well known problem of the inter-domain routing table growth.
Whereas routers feature more processing and memory capacity at the control plane, the situa-
tion at the data-forwarding plane is completely different. The hardware that forwards packets
at wire-speed is expensive and its storage space constrained. The adoption of multipath does

19
3.4. Stable under Common Configurations

nothing but worsening the problem as multiple next-hops are stored per prefix. A growth in
the amount of paths selected can potentially rise issues with the limitations of the data plane.

Therefore, the protocol must be aware of those constrains and must limit the amount of
paths relayed to the data plane. The requirement for the protocol is to be able to select a
subset of k-best paths per prefix, such that the size of each routing table entry is limited.
Every path in the subset must be compliant with the routing policy and the k-best tie-break
must be deterministic.

3.4 Stable under Common Configurations

BGP has been proven to be unstable under conflicting routing policies. The existing relation
among those routing policies that cannot be fulfilled simultaneously is calleddispute-wheel
[12]. In presence of dispute-wheels BGP is not guaranteed to converge and the network may
end up in a permanent oscillation. Permanent oscillations do not happen often in practice
since routing policies are typically overruled by the business relationships among ASes. It
can be proven that when routing policies align with those relationships dispute-wheels cannot
be created.

The work in [5] presents a more abstract framework for the analysis of the stability in
policy-based routing protocols. The framework extends the concept of dispute-wheels to
reflexive policy relations. The concept of reflexive relations is more powerful in the sense that
it covers the BGP dispute-wheels and allows to extent stability results to multipath policy-
based routing protocols. ASSEMBLER must be able to converge in absence of reflexive
relations among policies. Relaying on the abstract framework in [5], the protocol must be
proven stable in those situations in which conflicting policies do not exists, specially in those
that align with business relations among ASes.

Chapter 4

Path ASSEMBLER

ASSEMBLER is a novel multipath inter-domain routing protocol inspired in the BGP prefix
aggregation to compact the multipath information. ASSEMBLER stands for AS-Set-based
Multipath BLEnding Routing, since the protocol blends the additional AS_PATHs and stores
the result in AS_SETs. ASSEMBLER keeps backwards compatibility and allows for a pro-
gressive deployment of multipath-capable routers. The specification of ASSEMBLER relies
on two main cornerstones: a multipath selection process and a BGP-compatible multipath
advertising scheme.

Fig.4.1 shows the block diagram of an ASSEMBLER process running in the control plane
of a router. There are some differences between Fig.4.1 and a BGP process diagram (see
Fig.2.1). The import policy (ingress filteringin Fig.4.1) is applied first, like in BGP. The
BGP decision process has been replaced by the multipath selection algorithm K-BESTRO
(pronounced cabestro) that stands for K-Best Routes Optimizer. K-BESTRO is presented in
detail in Section 4.1. The output of the K-BESTRO block is a set of K paths instead of a
single winner path. K-BESTRO features three parameters to tune the characteristics of the
multipath set. The parameter ELMP defines the maximum difference in AS path length be-
tween the shortest and the longest AS path. ECMP defines the difference in internal cost
among selected paths. Finally, the KBEST parameter limits the maximum size of the multi-
path set, which should be set depending on the capacity of the routing table to store prefixes
with multiple next-hops.

The paths in the multipath set are passed to the RIB in order to be installed in the
data plane (through the FIB). Afterwards, they undergo the export policy. The export pol-
icy (egress filtering) generates the same advertisement for all the peering sessions that the
router maintains. Therefore, a neighbor is either advertised or the export policy discards the
whole multipath set as soon as one path matches a filter. Otherwise, different paths could be
discarded for each peering session, generating different advertisements. Adding neighbor-
specific announcements [34] is out of the scope of this paper.

Next to the egress filtering block, there is the new block called Assembling, which is
responsible for generating the advertisements. The assembling algorithm ensures backwards
compatibility, creating special BGP announcements that can be processed by legacy routers,
do not incur in penalization when competing with regular unipath BGP announcements in the
selection process and allow multipath capable ASes to use several paths concurrently. The
algorithm takes its name from the way of constructing those announcements that resembles an

21
4.1. Decision Process: The K-BESTRO Algorithm

Adj-RIB-In Adj-RIB-Out

In
gr

es
s

Fi
lt
er

in
g

E
gr

es
s

Fi
lt
er

in
g

A
ss

em
b
lin

g

K
-B

E
ST

R
O

RIB

FIB

Figure 4.1: Path ASSEMBLER Process Architecture

assembling of pieces (e.g. AS_NUMBERs in this case). The announcement is an aggregated
version of the multipath set that cannot be distinguished from the outcome of a regular prefix
aggregation. See Section 4.2 for details about the assembling procedure for external (i.e.
eASSM) and internal (i.e. iASSM) ASSEMBLER peering sessions (eASSM/iASSM are
also used to refer BGP peering sessions, unless stated otherwise). Finally, the advertisement
containing the assembled path is propagated to the neighbor routers.

4.1 Decision Process: The K-BESTRO Algorithm

The decision process of ASSEMBLER is carried out over the set of advertisements for a
given prefix that are not discarded by the import policy. The decision rules resemble those
for BGP. Meanwhile the BGP decision process clearly has a tie-breaking character and paths
are trimmed from the set of candidates on the look out for the most suitable path. The re-
quirements regarding flexibility of K-BESTRO completely redefine its philosophy and it is
inspired in the decision process of Morpheus [33]. In the design of Morpheus, the decision
process creates a ranking of the candidate paths according to some configurable criteria rather
than discarding them. Afterwards, the set of best paths is selected, possibly according to dif-
ferent criteria, this time applied over the paths already sorted (e.g. select the first k paths in
the ranking with MED value equal to 10). Therefore, K-BESTRO can be seen as a particular
instance of a Morpheus ranking with the criteria presented in the next paragraphs. Each of
them is mapped into a phase of the algorithm depicted in Table 4.1,

The ranking criteria of K-BESTRO rank the BGP winner in first position and the rules
respect the semantic of the BGP attributes Rules 1 to 5 discard paths like a regular BGP
decision process. The BGP winner is never discarded by those rules and rules 6.a-d give
higher ranks following the order used by BGP to tie-break the paths. Therefore the BGP
winner is always ranked first. Generally speaking, the algorithm must always advertise the
winner and propagate other aggregatable paths whenever possible.

In addition, in order to keep the semantic of BGP attributes and make the paths sortable,
some of them must be discarded before the remaining paths are sorted in a rank. Otherwise,
inconsistent multipath decisions can be made with respect to the semantic of the attributes.
For instance, it is not consistent that two paths with different LOCAL_PREF appear in the
final ranking or in the selected multipath set. It is not sounded either that two paths coming

22 Chapter 4
Path ASSEMBLER

from the same AS and with different MED values are simultaneously used, since the customer
is explicitly stating that it prefers one path to the other to receive the traffic.

The first phase starts with rule 1, which keeps just the paths with highest local preference.
The next step in BGP is keeping paths with shortest AS path length. Instead, K-BESTRO
considers paths that satisfy the relation AS_PATH_LENGTH <= shortest-l+ELMP, being
shortest-l the shortest AS path length value found in the candidate set and ELMP is the
parameter introduced earlier. The latter is implemented in rule 2.

The ranking criteria of K-BESTRO keep the order of the BGP rules For example, the
latter implies that the BGP AS path length rule must not be overridden by the MED rule, i.e. a
path with lower MED but longer AS path must not cause any path with shorter AS path length
to be overlooked by the algorithm. K-BESTRO ensures that every path taken into account in
the ranking honours the highest LOCAL_PREF, highest ORIGIN, lowest MED per AS and
session TYPE (i.e. eASSM or iASSM) criteria exactly as BGP does.

The second phase applies these criteria (rules 4-5). For each AS advertising a path for
the prefix, the algorithm looks for the paths of shortest length through that AS and the lowest
MED value of that path. Every path from that AS and different MED value is removed at rule
4.c. The phase is completed by leaving paths only from one session TYPE. If there is a path
from an external session, i.e. eASSM, paths with session TYPE iASSM are removed (rule
5). This is needed to avoid that two border routers try to course traffic through the external
path of the other (see [28] for further details).

The final ranking of paths must be performed over monotonically increasing and bounded
attribute values Applying rules 1-5 leads to consistent results regarding the selected mul-
tipath set. Once the considered paths are compliant with those rules, the ranking can be
performed upon the remaining attributes without violating the specified routing policy and
the order of BGP rules. For example, two paths with equal preference, origin and coming
from different ASes, can be ranked according to their AS path length without creating any
inconsistency.

The algorithm executes the third phase (rule 6) and ranks the paths according to the cri-
terium of shortest AS_PATH_LENGTH first. If a several paths in a subset draw in AS path
length, it sorts the subset from lower internal cost to higher. Within the subset, if the first
ranked path has a cost of lowest-c it removes the paths with internal cost higher than lowest-
c+ECMP, where ECMP is a parameter that can be tuned by the administrator. While either
tunnelling or IGP equal cost multipath are used inside the AS, ECMP should be equal to 0.
If at this point some paths have the same AS path length and interior cost towards the next-
hop, the paths with lower BGP_ID are ranked first. If several paths have the same BGP_ID
attribute, then the ones advertised from the interface with the lowest address are ranked first.

The K-BESTRO algorithm selects paths in order of appearance in the ranking and
selected paths are aggregatable As described at the beginning of the chapter, the selected
multipath set ends up aggregated into a single BGP advertisement. Therefore, the selected
paths must be aggregatable, otherwise the generated announcement is not representative of
the multipath set and that may lead to routing inconsistencies. RFC4271 [28] defines that
two path with different MED values should not be aggregated. This restriction only applies to
paths advertised through iBGP sessions. Similarly, only paths with the same NO_EXPORT:X
Community (i.e. do not export this path to a specific peer X) can be aggregated, since as

23
4.2. Route Dissemination: Path Assembling

mentioned above, neighbor-specific configurations are not supported by ASSEMBLER. If the
first ranked path does not include the NO_EXPORT:X community for any peer, the algorithm
should overlook other paths in the ranking including any NO_EXPORT:X community when
selecting the multipath set.

This last criteria is implemented in the fourth phase (rules 7-10) is executed. The param-
eter KBEST is defined by the administrator and limits the maximum size of the multipath
set. The fourth phase takes care of selecting a maximum of KBEST paths that can be ag-
gregated and advertised together. According to the previous paragraph, if the first ranked
path is tagged with the BGP Community NO_EXPORT:X, then the multipath set contains
only the first KBEST ranked paths with the same community. Otherwise, paths with any
NO_EXPORT:X community are deleted from the rank to avoid aggregation conflicts. There-
after, if the ranked paths come from an iASSM session, then select the first KBEST paths in
the ranking. Else if they come from eASSM sessions, select the first ranked KBEST paths
coming from the same AS and with the same MED value as the first ranked path, as stated in
RFC4271.

The algorithm finishes relaying the set of KBEST paths to the egress filtering block that
implements the export policy.

4.2 Route Dissemination: Path Assembling

The decision process constructs a multipath set compliant with the preferences of the admin-
istrator. The multipath set must be advertised to every neighboring AS with an established
peering session. Advertising an array of paths for each network prefix is not supported by
BGP. The algorithm presented in this section is applied to the set of paths to embed the mul-
tipath information into a single BGP advertisement.

The algorithm follows the philosophy used in prefix aggregation to compact the multipath
information. Prefix aggregation defined in [28] defines how the attributes of two advertise-
ments can be combined under some conditions, such that two contiguous prefixes propagated
within each advertisement can be combined into a larger prefix and advertised in a single
BGP update message. The attributes of the new message are the result of aggregating those
in the two advertisements. Our path assembling can be understood as the aggregation of
several advertisements carrying the same prefix.

Besides other attributes like the NEXT-HOP or the ORIGIN, of special interest is the
AS_PATH attribute aggregation. When two contiguous prefixes are aggregated, it is neces-
sary to keep the AS_PATH information to maintain path loop-freeness. In [28] the minimum
requirements for the path aggregation algorithm are specified. Any algorithm compliant with
those minimum specifications can safely combine the AS_PATH information from several
announcements. The algorithm used by ASSEMBLER meets the minimum requirements
of [28] and creates an AS_PATH following the most commonly found format in current
routing tables. Data sets collected at some Internet vantage points [23, 24] brings out that
recorded aggregations construct always an AS_PATH with an AS_SEQUENCE followed by
an AS_SET. For example, the aggregate of paths P = 1, 2, 3, 5 and Q = 2, 3, 4, 5 should
look like A = 2, 3, {1, 4, 5}.

In addition, the algorithm tries to be consistent in the assembling and keep meaningful
information. For example, it creates AS_PATHs whose length is equal to the path length

24 Chapter 4
Path ASSEMBLER

Table 4.1: K-BESTRO Algorithm
1.- Keep paths with highest LOCAL_PREF value

2.- Look for the shortest AS path, store the length in shortest-l and keep paths
with AS_PATH_LENGTH<=shortest-l+ELMP.

3.- Keep paths with lowest ORIGIN value

4.- For each advertising AS,

4.a.-Look for the subset of paths with lowest AS path length

4.b.-Select the lowest MED value in that subset

4.c.-Delete the paths from that AS with different MED value

5.- If there is a remaining path with session TYPE eASSM, delete paths with
TYPE iASSM

6.- Rank the paths according to,

6.a.-Paths with shortest AS_PATH_LENGTH go first

6.b.-If a subset paths have the same length, paths with lowest internal cost goes
first
Discard paths within the subset with internal cost>lowest-cost+ECMP
(Default ECMP=0)

6.c.-If equal cost, lowest BGP_ID goes first

6.d.-If same BGP_ID, lowest peer address goes first

7.- If the first ranked path has the NO_EXPORT:X Community,

7.a.-Then select only the first KBEST ranked path with the same
NO_EXPORT:X Community

7.b.-Else, delete paths with any NO_EXPORT:X Community

8.- If the ranked paths have session TYPE iASSM, select the first KBEST
paths

9.- Else if the ranked paths have session TYPE eASSM, select the first
KBEST paths from the same AS and MED value as the first ranked path

10.- Return the selection. K-BESTRO ENDs

BGP would advertise. Thus, using assembling neither represents a penalty nor an advantage
to multipath nodes, what we believe is fair. Moreover, the algorithm also preserves the last
AS added to the AS_PATH as it is consider meaningful in some policies (e.g. neighboring AS
filtering). The algorithm does not preserve the position of the origin AS, given that typically
ASes rely on RIRs to check the origin and ASes included in an advertisement [22].

25
4.2. Route Dissemination: Path Assembling

Table 4.2: Assembling Algorithm
1.- Create an empty AS_SEQUENCE and AS_SET.

2.- Pick up the shortest path from the multipath set and initialize shortest to
its AS_PATH_LENGTH.

3.- Copy the most to the left AS_NUMBER of the shortest path into the
AS_SEQUENCE.

4.- Keep parsing the AS_NUMBERs in the shortest path (if repeated, process
it only once): Check its presence in other paths in the set.

4.a.-If present in all paths and after AS_NUMBERs already in the
AS_SEQUENCE, concatenate it to the AS_SEQUENCE.

4.b.-Else add it to the AS_SET

5.- Append the AS_SET at the end of the AS_SEQUENCE to create the
AS_PATH.

6.- For each remaining path, parse every AS_NUMBER. If the number has
not been previously added to the AS_PATH, add it to the AS_SET.

7.- Compare the length of the resulting path, if longer than shortest run 7.a,
otherwise run 7.b,

7.a.-Starting from the most to the right AS_NUMBER in the AS_SEQUENCE,
move as many AS_NUMBERs into the AS_SET until the path length is
equal to shortest.

7.b.-Append at the beginning of the AS_SEQUENCE the most to the left
AS_NUMBER as many times as needed until the path length is equal to
shortest.

8.- If the assembled path is advertised through an iASSM sessions run 8.a, run
8.b otherwise,

8.a.-Return the resulting AS_PATH

8.b.-Append the local AS_NUMBER at the beginning of the path and return
the resulting AS_PATH

The algorithm is displayed in Table 4.2. The AS_SEQUENCE is constructed with the
AS_NUMBERs common to all the paths in the multipath set as suggested in RFC4271. The
order between AS_NUMBERs is kept. If two AS_NUMBERs X and Y appear always one af-
ter the other in every path (even though some AS_NUMBERs may appear in the middle), they
are said to be in order (rule 4.a). If two ASes, common to all paths, are not in order, then the
second in appearance within the shortest path is put in the AS_SET (rule 4.b). The assembled
AS_PATH is the result of concatenating the AS_SET at the end of the AS_SEQUENCE (rule
5). The remaining AS_NUMBERs not common to every path are added to the AS_SET (rule
6). Afterwards, rules 7.a-b check that the AS_PATH_LENGTH of the resulting AS_PATH is
exactly the same as the shortest path in the multipath set. Rules 8.a-b deal with the fact that
the local AS_NUMBER is not added to the advertisements until it is propagated to a peering
router outside the AS.

26 Chapter 4
Path ASSEMBLER

4.3 Example: An ASSEMBLER-Capable Autonomous Sys-
tem

This example refers always to the AS depicted in Fig.3.1. The figure represents a transit AS
(AS1) with three customers (AS2,AS3,AS4), one peer (AS5) and two providers (AS6 and
AS7) connected to AS1 by means of ASSEMBLER-capable routers. Router (R5,R7,R9)
set (ELMP=0,ECMP=0,KBEST=1) and (R2,R4,R6,R8) aggregate the maximum number.
Routers establish a full-mesh of intra-AS peering sessions to redistribute routing informa-
tion. The example present two cases, a prefix propagated downstream from providers to
customers and another prefix propagated upstream from the customers.

4.3.1 Downstream Advertisement

In the first case, two paths are advertised to AS6 and AS7 towards 150.0/16. The paths
are propagated further and four paths reach AS1 and all of them are assigned with the same
local preference. The egress routers for the paths in AS1 are R6 and R7. The router R6
can aggregate up to three paths depending on the ELMP parameter. If ELMP=0, then only
the path from AS7 is selected according to rule 3 in Table 4.1. Otherwise, if ELMP=1 or
higher the three paths can be aggregated as depicted in the figure. The aggregated path from
R6 is constructed using the algorithm in Table 4.2. The first AS_NUMBER of the shortest
path, AS7 leads the AS_SEQUENCE. Only AS9 is common to all paths and it is aggregated
to the AS_SEQUENCE, as well. The remaining ASes are added to the AS_SET, AS6 and
AS10. The length of the aggregated path is checked and it is 3 where it should be 2, therefore
AS9 is moved into the AS_SET to compensate the length. Finally, the update is re-advertised
through iASSM. Router R7 is unipath and selects only the path through AS7. Routers R2 and
R8 receives both announcements from R6 and R7. The announcements have equal AS path
length and equal IGP cost, therefore they are aggregated by the routers, although in this case
the resulting aggregated paths are the same as for R6. Routers R4 and R9 are advertised as
well. Both paths from R6 and R7 have the same AS_PATH_LENGTH therefore the ranking
is done according to the IGP cost. Routers R4 and R9 has its ECMP parameter equal to 0
and consider only paths with lowest internal cost. Both, R4 and R9 select in this case the
path through R7. Routers R2,R4 and R9 propagate the paths towards AS1 clients adding the
AS_NUMBER 1 to the advertised AS_PATH.

4.3.2 Upstream Advertisement

In this second case, a couple of customers of AS1, AS3 and AS4 advertise a path towards
their customer AS30. The effect of the MED values on the ranking function is shown in this
second case. AS3 advertises two paths towards AS30, one to R2 with MED=20 and another
one to R4 with MED=10. AS4 does not use MED values. Every path is assigned with the
same local preference. Hence, three routers end up with a path from eBGP sessions and
redistribute them through iASSM. The router R4 discards the internal path through R2-AS3
with highest MED and selects the eASSM path from AS3 and from AS4. Nevertheless, the
two paths cannot be aggregated since the path from AS3 has MED value, therefore only the
path through AS3, which has a lower BGP_ID, is ranked first and selected. R2 discards its
own eASSM path an selects the internal path through R4 with the lowest MED for AS3.
Assuming there is no restriction for R2 on the IGP cost to R9, it can aggregate the internal
path through R9 as well, since the aggregated path is advertised only through eASSM sessions
and the MED values are not taken into account.

Chapter 5

Deployment Considerations

When it comes to the deployment of ASSEMBLER in a real AS there are some consider-
ations to be taken into account beforehand. This chapter outlines them and points out how
the main shortcomings that may appear during the deployment can be solved using the ap-
propriated settings. As mentioned during the introduction and shown in the previous chapter,
ASSEMBLER does not required of any kind of coordination between ASes to take advantage
of multiple paths with high flexibility. Therefore, the deployment issues may rise while de-
ploying it inside an AS. The issues are collected in three categories, problems related to mixed
configurations, inconsistent multipath routing policies and traffic engineering techniques.

5.1 Deployments with Legacy Routers

The incremental deployment when legacy routers are present depends on the intra-AS tech-
nique used to forward the traffic. Two different types of intra-AS techniques to forward the
traffic are considered: internal redistribution and tunnelling. Internal redistribution implies
that every router inside the AS understands reachability information and fills in the routing
tables accordingly. An internal protocol such as iBGP/iASSM is required to perform the re-
distribution. Tunnelling techniques rely on the encapsulation of packets. Only the ingress
and the egress routers need to be aware of the paths advertised to the AS. In this discussion
we consider IP over IP tunnelling and MPLS tunnelling [29] as representative techniques.

If the AS performs a full deployment, such that every legacy router is replaced inside the
AS, both internal redistribution and tunnelling can be used without any kind of limitation.
The only potential advantage of tunnelling is the addition of eiBGP configurations [6] but
that topic is out of the scope of this work. On the other hand, if the AS is not planning a full
upgrade of the network, ASSEMBLER can still be deployed progressively. The difference
in this case is that any router in the network can be randomly replaced if tunnelling is used,
whereas special attention must be paid for internal redistribution. Using redistribution and
legacy routers, ASSEMBLER routers must not aggregate paths received from internal peering
sessions. The reason is that that internal aggregation may lead to routing inconsistencies. For
instance in Fig.3.1, assuming that R2, R6 and R7 are unipath routers, if R2 receives the paths
from R6 and R7 through the iASSM sessions and chooses the one from R6. R8 is multipath
and aggregates the paths through R6 and R7, however it does not advertise the aggregate
through iASSM to R2 to avoid internal loops RFC4271. If the IGP path between R2 and R6

28 Chapter 5
Deployment Considerations

passes through R8. The router R2 announces to the AS2 and AS3 its choice through AS6,
however when packets get to R8, the multipath router can forward some of them towards R3
which is inconsistent with the network view that R2 is advertising.

5.2 Multipath Routing Policies

In addition to the considerations regarding the deployment of ASSEMBLER along with
legacy routers, some other issues may arise related to the policy configurations of the AS-
SEMBLER routers. Defining simultaneously import and export policies for several paths
that match a given criteria is supported nowadays in regular BGP routers. For instance, Cisco
IOS uses the route-maps to define policies for several paths at once. ASSEMBLER-capable
routers should support the same definition of policies. A BGP router can be transparently
replaced and provide the same functionality configuring the same route-maps and setting
K-BESTRO with the combination (ELMP=0,ECMP=0,KBEST=1).

However, the combination of policies for multiple paths with more lax K-BESTRO con-
figurations may lead to inconsistent states regarding the export of paths. In contrast to BGP,
the ASSEMBLER decision process yields a set of KBEST paths instead of a winner path.
If several paths are assigned with the same LOCAL_PREF, and the import policy is not de-
signed appropriately, a path coming from a provider may end up in the selected multipath
set with a path coming from a customer, which cannot be exported together. No ASSEM-
BLER advertisement is generated towards the providers, although BGP would advertise the
path from the customer. Therefore, LOCAL_PREF assigned by the import policy of a router
should be the same only for paths coming from the same type of neighbor AS.

5.3 Enhanced Traffic Engineering

Once several paths are selected and advertised by an ASSEMBLER router they can be used
simultaneously to forward packets. Outgoing traffic engineering (hereafter TE) is usually
based on the local preference defined in the import policy. Nevertheless, in BGP only one
path at a time is selected and the most flexible outgoing TE techniques are load-sharing [8]
and tuning of IGP costs. Multipath BGP defined in [6, 18] allows for load-balancing among
multiple parallel connections between two ASes but they only support load sharing to split
the traffic among multiple ASes. ASSEMBLER allows to perform load-balancing across
multiple ASes and in contrast to the proposals in [6, 18], the traffic can be switched from one
egress AS to another without re-advertising additional routing information. In addition, how
much traffic balance over each path becomes a new TE parameter.

Regarding TE using IGP costs, currently ASes send the traffic to the closest egress point
in the network, which can be used as a form of performing TE. ASSEMBLER extends this
TE technique and administrators can modify the ECMP parameter of K-BESTRO to define
how close to this hot-potato routing they want to stick to.

On the other hand, the most widespread incoming TE techniques acccording to [4, 26] are
prefix deaggregation, path prepending and TE with BGP Communities. Prefix deaggregation
and BGP Communities for TE are supported. Yet, in order to respect the TE performed
by neighbor ASes using path prepending, a maximum value must be setup for the ELMP
parameter. That maximum value does not have to be public since in practice downstream

29
5.3. Enhanced Traffic Engineering

ASes tune the amount of AS numbers to prepend on a trial and error basis [26].

Chapter 6

Stability Analysis

Even though several equally preferred paths are available, BGP routers selects just one path.
According to the results in [5], the fact that BGP converges to a stable solution does not
guarantee that the network is stable if routers select several paths instead. The relaxation of
the selection process may trigger oscillations that did not happen before in the unipath case.
Those results are the main motivation of this section, since ASSEMBLER selects multiple
paths and additional information is advertised between routers. The goal of our stability
analysis is to show that the deployment of ASSEMBLER in a network does not affect the
stability.

The section starts with a discussion to motivate the stability analysis. Afterwards, the sta-
bility of ASSEMBLER is studied. In order to prove the stability of ASSEMBLER, we extend
the network model in [5] to include assembled paths. Afterwards, the stability condition of
ASSEMBLER is derived. Once that condition is stated, the guidelines for routing policies
proposed in [10] are reformulated for multipath scenarios. The condition is used to prove
their stability.

6.0.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath in the
stability of policy-based routing protocols. Some notation is introduced before the discussion.
The notation comes from the framework defined in [5].

v1 v2

v3

v4

v5
v6 v7

v8

v9
v10

v11

v1:

v2v7...v0

v2v8...v0

v5...v0

v6...v0

v2v3...v0

v2:
v3v9...v0

v3v10...v0

v7...v0

v8...v0

v3v4...v0

v3: v4v11...v0

v9...v0

v10...v0

v1 v2...v0

v4: v1v5...v0 v11...v0 ...v2...v0

!!

!!

!!

!!

!!

!!

!!

!!

Γ1

∆1

Γ2

∆2

Γ3
∆3

∆4

Γ4

v0

(a)

v1 v2

v3

v4

v5
v6 v7

v8

v9
v10

v11

v1:

v2v7...v0

v2v8...v0

v5...v0

v6...v0

v2v3...v0

v2:
v3v9...v0

v3v10...v0

v7...v0

v8...v0

v3v4...v0

v3: v4v11...v0

v9...v0

v10...v0

v1 v2...v0

v4: v1v5...v0 v11...v0 ...v2...v0

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

v0

(b)

v1 v2

v3

v4

v5
v6 v7

v8

v9
v10

v11

v1:

v2v7...v0

v2v8...v0

v5...v0

v6...v0

v2v3...v0

v2:
v3v9...v0

v3v10...v0

v7...v0

v8...v0

v3v4...v0

v3: v4v11...v0

v9...v0

v10...v0

v1 v2...v0

v4: v1v5...v0 v11...v0 ...v2...v0

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

v0

(c)

v1 v2

v3

v4

v5
v6 v7

v8

v9
v10

v11

v1:

v2v7...v0

v2v8...v0

v5...v0

v6...v0

v2v3...v0

v2:
v3v9...v0

v3v10...v0

v7...v0

v8...v0

v3v4...v0

v3: v4v11...v0

v9...v0

v10...v0

v1 v2...v0

v4: v1v5...v0 v11...v0 ...v2...v0

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

(d)

Figure 6.1: Unipath Dispute Wheel

31
Stability Analysis

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P is preferred over a path Q
according to the preferences of a node, that relationship of preference can be denoted like,

P
C� Q (6.1)

If a path P is announced and it is chosen as most preferred by an arbitrary number of
nodes vi+n, . . . , vi+1 in the network, the assigned path to vi+n is a propagated version of P ,
i.e. P ′ = vi+n, . . . , vi+1, vi, . . . , v0 = (vi+n, . . . , vi+1)P and its relationship of composition
with P can be expressed like,

P
J� P ′ (6.2)

Using these two simple concepts different relations among the policies of the different
nodes and the paths announced by them can be denoted. A particular type of relations be-
tween paths caused by routing policies are the reflexive relations. Hereby, just a fair definition
is introduced for the shake of clarity. For a formal and rigorous definition of anti-reflexive
and reflexive relations see [5]. If there is an alternating sequence of preference (C�) and com-
position (J�) relations created among a set of paths P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, it is said
that the relation is a reflexive relation if there is a path for which the sequence is cyclic, e.g.

P1
J� Qn

C� Pn
J� . . .

C� . . .
J� Q2

C� P2
J� Q1

C� P1 (6.3)

Reflexive relations cannot be fulfilled simultaneously. For instance the pathQn composed
by an arbitrary path and P1 is more preferred than P1, which is a contradiction since when
Qn selected P1 is not selected and Qn is feasible only if P1 is selected. Hence, the protocol
cannot find a solution and it is likely to oscillate.

The first reflexive relations depicted in the literature for policy-based routing are the BGP
dispute wheels shown in [12]. Although the analysis in [12] shows the stability results using
an abstraction of the ranking function, which covers all the different rankings that can be
configured for ASSEMBLER, the analysis does not cover the case in which multiple paths
are ranked as most preferred instead of just one. The framework in [5] considers multiple
equally preferred paths and provided that our ultimate goal is to analyze the stability in mixed
environments in which multipath nodes coexist with unipath nodes, it is interesting to study
the stability of the protocol under that framework.

The condition used in the framework to guarantee existence of multipath solution is that
the preferences assigned by the ranking functions do not create a reflexive relation among
the paths propagated throughout the network [5]. Since the generation of a dispute wheel
involves a specific relation among the ranking functions, by changing the ranking functions
and announcing additional paths, it is expected that the relation among them changes as
well. An stable state may no longer be reachable, or it is under a different solution. Before
addressing the formal analysis of the problem, two examples are provided to show that the
propagation of additional paths can provide a network running ASSEMBLER with an stable
solution in unstable unipath scenarios, whereas in stable cases it can activate a dispute wheel.

Example 1 In Fig.6.1 a network is depicted in which every node selects only one path like
BGP. The path ranked in first position by each node is displayed with a solid arrow. Feasible
paths lower rank are displayed in dashed arrows. The preferences of each node are shown

32 Chapter 6
Stability Analysis

in the table at Fig.6.1d. In Fig.6.1a the node v1 receives three paths through v2, v5 and v6
respectively. The three paths are of the same AS length and v1 chooses the path v2v7 . . . v0
with the lowest BGP_ID. The node v2 has three paths of equal path length through v7, v8 and
v3. It is not aware yet of the path v3v9 . . . v0 and chooses to go through v7 using the lowest
BGP_ID criteria. Node v3 is configured in a similar way, it chooses v9 as next-hop since it
is not aware of the path v4v11 . . . v0 . The node v4 receives a path through v11 but it is not
aware of the path v1v5 . . . v0, therefore it chooses v11 even though its highest preference is to
use v1v5 . . . v0. In addition, v4 filters any AS path containing v2.

In Fig.6.1b, v2 becomes aware of the path through v3 and changes its assignment, forcing
v1 to change its path as well. Node v1 does not select the new path of v2 because is longer than
the path through v5. However, v3 becomes aware of the path through v4 and changes as well.
The path assignment is again modified in Fig.6.1c. Node v2 looses its path v2v3v9 . . . v0 as it
is longer than v2v7 . . . v0 and v4 prefers the path announced by v1. In the next step, the nodes
go back to the initial assignment shown in Fig.6.1a completing a cycle in the oscillation. The
reflexive relation can be expressed in this case as follows,

v1v5 . . . v0
J� v4v1v5 . . . v0

C� v4v11 . . . v0
J�

J� v3v4v11 . . . v0
C� v3v9 . . . v0

J� v2v3v9 . . . v0
C�

C� v2v7 . . . v0
J� v1v2v7 . . . v0

C� v1v5 . . . v0 (6.3)

If the K-BESTRO selection algorithm is tuned to select 2 equal-length AS path, the sce-
nario becomes stable. Every node chooses the path through one neighbor node on the dashed
circle and a path through an outer neighbor except for v4. For instance, v1 selects the paths
through v5 and v2. Fig.6.2a shows the final path assignment. Node v4 ranks only the path
through v11 since the advertisement from v1 contains v2, so that v4 assigns a lower prefer-
ence.

Finally, if ASSEMBLER neither constrains the path length nor the amount of paths, the
stable path assignment displayed in Fig.6.2b can be achieved.

v1 v2

v3

v4

v5
v6 v7

v8

v9
v10

v11

v1:

v2v7...v0

v2v8...v0

v5...v0

v6...v0

v2v3...v0

v2:
v3v9...v0

v3v10...v0

v7...v0

v8...v0

v3v4...v0

v3: v4v11...v0

v9...v0

v10...v0

v1 v2...v0

v4: v1v5...v0 v11...v0 ...v2...v0

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

v0

(a) 2-Best Equal Path Length

v1 v2

v3

v4

v5
v6 v7

v8

v9
v10

v11

v1:

v2v7...v0

v2v8...v0

v5...v0

v6...v0

v2v3...v0

v2:
v3v9...v0

v3v10...v0

v7...v0

v8...v0

v3v4...v0

v3: v4v11...v0

v9...v0

v10...v0

v1 v2...v0

v4: v1v5...v0 v11...v0 ...v2...v0

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

v0

(b) Multiple Unipath Solutions

Figure 6.2: Examples of the effect of relaxing the maximum number of paths

Example 2 In this second example we want to show that a particular configuration for
which there is unipath solution but no multipath. Nodes v1 and v2 are running ASSEMBLER

33
Stability Analysis

v1
v2

v3

v1:
v3

v2v3
...

v2:
v3

v1v3
...

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, caused

17
3.4. Stability Analysis

some unipath configuration guidelines must be slightly modified because they no longer can
be directly used in multipath scenarios.

The stability proof is presented after the guidelines and it is structured as follows: after
the analytical model of the protocol is presented, the synchronous convergence of the proto-
col for any of its flavours, in absence of conflicting routing policies between ASes is shown.
If convergence is not achieved, then it is shown that the conflicting relation among policies
actually exists. Afterwards, it is proven that if nodes follow the guidelines presented in Sec-
tion XXx, it is not possible to have conflicting policies and the protocol should be able to
find a stable solution. In order to complete the stability proof, another demonstration, which
relies on the General Asynchronous Convergence Theorem XXx, is presented such that the
convergence of the real (asynchronous) protocol is guaranteed, as well.

3.4.1 On Dispute Wheels in Unipath and Multipath Scenarios

The goal of this section is to introduce a discussion about the impact of multipath solu-
tions in the stability of policy-based routing protocols. Before discussing the variety of solu-
tions and instabilities in unipath and multipath and the relationships between them, some no-
tation is introduced hereby. The notation comes from the framework defined in XXxChikin.

In policy-based scenarios where a path vector protocol is running, paths propagate from
one node to another as they are chosen in the ranking procedure as most preferred and an-
nounced to the routers with peering sessions. When a path P = vi, vi−1, . . . , v0 is preferred
over a path Q = vi, vj , vj−1, . . . , v0 according to the preferences of vi, that relationship of
preference can be denoted like,

P
!! Q (3.1)

Afterwards, P is announced and it is chosen as most preferred by an arbitrary num-
ber of nodes vi+n, vi+n−1, . . . , vi+1 in the network. The assigned path to vi+n is P ′ =
vi+n, vi+n−1, . . . , vi+1, vi, . . . , v0 = (vi+n, vi+n−1, . . . , vi+1)P and its relationship of com-
position with P can be then expressed like,

P
"! P ′ (3.2)

To indicate that P ′ is a propagated version of P . In order to assign P ′ to vi+n, P must
be assigned to vi. Therefore, P ′ is feasible as long as P is.

Using this two simple concepts different relations between the policies of the different
nodes and the paths announced by them can be expressed. A particular type of relations
between paths caused by routing policies are the non-anti-reflexive relations. For a formal
and rigorous definition of anti and non-anti-reflexive relations see XXx, hereby we just in-
troduce a fair definition based on an example for the shake of clarity. If there is an alternat-
ing sequence of preference (!!) and composition ("!) relations created among a set of paths
P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, we say that the relation is non-anti-reflexive relation if the
sequence is cyclic,

P1
"! Qn

!! Pn
"! . . .

!! . . .
"! Q2

!! P2
"! Q1

!! P1 (3.3)

The condition to guarantee existence of multipath solution is that no subset of the paths
propagated throughout the network creates a non-anti-reflexive relation among them, causedFigure 6.3: Scenario with unipath but not multipath solution.

to select maximum 2 paths with a AS path length difference of one. Assume that, v1 and v2
give the same preference to their peering connection than to the connection to the customer
that is multihomed to them. The policies in that case can be expressed as in the table on the
right side of Fig.6.3. The reflexive relation is in this case,

v1v0
J� v2{v1, v0}

C� v2v0
J� v1{v2, v0}

C� v1v0 (6.4)

The reflexive relation is created due to the fact that both nodes prefer the aggregated of the di-
rect and indirect paths, to only the direct path. Using equal-length multipath there is solution,
in which ASSEMBLER assign only direct paths to each node.

Those two examples lead to the conclusion that the propagation of additional paths can
either stabilize a network running ASSEMBLER or activate a reflexive relation. Therefore, it
is necessary to analyze the stability of ASSEMBLER, since the stability results inferred for
BGP do not apply.

6.0.2 Synchronous Model of Path ASSEMBLER

LetG = 〈V,E〉 be a topology graph, where V is the set of vertex andE is the set of edges
of the graph and v0 ∈ V denotes the origin of a prefix advertisement. Let P(vi, v0) be the set
of reachable paths between vi and v0 in G, i.e. any path that can be physically constructed
from vi to v0. Now P(P(vi, v0)) is defined as the super-set of the subsets in P(vi, v0), so to
speak, every element Φvi

∈ P(P(vi, v0)) is an arbitrary collection of elements in P(vi, v0).
A multipath assignment over G is defined as,

Φ = {Φvi ∈ P(P(vi, v0)),∀vi ∈ V } (6.5)

Additionally, a partial multipath assignment is defined as,

Φ = {Φvi
∈ P(P(vi, v0) ∪ ∅),∀vi ∈ V } (6.6)

that is, for some nodes the assignment may be empty. The protocol is modelled as a fixed-
point iteration of a distributed synchronous Bellman-Ford mapping F(Φ) over the multipath
assignment Φ.

The protocol starts growing from the initial iteration, in which the origin v0 announces
the path containing itself to its neighbors, and it increases the path assignment until reaching
an assignment Φ that verifies the fixed-point equation,

Φ = F(Φ) (6.7)

34 Chapter 6
Stability Analysis

In the ASSEMBLER mapping, nodes exchange announcements constructed as depicted
in Section 4.2. The most recent advertisement received by node vi from node vj at iteration
k is denoted as

adv(vj → vi)[k] (6.8)

Hereafter, we use indistinctly the terms path and assembled path, (a path is a particular
case of an assembled path in which only one element is assembled). The set of available
paths for a node vi at iteration k is the set,

Φvi[k] = {adv(vj → vi)[k−1],∀vj ∈ peers(vi)} (6.9)

The ASSEMBLER mapping is defined locally at node vi as the operation of selecting the
K best assemblable paths in Φvi[k] ∈ P(P(vi, v0)) according to the K-BESTRO algorithm
(Section 4.1) and propagate the ASSEMBLER advertisement corresponding to them. The
analysis assumes that each node defines a different K-BESTRO configurations and the fol-
lowing notation is used to differentiate among K-BESTRO procedures, so that Fvi(Φvi[k])
denotes the procedure at node vi. The mapping can be also defined as the set of local opera-
tions at each vertex during the kth iteration like,

F(Φ[k]) =
{
Fvi

(Φvi[k]), vi ∈ V
}

(6.10)

Before advertisement the candidate paths are ranked. The rank value of a path is denoted like
λ(θ) and all the paths in the selected set has a ranking value of λmax(Φvi[k]) .

Given the set of advertisements in Φvi
and the ranking procedure at vi, Fvi

(which es-
tablishes ranking values λ, its maximum for a given set of announcements λmax), the set of
most preferred paths at iteration k can be defined as,

βvi[k] = Fvi
(Φvi[k]) (6.11)

where,
βvi[k] = {θ ∈ Φvi[k] / λ(θ) = λmax(Φvi[k])} (6.12)

Each node vi, its candidate set Φvi
is updated with the advertisements adv(vj → vi)[k] ≡

βvi,[k] from the peering routers, such that the updated overall path assignment is defined like

Φ[k+1] = {Φvi,[k+1],∀vi ∈ V } (6.13)

and according to Eq.6.10 we get to the iterative equation

Φ[k+1] = F(Φ[k]) (6.14)

As the synchronous execution of the mapping goes on, the paths in Φvi[k] change dynami-
cally. Before expressing those dynamic changes and the evolution of the mapping in a formal
way, first we have to define the concepts of feasible and stabilized set of paths.

The concept of feasible multipath assignment is rather intuitive if we define the set of all
possible multipath assignments as the following Cartesian product (including partial assign-
ments),

χ =
∏
vi∈V

P(P(vi, v0) ∪ ∅) (6.15)

35
Stability Analysis

Therefore a multipath assignment Φ = (Φv0 ,Φv1 , . . . ,Φvn
) ∈ χ provides to each vertex

vi a set of paths Φvi
to reach the origin. In addition, for each vertex in V , we define the

following,

Definition 1 Given two vertex vi, vj ∈ V such that (vi vj) ∈ E, the assignment Φvi
is said

to be consistent with Φvj
if ∀ρ ∈ Φvi

of the form ρ = (vi vj)θ, it holds that θ ∈ Φvj
and

vi 6∈ θ (i.e. to ensure loop-freeness).

It seems clear from the definition of χ that not all the components of Φ ∈ χ are nec-
essarily consistent with each other. Since our protocol handles only local information, the
paths that it is able to construct must be consistent for all the vertex in the path. Hence, the
definition of a feasible multipath assignment for our protocol can be expressed like,

Definition 2 A multipath assignment Φ ∈ χ is said to be feasible if ∀vi, vj ∈ V and
(vi vj) ∈ E then Φvi is consistent with Φvj .

Before defining the concept of stabilized multipath assignment, the following relations
between multipath feasible assignments must be defined,

Definition 3 Let Φ,Φ′ ∈ χ be two feasible partial multipath assignments then, Φ′ contains
Φ, i.e. Φ ⊆ Φ′, if Φvi

⊆ Φ′vi
∀vi ∈ V and Φ (Φ′, if Φ ⊆ Φ′ and Φvi

(Φ′vi
for some

vi ∈ V .

Definition 4 Given a partial feasible multipath assignment Φ, the set Ψ(Φ) defined as,

Ψ(Φ) = {Φ′ ∈ χ / Φ ⊆ Φ′} (6.16)

is the set of feasible assignments which contain the path assignment Φ.

Definition 5 An assignment Θ[k] is said to be stabilized if for all the sets of feasible sets
containing Θ[k], i.e. ∀Φ ∈ Ψ(Θ[k]), it holds that

Φ ⊇ Θ[k] implies F(Φ) ⊇ Θ[k] (6.17)

The latter means that for any feasible assignment Φ containing Θ[k], an iteration of AS-
SEMBLER over the assignment Φ does not remove any path in Θ[k]. Therefore, any path
θ ∈ Θ[k] is part of the fixed-point solution of Eq.6.7 for the function F and its ranking value
verifies that

λ(θ) = λmax(Ψ(Θ[m])) ∀m ≥ k (6.18)

Definition 6 Let C[k] be the set of converged nodes at the kth iteration. Any node vi ∈ C[k]

verifies that the set βvi[k] belongs to the stabilized assignment at iteration k, what means that
vi converged at iteration k or before. Being m ≤ k the iteration at which vi converged, then
∀n > m, βvi[n] = βvi[m] and, therefore adv(vi → w)[n] = adv(vi → w)[m].

36 Chapter 6
Stability Analysis

Definition 7 Let D[k] ⊆ V − C[k] be the set of nodes which are direct peers of converged
nodes, then, ∀v ∈ D[k], ∃u ∈ C[k] and e = (v u) ∈ E.

6.0.3 Path ASSEMBLER Convergence

In this section, the anti-reflexive property of routing policies, the notation and the protocol
model depicted in the previous section are combined to asses the stability of ASSEMBLER.
The analysis begins with the progress condition of the protocol. We show that if the progress
condition does not hold for some iteration of the protocol, then the policies create a reflexive
relation among the advertised paths. Afterwards, we prove that the progress condition implies
that at each iteration the protocol gets closer to the fixed-point solution. Finally, the safety of
the protocol is shown at the final theorem stated in this section.

Lemma 1 (Progress Condition) Let S be the set of routing policies of nodes in G. If any
relation among policies in S is anti-reflexive and the current overall stabilized assignment
Θ[k] is not a fixed-point of the mapping, then there is an assignment Θ[k+1] such that,

1. Θ[k+1]) Θ[k]

2. Θ[k+1] is also stabilized

3. ∀Φ ∈ Ψ(Θ[k]), then F(Φ) ⊇ Θ[k+1]

Proof: If Θ[k] is stabilized it means that F(Θ[k]) ⊇ Θ[k] and Fv0(Θ[k]) = {v0}, k ≥ 0.
In order to increase the multipath stabilized assignment there must be at least one node v ∈
D[k] peer of u ∈ C[k] such that,

1. By definition 6 u has a stabilized set Θu[k], then ∀θ ∈ Θu[k] it holds θ ∈ Θ[k]

2. Given ρ = (v u) ∈ E, α = adv(u→ v)[k], it holds that

λ(ρα) = λmax(Ψ(Θv[m])) ∀m ≥ k (6.19)

hence ρα ∈ Θvi[k+1] (i.e. ρα is stabilized since no path with higher rank will replace
it in later iterations).

3. At iteration k, ρα ∈ Θ[k+1] = F(Θ[k]) and ρα 6∈ Θ[k]

If such a node v exists then the proof of the lemma is completed since by construction
F(Θ[k])) Θ[k]. By definition 5 and Eq.6.19, ρα will not be removed in further iterations,
therefore F(Θ[k]) is stabilized.

Now we show that if that node v ∈ D[k] does not exist then the anti-reflexivity property
does not hold over the policies in S. If v does not exists then no node v1 ∈ D[k] is be able to
find a direct path Γ1 constructed like above Γ1 = ρα for any peer node u ∈ C[k] and being
λ(Γ1) = λmax(Ψ(Θv[m])) ∀m ≥ k. Therefore, v1 prefers more a path ∆1 that is not
through a converged peer. Using the preference and composition relations, we can express
the policy relation between Γ1 and ∆1 like,

∆1
C� Γ1 (6.20)

37
Stability Analysis

Then if ∆1 is not at one hop to a converged vertex, then ∆1 must come from a propagated
version of a direct path of some node v2 ∈ D[m], therefore it can be constructed like ∆1 =
Π2Γ2. Path Π2 is an arbitrary path passing through nodes in V − C[m] and Γ2 = ρ′α′, with
ρ′ = (v2 u′) ∈ E and α′ = adv(u′ → v2)[m], is a direct path of v2. In terms of policy
relations the latter can be expressed like,

Γ2
J� ∆1

C� Γ1 (6.21)

Using the same reasoning, v2 is not choosing any direct path Γ2, otherwise the path ∆1

would become stabilized and the stabilized paths assignment would grow. Therefore the set
βv2[m] is formed by at least one path ∆2 which is not direct and goes through a direct path
announced by some node v3 ∈ D[m]. The same procedures repeats for v3 and we get to the
relation,

Γ3
J� ∆2

C� Γ2
J� ∆1

C� Γ1 (6.22)

The relation keeps repeating for every element in D[m] until it hits v1 again, producing a
circular relationship of policies that cannot be fulfilled simultaneously,

Γ1
J� ∆n

C� . . .
C� Γ3

J� ∆2
C� Γ2

J� ∆1
C� Γ1 (6.23)

The latter relation implies that Γ1 is less preferred than a path which is composed by an
arbitrary path and Γ1, which is a contradiction. The latter completes the proof by showing
that if the protocol gets stuck, then a reflexive relation exists among the policy relations.

Lemma 2 If a path θ = vivi−1 . . . v0 does not appear infinitely often in the multipath set
βvi of vi, then there is an iteration k after which any path of the form ρθ disappears from the
network.

Proof: Given a vertex vi, θ = ρ′θ′ with ρ′ = vivi−1 . . . vj+1vj and θ′ = vjvj−1 . . . v1v0,
if θ = ρ′θ′ does not appear in βvi[m] ∀m ≥ k it means that there is at least one node
vj 0 ≤ j ≤ i, for which there is a path θ′′ ∈ P(vj , v0) such that λ(θ′′) > λ(θ′), therefore θ′

is not part of adv(vj → vj+1)[k] after iteration k. At iteration k+1 the nodes w ∈ peers(vj)
cannot use the path θ′ any longer. The process repeats at each iteration along the next-hop in
the path ρ′ until ρ′θ′ disappears. Thus, vi cannot announce θ any longer and eventually ρθ
also disappears.

Lemma 3 The successive iterations of the ASSEMBLER mapping F(Θ[0]), F(Θ[1]), . . . ,
F(Θ[k]), over the stabilized partial assignments reduce at each step the set of feasible path
assignments Ψ, i.e. Ψ(Θ[0])) Ψ(Θ[1])) · · ·) Ψ(Θ[k]).

Proof: Since we are using a synchronous model, we can assume that changes made by the
mapping at vi are propagated to the peers of vi in the next iteration. At iteration zero, the set of
feasible paths is equal to the super-set Ψ(Θ[0]) whose elements are any feasible set Φ defined
by Eq. 6.16. Since the mapping evolves by repeatedly applying Lemma 1, then all those paths
with lower rank than stabilized paths in the current iteration are not announced anymore.
Then, by Lemma 2 lower ranked paths and those constructed upon them eventually disappear.
In other words, following iterations of the mapping will not propagate them throughout the
network and they are not feasible paths anymore. Those paths are removed from the set of
feasible sets at that iteration, proving Lemma 3.

38 Chapter 6
Stability Analysis

Theorem 1 (Safety) Given a network graphG = 〈V,E〉, given the set of policies S defined
by each vertex in V , a synchronous distributed Bellman-Ford mapping F(Θ[k]) iterating
over the path assignment Θ[k] which is initially defined as,

Θvi[0] =

{
{v0}, i = 0
∅, i 6= 0

(6.24)

If every policy relation over S is anti-reflexive then the mapping is able to grow the path
assignment at each iteration until the fixed-point of the following equation is reached at some
iteration m,

Θ[m] = F(Θ[m]) (6.25)

Thus, it can be stated that in absence of reflexive policies the protocol is able to syn-
chronously converge.

Proof: By applying Lemma 1 at each iteration, in absence of conflicting policy relations,
the mapping is always able to increase the path assignment with at least one path such that
the new assignment F(Θ[k])) Θ[k] is also stabilized. By Lemma 3, as the mapping is
consolidating stabilized paths at each vertex, the set of feasible paths Ψ is decreasing, until
the highest ranked paths feasible at each node are announced. Hence, there is one iteration
k at which the only feasible set of paths at a certain node vi is the set Φvi[k] ∈ P(P(vi, v0))
formed by elements that verify the equation λ(θ) = λmax(Ψ(Φvi[m])), ∀θ ∈ Φvi[k] and
∀m ≥ k. Since the mapping does not remove paths from a stabilized assignment and it
cannot find higher ranked paths at any node, the next iteration k+ 1 will have as outcome the
same path assignment. Therefore, we can say that the fixed-point has been hit at iteration k.

6.0.4 Asynchronous Convergence

Despite using a reliable transport protocol, which guarantees ordered message delivery
among nodes, the execution of our protocol is not free from communication delays since data
synchronization is not enforced between peers. Therefore it may happen that the set of paths
used by a node vi to compute its multipath set at time t (i.e. Φvi[t])),

Φvi[t+1] = Fvi
(Φvi

)[t] (6.26)

it is a distorted version due to delay in the propagation of some of the announcements
coming from peers. A distortion due to a delay of t− τvi,vj

(t) between peers vi and vj , with
0 ≤ τvi,vj

(t) ≤ t, makes vi perceive,

Φvi[t+1] = Fvi(Φvi)[τvi,vj
(t)] (6.27)

Since the iteration over the fixed point is now distorted by t− τvi,vj
(t) we cannot ensure

convergence of the fixed-point iteration anymore. According to the general results in [2], it is
possible to ensure convergence for a totally asynchronous distributed fixed-point iteration if,

1. The propagation of information happens infinitely often. In other words, it can be
assumed that after a certain time t′ > t all the announcements adv(vj → vi)[t] have
been propagated and renewed at peer nodes.

39
Stability Analysis

2. Synchronous Condition: The protocol creates at each iteration k = 0, 1, . . . ,m, a se-
quence of sets,

X[0]) X[1]) · · ·) X[n−1]) X[n]) . . . (6.28)

and it holds
F(x) ∈ X[k+1],∀x ∈ X[k] (6.29)

3. Box Condition: For each iteration k = 0, 1, . . . ,m and each node vi, i = 0, 1, . . . , n,
there exist sets of elements Xvi[k] such that the set of elements X[k] can be expressed
as the Cartesian product,

X[k] =
∏
i

Xvi[k] (6.30)

The box condition implies that different elements in Xvi[k] can be exchanged without
affecting the final result of the iteration, so to speak, the order in which the Bellman-
Ford mapping allocates paths does not affect to the evolution of the mapping.

If those three condition hold, the following theorem can be proven,

Theorem 2 (Asynchronous Convergence) Given a network graph G = 〈V,E〉 with n
nodes, the set of policies S defined by each node and a distributed ASSEMBLER mapping
F(Θ[k]) iterating over the path assignment Θ[k], if every policy relation over S is anti-
reflexive then the mapping is able to asynchronously converge to a multipath assignment of
paths over G.

Proof The condition (1) is guaranteed since ASSEMBLER uses a reliable transport proto-
col to exchange the information and every node advertises its neighbors with every change
in the selected multipath set. Condition (2) is guaranteed by Theorem 1. In addition, replac-
ing X[k] by Ψ(Θ[k]), the set of feasible sets containing Θ[k], both Eq.6.28 and 6.29 can be
rewritten as follows. Lemma 3 proves that the protocol creates the sequence,

Ψ(Θ[0])) Ψ(Θ[1])) · · ·) Ψ(Θ[k]) . . . (6.31)

which can be easily identified with the sequence in Eq.6.28. Moreover, it can be stated
by definition 4,

Θ[k] ⊆ Φ,∀Φ ∈ Ψ(Θ[k]) (6.32)

and by definition 5, applying an iteration of the algorithm on both sides, if Θ[k] is stabilized
then,

F(Θ[k]) ⊆ F(Φ)⇒ Θ[k+1] ⊆ F(Φ) (6.33)

again, by definition 4,
F(Φ) ∈ Ψ(Θ[k+1]),∀Φ ∈ Ψ(Θ[k]) (6.34)

so that Eq.6.29 can be rewritten as well identifying X[k] ≡ Ψ(Θ[k]) and Φ ≡ x.

Finally, in order to complete the proof of Theorem 2, the box condition must be verified.
The stabilized assignment can be also expressed like Θ[k] = (Θv0[k],Θv1[k], . . . ,Θvn[k]).
Lemma 1 guarantees that at least one node vi that increases its feasible assignment, so that
there is a set Φ′vi[k]

such that Θvi[k] (Φ′vi[k]
. As there can be more than one, the following

super-set Ψvi[k] can be defined as the set of feasible assignments that contain the stabilized

40 Chapter 6
Stability Analysis

assignment Θvi[k] (Φ(p)
vi[k]

, i.e. Ψvi[k] = {Φ(p)
vi[k]

,∀p}. Provided that all the assignments
within the super-sets, Ψvi[k],∀i, are feasible, therefore the set of feasible sets containing
Θ[k], can be rewritten as the following cartesian product,

Ψ(Θ[k]) = Ψv0[k] ×Ψv1[k] × · · · ×Ψvn[k] (6.35)

which can be arranged to resemble Eq.6.30 as follows,

Ψ(Θ[k]) =
∏

0≤i≤n
Ψvi[k] (6.36)

and the box condition is proven. Provided that the three conditions are verified for the
protocol, by the General Asynchronous Convergence Theorem (Proposition 2.1 in [2]) it can
be stated that the protocol is able to converge asynchronously.

6.0.5 Stable Multipath Policy Guidelines

The work in [10] studies how to define routing policies in the Internet to avoid instabilities
inGBP. The resulting guidelines are based on the business relations between ASes. Using the
stability condition derived above, the guidelines in [10] can be reformulated for multipath.
They can be proven stable if no reflexive relation can be constructed in the network.

Two guidelines are presented. We do not claim that the resulting routing policies are
the only policies ASes can follow to achieve stability. Instead, we choose them because an
AS needs to know its commercial relation with each neighbors to define its policy and the
guidelines cover the most common business relations found on the Internet. The following
two assumptions must hold for both guidelines,

Assumption 1 An AS advertises paths coming from its provider only to its customers.
Paths coming from peers only to its customers and finally, paths coming from its customers
to other customers, peers and providers.

Assumption 2 A customer AS cannot be an indirect provider of one of its direct providers.

Now, we present the guidelines. Basically the proofs fail to construct reflexive relations
when the policies are defined according to the guidelines.

Guideline 1 If every AS assigns a higher local preference to the paths received from its
customers than to paths received from its peers and they assign higher preference to paths
coming from its peers than to paths coming from its providers, then ASSEMBLER is able to
converge.

In addition, convergence is possible regardless of the size and characteristics of the paths
in the multipath set.

Proof The proof fails to construct the reflexive relation in Eq.6.3. Without loss of generality
the proof refer to the scenario in Fig.6.1. First we assume that Γ1 comes from a customer of

41
Stability Analysis

v1, then according to Guideline 1, ∆1 must come from another customer, otherwise it cannot
have higher preference. Then ∆1 is of the form ∆1 = Π2Γ2 (in Fig.6.1 Π2 is just a link
between v1 and v2 but in general is an arbitrary path). Since v1 is a provider of v2, according
to Assumption 1, the latter can only advertise paths from its customers to v1 (notice that if
intermediate nodes between v1 and v2 exists the situation is the same). If ∆2 has higher
preference than Γ2 and v2 is following the Guideline 1, then it must come from another
customer of v2. The same reasoning apply for v3. Now, at v4, the path ∆4 through v1 should
be preferred over the path Γ4. That can only happen if ∆4 comes from a customer of v4,
however if v1 is a customer of v4 and v4 is in the chain of customers from v1 it means that
Assumption 2 is broken.

In the second case, we assume that Γ1 comes from a peer of v1. Therefore, ∆1 must come
from either a peer or a customer of v1 (Assumption 1). In both cases, it means that Γ2 and
∆2 come from customers of v2, otherwise they cannot be advertised to a peer or a provider.
The chain of customers continue until v4. A reflexive relation would be constructed if v1 is a
customer of v4. If v2 is a peer of v1, then ∆1 cannot be advertise to v4 as it is a v1 provider.
If v2 is a customer of v1 we are in the previous case.

In the last case, v1 learns Γ1 from a provider, then v2 can by a customer, peer or provider
of v1. If v2 is a provider of v1 and Γ2 and ∆2 are advertised to v1 since they come from
customers or peers of v2, the chain continues like in the two previous cases. Otherwise, if
Γ2 and ∆2 come from providers of v2, then the chain of providers continue to v4. If Γ4

comes from a customer of v4 then according to Guideline 1 ∆4 must come from a customer,
however v1 does not advertise its provider v4 with paths from other providers, therefore ∆4

is not announced and the reflexive relation is broken. If Γ4 comes from a peer the situation is
the same. Only if Γ4 comes from a provider, ∆4 can be more preferred, therefore if v1 is the
provider of v4 then ∆4 is advertised, however in that case v4 becomes the indirect provider
of one of its direct providers (through v3 and v2) and Assumption 2 is broken.

Guideline 2 An AS can assign the same local preference to paths coming from a customer
or a peer ASes. Yet, stability can be only guaranteed if paths from peers and customers are
not selected together in the multipath set.

Proof Again we try to construct a reflexive relation among the propagated paths. The sce-
nario in Fig.6.1 is used again. First we assume that Γ1 comes from a customer of v1, then
according to Guideline 2, ∆1 can now come either from another customer or a peer, otherwise
it cannot have higher preference. Therefore, under Guideline 2, the first and second cases of
the proof of Guideline 1 can be combined. Due to Assumption 1, the most complex case is
an alternation of peers and customers links, since two consecutive peering links cannot hap-
pen. If we follow this alternation from v1 till v4, a reflexive relation can happen only in two
cases. First, if v3 and v4 are peers, then Γ4 and ∆4 must come from customers of v4 which
implies that Assumption 2 must be broken to create the reflexive relation. Second, if v3 is a
provider of v4 then path Γ4 must be then from a customer of v4. Now v1 and v4 can be peers
and ∆4 can be still be more preferred than Γ4. However, in that case v4 is again breaking
the hierarchy of the network, acting as a particular case of provider defined as peer-provider
[10].

So far the proof states the stability under equal preference for peers and customers, how-
ever nothing is said about the mixture. The proof is completed with the counter-example.
In Fig.6.3 ASSEMBLER oscillates if the policy allows to select a path from a customer and
another from a provider at the same time. That is, an AS can choose to send the traffic among

42 Chapter 6
Stability Analysis

paths through customers or a peers, but a router must not mix paths from both types. Notice
that the corresponding guideline for BGP (Guideline 5.2, [10]) does not make this distinction
because BGP selects only one path.

Chapter 7

Implementation of an
ASSEMBLER-Capable Router

In this chapter the implementation of a multipath software router running ASSEMBLER
as multipath inter-domain protocol is presented. Given that our protocol inherits a large
functionality from BGP, the implementation sets off from an implementation of BGP. The
implementation is intended as a proof of concept to show that multipath capabilities can be
added to border routers introducing little modifications in the software. Furthermore, the
implementation is part of a testbed developed within the scope of the Trilogy Project [1] and
the integration of multipath routing with the implementation of MPTCP [9].

There are already some available open source implementations of BGP. Some of them
are stand-alone BGP daemons like OpenBGPd [3]. Other BGP implementations are part of
complete routing suites. Those packages offer the possibility of analyzing the interactions
between different routing protocols, which can be a highly interesting characterization. The
two most widely referenced open source routing suites (that include BGP) are Quagga [17]
(formerly Zebra) and XORP [14]. The routing software package Quagga encloses several
routing modules, which can be launched simultaneously. One of the Quagga best strengths
is its implementation efficiency (memory consumption of the Quagga BGP daemon is about
20MB at initialization time). Among its drawbacks to be used as base for multipath ex-
tensions, there are its scarce documentation for developers, the BGP implementation is not
very modular and it uses relies directly in the OS kernel to install and remove routes in the
data-forwarding plane, thus in case a special forwarding plane architecture is needed, kernel
libraries must be modified directly.

An alternative to Quagga is XORP. The routing project XORP is a truly modular routing
package to create software routers. In contrast to Quagga, XORP offers certain flexibility
to choose which forwarding plane management interface to use, either the kernel forwarding
plane, CLICK [20] and supports distributed forwarding planes. Among XORP disadvantages,
it can be found that in exchange for modularity, its code tends to be more inefficient (for in-
stance the BGP daemon has a memory footprint of about 100MB at initialization time). De-
spite Quagga’s efficiency, XORP has been chosen as the preferred routing suite to introduce
the multipath extensions thanks to its modularity, flexibility, integrated support for CLICK
and extensive documentation.

The implementation of XORP is running in the control plane of the router and a multi-

44 Chapter 7
Implementation of an ASSEMBLER-Capable Router

path data-fowarding plane has been implemented using CLICK. The data plane is using the
CLICK setting presented in [20] and the routing table module has been modified to add mul-
tiple next-hops per prefix and use them to balance traffic flows through different next-hops
preserving the packet ordering.

The extensions for XORP and CLICK are integrated in virtualized appliances and a
testbed is settled to run the experiments. The details of the testbed are presented in the next
section. The extensions of XORP and CLICK are presented afterwards. Finally, the section
concludes with the results obtained over a small sample topology.

7.1 The Evaluation Testbed

The architecture of the testbed is illustrated in Fig.7.1. The testbed is deployed among several
physical PCs, which provide the hardware layer. Each physical host can be devoted to either
router emulation or network emulation tasks. A routers emulator is able to multiplex several
virtual routers in a physical host. The network emulation is performed in different hosts. All
the PCs are connected through Gigabit Ethernet LAN.

Fig.7.1 also depicts the different layers involved. On top of the hardware layer there is the
virtualization layer, which has in turn two sublayers, the router virtualization sublayer and the
network virtualization sublayer. One physical host provides the functionality of the network
virtualization sublayer. That host is running a network emulation software. Each virtual
router sends and receives their traffic over a VLAN towards the network emulator. When a
packet gets into the emulator, the latter creates the illusion that packets are forwarded across
a real network, delaying, dropping, mixing them in queues, etc. Afterwards, the emulator
sends the packets back to the destination host using another VLAN.

On the other hand, the router virtualization layer handles the virtual machines that emulate
routers and the virtual network interfaces of those routers, which are bridged to the physical
network interfaces.

In each virtual machine emulating a router, there is a Linux Debian appliance running
CLICK and XORP. CLICK processes and forwards packets at the kernel level and it has
been used to implement the multipath Forwarding Information Base (FIB). XORP is used the
control plane of the routers and CLICK in the data-forwarding plane. In the control plane
the routing protocols are executed. In this testbed only BGP and ASSMBLER are running,
although all the protocols in the XORP bundle are supported. The rest of the section describes
the multipath extensions for XORP and CLICK. The modifications to the RIB process are
described first. Afterwards, multipath extensions to the unipath BGP daemon to implement
ASSEMBLER are shown and finally the implementation of a multipath FIB using CLICK is
detailed.

7.2 The Control Plane

Four processes from the XORP suite are running at each router. Depending on whether a
router is multipath capable or not, either the ASSEMBLER process or the BGP daemon
is running respectively. The Static Routes module is running such that the prefixes to be
announced to other routers can be configured. In addition, the RIB process merges the infor-

45
7.2. The Control Plane

Hardware Layer

Router
Virt.

Sublayer

Linux OS

mCLICK

mXORP

HW Layer

Network
Virt.

Sublayer

NetPathsLinux OS

mCLICK

mXORP...

...

...

HW Layer

Router
Virt.

Sublayer

Linux OS

mCLICK

mXORP

LAN

Network
Emulator

Routers
Emulator

Routers
Emulator

Figure 7.1: Different layers involved in the virtual testbed.

mation from the different routing protocols and update each routing process when changes,
such as connectivity, failure occurs. The RIB process does not directly install the most opti-
mum paths in the FIB, instead it relays those paths to a forth process, the forwarding engine
abstraction(i.e. FEA). The FEA process is the process which acts as interface to the data-
forwarding plane for the RIB.

All those processes are intercommunicated using a RPC-like (i.e. remote procedure call)
mechanism. The methods that can be called upon one process are defined by an interface
in a language called XRL (i.e. eXtensible Router Language). Automatic tools generate the
client object and the stub code to achieve the inter-process communication. In XORP the
modifications are carried out at three different levels: the BGP daemon, the RIB process and
at the FEA process. The multipath extensions for the BGP daemon to obtain an implemen-
tation for ASSEMBLER are described first. The redefinition of the XRL for the RIB and the
multipath extensions for its modules are defined afterwards. Finally, in order to complete the
top-down analysis, the implementation of a plug-in to let the FEA process handle a CLICK-
based data-forwarding plane is detailed. Before getting into the details of the ASSEMBLER
implementation, we briefly review the normal operation of the XORP BGP Daemon which
serves as a base for the ASSEMBLER implementation.

7.2.1 The Standard BGP Daemon

This section describes the architecture and modules of the unipath BGP process. In order
to have a general overview and identify the different modules, we always refer to Fig.7.2.
Every module labelled as PeerHandler handles a BGP session with a peer router. Every time
a BGP Update message is received, the PeerHandler creates one or several internal messages
of type ADD ROUTE, DELETE ROUTE or REPLACE ROUTE. For instance, when a peer
router announces to the router in Fig.7.2 that a new destination is reachable through it for the
first time, an ADD ROUTE message crosses the chain of modules from the PeerHandler until
the module DecisionTable is reached. Otherwise, it gets filtered at some module in between.

Once in the DecisionTable, the route contained within the ADD ROUTE message under-

46 Chapter 7
Implementation of an ASSEMBLER-Capable Router

goes the BGP tie-breaking process along with other routes announced by other peer routers
for the same destination. The DecisionTable queries the different RIBInTable on each branch
to obtain those alternative routes. If the route becomes the new winner then two new internal
messages are propagated downstream through every output branch thanks to the FanOutTable
module, which replicates the ADD ROUTE. A DELETE ROUTE is propagated to delete any
stored/cached state of the previous winner.

Afterwards an ADD ROUTE message establishes state for the new winning route, which
in turn upon reaching the PeerHandler module is included into an external BGP Update mes-
sage. The latter will be sent to each peer router for which a branch exists. Nevertheless,
there is an additional branch, which is not connected to any peer, it ends in a IpcRIBHandler
module, instead. That special module acts as the interface with the control process of the
RIB.

In addition to the announcement or withdrawn of routes towards a given prefix, peering
session establishment is another common event in BGP. No sooner than the TCP connection
is established, the router starts dumping its current routing information to its new (or recov-
ered) peer. To that extent, the BGP daemon of XORP defines and additional module called
DumpTable. The DumpTable is in charge of feeding the new router in background while
consistency is kept as new routes arrive in the meantime to the different RIBInTables.

7.2.2 Path ASSEMBLER Extensions in XORP

In this section, the ASSEMBLER modifications carried out over the XORP BGP daemon
modules are detailed. From the analysis of the unipath XORP BGP process, several key
modules can be identified in order to accomplish the ASSEMBLER extensions.

Before addressing the specific modifications of each module, there is a modification re-
quired at every module (with the exception of the PeerHandler module). The modules in
Fig.7.2 implement an interface called RouteTableBase. The RouteTableBase interface de-
fines the operations that one module can call upon another. For instance, the interface defines
operation to relay paths between connected modules. The current definition of the interface
allows to call an add, delete or replace operation over just one path at a time. Operations
called afterwards regarding the same network prefix override the state generated in the mod-
ule by previous operations. Therefore, the first modification is the addition of a new operation
on the interface, so-called ROUTE_MADD, such that multiple paths can be relayed between
modules. Now, we present the modifications module by module as they appear downstream
in Fig.7.2 (i.e. from left to right).

PeerHandler The first module that we come across in the picture is the PeerHandler mod-
ule. One of the most remarkable features of the design of ASSEMBLER is the backwards
compatibility with BGP. As a direct consequence, the messages received or generated by a
multipath capable router must allow unipath routers to process them. The only subtle differ-
ence in a message generated by a multipath capable router running ASSEMBLER is that the
AS_PATH attribute is generated following particular rules, but that does not modify the way
it is processed by the router receiving the announcement. Therefore, the module interacting
with routers for which a BGP session is established does not require any modification.

RIBInTable, CacheTable, In/OutFilterTable and NextHopLookupTable Since a router
receives one announcement/path per network prefix from each neighbor, the RIBInTable does

47
7.2. The Control Plane

not require any further modifications to implement ASSEMBLER. Nevertheless, the mod-
ule has been extended to return all the most recent paths received from the same peer upon
quering from the DecisionTable. The CacheTable functionality remains the same and the
definition of new filtering policies for multipath scenarios is out of the scope of this work,
thus the FilterTable implementation is not extended. The next-hop resolution is exactly as in
the unipath case. Again, in order to make the modifications of the XORP BGP process as
general as possible, if another protocol propagates several paths for the same network prefix,
these modules run through each each path in the multipath set executing their functionality
over each path independently. For instance, if one of the paths in the multipath set is not re-
solvable by the NextHopLookupTable, then only that path is removed from the set propagated
downstream.

DecisionTable The DecisionTable carries out the ASSEMBLER path selection process.
Every time a new ROUTE_ADD, ROUTE_DELETE or ROUTE_REPLACE operation is
going on the decision process is carried out in order to check whether the new information
discloses a more optimum set of paths to forward traffic. The DecisionTable module retrieves
all the available alternative paths querying the different RibInTable modules at each branch.

In contrast to the unipath case, the rules in the decision process are those depicted in
Section 4.1. Therefore the outcome of the decision process is not a single best path, but
the set of most preferred paths. Nevertheless, the paths in the selected set are not an-
nounced independently to router peers. An special announcement is constructed as depicted
in Section 4.2. The AS_PATH attribute is constructed by taking the path with the shortest
AS_PATH_LENGTH and adding an AS_SET. The AS_NUMBERs included in the AS_SET
are those in the remaining paths in the multipath set which are not already in the shortest path.

In addition to removing some tie-break rules and adding the functionality to construct the
multipath set, now the DecisionTable makes two calls upon the next module, the FanOut-
Table. The first call the default ROUTE_ADD operation, which supports only one path with
the constructed aggregated AS_PATH and a flag in the attributes of the internal message
indicating that the path is intended to be announced to the peers. The second call con-
tains the whole multipath set with each path passed independently in the call. This time a
ROUTE_MADD operation is called. In that way, the DecisionTable indicates the FanOut-
Table that the set of paths relayed to it in the call should be relayed to the branch that connects
the ASSEMBLER process to the RIB process. The paths are passed separately, such that sev-
eral next-hops will be installed in the data-forwarding plane, enabling multipath forwarding
of traffic.

FanOutTable The path selection procedure is carried out once per operation. The result
of the selection procedures must be announced to the peers in order to guarantee path con-
sistency and loop-freeness. Every established session with another peer creates a branch of
modules like in Fig.7.2. The FanOutTable module is responsible for duplicating the output of
the selection procedure to every branch so that all the peers are eventually updated with the
new state of the router.

In addition, given the peculiarities of ASSEMBLER the FanOutTable distinguishes be-
tween the information to create the announcements to other peers and the information to
create the new state in the FIB (which has to be relayed to the RIB process first). Therefore,
the FanOutTable receives a ROUTE_ADD operation carrying the aggregated AS_PATH cre-
ated by the DecisionTable module and a ROUTE_MADD operation containing the expanded
version of the previous AS_PATH, i.e. the set of paths aggregated in the AS_PATH of the first

48 Chapter 7
Implementation of an ASSEMBLER-Capable Router

call. The ROUTE_ADD operation duplicates the internal message to every branch connect-
ing to a peer router whereas the ROUTE_MADD operation forwards the internal message
through the branch connecting to the RIB process.

RIBOutTable The RIBOutTable is responsible for coordinate the inner operations and the
announcements towards peer routers. The RIBOutTable receives operation and schedules
them in a queue. Each element in the queue comprises an operation object, which in turn
contains a path attribute. When the PeerHandler module notifies the RIBOutTable that it
is idle, the RIBOutTable pops messages from the queue and the PeerHandler creates the
announcement. This module has been extended to support the multiple paths passing in the
branch connecting to the RIB. Each element in the waiting queue is an operation object which
is able to store now a linked list of paths instead of a path element.

IPCRIBHandler The RIB process works based on transactions. The next transaction does
not start until the ongoing is committed. The operations meant for the following transaction
are withheld in the RIBOutTable. The main modification in this part of the module chain
is not the modification in the module itself, since it consist in changing the type of object
called to relay routes to the RIB process, from the RPC (i.e. remote procedure call) client
class XrlRibV0p1Client to XrlRibV0p2Client. RPCs are called XRLs in
XORP. The key modification here is the definition of a new interface to allow other processes
to interact with the RIB process.

DumpTable As soon as a new peer session is established the router dumps all its most
preferred paths for each destination to the peer so it can get a quick vision of the network. In
XORP BGP, the DumpTable is in charge of dumping the paths. The DumpTable polls every
RIBInTable looking for the paths marked as the most preferred.

Nevertheless, ASSEMBLER creates artificial AS_PATHs. Those paths are not in the
RIBInTable modules since they are not paths announced by a peer, but internally created.
To that extent, the AuxiliarTable path storage module is added to the architecture in Figure
4. The AuxiliarTable simplifies the implementation of the DumpTable. Now the DumpTable
does not need to synchronize with all the RIBInTables, synchronization with the AuxiliarTable
is enough to dump the current routing information to new peers.

7.2.3 Modifying the RIB and FEA Processes

In addition to the routing protocols, XORP runs the RIB and FEA processes. The RIB
merges the routing information acquired by each routing protocol. The outcome of the merg-
ing process is passed to a third process, the FEA. The FEA allows XORP to decouple from
a specific data-forwarding plane. Thanks to that abstraction XORP can use different data-
forwarding planes, such as the Linux routing module, CLICK or even a distributed data-
forwarding plane among several PCs running XORP.

The routing protocols can add, delete or replace routes in the forwarding plane executing
a transaction against the RIB process interface. Paths are added or removed from the data-
plane by means corresponding transactions and no changes are made effective in the routing
table until the transaction has been committed. A new transaction has been added to the
RIB interface. The new transaction allows a routing protocol to add or delete several paths
simultaneously.

49
7.3. The Data-Forwarding Plane

The FEA has an interface with common abstract operations over the data-forwarding
plane. That interface is used by the RIB process to execute the changes in the data-plane.
Once the operation is called from the RIB, the FEA translates the abstract operations into the
specific set of operations to be executed by the data-forwarding plane used by XORP.

In order to know which are the operations to be carried out over the data-plane, for each
type of data-plane there is a plug-in that allows the FEA module of XORP to interact with
the FIB. We have extended the current plug-ins for CLICK to support multi-path addition
and removal of paths. The details of this new plug-in are explained later on along with the
implementation of a multi-path FIB using CLICK.

Figure 7.2: Module diagram of XORP BGP daemon.

7.3 The Data-Forwarding Plane

The data-forwarding plane of one of the ASSEMBLER-capable virutal routers is imple-
mented using CLICK. CLICK comes with a default data-forwarding plane implementation
that can be found in [20]. CLICK allows its modules to have hooks to interact with exter-
nal processes. Hooks are nothing but inter-process communication pipes as those commonly
used in Linux-based operating systems.

Depending on the type of hook, external processes can read, write or both, information
that CLICK modules can parse/publish. In our case, we set off from the default implemen-
tation of the routing table (so-called LookupTable) and a new hook has been added. The
new hook allows to progressively add entries to the routing table for the same network prefix
without overwriting previously added entries (the default add operation replace the current
entry by the new one). The new hook appears in the folder corresponding to the routing table
module in the CLICK file system as a file called madd (for further details about the CLICK
file system check [20]).

The FEA plug-in handling CLICK dumps to the CLICK routing table the routing infor-
mation extracted from the multipath set chosen by the ASSEMBLER process. The plug-in
transform the routing information from the data format used by XORP into a format that can
be parsed by the CLICK module. Afterwards, the plug-in initiates a transaction. The trans-
action consist in two different steps. First, the FEA flushes the previous entries for a given
network prefix. Second, it iteratively writes the information of each of the paths into the
madd file introduced earlier. After, the FEA closes and commits the transaction. The deletion
step is used simply because, it simplifies the installation of paths.

The multipath addition creates a routing table like the one in Fig.7.3, where for each
network prefix we can find several < nexthop, interface,metric > tuples. The difference

50 Chapter 7
Implementation of an ASSEMBLER-Capable Router

between the appearance of multiple entries per prefix in the routing table in the unipath and
the multipath case, is that the additional entries in the unipath are used as backup, such that
only the first entry matching the destination network prefix of the packet and the others are
used in case the first path becomes unavailable. In the multipath case, the multiple entries
can be used to forward packets towards the same destination concurrently.

Many forwarding policies can be defined, however some of them like random forwarding
or round-robin increase packet reordering which can be harmful, specially using a transport
protocol such as TCP or MPTCP, which guarantee ordered delivery of packets. Therefore, it
is desirable to have a forwarding algorithm, which guarantees that at least certain sequences
of packets follow the same path, minimizing reordering.

IP Prefix Lookup

Hash Function

IP Prefix Next-Hop If.

16.11.3.0/30 10.0.2.5 - 2

10.0.1.0/24 10.0.2.5 - 1

10.0.3.10 - 2

10.0.4.231 - 3

12.1.0.0/16 10.0.2.1 - 1

10.0.2.5 - 1

TCP/IP
Header

Figure 7.3: Multipath FIB.

Therefore, we propose the following forwarding algorithm, a hash function is computed
out of the so-called 5-Tuple of TCP/IP fields (see RFC [16]), which comprises the source
IP address, destination IP address, source TCP port, destination TCP port and TCP sub-flow
identifier (only if MPTCP is enabled). The 5-Tuple uniquely identifies each flow . The
outcome of the hash function is then mapped to an output interface such that the same TCP
flow is always forwarded to the same next-hop.

There are different ways to map flows with the interfaces. The simplest is to compute
the result of the hash function and compute that number modulo the number of available
paths in the routing table for a certain prefix. Another solution is to assign equally distributed
identifiers to each path in the output range of the hash function and forward to the closest
higher identifier to the hash function value over the TCP 5-Tuple. Figure 5 shows a diagram
of the forwarding mechanism. The packet header information is passed to both the entry
selector module (HashFunction in the figure) and to the lookup algorithm. When the lookup
algorithm finds and entry in the routing table, it retrieves the number of alternatives and along
with the result of the hash function computes the next-hop that will be used to forward the
packet.

7.4 Disclosed Path-Diversity

The network depicted in Fig.7.4 is running ASSEMBLER. The testbed introduced in previous
sections emulates the network. Even in this small topology is interesting to see how much
path diversity ASSEMBLER can disclose. As discussed during the introduction, as more
path-diversity is introduced and operated, the adaptation and responsiveness of multipath
inter-domain protocols to network changes should improve.

51
7.4. Disclosed Path-Diversity

1 2

3 4 5

6 7 8

9 10 13

11 12

Costumer-Provider

Peering

Figure 7.4: Sample Topology

The setup of the experiment is as follows. Every node depicted in Fig.7.4 is an AS-
SEMBLER router. Each router belongs to one AS and it announces one network prefix of the
format 150.X.0.0/16 where X is the AS number the router belongs to. Once the advertisement
is propagated from the router, the network converges and for the amount of paths from each
of the remaining nodes to the advertising node is calculated. Each pair origin-destination is
called a case. The process is repeated for each router such that all the prefixes are propagated
and the amount of paths for each case measured.

The results in Fig.7.5 show the path diversity that ASSEMBLER is able to expose in the
sample topology in Fig.7.4. The figure is the cumulative distribution function of the number
of different paths for each case. Two paths are considered different if they differ at least in an
intermediate node or link. The chart shows that in about 60% of the cases, a node is left only
with one path towards the destination AS. That percentage should decrease if the connectivity
between ASes is not represented as a single link and each AS is a single router. On the other
hand, about 40% of the cases a node is using at least an additional end-to-end path towards
a destination, which is an acceptable results for such a small topology. Moreover, roughly in
20% of those cases nodes get 2 or 3 additional paths. Larger amount of additional paths are
rare and only happen in a reduced number of cases.

Dealing with the improved reliability introduced by the network diversity, Fig.7.6 shows
the probability distribution function of having an additional path towards a destination after
one and two node in the shortest path fail simultaneously. The experiment setup is similar
to the previous one. The difference is that whereas in the previous case every pair origin-
destination was considered a case, now for every pair there are several cases, one per each
node on the shortest path that is assumed to be down to compute the addition paths to over-
come the failure. Cases in which there is one path between the origin and destination are not
considered.

The results show that even for a small topology a certain fast recovery can be achieved
compared to the unipath case. In 65% of the cases, in which a node has at least one alternative
path to another node, connectivity between the two ASes is possible without waiting for the
ASSEMBLER process to reconverge. As expected, as the number of simultaneous failures
increases the connectivity drops dramatically, even if multi-path is enabled. In the sample
topology, if two nodes in the shortest path fail simultaneously, in less than 10% of the cases
nodes have an available end-to-end path without executing the BGP selection process.

52 Chapter 7
Implementation of an ASSEMBLER-Capable Router

Figure 7.5: CDF of alternative paths available at each node.

Figure 7.6: PDF of alternative paths after 1 and 2 nodes have failed.

Chapter 8

Related Work and Conclusions

This chapter compares the most relevant BGP-compatible multipath inter-domain routing
proposals with ASSEMBLER and presents the conclusions of this work. Alternative proto-
cols that require a global upgrade of the network (see for instance [11]) are not considered
in this discussion. The first set of solutions comparable to ASSEMBLER achieve backwards
compatibility using BGP to exchange the primary path (ensuring backwards compatibility)
and they use a parallel protocol or BGP extension to advertise additional paths. This is the
case of R-BGP, which advertise failover paths [21] to achieve fast recovery. BGP Add-Paths
[32] is another solution in which routers add a new BGP capability to incrementally advertise
extra paths. Finally, MIRO [36] relies also on an additional negotiation of paths. Although,
they are compatible with BGP, these solutions require that two or more neighbor ASes coor-
dinate to deploy multipath border routers. ASSEMBLER does not require of such an incre-
mental/additional negotiation of paths and a coordinated deployment between neighbor ASes
is not required.

Another set of multipath inter-domain protocols compatible with BGP do not modify the
BGP protocol at all and no additional/incremental advertisement of paths is performed. The
first solution is the Multipath-BGP proposed by the manufacturers Cisco and Juniper [6, 18],
in which all the considered paths must share the same attributes except for the BGP_ID and
interface address of the announcing border router. This type of multipath is intended for a set
of particular settings in which several physical connections exists between two ASes. Hence,
the multipath set yielded is constrained to have the same AS_PATH attribute in all the routes.
As shown in Section 4.1, the K-BESTRO path selection algorithm and the assembling tech-
nique used by ASSEMBLER does not constrain the path diversity and any set of aggregatable
paths can be used concurrently, even if they have different egress ASes.

Some other BGP-compatible protocols propose to advertise one path and use the different
alternatives received through BGP to forward the traffic without advertise them. For instance,
the inter-domain flavours of Routing Deflections [37] and Path Splicing [25] forward traffic
among the available alternative BGP paths according to a tag in the packet header. Thus,
since BGP advertises only one of those paths, the loop-freeness of the multiple BGP routes
cannot be guaranteed, since routes that are not propagated to further ASes are used in prac-
tice to forwards the packets. Therefore the control plane information in neighbor ASes is
inconsistent with how the traffic is forwarded. The authors in [25] argue that if the common
routing policies presented in [10] are followed, no routing loops are possible. In addition,
they propose some additional mechanisms to overcome that limitation like deflection coun-

54 Chapter 8
Related Work and Conclusions

ters or include the AS number of the ASes crossed before in the packet header. An alternative
that solves the loop-freeness problem is to propagate the longest available path like in LP-
BGP [31], however longer paths are likely to suffer a penalization when compared with other
paths at a legacy router.

Thanks to the advertisement scheme presented in Section 4.2, ASSEMBLER is able to
advertise information that is consistent with the forwarding of traffic currently used. Using
ASSEMBLER, the forwarding mechanisms of Routing Deflections and Path Splicing can
be used while preserving loop-freeness and without propagating paths that are likely to be
considered worse by legacy routers like in [31], since the AS path length attribute in the
advertisement is equal to the shortest path within the multipath set.

8.1 Conclusions

In this work, ASSEMBLER a novel protocol for multipath inter-domain routing has been
presented. It is the first inter-domain routing protocol that features both, flexible multipath
routing and backwards compatibility with BGP, without limiting the path diversity or using
another protocol in parallel. Thanks to its design, ASes can benefit from multipath capabil-
ities upgrading progressively their network equipment inside the AS and no coordination or
global upgrade is required to take advantage of multiple inter-domain paths.

The characteristics of the multipath set provided by ASSEMBLER can be flexibly tuned
using a few parameters to fully exploit the available path diversity or constrain the amount of
paths installed in the data-plane (avoiding an exponential growth of the routing tables).

The ASSEMBLER announcements are regular BGP updates generated with an special al-
gorithm such that advertised updates gather information from multiple paths in one message.
Those updates can be processed by legacy routers, they are not penalized when compared
to regular BGP paths and loop-freeness is maintained. The deployment in a real AS can be
carried out progressively and current routing policies and traffic engineering techniques are
supported by ASSEMBLER. It can be combined with multipath forwarding techniques to
split the traffic amount those installed paths.

The stability of the protocol has been proven in absence of conflicting configurations.
Whenever the ASes can simultaneously fulfil their preferences with the available paths, the
protocol is able to converge. Two guidelines have been introduced in order to guarantee
global stability for every possible configuration of ASSEMBLER.

The adoption of ASSEMBLER as multipath inter-domain routing should provide ISPs
with more flexible routing configurations, simplified and dynamic traffic engineering tech-
niques and decrease inter-domain churn.

8.2 Future Work

In order to complete and extent the research work initiated by this thesis, there are some open
questions that can serve as the base for future research work. Of special interest are the inter-
operability aspects. For instance, large ISP do not have a planar architecture for their border
routers. The reason behind this is the scalability of the system, since a planar architecture im-

55
8.2. Future Work

plies that the full-mesh of iBGP between border routers grows exponentially with the size of
the network and the system may get to a saturation point in terms of connections and internal
churn. ISPs avoid that situation by introducing special nodes called route reflectors which
help to reduce the amount of existing connections creating a hierarchy. Typically the portion
of border routers per route reflectors is 10 to 1, the border routers keep only one connection
to the route reflector and the full-mesh is only created among the reflectors, which reduces
the scalability problem. It could be interesting to perform an analysis of the possible effects
that introducing ASSEMBLER inside and AS may have if legacy route reflectors are present.

Another interesting interoperability analysis could be the interactions with BGP Add-
Paths, such that the architecture of the AS would be inter-domain routers, internally commu-
nicated using Add-Paths and using ASSEMBLER to communicate with external ASes that do
not support multipath. A transition analysis between these technologies could be interesting
as well.

The design of traffic engineering techniques that exploit the advantages of using multipath
routing is also an open question. It is an intuition of the author that multipath should provide
more flexible and finer granularity in the handling of traffic, reducing in some cases the inter-
domain churn and achieving fast convergence when local failures occur.

Finally, another interesting future research line could be the design of new network ser-
vices using the additional paths. Since it was not possible before, there is not applications of
multipath inter-domain routing appearing in the literature or in hands-on practical manuals.
Actually the basis for this research line has been already initiated by the author and the su-
pervisor of the thesis, getting promising positive feedback from several ad-hoc conversations
with former partners of the FP7 Trilogy Project and in the Routing Research Group (RRG) of
the IETF. Therefore the real potential of multipath routing in inter-domain scenarios remains
as an open question.

This research work is planned to be presented as a paper publication along with more
empirical results, specially from simulations. This prospective publication is work in progress
by the time writing.

Bibliography

[1] 7th Frame Programme. Trilogy project: Architecting the future internet. http://
trilogy-project.org/.

[2] D. Bertsekas and J. Tsitsiklis. Parallel and distributed computation. 1989.

[3] H. Brauer and C. Jeker. OpenBGPd.

[4] M. Caesar and J. Rexford. BGP routing policies in ISP networks. Network, IEEE,
19(6):5–11, 2005.

[5] C. Chau. Policy-based routing with non-strict preferences. In Proceedings of the 2006
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 387–398. ACM, 2006.

[6] Cisco. Bgp best path selection algorithm. http://www.cisco.com/en/US/
tech/tk365/technologies_tech_note09186a0080094431.shtml.

[7] Cisco. How does load balancing work? http://www.cisco.com/en/US/
tech/tk365/technologies_tech_note09186a0080094820.shtml.

[8] Cisco. Load sharing with bgp in single and multihomed environments: Sample config-
urations. http://www.cisco.com/en/US/tech/tk365/technologies_
configuration_example09186a00800945bf.shtml.

[9] A. Ford and C. Raiciu. M. Handley," TCP Extensions for Multipath Operation with
Multiple Addresses", draft-ietf-mptcp-multiaddressed-03 (work in progress), 2010.

[10] L. Gao and J. Rexford. Stable Internet routing without global coordination. IEEE/ACM
Transactions on Networking (TON), 9(6):681–692, 2001.

[11] P. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet routing. In Proceedings of
the ACM SIGCOMM 2009 conference on Data communication, pages 111–122. ACM,
2009.

[12] T. Griffin, F. Shepherd, and G. Wilfong. The stable paths problem and interdomain
routing. IEEE/ACM Transactions on Networking (TON), 10(2):232–243, 2002.

[13] F. Guo, J. Chen, W. Li, and T. Chiueh. Experiences in building a multihoming load
balancing system. In INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, volume 2, pages 1241–1251. IEEE,
2004.

[14] M. Handley, O. Hodson, and E. Kohler. XORP: An open platform for network research.
ACM SIGCOMM Computer Communication Review, 33(1):53–57, 2003.

http://trilogy-project.org/
http://trilogy-project.org/
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094431.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094431.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094820.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094820.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_configuration_example09186a00800945bf.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_configuration_example09186a00800945bf.shtml

57
Bibliography

[15] J. He and J. Rexford. Toward internet-wide multipath routing. Network, IEEE,
22(2):16–21, 2008.

[16] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm, IETF. Technical report,
Internet RFC 2992, Novembre 2000.

[17] K. Ishiguro, T. Takada, Y. Ohara, A. Zinin, G. Natapov, and A. Mizutani. Quagga
routing suite.

[18] Juniper. Configure bgp to select multiple bgp paths. http://www.juniper.
net/techpubs/software/junos/junos53/swconfig53-ipv6/html/
ipv6-bgp-config29.html.

[19] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dynamic load balancing without packet
reordering. ACM SIGCOMM Computer Communication Review, 37(2):51–62, 2007.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The Click modular router.
ACM Transactions on Computer Systems (TOCS), 18(3):263–297, 2000.

[21] N. Kushman, S. Kandula, D. Katabi, and B. Maggs. R-BGP: Staying connected in a
connected world. In Proc. NSDI, pages 341–354, 2007.

[22] T. S. A. Labs. Best practices for network interconnection. NANOG 43.

[23] T. McGregor, S. Alcock, and D. Karrenberg. The RIPE NCC internet measurement data
repository. In Passive and Active Measurement, pages 111–120. Springer, 2010.

[24] D. Meyer. University of oregon route views archive project. at http://archive. route-
views. org.

[25] M. Motiwala, N. Feamster, and S. Vempala. Better interdomain path diversity with BGP
path splicing, 2007.

[26] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, and S. Uhlig. Interdomain traffic
engineering with BGP. Communications Magazine, IEEE, 41(5):122–128, 2003.

[27] B. Ramamurthy, G. Rouskas, and K. Sivalingam. Next-Generation Internet: Architec-
tures and Protocols. Cambridge Univ Pr, 2011.

[28] Y. Rekhter, T. Li, and S. Hares. RFC 4271: a Border Gateway Protocol 4 (BGP-4).
Internet Engineering Task Force, Tech. Rep, 2006.

[29] E. Rosen, Y. Rekhter, et al. Bgp/mpls vpns, 1999.

[30] R. Teixeira, A. Shaikh, T. Griffin, and G. Voelker. Network sensitivity to hot-potato
disruptions. In ACM SIGCOMM Computer Communication Review, volume 34, pages
231–244. ACM, 2004.

[31] I. van Beijnum, J. Crowcroft, F. Valera, and M. Bagnulo. Loop-freeness in multipath
BGP through propagating the longest path. In Communications Workshops, 2009. ICC
Workshops 2009. IEEE International Conference on, pages 1–6. IEEE, 2009.

[32] V. Van den Schrieck, P. Francois, and O. Bonaventure. BGP add-paths: the scal-
ing/performance tradeoffs. Selected Areas in Communications, IEEE Journal on,
28(8):1299–1307, 2010.

[33] Y. Wang, I. Avramopoulos, and J. Rexford. Design for configurability: rethinking inter-
domain routing policies from the ground up. Selected Areas in Communications, IEEE
Journal on, 27(3):336–348, 2009.

http://www.juniper.net/techpubs/software/junos/junos53/swconfig53-ipv6/html/ipv6-bgp-config29.html
http://www.juniper.net/techpubs/software/junos/junos53/swconfig53-ipv6/html/ipv6-bgp-config29.html
http://www.juniper.net/techpubs/software/junos/junos53/swconfig53-ipv6/html/ipv6-bgp-config29.html

58 Chapter 8
Bibliography

[34] Y. Wang, M. Schapira, and J. Rexford. Neighbor-specific BGP: more flexible routing
policies while improving global stability. In Proceedings of the eleventh international
joint conference on Measurement and modeling of computer systems, pages 217–228.
ACM, 2009.

[35] D. Wischik, M. Handley, and M. Braun. The resource pooling principle. ACM SIG-
COMM Computer Communication Review, 38(5):47–52, 2008.

[36] W. Xu and J. Rexford. MIRO: multi-path interdomain routing. In Proceedings of the
2006 conference on Applications, technologies, architectures, and protocols for com-
puter communications, pages 171–182. ACM, 2006.

[37] X. Yang and D. Wetherall. Source selectable path diversity via routing deflections. In
Proceedings of the 2006 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 159–170. ACM, 2006.

	1 Introduction
	2 The Border Gateway Protocol
	3 Protocol Requirements
	3.1 Flexible Multipath Routing
	3.2 BGP-Compatible Advertising Scheme
	3.3 Controlled Routing Table Growth
	3.4 Stable under Common Configurations

	4 Path ASSEMBLER
	4.1 Decision Process: The K-BESTRO Algorithm
	4.2 Route Dissemination: Path Assembling
	4.3 Example: An ASSEMBLER-Capable Autonomous System
	4.3.1 Downstream Advertisement
	4.3.2 Upstream Advertisement

	5 Deployment Considerations
	5.1 Deployments with Legacy Routers
	5.2 Multipath Routing Policies
	5.3 Enhanced Traffic Engineering

	6 Stability Analysis
	6.0.1 On Dispute Wheels in Unipath and Multipath Scenarios
	6.0.2 Synchronous Model of Path ASSEMBLER
	6.0.3 Path ASSEMBLER Convergence
	6.0.4 Asynchronous Convergence
	6.0.5 Stable Multipath Policy Guidelines

	7 Implementation of an ASSEMBLER-Capable Router
	7.1 The Evaluation Testbed
	7.2 The Control Plane
	7.2.1 The Standard BGP Daemon
	7.2.2 Path ASSEMBLER Extensions in XORP
	7.2.3 Modifying the RIB and FEA Processes

	7.3 The Data-Forwarding Plane
	7.4 Disclosed Path-Diversity

	8 Related Work and Conclusions
	8.1 Conclusions
	8.2 Future Work

	Bibliography

