
29 AUGUST 2011

MASTER'S THESIS

NETWORK MANAGEMENT
IN A DISTRIBUTED SYSTEM

Maurits David de Jong

HUMAN MEDIA INTERACTION
FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND
COMPUTER SCIENCE

EXAMINATION COMMITTEE
dr. Job Zwiers
ir. Pierre G. Jansen
ing. Niels A.G.W. Kortstee
ing. Robert C.G. Poth

NetworkManagement in a Distributed System
v1.3.9

Maurits D. de Jong

EEMCS, Human Media Interaction

University of Twente

A thesis submitted for the degree of

Master of Science HumanMedia Interaction

29 August 2011

mailto:m.d.dejong-1@student.utwente.nl
http://hmi.ewi.utwente.nl
http://www.utwente.nl/en/

We approve the master’s thesis of Maurits D. de Jong.

Date of Signature

dr. Job Zwiers
Associate Professor of Human Media Interaction (HMI)
esis Supervisor
Chair of Committee

ir. Pierre G. Jansen retired
Associate Professor of Computer Architecture for Embedded Systems (CAES)
esis Co-Supervisor

ing. Niels A.G.W. Kortstee
esis Co-Supervisor

ing. Robert C.G. Poth
esis Co-Supervisor

mailto:m.d.dejong-1@student.utwente.nl

Acknowledgements

During my work on this thesis I have experienced a lot of support from
many directions, for which I’m very grateful. e coaching and critique I
have received from my supervisors, both at the University of Twente and at
PrismTech Netherlands, have helped me achieve more than I would have
achieved without them. e team in general at PrismTech Netherlands was
always helpful and also supported me with both technical and non-techni-
cal issues.

Besides the support from my professional environment, I would like to ac-
knowledge two persons especially. First and most of all: my loving wife,
Eline, who has supported me in every way possible. She has been an amaz-
ing help, listener and motivator. Her patience with me and the graduation
process has been incredible. Secondly my father, Marcel, who has helped
me forward with his brilliant technical insights; the resulting sparring we
could do on technical subjects and ideas, motivational support and pulling
me out of the mud when stuck in textual formulations, have greatly helped
me with completing this thesis.

i

http://www.utwente.nl/en/
http://www.prismtech.com
http://www.prismtech.com

Abstract

When managing large scale Data Distribution Service () systems, the
information requests of system-managing experts vary widely. A monitor-
ing system is indispensable and must be either very extensive — which is
unfeasible — or it must be simply extendible. e goal of such a system
is to facilitate the experts’ need for information by providing a straightfor-
ward and Ęexible solution, without introducing high hurdles to be cleared
in order to use it. Basic monitoring and diagnostic features must thus be
available, providing a friendly basis for evolution of the system and guaran-
teeing immediate usability of the solution.

A new concept is introduced, dubbed Delegated Monitoring, describing a
framework that suits the  environment naturally. It solves many of the
issues encountered in traditional network management solutions by using
the facilities of  itself. e primarily in-band solution can even sup-
port (fully) autonomous monitoring and/or (fully) autonomous manage-
ment solutions. e framework doesn’t require an on-line central entity to
deĕne what is monitored and where it is monitored.

By distributing the management routines as well as the commands control-
ling them through , the delegatedmonitoring concept provides a (fully)
distributed cooperative framework that enables the required high Ęexibil-
ity.

e monitoring framework requires a strict deĕnition of the domain se-
mantics with regard to low level monitoring primitives, allowing for a uni-
form interpretation of these primitives. Understanding them well is partic-
ularly needed in diverse highly integrated  systems and helps to make
such systems diagnosable.

ii

Preface

As a newcomer in the world of , I soon ran into the limitations of the
currently available diagnostic tools. It appeared that the need for improve-
ment was widely felt. Not surprisingly, time to research and develop amore
useful tool or generic solution was really scarce. It was from the initial dis-
cussions on the topic that the subject for this thesis emerged, where the set-
ting of a graduation project could provide for the time to properly research
the current solutions and the possibility to come up with a new design or
concept that would allow for an integral improvement of the diagnosability
of the  system.

Working on it proved to be not only an insight increasing activity, but also
a potentially essential contribution to the development of better diagnos-
tic tools for  systems. In particular a fully distributed implementation
of the  standard, such as OpenSplice ™, can beneĕt greatly from a
monitoring andmanagement approach that is also capable of being applied
in a fully distributed manner.

I enjoyed exploring and working creatively in this highly specialised do-
main, where oen seemingly incompatible requirements meet (and have
to be met). Microseconds matter, yet still discussions take place at a level
of abstraction that is not expected when worrying about microseconds. I
have started to appreciate the underlying concepts and the proven applica-
bility of the paradigm and therefore fully hope that my contribution may
one day ĕnd it’s way into the domain.

X
M  J

Enschede, e Netherlands
August 

iii

Typographical Conventions

e type styles shown below are used in this document to distinguish pro-
gramming statements or standards deĕned entities from ordinary English.
ese conventions are not used in tables or section headings where no dis-
tinction is necessary.

Adobe Minion Pro — Standard body text.

Adobe Minion Pro Italic — Formulae and/or calculations.

Thesis Mix Mono— programming statements or standards deĕned enti-
ties.

Pluralisation Normal plural forms of entities (either programming or
standards deĕned) are used for readability. e suffix will be formatted
as standard body text. For example the plural of Publisher will become
Publishers, the possessive form Publisher’s and the plural possessive
form Publishers’. Just so, the plural of Class will be written as Classes.
e name of an entity will however never be modiĕed for proper pluralisa-
tion. In cases where that would otherwise be necessary, the suffix -’s will
be used. e plural of Policy will thus be written as Policy’s instead of
Policies.

iv

Contents

Contents v

List of Figures ix

List of Tables xi

Acronyms xii

Glossary xvii

 Introduction 
. Network Management . 
. Delegated Network Management . 
. Visualisation . 
. Data Distribution Service . 
. OpenSplice ™ . 
. Optimisation and Maintenance . 
. Organisation . 
. Research Questions . 
. Structure of this esis . 

 Data Distribution Service 
. Publish/Subscribe . 

.. Filtering . 
.. Advantages/disadvantages . 

. O’s D-Speciĕcation . 

v

Contents

.. D Model . 
... Overview . 
... Conceptual Model 
... Instances . 

. S . 
.. Indices . 
.. Reĕnements and Extensions 

. OpenSplice ™ . 
.. Architecture . 
.. Services . 
.. Design . 

... Shared Memory . 
... Hot-Swap Support 
... Time Decoupling . 
... Singleton Communication 
... Information Priority 
... Information Urgency 
... Network Partitioning 

.. OpenSplice ™ Management 
. S as a System Design Approach 
. Conclusion . 

 Network Management 
. Introduction . 
. Challenges . 

.. Relevance . 
. Network Management in D . 

.. Tasks . 
.. Network Management Architectures 

... Platform-Centred Architectures 
... Decentralised Architectures 
... Cooperative Architectures 

.. Distributed Monitoring . 

vi

Contents

... Compression . 
... Delegation . 
... Metrics . 

. Conclusion . 

 Visualisation 
. Introduction to Visualisation . 

.. Data Visualisation . 
.. Scientiĕc Visualisation . 
.. Information Visualisation . 

. Insight . 
.. Insight Characteristics . 
.. Gaining Insight . 

. Visualising DataĘow . 
.. Topology . 
.. DataĘow Analysis . 

... Basic DataĘow Example 
.. DataĘow Highlighting and Selection 

. Conclusion . 

 Design 
. Introduction . 
. Global Design . 

.. Architecture . 
.. Platform Abstraction . 

... Abstraction Set . 
.. Delegation . 

... Delegation Agent . 
... Delegation Runtime 

.. Distributed Monitoring: Two Examples 
... C-load DelegationRuntime 
... ProcessList DelegationRuntime 

. Conclusion . 

vii

Contents

 Conclusions 
. Findings to Research Questions . 

.. Findings to Research Question II 
.. Findings to Research question III 

... Findings to Sub-Research Question III.a 
... Findings to Sub-Research Question III.b 
... Findings to Sub-Research Question III.c 

.. Findings to Research Question IV 
.. Findings to Research Question V 
.. Findings to Research Question I 

. Recommendations for Further Research 
.. Logical Network Visualisation 
.. Visualisation Evaluation . 
.. Security . 

References 

A I Speciĕcations A-
A. Platform Abstraction . A-
A. Delegation Module Pseudo- . A-

B D Speciĕcation B-
B. QoS-policies . B-

viii

List of Figures

. D conceptual model . 
. Entity model . 
. OpenSplice ™ shared memory architecture 

. Example dataĘow visualisations . 
(a) DataĘow without edge-bundling 
(b) DataĘow with edge-bundling . 

. DataĘow graphs . 
(a) With four DomainParticipants 
(b) With two nodes . 

. Dynamic monitoring by delegation . 
(a) Overview . 
(b) DelegationAgent detail . 

. ree faces of a perforated cube . 
(a) Logical face . 
(b) Process face . 
(c) Connections face . 

. Multiple faces of D cube . 
(a) ree faces combined . 
(b) Red issue . 
(c) Blue issue . 
(d) Multiple similar cubes forming a complex whole 

. Multi-faceted body . 

ix

List of Figures

. Force-directed edge bundles example 

x

List of Tables

. Basic dataĘow example . 

. Example set of metrics to be abstracted 

B. Default QoS-policies for -entities B-

xi

Acronyms

MB unit symbol for the mebibyte as deĕned by the International Electrotechnical Com-
mission (). e binary preĕx mebi means 220, therefore mebibyte is   
byte. –

RO is the acronym for requested–offered — indicates a compatibility requirement for
requested and offered quality of service () in the  speciĕcation. , B-, see
 & QS-

 is the acronym for application programming interface — an interface implemented
by a soware program which enables it to interact with other soware. , , ,
, A-

 is the acronym for application virtual machine — an application inside a host op-
erating system () supporting a single process. , see also 

 is the acronym for Common Intermediate Language — the lowest-level human-
readable programming language deĕned by theCommon Language Infrastructure
(). , see also 

 is the acronym for Common Language Infrastructure — an open speciĕcation de-
scribing the executable code and runtime environment that form the core of the
Microso .NET Framework and the free and open source implementationsMono
and Portable.NET. xii, see also 

 is the acronym for combat management system. 

 is the acronym and short name for theObject Management Group (’s)Com-
mon Object Request Broker Architecture standard, which enables soware compo-

xii

http://en.wikipedia.org/wiki/Mebibyte
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Comparison_of_application_virtual_machines
http://en.wikipedia.org/wiki/Common_Intermediate_Language
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Mono_(software)
http://en.wikipedia.org/wiki/Portable.NET
http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

Acronyms

nents written in multiple computer languages and running on multiple comput-
ers to work together. xiii, A-

 is the acronym for central processing unit — the portion of a computer system that
carries out the instructions of a computer program. , , , , , , , –,
–, 

 is the acronym for database management system — a set of programs that con-
trols the creation, maintenance, and use of a database. , 

 is the acronym for data centric publish subscribe — a publish/subscribe paradigm
that is deĕned around the requirement for availability of a speciĕc piece of data,
i.e., the interface between publishers and subscribers is the data itself. It can also
refer to the lower level interface speciĕed in the -speciĕcation. ix, xiii, –,
, , 

 is the acronym for the ’s Data Distribution Service for Real-time Systems stan-
dard, which deĕnes a publish/subscribe middleware for distributed real-time sys-
tems, created by the  in response to the need to augment  with a data
centric publish subscribe () speciĕcation. ii, iii, xi–xiii, –, –, –, ,
, , , , –, , , , , , , , , , –, , –, –, , B-

 is the acronym for the Data Local Reconstruction Layer — an (optional) higher
level interface deĕned in the -speciĕcation for simple integration in the appli-
cation layer. , , , 

 is the acronym for force-directed edge bundles — a self-organising edge-bundling
method capable of bundling edges in any graph since it doesn’t require hierarchi-
cal input (Holten & Van Wijk, ; Holten, ). x, , see  & 

 is the acronym and short name of the Free Soware Foundation. xiv

 is the acronym for geometry-based edge bundling — an edge-bundling method
that relies on the generation of a control mesh to guide the bundling (Cui et al.,
). , see  & 

 is the acronym for global data space — the concept of a storage or memory that is
accessible to multiple interested applications. , , 

xiii

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Database_management_system
http://fsf.org

Acronyms

 is the acronym for a hierarchical edge bundles — an edge bundling technique de-
veloped by Holten (). , see  & 

 is the acronym for Interface Description Language — a speciĕcation language used
to describe a soware component’s interface. , , A-

 is the acronym and short name the International Electrotechnical Commission — a
non-proĕt, non-governmental international standards organization that prepares
and publishes international standards for all electrical, electronic and related tech-
nologies. xii

 is the acronym and short name for the Internet Engineering Task Force — a task
force with the mission to make the internet work better by producing high qual-
ity, relevant technical documents that inĘuence the way people design, use, and
manage the internet. 

 is the acronym for the Transmission Control Protocol — a protocol providing the
communication of data across packet-switched networks which is part of the in-
ternet layer of the Internet Protocol Suite. xv, see also TCP/IP

 is the acronym for just-in-time compilation — a method to improve the runtime
performance of computer programs by compiling (parts of) a program during
runtime. 

 is the acronym for Java™ Virtual Machine — a set of computer soware programs
and data structures which use a virtual machine model for the execution of other
computer programs and scripts. e model used by a  accepts a form of in-
termediate language commonly referred to as Java™ bytecode. xiv, xvii, see 

 is the acronym and short name for the GNU Lesser General Public License — a
free soware license published by the Free Soware Foundation (). 

 is the acronym for model driven engineering — a soware development metho-
dology which focuses on creating models, or abstractions, more close to some
particular domain concepts rather than computing (or algorithmic) concepts. It
is meant to increase productivity by maximising compatibility between systems,

xiv

http://en.wikipedia.org/wiki/Interface_description_language
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://www.ietf.org/
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Internet_Layer
http://en.wikipedia.org/wiki/Internet_Layer
http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://www.gnu.org/licenses/lgpl.html
http://en.wikipedia.org/wiki/Model-driven_engineering

Acronyms

simplifying the process of design, and promoting communication between indi-
viduals and teams working on the system. 

 is the acronym for management information base — a virtual database used for
managing the entities in a communications network. 

 is the acronym and short name for the Network Management Research Group —
a forum for researchers to explore new technologies for the management of the
internet. 

 is the acronym and name for the Object Management Group — a soware con-
sortium aimed at setting standards for distributed object-oriented systems, mod-
elling (programs, systems and business processes) and model-based standards.
xii, xiii, , , , , 

 is the acronym for object-oriented programming — a programming paradigm us-
ing objects — data structures consisting of data ĕelds and methods together with
their interactions — to design applications and computer programs. , 

 is the acronym for object-oriented. , , , 

 is the acronym for operating system — soware, consisting of programs and data,
that runs on computers, manages computer hardware resources, and provides
common services for execution of various application soware. xii, , 

 is the acronym for peer-to-peer — a computing or networking architecture that
partitions tasks of workloads between equally privileged, equipotent participants.
, , 

 is the acronym for quality of service — a resource reservation control mechanism
that provides the ability to provide different priority to different applications,
users, or data Ęows, or to guarantee a certain level of performance to a data Ęow.
xii, xviii, , , , , , see also QS-

 is the acronym for Simple Network Management Protocol —an internet-standard
protocol for managing devices on Internet Protocol () networks. , 

xv

http://en.wikipedia.org/wiki/Management_Information_Base
http://irtf.org/nmrg
http://omg.org/
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

Acronyms

 is the acronym for Subscribe Paradigm for the Logical Interconnection of Con-
current Engines — a system architecture developed with the goal to simplify the
creation and maintainability of complex, distributed, real-time systems. , , 

 is the acronym for single point of failure — a part of a system that, if it fails, will
stop the entire system from working. , , , , 

 is the acronym for the Transmission Control Protocol — a protocol guaranteeing
reliable, ordered delivery that is part of the transport layer of the Internet Protocol
Suite. see TCP/IP

 is the acronym for the User Datagram Protocol — a protocol providing best-effort
delivery which is part of the transport layer of the Internet Protocol Suite. see
UDP/IP

xvi

http://en.wikipedia.org/wiki/Single_point_of_failure
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transport_Layer
http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Transport_Layer
http://en.wikipedia.org/wiki/Internet_Protocol_Suite

Glossary

C is the name of the C programming language — an imperative (procedural) language
and is one of the most widely used general-purpose computer programming lan-
guages. 

C++ (pronounced: see plus plus) is the name of the C++ programming language —
a multi-paradigm general-purpose computer programming language, which is
among one of the most popular languages. , 

C (pronounced: see sharp) is the name of the C programming language — a multi-
paradigm programming language developed by Microso. 

Ethernet is a family of frame-based computer networking technologies for local area
networks, standardised as IEEE .. 

Java EE stands for Java™ Platform, Enterprise Edition, a standard platform for develop-
ing multitier enterprise applications with Java™. 

Java™ is a programming language originally developed by Sun MicrosystemsƬ. Java ap-
plications are typically compiled to bytecode which can run on any Java™ Virtual
Machine () regardless of computer architecture. xiv, xvii, , , , 

Lingua Franca is a bridge language or working language — “a language systematically
used to communicate between persons not sharing a mother tongue, in partic-
ular when it is a third language, distinct from both persons mother tongues”
(Wikipedia, a). 

ƬSince January ,  fully acquired by Oracle Corporation

xvii

http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/IEEE_802.3
http://www.oracle.com/javaee/
http://oracle.com/

Glossary

QoS-policy is a policy deĕning  — a general concept that is used to specify the
behaviour of a service, oen used for aspects like resource reservation control in
communication systems. xi, , , –, –, , , –, B-, see also 

SOAP is a protocol speciĕcation for exchanging structured information using Extensi-
ble Markup Language (XML). Previously it was known as the acronym for Simple
Object Access Protocol, but the acronym was dropped with version . of the spec-
iĕcation. , 

TCP/IP is a set of communication protocols. , see  & 

UDP/IP is a set of communication protocols. , see  & 

xviii

Chapter 

Introduction

e domain of large-scale networked computer systems is largely dominated by client/
server architectures like for example the World Wide Web or Java EE. Distributed par-
allel systems are becoming larger and more advanced and in many distributed appli-
cation domains the publish/subscribe messaging paradigm has become popular. e
paradigm — in contrast to traditional point-to-point models, e.g., client/server — de-
couples end-points in time, synchronisation and space. is decouplingmakes publish/
subscribe systems potentially highly scalable (Eugster et al., , p. ) and it also fa-
cilitates dynamic network topologies. Full advantage can be taken of the decoupling by
implementing a fully distributed event dispatcher infrastructure, thereby eliminating a
single point of failure () which exists in centralised event dispatcher infrastructures.
is can make a publish/subscribe middleware very robust. While many deployed pub-
lish/subscribe systems still use a centralised infrastructure, some commercial and aca-
demic efforts have led to highly-available publish/subscribemiddlewares that use a truly
decentralised architecture (Cugola et al., , p. ).

e decentralised nature, increasing scale and overall complexity of such distributed
systemsmakes analysis and comprehension of runtime behaviour increasingly complex.
In many types of work people ĕnd working with distributed and/or parallel systems
(e.g., parallel debuggers or distributed algorithms) difficult (Kraemer & Stasko, ,
p. ). is is not lastly due to the amount of raw data that oen needs to be analysed
(Reed et al., ). Speciĕcally in a publish/subscribe infrastructure, which on a logical
level is inherently connection-less, (system-) aspects like interactions (or lack thereof),
dataĘows and availability, performance and mappings of logical concepts onto physical



Chapter  — Introduction

entities are hard to analyse.

. NetworkManagement

Network management is concerned with system deployment, surveillance of important
performance metrics and optimisation of system performance. It requires means to
monitor important (performance) metrics and to control the behaviour of both the
hardware and the soware resources of the system. A networkmanagement framework
should apart from that optimally support autonomous optimisation too.

e task of managing large scale systems is oen concerned with vast amounts of
data coming from highly complex infrastructure compositions. Since the supporting
protocols, the infrastructure itself and sometimes even the topology are not completely
understood, it is essential to support network management experts in gaining insight
in the system.

Network management tasks that are well supported in traditional network systems
aremore difficult inmore dynamic networks like in peer-to-peer () networks, ad-hoc
networks or the logical network formed by the matched subscriptions of the publish/
subscribe architecture, for example due to the fact thatmany tasks are very difficult to be
performed by a centralised manager. In these dynamic systems the monitored network
itself needs to implement part of the network management functionality in a distrib-
uted manner, enabling the network to perform distributed ĕltering and aggregation of
monitoring data. is data can then be presented and visualised for human operators in
a meaningful and accessible format. For example topological views allowing interactive
exploration of non-volume related parameters like unusual traffic and patterns can be
provided.

It is thus essential that a network management architecture for a publish/subscribe
system supports these monitoring and management primitives. Such a solution can be
built by making distributed entities cooperate at some level in order to achieve func-
tionality outside entity boundaries. By utilising a cooperative architecture, the need for
a centralised management entity is avoided.



Chapter  — Introduction

. Delegated NetworkManagement

Anew approach to enhance, or better enable, experts capability tomonitor and diagnose
publish/subscribe systems is proposed. Provisions to dynamically delegate monitoring
tasks to all components of the system are designed. is distributed monitoring frame-
work allows the management induced network-load to be effectively reduced while per-
taining the good scalability characteristics of the underlying publish/subscribe system.
Because the tasks are delegated, processing of monitoring data is done distributedly,
also supporting the scalability of the network management framework.

Monitoring behaviour at distributed nodes or groups of nodes and even diagnostic
tasks can be tuned to varying and/or evolving needs and desires of the network manag-
ing expert because of the dynamic delegation. is tunability is of vital importance as
it provides a principal Ęexibility, that will almost certainly prove to be of essential value
when expertise in this newway of networkmanaging begins to grow. Although this new
approach may prove to be a necessity without which further upscaling of highly reliable
and dynamic network systems may be impossible — or at least extremely troublesome
— the same approach may prove to be worthwhile also in systems of lesser extent. In
fact, there is virtually no reason to live without the attractive characteristics of delegated
monitoring even in the smallest of systems.

e proposed network management architecture implements a scalable, fully dis-
tributed and extensible monitoring solution, allowing for virtually unlimitedly complex
distributed monitoring logic to be deployed, including distributed automatic optimisa-
tion algorithms.

. Visualisation

When themonitoring andmanagement primitives are combined with existing or newly
developed network management and visualisation tools, a very powerful solution can
be created. Analysis can be done on the conceptual publish/subscribe network, where
for example the dataĘows can be used to form an overlay network, even when the true
underlying concept is fundamentally connection-less. Visualisation of monitoring data
can be used to exploit the remarkable capabilities of the human visual system in iden-
tifying trends, patterns and peculiarities in datasets, allowing system exports to gain



Chapter  — Introduction

insight in the monitored system.
Allowing a user to interactively select matched subscriptions or lower level network

channels will allow the user to gain speciĕc insights regarding the mapping, connection
attributes or connectivity in general.

. Data Distribution Service

e Object Management Group () — a soware consortium aimed at setting stan-
dards for distributed object-oriented () systems, modelling (programs, systems and
business processes) andmodel-based standards—has deĕned a publish/subscribe stan-
dard called Data Distribution Service for Real-time SystemsƬ, of which the ĕrst versionƭ
was published on June , . It has been created in response to the need for a stan-
dardised data-centric programming model for distributed real-time systems. Many of
the concepts of the  speciĕcation originated from a project aimed at simplifying
the intricate task of designing large-scale systems with stringent requirements regard-
ing robustness, availability, temporal behaviour, performance and maintainability, as
described by Boasson ().

e  standard deĕnes a data-centric publish/subscribe networking middleware
that simpliĕes complex network programming. It deĕnes the concept of a logical global
data space () containing information expressed by data-units called Topics that are
published /consumed by distributed Publishers /Subscribers. e  standard
speciĕes a large range of quality of service () policies that drive the logical behaviour
of data-distribution and availability.

e level of abstraction provided to applications using a  middleware, oen
makes it difficult to identify faults when they occur. e speciĕc focus of the standard
on performance, the typical stringent requirements on deployed systems and the com-
plex interplay of the available QoS-policies deĕned in it, can make runtime analysis of
such systems a daunting task. e rich feature set and global concept underlying the
 speciĕcation enable and stimulate the efficient development of large scale distrib-
uted systems as described by Boasson (, chap. ). However, the same extensive set

ƬData Distribution Service ()
ƭe current version of the speciĕcation is  . described in  document formal/--,

which can be obtained from http://www.omg.org/spec/DDS/1.2/PDF/.



http://www.omg.org/spec/DDS/1.2/PDF/

Chapter  — Introduction

of features and concept are on the other hand a complicating factor in understanding
and addressing faulty runtime behaviour.

. OpenSplice ™

An implementation of the  speciĕcation — implemented using a truly scalable and
decentralised architecture — is OpenSplice ™. e core development of OpenSplice
™ is done at PrismTech NetherlandsƬ. OpenSplice ™ is a very high-performance,
real-time, data-centric publish/subscribe middleware platform for distributed mission-
critical systems. It extends on the standard by allowing for a dynamic and program-
matic mapping of logical  entities and their related QoS-policies (w.r.t. information
urgency and importance, information reliability and persistence) onto the physical (run-
time) infrastructure existing of interconnected (sub)systems, hierarchical networks, en-
terprise and embedded computing nodes, shared-memory within nodes, multi-thread-
ed application processes and pluggable services. PrismTech has an open source edi-
tion of their implementation OpenSplice ™ Community Editionƭ available since April
.

Many large systems with extreme requirements regarding availability, robustness
and performance utilise OpenSplice ™ because of its distinctive features with regard
to data-centred control, deployment, services, modelling and other facilities it offers to
the applications, developers and system designers.

. Optimisation andMaintenance

e deployment of systems adumbrated above has in practice revealed that optimisa-
tion and curing and/or preventing system malfunction are daunting tasks that require
system experts with overall knowledge of the system. e vast amount of — mostly tex-
tual and inherently sequential — data that can aid in resolving issues can be difficult to
assimilate. e relation of the metrics to the issue at hand is oen not well deĕned ei-
ther, complicating the task even more. Typical issues that have to be dealt with involve
inappropriate resource allocation, hardware failures and performance deĕciencies.

ƬHengelo (Ov.), e Netherlands
ƭOpenSplice ™ Community Edition can be downloaded from http://opensplice.org



http://www.prismtech.com
http://www.prismtech.com
http://opensplice.org
http://opensplice.org
http://opensplice.org

Chapter  — Introduction

Conceptually, tuning of the system can be seen as a multidimensional optimisation
problem with complex optimisation criteria. Mankind searches for an optimal state in
many areas — for as long as we exist. Optimisation science exists from ancient times
andmaywell be one of the oldest sciences in the world (Neumaier, , p. ) and surely
inĘuences our daily lives. Many optimisation algorithms have been developed over the
years (e.g., Horst et al., ; Weise, ). e web page created by Neumaier ()
is also a good compilation of relevant matter on the subject.

Currently no automatic optimisation is done by OpenSplice ™, so it is interest-
ing to determine to what extent optimisation algorithms (either on-line or off-line) can
be applied to optimisation of deployed/running OpenSplice ™ systems. It is how-
ever anticipated that — even with the currently best possible automatic optimisation
— human intervention will be necessary. Not least because large systems sometimes
already require tuning in order to fulĕl preconditions that must be satisĕed in order to
get OpenSplice ™ started. During this deployment/start-up phase, the system can-
not perform on-line optimisations and conĕguration ĕxes and optimisations thus have
to be carried out by system experts.

. Organisation

e project was performed at PrismTech Netherlands and was supervised by dr. Job
Zwiers (associate professor) and ir.PierreG. Jansen (associate professor) on behalf of the
University of Twente and ing. Robert C.G. Poth (chief architect) and ing. Niels A.G.W.
Kortstee (technical-/team lead) on behalf of PrismTech Netherlands. Robert Poth and
Niels Kortstee both have years of experience in developing mission-critical real-time
systems at T NetherlandsƬ.

e goal of the graduation project is to analyse the issues encountered with manage-
ment of OpenSplice ™ systems and design a solution that aids in- or resolves the
encountered issues. Because the solution to this issue touches a lot of different domains
of key research, an overview of the domains and their relevance will be given in the
respective chapters in order to aid in answering the main questions of the thesis.

ƬBefore Holland Signaalapparaten B.V. (or Signaal for short), one of the founding parties of the -
 speciĕcation



http://www.prismtech.com
mailto:j.zwiers@ewi.utwente.nl
mailto:j.zwiers@ewi.utwente.nl
mailto:p.g.jansen@ewi.utwente.nl
http://www.utwente.nl/en/
mailto:robert.poth@prismtech.com
mailto:niels.kortstee@prismtech.com
mailto:niels.kortstee@prismtech.com
http://www.prismtech.com
http://www.thalesgroup.com/nl/

Chapter  — Introduction

. Research Questions

is section will introduce the main research questions that will be looked into in this
thesis. In the following chapters the context of the questions will be highlighted and
answers to the questions will be given. e main research question that is considered
in this thesis is:

Research question I
How can human experts be optimally supported with their management tasks in -
based systems?

e main question to be answered within this thesis deals with the problem of how
expert users of  middleware can be assisted in their system-management tasks by
making behaviour of the system diagnosable. In this thesis the main focus will be on
assisting the users in their tasks. It is however also possible that — at least a subset of —
the problems encountered can be autonomously solved by the system by applying auto-
matic optimisation algorithms. is also leads to the deĕnition of research question II:

Research question II
Which network management and visualisation of management data is needed in -
based systems?

Visualisation is not a goal in itself, so the relevance of visualisation for network manage-
ment related tasks will have to be determined. By ĕnding the types of tasks and areas
of network management where the users typically need to be assisted will allow the def-
inition of suitable assisting methods. So probably, subsets of tasks will be best assisted
by either (semi-)automatic optimisation, visualisation or even rendered obsolete by an
autonomous capability of the system. In anticipation that there will be use-cases for
which visualisation is useful despite other options like autonomous optimisation, the
following questions are deĕned.

Research question III
What functionality is needed for management tasks in  systems?

Answering this question will give insight in the problems that need to be tackled in
order to provide the right data in the right format to the users. Literature research on
similar problems like network management in traditional network systems and data-
visualisation will also provide valuable information on typical problems/solutions in



Chapter  — Introduction

this area. e insight gained by the answer on research question II will act as input to
deĕning which functionality will have to be available in order to satisfy the visualisation
and information needs for networkmanagement in -based systems. is is expected
to range from practical functionality like data gathering to abstract functionality like
data presentation.

Sub research question III.a
In what areas is the OpenSplice ™ system currently lacking?

e current state of OpenSplice ™ with regard to the functionality as found in the
answer to research question III will drive which parts of the implementation require fur-
ther research. Shortcomings of OpenSplice ™ can be either in availability or design
of speciĕc functionality.

Sub research question III.b
How can data be collected in a scalable manner, suiting the environments in which 
is typically deployed?

e typical nature of the systems in which  is deployed will render an even appar-
ently trivial task like data-gathering very difficult. is issue will need to be solved in
a way that suits the deployment environment, not yielding too many compromises on
the network management capabilities.

Sub research question III.c
Which data and/or metrics are needed for management of  systems?

If it is possible to identify a type or set of data andmetrics thatwill be needed for network
management, deĕning them will help in ĕnding existing applicable visualisations or
creating new or adapted ones, tailored to the  network management needs.

Research question IV
Is visualisation in a network management solution for  a luxury or a necessity?

Given the availability of a considerable amount of network management related data,
one may question whether it makes a difference to represent these data graphically.
is question may be especially valid in the speciĕc professional area of network man-
aging experts. Some of these highly skilled persons have indeed developed a surprising
and laudable ability in analysing raw or simply tabulated data. Nonetheless, if the raw



Chapter  — Introduction

data are properly transformed to graphics, the analysis may even be performed faster.
Although thorough in-depth analysis of raw data related to a graphically localised is-
sue may still be necessary, network management experts may still beneĕt greatly from
graphical representations of the data.

Research question V
How can a network management implementation in OpenSplice ™ be designed?

A management solution for OpenSplice ™ will touch a lot of layers of both the prod-
uct as well as abstractions of the product. In order to facilitate efficient management, a
design will have to be created that satisĕes all criteria found in this thesis.

. Structure of thisesis

In this chapter the context of the work performed for this thesis has been described. In
chapter  (Data Distribution Service) the global concepts underlying the  speciĕ-
cation and the speciĕc implementation thereof in the form of OpenSplice ™ will be
described. In chapter  (NetworkManagement) the focus will be on traditional network
management systems and how they relate to . Furthermore the areas relevant for a
networkmanagement solution in  will be discussed. In chapter  (Visualisation) the
necessity of visualisation for network management and the general goal and concepts
of visualisation are discussed. In chapter  (Design) a design will be proposed that suits
the  environment and fulĕls the requirements for a network management solution
in . Finally in chapter  (Conclusions) the ĕndings to the research questions and
recommendations for further research are given.



Chapter 

Data Distribution Service

In chapter  (Introduction) a short introduction to publish/subscribe,  and Open-
Splice ™ has been given. In this chapter, those topics will be discussed more elab-
orately and information will be provided about the publish/subscribe paradigm in sec-
tion . below, the  standard in section . (O’s D-Speciĕcation) and of Open-
Splice ™ speciĕcally in section . (OpenSplice ™). In section . (S) the
heritage of both  and OpenSplice ™ will be introduced.

Goal of this chapter is to provide background information on the context in which
the thesis is performed. is chapter will also answer research question II by explain-
ing the difficulties encountered in deploying and managing systems based on the 
speciĕcation.

. Publish/Subscribe

Publish/subscribeƬ is a messaging paradigm related to the message queue paradigm. In
the publish/subscribe concept, senders ofmessages (publishers) are not connected to the
receivers (subscribers) of the messages. Messages are distinguished by classes to which
they are published. ere is no knowledge in the publisher as to what — if any — sub-
scribers there are. Analogous, subscribers receive messages from classes they expressed
interest in, without knowing what — if any — publishers there may be. e concept of
decoupled senders and receivers is beneĕcial for the scalability and topology dynamics

ƬAlso abbreviated pub/sub or 



Chapter  — Data Distribution Service

of systems implementing it.
Already in  a patent was ĕled in e Netherlands for a data centric publish sub-

scribe ()Ƭ, shortly followed by an international application in ƭ. Also in 
at the Symposium on Operating Systems Principles conference a publish/subscribe sub-
system of the ISIS Toolkit called News (Birman & Joseph, , p. ) was published
(Wikipedia, b).

.. Filtering

Subscribers have interest in only a part of all published messages in typical systems and
thus need means to ĕlter the messages. Two forms for this ĕltering are oen applied:
topic-based and content-based. e ĕrst is characterised by the fact that the publisher
is responsible for deĕning the classes and the classiĕcation of the messages, whereas in
the latter case this is done by the subscriber.

Topic-based — Messages are published as topics to which subscribers can subscribe.
All subscribers subscribed to a topicwill receive the samemessages. epublisher
deĕnes the classes/topics to which the messages belong.

Content-based — A subscription is taken on speciĕc attributes or content of the mes-
sages, which will only be delivered if they match the constraints set by the sub-
scriber. In this ĕltering approach, the responsibility for classifying messages lies
with the subscriber.

ese ĕltering approaches are notmutually exclusive and can thus be combined to form
a hybrid system supporting both.

.. Advantages/disadvantages

As already noted earlier, themost notable advantages of the publish/subscribe paradigm
are its loosely-coupledness and scalability. Because the publishers and subscribers are de-
coupled, they can be location agnostic and continue to operate if one of both ceases to
exist. In a traditional client/server system, a client needs to know how to reach the

ƬDec. , , NL
ƭDec. , , U.S. Pat. Appl.  , continued in U.S. Pat. Appl.   on Oct. , . Patent

issued on Apr. , , U.S. Pat.    (Boasson, )



Chapter  — Data Distribution Service

server and the server needs to be available at the time of the request of the client. is
server is thus a  in such a set-up. In a publish/subscribe system, the process imple-
menting the functionality of the server (potentially consisting of both a publisher and a
subscriber) can easily be relocated (for example to a more powerful machine) without
affecting the whole system.

Because no end-to-end connections exist on the conceptual level, implementations
can beneĕt by being able to scale easily. Especially when a lot of one-to-many relations
exist. Although not all systems implementing the publish/subscribe paradigm actually
do scale well, this is not an inherent limitation of the paradigm itself.

e most notable disadvantages of publish/subscribe systems oen are attributed
to one of the main advantages: its loosely-coupledness. e lack of end-to-end notion
is considered to be a shortcoming by some, explained by the issue that arises when a
publisher is interested in knowing whether anyone is actually doing something with the
published information (or whether delivery succeeded)Ƭ. Such information is oen not
available to the publish/subscribe system.

Another case for which the lack of end-to-end notion is restrictive is sender/receiver
veriĕcation or authorisation of content-access. While obviously highly implementation
dependant, this traditionally requires the notion of the receiver on the sending side and
vice versa.

. O’s D-Speciĕcation

As introduced in section . (Data Distribution Service), the  has deĕned the 
standard which deĕnes a  architecture with a speciĕc focus on performance. In
data-centric communication, speciĕc parameters can be speciĕed for the data being
distributed in the formofQoS-policies, allowing applications to be developed according
to requirements regarding those policies. is leads to a systemwhere the only interface
between applications is the data itself together with the speciĕed QoS-policies.

Being primarily based on two major proprietary  implementations — 
from Real-Time Innovations, Inc. and  from  — the standard has been cre-

ƬOne could argue that in a proper application of the publish/subscribe paradigm, the interest of the
publisher should be expressed as a subscription to that information, which in turn should be published
by the subscriber in cases where necessary



Chapter  — Data Distribution Service

ated in a joint effort of these parties with the . Apart from both mentioned vendors,
Objective Interface Systems, Inc.,eMitre Corporation and theUniversity of Toronto also
submitted and/or supported parts of the speciĕcation (OMG, , pp. –). Two lev-
els of interfaces are deĕned in the speciĕcation: a lower  level, which is targeted at
efficiency and an (optional) higher Data Local Reconstruction Layer () level, which
is targeted at easier integration at the application level (OMG, , p. ).

e speciĕcation deĕnes compliance proĕles in which optional functionality is de-
ĕned. For example the -layer is optional and is deĕned in a separate proĕle. e
following proĕles are distinguished (OMG, , pp. –):

Minimum proĕle — In this proĕle just the compulsory features of the -layer are
contained.

Content-subscription proĕle — In this proĕle functionality is added that allows for
content-based ĕltering. e default ĕltering mechanism in the minimum proĕle
is topic-based.

Persistence proĕle — is proĕle adds a durability aspect to the middleware, which
allows data to be stored on permanent or transient storage so that it can survive
the life-cycle of a publisher/writer or even middleware outings.

Ownership proĕle — In this proĕle functionality to deĕne an owner of data is added
allowing the middleware to handle multiple publishers for the same data. is
proĕle also adds the possibility to specify a history for instances.

Object model proĕle — is proĕle includes the -layer and adds some data-pre-
sentation functionality.

e  speciĕcation deĕnes several QoS-policies by which application developers
can inĘuence how the service behaves, without the need to specify how this should be
achieved. In the minimum proĕle, QoS-policies are available that affect predictability,
overhead and resource utilisation. ese policies follow directly from themain purpose
for real-time applications of predictable data distribution with minimal overhead.



Chapter  — Data Distribution Service

.. D Model

is section is an excerpt of the basic concepts introduced in version . of the 
speciĕcation, which should be consulted when a more detailed explanation is required.

... Overview

In  information Ęows in the form of Topics from the sending side by means of a
Publisher and DataWriter to a Subscriber and DataReader on the receiving side.
All inĘuenced by the QoS-policies of the respective entities. A Topic associates a name
with a data-type and QoS-policyƬ.

• e Publisher object is responsible for data distribution and may publish data
of different types. Data for a speciĕc type is written through a typed accessor of
the Publisher called the DataWriter. When an application has used a Data-
Writer to communicate data-object values to the Publisher, it becomes the
Publishers responsibility to perform the distribution. e association of a Pub-
lisher and a DataWriter deĕnes a publication, which expresses the intent of an
application to publish data described by the DataWriter in the context provided
by the Publisher.

• e Subscriber object is responsible for receiving and providing data of dif-
ferent types to the receiving application. e received data can be accessed by
the application by means of a DataReader, which deĕnes a typed interface to
a Subscriber. e association of a Subscriber and a DataReader deĕnes a
subscription, which expresses the intent of the application to subscribe to the data
described by the DataReader in the context provided by the Subscriber.

Publications and subscriptions are matched based on Topics. Publications must be un-
ambiguously identiĕable for subscriptions to be able to refer to them, so the name of
a Topic needs to be uniqueƭ. e QoS-policy related to the Topic, together with the
QoS-policies of the Publisher and DataWriter control the behaviour on the pub-
lishing side, while the Topic-, Subscriber- and DataReader-QoS-policy control the
behaviour on the subscribing side.

Ƭe key of a Topic is also part of this association; keys are introduced in section ... (Instances)
ƭWithin a domain (see footnote  on page  for the deĕnition of a domain)



Chapter  — Data Distribution Service

... Conceptual Model

Topic

QosPolicy

Publisher Subscriber

DataReader

Entity

DataWriter

DomainParticipantDomainEntity

<<summary>>

A DomainParticipant is the entry-point

for the service and isolates a set on

applications that share a physical

network.

*

1

*

**

1

*

1

*

<<implicit>>
* 1

Figure .: D conceptual model
Source: OMG (, p. , simpliĕed)

In Figure . above, the conceptual model of the  communication entities is
shown. Figure . shows that all specialisations of Entity follow the uniĕed patterns
of:

• Supporting bymeans of QosPolicy’s—QoS-policies provide a genericmech-
anism for the application to control the behaviour of the middleware. Every En-
tity supports its own specialised kind of QoS-policy.

• Accepting a Listener—a Listener provides a genericmechanism for themid-
dleware to asynchronously notify the application of events (notiĕcation-based
communication).

• Accepting a StatusCondition — a StatusCondition (in conjunction with a



Chapter  — Data Distribution Service

WaitSet) provides support for a wait-based communication style between the
middleware and the application.

QosPolicy

<<interface>>

ListenerEntity

WaitSet

StatusCondition

Condition

*

1

0..1

0..1

listener

statuscondition

*

*

qos

*

Figure .: Entity model
Source: OMG (, p. , simpliĕed)

e local membership of an application to a domainƬ is represented by a Domain-
Participant, to which all  entities are attached.

... Instances

By deĕnition, a Topic corresponds to a single data type, but several Topics may refer
to the same data type. Information represented by data types are sent atomicallyƭ. ese
atomic data value sets are called samples.

A Topic identiĕes data of a single type, ranging froma single instance to a collection
of instances. When a Topic identiĕes multiple instances, then the different instances
must be distinguishable. is is achieved bymeans of specifying one ormore of the data
ĕelds as key. e deĕnition of the key, i.e., the list of data ĕelds whose values form the
key, must be speciĕed to the middleware. Different samples with the same key-value
represent successive values for the same instance, samples with different key-values rep-
resent different instances. When a key deĕnition is omitted, the data set associated with
a Topic can only contain one instance.

ƬA domain is a distributed concept that links all applications that are able to communicate with each
other

ƭOn the  level, the optional  layer provides the means to break data-objects into separate
elements, each sent atomically



Chapter  — Data Distribution Service

. S

One of the already existing implementations on which the  speciĕcation is based
is Ƭ. e development of this architecture already began in the s, leading to a
patent application in . It was driven by the difficulties encountered designing highly
sophisticated control systems. e concept of modularity — where different pieces of
functionality are separated intomodules having some level of independence from other
modules — was still lacking as a solution to this problem with regard to certain aspects.
Particularly the non-functional requirements of such systems, like fault-tolerance, hy-
brid deployment environments with a multitude of different processing platforms and
adaptability restrained the design freedom of the modular approach to the extent that
it was hardly feasible to satisfy the requirements.

e  paradigm introduced an — also modular — approach that solved many
of the issues inherent in the originally practised approach. In the  architecture, a
system is (recursively, if wanted) composed of:

Applications —Independent, autonomous processes that are totally isolated from each
other. ey only interact with the rest of the system through Agents, with a well-
deĕned interface.

Agents — Every application interacts with exactly one agent, which serves the applica-
tion with storage and processing facilities needed for communication. All agents
are identical and communicate through a message passing mechanism.

Network — e messages between agents are handled by the network that connects
them.

All relevant data (outside of the application scope) is labelled in such a way that there
is a one-to-one relation between a label and the interpretation of the data by an appli-
cation that uses it. is label and the structure of the data being labelled are needed by
application designers working on a particular subsystem. Communication decisions —
like where to get speciĕc data from or where to send it — are deferred until execution
time. During execution, the agents determine, based on the labels of the data being pro-
duced or consumed, the communication needs. As a result, no application relies on the

ƬSubscribe Paradigm for the Logical Interconnection of Concurrent Engines ()



Chapter  — Data Distribution Service

presence or knowledge of another application. e only requirement is that the needed
data is produced somewhere in the system.

.. Indices

A subscription to a particular label, a datasort, declares the interest in both the current
as well as any future data-instance for that label. As a reĕnement to that principle, which
allows for only one instance per label, the  paradigm allows speciĕcation of an
index by means of key-ĕelds. If an instance differs from already stored instances it will
be stored separately, otherwise it will overwrite the previous value. is key-deĕnition
is a strictly local notion, and can thus differ between the producer and consumer, or
multiple consumers of the same data.

Deĕning an index on the producing side may seem a bit strange at ĕrst, but it aids
in Ęexibility in the order in which consuming applications become active. Typically, a
consuming application will need all the currently valid instances for all its sorts. If the
producer would not have an index deĕned, the consuming application would only get
the (single) available data instance. To solve this, the producer may specify an index, so
that a complete set of relevant instances is available instead. If an application subscribes
to the sort, the producer’s agent will ĕrst send out all stored instances and then send
new instances as described earlier.

.. Reĕnements and Extensions

In order to tackle more speciĕc issues typically encountered in control systems — the
area in which  was developed—more extensions and reĕnements wheremade to
the paradigm. For example support for redundancy andĕltering. Amore detailed expla-
nation of the extensions and reĕnements is available by Boasson (, chap. III.B–C).

. OpenSplice ™

e open source product of PrismTech’s implementing the - speciĕcation is
OpenSplice ™ and it has its roots in the  product developed at  accord-
ing to the paradigm described in section . (S). e open source product is sup-



http://www.prismtech.com

Chapter  — Data Distribution Service

plemented by commercial subscriptions, which extend the capabilities of the product
even more.

Community Edition — e OpenSplice ™ Community Edition is available as open
source and is therefore freely downloadable. is edition is licensed under the
GNU Lesser General Public License () and provides a great way of getting
startedwith a full-Ęedged  implementationwith support for all proĕles except
the object model proĕle.

Compact Edition — e OpenSplice ™ Compact Edition is available only by sub-
scription. In addition to the features provided by the Community Edition, the
Compact Edition includes model driven engineering () PowerTools to boost
development productivity and theOpenSplice ™ Tuner tool to help inspect and
optimise system performance.

Professional Edition — e OpenSplice ™ Professional Edition adds support for the
optional object model proĕle, enhancing the Compact Edition with an Object
Cache Object/Relational Mapping layer (i.e., ). It furthermore adds a SOAP-
Connector, which allows for easy integration with SOAP-based environments.

Enterprise Edition —eOpenSplice ™ Enterprise Edition adds a connector to data-
base management system (dbms’s) and is themost complete and advanced edition
available.

Apart from the basic descriptions above, the platform support generally gets better with
more advanced editions.

.. Architecture

OpenSplice ™ utilises a shared-memory architecture where samples are physically
present only once on any node. Internal administration still provides each Subscrib-

er with its own private view on this data. is architecture enables a Subscriber’s
data cache to be seen as an individual database, which can have content ĕlters, queries,
etc., by using the functionality provided in the  content-subscription proĕle. is
shared-memory architecture results in low footprint, excellent scalability and optimal



Chapter  — Data Distribution Service

performance when compared to implementations where each DataReader/DataWri-
ter is a communication end-point with its own storage (i.e., historical data both at
the DataReader and DataWriter) and where data itself has to be moved around in
memory, even within one node. e same shared-memory is also used to interconnect
all applications that reside within one computing node as well as for a conĕgurable and
extensible set of services, which provide pluggable functionality.

Computing-Node

App-1App-1

OpenSplice-libOpenSplice-lib

App-1App-1

OpenSplice-libOpenSplice-lib

App-2App-2

OpenSplice-libOpenSplice-lib

App-2App-2

OpenSplice-libOpenSplice-lib

App-3App-3

OpenSplice-libOpenSplice-lib

App-3App-3

OpenSplice-libOpenSplice-lib

Shared memoryShared memory

Disk
(XML/Binary)

Disk
(XML/Binary)

Con9ig
(XML)

Con9ig
(XML)

OpenSplice-libOpenSplice-lib

Domain-

Service

Domain-

Service

OpenSplice-libOpenSplice-lib

Domain-

Service

Domain-

Service

OpenSplice-libOpenSplice-lib

Durability-

Service

Durability-

Service

OpenSplice-libOpenSplice-lib

Durability-

Service

Durability-

Service

OpenSplice-libOpenSplice-lib

SOAP-

Service

SOAP-

Service

OpenSplice-libOpenSplice-lib

SOAP-

Service

SOAP-

Service

SOAP-client

OpenSplice-libOpenSplice-lib

Network-

Service

Network-

Service

OpenSplice-libOpenSplice-lib

Network-

Service

Network-

Service

network

Figure .: OpenSplice ™ shared memory architecture

In Figure . above a graphical representation of the shared memory architecture
used in OpenSplice ™ is given. It shows four services — available in the OpenSplice
™ Professional Edition — and depicts the way services and applications interact in
a standardised way with the shared memory. All applications and services access the
shared-memory through a library which on the most basic level provides an  data-
base view on the shared-memory. ere are several application programming interface
() layers included in the library, each with a speciĕc focus (e.g., -, -
and language-bindings for languages such as Java™, C, C++, C, etc.).



Chapter  — Data Distribution Service

.. Services

e OpenSplice ™ middleware comes with a set of pluggable services, which are
highly conĕgurable. e services can therefore be tailored to suit really speciĕc and
demanding use-cases. A description of the most common services is given below.

Domain-service — is service’s responsibility lies with creating the shared memory
and initialising the shared nodal administration for a speciĕc -domain on a
node. It also conĕgures the administration according to a conĕguration-ĕle. e
domain service also starts all pluggable services conĕgured in the conĕguration-
ĕle, monitors the health and controls the life-cycle of the services. Furthermore
it provides functionality to cleanly tear down a domain. Without this service, no
application nor service can join a domain on that node.

SOAP-service — is service provides a remote interface to the monitor and control
facilities of OpenSplice ™ by means of the SOAP-protocol. is enables for
example the remote -domain monitor and control functionality of the Open-
Splice ™ TunerƬ.

Network-service — When communication endpoints are located on different nodes,
the data produced locally must be communicated to the remote nodes joining the
domain and vice versa. is service provides this bridge over a network interface.
Multiple instances of this service can exist next to each other; each serving one or
more physical network interfaces. e service is responsible for sending data to
and receiving data from the network. It can be conĕgured to distinguish multiple
communication channels with different QoS-policies. ese policies will then be
used to schedule individual messages to speciĕc channels.

Durability-service — OpenSplice ™ provides support for the optional persistence
proĕle, which speciĕes the concept of so called durable data. Durable data pro-
duced by applications must stay available for late joining DataReaders. is
means that DataReaders joining the system at a later stage will be able to re-
ceive (durable) data that has been produced before they joined. e durability
of data can be either transient or persistent and is determined by the QoS-policy

ƬWhich then acts as a SOAP-client as depicted in Figure . on the preceding page



Chapter  — Data Distribution Service

of the Topic. If a speciĕc Topic is marked to be transient, the corresponding
data instances remain available in the system during the complete life-cycle of
the system. If a speciĕc Topic is marked to be persistent, the corresponding data
instances even survive the shut-down of a system because they are written to a
permanent storage (e.g., a hard disk). e durability-service is responsible for the
realisation of these durable properties of the data in the system.

-service Ƭ — is service provides a bridge between the real-time  and the
enterprise  domain. e service is capable of bridging data from  to
any ƭ and vice-versa. is provides many useful capabilities, such as for
example the logging of  data in a , QoS-policy-enabled replication of a
 — even between different -implementations — and easy migration
from existing -based applications to -based applications.

.. Design

ere are some fundamental principles underlying the architecture of OpenSplice ™,
supporting its capabilities with regard to availability, real-time behaviour and scalability.
In this section, some of those principles will be explained.

... Shared Memory

OpenSplice ™ uses shared memory to implement the node-local concept of a .
is implementation suits the  concept very well, since it is the direct equivalent of
the -concept. e contents of the memory need only be available on a node once,
no matter how many Subscribers there are for a speciĕc Topic. is is one of the
enablers for the very good scaling capabilities of OpenSplice ™, where use-cases are
known that have more than  applications,   DataWriters and   DataRea-
ders on one node. If all this applications and DataReaders would have their own copy
of the data, these numbers would soon cause both resource and performance issues.

e shared memory is accessed through the OpenSplice ™-lib (as seen in Fig-
ure . on page ). is standard way of interacting with the  is an implementation

ƬNot depicted in Figure . on page 
ƭSQL’ and ODBC-enabled



http://en.wikipedia.org/wiki/SQL:1999
http://en.wikipedia.org/wiki/Open_Database_Connectivity

Chapter  — Data Distribution Service

of a Lingua Franca; the communication language is deĕned, which ensures that the
data is the interface. Although functional and  decompositions have proven to be
powerful methodologies, they oen lead to tightly coupled systems, which complicates
designing and maintaining large-scale interoperable distributed systems and systems of
systems. Probably the greatest challenge is induced by the inherent fragility of the inter-
faces, which tend to change oen. e  together with the Lingua Franca are tied on
the information model, which is much more stable and extensible than the functional
interfaces in an evolving system.

... Hot-Swap Support

High availability distributed systems cannot afford to fail in delivering their services in
case of a hardware or soware failure. Failures therefore have to be properly masked
and gracefully tolerated by the system. Performance implications induced by provid-
ing high availability should be minimised. OpenSplice ™ supports service replica-
tion by means of ownership QoS-policies, in which ownership of data and strengths
of DataWriters can be speciĕed. is enables a system-wide coordination of repli-
cated writers without greatly impacting performance or increasing complexity at the
application-level.

... Time Decoupling

Loosely coupled distributed systems have to deal with late joiners and make sure that
data is available to them without affecting performance. Time decoupling can be pro-
vided in different degrees, ranging from the availability of the ‘latest’ data, up to the
availability of data aer a full system restart. Due to high availability requirements, this
cannot be implemented by a centralised server, which would introduce a . e
DURABILITY QoS-policy controls the availability of data for late joiners and thus pre-
scribes how published data needs to be maintained by the middleware. It deĕnes four
variants:

Volatile —Data does not need to bemaintained for late-joining DataReaders (default
behaviour).

Transient Local — Data availability for late joiners is tied do DataWriter availability



Chapter  — Data Distribution Service

and the middleware thus needs maintain the data for as long as the DataWriter
is active.

Transient — Data outlives the DataWriter. e data needs to be maintained for as
long as the middleware is active on at least one of the nodes.

Persistent —Data outlives complete system restarts. is implicates that the datamust
be stored on permanent storage in order to be able to make it available again aer
the middleware is restarted.

In OpenSplice ™, the durability provisions are implemented in a fully distributed
manner, which facilitates the high availability of the system, even in case of partial fail-
ures.

... Singleton Communication

In timing- and mission-critical systems resources need to be kept under strict control.
is is true for all resources that are critical to the communication in a system. In dis-
tributed applications, the connecting network is a critical resource too. In OpenSplice
™, the network resources are therefore governed in order to ensure predictable, scal-
able and dependable behaviour. In situations where temporary overload conditions can
occur, distributed applications oen start to misbehave, causing the system to provide
degraded  or even miss speciĕc  agreements. ese overload conditions can be
controlled at an application level, but at the expense of dramatically increased appli-
cation complexity. erefore OpenSplice ™ relies on a single service per node for
dealing with the network traffic management. is solution ensures that global proper-
ties can be enforced and the network resource is properly protected. is also enables
pre-emptive scheduling on the network-level ensuring extremely low latencies for high
priority data. OpenSplice ™ supports association of a priority with data and uses it
as an expression of importance. is can then be used by the networking-service for
pre-emptive network scheduling.

... Information Priority

Most distributed real-time systems are deployed on non-real-time networks, such as
TCP/IP or UDP/IP and Ethernet. Real-time systems however require priority to be



Chapter  — Data Distribution Service

ensured and enforced end-to-end, to avoid unbounded priority inversion. In Open-
Splice ™ this is solved by providing the ability to conĕgure priority lanes throughout
the system that ensure that high-priority data can pre-empt lower priority data. Priority
lanes also bring coping with priority inversion under complete control of the engineer
deploying the system.

... Information Urgency

Distributed systems oen have to deal with the trade-off between latency and through-
put. OpenSplice ™ provides a mechanism to control this trade-off while preserving
time- and priority properties associated with the data. A time-budget can be associated
with data, that expresses the amount of latency that is acceptable for the distribution,
allowing the middleware to optimise network utilisation and reduce load on the central
processing unit ().

... Network Partitioning

Large scale distributed systems oen have independent information Ęowswith vast data
volumes. OpenSplice ™ provides — apart from the logical partitioning capabilities
provided by the  speciĕcation — means to partition information distributed on the
network level. isway hardware ĕltering supplied bymodern routers/switches or other
network hardware can be utilised to achieve even higher total system throughput. e
logical partitioning can thus be mapped onto the physical partitions.

.. OpenSplice ™ Management

e  paradigm has in practice shown to be difficult to grasp for a lot of users. at
can probably partly be attributed to the fact that the paradigm differs quite a bit from
the better known ones. As already pointed out in section ., the level of abstraction of
the paradigm and the decoupling in time, synchronisation and space can make compre-
hension of system behaviour difficult in non-trivial deployments. In typical multi-node
systems with stringent performance requirements, the network will have to bemanaged
and monitored to ensure proper behaviour when deployed. Insight in things like the
communication patterns that are occurring, distribution of processing and publishers/



Chapter  — Data Distribution Service

subscribers and oscillation of resource usage across system components can help the
end users to optimise the system.

In case of a system malfunction, the source of the fault will need to be identiĕed.
is is nothing different from traditional networked systems and there is an area of re-
search dedicated to ĕnding solutions for network management challenges. In the ĕeld
of Network Management the focus is however primarily on physical network and pro-
tocol management. Management of OpenSplice ™ will, apart from the traditional
physical network management, also have to deal with the logical network and related
issues.

e huge amount of management data that can be generated in a runtime system
and the lack of automated mechanisms for anomaly detection or optimisation support
the requirement for human system administrators. Visualisation of the management
data can be applied in order to make use of the advanced capabilities of the human
visual system.

In answer to research question II we can conclude that there is a clear need for vi-
sualisation and network management within the context of OpenSplice ™ systems.
ere are speciĕc analogies with traditional network management on the physical level
that may translate to the logical level too. Finding ways to manage the logical network
will be a challenge because of the differences with traditional systems.

. S as a SystemDesign Approach

Very oen  is put forward when there are stringent requirements on various (non-
functional) properties of a system that has to be developed or deployed, for example
due to the mission-critical nature of it. ere are however a lot more advantages to the
design paradigm underlying . is has already been explained a bit in the heritage
of OpenSplice ™ in section . (S).

A well known and very popular programming paradigm is object-oriented program-
ming (), which focusses on the abstraction from data types. e reasoning behind
this is that this allows for much easier replacement of certain functionality if needed —
because of the abstraction of implementation details — aiding in modular designs. e
concept of objects also has an intuitive analogy with real-world objects, which has led to
the paradigm being promoted as a means to reduce the difficulty of designing soware.



Chapter  — Data Distribution Service

is would then reduce the effort needed for creating- and increase the quality of the
design.

e power of the analogy of object abstractions and the real-world entities for anal-
ysis and simulation was ĕrst explored in the simulation tool Simula, which later turned
into a full programming language. Simula has had a big inĘuence on the  languages
we have today. Bjarne StroustrupƬ has acknowledged that Simula  was the greatest
inĘuence on him to develop C++.

Because all data access in the  paradigm is necessarily achieved through pro-
cedural interfaces, the client-server paradigm was naturally chosen as the interaction
pattern for the  approach.

For simulation and analysis the object abstraction is oen very useful. When build-
ing a simulation, the target is to create an artefact that shows behaviour analogous to
a real-world object; the applicability of the paradigm is obvious. Object abstraction
has also proven to be very beneĕcial for analysis situations, where the hierarchies intro-
duced by object abstractions can greatly ease comprehension of the system. e simula-
tion and analysis tasks however greatly differ from the design task. Analysis focusses on
understanding functional components of a system and their interactions; simulation on
mimicking real-world object behaviour. Designing however is all about implementing
desired functionality conforming to speciĕc non-functional properties (e.g., scalabil-
ity, fault-tolerance, footprint, performance, maintainability, etc.). Implementation is
non-trivial due to quality goals that are formulated and the major design problem is to
structure the design to a workable compromise with an acceptable quality level. is
issue is not tackled by the object abstraction paradigm, although it is oen proposed as
an all-round solution for programming problems.

For the design of components of a system, a suiting paradigm should always be
chosen to match the components needs. is obviously includes the application of the
 paradigm where appropriate. So it is important to distinguish the scale at which a
speciĕc paradigm is applied. OpenSplice ™ provides support for several implemen-
tation paradigms, including .

Ƭe creator of C++



Chapter  — Data Distribution Service

. Conclusion

is chapter introduced the concepts on which OpenSplice ™ is based; the publish/
subscribe paradigm, data-centricity, the -speciĕcation and the heritage of Open-
Splice ™. Some architectural advantages of the implementation and some Open-
Splice ™ speciĕc extension on the speciĕcation have been explained also.

Management andDeploymentDifficulties e complexity and nature of OpenSplice
™ have in practice revealed to be complicating the management of (to be) deployed
systems. A growing number of highly specialised tools are created for OpenSplice ™
that aid in displaying speciĕc system metrics or behaviour. e fact that many of these
specialised tools are created for scenarioswhere insight in the system is lacking, stipulate
the demand for improved ways of monitoring and managing OpenSplice ™ based
systems.



Chapter 

NetworkManagement

In this chapter an introduction will be given on existing network management tech-
niques and tools and how they are applied.

. Introduction

e network management discipline generally deals with vast amounts of data, due to
the composition of the infrastructure of heterogeneous devices in a complex, large-scale
topology. Oen, the infrastructure itself and the working of the supporting protocols
are not completely understood. Pras et al. (, pp. –) highlighted in the IEEE
Communications Magazine that data analysis and visualisation is a key research chal-
lenge within the network management area. Visualisation exploits unique capabilities
of the human visual system to efficiently detect patterns and anomalies (van Wijk, ,
p. ) and therefore naturally suits complex analysis tasks.

Barbosa & Granville () sum up various efforts in the computer networks area
that investigate the employment of information visualisation techniques. Mansmann
& Vinnik () proposed a mapping method utilising a treemap-like visualisation in
order to gain deeper insight in network Ęow behaviour; Keim et al. () developed a
toolkit that anticipates potential anomalies by visualising typical network communica-
tion activities. Dobrev et al. () used visualisation of the node interaction dynamics
to ĕnd patterns in the polling cycle of stations and topology changes using. ey used
existing tools in their effort. Common in all efforts previously summed up, is that they



Chapter  — Network Management

used static visualisations. Barbosa & Granville () present and evaluate an interac-
tive visualisation technique for the study of the Simple Network Management Protocol
(). ey extended on the existing efforts by introducing interactivity in the visu-
alisations of the traffic measurements, showing how interactive visualisations can im-
prove understanding of the protocol. ey visualised data resulting from the methodol-
ogy proposed by the Network Management Research Group () in RFC (Schön-
wälder, ), which presents a systematic methodology for measurements and statis-
tics generation of  traces in order to identify usage patterns of the protocol (Bar-
bosa & Granville, , p. ).

. Challenges

In network research, networkmanagement is still identiĕed as one of the key challenges
(Al-Shaer et al., ; Pras et al., ; Schönwälder et al., ). Pras et al. () iden-
tify seven important challenges within the area of network management: network man-
agement architectures, distributed monitoring, data analysis and visualisation, ontologies,
economic aspects, uncertainty and probabilistic approaches and behaviour of managed
systems. e three areas that are of most interest within the context of network manage-
ment for OpenSplice ™ are highlighted here.

Architectures — A lot of research has been done with regard to network management
architectures. For example the Internet Engineering Task Force () has worked
on specifying three different architectures for network management: a manage-
ment information base () based approach, a script based approach, and a re-
mote operations based approach. Also in the telecommunications area several
recommendations have been deĕned by the telecommunication standardisation
sector (-) that specify functional, physical, information, and logical layered
architectures. However, all these architectures rely on a client/server model, mak-
ing themnot very well suited formanaging dynamic networks like the logical 
network,  networks or ad-hoc networks. Traditional management tasks can
become quite difficult for a centralised manager to perform and these systems
therefore require distributed and cooperative management capabilities, which is
a ĕeld of research that still requires a lot of attention.



http://tools.ietf.org/html/rfc5345
http://www.itu.int/ITU-T/

Chapter  — Network Management

Distributed Monitoring —Formonitoring to be effective, the state of the systemneeds
to be available at the required accuracy, at the right place and againstminimal cost.
A lot of monitoring tasks even require the state to be available in real-time. In or-
der to implement this in a scalable fashion, the monitored network itself needs to
implement this functionality in a distributed way and provide monitoring prim-
itives to management or monitoring applications in end systems. ere are a lot
of challenges in realising such a distributed monitoring layer, ranging from deĕn-
ing a set of protocols in order to let the layer perform monitoring to efficient state
aggregation under constraints. Both Pras et al. (, pp. –) and Al-Shaer
et al. (, p. ) describe challenges in this area quite extensively.

Data Analysis and Visualisation — e vast amount of data in monitoring and mea-
surement data sets needs to be ĕltered, aggregated and visualised in order tomake
the data available to human operators in a meaningful and accessible format. Tra-
ditional systems oen incorporate time-series displays and topology overviews.
Many improvements to the traditional visualisations are needed in order to sat-
isfy new visualisation needs like improved topological views that scale well with
the growing number of network elements, interactive visualisation exploration,
visualisation of non-volume related parameters like unusual traffic and unusual
traffic pattern visualisation and (near) real-time visualisations of high throughput
networks.

.. Relevance

Visualisation and system monitoring in OpenSplice ™ has a lot of analogies with
traditional network monitoring and the challenges described above are therefore analo-
gously applicable. Some aspects of the visualisation are even more complicated because
of the differences between the logical network formed by the abstract connections be-
tween  entities and the physical network on which the logical network is deployed.
Furthermore, because of the lack of actual connections on the logical level, an extra
challenge of deĕning a useful, intuitive mapping and its semantics exists.



Chapter  — Network Management

. NetworkManagement in D

e current relevant challenges in the network management area as listed in section .
reveal many issues that are also relevant for a network management solution for 
systems. In this section the need for network management in  systems will be dis-
cussed in order to answer research question II. In order to be able to answer research
question III some possible solutions will be delved into based on a study of relevant
publications. Effective management extends beyond tuning of a system and requires
monitoring, interpreting and controlling the behaviour of both the hardware and the
soware resources of the distributed system.

.. Tasks

Components of distributed systems of any kind are connected with each other bymeans
of a communication link, forming a network of the hardware and soware resources
that make up the entire distributed system. Management of these networks involves
tasks like deployment, maintenance, monitoring and tuning. Deployment is concerned
with the initial set-up of the system. Network monitoring in general is concerned with
the surveillance of important performance metrics of networks to supervise network
functionality, to detect and prevent potential problems, and to develop effective coun-
termeasures for networking anomalies and sabotage as they occur.

e task of optimising system performance is very common across different do-
mains. However, the optimisation goals, i.e., the dimension(s) over which the opti-
misation is performed — and thereby the ways of optimisation that are applied — vary
greatly in different domains. For example in the domain of defence systems the avail-
ability, predictability and fault-tolerance of the system prevail over other performance
aspects. e systems are designed with stringent requirements for the worst-case sce-
narios. In a battle setting, the number of parallel tasks dramatically increases, but it
would be unacceptable if this would cause for example the jitter on the ĕre-control to
increase, since that would imperil the ship and its crew.

In the ĕnancialmarket however, performance in the sense of number of transactions
performed per second is of the utmost importance. Optimisation is therefore carried
out for best-case performance with the requirement of graceful degradation in case of
a less than best-case scenario.



Chapter  — Network Management

T  In order to illustrate the complexity of systems in which networkman-
agement capabilities are needed, the  combat management system () de-
veloped by  will be described. T is a highly advanced, mission-critical
, comprising command and control, command support and ĕre-control facilities
for anti-air, surface, anti-submarine and electronic warfare as well as naval gunĕre sup-
port, allowing the command team to assess and monitor the tactical situation, to plan
and coordinate naval operations and to control the sensor and weapon systems. -
 can be used in a variety of warships, ranging from destroyers and frigates down to
fast attack cra size.

T is based on a distributed computer architecture, applying a multi-node,
multi-processor concept in a battle-damage resistant conĕguration. e system is in use
with more than  navies in over  ship systems, executing   executables in a fully
distributed manner on heterogeneous platforms consisting of over  s (embed-
ded as well as workstation class), implementing the data-centric approach described in
section . (Data Distribution Service). T has no  and is self-forming and
self-healing. All sensors and actuators are networked devices; many of which are safety
critical and have hard-real-time requirements, providing updates at  Hz. e -
  is capable of handling over   tracks while delivering automaticmulti-sen-
sor data fusion, threat evaluation, weapon and sensor advise and scheduling.

e data-centric approach and component-based development of  enables
the co-existence of legacy sowarewith components written in programming languages
that didn’t even exist when the ĕrst components were developed, e.g., Java™. All these au-
tonomous components — ranging from small soware-modules, up to complete ‘wrap-
ped legacy-clusters’ — communicate with the OpenSplice ™ information-backbone.
Autonomy is an essential requirement in dynamic/spontaneous systems, which is re-
Ęected in the fact that components are entirely decoupled, i.e., are not aware of each
other. e only interactions take place with the information backbone that provides
access to a shared information-model. e information-model represents a stable basis
for the components to work upon.

Availability of information at any place and at any time allows applications to join
the system at any time. Failing applications can be restarted, effectively re-joining the
running system. e decoupling of applications from each other and the application’s
focus on simply processing information also supports fault-tolerance by allowing re-



Chapter  — Network Management

dundant and replicated components without increasing their complexity. Obviously,
this complexity doesn’t magically vanish; it has gone into the information-backbone.
is way it has only been implemented once and without complicating the applications
connected to the information-backbone. In  this is utilised to create a huge
system without unnecessarily complicating the components with functionality related
to the distribution of data. e data distribution service must adhere to the deĕned 
like reliability, persistency and latency of the information.

In order to monitor and manage systems like this, the architecture must scale well
and be able to deal with the heterogeneity in processing power.

.. NetworkManagement Architectures

e architecture that underlies the network monitoring tools used for network man-
agement tasks in a distributed system deĕnes the limits of the management solution.
e suitability of a network management architecture for -based systems should
therefore be carefully considered in order to ensure that all envisioned network man-
agement tasks can be supported by it. is includes functionality surpassing the basic
visualisation related network management capabilities, like autonomous optimisation.
is section will discuss two fundamentally different architectures and their applicabil-
ity in the -domain in order to answer research question III and research question V
partially.

... Platform-Centred Architectures

Traditional networkmanagement architectures follow aplatform-centred paradigm. e
 is probably the most prominent example. System data is monitored and collected
by agents which are accessible via management protocols. ese architectures are how-
ever inherently limited with regard to their scalability and — in heterogeneous distrib-
uted systems like many -based systems — the semantic heterogeneity of manage-
ment data imposes a further limitation for a platform-centredmanagement architecture.
Developing management applications that are able to handle the diverse semantics of
operational behaviour of hardware and soware resources is getting so complex and
expensive, that it is becoming impractical to implement.



Chapter  — Network Management

Platform-centred architectures also have limited application in high-speed distrib-
uted systems, where the architecture induces very high data collection rates and intro-
duces high bandwidth-needs to get the management data of the system at a single work-
station for processing and analysing. Especially since centralisedmanagement will tend
to increase data access rates when the system is least likely to be capable to handle them.
is is another symptom of the bad scalability of centralised paradigms, which imposes
a limit on the number of network entities that can be monitored at a given time; the
scaling limit is dictated by the available bandwidth and processing power of the central
monitoring unit.

In general, a central monitoring entity is also a . When the centralised compo-
nent fails, control is lost and the network will be without surveillance. is means that
the availability of the entire network management architecture depends solely on the
functionality of a single component.

A central entity is oen also very limited in its view on the network, because it has
hardly any means to monitor interactions between devices that do not include the cen-
tral entity.

... Decentralised Architectures

A decentralised approach to the network management architecture is better suited to
current high-performance distributed systems in many aspects. While most functional
requirements can be fulĕlled with a centralised as well as a decentralised architecture,
satisfying the non-functional requirements is more challenging when the management
architecture doesn’t match the system on which it is deployed. For management tools
(just as many other applications) there is obviously no such thing as the perfect single
paradigm architecture. Both architectures should probably be augmented to attain an
optimally Ęexible solution, beneĕting from the centralised decision making of a plat-
form-centred approach and the efficient data-gathering of a decentralised approach.

e issue of heterogeneous management data can be overcome in a decentralised
system by applying the semantics translation at the source, ensuring system wide gen-
erality of the data. An example of a basic system metric that has varying semantics is
-load. Whether 85 -load is problematic depends — obviously primarily on
the application requirements, but also — on the operating system (), scheduling-class,



Chapter  — Network Management

processor-type, etc. For example on a  with six cores, a -load of 85 can still
mean that there is one core fully available, allowing a program to be executed in a de-
terministic way, while on a single-core machine the same situation can be a trigger for
caution.

... Cooperative Architectures

A special case of a decentralised architecture is the cooperative architecture. It extends
on the decentralised architecture by making the distributed entities cooperate at some
level to achieve functionality crossing entity boundaries.

In typical  systems, the connection-less architecture, dynamics and scalemake it
quite difficult for centralised managers to perform traditional management tasks, such
as end-to-end -monitoring and fault handling. e dataĘows in a  system can
conceptually be seen as a form of overlay network — albeit with the reservation that
the true underlying concept is fundamentally connection-less — analogue to the way
overlay networks are used in  networks. Many of the network management difficul-
ties encountered in such networks are analogous to  systems too. Such networks
are considered to require cooperative management capabilities, for example, to collect
statistics, repair faults or pass meta-information about the network.

Highly segmented or ad-hoc networks may not be manageable from a centralised
system, which implies that cooperative management oen will be performed somewhat
autonomously. A difficulty is however introduced by the fact that in automatedmanage-
ment mechanisms multiple control loops may be created, which work well in isolation
but may endanger the system stability because of interference with each other. Control-
ling and managing highly dynamic environments, such as  and ad-hoc networks, is
still considered to be far from trivial by Pras et al. (, p. ).

One advantage that can be leveragedwhen using an overlay over the connection-less
paradigm underlying the  speciĕcation, is that for network management and mon-
itoring any level of zoom can be selectively applied to the conceptual overlay network.
is allows the complexity of the management and decision tasks to be greatly reduced,
because selective zoom can be applied only to the components that need optimisation
or that display unexpected behaviour. is is possible because of the lack of real end-to-
end ‘connections’. In the publish/subscribe paradigm every entity has an accompanying



Chapter  — Network Management

set of publications and/or subscriptions. Now consider two connected  subsystems
A and B. When network management tasks need to be performed in subsystem A,
the complete topology of subsystemB can be aggregated into one conceptual unit with
the combined publications and subscriptions of all the entities in subsystemB, thereby
greatly reducing the number of managed entities. e same principle can equally be
applied within subsystem A. Entities can be aggregated to combined entities per node,
subnet, etc.

.. DistributedMonitoring

is section discusses challenges and solutions for distributed monitoring and data-
gathering, answering sub-question III.b and sub-question III.c.

A popular and oen easy to implement approach to retrieving management data in
distributed systems is for a query unit to ask for the data from the remote nodes of inter-
est. e requested data is then sent from the source nodes to the data sink, effectively
implementing a pull-based collection strategy. A pull-based approach at query-time
has some severe limitations for larger or highly heterogeneous distributed systems. Pri-
marily, there is the potential for very large latencies in getting the desired data out of
a multitude of source nodes randomly distributed across the physical network. In a
centralised approach like this there will always be a trade-off between the amount of
work performed at the time the data is generated and the work performed at query-
time. Query-time processing generally introduces latencies and indeterminism that
is not acceptable for monitoring applications. Secondly, real-time monitoring using a
pull-based approach can result in excessive polling rates, leading to errors due to the
perturbations introduced by the polling itself.

Pulling the needed data by querying on the other hand also provides an advantage
of being able to reduce the amount of transmitted data at the source, i.e., before distri-
bution, by letting the source perform selection based on the query. is is an effective
way of reducing the strain on the network while distributing the computing load. For
a distributed monitoring application in OpenSplice ™, both the processing on and
the distribution of the management data needs to be done in a scalable way.



Chapter  — Network Management

... Compression

In order to support real-timemonitoring, the inĘuence of themonitoring on the system
dynamics has to be kept as low as possible. e management information thus needs
to compressed at the source. is compression can range from basic aggregates like
average, standard deviation and minimum/maximum values, to more complex aggre-
gates. In general compression can be seen as applying a health-function that reduces
management information to a smaller meaningful representation that suits the analysis
currently performed. If meaningful, the compression can go as far as aggregating all lo-
cally availablemanagement information to a single health-index. In general, any dimen-
sionality reduction technique can provide a potentially useful compression. e most
obvious dimensionality reduction techniques in this context are compression based on
information theory and projection (e.g., principal component analysis).

In contrast to compression and projection, there are also dimensionality reduction
techniques that do not alter the original representation of the variables. Feature selec-
tion or ĕltering techniques do not alter the original representation of the variables, but
merely select a subset of them, preserving the original semantics of the variables. is
has as advantage that— since the original semantics are preserved— the interpretability
by domain experts is preserved too.

Aggregations or complexity-reductions are oen applied in ĕelds where the amount
of information is simply too large for regular inspection or analysis, or for example to
increase efficiency of machine learning algorithms. e dimensionality of the moni-
toring variables will probably not ever come close to the amount of dimensions in for
example the area of bioinformatics, but the techniques that are used in such ĕelds for
complexity reduction can still be used beneĕcially in the simpler case.

... Delegation

In order to achieve a distributed and scalable monitoring solution, the monitoring al-
gorithms need to be distributed, otherwise sharing load across the monitored network
cannot be achieved. In order to be able to provide a Ęexible solution with regard to
distributed monitoring in OpenSplice ™, the monitoring capabilities must not be
rigid, i.e., consist of a predeĕned set of monitoring primitives. When the monitoring
algorithms are not statically deĕned, network monitoring entities still have the freedom



Chapter  — Network Management

to apply traffic reduction or other means to reduce the strain on the system or keep up
with evolving systems.

For example in growing or large scale  systems, components of the system may
be extended by external entities. e heterogeneous networks that arise cannot be
forced to comply with a rigid set of monitoring features and can not easily provide the
type of access needed for arbitrary monitoring needs of a central entity. If network en-
tities are able to be dynamically programmed to perform speciĕc tasks, the monitoring
computations and logic can be dispatched to the network entities.

e idea of dispatching dynamic monitoring routines is crucial for enabling distrib-
uted monitoring in distributed systems in a scalable way and is coined monitoring by
delegation. Every node or monitored entity capable of executing distributed monitor-
ing logic can also provide transformations from local to common representations for
low-level metrics, implemented by the subsystem creator. is solves the issue of het-
erogeneity of management data by deĕning a common understanding and letting the
implementer of the subsystem deĕne the transformations to the common representa-
tion. e amount of complexity of the distributed logic is virtually unlimited, allowing
for example distributed automatic optimisation algorithms to be deployed.

... Metrics

When all metrics and statistics available in the middleware can be locally accessed, then
with the solution explained above, deĕning a set of management data beyond the low-
level system primitives (e.g., -load, memory-usage, etc.) is not needed. emanage-
ment delegates can aggregate over low-level system metrics, middleware internal met-
rics and higher-level intra-delegate communications, and provide that information to
whatever management station interested. e set of metrics should thus not be limited
to the low-level metrics. e sole reason for the need to deĕne a basic set of low-level
metrics is because they may need transformation to a global representation. Besides
the basic set, generally as many as possible other metrics of potential interest should be
made available. Due to the Ęexibility of the solution, the total set of available metrics
can be augmented whenever needed.



Chapter  — Network Management

. Conclusion

In this chapter the ĕeld of networkmanagement has been introduced, shedding light on
typical problems encountered in network management of large scale systems, complex
topologies and highly heterogeneous compositions of the systems. Processing network
traces and similar high-volumenetwork statistics data in order to identify usage patterns
and visualise protocol usage in order to gain understanding in how the protocols are
used is one of the primary goals of network monitoring.

In order to support such processing and visualisations, the network needs to support
the analysis and monitoring functionality required. erefore the architecture, moni-
toring approach and data analysis need to be suitable for the scale of the networks which
need to be monitored.

In section ... (Delegation) the concept of dynamic delegation is introduced that
allows for a monitoring implementation that fully suits the  environment. It is scal-
able, fully distributed and extensible. It furthermore does not require a central entity
and supports autonomous state aggregation under constraints, tackling a lot of issues
with network management systems. e proposed solution fully leverages the function-
ality provided by the  environment in order to overcome some of the limitations of
similar systems for traditional networks. In chapter  (Design) a possible design for
such a framework is described.



Chapter 

Visualisation

is chapter will introduce the general concept and goal of visualisation. e goal of this
chapter is to identify the role of visualisation in network management and to identify
possible issues that will need to be resolved or focussed on when creating visualisations.

. Introduction to Visualisation

ere are several ĕelds of research with regard to visualisation and different kinds of
visualisation are distinguished. e terms data visualisation, scientiĕc visualisation and
information visualisation are frequently seen. In this section an introduction to the ĕeld
of visualisation will be given, including an overview of topics considered key research
and challenges within the ĕeld.

e Holy Grail of visualisation, regardless of the speciĕc area in which it is applied,
is for users to gain insightsƬ.

.. Data Visualisation

e domain of data visualisation focusses on the visual representation of data, deĕned
as “informationwhich has been abstracted in some schematic form, including attributes
or variables for the units of information” (Friendly & Denis, , p. ). In the ĕeld of

ƬGenerally the deĕnition of insight as it appears to be used in publications is quite broad, e.g., a
deepened understanding, an intellectual breakthrough, unexpected discoveries, seeing intuitively, etc.
Merriam-Webster’s deĕnition can be found on page 



Chapter  — Visualisation

data visualisation, statistical graphics and cartography, graphical depictions of quanti-
tative information are oen seen. Both statistical graphics and thematic cartography
are concerned with the visual representation of quantitative and categorical data, albeit
with different representational goals. Cartographic visualisation is typically constrained
to representations in the spatial domain; statistical graphics applies more broadly to any
domain in which graphical methods are used to aid in statistical analysis. Both areas
however share the common goal of visual representation for exploration and discovery,
based on quantitative data.

Manymetrics and statistics available inOpenSplice ™ could already be visualised
with one of the many available graphic methods of visualizing patterns, trend and indi-
cations from the domain of data visualisation.

.. Scientiĕc Visualisation

e ĕeld of scientiĕc visualisation focusses primarily on the visualisation of three-di-
mensional phenomena like architecture, meteorology, medical- and biological struc-
tures, etc. Emphasis is oen on realistic representations of illumination sources, sur-
faces, volumes, eventually visualised with a dynamic (time) component (Friendly &
Denis, ). e ĕeld of scientiĕc visualisation has little relevance to visualisation of
management data in networked systems, although some visualisation techniques can
probably be reused.

.. Information Visualisation

e term information visualisation can refer to computer generated interactive graphi-
cal representations of information as well as the process of producing these information
visualisation representation, in which it is concerned with the design, development and
application of computer generated interactive graphical representations of information
(Chen, , p. ). Information visualisation oen deals with abstract, non-spatial
data and how to transform such data to meaningful and intuitive graphical represen-
tations. Creating these transformation is a creative process much like arts, aiming to
communicate complex ideas or data to its audience.



Chapter  — Visualisation

. Insight

As introduced in section . (Introduction to Visualisation), the main purpose of visu-
alisation is to provide insights for users, or as Card et al. (, p. ) state; “e purpose
of visualisation is insight, not pictures.” While this seems quite obvious and probably
matches most peoples gut feeling, it is really hard to reason about how exactly insight
is gained by people. Information visualisation oen involves complex data transforma-
tions and sophisticated representations. However, the ultimate goal of visualisation is
to exploit the remarkable capabilities of the human visual system in identifying trends,
patterns and peculiarities in datasets.

According to Yi et al. (, p. ) the concept of insight is — at least within the
domain of information visualisation — not yet well deĕned or understood. A few def-
initions exist, but there is not a commonly accepted one in the ĕeld of work. e Mer-
riam-Webster dictionary deĕnes the following:

Insight: e capacity to discern the true nature of a situation; e act or
outcome of grasping the inward or hidden nature of things or of perceiving
in an intuitive manner. — Merriam-Webster

North () stipulates the fact that deĕning insight is challenging and has proceeded
by deĕning ĕve essential characteristics of insight. ese characteristics can be used to
evaluate measurement methods for insight. Understanding the meaning of insight is at
least necessary in order to evaluate visualisation techniques, but having better under-
standing about how insight is acquired can also facilitate the creation of visualisations
in a more insight-oriented way.

.. Insight Characteristics

e characterisation of insight by North (, p. ) provides a good starting point for
deĕning and validating insight-based evaluation techniques. It is however good to stay
aware of the potential pitfall of starting to use the characterisation as being a deĕnition,
as for example done by Plaisant et al. (, p. ) who even go as far as stating that
“Insight can simply be deĕned as a nontrivial discovery about the data or as a complex,
deep, qualitative, unexpected, and relevant assertion”, which I personally expect to be
cutting corners too much.



Chapter  — Visualisation

North (, p. ) recognises the following ĕve important characteristics of insight:

Complex — Insight is complex, involving all or large amounts of the given data in a
synergistic way, not simply individual data values.

Deep — Insight builds up over time, accumulating and building on itself to create
depth. Insight oen generates further questions and, hence, further insight.

Qualitative — Insight is not exact, can be uncertain and subjective, and can have mul-
tiple levels of resolution.

Unexpected — Insight is oen unpredictable, serendipitous, and creative.

Relevant — Insight is deeply embedded in the data domain, connecting the data to
existing domain knowledge and giving it relevant meaning. It goes beyond dry
data analysis, to relevant domain impact.

According to North, insights that rank highly in each of the above characteristics are
typically the most interesting.

.. Gaining Insight

Very oen, insight is not a well-deĕned end result of an insight gaining process, but a
by-product of some kind of (random) exploration. It is furthermore difficult to deĕne a
unit of insight that can be used in insight-based evaluation studies. e fact that insight
frequently acts as a stimulus for new insights is also a clear hint that insight is not an
end-product pur sang. Understanding the procedural aspect of insight, i.e., how people
gain insight, is therefore considered to be of great value for enhancing the way new
visualisations are created.

. Visualising DataĘow

Many metrics and aggregates of metrics that can be retrieved from an OpenSplice ™
system can be visualised with techniques from within the domain of Data Visualisa-
tion. While there possibly are specially tailored data-visualisations that can be thought
of, generally common visualisation techniques and tools can be applied to OpenSplice



Chapter  — Visualisation

™ management data in a generic manner. As explained in section . (Introduction
to Visualisation), there are several areas of visualisation. Particularly the ĕeld of Infor-
mation Visualisation is concerned with visualisation of data that is oen non-spatial
and needs to be transformed to a meaningful representation.

.. Topology

ephysical nodes in a network can be laid out in a graph-like visualisation according to
detection of existence, revealing the network connectivity of theOpenSplice ™ nodes
by arcs between two nodes. A lot of topology or connectivity/link visualisations are de-
scribed (Chen, ; Dobrev et al., ; Salvador & Granville, ). A very powerful
technique for visualising hierarchical relations is presented by Holten (). It is very
important that the topology and dataĘows are visually presented in a scalable way. In
Figure .(a) an example of a possible dataĘow visualisation with direct (straight) edges
is given. It is immediately clear that this doesn’t scale well. In Figure .(b) the same
data is visualised, however with edge-bundling applied. Both visualisations in Figure .
use a colour-gradient to indicate direction. Holten (, chap. ) has also reĕned the
technique for relations lacking a hierarchical component. ese visualisation can also
be applied at the  level, where connectivity information can be visualised by edges
representing matched publications and subscriptions. ese edges represent potential
Ęow of data per type. Attributes of the matched subscriptions, like reliability properties,
urgency, etc., can be made distinguishable by means of different edges-types.

Superimposition of the physical network connectivity and the matched subscrip-
tionswill provide insight in the load or availability requirements for the physical connec-
tions. Allowing a user to selectively display matched subscriptions— using for example
the bundle-based interaction pattern described by Holten (, sec. ) — or network
channels will allow the user to gain speciĕc insights regarding the mapping in order to
optimise for reduction of traffic over the physical network, reducing network load and
latency, increasing throughput versus increased parallelism and reduced -load. e
cost-model depends on the actual network and deployed applications.



Chapter  — Visualisation

(a) DataĘow without edge-bundling (b) DataĘow with edge-bundling

Figure .: Example dataĘow visualisations
Source: (Holten, , p. )

.. DataĘow Analysis

In a system composed of a large number of components, many times even specialists
don’t have a complete overview of all interactions. It can therefore be really hard to
ĕnd sources of trouble or causes for things like mediocre performance, high jitter or
unwanted oscillation of resource usage on system components. For example the oscil-
lating behaviour of components can be a cause of too little throughput being achieved.
On the other hand, knowing which resource usage oscillates on components can also
provide clues for improving parallelism or better distributing load across the system. It
would therefore be valuable to be able to visualise complete dataĘows through the sys-
tem and be able to compare the mapping of the Ęow on the physical network in a way
analogue to the mapping described in section .. (Topology), allowing potential paths
through the system to be identiĕed.

e dataĘow analysis can be based on matched subscriptions and the knowledge
about which Publishers and Subscribers belong to a DomainParticipant. Com-
bining matched subscriptions with the grouping per DomainParticipant will allow
for the potential Ęow of data in the system to be constructed. e QoS-policies of the
matched subscriptions describe some properties of the dataĘow, which can include for



Chapter  — Visualisation

example aspects like minimal update frequency (DEADLINEQoS-policy), transport pri-
ority (TRANSPORT_PRIORITYQoS-policy), etc. It is however not possible to determine
actual volume of the data without measurements on the running system, because the
QoS-policies only specify extremes.

When subscriptions are notmatched to publications due to requested–offered (RO)
mismatches of QoS-policies, this may inĘuence dataĘow. Any analysis of topology and
dataĘow should explicitly support highlighting of unmatched subscriptions due to RO
QoS-policy mismatches, because those are very oen not by design and are hard to
identify.

... Basic DataĘow Example

Suppose we have a system composed of four DomainParticipants: A, B, C and D

which publish and/or subscribe to Topics t1, t2 and t3. e publications and subscrip-
tions of the nodes are listed in Table . below.

Table .: Basic dataĘow example

Participant Node Publication(s) Subscription(s)

A N1 t2 t1, t2

B N2 t1 t2, t3

C N1 t3

D N2 t1, t2 t3

When this data is placed into a directed graph — as done in a fundamentally basic
way in Figure .(a) on the next page — the dataĘow across the DomainParticipants
can be easily distinguished. Equally in Figure .(b) the dataĘows are placed in a di-
rected graph grouped by nodes. e potential Ęow of data between nodes can easily be
seen in this representation too. e graphs are as basic as possible for the sake of the
example; eye-candy is less relevant here than the contained information.

While the graphs in Figure . provide a better overview of the dataĘow than Ta-
ble ., it has still very little added value for optimisation tasks, since it doesn’t provide
all the information needed. Ideally the information in both graphs should be contained
in one graph, revealing themapping of the logical connections onto the physical connec-



Chapter  — Visualisation

..

. ..A .

..B . ..D

. ..C .

.

t1

.
t1

.

t2

.

t2

.
t2

.

t3

.

t3

(a) With four DomainParticipants

..

.

..N1 ..N2

.

.

t1

.t2 .

t2

.

t2

.t3

(b) With two nodes

Figure .: DataĘow graphs

tions. Figure .(a) displays logical connections on the  level, whereas Figure .(b)
shows the logical connections across the physical connection(s) between nodes.

.. DataĘowHighlighting and Selection

In a visualisation of dataĘow in a system, a speciĕc Ęow of data can be selectedƬ, re-
vealing connected elements in the graph. For example the subgraph composed of all
reachable graph-nodes in Figure .(a) from DomainParticipant B is different than
when the subgraph is composed starting in DomainParticipant C . is can effec-
tively be used to reduce the amount of visible nodes. Further ĕltering can be applied on
any parameter, allowing the end-user to reduce the complexity of the system

Nodes and arcs can also be decorated with applicable metrics. For example in a
node-view of the system, the -load can be added as a decorative aspect of the nodes
mapped on a suitable visualisation dimension like colour or size, a bar-graph, etc. is
allows end-users to gain insight regarding the mapping of the logical dataĘows on the
physical components of the system.

ƬAn example selection method is depicted in (Holten, , ĕg. , p. ) using an edge-bundled
visualisation like in Figure .



Chapter  — Visualisation

. Conclusion

ere are obvious advantages for highly task-speciĕc visualisations, especially in time-
critical analysis or prediction activities (Treinish, , p. ). While highly generic
systems can oen be employed in such a way that they provide similar functionality, the
lack of focus on a speciĕc task in the interface can increase the learning time beyond
acceptability. Generic visualisation systems on the other hand provide very useful func-
tionality when prototyping new applications, analysing new issues or generally gaining
insight in data.

e need for task-speciĕc or highly specialised visualisations thus evolves out of
identiĕed speciĕc tasks. e use of such visualisations will with a high likelihood be
identiĕed, so any visualisation solution that is created optimally needs to support both
types of visualisation, promoting high-level reuse of underlying tools and design ele-
ments.

e evolutionary process of visualisations within the scope of the network manage-
ment solution proposed in this thesis will certainly include episodes in which improve-
ment of visualisation methods and techniques will be the central issue. It is therefore
strongly suggested that this ĕeld be not neglected but gets its fully deserved attention.



Chapter 

Design

In chapter  (Network Management) an introduction and analysis of network-manage-
ment tasks is given in the context of OpenSplice ™. e goal of this chapter is to an-
swer research question V by describing a design that ĕts within the boundaries deĕned
by the answers given in the previous chapters, supporting any potential visualisation
approach like described in chapter  (Visualisation).

. Introduction

e design of a network management solution in OpenSplice ™ will have to en-
compass the ĕndings of the previous chapters. e design may contain OpenSplice
™–speciĕc aspects and terminology. e concepts underlying this solution can be
more generally applied to , but some parts of the solution may speciĕcally lever-
age the capabilities and scalability of the OpenSplice ™ middleware. Furthermore
is it only in  systems that actually see deployment in large-scale systems that good
scalability is a requirement for the applied network management solution.

is chapter will provide more speciĕc details and examples for the dynamic del-
egated monitoring concept introduced in section .. (Distributed Monitoring) as a
solution for distributed monitoring in a scalable and Ęexible way.



Chapter  — Design

. Global Design

In the following sections speciĕc components and design choices will be discussed for
a network management solution for  systems.

.. Architecture

e network management architecture that is the most natural ĕt for OpenSplice ™
is a distributed architecture. In section .. (Network Management Architectures) plat-
form-centred and decentralised architectures are compared. A decentralised architec-
ture also allows for deployment of cooperative components and is the logical choice for
an architecture for network monitoring in OpenSplice ™.

In a cooperative architecture, every node participating in the -domain has essen-
tially an active role in the networkmanagement andmonitoring. Coordination can take
place at practically all levels (e.g., node, clusters of nodes or system-wide). By applying
an architecture based on cooperation between components, the need for a centralised
management entity is avoided.

.. Platform Abstraction

In order to overcome the possible limitations implied by the heterogeneity of the distrib-
uted system components, proper abstraction from this diversity has to be performed.
In any approach to achieving a proper abstraction, it is essential that the component
speciĕc semantics can be translated to a shared semantic model. e most obvious ap-
proach is to perform the translation at the source, allowing for simple interpretation of
metrics. e abstractions provided in this section aremeant to illustrate the kinds of ab-
stractions that are needed and the somewhat theoretical deĕnitions strive to underline
the importance of a deĕnition that is conceptual by nature and not implementation or
platform driven.

As also stated in section ... (Decentralised Architectures), this approach ensures
a consistent, system-wide interpretability of the metrics without complicating the net-
work management tools. It is important to keep the set of metrics needing abstraction
as small as functionally useful, to allow for easy adoption of emerging platforms. e se-
mantics of themetrics need to be of value within the networkmanagement scope, e.g., a



Chapter  — Design

percentage or amount of free disk space may not have the expected meaning within the
context of the system; the amount of storage available for persistent data more closely
resembles the sought for metric. e difference is small and the value may on many
systems not even differ, but key is that the semantics of the metric are deĕned in such a
way that the information needed within the network management scope can be easily
deducted.

... Abstraction Set

In Table . below a minimal set of metrics is listed that may be hardware speciĕc and
hence potentially need abstraction. For all metrics a format is chosen that is deemed
useful. e scope of the abstractions is a single system, so any limitations imposed by
implementation choices are also within the same system/nodal-scope.

Table .: Example set of metrics to be abstracted

Metric Unit

available_cpus n/a
cpu_usage n/a
memory_stats MB
persistent_storage_stats MB
running_processes n/a
host_name n/a

Deĕnition (available_cpus)
Let available_cpus be the set {c0, . . . , cn−1 | n > 0}, where ci is the identiĕer of pro-
cessing unit i of the system. For this section, let A = available_cpus.

e processing units available on a system and their arrangement varies widely.
ere are single-, multi-, multi-core or even multi-–multi-core machines
and some of them furthermore support logical processing units, like for example In-
tel®’s Hyper-reading Technology. e chosen abstraction for this metric is based on
the assumption that the hardware layout is not relevant within the domain of network
management in OpenSplice ™, treating all available processing units equally.



Chapter  — Design

e identiĕer for a processing unit needs to be unique, allowing othermeasurements
for that processing unit to be related to the speciĕc identiĕer. A possible Interface De-
scription Language () deĕnition for the metric is given in Listing A. in Appendix A.

In order to introduce hierarchy in the processing units, one could deviate from the
most basic (consecutive) assignment of identiĕers for s in a system. If there are
restrictions on inspecting the load on all processing units or if detail to the level of
individual s is not needed, the abstraction-layer can transparently deĕne a surjective
function f : A ↠ B. Optimally f is also le-total, allowing all elements in A to
be accounted for in B according to f . In a system where only the total -usage is
available, f can for example be deĕned as f(x) = 0, which is both surjective and le-
total giving the impression of only one  (|B| = 1) with identiĕer c0 = 0.

Another useful example can be given in the context of a system equipped with Intel®
Hyper-reading Technology for all cores. Suppose that the actual -usage is consid-
ered to be obfuscated by the usage measured on the logical Hyper-reading s and
therefore the measurements of actual and logical cores need to be combined. In this
case a function f needs to be deĕned, such that |A| = 2 |A′|, mapping the virtual cores
on the actual cores on which they are executed. Supposing that in A an actual core has
an even identiĕer ci and its accompanying logical core ci+1 has identiĕer ci + 1, then f

can be deĕned as f (x) = x−(x mod 2)
2

.

Deĕnition (cpu_usage)
Let cpu_usage be {(c0, u0), . . . , (cn−1, un−1) | ∀ci, ui : ci ∈ A, ui ∈ R, n = |A|}, and
ui is the usage of the processing unit ci.

Because the cpu_usage-metric is logically deĕned as the ratio used
available

, there are no
obvious reasons to assume that this metric actually needs platform abstraction. Due to
its dependency on the available_cpus-metric — which does need abstraction — this
metric is nonetheless deĕned in the minimal abstraction-set.

An  speciĕcation for the tuple describing the elements of the cpu_usage-metric
and the set of tuples can be found in Listing A. in Appendix A.

Deĕnition (memory_stats)
Let memory_stats be deĕned as the tuple (t, a, c), where t is the total amount of mem-
ory, a is the amount of available memory and c the amount of cached memory in the
system, all in mebibyte (MB) and viewed from the  application scope.



Chapter  — Design

is metric represents statistics of the system memory as seen from the -appli-
cation scope, intended as a general measure for system health. Due to restrictions on
certain platforms on the amount of memory that can be used by a process, the amount
of memory available to a process can deviate from the low-level -metric, for which
this abstraction is deĕned.

e tuple describing the statistics can be deĕned as in Listing A. in Appendix A.

Deĕnition (persistent_storage_stats)
Let persistent_storage_stats be deĕned as memory_stats, except that t, a and c

reĘect the amount of persistent storage memory in the system, all in MB and viewed
from the  application scope.

is metric represents statistics of the persistent storage memory as seen from the
-application scope, intended as a measure for persistent-storage health. Due to re-
strictions on certain platforms on the amount of persistent storage that can be used by
a process or user, the amount of persistent-storage memory available to a process can
deviate from the low-level -metric for storage, e.g., disk-space. Furthermore, not all
platforms may have traditional disks for persistent storage, so this value needs to map
to the statistics of the actual available persistent-storage space.

e tuple describing the persistent statistics can be deĕned like in Listing A. in
Appendix A.

Deĕnition (running_processes)
Let the set running_processes be {(p0, q0, r0, s0), . . . , (pn−1, qn−1, rn−1, sn−1)}, and
pi is the identiĕer of process i of the system, qi is the name of the executable, ri is the
amount of  used by the process and si is the amount of memory used by the process.

Due to the potentially dynamic nature of the number of running processes (or the
equivalent on platforms like VxWorks), this metric is not split like for example avail-
able_cpus and cpu_usage. In practice, network management may require more de-
tailed statistics about a process than deĕned above. e simple deĕnition can easily be
extended when it is found to be incomplete. e metric can be deĕned like done in
Listing A. in Appendix A.



http://en.wikipedia.org/wiki/VxWorks

Chapter  — Design

.. Delegation

e monitoring by delegation concept is very powerful in enabling monitoring in a
 system in a way that can be kept scalable, distributed and Ęexible. e underlying
design allowing distributedmonitoring— and potentially control— is described in this
section.

e crux ofmonitoring by delegation is that the networkmonitoring routines can be
dynamically modiĕed and executed in a distributed fashion. is is achieved by letting
all nodes in the system that need to participate in the network-management tasks run
a Delegation Agent (DelegationAgent) instance. A DelegationAgent is an agent
that is able to execute the dynamically distributed monitoring routines. e Delega-
tionAgent is basically a DomainParticipant that is capable of starting and stopping
a Delegation Runtime (DelegationRuntime). A DelegationAgent is controlled by
control Topics and reports its status through status Topics. A DelegationRuntime

is an executable that adheres to an interface deĕned between DelegationAgents and
DelegationRuntimes and that performs speciĕc monitoring functionality. In its sim-
plest form, a DelegationRuntime is also a DomainParticipant and publishes its
monitoring metrics by means of Topics. A DelegationRuntime can also use the
platform abstraction  deĕned in section .. (PlatformAbstraction) tomonitor low-
level system metrics.

In Figure . on the next page, an overview of the above described components is
given. It shows theDelegationRuntimeusing the platform abstraction layer bymeans
of the -block in Figure .(a), illustrates the fact that all component use  for com-
munication and illustrates the concept of control and status TopicsƬ being published
and/or subscribed to through  in Figure .(b).

An example deĕnition in  of the interfaces between the DelegationAgent and
DelegationRuntime is listed in Listing A. (Pseudo- speciĕcation of delegation-
module) in Appendix A.

... Delegation Agent

A DelegationAgent is capable of dynamically controlling — e.g., start and stop—
DelegationRuntimes. By taking a subscription on a control Topic, the Delegation-

ƬResult Topic of DelegationRuntime not displayed, but concept is the same



Chapter  — Design

(a) Overview (b) DelegationAgent detail

Figure .: Dynamic monitoring by delegation

Agent can be controlled. DelegationRuntimes are distributed by means of a Topic.
A DelegationAgent publishes its status — and that of the loaded DelegationRun-

times — through publishing a status Topic.
e DelegationAgent is the enabler for the dynamic monitoring capabilities; it

acts as the runtime system for dynamic executables that form the monitoring and man-
agement solution. Conceptually it can be regarded as a controller for an application
virtual machine () taking its commands from  by means of control Topics.

... Delegation Runtime

A DelegationRuntime is a program library that can be executed by a DelegationA-
gent. It is distributed as a Topic containing an executable and parameters necessary
for execution. While in a homogeneous system the format of the executable can the-
oretically be any kind of native format, in heterogeneous systems it is more useful to
distribute the executable in a format that can be executed on all platforms. For example
a bytecode format like Java™ bytecode or Microso’s Common Intermediate Language



Chapter  — Design

().
e advantages of using bytecode for DelegationRuntimes are the same as for reg-

ular applications; a few advantages of which are portability, compactness and efficiency.
By using an intermediate language, onlyn+m translators instead ofn·m translators are
needed to implement n languages on m platforms. When choosing a widely available
intermediate language, this implies that the application logic only needs to be developed
and distributed once (under the assumption that the translators for all m platforms are
already available). e size of a program compiled to intermediate code is oen much
smaller than the size of the original source, which is important in the context of dynam-
ically downloaded/distributed code. anks to the later translation to a speciĕc native
platform, the execution platform can make optimal use of the knowledge of the actual
machine on which the program is executed, or even adapt to the dynamic behaviour of
the program, e.g., just-in-time compilation ().

Except for a desire to keep the distribution of DelegationRuntimes possibly sim-
ple, there is no technical need to limit the format in which the DelegationRuntimes
are distributed. As long as the Topic contains the information needed to start the De-
legationRuntime, it can be any format. If not all platforms support the format, then
it will become more complex, since in that case multiple versions of the same Delega-
tionRuntime need to be distributed. e feasibility and need for supporting multiple
executable formats would need to be studied when implementing. Whether Java™ byte-
code is a proper format for the DelegationRuntime executable will have to be deter-
mined. It can at least be run on practically all platforms and there are many compilers
available that compile to that executable format.

.. DistributedMonitoring: Two Examples

Many of the aspects covered in section . (Network Management in D) illustrate
the need for distributed monitoring algorithms. Obviously not all monitoring routines
need to be fully distributed and the functionality provided by the delegation framework
described in the previous sections provides enough degrees of freedom to tailor the
monitoring algorithms to a speciĕc problem; including those that can more simply be
solved in a platform-centredway. In this section an example algorithmwill be described
which highlights some of the aspects of the proposed system.



Chapter  — Design

First a very basic algorithm is presented that simply gathers metrics from the plat-
form abstraction , aggregates the data and publishes the aggregated data at a ĕxed
rate. ereaer a more interesting example is discussed where the ĕrst example is ex-
tended with a feedback-loop in the monitoring algorithm. is illustrates a cascading
monitoring solution that only publishes high-bandwidth data when the situation de-
mands so. It consists of two DelegationRuntime’s; one that monitors the load on
the s, another one that publishes the list of running processes. e goal of the
distributed monitoring example is to provide system-wide metrics regarding -load
and node-speciĕc process-lists when the -load has exceeded a threshold a speciĕed
amount of times.

ese examples demonstrate many of the aspects discussed in chapter  in their sim-
plest form; exemplary for the concepts, covering aggregation, compression, platform-
abstraction and a fully distributed algorithm with a feedback-loop.

In this solution there is no central entity that controls the availability of the data. All
monitoring takes place in a distributedmanner and even decisions about the availability
of speciĕcmonitoring data are autonomouslymade. rough (logical) partitioning and
carefully deĕnedmappings on physical partitions, the scope and distribution of the data
can be controlled. It goes beyond the scope of a simple example to delve into the speciĕcs
of partitioning in this case.

... C-load DelegationRuntime

e most basic DelegationRuntime in this example is responsible for measuring the
-loads on a node and compressing those metrics. It uses the functionality provided
by the platform-abstraction layer to retrieve the load on all processing entities of the
system and the name of the host. e compounded relative -load

(
used

available

)
, i.e.,

the load expressed in an integer number representing the load as a percentage of the
maximum -load, is published with a frequency of Hz.

is CPULoadBasic DelegationRuntime publishes the measurements in the Top-
ic CPULoad, which is deĕned as in Listing ..

Listing .: Deĕnition of CPULoad Topic
 module DDSMonitoring{

 typedef string hostName;



Chapter  — Design



 struct CPULoad{

 hostName host;

 long load;

 };

 pragma keylist CPULoad host

 };

e topic is published with the default QoS-policyƬ except that the RELIABILITY
QoS-policy is set to BEST_EFFORT and the DESTINATION_ORDER QoS-policy to BY_-

SOURCE_TIMESTAMP, allowing subscribers of the data to retain proper order of the data.
Since the data is published frequently, it doesn’t need to be delivered reliably nor does it
need to be persisted. e key on the data is deĕned on the name of the host, allowing for
identiĕcation of streams of measurements from one host. e source–time stamp that
is added by themiddleware because of the DESTINATION_ORDERQoS-policy allows for
proper ordering of the sampled data at the subscribers.

e pseudocode for the algorithm of the CPULoadBasic DelegationRuntime is
shown in Program .. It show usage of the abstraction-layer in lines , ,  and . In
lines  to  compounding of multi--load to a single relative load is performed.

A very efficient way to reduce the frequency of network management data updates
on the network, would be to only publish the load when a (large) delta occurred. is
would however change the QoS-policy needed and thereby complicate this example
unnecessarily.

... ProcessList DelegationRuntime

To illustrate the possibility of using a feedback loop in monitoring, the ProcessList

DelegationRuntime is explained here, which task consists of publishing the process-
list of all currently running processes and their statistics, allowing for remote analysis of
which applications consume the available processing power. Because always publishing
the process-list would create quite a large volume of data, the DelegationRuntime is
only started or will only publish data in an assumed fault-condition.

ƬSee Appendix B (D Speciĕcation) for more detailed information on possible QoS-policies and the
defaults



Chapter  — Design

Program .: CPULoadBasic pseudocode
 procedure CPULB(f ,p)
 host← getHostName() ▷ Get hostname from abstraction layer
 A← getAvailableCPUs() ▷ Get available s from abstraction layer
 n← |A|
 s← getCurrentTime()
 repeat
 U ← getCPUUsage() ▷ Get -usage from abstraction layer
 l← 0
 for all u ∈ U do ▷ Compress multi--load to a single load
 l← l +

(
u×100

n

)
 end for
 l← round(l)
 m← (host, l)
 Publish(m,p) ▷ Publish measurement m in partition p
 s← s+ 1

f
▷ Determine time to wake for publication at f Hz

 sleepUntil(s)
 until stopped by hosting DelegationAgent
 end procedure

e ProcessList DelegationRuntime publishes the measurements in the Pro-

cessList Topic, which is deĕned in Listing . belowƬ.

Listing .: Deĕnition of ProcessList Topic
 module DDSMonitoring{

 struct ProcessList{

 hostName host;

 running_processes processes;

 };

 #pragma keylist ProcessList host

 };

e Topic is publishedwith the sameQoS-policy as the CPULoad Topic, except that
the DURABILITY QoS-policy is set to TRANSIENT, allowing a late joining monitoring
application to retrieve the listings.

ƬSee Listing A. in Appendix A for the type deĕnition of running_processes



Chapter  — Design

Intra-DelegationRuntime An intra-DelegationRuntime control loop could be
introduced if the monitoring system — that ĕrst consisted solely of the CPULoadBasic
DelegationRuntime — would be extended with the ProcessList DelegationRun-
time. In that case, the ProcessList DelegationRuntime takes a subscription on the
Topic published by the CPULoadBasic DelegationRuntime with the default Data-
Reader QoS-policyƬ, except with the HISTORY-depth set to . is way, the last
ten samples will be available for analysis by the DelegationRuntime. If the average
of these values gets higher than a speciĕed threshold, the ProcessList Delegation-
Runtime can start publishing the process-list periodically, until the load drops below
the threshold again. e hot-standby capability of OpenSplice ™ (suspend/resume)
could also be used here, even allowing measurements from before reaching the thresh-
old to be published in the system.

Inter-DelegationRuntime A control loop that controls across a DelegationRun-
time boundary can in this simple example be created by extending the CPULoadBasic
DelegationRuntimewith control over the ProcessList DelegationRuntime by let-
ting it publish control-Topics. e pseudocode for this solution is listed in Listings .
and . on the next page.

. Conclusion

With the proposed architecture, distributedmonitoring approach and the application of
the publish/subscribe paradigm and  provided QoS-policies, it is possible to design
a networkmanagement solution that is highly Ęexible, extendible and scalable. is cre-
ates a foundation for networkmanaging experts to extend, allowing specialised network
management tools, autonomous network management components and visualisations
to be created, aiding in gaining insight about speciĕc deployments and typical usage
patterns of  systems.

ƬSee Appendix B (D Speciĕcation)



Chapter  — Design

Program .: CPULoadExtended pseudocode
 procedure CPULE(t,h,f ,p)
 host← getHostName()
 A← getAvailableCPUs()
 n← |A|
 s← getCurrentTime()
 i← 0, avgLoad← 0, L← 0
 repeat
 U ← getCPUUsage()
 avgLoad← avgLoad−

(
Li

h

)
 Li ← round (average (U)× 100)
 avgLoad← avgLoad+

(
Li

h

)
 if avgLoad ≥ t then ▷ reshold t exceeded
 Publish(ProcessList, start, host) ▷ Start ProcessList on host
 else
 Publish(ProcessList, stop, host) ▷ Stop ProcessList on host
 end if
 m← (host, Li)
 Publish(m,p)
 i← (i+ 1) mod h
 s← s+ 1

f

 sleepUntil(s)
 until stopped by hosting DelegationAgent
 end procedure

Program .: ProcessList pseudocode
 procedure PL(f ,p)
 host← getHostName()
 repeat
 P ← getRunningProcesses() ▷ Get process-list from abstraction layer
 m← (host, P)
 Publish(m,p)
 s← s+ 1

f

 sleepUntil(s) ▷ Publish measurement m in partition p
 until stopped by hosting DelegationAgent
 end procedure



Chapter 

Conclusions

In section . (Research Questions) at the beginning of this thesis, ĕve research ques-
tions were set out to be answered. In this chapter the ĕndings to the research questions
will be discussed. Furthermore new interesting questions that arose while answering
the research questions will be listed. Some of those have led to recommendations for
further research on related subjects.

. Findings to Research Questions

e ĕndings to research question I can be best discussed aer discussion of the other
research questions. Research question I is discussed in section ...

.. Findings to Research Question II

Research question II — Which network management and visualisation of management
data is needed in -based systems?

Large DDS-based systems encounter problems during start-up as well as during every-
day’s operation. Problems may stem from a relatively wide variety of sources. ese
sources can be roughly grouped into:

• physical limitations and/or imperfections

• logical errors, conĕguration issues, overload and the like



Chapter  — Conclusions

• node performance limitations, e.g., limited functioning of hardware components

Although caused by a wide variety of particular sources or combinations of sources,
the induced symptom is generally of the singular type: a drop in overall system per-
formance. It is therefore almost impossible to diagnose the system on the basis of the
symptom. Currently available diagnostic tools for traditional network environments
are based on physical connection oriented protocols. ey are not suitable to relate a
failure or drop in functionality of the “connectionless” -system to a location in the
connection oriented hardware.

A -system in its operational state is— as is typical for middleware— a black box
delivering data at the right time at the right spot. Fascinating and attractive as that may
be, the dark side pops up when a problem occurs. e only andmost sensible thing that
can be said of the black box in the latest mentioned state is that it does not function. It is
therefore amust that diagnostic tools and “view glasses” be developed in order that light
can be shed inside the black box. emany relations between the -based system and
the environment in which it is deployed must be made viewable.

Having discussed this topic within and outside the -world, it appeared that many
people have difficulty in getting a clear picture of the situation. I therefore tried to
ĕnd some parallels in the known world to help understand the situation. e ĕrst one
is the traffic parallel: Assume smoothly running traffic on the Dutch vehicle roads to
start with. en a symptom is observed where vehicles stop to arrive at Schiphol, Den
Bosch, Gouda and other main cities. Just for arguments sake we list a number of possi-
ble causes:

• Accident on Oudenrijn junction — easy to ĕnd

• Beautiful weather and holiday in Germany — will not be found when inspecting
the road status

• Double load of freight lorries on the A due to low water level in the main rivers
— will not be found

It will be clear that a diagnostic tools dedicated to the hardware connection (road
cameras, induction loops) are insufficient to properly diagnose the problem. What is
needed is a kind of compound eye, that surveys node behaviour as well as connection
behaviour.



Chapter  — Conclusions

Sub-Pictures Nature has given us a good example of how to run a compound eye,
looking into all directions. Several systems are applied by nature where signals of more
than one source are compounded to sub-pictures. e use of compounding data, i.e.,
the use of sub-pictures, greatly reduces the load on insect brains and nerves. e sub-
pictures can be combined to get the complete overview picture. A similar approach
is proposed to monitor the large multitude of nodes, processes, connections etc., that
interfere with the operation of a  system.

Perforated Cube Another parallel that may shed some light on the really complex
nature of a  system is that of the multiple perforated cube. Assume the black box of
a  system to be a golden cube. Seen from one side, you can see through the system,
as it is Logical — and clear, Figure .(a). Looking to another side, things appear to be
as clear as possible, as everything boils down to Processes — or at least may seem to do
so, Figure .(b). Looking at yet another side may give the impression that you can see
through the system as long as you concentrate on Connections, seen in Figure .(a).

(a) Logical face (b) Process face (c) Connections face

Figure .: ree faces of a perforated cube

A more realistic picture not only shows that all three dimensions are equally true,
but also that they interact, showing large grey areas inside the still golden cube (Fig-
ure .(a)). It will be a real challenge to get a view on the Red spot (Figure .(b)),
which may be literally Ęoating. Or a Blue spot (Figure .(c)) both Ęoating and deeply
hidden in the grey inside of the golden black box. It would bemore realistic to represent
a large  system by a multitude of more or less similar three-dimensional cubes, like
in Figure .(d).



Chapter  — Conclusions

(a) ree faces combined (b) Red issue (c) Blue issue

(d) Multiple similar cubes forming a complex
whole

Figure .: Multiple faces of D cube



Chapter  — Conclusions

To honour the greater complexity — the greater number of degrees of freedom or
dimensions — another illustrative view is represented by a multi-faceted body in Fig-
ure .. e dazzling number of colourful light scatterings and facets is maybe also a
useful representation paying tribute to the Ęuidity of the light (information) Ęowing
through it and the many facets or connections to both the inside and outside world,
while still being brilliant in nature and function.

Figure .: Multi-faceted body

.. Findings to Research question III

Research question III — What functionality is needed for management tasks in  sys-
tems?

e requirements on the main functionalities needed for network monitoring in 
systems are twofold.

Scalable First of all the system needs to be scalable. e scalability requirement is al-
most synonymous with its direct consequence, namely the requirement that the
monitoring be performed in a distributed manner.



Chapter  — Conclusions

Flexible Secondly, the system needs to be Ęexible. e Ęexibility requirement means
that the monitoring system must have the possibility to select data to be moni-
tored, the selection being dependable on momentary monitoring interests. It is
for example essential that the data Ęow is not contaminated with a consistent Ęow
of repeated, constant value OK-messages, emerging from a multitude of properly
functioning nodes.

In the following sections some more detailed questions are answered with regard to
the needed functionality of the system.

... Findings to Sub-Research Question III.a

Sub-research question III.a — In what areas is the OpenSplice ™ system currently
lacking?

ecurrent system lacks the distribution of the data gathered through locally performed
monitoring. Monitored data — locally acquired at a certain node — are currently kept
at that node, thus disabling the possibility to acquire an overall view of the situation.
ere is no systematic way to locate a (potentially) troublesome node or cluster and no
way to control the amount of monitoring performed at a remote system.

e current system also lacks the required Ęexibility. ere is no possibility to re-
quest selectedmonitoring data from the distributed nodes nor control over what ismon-
itored.

... Findings to Sub-Research Question III.b

Sub-research question III.b — How can data be collected in a scalable manner, suiting
the environments in which  is typically deployed?

It is essential for large systems that no bottle-necks be created by the monitoring itself.
Filtering and reduction of monitoring data should therefore be performed to the largest
possible — or at least optimum — extent at the source node. Data aggregation and
compression should be done at the source and/or at distributed clusters, in order to
satisfy the requirement.



Chapter  — Conclusions

enewly introduced dynamic delegatedmonitoring concept allows for extreme Ęex-
ibility and extendibility within the scope of . e framework naturally suits the 
environment and solves many of the issues encountered in traditional network man-
agement solutions, by using the facilities available in  itself. e primarily in-band
solution supports the potential deployment of (fully) autonomous monitoring and/or
management routines.

e proposed solution doesn’t require an on-line central entity to deĕne what is
monitored and where it is monitored. Monitoring priority or focus can simply be esca-
lated based on pre-deĕned logic or built-in trigger/control loops. e implementation
of such a (layered) control loop can thus be used to intensify or otherwise alter the lo-
cal monitoring activities, including the publication properties, e.g., where the data is
publised and when/if the data is published, of the (preferably compressed) monitoring
data. is approach prevents late signalisation of important monitoring data, while
keeping monitoring data transfer load as low as reasonably possible. It furthermore al-
lows for monitoring patterns not generally available, e.g., monitoring of interactions in
which the node at which the monitoring occurs does not participate. is functionaliy
is supported by the fully distributed data gathering that is supported by the proposed
solution.

... Findings to Sub-Research Question III.c

Sub-research question III.c — Which data and/or metrics are needed for management
of  systems?

It is possible to deĕne a minimal data set that should always be available. is minimal
data set includes number of s, (compounded)  load, available storage capacity
and similar basic data. e semantics of this set needs to be deĕned within the scope of
, allowing general interpretability of the data, i.e., abstracted from the underlying op-
erating system or hardware. However, system experts managing large scale  systems
have widely varying data interests. It must therefore be facilitated that the monitoring
system manager can collect a wide range of speciĕc monitoring data on request.



Chapter  — Conclusions

.. Findings to Research Question IV

Research question IV — Is visualisation in a network management solution for  a
luxury or a necessity?

Given the ability of the human visual system to quickly analyse graphical information
and the inability to quickly process textual data leads inevitably to the need to present
relevant information in a graphic form. Data visualisation can relatively straightfor-
ward be applied and any tooling of framework supporting or easing the creation of data
visualisations may be of worth as-is already.

As discussed in section . (Visualising DataĘow), where the power of even a very
basic application of information visualisation is illustrated, visualisations not only are a
different representation of numbers. Visualisations can (implicitly) add domain-knowl-
edge or decorate basic data, allowing information to be communicated that was not ex-
plicitly available in the raw data or aggregations thereof. In a stage where OpenSplice
™ is still found to be evolving continually into new markets, new deployment kinds
and new deployment scales, having access to visualisations providing this information
is crucial in gaining understanding and insights about the system. Eventually the gained
insights may render the need for visualisations redundant. For example, when mean-
ingful dimensionless quantities or similar descriptors are found — like for example the
Reynolds number, Rockwell scale or Strain — that can describe or predict system be-
haviour, the same information of a complex visualisations may be captured in such a
quantity. Until then, all methods at hand — of which information visualisation is ex-
pected to be an important one — that can increase the amount of insight should be
carefully looked into in order to achieve the full potential of both the deployed systems
as well as the involved network management related tasks.

.. Findings to Research Question V

Research question V —How can a networkmanagement implementation inOpenSplice
™ be designed?

e design of a network management system for OpenSplice ™ must meet the func-
tional requirements set out in the answers to the previously discussed research ques-
tions.



Chapter  — Conclusions

e facilities that a  system offers make it possible to design an in-band solution
that utilises the  system for the communication of management data. Although
there may be exceptional cases where out-of-band communication can be preferable, it
is most attractive to use the already available in-house facilities of the  system to be
monitored. is is especially true when the network management system requires only
marginal systembandwidth, as is the case with the proposed systemwheremanagement
data are compounded, aggregated and compressed, before being released into the 
system traffic and are distributedly gathered.

e solution proposed and discussed in chapter  (Design) — built on the dynamic
“delegated monitoring”-concept introduced in section .. (Distributed Monitoring)
— is very Ęexible and supports scalable, fully decentral, dynamically extendible and
eventually autonomous network monitoring and management. e proposed solution
essentially comprises:

• Platform-Abstraction deĕnition and 

• DelegationAgent Topics and semantics deĕnition

• DelegationRuntime Topics and semantics deĕnition

• Delegation 

e functional composition of the above results in the desired Ęexibility. e net-
work management system can be extended while in operation, due to its data-centric,
connectionless design; DelegationRuntimes themselves are also distributed bymeans
of Topics.

As DelegationRuntime can also be supplied with parameters, their behaviour can
be easily modiĕed while using only minimal communication overhead.

.. Findings to Research Question I

Finally, the ĕrst and main research question can be answered.

Research question I — How can human experts be optimally supported with their man-
agement tasks in -based systems?

In order to satisfy the information requests of system managing experts, a monitor-
ing system must be incredibly extensive, or simply extendible. As not all future infor-
mation request types and search patterns can be predicted, it is sensible to facilitate the



Chapter  — Conclusions

experts with a provision that is intrinsically so Ęexible that it does not pose a limit by
itself. It must at the same time be prevented that the provision is Ęexibility pur sang,
with no predeĕned basic tools and contents, as that might well act as a threshold, that
user must “overcome” before entering its use. at means that a basic set of function-
alities, covering the most common diagnostic information, must be available from the
beginning.

e system can then — as it is being used by the experts — further evolve on the
basis of gathered experience and newly emerging expert demands.

It would be best to enable start-up of themanagement system at any convenient time
— in other words — without switching the system into for example a diagnose modus.
e typical  systems are so huge, that otherwise it would be (almost) impossible to
establish the cause of a problem when it presents. Certain local monitoring tasks could
run in standbymodus and be triggered by predeĕned events. Experts could also initiate
tests on a live system.

To date, expert developed diagnostic tools have mainly focused on node-local anal-
ysis, because system-wide analyses would be too complex to set up. By creating es-
sentially better monitoring facilities, that principally reach beyond the boundaries of
individual nodes, the proposed network management solution or framework can serve
as an enabler for system-wide expert analyses.

. Recommendations for Further Research

roughout the thesis several topics were identiĕed and discussed that would beneĕt
greatly from or require further research. In this section a few topics will be highlighted.

.. Logical Network Visualisation

One of the aspects that makesmanagement of  systems difficult is that fact that both
the physical network and the logical network need to monitored, but their relation is
not clearly deĕned. e logical network is formed by matched publications and sub-
scriptions, as explained in section . (Visualising DataĘow). Possible similarities of the
logical network to physical networks or other logical overlay networks may allow reuse
of tools or visualisations that exist for those areas within the management of  sys-



Chapter  — Conclusions

tems. A lot can at least be learnt from the difficulties encountered while creating those
tools. It may furthermore be possible to transfer those tools to allow management of
the logical network.

For example the visualisation techniques described by Holten () could prove
to be of great value when visualising large-scale topologies. e dataĘow graphs that
can be constructed deĕne dependencies between Topics, which could be displayed by
using hierarchical edge bundles () or similar edge-clutter reduction technique. Ellis
&Dix () provide a general taxonomy of techniques for reducing visual clutter. H
provide means to display node–link diagrams containing a large number of nodes and
edges, without the visual clutter. Even more interesting would be to research whether
techniques like force-directed edge bundles () — a self-organising edge-bundling
technique that doesn’t require hierarchy in its input — or geometry-based edge bundling
() — an edge-bundling technique that depends on a control mesh to guide the
bundling — can be applied in order to visualise the relation between the physical and
the overlay network. e physical network topology could provide for the positioning
of the nodes or as input for the control mesh. In Figure . an example application of
 is shown applied on a migration graph.

Figure .: Force-directed edge bundles example showing a U.S. migration graph consist-
ing of   nodes and   edges
Source: Holten & Van Wijk (, p. , Figure b)



Chapter  — Conclusions

.. Visualisation Evaluation

When the visualisation capabilities of a network management solution for  evolve,
the need for veriĕcation or comparison of effectiveness will emerge. Newly created visu-
alisations will have to be veriĕed against the goal of the visualisations, i.e., insight. Ver-
iĕcation of effectiveness is far from trivial, and a literature study should be performed
to see whether applicable veriĕcation techniques exist.

.. Security

e distribution of DelegationRuntimes allows for extremely Ęexible network man-
agement solutions to be deployed. is however also brings some security implications.
e DelegationAgents are capable of running all executable code that is distributed,
so some way of sender-veriĕcation will have to be applied in order to prevent a mis-
behaving application to distribute dangerous executables. OpenSplice ™ provides
quite an extensive set of security features at different levels and the applicability of that
functionality would need to be studied in the context of the delegatedmonitoring frame-
work.

It may also be possible to attain enough security by choosing the appropriate exe-
cutable format in which the DelegationRuntimes are distributed. For example signed
executable packages may already provide enough safety, so in that case support for ex-
ecutable signing may become a requirement for the chosen executable format.



References

A-S, E., G, A., K, C., M, D.A., N, T.S.E.  X, G.G.
(). New frontiers in internet network management. SIGCOMM Comput. Com-
mun. Rev., , –. doi:10.1145/1629607.1629615. , 

B, P.  G, L. (). Interactive SNMP traffic analysis through in-
formation visualization. In Network Operations and Management Symposium, –,
IEEE. doi:10.1109/NOMS.2010.5488438. , 

B, K.  J, T. (). Exploiting virtual synchrony in distributed systems.
SIGOPS Operating Systems Review, , –. doi:10.1145/37499.37515. 

B, M. (). Control systems soware. In Fih Euromicro Workshop on Real-
Time Systems, –, IEEE Computer Society Press, Ouiu, Finland. doi:10.1109/
9.231463. , 

B, M. (). System for dynamic communication among subsystems imple-
mentinig data requests by data type and locating data by data type matching, U.S.
Pat.   , apr , . 

B, M. (). Embedded systems unsuitable for object orientation. In
J. Blieberger &A. Strohmeier, eds., Reliable Soware Technologies — Ada-Europe ,
vol.  of Lecture Notes in Computer Science, –, Springer Verlag Berlin / Heidel-
berg. doi:10.1007/3-540-48046-3_1. 

C, S., M, J.  S, B. (). Readings in information visualiza-
tion: using vision to think. Morgan Kaufmann. 

C, C. (). Information visualization. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, , –. doi:10.1002/wics.89. , 



http://doi.acm.org/10.1145/1629607.1629615
http://dx.doi.org/10.1145/1629607.1629615
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5488438
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5488438
http://dx.doi.org/10.1109/NOMS.2010.5488438
http://dx.doi.org/10.1145/37499.37515
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=231463
http://dx.doi.org/10.1109/9.231463
http://dx.doi.org/10.1109/9.231463
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/5301339
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/5301339
http://dx.doi.org/10.1007/3-540-48046-3_1
http://dx.doi.org/10.1007/3-540-48046-3_1
http://onlinelibrary.wiley.com/doi/10.1002/wics.89/full
http://dx.doi.org/10.1002/wics.89

References

C, G., P, G.  M, A. (). Towards dynamic reconĕguration of dis-
tributed publish-subscribe middleware. In A. Coen-Porisini & A. van der Hoek, eds.,
Soware Engineering and Middleware, vol.  of Lecture Notes in Computer Science,
–, Springer Verlag Berlin / Heidelberg. doi:10.1.1.13.911. 

C,W., Z,H., Q, H.,W, P.C.  L, X. (). Geometry-based edge clustering
for graph visualization. Visualization and Computer Graphics, IEEE Transactions on,
, –. doi:10.1109/TVCG.2008.135. xiii

D, P., S-M, S.  S., J. (). Visualization of node inter-
action dynamics in network traces. In R. Sadre & A. Pras, eds., Scalability of Networks
and Services, vol.  of Lecture Notes in Computer Science, –, Springer Verlag
Berlin / Heidelberg. doi:10.1007/978-3-642-02627-0_12. , 

E, G.  D, A. (). A taxonomy of clutter reduction for information visual-
isation. Visualization and Computer Graphics, IEEE Transactions on, , –.
doi:10.1109/TVCG.2007.70535. 

E, P.T., F, P.A., G, R.  K, A.M. (). e many
faces of publish/subscribe. ACM Computing Surveys (CSUR), , –. doi:10.

1145/857076.857078. 

F, M.  D, D.J. (). Milestones in the history of thematic cartography,
statistical graphics, and data visualization [online, last checked Dec. , ]. , 

H, D. VW, J. (). Force-directed edge bundling for graph visualization.
InComputer Graphics Forum, vol. , –,WileyOnline Library. doi:10.1111/
j.1467-8659.2009.01450.x. xiii, 

H, D.H. ().Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. In Proceedings of Vis/InfoVis , vol. , –, IEEE Computer
Society. doi:10.1109/TVCG.2006.147. xiv, , , 

H, D.H. ().Visualization of graphs and trees for soware analysis. Ph.D. thesis,
Eindhoven University of Technology. xiii, , 



http://www.springerlink.com/index/h414140785222126.pdf
http://www.springerlink.com/index/h414140785222126.pdf
http://dx.doi.org/10.1.1.13.911
http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2008.135
http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2008.135
http://dx.doi.org/10.1109/TVCG.2008.135
http://dx.doi.org/10.1007/978-3-642-02627-0_12
http://dx.doi.org/10.1007/978-3-642-02627-0_12
http://dx.doi.org/10.1007/978-3-642-02627-0_12
http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2007.70535
http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2007.70535
http://dx.doi.org/10.1109/TVCG.2007.70535
http://portal.acm.org/citation.cfm?id=857078
http://portal.acm.org/citation.cfm?id=857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://www.datavis.ca/milestones/
http://www.datavis.ca/milestones/
http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2006.147
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x
http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2006.147
http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2006.147
http://www.narcis.nl/publication/RecordID/oai:library.tue.nl:642975

References

H, R., P, P.M.  T, N.V. (). Introduction to Global Optimization.
NonconvexOptimization and Its Applications, KluwerAcademic Publishers, nd edn.


K, D., M, F., S, J.  S, T. (). Monitoring net-
work traffic with radial traffic analyzer. Symposium On Visual Analytics Science And
Technology, , –. doi:10.1109/VAST.2006.261438. 

K, E.T.  S, J.T. (). e visualization of parallel systems: An overview.
Journal of Parallel and Distributed Computing, , –. doi:10.1006/jpdc.

1993.1050. 

M, F.  V, S. (). Interactive exploration of data traffic with hierar-
chical network maps. IEEE Transactions on Visualization and Computer Graphics, ,
–. doi:10.1109/TVCG.2006.98. 

N, A. (). Introduction to global optimization [online, last checked Jul. ,
]. 

N, A. (). Global optimization and constraint satisfaction. Acta Numerica,
, –. doi:10.1.1.3.944. 

N, C. (). Toward measuring visualization insight. IEEE Computer Graphics
and Applications, , –. doi:10.1109/MCG.2006.70. , 

OMG (). Data Distribution Service for Real-time Systems, rev. .. Doc. nr. for-
mal/--, ObjectManagement Group (OMG), Data Distribution Services PSIG
(DDSIG). , , , , B-

P, C., F, J.D.  G, G. (). Promoting insight-based eval-
uation of visualizations: From contest to benchmark repository. Visualization and
Computer Graphics, IEEE Transactions on, ,  –. doi:10.1109/TVCG.2007.
70412. 

P, A., S, J., B, M., F, O., P, G.M., S, R. 
S, B. (). Key research challenges in network management. Communica-
tions Magazine, IEEE, , –. doi:10.1109/MCOM.2007.4342832. , , ,




http://doi.ieeecomputersociety.org/10.1109/VAST.2006.261438
http://doi.ieeecomputersociety.org/10.1109/VAST.2006.261438
http://dx.doi.org/10.1109/VAST.2006.261438
http://www.sciencedirect.com/science/article/B6WKJ-45P665H-1B/2/2f959c975e82e4ea1f4e98a5b217263b
http://dx.doi.org/10.1006/jpdc.1993.1050
http://dx.doi.org/10.1006/jpdc.1993.1050
http://dx.doi.org/10.1109/TVCG.2006.98
http://dx.doi.org/10.1109/TVCG.2006.98
http://dx.doi.org/10.1109/TVCG.2006.98
http://www.mat.univie.ac.at/~neum/glopt/intro.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.944
http://dx.doi.org/10.1.1.3.944
http://doi.ieeecomputersociety.org/10.1109/MCG.2006.70
http://dx.doi.org/10.1109/MCG.2006.70
http://www.omg.org/spec/DDS/1.2/PDF/
http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2007.70412
http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2007.70412
http://dx.doi.org/10.1109/TVCG.2007.70412
http://dx.doi.org/10.1109/TVCG.2007.70412
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4342832
http://dx.doi.org/10.1109/MCOM.2007.4342832

References

R, D., S, K., S, W., T, L.  E, C. (). Virtual reality
and parallel systems performance analysis. Computer, , –. doi:10.1109/2.

471180. 

S, E.  G, L. (). Using visualization techniques for SNMP traffic
analyses. In Computers and Communications, –, IEEE Computer Society. doi:
10.1109/ISCC.2008.4625672. 

S, J. (). Simple Network Management Protocol (SNMP) traffic mea-
surements and trace exchange formats. Informational, IRTF/NMRG [last checked
Nov. , ]. 

S, J., F, M., R, G.D.  H, I.C. (). Future
internet = content + services +management.Comm. Mag., , –. doi:10.1109/
MCOM.2009.5183469. 

T, L. (). Task-speciĕc visualization design: a case study in operational
weather forecasting. In Visualization ’. Proceedings, –. doi:10.1109/

VISUAL.1998.745330. 

 W, J. (). e value of visualization. In C. Silva, E. Groeller & H. Rushmeier,
eds., IEEE Visualization, –. doi:10.1109/VISUAL.2005.1532781. 

W, T. (). Global Optimization Algorithms — eory and Application. Self-
Published, nd edn. [last checked Jul. , ]. 

W (a). Wikipedia: Lingua franca [online, last checked Sep. , ]. xvii

W (b). Wikipedia: Publish/subscribe [online, last checked Aug. , ].


Y, J.S., K, Y.., S, J.T.  J, J.A. (). Understanding and character-
izing insights: how do people gain insights using information visualization? In Pro-
ceedings of the  conference on BEyond time and errors: novel evaLuation meth-
ods for Information Visualization, BELIV ’, :–:, ACM, New York, NY, USA.
doi:10.1145/1377966.1377971. 



http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=471180
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=471180
http://dx.doi.org/10.1109/2.471180
http://dx.doi.org/10.1109/2.471180
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4625672
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4625672
http://dx.doi.org/10.1109/ISCC.2008.4625672
http://dx.doi.org/10.1109/ISCC.2008.4625672
http://tools.ietf.org/html/rfc5345
http://tools.ietf.org/html/rfc5345
http://dx.doi.org/10.1109/MCOM.2009.5183469
http://dx.doi.org/10.1109/MCOM.2009.5183469
http://dx.doi.org/10.1109/MCOM.2009.5183469
http://dx.doi.org/10.1109/MCOM.2009.5183469
http://www.computer.org/portal/web/csdl/doi/10.1109/VISUAL.1998.745330
http://www.computer.org/portal/web/csdl/doi/10.1109/VISUAL.1998.745330
http://dx.doi.org/10.1109/VISUAL.1998.745330
http://dx.doi.org/10.1109/VISUAL.1998.745330
http://www.computer.org/portal/web/csdl/doi/10.1109/VIS.2005.102
http://dx.doi.org/10.1109/VISUAL.2005.1532781
http://www.it-weise.de/
http://en.wikipedia.org/wiki/Lingua_franca
http://en.wikipedia.org/wiki/Publish/subscribe
http://doi.acm.org/10.1145/1377966.1377971
http://doi.acm.org/10.1145/1377966.1377971
http://dx.doi.org/10.1145/1377966.1377971

Appendix A

I Speciĕcations

A. Platform Abstraction

In this appendix some possible deĕnitions for the data returned by the platform abstrac-
tion  are given. e implementations details are given in Common Object Request
Broker Architecture () .

Listing A.: Type deĕnition for available_cpus metric
 typedef unsigned short identifier;

 typedef sequence<identifier> available_cpus;

Listing A.: Type deĕnition for cpu_usage metric
 typedef unsigned short identifier;

 typedef float usage;



 struct cpuUsage{

 identifier id;

 usage usage;

 };



 typedef sequence<cpuUsage> cpu_usage;

A-

Appendix A — I Speciĕcations

Listing A.: Type deĕnition for memory_stats metric
 typedef unsigned long memory;



 struct memory_stats {

 memory total;

 memory used;

 memory cached;

 };

Listing A.: Type deĕnition for persistent_storage_stats metric
 typedef memory_stats persistent_storage_stats;

Obviously, if practice reveals that persistent_storage_stats requires a different
deĕnition than memory_statsƬ, the above deĕnition will not be viable and it will need
to be appropriately redeĕned.

Listing A.: Type deĕnition for running_processes
 typedef unsigned short identifier;

 typedef float usage;

 typedef unsigned long memory;



 struct process_stats {

 identifier id;

 string name;

 usage usage;

 memory memUsage;

 };



 typedef sequence<process_stats> running_processes;

ƬDeĕned in Listing A. on this page

A-

Appendix A — I Speciĕcations

A. DelegationModule Pseudo-

e code listing below is an example speciĕcation for the interfaces of the delegation
module in  and is illustrativeƬ.

Listing A.: Pseudo- speciĕcation of delegation-module
 module Delegation{

 typedef time_t time; // Timestamp storage

 interface DelegationRuntime;

 typedef string DelegationRuntimeName;

 enum DelegationRuntimeState {

 LOADING, // DR is loading into the DA

 LOADED, // DR is loaded into the DA and can be started

 STARTING, // DR is starting

 RUNNING, // DR is started and running

 IDLE, // DR is started, but is idling

 PAUSED, // DR is started, but is paused by the DA

 STOPPING // DR is stopping

 };



 struct DelegationRuntimeStatus {

 DelegationRuntimeName name;

 DelegationRuntimeState state;

 time timestamp;

 };



 typedef

 sequence<DelegationRuntimeStatus> DelegationRuntimeStatusSeq;

 typedef

 sequence<Param> ParamSeq; // Sequence of parameters



 // Creation of a Delegationentities is not defined, but could

 // follow pattern analogue to the creation of a

 // DomainParticipant in DDS.

ƬDo not expect to be able to compile the 

A-

Appendix A — I Speciĕcations

 interface DelegationAgent{

 // Loads the specified DelegationRuntime and binds it to the

 // specified name.

 retCode_t

 delegationRuntimeLoad(

 in DelegationRuntimeName drName,

 in DelegationRuntime dr);



 // Starts the DelegationRuntime identified by the specified

 // name passing the specified parametes.

 retCode_t

 delegationRuntimeStart(

 in DelegationRuntimeName drName,

 in ParamSeq params);



 // Pauses the DelegationRuntime identified by the specified

 // name. For example hotstandby functionality can be tied

 // to the PAUSED state.

 retCode_t

 delegationRuntimePause(

 in DelegationRuntimeName drName);



 // Resumes the DelegationRuntime identified by the specified

 // name from the PAUSED state.

 retCode_t

 delegationRuntimeResume(

 in DelegationRuntimeName drName);



 // Stops the DelegationRuntime identified by the specified

 // name.

 retCode_t

 delegationRuntimeStop(

 in DelegationRuntimeName drName);



 // Unloads the DelegationRuntime identified by the specified

A-

Appendix A — I Speciĕcations

 // name.

 retCode_t

 delegationRuntimeUnload(

 in DelegationRuntimeName drName);



 // Retrieves the current status of the DelegationRuntime

 // identified by the specified name.

 DelegationRuntimeStatus

 delegationRuntimeGetStatus(

 in DelegationRuntimeName drName);



 // Enumerates the status of all loaded DelegationRuntimes.

 DelegationRuntimeStatusSeq

 delegationRuntimeGetStatusAll();

 };



 interface DelegationRuntime{

 // Starts the DelegationRuntime with the specified parameters

 retCode_t start(in ParamSeq params);



 // Pauses the DelegationRuntime

 retCode_t pause();



 // Resumes the DelegationRuntime

 retCode_t resume();



 // Stops the DelegationRuntime

 retCode_t stop();



 // Returns the status of the DelegationRuntime

 DelegationRuntimeStatus getStatus();

 };

 };

A-

Appendix B

D Speciĕcation

B. QoS-policies

Table B. lists the default QoS-policies for  entities, as listed in version . of the 
speciĕcation, section ... For a more in-depth explanation of the QoS-policies and
the defaults, additional information regarding RO, changeability and semantics of the
policies, please consult the speciĕcation by the OMG ().

Table B.: Default QoS-policies for -entities

QoS-policy Meaning Concerns

USER_DATA User data, distributed by means of built-in
topics. e default value is an empty (zero-
sized) sequence.

Domain, Partici-

pant, DataReader,
DataWriter

TOPIC_DATA User data, distributed by means of built-in
topics. e default value is an empty (zero-
sized) sequence.

Topic

GROUP_DATA User data, distributed by means of built-in
topics. e default value is an empty (zero-
sized) sequence.

Publisher, Sub-

scriber

Continued on next page

B-

Appendix B — D Speciĕcation

Table B.: (continued from previous page)

QoS-policy Meaning Concerns

DURABILITY Expresses whether data should be main-
tained for late-joiners. Possible values
are VOLATILEƬ, TRANSIENT_LOCAL, TRAN-
SIENT and PERSISTENT.

Topic, DataRea-

der, DataWriter

DURABILITY_-

SERVICE

Speciĕes the conĕguration of the durabil-
ity service, which implements the TRAN-

SIENT and PERSISTENT DURABILITY kinds.
It speciĕes resource-limits, history and a
cleanup-delay.

Topic, DataWri-

ter

PRESENTATION Speciĕes how samples of an instance are pre-
sented to the application, and allows for spec-
iĕcation of the largest scope over which an
application is able to preserve order and co-
herency of changes.

Publisher, Sub-

scriber

PRESENTATION Speciĕes how samples of an instance are
presented to the application, and allows for
speciĕcation of the largest scope (INSTANCE,
TOPIC, GROUP)ƭ over which an application
is able to preserve order and coherency of
changes.

Publisher, Sub-

scriber

DEADLINE e periodƮ to which a DataWriter com-
mits to update the value of each instance and
at which a DataReader expects a new sam-
ple.

Topic, DataRea-

der, DataWriter

Continued on next page

Ƭis is the default
ƭe default is INSTANCE
Ʈe default is INFINITE

B-

Appendix B — D Speciĕcation

Table B.: (continued from previous page)

QoS-policy Meaning Concerns

LATENCY_-

BUDGET

emaximumdelayƬ from thewrite-time un-
til the notiĕcation of the receiving applica-
tion that the data is delivered.

Topic, DataRea-

der, DataWriter

OWNERSHIP Speciĕes whether it is allowed for multiple
DataWriters towrite the same instance, and
if so, how these modiĕcations should be arbi-
trated. Two kinds of ownership are possible:
SHARED and EXCLUSIVEƭ.

Topic, DataRea-

der, DataWriter

OWNERSHIP_-

STRENGTH

Explicitly speciĕes the value used to arbitrate
the strength if the OWNERSHIP QoS-policy is
of kind EXCLUSIVE.

DataWriter

LIVELINESS Determines the mechanism (manual or auto-
matic) and parameters used by the applica-
tion to determine or assert whether an Enti-

ty is alive. e liveliness of an Entity is used
to maintain instance ownership in combina-
tion with the setting of the OWNERSHIP QoS-
policy. e application can also be informed
via a listener when an Entity is no longer
alive.

Topic, DataRea-

der, DataWriter

TIME_-

BASED_-

FILTER

Filter allowing a DataReader to express in-
terest in a (potentially) subset of the data by
expressing a minimum separation between
two changes.

DataReader

PARTITION Set of strings that introduces a logical parti-
tion among the Topics visible by the Pub-

lisher and Subscriber.

Publisher, Sub-

scriber

Continued on next page
Ƭe default is ; as a hint for the middleware to minimise the delay
ƭe default is SHARED

B-

Appendix B — D Speciĕcation

Table B.: (continued from previous page)

QoS-policy Meaning Concerns

RELIABILITY Indicates the level of reliability offered/
requested by the middleware and a maxi-
mum time an operation may block trying to
guarantee the reliability. e kinds RELI-

ABLEƬ and BEST_EFFORTƭ are deĕned.

Topic, DataRea-

der, DataWriter

TRANSPORT_-

PRIORITY

Acts as a hint to the underlying infrastructure
on how to prioritize the data.

Topic, DataWri-

ter

LIFESPAN Speciĕes the validityƮ of the data written by
the DataWriter.

Topic, DataWri-

ter

DESTINA-

TION_ORDER

Controls the criterion⁴ used to determine
the logical order among changes made by a
Publisher, allowing for BY_RECEPTION_-
TIMESTAMP and BY_SOURCE_TIMESTAMP.

Topic, DataRea-

der, DataWriter

HISTORY Speciĕes the amount of history the middle-
ware must retain for an instance in case an in-
stance changes before the last changewas suc-
cessfully communicated. Possible options are
KEEP_ALL and KEEP_LAST⁵ with a depth pa-
rameter controlling the amount of last sam-
ples to attain.

Topic, DataRea-

der, DataWriter

Continued on next page

Ƭis is the default for DataWriters
ƭis is the default for DataReaders
Ʈe default is INFINITE
⁴e default is BY_RECEPTION_TIMESTAMP
⁵e default is KEEP_LAST with a depth of 

B-

Appendix B — D Speciĕcation

Table B.: (continued from previous page)

QoS-policy Meaning Concerns

RESOURCE_-

LIMITS

Speciĕes the resources that the middleware
may consume in order to satisfy the re-
quested QoS-policy, by specifying the upper
limitsƬ max_samples, max_instances and
max_samples_per_instance.

Topic, DataRea-

der, DataWriter

ENTITY_FAC-

TORY

Speciĕes whether an Entity acting as a fac-
tory for other Entitys creates new Entitys
in an enabled state.

DomainParti-

cipantFactory,
DomainPartici-

pant, Publisher,
Subscriber

WRITER_-

DATA_LIFE-

CYCLE

Speciĕes how a DataWriter automatically
manages the lifecycle of instances.

DataWriter

READER_-

DATA_LIFE-

CYCLE

Speciĕes how a DataReader automatically
manages the lifecycle of instances by means
of two durations.

DataReader

ƬBy default, all limits are UNLIMITED

B-

	Acknowledgements
	Abstract
	Preface
	Typographical Conventions
	Contents
	List of Figures
	List of Tables
	Acronyms
	Glossary
	1 Introduction
	1.1 Network Management
	1.2 Delegated Network Management
	1.3 Visualisation
	1.4 Data Distribution Service
	1.5 OpenSplice DDS™
	1.6 Optimisation and Maintenance
	1.7 Organisation
	1.8 Research Questions
	1.9 Structure of this Thesis

	2 Data Distribution Service
	2.1 Publish/Subscribe
	2.1.1 Filtering
	2.1.2 Advantages/disadvantages

	2.2 OMG's DDS-Specification
	2.2.1 DCPS Model
	2.2.1.1 Overview
	2.2.1.2 Conceptual Model
	2.2.1.3 Instances

	2.3 SPLICE
	2.3.1 Indices
	2.3.2 Refinements and Extensions

	2.4 OpenSplice DDS™
	2.4.1 Architecture
	2.4.2 Services
	2.4.3 Design
	2.4.3.1 Shared Memory
	2.4.3.2 Hot-Swap Support
	2.4.3.3 Time Decoupling
	2.4.3.4 Singleton Communication
	2.4.3.5 Information Priority
	2.4.3.6 Information Urgency
	2.4.3.7 Network Partitioning

	2.4.4 OpenSplice DDS™ Management

	2.5 SPLICE as a System Design Approach
	2.6 Conclusion

	3 Network Management
	3.1 Introduction
	3.2 Challenges
	3.2.1 Relevance

	3.3 Network Management in DDS
	3.3.1 Tasks
	3.3.2 Network Management Architectures
	3.3.2.1 Platform-Centred Architectures
	3.3.2.2 Decentralised Architectures
	3.3.2.3 Cooperative Architectures

	3.3.3 Distributed Monitoring
	3.3.3.1 Compression
	3.3.3.2 Delegation
	3.3.3.3 Metrics

	3.4 Conclusion

	4 Visualisation
	4.1 Introduction to Visualisation
	4.1.1 Data Visualisation
	4.1.2 Scientific Visualisation
	4.1.3 Information Visualisation

	4.2 Insight
	4.2.1 Insight Characteristics
	4.2.2 Gaining Insight

	4.3 Visualising Dataflow
	4.3.1 Topology
	4.3.2 Dataflow Analysis
	4.3.2.1 Basic Dataflow Example

	4.3.3 Dataflow Highlighting and Selection

	4.4 Conclusion

	5 Design
	5.1 Introduction
	5.2 Global Design
	5.2.1 Architecture
	5.2.2 Platform Abstraction
	5.2.2.1 Abstraction Set

	5.2.3 Delegation
	5.2.3.1 Delegation Agent
	5.2.3.2 Delegation Runtime

	5.2.4 Distributed Monitoring: Two Examples
	5.2.4.1 CPU-load DelegationRuntime
	5.2.4.2 ProcessList DelegationRuntime

	5.3 Conclusion

	6 Conclusions
	6.1 Findings to Research Questions
	6.1.1 Findings to Research Question II
	6.1.2 Findings to Research question III
	6.1.2.1 Findings to Sub-Research Question III.a
	6.1.2.2 Findings to Sub-Research Question III.b
	6.1.2.3 Findings to Sub-Research Question III.c

	6.1.3 Findings to Research Question IV
	6.1.4 Findings to Research Question V
	6.1.5 Findings to Research Question I

	6.2 Recommendations for Further Research
	6.2.1 Logical Network Visualisation
	6.2.2 Visualisation Evaluation
	6.2.3 Security

	References
	A IDL Specifications
	A.1 Platform Abstraction
	A.2 Delegation Module Pseudo-IDL

	B DDS Specification
	B.1 QoS-policies

