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1 Introduction 

Financial applications that support processes involving money, like banking 

applications, need to be fault proof. To gain the trust of customers, financial 

companies spend a lot of time, money and resources on validating their software. 

Systems that concern money or health require a higher degree of fault proof 

systems then systems that don‘t. 

Within the domain of mortgages, banks and mortgage companies loan money to 

clients so that they can finance a house. When a person wants to buy a house, 

generally they have to go to a mortgage company to get a mortgage for the house. 

Getting a mortgage involves a lot of paperwork and requires a variety of 

information about the current and historical financial situation of the buyer. For 

example, the buyer has to supply information about his yearly income, if the buyer 

has or had other loans, identification documents and so on. The mortgage company 

on their turn has a lot of different mortgage products. There are life insurance 

mortgages, linear mortgages, mortgages with a variable interest or mortgages 

where money is invested. These days there are over a hundred different mortgage 

products, often in combination with insurances. In order to keep track of all 

provided mortgages, with all these complex products and insurances, software 

systems are necessary. 

Software that is used in this process has to be reliable for both parties involved. 

From the client‘s point of view, all information about their mortgage should be 

correct, such as interest, satisfied payments, interest rate, mortgage products, 

insurances and so on as been agreed upon during the negotiations. From the view 

of the mortgage company, the system should keep correct records about all the 

provided mortgages. When such system contains faults, the company could lose 

money because of incorrect interest rates or by paying out insurances that a client 

does not have. On the other side, the company has to be able to ensure the data is 

correct and be able to verify this to its clients. This could be the case when a client 

claims he paid his monthly payment or that a mortgage product is different than 

what was agreed upon during the negotiations. 

Proving the correct information is stored is an important factor in financial 

systems. A common approach within administrative applications is the use of audit 

trails. Audit trail is a logging strategy which makes it possible to store and retrieve 

information about changes made in the process of creating the mortgage invoice. 

An audit trail can provide a complete history of how the end product is formed by 

backtracking the historical data of changes. However, strategy focuses more on 

storing and less on retrieving the historical information. 

1.1 Context 

Topicus is a software company that has different units located in Deventer, The 

Netherlands. Topicus Finance is the department where this research has been 

performed and they are one of the leading companies that focus on mortgage 

software systems. These systems support the whole process from the application by 

the customer to the invoice, which allows clients to get the mortgage. Due to 

legislations, all changes made by users of the system and by the system itself must 

be logged. To achieve this, an audit trail is used. An audit trail is a very detailed 

change log. The audit logs can be used for several purposes, such as possible 

mistakes which are made in the process can be backtracked and to see why values 

are as they exist in a specific invoice. When analyzing the logs in real-time, these 
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logs can be used for functionality like fraud detection. Currently, when Topicus 

wants to query the audit trail, the database server crashes or the query gets a time 

out. Either way, no results are obtained from the audit trail. Because of poor 

performance, this research has focused on how we can improve the current use of 

the audit trails within Topicus and how to make the data questionable with 

acceptable performance, in units of time. 

1.2 Problem statement 

Some clients and Topicus Finance themselves are SAS 70 [1] certified. This 

standard prescribes that the client and Topicus Finance must define a that justifies 

the data in their current database. For this they use an Audit Trail. The audit trail 

logs every database change, made in the application in a separate database. With 

this log, the clients and Topicus can justify the current state of for example, a field 

within the database, by retrieving historical information. Further, with this log they 

can reconstruct the database state at any point in time. 

The problem is that the audit trail was optimized to store. Later, clients asked for 

functionality to be able to retrieve information from the audit logs. Due to this 

change in requirements, the audit trail implementation now has poor structure and 

performance to meet the requests of the clients. The audit trail logs a lot of data 

without being able to retrieve any information from the logs within reasonable 

time. To get information from the audit trail, the data has to be distributed into 

multiple smaller databases in order to get any results at all. The data set is too large 

for the database server to handle in its current database schema. Therefore, 

functionality for the audit trail data cannot be added to their applications as 

requested by their clients. 

1.3 Research Questions 

In this section we propose the research questions which we have addressed 

during this research. This research has aimed at finding a solution, in the form of a 

design, which makes it possible to question the audit trail data with a better 

performance than the current audit trail.  

What is a generic architecture for efficient questioning of audit trail logs? 

1. What is an audit trail? 

We have introduced the concept of audit trails in Section 1.1. More information 

about audit trails can be found in [2]. 

2. What data warehouse architecture is suited for storing audit trail logs? 

3. What is a generic architecture for handling audit trails? 

a. What meta data is required by the architecture in order to 

understand the data? 

b. How should a (generic) model, to represent audit trail data, look 

like? 
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c. What architectural changes to the architecture or model have to 

be made in order to make it domain specific for any domain? 

To efficiently go through a large bulk of data, extra information, called meta 

data, is commonly used to group and find data faster and more efficiently. In 

previous research [2], we have seen that data provenance uses the notion of 

labeling to label data in order to address data by referring to its labels. 

4. What is the performance increase (measured in units of time) of the 

proposed architecture? 

In order to verify the performance of the proposed solution for the business case, 

we have implemented the architecture in a prototype. By running tests, the 

architecture could be compared with the performance of the current audit trail 

implementation. 

1.4 Approach and Outline 

In order to answer the research questions mentioned in Section 1.3, we start with 

some preliminaries in Chapter 2, which give an introduction to the terms Audit 

trail, provenance, data warehousing, modeling and modeling concepts. 

In order to find a suitable data warehouse architecture and to answer the third 

research question, we did some research on several types of data warehouse 

architectures. We compared these architectures based on relevant criteria and chose 

an architecture. The comparison is described in Chapter 3. 

To see if practice matches the theory, a simple test was performed to see how 

the architecture would perform for this business case. A data conversion is 

performed to obtain information about the data storage efficiency of the new 

architecture compared to the current situation. All of that is described in Chapter  4. 

To answer the fourth research question, first, a definition for the term „generic 

model‟ is given. Interviews were held to find out what types of questions are going 

to be asked about the audit trail data and what output is expected. From that, we 

abstract from the domain specific parts to design a model that could, ideally, be 

applied on any type of logging. While abstract from the domain, we kept in mind 

that the amount of architectural changes for a domain specific design should be 

kept at a minimum. Last, a solution regarding meta data is required to let the 

generic model understand what data it handles. All of that is described in Chapter 

5. 

Chapter 6 describes the audit trail architecture in more detail. We zoom in on 

every component in the model to show the responsibilities and how it works 

internally, specifically for our business case. 

To be able to say anything about the performance of the model we implemented 

a small prototype. By running some example questions we compared the results, in 

units of time, with the current implementation of the audit trail. From these results 

and observations made during prototyping, we drew some conclusions about the 

performance of the model. The prototype and test results can be found in Chapter 

7. 

Finally, the thesis will end with the final conclusions in which we look back at 

the research questions and provide the obtained answers. 
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2 Basic Concepts 

This chapter discusses the basic concepts that the reader should be familiar with 

to fully understand the terms and techniques used in this thesis.  

Organization of this chapter Section 2.1 explains the term audit trail, Section 

2.2 introduces the term provenance, what it is and how it is used. Section 2.3 talks 

about why there is need for a model for software in general. Section 2.4 focuses on 

what modeling can add to logged data. Section 2.5 shows some approaches of how 

the audit trail is used in practice. Last, Section 2.6 gives an introduction to the 

domain of mortgages and the process of getting a mortgage. 

2.1 Audit Trail 

We consider the definition of the concept ‗Audit Trail‘ from [3]:  

“An audit trail or audit log is a chronological sequence of audit records, each 

of which contains evidence directly pertaining to and resulting from the execution 

of a business process or system function.”  

In the context of this research an Audit Trail is a log that holds all changes made 

to a database, usually changes made by users of a system. A big problem with this 

form of logging, as with almost all forms of logging, is that the logs grow very big, 

very quickly. This is often compensated by selective logging or keeping the logs 

for shorter periods. Our business case consists of a situation where there is no room 

for compensations and all data needs to be logged for a long period. With this 

research we aim at finding a solution to obtain information from these large audit 

logs. 

2.2 Provenance 

Since logging, like an audit trail, easily grows out of manageable proportions, 

we need some data storage structure to keep some performance on the long run and 

that can support the storage and retrieval of historical data. For that, we look into 

data provenance. Provenance (also referred to as lineage or pedigree) means origin 

or source. Some call it “the history of ownership of a valued object or work of art 

or literature”[4]. From a scientific point of view, data sets are useless without 

knowing the exact provenance and processing pipeline used to produce derived 

data sets. In relation to our problem, when an  invoice for a mortgage is created it is 

valuable knowing what data is altered during the process of creating the invoice. 

We look into two flavors of provenance, namely workflow provenance and data 

provenance to determine which seems more applicable to our problem. 

2.2.1 Workflow provenance 

A workflow can be thought of as a sequence of steps which can be either 

computational steps, human-machine interaction or a combination of these two. 

Workflow provenance refers to the record of the entire history of the derivation of 

the final output of the workflow. In our scenario, the mortgage invoice generation 

process could be considered as the workflow. Applying workflow provenance 

provides us the functionality to retrieve the full history of the steps taken in order 

to produce an invoice. That is the final output in our workflow. The amount of 

information that is stored for the workflow provenance may vary. It may include 

complete historical records of the steps taken in the workflow to arrive at a 
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particular dataset. Sometimes records are kept about software versions, brand and 

models of hardware and use of external software within the workflow. When using 

external processes within the workflow provenance is usually coarse-grained, 

which means, that only the input, output and external software is recorded. Those 

external processes are seen as black boxes.  

The idea is shown in Figure 1 below. The audit process logs information on the 

log moments, indicated with vertical arrows. With black boxes in the process, the 

only log moments are before and after the black box. White boxes can have 

internal log moments. Workflow provenance logs more snapshots of the data at the 

log moments rather than the explicit changes. 

 

Figure 1: Workflow example 

2.2.2 Data provenance 

Data provenance gives a more detailed insight about the derivation of a piece of 

data that is the result of some transformation step. In our scenario, the resulting 

product could be the mortgage invoice. A particular case of data provenance is very 

popular within the database community and is extensively researched, which is the 

when this transformation is performed by database queries. The following 

explanation comes from [20]. Suppose a transformation on a database D is 

specified by query Q, the provenance of a piece of data i in the output of applying 

Q on D is the answer to the following question: ―Which parts of the source 

database D contribute to i according to Q?‖ We can further categorize this into 

where- and why- (or how-) provenance. 

 Where-provenance identifies the source elements where the data in the 

target is copied from. 

 Why-provenance describes why a piece of data is present in the output. 

Sometimes why-provenance is referred to  as ‗how‘-provenance and some 

authorsdefined it as a variant of why-provenance. We ignore this variant in this 

research. 

We explain these categories by means of an example derived from [5]. 

Suppose ("Jan", 657) is an answer to the following query on the tables shown 

below. 

Select name, telephone 

From employee e, department d 

Where e.id = d.id AND d.name = "Computer Science" 
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Employee   Department 

id name  id emp_id name phonenumber 

1 Jan  11 1 Computer Science 657 

2 Henk  12 2 Embedded Systems 739 

 

The where-provenance of the name ‗Jan‘ is simply the corresponding record in 

the name tuple of the Employee table. It only tells you where the data is copied 

from. This is marked in the table above. The why-provenance includes not only the 

record in the employee table, but also the Computer Science record corresponding 

to its employee id. Without the department record, ‗Jan‘ would not be included in 

the result set. These records are marked in the table above. 

 Data provenance has two general approaches, namely annotated and non-

annotated. Non-annotated provenance calculates the provenance using the input, 

output and query where the annotated provenance can be calculated lateron using 

extra information that is stored after the execution of a query. The problem with 

annotated provenance is that it adds a lot of overhead and might be less suitable for 

very large data sets. The positive side is that it gives more control about what data 

is more important by annotating it. The downside of non-annotated provenance is 

that calculations can only be performed during query execution. Afterwards new 

information cannot be added, unlike the annotated approach where annotations can 

be added at any time. 

2.2.3 Provenance and archiving 

Within data provenance, there is a notion of archiving. With the audit log, 

structural changes of the database can be expected and therefore should also be 

considered in the solution. 

Database schemas change over time for almost every application. For logging 

systems, structural changes in the database are usually not a big concern. Logging 

is more about content than structure. Structural changes can be changes in the 

structure of a field (integer to character) and the removal or addition of fields. It is 

uncommon practice to reuse the original schema of the database for logging 

purposes. Archiving is especially crucial for scientific data, where scientific 

breakthroughs are typically based on information obtained from a particular 

version of a database. Hence, all changes or all versions of the database must be 

fully documented for scientific results to remain verifiable. Nonetheless, if there 

are requirements to reconstruct data structures from loggings, like we have in our 

case, we might want to keep structural changes to the logs in mind. In our problem 

domain, mortgage invoices are created with the information that was present at that 

time. For example, we would like to see the history of a mortgage application, and 

assume a column of a table was deleted at some point in time. To be able to 

retrieve information of an application before the column deletion, we have to 

somehow record this change. This problem can be solved by using provenance 

archiving. We explain how archiving works by means of an example shown in 

Figure 2. 
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Figure 2: Archiving structural database changes 

In our scenario we consider two databases: The production database where 

applications run on and which holds the most recent information (Table C in Figure 

2), and the Audit trail database which is responsible for holding the logged 

information. Table A contains the logged information about Table C. Every record 

has an additional column with a timestamp indicating when a change occurred. 

Table B holds the structural changes about Table A, in which we can see which 

columns were added, deleted or changed. We have a function f(x), which takes a 

timestamp as value for ‟x‟ to calculate the state of a record or table during the given 

point in time x.  

Assuming we would like to retrieve the values of the record of the application 

with „app_id = 101‟ at f(20-12-2010 11:45). From Table B we conclude that 

column „attr_3‟ was not included at that point in time, but „attr_2‟ would be 

present. From Table A we see that the deletion of „attr_2‟ did not occur yet before 

11:45. The result is therefore, (101, 1002, 5.05). 

Assuming we would ask the same question again, but now for „x = 20-12-2010 

12:10‟. From table B we conclude that „attr_3‟ was added and thus should the 

value for this column be included in the result. From Table A we see that some 

changes have been made before 12:10. The result is therefore (101, 1002, 5.09, 

401). 

From the archiving point of view this approach works. A detailed registration is 

held about the structural changes of the application and is easily retrievable. 

Nevertheless, the storage of Table A is inefficient since it holds a lot of redundant 

information. This example explains how the archiving of structural database 

changes can be recorded. How the content is stored is a different point of concern. 

2.3 Modelling purposes 

Modeling in software engineering is a way to represent complex structures in a 

simplified manner. Modeling is used to be able to understand the complexity of a 

problem and to make it easier to talk about it. When making models for data, 

models can bring structure to facilitate reasoning about the data. 
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Modeling is often used in the process of designing software. Small projects do 

not necessarily need a model before building the real system. These types of small 

projects mostly share the following five characteristics [6]; 

1. The problem domain is well known. 

2. The solution is relatively easy to construct. 

3. Very few people need to collaborate when building or using the system. 

4. The solution requires minimal ongoing maintenance. 

5. The scope of future needs is unlikely to grow substantially. 

Larger projects, that do not have the characteristics above, usually require a 

some sort of model. There is always a possible tradeoff to model a system or build 

it straight away. The tradeoff is based on the complexity of the project and, the risk 

of building software without making a modeling. Modeling provides architects and 

others with the ability to visualize entire systems, assess different options and 

communicate designs more clearly before taking on the risks —technical, financial 

or otherwise — of actual construction. Some software systems support important 

health-related or money-related functions, making them complex to develop, test 

and maintain. These days, software become more and more important for almost 

any business process. Therefore, developers need a better understanding of what 

they are building. Modeling is an effective way increase the understanding. More 

specifically, by modeling software, developers can: 

 Create and communicate about software designs before committing 

additional resources. 

 Trace the design back to the requirements, helping to ensure that they 

are building the right system. 

 Practice iterative development, in which models facilitate quick and 

frequent changes. 

2.4 Modeling and logging 

To be able to retrieve information from large datasets like audit trail logs, the 

structure of the data is an important aspect. Structuring large datasets has a few 

advantages. Structured logs, or databases in our case, are readable to some extent. 

Structure provides better understanding of the content, which facilitates the design 

of software or models to give purpose to the data. In practice, several purposes for 

audit trails can be found. For example, the logs can be used as logs as intended, 

thus when something goes wrong and the cause needs to be found. Another 

purpose which seems to become more popular is analysis of audit trails and other 

logs. In this report we define two types of analysis: 

Passive analysis: A combination of questioning the logs for e.g. tracing 

problems and using the logs to generate statistics or use it for data mining. 

Reactive analysis: Done real-time and can be used to detect errors made by the 

user and generate a notification..  

Reactive analysis is more intertwined with applications while passive analysis 

can be supported by a separate component. A problem that arises with reactive 

analysis is that performance becomes an issue depending on what information is 

analyzed. When someone has permission to change a value can be done fairly 

quickly, To find out whether a set of values has been changed more than five times, 

with a large log can take too much time. Passive analysis has no real-time 

requirements and therefore performance is less of an issue. 
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2.5 Approaches for audit trail analysis 

A lot of approaches, concerning audit trails, focus on the areas of intrusion 

detection and fraud detection. Audit trail are generally monitored and analyzed to 

build up a dataset. This dataset is used to compare real-time actions in a particular 

software system to detect fraud or intrusion by comparing the actions with what is 

known or expected behavior. In the following sections, some approaches are 

discussed. 

2.5.1 Fraud in administrative ERP systems 

In financial and administrative applications, logging analysis is used mainly to 

detect or prevent any form of fraud. In [7], P. Best refers to five essential steps for 

detecting fraud in software systems.  

1. Understanding the business or operations. 

2. Performing a risk analysis to identify the types of frauds that can occur. 

3. Deducing the symptoms that the most likely frauds would generate. 

4. Using computer software to search for these symptoms. 

5. Investigating suspect transactions. 

In [7] they use audit trails as a means to detect fraud in ERP (Enterprise 

Resources Planning) systems. ERP systems are software systems in which 

administrative information is stored about the company. ERP systems can be 

centralized so that there is one administrative system for large companies with 

multiple settlements in different cities or countries.  

P. Best,[7], focuses on fraud in such administrative systems. To do so, they 

define various types of audit trails. Security audit trails log information of user 

activity to the system. These logs often include successful logins, failed logins, 

starting of a transaction or action, failed starts of (trans)actions (i.e. prevented 

because of role permissions) and changes in roles. Usually these audit trails may be 

retained for periodic review, then archived and/or deleted. Accounting audit trails 

log specific information concerning financial transactions, like who does payments, 

when are they performed, who made the payments, who checked financial balances 

and so on. With this log the financial companies can backtrack every payment that 

is performed or viewed within the system. [7] defines an audit trail approach to 

support detection of fraud. The approach consists of two stages: 

1) threat monitoring, which involves high-level surveillance of security audit 

logs to detect possible ‗red flags‘. To decide what a possible threat is, they use the 

audit logs to build up a profile of each user over a certain time period. This profile 

gives an indication of the frequently performed actions of a user, or patterns in the 

actions. A knowledge base system may also be developed to generate forecasts of 

expected user activity. Changes in actual user behavior may then be detected 

promptly and investigated. The forecast of predicted actions can be improved by 

creating user profiles in a smaller time frame and compare this to see shifts in the 

profile. For example, a user can perform different actions in the beginning of the 

week than at the end of the week. 

2) Automated extraction and analysis of audit log data to provide documentation 

of user actions. This stage creates documentation of users and their activities 

focused on the fraud sensitive area‘s (e.g. financial transactions). Those reports 

contain facts and can be reviewed to detect fraud that might not have been detected 

in the first stage. 
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2.5.2 Rule-based system for universal audit trail analysis 

The University of Namur in cooperation with Siemens Nixdorf Software S.A. 

developed a rule based language for universal audit trail analysis for UNIX. The 

language is called RUSSEL [8] (Rule-baSed Sequence Evaluation Language) and  

tailored to the problem of searching for arbitrary patterns of records in sequential 

files, like audit trails. The built-in mechanism allows  records to pass the analysis 

of the sequential file from left to right. The language provides common control 

structures, such as conditional, repetitive and compound actions. Primitive actions 

include assignments, external routine calls and rule triggering. A RUSSEL program 

consists of a set of rule declarations that are identified by a rule name, a list of 

formal parameters and local variables and an action part. The action part can 

consist of user-defined or built-in C-routines. A simple and clearly specified 

interface with C allows users to extend the RUSSEL language with any desirable 

feature. This can include simulation of complex data structures, specifications of 

alarm messages (mail, text message, popup), locking a user account and so on. 

When analyzing audit trail logs, the system executes all the active rules on every 

record. The execution of an active rule may trigger or activate new rules, raise 

alarms, write report messages or alter (global) variables. Rules can be activated for 

the current record or the next. Once all rules are executed for a single record, a new 

record is obtained from the log and all rules return to their initial state. This means 

that, rules that were triggered to be active become inactive again unless triggered to 

stay active. The abstract syntax of RUSSEL can be found in [8]. Example rules can 

be found in [9]. The operational semantics of the RUSSEL language can be 

summarized as follows:  

 Records are analyzed sequentially. The analysis of records consists of 

executing all active rules. An active rule can trigger other rules, raise 

alarms, write report messages, alter variables etc. 

 Rule triggering is a special mechanism by which a rule is made active 

either for the current or the next record. In general, a rule is active for 

the current record because a prefix of a particular sequence of audit 

records has been detected. The rest of the sequence has to be possibly 

found in the rest of the log. Parameters in the set of active rules 

represent knowledge which is obtained from the already analyzed 

records. This knowledge is used while analyzing the rest of the records. 

 When all the rules active for the current record have been executed, the 

next record is read and the rules triggered for this record in the previous 

step are executed in turn. 

 To initialize the process, a set of so-called initialization rules are made 

active for the first record. 

2.6 Domain of mortgages 

The mortgage domain has its own vocabulary, concepts and terms. Therefore we 

first introduce some terms that are often used and later describe the general process 

of a mortgage request. The process description will end when the mortgage 

application is approved. The process of paying off mortgages and insurance 

activities are not described and irrelevant for this research. 
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2.6.1 Organization 

In order for a mortgage company sell mortgages to clients, there are a few 

parties involved. The mortgage company also needs ways to be profitable and gain 

its money. Figure 3 indicates of the involved parties. 

 

Figure 3: Global organization of a mortgage company (from [10]) 

Within mortgage companies, three offices are usually defined, namely Front-, 

mid- and back-office. The front-office usually refers to the different sales and 

distribution channels a mortgage company knows. Some mortgage companies have 

their own sales department, but outsourcing that activity to different distribution 

partners seem to happen more often. Distribution partners are intermediaries or 

franchisers. This kind of people sell mortgages for different companies. The 

advantage is that consumers (people looking for a mortgage) have more choice in 

mortgages from various companies with an ‗independent‘ advice when they  visit 

an intermediary of franchiser. Naturally, mortgage companies give bonuses when 

an intermediary sells their products. Such bonuses make advice less ‗independent‘. 

The mid-office performs the process of making offers for consumers, validating the 

applications and accepting applications. The back-office comes after the mid-office 

and performs the process after the mortgage deal is closed. It focuses on consumers 

paying off their mortgages. Chain partners are specialized companies that can take 

over some of the processes of a mortgage company. Examples are outsourcing of 

the back-office, but also authorities that supervise the mortgage market, like AFM 

[11]. Like car manufacturers need resources to build cars, mortgage companies also 

need resources to be able to sell mortgages. Those resources are called financial 

means and are gained from the financial market. Traditionally, banks use its clients 

savings as resources but mortgage companies are not always banks, thus they need 

other ways for getting money.  

Nowadays, mortgage companies sell their mortgage wallets (a set of mortgages) 

to third parties. In that way, mortgage companies can directly use money again and 

the paying off risks now lay at the third party holding the wallet. Another popular 

approach is ‗securitization‘. Mortgage companies sell their wallet to a so called an 

SPV (Special Purpose Vehicle), which is a Ltd. Company to be founded. The SPV 

generally transforms the mortgage wallet into obligations on the stock exchange 

and sells them. Each SPV is responsible for getting money from its consumers, 

paying interest and repaying the obligations. When a wallet ends with loss, the 

obligations with the lowest rating end up with the loss. The higher the ranking of 

the obligation, the less risk is in case the wallet ends with loss. 

2.6.2 Process 

 We consider the process here from the point of view of the mortgage company. 

Sometimes they have their own sales department although sales could also be done 

via an intermediary. An intermediary sells mortgages for various companies and 

the mortgage company makes deals with these intermediaries to boost the sales of 
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their products. In Figure 4 a schematic overview of the primary process of a 

mortgage company is shown. These days, a lot of insurances are sold together with 

a mortgage.  Insurances are not included in the primary process. The primary 

process describes only the phases that are usually adopted in the processes of the 

mortgage companies. Variations of this process and perhaps totally different 

processes. For simplicity, we use this general process to characterize the mortgage 

process. 

 

Figure 4: Primary process for mortgages 

Each phase is discussed below. 

Sales – Front office 

Advice: The sales of mortgages is done by either a sales department of the bank 

or mortgage company or by intermediaries and franchisers. Sometimes you see 

mortgages are sold via the internet. In this phase, the seller tries to find out the 

needs of the client and an estimation is made whether the client would be accepted 

by the mortgage company. Based on the needs, a mortgage product is selected and 

proposed to the client. 

 

Offer – Mid office 

Validation: When the client has interest in the mortgage that was proposed 

during the sales phase, the client can ask for an offer. The mortgage company will 

validate the application and will check according to a checklist to see if the 

company can offer the mortgage the client requests. Mostly some background 

information is looked up about the client and some global financial information 

from BKR [12]. If the application passes these checks, the offer can be created. A 

full acceptance check is done later. 

Offer creation: In this phase the offer is created and presented to the client. 

Acceptance – Mid office 

Client Acceptance: The client accepts the conditions described in the offer, signs 

the documents and sends them back to the mortgage company. Here he formally 

agrees on his side of the agreement. 

Document completion: The mortgage company starts with gathering all sorts of 

documents that are required for the application of a mortgage. Sometimes via the 

intermediary. These documents can consist of copies of identification documents, 

pay slips and a variety other documents that highly depend on which mortgage is 

offered.  
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Bank acceptance: When all the required documents are gathered, the documents 

are read and checked where necessary. When all documents are checked and 

accepted, the mortgage company agrees on their side of the agreement for the 

mortgage offer. The mortgage application is now complete and the client gets 

access to the money. 

 

Transfer 

This phase is about the transfer of the house from seller to buyer. 

Mortgage document: The mortgage company sets up a notary instructions 

document in which the mortgage company describes how the house will be 

financed. The payment can be fully covered by the mortgage or that a part will be 

paid by the client. For example, from money that was left over from the sales of 

another house. This document is also an agreement between the client and 

mortgage company.  

Property transfer: The seller and buyer sign the house-transfer document. The 

buyer is now officially the new owner of the house. 

Register property: Every property has to be registered at the ‗Land register‘ This 

is a central register in which the property rights and mortgage rights on property 

are registered. 

 

Management – Back office 

Mortgage management: Once the property is officially transferred, the loan of 

the mortgage is activated. Mortgage management concerns about every action 

related to paying off the mortgage. An action can be a monthly fee over interest, a 

payment in between or any amount or changes to the mortgage conditions during 

the pay off period. This is the standard process. 

Debt management: If a client does not pay his mortgage, the client ends up in 

the debt management. These clients are handled separately from the rest and are 

monitored more intensively. Once the client catches up with his payment he is 

transferred back to the standard mortgage management. If the client keeps paying 

late or not at all, the mortgage company might be forced to sell the property. The 

profit of sales is for the mortgage company. 

 

Closing 

Pay off & expel: Just like other products, mortgages have a lifecycle. The cycle 

starts with the first contact with the client and ends in this phase. The cycle ends 

when either the mortgage is paid off or on initiative of the client which has to pay 

off the mortgage by, usually, getting a new mortgage for another house.  
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3 Data warehouse architectures 

A data warehouse is required to store the audit trail data. Therefore we spent 

some time selecting a suitable data warehouse architecture. This chapter focuses on 

the selection of a data warehouse architecture that is suitable for working with 

audit trails in general and how the selected architecture would be applied on our 

business case. 

Organization of this chapter: Section 3.1 describes the approach that aims at 

answering the second research question. Section 3.2 looks into several data 

warehouse architectures from which we have made our choice. We discuss the 

characteristics of each individual architecture. Section 3.3 covers the comparison of 

the architectures by looking at their strengths and weaknesses and grading them 

according to the predefined criteria. Last, in Section 3.4 holds the conclusion about 

the chosen architecture and the results of the comparison. 

3.1 Approach 

In order to answer the second research question (“What data warehouse 

architecture is suited for storing audit trail logs”), the following has been done. 

We selected four data warehouse architectures. From those four, two are specific 

products, that have been selected since they implement an interesting variant of a 

standard architecture, or the underlying architecture is specifically designed for its 

product. Therefore some product were selected, but the focus is on their underlying 

architecture. The different architectures are selected based on the differences in the 

underlying architecture and their theoretical performance. The information about 

performance is obtained from experts and the (product) developers. Four different 

data warehouse architectures and products were selected, namely OLAP, 

Normalized Data warehouse, FluidDB [13] (uses EAV data triples [2]) and 

InfoBright [14] (which uses compression and a special form of indexing). We will 

introduce each architecture or product and list their strengths and weaknesses.  

The selected data warehouse architectures are compared on several criteria that 

are relevant for our business case. The architectures are compared according to the 

following criteria:  

 (Analytic) query performance. Most architectures are designed for either 

analytic or regular queries. We look at how the architectures perform  

on both these types of queries in relation to each other, as stated by 

experts and developers. Grading: 1(bad) – 5(very good) 

 Maximum data size. Roughly for which the architectures still performs 

acceptable. Beyond the indicated size, the performance goes down 

exponentially. Grading: 1(small size) – 5(large size), relative 

comparison between the architectures and kept in mind an expected 

audit trail size in the order of 30 to 50 Gb. 

 Meta information. Information that is added by the architecture itself. 

Meta information becomes overhead, unless it is helpful information to 

our solution. Therefore, meta information forced by the architecture 

should be limited. Grading: 1(a lot) – 5(none) 

 Support to textual data. To what degree the architectures are designed to 

handle textual data Grading: 1(bad) – 5(very good) 

 Data Redundancy. Whether the architectures allow redundant data and 

to what degree. Redundancy is seen as overhead and should be limited. 
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Audit logs tend to have a very high degree of redundancy, therefore the 

grading is doubled for this criteria. Grading: 1(A lot) – 10(None) 

 Scalability. How the architecture scales, horizontally (addition of  

servers) and/or vertically (addition of CPU/memory to a server) 

Grading: 1(bad) – 5(very good) 

 Maintainability. How much effort, in units of time, is required to 

maintain the data warehouse. Grading: 1(bad) – 5(very good) 

 Side-effects. Caused by possible insert/update/delete actions. Audit trails 

log a lot of information. To keep the data warehouse up-to-date, a 

continuous stream of insertions are performed for new log records. The 

insertions should not have negative side effects. Grading: 1(None) – 5(a 

lot) 

By looking at the strengths and weaknesses of the different architectures and by 

giving grades from 1(bad) to 5, or 10(very good) to the criteria above, we got an 

overall score for each architecture. The scores have been assigned based on 

literature, known research, opinions of experts or our own knowledge. Based on 

the score, the appropriate architecture has been selected.  

3.2 Normalized database 

For the structure of our data warehouse we looked into the field of sensor data 

storage. Sensors produce a lot of data which needs to be stored and retrieved. Our 

problem involves less data than sensor storage has to cope with, therefore we think 

that if a solution works for the storage of sensor data, it would perform well in our 

case. 

The University of Central Florida [15] did a comparison between normalized 

data warehouses and denormalized data warehouses to show the advantages 

between the two. Based on their results, when normalizing a database, the number 

of records increases (records generally have 2 or 3 columns) and the data volume 

decreases, meaning less size on disk. Since we handle large data sets, we are more 

concerned in reducing the space on disk rather than the number of records. When 

normalizing, the costs for administration raises and the labeling takes a little extra 

storage. Depending on how the data warehouse is set up, this could be an issue. 

With logs, the redundancy rate is extremely high. By removing redundancy using 

normalization, the extra costs of the extra administration probably does not add up 

to the decrease in data size.  

Since we do not have to handle the data real-time, the time it takes to populate 

the warehouse is less of an issue. The last ‗weakness‘ in the comparison from [15] 

is that transformations on normalized databases are harder. This is true for the 

general case, since the normalized databases have more tables. Also, a data 

warehouse should not be used for other purposes than questioning the data in the 

way the data warehouse was set up. Apart from that, transforming a data 

warehouse is usually done only once and not on a regular bases. Considerations 

regarding possible transformations should be known and kept in mind when 

designing the data warehouse. 

In the field of databases, normalizing a database is the first step towards 

maximizing performance. Five normal forms have been defined. The higher the 

form, the more normalized the database is. The different normal forms are 

explained in [2]. 
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Comparison 

Table 1 shows the evaluation of the normalized data warehouse architecture 

regarding the criteria, which are defined in Section 3.1 

Table 1: Evaluation of the normalized database architecture. 

Criteria Evaluation 

(score) 

Motivation 

Query performance Good (4) Normalization is applied to increase the query 

performance in general 

Analytic query 

performance 

Good (4) Due to the standard functionality (from SQL) to 

calculate multi cubes 

Scalability Good (4) Tables could be divided over multiple servers and 

more memory increase cache size, thus 

performance 

Data redundancy None (10) The goal of normalization is to minimize or 

prevent data redundancy 

Max. database size 10 – 50 GB (3) Depending on the size of the individual tables, 

hardware and difficulty of queries 

Meta information None (5) By itself, a normalized database does not generate 

meta information about its content.  

Textual data Good (4) Textual searches are always slower then numeric 

searches, but due to low/no redundancy, the 

amount of text to be searched is limited. 

Side effects None (5) By normalizing a data warehouse, no relevant side 

effects appear. 

Maintainability Good (4) It has a simple database schema and there is good 

tool support for maintenance. 

3.3 OLAP 

OLAP stands for Online Analytic Processing and is an approach to handle multi-

dimensional analytic queries. OLAP systems generally are used for business 

intelligence reporting tools and data mining where data cubes are used to retrieve 

the desired information. OLAP is a sort of layer that runs on top of a normal 

database. There are three types of OLAP architectures, namely, MOLAP, ROLAP 

and HOLAP. The biggest weakness is that OLAP products are not suitable for 

handling data with multi-hierarchical and unbalanced structures. The strength lies 

in retrieving analytical and statistical information from data sets.  

Several comparisons have been made between the different types of OLAP. We 

use a comparison performed at the Uppsala University [16]. From their results and 

observations we can conclude that for our case, MOLAP is not suited, since the 

data sets we want to handle exceed the limit of MOLAP, which is said to be around 

1-2 Gb. Therefore, it is better to go into the direction of ROLAP or HOLAP. 

Considering the goal of our project, we feel ROLAP would be better than HOLAP.  

HOLAP aim more at analytic questions about the data. We aim at a generic 

solution, therefore we do not focus specifically on dealing with analytical questions 

but all kinds of queries. ROLAP has more efficient disk space usage because it can 

be optimized by normalization. HOLAP uses more disk space because of the 

multidimensional cubes, that are precomputed for analytic questions that contain a 

copy of the actual data. ROLAP can create and (optionally) store these cubes, but 
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does not pre-compute them. ROLAP can be used using normal SQL tools, since it 

is a layer on top of a normal database, which makes it more generic for average use 

than having to study OLAP tools in order to work with it. Last, loggings generally 

contain quite some textual data. ROLAP is said to handle this kind of data pretty 

well. For all these reasons we select ROLAP as the OLAP representative for our 

project based on the conducted comparison in[16].  

Evaluation 

Table 2 shows the evaluation of the ROLAP architecture regarding the criteria 

defined in Section 3.1. 

Table 2: Evaluation of the ROLAP architecture. 

Criteria Evaluation 

(score) 

Motivation 

Query performance Good (4) The architecture is designed to obtain information 

from large data sets 

Analytic query 

performance 

Very Good (5) The multi dimensional cubes improve the 

performance of the analytic queries 

Scalability Good (4) Tables could be divided over multiple servers and 

more memory increase cache size, thus 

performance 

Data redundancy Average (6) When the multi dimensional cubes are stored they 

hold copies of the original data. 

Max. database size 10 – 50 GB (3) Depending on the size of the individual tables, 

hardware and difficulty of queries 

Meta information None/Little (4) When multi cubes are calculated and stored, the 

cubes hold statistical/analytical information about 

the content. 

Textual data Good (4) Textual searches are always slower than numeric 

searches, but due to low/no redundancy, the 

amount of text to be searched is limited. 

Side effects Yes (3) Stored computed multi cubes might have to be 

recomputed from time to time. 

Maintainability Good (4) It has a simple database schema and proper tool 

support for maintenance is available. 

3.4 FluidDB 

FluidDB, developed by FluidInfo [13], aims at becoming the ‗wikipedia of 

databases‘. FluidDB is a form of cloud computing which is based on storing social 

data. Cloud computing is a service that provides data, software and hardware via 

the Internet and is location-independent. The cloud provider stores the data and 

makes sure it is accessible via the internet, usually via a browser interface. Social 

data is publicly accessible and can be questioned by anyone. For example, an 

application based on FluidDB, called tickery [17] (twitter query), collects twitter 

messages and stores it as data triples. FluidDB is the database to which everyone 

could add information to it or about data that is already in it. It is a publicly 

writable database so that all related information can be stored about some particular 

information. For example, by supplying the information about facebook friends, 

one could query who Person A follows on Twitter, as well as his Facebook friend.   
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FluidDB uses an architecture based on Entity-Attribute-Value (EAV) triples, or 

data triples. The architecture is implemented so that the data is stored in a relational 

database, and the actual content is stored as compressed XML. Via those triples, 

the location of the actual content in the compressed XML can be obtained. The 

EAV architecture is used as a lookup system for the actual content. In FluidDB, 

there are four key concepts, namely: 

 Objects: Represents the actual content 

 Tags: Labels attached to objects which define the attributes of objects. 

 Namespaces: Organizes or groups tags 

 Permissions: Handles access  control 

 

Figure 5: FluidDB data format. 

The object represents the actual content, the ‗about‘ tag is optional but should be 

unique and an id can be used to retrieve the actual content. Per object, additional 

tags can be attached. A tag consists of a namespace followed by the name of the 

tag, and a value. The data triples consist of an object, a tag and a value. An 

example of an object is represented in Figure 6: 

 

Figure 6: Visualisation of data triples for an object in FluidDB 

FluidDB also supports the handling of permissions. Traditionally you would 

have permissions on an object. In FluidDB, the permissions are set on the 

namespaces, tags and tag-values. A permission consists of a namespace, tag or tag-

value where the permission should be applied, a scope (e.g. see, create or read) and 

a list of exceptions. Exceptions mean that the permission restriction does not apply 

for the specified users. This approach keeps maximum flexibility for setting 

permissions but results in a (possibly) huge permission table. The permission 

information is stored as data triples as well. 
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In our own research [2], we concluded that data triples is not the best 

architecture for our problem. FluidDB made some improvements to the concept of 

data triples and showed it can be effective for large sets of data, like tickery. But, 

the use of cloud computing, makes FluidDB an unsuitable choice. Its architecture is 

tailored towards social data which is publicly accessible, which is something we do 

not want looking at the confidentiality of the audit data. Cloud computing is getting 

more secure for private use, but the client has to have faith in that security. The 

permission system on the other hand is simple and effective but might get out of 

hand when permissions need to be set for a lot of users and a huge tag set,  

especially when the tags can be defined by any user per object. Tag management, 

therefore, should be managed closely so that it does not get out of hand. 

Evaluation 

Table 3 shows the evaluation of the FluidDB data triple architecture regarding 

the criteria defined in Section 3.1. 

Table 3: Evaluation of the FluidDB data triple architecture. 

Criteria Evaluation 

(score) 

Motivation 

Query performance Good (4) The architecture is designed to obtain small pieces 

of information from large datasets. 

Analytic query 

performance 

Poor (2) Analyzing the data triples with possible different 

labels per object takes a lot of effort. 

Scalability Average (3) Good scalability, horizontally due to cloud 

computing. Average scalability vertically. 

Data redundancy Little (8) Not intended, but the architecture does not restrict 

it. 

Max. database size 450 – 500 GB 

(4) 

Data triple architectures are measured in number 

of triples rather than size. They can handle a few 

billion triples. A rough indication is 250 kb per 

triple * 2 billion = 450 – 500 GB 

Meta information A lot (1) Tags attached to objects are considered meta 

information 

Textual data Good (4) Has no limitations that restrict the performance on 

textual data lookups 

Side effects None (5) The usage of data triples has no unintended side 

effects 

Maintainability Poor (2) Due to the billion of triples, maintainability 

suffers. Tool support is limited.  

3.5 InfoBright 

Infobright [14] is a company that focuses on analytic data warehouse products. 

They have a commercial and open source variant of their product called Infobright, 

named after the company. Infobright gives support especially for very large 

datasets (up to 50 TB). It combines smart compressions with good performance 

and low installation and maintenance costs. 

Infobright is easily deployed, is simply installed and configured and is self-

contained, i.e. has no external dependencies. Infobright is easy to manage because 

no indexes, data partitioning, data partitioning or tuning is needed. It has a very 

small hardware footprint, which makes it possible to support databases up to 50 
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TeraByte on a single industrial standard database server. About performance and 

scalability they claim fast load speed, which remains constant as the size of the 

database grows, fast query speed on large volumes of data and they offer high data 

compression with a ratios between 10:1 to over 40:1. This results in less storage 

and less I/O requirements. Another important factor is that Infobright is column 

oriented and not row oriented as in traditional databases. 

3.5.1 Layers 

The architecture behind Infobright consists of 3 layers: Data Packs, Knowledge 

Grid, Optimizer. 

Data Packs. The actual content is stored using efficient compression algorithms. 

Data is stored in Data Packs, so that the data of columns is divided in Data Packs of 

64k elements. Each Data Pack is compressed individually and the compression 

method can vary according to the data type and repetitiveness of the data within a 

Data Pack. By doing so, the compression can be optimized by selecting the best fit 

per Data Pack. 

Knowledge grid. The Knowledge grid consists of two parts, namely the Data 

Pack Nodes (DPN) and the Knowledge Nodes (KN) on top of the DPN. The DPN 

contains aggregated information about a Data Pack, such as MIN, MAX COUNT 

(# of rows, # of NULLS) and SUM information. For each Data Pack, there is a 

Data Pack Node. The Knowledge Nodes keep information about data packs, 

columns or table combinations. Unlike the indexes required for traditional 

databases, DPNs and KNs are not manually created, and require no ongoing care 

and maintenance. Instead, they are created and managed automatically by the 

system. In essence, the Knowledge Grid provides a high level view of the entire 

content of the database with a minimal overhead of approximately 1% of the 

original data. 

Optimizer. The optimizer is the most intelligent part in the architecture. It uses 

the Knowledge Grid to determine the minimum set of Data Packs needed to be 

decompressed in order to satisfy a given query in the fastest possible time by 

identifying the relevant Data Packs. By looking into the summarized information in 

the Knowledge Grid, the optimizer groups the Data Packs in three categories: 

 Relevant Packs: Data pack elements hold relevant values based on the 

DPN and KN statistics. 

 Irrelevant packs: Data pack elements hold no relevant values based on 

the DPN and KN statistics 

 Suspect Packs: Data pack elements hold some relevant elements within 

a certain range, but the Data Pack needs to be decompressed in order to 

determine the detailed values specific to the query. 

The Relevant and Suspect packs are used in answering queries. In some cases, 

for example if we‘re asking for aggregates, only the Suspect packs need to be 

decompressed because the Relevant packs will have the aggregate value(s) pre-

determined (in the DNs). However, if the query is asking for record details, then all 

Suspect and all Relevant packs have to be decompressed. 

3.5.2 Data Manipulation Language 

DML. Data Manipulation Language is a set of statements used to store, retrieve, 

modify, and erase data from a database. Infobright is a data warehouse that makes 
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extensive use of compression and grouping ordered data. A big question that arises 

is how inserted, updated or deleted data is handled. Since all data is compressed, it 

is not practical to recompress all data after each DML statement. 

DML functionality is not available in the Community Edition (ICE), only in the 

(commercial) Enterprise Edition (IEE). ICE makes use of a bulk import for the 

data. 

Insert. On insertion, the data warehouse buffers multiple rows of incoming data 

and appends them to the final (partial) data pack. The pack is recompressed only 

after it is full, or the INSERT operation is complete. A lot of insertions result in 

two data sets, the original ordered data packs and the newly inserted data packs that 

contains random information. That results in an increase in the number of data 

packs that need to be decompressed per query. Therefore, a total recompression of 

the data is necessary in the case of a lot of insertions. 

Delete. On deletion of a row, the data warehouse marks rows as deleted using a 

separate ―delete mask.‖ This means that the data is not actually deleted, but will be 

ignored by queries. It impacts performance not that much as insertion, but when a 

lot of data gets deleted, the data packs get a lot of overhead from the deleted rows. 

The rows are deleted from disk when the data warehouse is recompressed. 

Update. The update functionality is implemented as a deletion followed by an 

insertion of the new row with the updated information. 

3.5.3 Example of query handling 

By means of an example we explain how Infobright handles a query. Assume 

we have the following query: 
SELECT COUNT(*)  

FROM user  

WHERE zipcode = „2468FG‟  

AND registrationdate > „1-1-2011‟  

AND gender = „M‟ 

To evaluated the query, the optimizer uses the constraints of the query to 

identify the relevant data packs. The optimizer questions the knowledge grid to 

find out, which data packs are relevant or suspects, using the Data Pack Nodes. The 

Knowledge Nodes indicate which DPNs  are relevant for the query (the user table). 

Then, the DPNs that belong to the zipcode column from the  user table are found. 

Using the MIN and MAX values the DPNs hold about their data packs, the data 

packs can be identified that hold the value ‗2468FG‘ for zipcode. If the data pack 

would purely hold the requested zipcode (and thus the MIN and MAX values are 

the same) the data pack is marked relevant. Next, the other restrictions from the 

query are evaluated in the same way, except that the only subset of rows that were 

identified by the previous restriction are evaluated. The selection of data packs is 

shown in Figure 7. Once all restrictions are evaluated and a subset of data packs is 

returned, those data packs are decompressed and the count can be performed. 
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Figure 7: Selection of Data Packs in InfoBright (from [18]) 

Evaluation 

Table 4 shows the evaluation of the Infobright data triple architecture regarding the 

criteria, which can be found in Section 3.1 

Table 4: Evaluation of the InfoBright architecture. 

Criteria Evaluation 

(score) 

Motivation 

Query performance Very Good (5) Due to the power of the knowledge grid 

Analytic query 

performance 

Good (4) Due to the power of the knowledge grid 

Scalability Very Good (5) Scales well horizontally and vertically 

Data redundancy Little (6) Does no effort to prevent redundant data but due 

to good compression redundant data does not take 

much disk space 

Max. database size => 50TB (5) Tailored for large datasets of several terabytes 

Meta information Average (3)  The DPN‘s and KN‘s in the knowledge grid hold 

meta information about the content 

Textual data Good (4) Has no limitations that restrict the performance on 

textual data lookups 

Side effects Yes (2) Due to compression of the content, the whole 

database has to be recompressed periodically to 

keep up the performance 

Maintainability Very good (5) Choices for optimal compression algorithms and 

indexes are done by the system. Close to self-

maintainable 
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3.6 Architecture Comparison 

In this section we compare the different data warehouse architectures. All results 

are summarized in Table 5. The scores are determined based on literature and 

knowledge of experts. 

From the comparison in Table 5 we see that the normalized database 

architecture seems to be the best fit for our business case. Its strongest point for our 

case is the removal of redundant data. Logging in general consist of a lot of 

repetitive information. Therefore we double the score for the ‗data redundancy‘ 

criteria. By removing the redundancy the disk size is decreased drastically and 

implicitly the performance should increase. Infobright seems a good alternative, 

but its architecture and compression starts paying off at extremely large databases. 

From the numbers we got about the audit trail growth, the audit trail should run a 

few years before a product like InfoBright should be considered. 

Because of our generic approach we cannot argue whether our solution would be 

used for merely analytical questions. Therefore picking an OLAP solution seems 

illogical. FluidDB uses cloud computing and cannot be installed locally inside a 

company but is only accessible as a service via the internet. Since we deal with 

confidential data we don‘t want to add a third party and certainly not stream the 

data over the internet, although cloud computing becomes more secure. 

Nevertheless, we have rejected FluidDB  as a possible solution.  

 



 

 

Criteria Normalized Database (R)OLAP  FluidDB  InfoBright  

Query performance Good 4 Good 4 Good 4 Very Good 5 

Analytic Query 

performance 

Good, due to the 

standard 

functionality to 

calculate multi cubes 

4 Very Good, due to its 

calculation of the multi 

cubes 

5 Poor, due to its storage as 

data triples which makes 

these type of queries 

expensive 

2 Good, due to the power of 

the knowledge grid 

4 

Scalability Good 4 Good 4 Average (horizontally 

good) 

3 Very Good, horizontally and 

vertically  

5 

Data redundancy 

(double score due to 

importance) 

None 10 The computed multi cubes 

that are stored in the 

database 

6 Not intended, but can arise 

easily when its data comes 

from different sources 

8 Does no effort to prevent 

redundant data but due to 

good compression redundant 

data does not take much disk 

space 

6 

Stable performance 

up to 

10 – 50 GB 3 10 – 50 GB 3 450 – 500 GB 4 > 50 TB 5 

Meta information None 5 None / Little 4 A lot, tags attached to 

objects are to be 

considered as meta 

information 

1 Average, the DPNs and KNs 

in the knowledge grid hold 

meta information about the 

content 

3 

Handling textual 

data 

Good 4 Good 4 Good 4 Good 4 

(Side) Effects due to 

inserts/updates/ 

deletion 

No 5 Yes, Pre-computed cubes 

have to be recomputed 

3 No, it is designed to do this 

without side effects but it 

might be necessary to 

change permission settings. 

5 Yes. Due to compression of 

the content, the whole 

database has to be 

recompressed periodically to 

keep up performance. 

2 

Maintainability Good, simple 

structure and a lot of 

supporting tools 

available 

4 Good, simple structure and 

a lot of supporting tools 

available 

4 Hard, due to the public 

accessibility and simple 

triple store structure 

2 Very good. Choices for 

optimal compression 

algorithms and indexes are 

done by the system. Close to 

self-maintainable. 

5 

Total 43 points  37 points  33 points  39 points  

Table 5: Data warehouse architecture comparison



 

 

3.7 Conclusion 

From Table 5, we can conclude that the normalized database architecture is the 

most suitable architecture for our problem. It has good query performance, no 

overhead by generated metadata, no relevant side effects, it is easy to maintain and 

most importantly, it removes redundancy. Logging generates a lot of data, but with 

a extremely high redundancy rate. By removing redundancy, the size of the log 

decreases. When dealing with logs up to 100 GB, every decrease in size, without 

losing information should contribute to faster retrieval times when questioning the 

data. When the data warehouse grows, with the normalized architecture, the 

amount of new values that arise should decrease over time. The growth of the data 

warehouse is expected to decrease exponentially. 

The comparison in Table 5 also shows that InfoBright (commercial version) 

would be the best alternative. Nevertheless it would be an alternative with some 

consequences. It is a commercial product, so there are time and effort costs to 

install and learn the product before it can be used. Another reason not to choose 

InfoBright, at this point, is that it has been specially designed for very large data 

sets. The data is stored and compressed in sets of 64k records. When we would 

remove the redundant values from the test data, there won‘t be many fields that 

have more than 64.000 unique values. If applied to the data we have, almost the 

whole data warehouse needs to be decompressed for every query, which takes time. 

Therefore we conclude that InfoBright is definitely not suited for the data set we 

have. We believe that InfoBright becomes a suitable alternative when the log size 

gets in the order of several TeraBytes. 

The comparison is performed based on reports and statements from experts and 

other sources, since we are not expects in the field ourselves. The reliability of the 

comparison might therefore be questioned. Based on the reliability of the 

references, we believe the comparison is well-founded. On forehand, we expected 

the normalized data warehouse architecture to be the best architecture, especially 

for this business case. However, over time, when the content in the data warehouse 

increases, there must be a point where other architectures become a better choice, 

like InfoBright, as explained before. Also, there might be better architectures 

available, which are not included in the comparison. However, for this business 

case, we believe the normalized database architecture is the best one of the selected 

four. 
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4 Data warehouse design 

Based on the comparison from the previous chapter, the normalized data 

warehouse architecture was selected. Normalizing a data warehouse removes 

redundancy and increases lookup speed, since the search tables become (relatively) 

small because the resulting tables only contain unique values. In this chapter we 

describe the design of the data warehouse schema, guidelines for transforming 

audit logs to the data warehouse and a test conversion we performed to check the 

size of the log files. The assumption is that, when the log size drastically decreases, 

the performance is positively influenced. Apart from that, the test conversion 

should helps us predict the growth of the data warehouse over time. 

Organization of this chapter Section 4.1 describes the approach that we used 

while designing the data warehouse. Section 4.2 talks about a short analysis that we 

have done on the test data sets that Topicus provided. Section 4.3 covers the design 

of the data warehouse and the process of converting any audit log to a data 

warehouse schema, using guidelines. Section 4.4 discusses the results that we 

obtained while executing a test conversion in order to see the decrease in size 

between the log and the data warehouse. Section 4.5 holds a discussion on the test 

results and observations made during the test. Last, Section 4.6 holds the 

conclusion. 

4.1 Approach 

In this chapter we discuss the design of the data warehouse schema for the audit 

trail test set. From chapter 3, we concluded that the normalized database 

architecture is the best choice for our problem. The design of the data warehouse 

schema is based on the test data. Since we design a data warehouse that can contain 

any audit log, guidelines for the data warehouse schema must be defined. These 

guidelines ensure the data warehouse is always buil of certain constructions and 

that any audit log can be represented by a schema. Initially, the data warehouse 

schema is according to the normalization forms [2]. Based on these normalization 

forms, optimization guidelines are defined to improve the system performance and 

reduce the data size. 

Once the schema has been designed, the data warehouse should be populated 

with the test data. In order to do that, the data has to be converted. By performing a 

test conversion, we get an indication of the decrease in size with respect to the 

original log size. When the size would decrease drastically, it will help boost the 

performance of querying the data, since there is less data to go through. With logs 

up to hundreds of Gigabytes, every reduction of data without losing information, is 

welcome. Also, by observing the results of the test conversion there will be a better 

understanding of by how much the data warehouse would grow over time.  

4.2 Audit trail log analysis 

In previous research [2], we looked into what kind of data the audit trail stores 

based on the design documentation for the audit trail. Based on that, we looked into 

the actual structure of the audit trail database of two applications. The schema‘s are 

shown in Figure 8: 
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Figure 8: Fields of the  audit trail from two applications 

Figure 7 shows that there is quite a lot of overlap in what the different 

applications log. The basic information that is logged conforms with the 

specification as described in [2]. Apart from the basic information, the databases 

are extended with some application specific information. We think that the 

Aubittrail_B gives us more useful information then Audittrail_A. The Aubittrail_B 

trail logs information about ‗klant propositie‘ / customer propositions and 

‗overeenkomst‘ / invoices. Based on that, we decided to take a data set of the audit 

trail from Application B as the input for our design. Due to legislations concerning 

privacy, we are not allowed to look into the actual database content and therefore 

we didn‘t analyze the audit trail any further than the database schema. For this 

research, a representative test set has been used. The test set contains two types of 

fields: obligatory fields, meaning every log record holds a value for that particular 

field, and optional fields, meaning that these fields can be empty or have NULL 

values. 

4.3 Data warehouse Conversion 

Based on the analysis of the available audit trail data test set, a data warehouse 

schema has to be defined. We have little knowledge and insight in the actual 

content of the data and the goal is to design a generic data warehouse which can 

handle any audit trail, the concept of labeling is introduced. The idea is based on 

annotated data provenance. Data provenance uses a form of labeling which adds 

meta information to data in order to group and relate data. By means of those 

labels, information gets meaning. Data then can be referred to via labels rather than 

actual content. As a result, the data warehouse has no knowledge of the data it 

holds, which means any log/data could be inserted into the data warehouse as long 

as the data warehouse schema for the audit log is conform certain guidelines. 

Section 4.3.1, describes the process of obtaining a data warehouse schema for 

any audit log. By following the rules and guidelines, the data warehouse schema 
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always has the same characteristics. Based on these characteristics, the 

architecture, that will be designed on top of the data warehouse, can use the generic 

structure of the database. 

4.3.1 Conversion rules and exceptions 

To get a generic data warehouse, we are looking for rules to convert a log that is 

stored as a flat table in a database, to a normalized data warehouse. 

Initially, any log could be converted according to the known normalization 

algorithms[2]. By definition, the conversion produces a schema in the pattern as 

shown in Figure 9. The schema is an approved schema according to the 

normalization rules, but it is not an optimal solution. Every column of the log is 

placed in a separate table, and attached through a link table to the central 

LogRecord table. By introducing some exceptions, the schema produces a more 

optimal solution that still conforms to the normalization rules. The reason to add 

these exceptions is to decrease the database size and reduce the number of tables. 

The more tables, the slower the data warehouse becomes, since more joins are 

required. 

When looking only at the column names, we see that some values are related 

and therefore should be stored together instead of in separate tables. We observed 

four main situations in which the data warehouse schema can be optimized without 

introducing new patterns in the schema. 

 Exception 1: When the audit log contains a username and a field that already 

uniquely identifies a user (e.g., user_id), those two columns could be combined 

instead of storing separately in two columns in the data warehouse. So the table 

would become {user_id, username} instead of the default two columns 

{user_id_id, user_id } and {username_id, username} with two link tables. 

 Exception 2: When there are columns in the audit log which are related to each 

other, such as, a ‗firstname‘ and a ‗lastname‘ column. Neither of the two 

uniquely identifies the other, but both are attributes of a person. Therefore these 

fields should end up in the same table with a  unique identifier: {person_id, 

firstname, lastname}. 

 Exception 3: Use enumerations for fields that have a fixed number of values, 

like a ‗gender‘ field. 

 Exception 4: Add all the columns that occur in every log entry (and can 

therefore be considered obligatory) to the central table (LogRecord as shown in 

Figure 9). The number of link tables are reduced and we are sure that, by doing 

so, that we do not introduce empty fields in the center table, which is against the 

database normalization rules. 

Based on the exceptions, the schema can be optimized. When converting an 

audit log to the standard structure of the schema as shown in Figure 9, the data 

warehouse schema can be optimized by applying the exceptions to obtain a more 

optimal data warehouse schema. 
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Figure 9: Initial conversion from log to data warehouse 

4.3.2 Data warehouse schema 

The design of the data warehouse schema is based on the two audit logs as 

shown in Section 4.2. We have chosen to take the log from application B as our 

business case, but a similar schema for another application can be obtained using 

the same conversion rules. 

Our proposed data warehouse schema for the audit trail is shown in Figure 10. 

We call this the ONAT (Optimized Normalized Audit Trail schema) schema. This 

schema has been optimized using the 4 exceptions as described in Section 4.3.1. 

An exception has been made on exception 1. The fields Entity and Entity_id 

(shown in Figure 10) are not combined into one table. Although the Entity_id 

uniquely identifies the Entity, storing those fields in one table was shown, after 

analysis of the data, to be inefficient. The analysis showed that there are very few 

entities in comparison to the amount of ids. The same entity can occur with 

multiple ids. This results in a high redundancy ratio in the text field ‗EntityName‘. 

These ratios ended up around roughly 5000 : 1, meaning every EntityName would 

appear around 5000 times in the table. Since the goal of normalizing a database is 

to reduce redundancy to a minimum and due to the fact that relational databases 

perform faster with numbers then text, we decided not to apply exception 1 on this 

particular case. 
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Figure 10: Optimized Normalized Audit Trail (ONAT) schema 

The ONAT schema is the result of several test conversions that we have 

performed to discover areas for improvement of the original NAT schema, in terms 

of disk size. The NAT schema is the predecessor of the ONAT schema. The NAT 

was designed using the initial conversion principle (Figure 9) where the four 

exceptions, as explained above, were not applied. 

4.4 Test conversion results 

Test conversions are performed between the original audit trail log, the NAT 

schema and the ONAT schema. By means of the test conversions we evaluated 

how much the disk space would be reduced by both the NAT and ONAT schema in 

comparison to the original audit log as provided. During the test we converted 1 

million records in batches of 100.000 records. The records were obtained randomly 

from the complete data set. The size on disk for the 1 million records is 224 Mb. 

Figure 11 and Figure 12 show the results of the test conversion. 

Figure 11 shows the total size (in kb) of the data warehouses per batch. The 

original schema, our benchmark, increases the fastest, the NAT schema results in 

less disk space, but not as drastically as the ONAT schema. All schemas grow quite 

linearly as it can be seen in Figure 11. The decrease in disk size stays relatively 

constant over time. The data stored in the NAT schema reduces the disk size 

between  18 and 21 percent, where the ONAT schema reduces the disk size with 59 

and 63 percent. The reason for this drastic difference between NAT and ONAT is 

the amount of obligatory fields. There are 7 fields identified as obligatory, which 

means 7 link tables can be removed saving 7 million records. This proves to be a 

drastic storage saver as well as a theoretical increase performance, due to the 

removal of several link tables. 
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Figure 11: Total data warehouse size in kb per batch of 100k records 

 

Figure 12: Total decrease in percentage per batch of 100k records 

After converting 1 million log records, we see that the disk space for the ONAT 

schema is divided as shown in Table 6. A distinction is made between the link 

tables and the content tables. 96.23% of the data consist of link tables, which 

means only 3.77% of the data is considered as actual content. Some numbers on the 

disk size of the ONAT schema after conversion are shown in Table 6. 

Table 6: Overview of the conversion results for the database schemas. 

Disk Size of Size in kb Percentage w.r.t. 

original 

Percentage w.r.t. 

ONAT schema 

Original audit trail 224024 100 % - 

ONAT schema 85232 38.05 % 100 % 

ONAT link tables 82019 36.61 % 96.23 % 

ONAT content tables 3213 1.43 % 3.77 % 

When logging an application for a long period of time, the chance that values 

from a new log record are not yet in the data warehouse generally gets smaller over 
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time. From this assumption we predict that the percentage of content data decreases 

with respect to the size of the link tables. At some point, the data warehouse 

increases roughly linearly because the data warehouse always needs to store 

administrative information that links the values of a complete log record together.  

4.5 Discussion 

In the old situation, the audit trail produces roughly 130 Gb a year, in the 

original schema. Based on the test conversion we performed and the relatively 

constant results, we can now predict the total disk size for the data warehouse for 

the audit trail. If we take an average of 61 percent disk size decrease (the average 

of ONAT schema), we predict that the audit trail, after a year, would be around 

50.7 Gb. The test log has, on average, 434,000 log records per day. 

While performing the conversion test, we observed that the conversion takes 

longer each batch. We noticed that the conversion takes roughly lineary longer 

each batch. Although we have no facts to support this observation, we can reason 

about it to support these observations. When a new log record is converted, each 

value has to be checked for existence. When the data warehouse grows, the new 

value has to checked against more and more values. For the test data, 16 values 

have to be checked. We believe this is the main reason the conversion becomes 

slower over time. At start the roughly 400.000 records were converted in 30 

minutes. At the end, the conversion handled about 100.000 in 30 minutes. These 

are indications through observation since it was not part of the tests. The 9.1 

million records were converted in about 18 hours. Assuming the conversion 

performance goes down linear, we can conclude that the conversion handles 9.000 

records less every 30 minutes. Assuming an application generates 450.000 records 

a day, the conversion reaches a point where it cannot process this amount in a day 

and from that point onwards, the conversion falls behind. Based on the observation, 

and linear increase in conversion time, the converter keeps up until the data 

warehouse holds around 4.5 billion records. That is, based on the average, 100 days 

of logging.  

4.6 Conclusion 

From the data warehouse schema design and the test conversion results we can 

conclude that the ONAT schema is a suitable schema for the audit log we have. 

Referring to the test conversion results in Table 6, the data warehouse holds less 

than 1,5% actual content (when normalized) in the data warehouse w.r.t. the disk 

usage of the original audit log. The rest of the data is administration for linking the 

values for each log record. 

In case the data warehouse gets too large over time, or the conversion process 

cannot keep up the log generation speed, it is possible to backup only the link table. 

By doing so, the data warehouse loses about 96% of its size which means there is 

room for it to grow again. The link tables are merely used to be able to reconstruct 

a log record and can therefore be stored elsewhere without losing information, 

since the content remains. Another option is to investigate how the conversion 

process can be optimized.  

Last, due to the simple structure of the data warehouse, the schema is generic 

which should facilitate interaction with the architecture that has been designed on 

top of the data warehouse. 
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From the tests on the test data we conclude the data warehouse already grows 

linearly after 100,000 records. Therefore we conclude the data warehouse is 

saturated in an early stage of the conversion. Once saturated, little new information 

is added by new log records that are added to the data warehouse. The data 

warehouse then grows linearly because of the administration costs to link a log 

record to the correct values. The linear growth is shown in Figure 11. 
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5 Audit Trail Question Model 

The audit trail data is now stored in the ONAT data warehouse structure. To 

make the audit data questionable, an architecture is designed on top of the data 

warehouse. The architecture provides the functionality to let users ask questions 

about the data. The architecture then translates questions into queries. The 

architecture contains an internal model to represent the question that is translated 

into queries which provides the answer to the given question. In this chapter the 

model is introduced and explained together with the question language that is used. 

Organization of this chapter Section 5.1 describes the approach that aims at 

answering the third research question. Section 5.2 is about the definition of the 

term ‗generic model‘ that is used throughout the chapter. In Section 5.3, a few 

possible questions, that could be asked about the audit data, are discussed. In 

section 5.4, we describe the language which we designed in order to ask questions 

about the audit data. Section 5.5 discusses the concept of labeling and how that 

concept is used in the architecture. Section 5.6 explains the meta model which is 

used as an internal model by the architecture. Finally, Section 5.7 holds the 

conclusion. 

5.1 Approach 

In order to answer the third research question (“What is a generic architecture 

for handling audit trails?”), the following has been done. We started by holding 

some interviews to understand the problem and to get a better insight in what 

information Topicus would like to get out of the audit trail logs. The information 

obtained from these interviews became the input for the designing an architecture 

that would solve the problem with the audit trail. We decided to define a model on 

top of the data warehouse that helps the user get information from the audit trail. 

Since the same problem can arise with other forms of logging, the goal is to come 

up with a generic model. Based on the gathered information, an architecture to 

support the questioning of the audit data is designed. Next to that, the architecture 

needs an internal model to represent the question. Last, we try to identify the weak 

points of the architecture and the model which are most vulnerable to change when 

the problem or domain changes.  

5.2 Generic model 

We designed a generic model to represent the questions throughout the 

architecture. To clarify, we define a definition that describes the term generic 

model. This definition is used throughout the rest of the chapter. 

Definition 1: Generic model, A model which can be reused for the same 

purpose with different content in possibly a different domain. The model itself has 

no specific parts that point to the content it describes. Every equivalent problem 

can be represented by the same (generic) model. 

The model we propose has been designed with this definition in mind. However, 

in order to realize that, the model needs to abstract from the actual content. To do 

this, we introduced labeling (from data provenance) and a specific language that is 

defined in which questions can be asked about the data. 
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5.3 Possible audit trail questions 

From interviews with several stakeholders and supervisors within Topicus, we 

obtained possible questions. These questions give us an idea of the type of 

questions that the model should be able to handle. Some possible questions are: 

 What is the current interest rate of invoice X? 

 When was the last time property X was changed? 

 When and by who was property X changed last? 

 What is the change log for Object X? 

 What are all interest modifications performed by ―Jan‖ 

 What are all properties from Object X that are changed more than 4 

times for invoice Y. 

 Who, and when changed the interest rate to value X for invoice Y? 

 After analyzing possible questions, we devised a structure in which all these 

questions could be represented.  

5.4 Question Language 

The language uses the concept of labeling from data provenance. Data is 

referred to by (user)definable labels and the language is based on the use of labels. 

The language asks questions about labels rather than actual the content. Therefore,  

a specific language is required. The questions will be asked in this so called 

question language. The language itself has two main goals: 1) To be intuitive and 

easy to use for the questioner. 2) To be relatively expressive without forcing the 

underlying model or architecture to lose their generic aspects.  

The question language is mainly based on the notion of labels. Labels are 

translated into queries and refer to actual content. The labels themselves can be 

thought of as predefined sub queries that are represented by a label. These labels 

make the language more expressive than it might look at first glance. When 

comparing to SQL in general, with logging, queries that require a ‗join‘ hardly 

occur because logs have a simple structure. Because of that, the question language 

can have less expressiveness then SQL for example. When defining the question 

language, the example questions are used to see if we can express then in terms of 

the question language.  

The grammar for the question language is defined in EBNF. The complete 

grammar can be found in Appendix A. Below, the most relevant parts are shown to 

give an impression of the language. A question in the question language consists of 

two main parts: a show part and a condition part. The labels in the condition part 

describe the conditions that are applied to the data to select the correct subset of log 

records. The labels in the show part represent the information that will be shown 

about the records that were selected based on the provided conditions. 

question   : 'show'! showLabels+ conditions*; 

showLabels  : optionShowLabel (showLabel)*;                

optionShowLabel : IDENT; 

showLabel  : ','! IDENT; 

conditions  : 'conditions'! leftSide (LOGOP  

   rightSide)*; 

leftSide  : condition; 

rightSide  : condition; 

condition  : '!'? IDENT (OPERATOR TIDENT)?; 
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LOGOP  : 'AND' | 'OR'; 
TIDENT : DOUBLEQUOTE IDENT WILDCARD? DOUBLEQUOTE; 

IDENT   : (LETTER | DIGIT)*; 

A question can have multiple conditions connected to each other using the „and‟ 

and „or‟ keywords. 

5.5 Labeling 

In data provenance, labeling is used to label certain groups of data. Labels 

generally describe the data or some of its characteristics. Based on these groups, 

data can be easily looked up by referring to a label. In the proposed model, the idea 

of labeling is adopted. Before we can use labels in the questions, we devised a way 

to represent questions using labels. The goal is to distinguish different categories of 

labels. At first, two types of labels were defined, namely, „simple labels‟ and 

„composed labels‟. Labels are mapped directly on a column in the underlying data 

warehouse. Composed labels are composed of other (composed) labels. Every 

composed label can be decomposed in, recursively, a set of simple labels. 

After trying to apply these labels to the example questions, it became clear these 

two categories are not sufficient. A label can be used in two ways within a 

question. Generally when asking a question about data, you specify what you want 

to obtain from the result set and some conditions that affect the result. Based on 

that observation two main categories are defined, namely, „showlabels‟ and 

„conditionlabels‟. Both categories can have a simple and a composed variant. Now 

it is possible to use the same label (name) in  the show or condition context. For 

example, assume we have a label ‗Administrators‘. When the label is used as a 

showlabel, the employeeName and employeeId fields of the records in the result 

set are shown. If the label is used as a conditionlabel, the result set only contains 

log records for those employees who are administrator. The condition values for 

conditionlabels can be provided in two ways:  

1) it is supplied inside the question by the questioner, e.g. Employee = ―Jan‖.  

2) The conditions are predefined.  

Predefined means that the conditions are related to a specific label and therefore 

stored somewhere together with the labels. For example. the label ‗Administrators‘ 

has the (predefined) condition that the employeeId‘s are ‗15‘ or ‗19‘. The concept 

of a „composed showlabels‟ will be clarified below by means of an example: 

Question 1.a: Show Employee conditions Administrators 

The result of Question 1.a is the name and id of the employee‘s who are 

Administrator. 

The same question can asked using ‗Administrator‘ as a composed showlabel: 

Question 1.b: Show Administrators 

Now, the label Administrator consists of: 

- A showLabel, which shows the name and id of employee‘s from the result 

set 

- A condition part, which holds the condition that the employee‘s are 

administrator. 

We have categorized the labels in which every example question can be 

represented. Now, these label categories must be defined in a model that can 
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represent the structure of the question, in the question language, and also be able to 

represent the different label categories. 

5.6 Question meta model 

The question model is a generic model that is used in the proposed architecture 

as an internal data model. The question meta model is instantiated for each 

question. That model represents the structure of the question and the composition 

of the labels. The term ‗model‘ here refers to any instantiation of the metamodel. 

The architecture that uses the model consists of several components which all 

contribute to populating the information for the model. The metamodel of the 

question model is shown in Figure 13.  

The metamodel is explained by discussing the most important elements: 

 DataSource: Holds information about the mapping on the database. 

 Condition: Holds information about the characteristics of a condition, 

such as whether it is a negation, what condition values need to be 

applied, the type of values (range or exact values), the comparison 

operator (‗=‘ ‗>‘ ‗=<‘ etc.) and to which DataSource needs to be 

applied. 

 SimpleConditionLabel: A label with a name that is directly mapped on a 

field in the data warehouse. Optionally with a predefined condition for 

the particular label. 

 ComposedConditionlabel: A label with a condition that consists of a set 

of other (Composed/Simple)ConditionLabels. 

 ConditionNode: A node that either holds an ‗And‘ or an ‗Or‘ operator 

with a left and right side. The left and right sides can either be a 

(Composed/Simple) ConditionLabel or another ConditionNode. It forms 

a tree-like structure. 

 ShowLabel: A label which holds a set of DataSources that represent the 

fields which are shown from the records in the result set. 

 ComposedShowLabel: A combination of a ShowLabel and a set of 

ConditionLabels. 

 Question: The ‗root‘ element of every instantiation of the metamodel. 

Holds a set of Showlabels and the root node of the condition part tree. 
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Figure 13: Question Metamodel 

5.7 Conclusion 

By comparing the definition of a generic model with the model that is defined 

we conclude that the model conforms to the definition and can be called generic 

and can be applied in many situations. The model has no specific knowledge about 

the data due to the concept of labeling. Labels make the model generic because all 

knowledge is attached to the labels which are configurable. The labels are the 

metadata the model needs to gain understanding of the data it handles. The 

(meta)model has knowledge about how to represent labels and how labels are 

structured (conditions and mappings). Further, the model has no knowledge 

specifically to the mortgage domain. Therefore, this model could be applied on any 

other domain  
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6 Audit Trail Architecture 

The question model described in Chapter 5, is used in an architecture that 

supports the whole process from asking a question in a specific language to 

obtaining the correct results. In this chapter the architecture and its components are 

explained in more detail. The role of the model within the architecture is also 

discussed. 

Organization of this chapter Section 6.1 describes the overall structure of the 

architecture, explaining what the function of each of the components is and how 

they interact with each other. Section 6.2 till Section 6.6 goes into detail for the 

components in the architecture and discusses their internal workflow. To clarify, 

the role of each components is explained using an example that is used throughout 

the chapter. Section 6.7 describes the areas of the architecture and the model which 

are most vulnerable to change. Further we discuss when the architecture is, and is 

not, not suited for a particular problem.  Last, Section 6.8 holds a conclusion and 

some discussion about the architecture and the choices that were made while 

defining it. 

6.1 Architecture 

The architecture is responsible for the whole flow from accepting a question, 

analyzing the question and producing the correct answers. As described in the 

Chapter 5, questions are asked using labels in the question language. To get the 

correct answer to a question, four steps have to be taken: 

1. Question must be parsed and analyzed. 

2. Labels must be resolved to determine their meaning. 

3. The question with the resolved labels must be translated into queries. 

4. Possible post-processing and conversion to an output format has to take 

place. 

The global architecture and its data flow are shown in Figure 14. Each step can 

be mapped onto a component in the architecture. 

Label Resolver

LabelBase

Question parser

Data 

warehouse

Database Layer Database Layer

Post Processing Layer

Question

Result as XML

 

Figure 14: Components within the architecture 
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Each component in the architecture has its responsibilities supported by its 

functionality. The responsibilities of each components are outlined briefly below. 

Question: The question is the input provided as plain text and conforming with 

to the specified question language.  

Question Parser: The Question parser takes the textual input and parses the 

question using the defined grammar. The parsed question is then transformed to an 

instantiation of the question meta model that is used throughout the architecture. 

The model is filled with all available information, which mainly guarantees that the 

structure of the question stays unchanged. This internal model is called the 

Question model and is described in Section 5.6. 

LabelBase:  The LabelBase holds all knowledge about the labels. The mapping 

of the labels onto the content is stored inside the LabelBase. This mapping is; the 

mapping on the data warehouse, what conditions apply on a label, what fields need 

to be shown when a label is used as a showlabel and out of what labels 

composedlabels are composed. The input of the LabelBase is a textual description 

consisting of the label name and the type of the label (show or condition). The 

LabelBase returns all information that it knows about the label in a part of the 

Question Model. 

Label Resolver: The Label Resolver takes the question model as input, and is 

responsible for identifying and resolving the labels which are used in the question. 

The LabelBase resolves the labels. The Label Resolver extracts all labels with their 

type (show or condition) and feeds that information to the LabelBase. The 

LabelBase returns the resolved labels in parts of the Question model. The Label 

Resolver collects all model parts of the resolved labels and merges that with the 

input model (which holds the structure of the question). The Question model is 

then complete and given as output. 

Database Layer: The database layer is responsible for generating queries from 

the completely instantiated question model. In our case, the model is translated into 

MsSQL queries. The queries are executed onto the data warehouse and the results 

are obtained. The format of the result set depends on the implementation language. 

Every language has its own default format for storing results from the database. 

The result in a default format is given as output.  

Post-Processing Layer: The post-processing layer provides the opportunity to 

insert modules for post processing of the result set, or other functionality, like a 

fraud analyzer or a converter to HTML or XML. When there is no post processing 

required, this layer does nothing other then converting the result set to some default 

standard like XML as output. 

6.2 Question Parser 

The internal workflow of the question parser is shown in Figure 15. The 

question parser gets a textual input that represents the question, in the question 

language. The question parser takes the grammar of the question language and 

parses, using ANTLR [19], the question into an Abstract Syntax Tree (AST). The 

AST holds the structure of the question and extracts its labels. The next step in the 

flow converts the AST into an initial model of the question using the question meta 

model. The result is an instance of a model for the specific question that is filled 

with all available information at this point, like the structure of the question and the 

label names. Here we assume that all labels are simplelabels because the Question 

parser is not responsible for the understanding of the labels. 
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Figure 15: Workflow of the Question parser 

Example: 

To give an impression of how all the components in the architecture work 

together to produce a correct answer, an example is used throughout this section. 

After the explanation of each component, the output of that component is shown 

and explained. In this section the following example question is used:  

“show Employee conditions Property = “Interest” AND inWeek5” 

In natural language, we would like to see all employee‘s (id and name) that 

changed the property ‗Interest‘ in the 5
th
 week of 2011. 

      The object diagram in Figure 16 shows the instantiation of the model as 

produced and outputted by the question parser. It is a quite straight forward 

mapping from the AST, as displayed in Figure 17.  

      In the object model we see a clear distinction between the show and condition 

part. The question has a showlabel named ‗Employee‘. The condition part has a 

root node, which is the AND- operator. On the left side of the AND-operator there 

is a condition label called ‗Property‘ that has a condition, namely that its value 

should be equal (‗=‘) to ‗Interest‘. On the right side, there is a label called 

‗inWeek5‘. At this point there is no information available regarding the condition. 

Now that the AST is converted, the model can serve as input for the next 

component, the Label Resolver. 
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question : Question

name : string = "Employee"

slabel1 : ShowLabel

showlabel

logicalOperator : string = "AND"

rootNode : ConditionNode

conditions

name : string = "Property"

clabel1 : SimpleConditionLabel

name : string = "inWeek5"

clabel2 : SimpleConditionLabel

left right

values : List = {"Interest"}

operator : string = "="

negation : bool = False

type : ConditionType

condition1 : Condition

condition

values : List

operator : string

negation : bool = False

type : ConditionType

condition2 : Condition

condition

 

Figure 16: Resulting object diagram of the example question 

 

Figure 17: AST of the example question. 

6.3 LabelBase 

The meaning of labels have to be defined somewhere. This is done in the 

LabelBase. The LabelBase is responsible for the administration of the labels and 

their meaning. The LabelBase holds the following information about labels: 

 The mapping of a label onto columns and records  in the data 

warehouse. 

 Predefined conditions attached to a label. 

 Fields that have to be shown per label (in the case of show labels) 

 Structure of composed labels. 

The internal workflow of the LabelBase is shown in Figure 18. It accepts textual 

input which is the name of the label to be resolved. The output is a data structure 

for the resolved label, according to the Question meta model. 

The LabelBase uses a cache in which it stores the already resolved labels.. There 

are three flows for the Labelbase are presented in Figure 18. 

1. An event can trigger a process which resolves all labels from the 

LabelBase and puts it in the cache (dotted lines). 

2. The label to be resolved, is already in the cache, so that the data 

structure already built for that label, is returned (solid lines). 
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3. The label is not in the cache, which means that the data structure has to 

be built using the question meta model and the information in the 

LabelBase database. Once resolved, the structure is placed in the cache 

(dashed lines). 

The LabelBase is used by the Label Resolver component to obtain information 

about the meaning of the labels.  

Within the LabelBase, the condition values are stored by its internal ids. In a 

normalized data warehouse, every value is uniquely identified by an id. When 

labels are added to the LabelBase, the exact condition values are resolved to their 

internal ids before being stored. By doing these lookups beforehand, these queries 

do not have to be executed each time a condition is used in a question, which yields 

faster results. For example, when a condition for Employee would be ―Jan‖, then 

―Jan‖ is resolved to its internal id (let‘s say, 13). The LabelBase then holds the 

condition value 13 instead of ―Jan‖. 

input
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yes

input

output
input

output

output

input

input

input
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output
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Figure 18: Workflow of the LabelBase 

Example: 

When the labels ‗Property‘ and ‗inWeek5‘ from the example question are given 

to the LabelBase to be resolved, The LabelBase produces a resulting data structure 

as is shown in Figure 19.  

The Figure 19(a) shows the resolved ‗Property‘ label. The property label seems 

to be a SimpleConditionLabel with no condition values, but the mapping onto the 

data warehouse is known. There was a condition value provided in the question, 

namely ―Interest‖ and that value will be inserted later into the condition by the 

LabelResolver. The structure for a SimpleConditionLabel is the simplest data 

structure the LabelBase can return. Figure 19(b) shows the resolved label 

‗inWeek5‘. It turns out to be a ComposedConditionLabel composed of exactly one 

SimpleConditionLabel with a condition. The condition is an interval/range 
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restriction on the ‗ChangedDate‘ label and has to be applied on the corresponding 

DataSource. 

Once all labels are resolved using the LabelBase, the LabelResolver obtains all 

information that is required to complete the model instantiation. 

 

name : string = "Property"

sclabel1 : SimpleConditionLabel

values : List = {}

operator : string = "="

negation : bool = False

type : ConditionType = 1

sclabel1 : Condition

tableName : string = "Property"

columnName : string = "propertyName"

pkColumn : string = "propertyId"

linkTableName : string = "LogRecord"

ds3 : DataSource

condition

applyOn

 

name : string = "inWeek5"

cclabel : ComposedConditionLabel

name : string = "ChangedDate"

sclabel2 : SimpleConditionLabel

composedOf

values : List = {"1002","1204"}

operator : string = "="

negation : bool = False

type : ConditionType = 2

condition2 : Condition

condition

tableName : string = "LogRecord"

columnName : string = "changeddate_id"

pkColumn : string = "recordId"

linkTableName : string

ds4 : DataSource

applyOn

+EXACT : int = 1

+RANGE : int = 2

ConditionType

 

(a) (b) 

Figure 19: (a) Resolved label Property (b) Resolved label inWeek5 

6.4 Label Resolver 

The LabelResolver recieves a minimal instance of the question model as input 

and its responsibility is to complete the model using the LabelBase to resolve the 

labels and obtain the missing information. The workflow of the LabelResolver is 

shown in Figure 20. 

The input is a minimal instantiation of the question model. First, the 

LabelResolver analyzes the model and extracts the labels. They are divided in two 

groups, namely showlabels and conditionlabels. Each of the names of the labels in 

these groups are sent to the LabelBase to be resolved. The result is a set with 

question model fragments, representing the data structure of the labels. The last 

step is to combine all those model fragments and merge them with the input model. 

The input model holds mainly the structure of the question. The meaning of the 

labels is then added resulting in a complete instantiation of the question model. The 

resulting model is the output for the LabelResolver component and is ready to be 

converted into queries by the Database layer. 
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Figure 20: Workflow of the LabelResolver 

Example: 

The example question is structurally represented by the question parser, shown 

in Figure 16. After that, all the labels were resolved by the LabelResolver using the 

LabelBase, as shown in Figure 18, and then combined into a complete model by 

the last process of the LabelResolver, resulting in the model shown in Figure 21. 

From this model the queries can be generated and the result of the original question 

can be obtained. 

question : Question

showlabel

conditions

tableName : string = "Employee"

columnName : string = "employeeId"

pkColumn : string = "employeeId"

linkTableName : string = "LogRecord"

ds1 : DataSource

tableName : string = "Employee"

columnName : string = "employeeName"

pkColumn : string = "employeeId"

linkTableName : string = "LogRecord"

ds2 : DataSource
show

show

logicalOperator : string = "AND"

rootNode : ConditionNode

name : string = "Employee"

slabel : ShowLabel

name : string = "Property"

sclabel1 : SimpleConditionLabel

values : List = {"Interest"}

operator : string = "="

negation : bool = False

type : ConditionType = 1

condition1 : Condition

tableName : string = "Property"

columnName : string = "propertyName"

pkColumn : string = "propertyId"

linkTableName : string = "LogRecord"

ds3 : DataSource

name : string = "inWeek5"

cclabel : ComposedConditionLabel

name : string = "ChangedDate"

sclabel2 : SimpleConditionLabel

tableName : string = "LogRecord"

columnName : string = "changeddate_id"

pkColumn : string = "recordId"

linkTableName : string

ds4 : DataSource

values : List = {"1002","1204"}

operator : string = "="

negation : bool = False

type : ConditionType = 2

condition2 : Condition

right

left composedOf

condition condition

applyOnapplyOn

 

Figure 21: Complete model instantiation for the example question 
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6.5 Database Layer 

The Database layer is responsible for generating queries from the complete 

model, which it gets as input. The dataflow for the database layer is shown in 

Figure 22. The database layer consists of two processes: The first is process 

translates the model to queries using mapping rules that are specific for the query 

language, in this case is MsSQL. The second process obtains and converts results 

from the data warehouse. 

The mapping consists of a single complete query which, if executed, joins all 

tables together and returns all the log records of the whole data warehouse. The 

model-to-MsSQL process has a three steps: 

 Generate queries from the condition labels of the model. This is mainly 

the ‗where‘ part of an SQL query. 

 Select the required parts of the query from the mapping, based on the 

show labels of the model. This is the ‗select‘ part of an SQL query. 

 Combine the generated condition queries with the selection queries, 

obtained from the mapping, creating the final query that answers the 

question. 

input

output

Data

warehouse

input output

input

input

output

Question model DataSet

MsSQL queries

Model-to-MsSQL

mapping

Result set 

(records)

Model to MsSQL
Create DataSet 

(.Net Object)

 

Figure 22: Workflow of the database layer 

To convert an instantiated question model to MsSQL, a mapping is defined 

between the question meta model, Section 5.6, and MSSQL. Two processes are 

used to convert a model to MsSQL as explained before.  

The ‗select‘ part of the query is generated by looking at the DataSource objects 

of the showlabels in the model. The DataSource objects hold what fields need to be 

shown. Based on that information, the correct lines of MsSQL are selected from a 

main query. The main query returns all content in the  data warehouse. 

The condition (where) part of the query is responsible for collecting the record 

ids that meet the conditions specified in the original question. The show (select) 

part of the query is responsible of selecting the desired fields and corresponding 

values using the selected record ids. 

The condition part of the query is generated from the model itself on runtime. 

Each condition part has the following syntax: 
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recordId IN ( 

 SELECT recordId  

 FROM LogRecord  

 WHERE ( ... ) 

) 

Each conditionlabel in the instantiated model is evaluated. The conditionlabel 

obtains information from its condition object. The condition holds the condition 

values, the type (range restriction, static values) and whether or not the condition is 

negated (including or excluding the condition values). Using the DataSource 

objects, attached to conditions, we know to what fields in the data warehouse the 

restrictions need to be applied. 

Once the final query is generated, the query is sent to the MsSQL server that 

hosts the data warehouse which executes the query. The result is then sent back to 

the database layer. The result is then converted into some data structure that is 

suitable for the specific programming language in which the architecture is written. 

In this case, a DataSet is a C# object holding all the returned records from the data 

warehouse. The DataSet is the output of the Database Layer. 

Example: 

In our running example, the database layer converts the instantiation of the 

model, shown in Figure 21 into queries. The show part and condition part 

contribute separately to the resulting query, as presented in Figure 23. The lines 

marked preceded with a dashed line pattern represent the lines of the query that are 

obtained via the show labels and the mapping of the database layer. The lines 

preceded by the solid line are generated from the condition labels of the model. 

They are combined, producing a single query that selects the log records that will 

answer the question. 

 

Figure 23: The query generated from the model of the example question 
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6.6 Post Processing Layer 

The workflow of the post processing layer is shown in Figure 24. This 

component is optional and provides room to add additional functionality. Some 

examples of additional functionality could be: 

 Application of filters on the data as obtained from the database layer. 

 Drawing statistics from the data. 

 Adding plugins that connect the output to other systems like, for 

example, fraud detection systems. 

 Output conversion, like conversions to XML or HTML, for displaying 

purposes. 

input

output
input

output

Convert

Result to XML

Post Processing

Component

DataSet

DataSet

Result in XML 

format

 

Figure 24: Workflow of the post processing layer 

In case no additional functionality is added, the process converts the data to 

some standard format, like XML. 

6.7 Possibilities and limitations beyond requirements 

To check whether the architecture is applicable to different domains, scenarios 

are defined to identify the changes that may be required in order to apply the 

proposed architecture to another domain. Assume the following scenario: 

Scenario: The architecture is used to question an access log of a company 

network. The logs are already stored in some MySQL database and a database 

conversion is not an option. The company would like to get statistics out of the 

data. 

There are several changes in this scenario compared to our business case, 

namely: 

 Different database language 

 Different database schema 

 Different content 

 Analytic questions are asked 

The different database language can be relatively easily solved by modifying the 

component which translates the question model to queries. 

Under some conditions, the different database schema can be a problem. It relies 

on whether labels can be defined according the format of the architecture. Only in 

the case of complex table relations of multiple levels, the model cannot support the 

different database scheme. Depending on the database schema, the DataSource 

element of the metamodel might be modified, by adding information to realize the 
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mapping between label and data. otherwise, the database needs a conversion or the 

architecture is not suited for the problem. 

The difference in content is no issue, due to the fact that the architecture has no 

notion direct notion of content, because of the use of labels which hold the 

content/label mapping. The hard part lies in the definition of the labels. The labels 

should be defined by a domain expert together with someone who has knowledge 

about the structure of the logging/database. 

The analytic questions can form an issue due to possible performance degration. 

The architecture is not specifically tailored to handle analytic questions. The 

problem can be covered by performing smaller queries and put the analytic 

functionality at a component in the post-processing part of the architecture. In 

theory it is possible, but performance might suffer because post processing is 

generally slower than letting a database perform analytic queries directly. If the 

performance becomes an issue, the question language needs to be extended. Based 

on the impact of the changes in the language, to architecture might need some 

change. 

6.8 Conclusion 

In this chapter we report on the architecture designed to support the process of 

asking questions about the audit trail data. The workflow of the individual 

components of the architecture are discussed and the responsibilities of the 

components are mentioned. To clarify the working of the components in the 

architecture, an example was used to show expected inputs and outputs of these 

components. From the example, we assert that the architecture works as intended. 

A question is asked in the question language, the architecture converts the question 

into the question model and all missing information is obtained from the 

Labelbase. Queries are generated and are executed on the data warehouse. 

After identifying the weakness of the architecture and the limitations, we have a 

clear overview when the architecture can be applied, and when not, for a particular 

problem. From that, the conclusion is drawn that the architecture can be applied for 

the same problem in any domain without architectural changes. Most of the work 

will go in the definition of the labels. 
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7 Prototype 

In order to evaluate the performance of the architecture, a prototype is built. 

Based on the test results we draw conclusions about the performance of the 

architecture. This chapter describes the prototype, the tests that are performed, the 

obtained results, their validity and conclusions we draw from the results. 

Organization of this chapter: Section 7.1 describes the approach for answering 

the fourth and last research question: ―What is the performance increase (measured 

in units of time) of the proposed architecture?‖. Section 7.2 holds the requirements 

for the prototype, which were defined at the beginning of the project. Section 7.3 is 

about the design of the prototype and its scope. Section 7.4 describes some 

implementation choices that are made. Section 7.5 discusses the tests we defined, 

and the results are presented in Section 7.6. Section 7.7 concludes the chapter about 

the performance of the architecture based on the tests and their results. 

7.1 Approach 

In order to answer the fourth research question (―What is the performance 

increase (measured in units of time) of the proposed architecture?”), the following 

has been done. After defining an architecture that theoretically solves our 

problems, we evaluate the performance of the architecture. To get information 

about the performance, we built a prototype to check the architecture would 

perform in practice. To test the theory, a prototype is built. The implementation of 

the prototype is kept to a minimum and captures only the mandatory and crucial 

parts of the architecture, as explained in Section 7.3. 

The goal of the tests has been to assess how well the architecture performs in 

relation to the current audit trail implementation, which is a database. The tests 

consists of several questions about the data. First, the old database has been tested 

for performance against the new data warehouse. Then the architecture is tested, 

with the data warehouse underneath it, i.e., the architecture is built as a layer on top 

of the data warehouse. The tests give an indication of how much time the 

architecture takes on top of the execution times of the queries themselves. 

Based on these tests, we estimated the performance increases with the new 

architecture and how the execution times are distributed over the architecture and 

the underlying data warehouse. 

By analyzing the results of the tests, we draw some conclusions about the 

performance of our audit trail architecture. 

7.2 Requirements 

The requirements for the prototype were obtained by doing several interviews 

with employees of Topicus. The interviewed employees covered various roles in 

the organization like analysts, programmers, testers and management. The 

interviews were about the current implementation, current usage of its 

functionality, points for improvement and possible functionality that could be 

added. From the outcome of the interviews, the requirements were defined. 

In this section we mention only the most important requirement regarding the 

prototype. The complete list of requirements can be found in Appendix C. The 

most important requirements are: 
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- The prototype should retrieve information from the audit trail logs. This is 

the main goal of the whole project. The prototype must be able to answer 

questions about the audit trail. 

- The prototype should increase performance for the retrieval of information 

without compromising the performance for logging records. The storage 

performance does not change, since the old implementation stays intact. The 

data is transferred to the data warehouse on which the prototype runs. By 

implementing a prototype, we evaluated about the performance of the 

architecture of the proposed solution. 

- The prototype should have the functionality to filter and order information 

during or after retrieval. Conditions can be defined using the question 

language. Based on the provided conditions, the data is filtered to present 

the correct information to the questioner. The results are always ordered by 

the record ids to get consecutive results in the order the changes occur. 

7.3 Design 

The design of the prototype has been based on the architecture, defined in 

Chapter 5. Due to limited time and resources, we kept the prototype to a minimum. 

This section describes the design of the prototype and discusses the scope of the 

prototype. 

First, a grammar needed to be defined that defines the question language. This 

grammar was defined in ANTLR, and can be found in Appendix A. The grammar 

supports the complete language as described in Section 5.4. Only the bracket 

support is not included. The brackets can be used to group conditions like ((label a 

AND label b) OR label c). The support for brackets are left out, since the 

functionality is not relevant to the tests and has no impact on the test results.  

Second, the prototype does not support adding, deleting or modifying labels via 

any form of interface or wizard. The database for the LabelBase is filled with a set 

of predefined labels. These are simplelabels that are directly mapped onto fields in 

the audit trail data warehouse. Other labels are used during the tests, which all use, 

or are composed of, simple labels. The LabelBase looks up every label that needs 

to be resolved and does not make use of caching. This indirectly means that the 

external event to fill the cache with all labels, as described in Section 6.3 is not 

supported either. 

The LabelResolver component has been completely implemented as described 

in Section 6.4. 

The Database layer needs to convert the model into queries. As described in 

Section 6.5, the process is divided into two phases: 

1.  The first phase generates the conditional part of the query, based on the 

conditions in the model. Since the condition part of the model is a tree-like 

structure, with a ConditionNode containing a left and a right side (see Figure 

13). To realize that, the interpreter pattern[20] has been used. 

2. The second phase uses a mapping to obtain the selection part of the query to 

be built. The mapping consists of a query that returns all data in the whole 

data warehouse. The query is manually defined, but could be generated, based 

on the data warehouse schema for the audit trail data (Figure 10). After the 

query is generated and executed on the data warehouse, the obtained results 

are stored in one of the standard data structures of the implementation 

language.  
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The post-processing layer in the prototype has two functions: 

1. Convert the database results to HTML, so that it can be easily displayed.  

2. Display unique log records from the result set.  

Assume the example question: “Show Employee conditions Administrator”. The 

resultcontains employee information for all log records that meet the condition 

that the employee is an administrator. This means that if Employee A has 1 

million records in the audit trail, his name ends up 1 million times in the result set. 

Intuitively, the questioner might not expect this behavior, but expects a list of the 

employees that are administrator, meaning that Employee A only occurs once in 

the result set. To overcome this situation, functionality has been added to the post-

processing layer that filters the result from the database so that it will only show 

unique values to the questioner. Thus, for the example question, each employee 

occurs once in the result set. 

7.4 Implementation 

The implementation of the prototype is based on the original design as described 

in Chapter 6 but simplified as explained in the previous section (Section 7.3). 

During the implementation, some choices have been made and the most important 

ones are discussed in this section.  

The main functionality of the prototype is to form questions about the audit trail 

data based on  predefined labels. The prototype answers the questions and display 

the results to the questioner. 

7.4.1 User Interface 

For the prototype, the questions can be asked via a web interface. The interface 

is shown in Figure 25. On top, the questioner can choose how the results should be 

displayed. In the form of log records (each record that meets the conditions is 

shown in the result) or unique values (only unique results are shown). 

In the textbox, labeled ‗show‘, the showlabels are placed. In the list, the 

available showlabels are presented. If selected, a description is shown saying which 

columns of data the label is shown. The same goes for the conditions, where the 

description explains the conditions for a certain label. To form a question, the 

labels can be inserted in the textbox by double clicking on a label and by typing it 

in. When all labels are placed and possible condition values are entered, the 

question is stated and ready to be answered by the architecture. 
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Figure 25: The prototype interface 

7.4.2 Query generation 

For the generation of the condition part of the query, a interpreter pattern is 

used. According to [20],  the intention of the Interpreter pattern is: To map a 

domain to a language, a language to a grammar, or a grammar to a hierarchical 

object-oriented design. 

 The interpreter pattern for the prototype is implemented as shown in Figure 26. 

The interpreter pattern starts at the root with the Question object, and calls the 

interpret method. The question object calls the interpreter method of the root of the 

tree of the condition part of the model. From that point onwards it performs a 

recursive process until all leaves (labels) have been visited. The calls have a top-

down approach, but the query generation is done bottom-up. The queries are built 

up while traversing back up the tree. Each parent node combines the queries 

generated by its leaves and passes it on to its parent in the tree. When the process 

gets back at the root, the condition queries are generated. 

 

Figure 26 : Implementation of the interpreter pattern 
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For the show part of the model, the queries are generated differently. The 

database layer contains a model-to-MsSQL mapping. Within this mapping, one 

SQL query is defined that returns our complete data warehouse. In our case the 

query is defined manually, but it is possible to generate it using the data warehouse 

schema. This is a simple SQL query which is divided in five parts as shown in 

Table 7. The complete ‗main‘ query can be found in Appendix B.  

Table 7: Structure of the generated query. 

Part # Clause Explanation 

1 SELECT The columns that can be displayed 

2 FROM The tables from which columns can be displayed 

3 LEFT JOIN The tables that need to be joined to the core (logrecord) 

table. 

4 WHERE Conditions that must be applied, these are generated and 

inserted later. 

5 AND Standard conditions that connect the tables to the core 

(logrecord) table that do not require a join. 

The Where-clause part is generated using the interpreter pattern, as discussed 

before in this section. For the other four parts, the main query is separated per line 

and stored in a Dictionary. A Dictionary is a C# data structure (like a HashSet in 

Java), which is used as follows. Each record in the Dictionary has  a key and a 

value. For the key we use the syntax ―tablename.columname‖. For the value, we 

used the corresponding line of SQL code.  

The required information is obtained from the DataSource objects in the model. 

These DataSource objects hold information about the columns and tables onto 

which labels are mapped. By doing so, only the relevant parts of the initially main 

query are selected. Later, the conditional queries that were generated before are 

inserted, and the query is finished. By selecting only the relevant parts of the main 

query, unnecessary joins and selections are avoided, which improves the 

performance of the query. 

 After the query is executed, the results have to be shown via the webpage to the 

questioner. For simplicity, the results from the data warehouse are stored in a 

DataSet or DataTable, which are C# data structures. The content of these 

DataTables/DataSets are bound to a Grid on the webpage. Once the results from 

the data warehouse are obtained, the resulting records are rendered into the grid on 

the webpage, showing the answers to the question. If the questioner selected 

‗Unique‘ at the top of the page, the results go first through a filter. The filter 

eliminates all repetitive values before rendering the results into the grid that 

answers the question.  

7.5 Performance test 

After the implementation of the prototype, the tests suite that was designed up 

front, have been executed on the prototype. The test suite contains tests that give an 

indication about the performance of the architecture. The performance of the 

architecture is compared to the performance of the existing audit trail 

implementation. Identical questions have been asked to both onto the old database 

and the new data warehouse and via the architecture.  
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7.5.1 Test Approach 

The goal of the tests is to evaluate the performance of the architecture and the 

data warehouse separately, as well as a whole. The results of the tests are compared 

to the performance of the original audit trail database using identical questions. The 

test questions are defined in a test suite (Section 7.5.2). The tests are performed on 

the following databases with the provided record count and size on disk shown in : 

Table 8: Facts about the  used databases. 

Database # of Records Disk size 

Original audit trail database  9.119.905 2.235.328 kb 

Audit trail Data warehouse 9.119.905 848.520 kb 

Audit trail logs can grow very large. The audit trails within Topicus produce 

currently about 130 GB a year, per application. Compared to these numbers, our 

test data set is rather small and not completely representative for the performance 

of an audit log in a year‘s time. Due to legislations concerning privacy we are not 

allowed to use the real audit logs. This forces us to make assumptions based on the 

test result that will be obtained with the test set that we have. 

The tests have been performed on a laptop, because it is a stable environment 

and we can eliminate a few factors that might influence the results, like concurrent 

use of a server or network delay. After that, the tests have been repeated on a 

database test server. The server is faster than the local environment and has more 

memory. The server environment is still not a totally realistic environment, since 

the production environment has even better hardware but it is the most realistic 

environment available for testing. By performing the tests locally and afterwards 

on a server, the influence of more powerful hardware should reflect on the 

execution times and thus the performance. The interface application and 

architecture have ran on the laptop during all tests. Only the database is moved to 

the database server. 

The tests will be conducted on systems with the specifications shown in Table 9: 

Table 9: Specifications of the hardware in the test environment. 

Specification System1 - laptop System2 – database server 

CPU Intel Core2Duo 2.1 GHz Quad 2.83 GHz Intel Xeon 

memory 2GB 8GB 

The tests have been measured in units of milliseconds. For the database and data 

warehouse, the time is measured using a command from the MsSQL server. The 

following commands display the execution time of a query.  

SET STATISTICS TIME ON 

-- Query to be executed is placed here 

SET STATISTICS TIME OFF 

To ensure that caching does not influence the results, the cache is cleared before 

the execution of a query from the test suite. The cache is cleared by using the 

following MsSQL command. 

dbcc dropcleanbuffers 

For the architecture, the time is measured from the point that the architecture 

gets the question to the point the results are obtained from the data warehouse. The 

delay from the web interface is eliminated, because the rendering of browsers is 
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usually inconsistent (time wise) and not relevant for the performance of the 

architecture itself. The architecture is responsible for the process that starts with 

receiving a question in the question language to delivering a result in its default 

format. Therefore only this process is measured. 

The tests has been performed in the following order: 

1. On the first system (laptop): 

a. Perform the tests on the original audit trail database. 

b. Perform the tests on the audit trail data warehouse 

c. Perform the tests on the architecture using the web interface. 

2. On the second system (database server) 

a. Perform the tests on the original audit trail database. 

b. Perform the tests on the audit trail data warehouse 

c. Perform the tests on the architecture using the web interface. 

Once the tests were performed, the results have been compared. We compared 

the difference in execution time between the old database and the data warehouse 

and how much time the architecture takes to convert a question, generate the 

models and generate queries. The same comparison is done for the tests on the 

database server. Last, the results on the different environments are used to evaluate 

the influence in the execution times by adding more powerful hardware. Based on 

the test results and observations on these comparisons, we draw conclusions about 

the performance of the architecture.  

7.5.2 Test suite 

The test suite is a collection of test cases, in this case a set of questions. Since 

the tests have been executed on two databases, the questions were translated for 

each system under test. The databases has a different structure, thus the queries 

have to be adapted to the specific database schema. The queries for the data 

warehouse are generated by the architecture. The queries for all systems had to be 

the same, so that the results can be compared. Once the results are identical, we can 

conclude that the same question has been asked for each system. 

The queries for the test suite are selected based on the diversity in the number of 

results, question complexity (number of conditions etc.) and label complexity 

(composed labels, multiple predefined conditions etc). 

The complete test suite can be found in Appendix D. The tests have been 

performed 12 times per batch. The highest and lowest times were eliminated and 

the average was calculated. The reliability of the results is determined by the 

standard deviation between the results. The results are found to be reliable when 

the standard deviation is less than 2.5% from the average. Whenever a test run has 

a higher standard deviation, the test should be done again. 

The following questions are asked to each system under test: 

1. Show the employee names and ids from the log records for which the 

employee is an administrator. 

2. Show the unique employee names and ids that are administrator. 

3. Show the employee names and ids from the log records from the seventh week 

of 2011, for which the employee is an administrator. 

4. Same as question 3, but defined differently in the question language. 

5. Show all the complete log records which have a Entity ‗HypotheekDeel‘ and 

Property ‗RenteProduct‘ or ‗VervolgRenteProduct‘ 

6. Show all the unique properties of the Entity ‗HypotheekDeel‘ 
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7. Show the complete log records between 100400 and 100900. 

8. Show all the employee names and ids of the employees who ‗changed‘ the 

Property ‗NominaleRente‘ from the Entity ‗HypotheekDeel‘ into the value 

‗0,03170‘. 

9. Show all the employee names and ids of the employees who ‗changed‘ the 

Property ‗NominaleRente‘ from the Entity ‗HypotheekDeel‘ into the value 

‗0,03170‘ for invoice with number ‗16828‘. 

10. Show the complete log records for which the Property ‗NominaleRente‘ from 

the Entity ‗HypotheekDeel‘ ‗changed‘ into the value ‗0,03170‘ for invoice 

with number ‗16828‘. 

7.5.3 Test results 

In this section, we present the results of the tests that have been performed on 

the original audit trail database, the data warehouse and via architecture.  

The results are displayed in Table 10 and Table 11. Table 10, shows the test 

results obtained on the laptop environment, while Table 11 shows the test results 

obtained on the database server environment. The question numbers refer to the 

numbers in the test suite. The columns have the following meaning: 

 The times in the ‗Original database‘ column are the average execution times 

in ms for the queries on the original audit trail database. 

 The percentages in the ‗std.dev original‘ column represent the standard 

deviation for the execution times of the test run on the original database, 

based on the average. 

 The times in the ‗Data warehouse‘ column are the average execution times 

in ms for the queries on the data warehouse. 

 The percentages in the ‗std.dev. Data warehouse‘ column represent the 

standard deviation for the execution times of the test run on the data 

warehouse, based on the average. 

 The times in the ‗architecture‘ column are the average execution times in ms 

that the architecture needs to parse the question, create a model, convert the 

model into queries and possible postprocessing. These times do not include 

the data warehouse execution times. 

The prototype runs, for all tests, on the same system. This means the prototype 

measurements are roughly the same for both systems. Only the databases ran on 

different systems. The standard deviation for the architecture is not mentioned 

because the execution times are so short, that standard deviation is relatively large. 

However, that does not mean that the results are unreliable. We are more 

concerned about the average times the architecture needs on top of the execution 

times of the queries. 
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Original database  
(ms) 

Std dev. original 
(in %) 

Data warehouse  
(ms) 

Std dev. Data 
warehouse  

(in %) 
architecture 

(ms) 

Q1 37143 ms 0,66 %  12724 ms 0,92 % 70 ms 

Q2 37650 ms 1,95 % 12724 ms 0,92 % 127 ms 

Q3 37627 ms 1,80 % 12019 ms 1,89 % 79 ms 

Q4 37627 ms 1,80 % 12019 ms 1,89 % 42 ms 

Q5 37537 ms 2,01 % 33445 ms 0,98 % 63 ms 

Q6 37412 ms 1,13 % 13622 ms 1,33 % 364 ms 

Q7 89 ms 7,16 % 20853 ms 0,77 % 28 ms 

Q8 37552 ms 1,01 % 4531 ms 1,26 % 60 ms 

Q9 38256 ms 2,07 % 14090 ms 1,20 % 76 ms 

Q10 37418 ms 2,08 % 33335 ms 1,81 % 122 ms 

Table 10: Test results on the laptop environment 

 

 

Original database  
(ms) 

Std dev. original 
(in %) 

Data warehouse  
(ms) 

Std dev. Data 
warehouse  

(in %) 
architecture 

(ms) 

Q1 13830 ms 0,96 % 3242 ms 1,42 % 54 ms 

Q2 13777 ms 1,00 % 3242 ms 1,42 % 151 ms 

Q3 13768 ms 0,89 % 3004 ms 1,40 % 85 ms 

Q4 13768 ms 0,89 % 3004 ms 1,40 % 41 ms 

Q5 13791 ms 0,86 % 83664 ms 1,46 % 50 ms 

Q6 13659 ms 0,84 % 5575 ms 1,56 % 359 ms 

Q7 14 ms 13,58 % 5616 ms 1,18 % 28 ms 

Q8 14070 ms 1,22 % 1611 ms 1,86 % 54 ms 

Q9 13720 ms 0,59 % 3821 ms 1,87 % 82 ms 

Q10 13766 ms 0,64 % 21363 ms 1,20 % 101 ms 

Table 11: Test results on the database server environment 

7.6 Discussion 

From the test results, as shown in Table 10 and Table 11, there are a lot of 

comparisons possible. We will start with discussing the results on the laptop 

environment, shown in Table 10.  

Laptop results 

The original database performs rather steady, due to a full table scan for each 

query. Only Q7 is much faster. The obtained results for question 7 are 500 

consecutive log records. This type of query seems to be really fast on a flat table.  

The results for the data warehouse are quite constant, looking at the standard 

deviation, but the results between the questions differ. Question 5, 7, 8 and 10 

stand out. Question 5, 7 and 10 produce complete log records as a result, which 

requires several joins to obtain all information. Joins are rather slow which shows 
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in the execution times. Question 8 is by far the fastest. The question does not 

involve joins and has a very small result set (9 records), which gives a fast answer. 

The times the architecture needs to parse the question, build up a model, 

generate queries and possibly do post processing on the obtained data seems to be 

quite fast. Most questions do not require more than a tenth of a second (0,1 sec). 

Question 2, 6 and 10 take longer. Question 2 and 6 need to do post-processing to 

filter unique results from the, possible, large result set. The filtering is performed 

by the architecture and therefore takes longer than other queries. Question 10 has a 

complex condition label, which takes a little bit more time. We expect that most of 

the time goes into obtaining the model for the label from the LabelBase. 

Database server results 

Looking at the results on the database server, Table 11, we observe, that the 

times are steady for all questions, again, with the exception of question 7 as 

explained before.  For the data warehouse results, we make the same observations 

as the data warehouse results on the laptop. Again, Question 5, 8 and 10 stand out. 

The same goes for the results for the architecture. Apart from that, we observed 

nothing unusual. 

Original database comparison 

By analyzing the results of the original database execution times, we see that, by 

adding more powerful hardware, the performance roughly goes up by 63% (see 

Table 12). Only Question 7 is much faster, but this improvement is caused by the 

type of question which is more affected by the addition of better hardware. 

 
Laptop 

Database 

Server 

Improvements 
(in %) 

Q1 37143 ms 13830 ms 62,77 % 

Q2 37650 ms 13777 ms 63,41 % 

Q3 37627 ms 13768 ms 63,41 % 

Q4 37627 ms 13768 ms 63,41 % 

Q5 37537 ms 13791 ms 63,26 % 

Q6 37412 ms 13659 ms 63,49 % 

Q7 89 ms 14 ms 84,42 % 

Q8 37552 ms 14070 ms 62,53 % 

Q9 38256 ms 13720 ms 64,14 % 

Q10 37418 ms 13766 ms 63,21 % 

Table 12: Original database comparison 

Data warehouse comparison 

By analyzing the results of the data warehouse execution times, we see 

improvements, as shown in the last column of Table 13. Most of the questions (1-4, 

7 and 9) have an average improvement of around 73%. Question 6 and 8 have a 

little less improvement, but without a clear reason. The deviation is not that big to 

make it a big concern. Questions 5 and 10 deviate quite a lot from the average 

improvements. Question 10 requires 10 joins, which takes time. The results show 

that performing joins is less affected by the addition of more powerful hardware. 

Question 5 is slower on the database server than the laptop, which is a remarkable 

result. Question 5 also performs 10 joins, which could be the reason why this 

question was relatively slower than other questions, but this does not explain why 
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more powerful hardware brings down the performance of the question. The 

question has been retested several times on different times, but the results stay the 

same. The question has no different characteristics compared to Question 10 and 

we could not find an explanation for this behavior. 

 
Laptop 

Database 

Server 

Improvements 
(in %) 

Q1 12724 ms 3242 ms 74,52 % 

Q2 12724 ms 3242 ms 74,52 % 

Q3 12019 ms 3004 ms 75,01 % 

Q4 12019 ms 3004 ms 75,01 % 

Q5 33445 ms 83664 ms -150,15 % 

Q6 13622 ms 5575 ms 59,08 % 

Q7 20853 ms 5616 ms 73,07 % 

Q8 4531 ms 1611 ms 64,45 % 

Q9 14090 ms 3821 ms 72,88 % 

Q10 33335 ms 21363 ms 35,91 % 

Table 13: Data warehouse comparison 

Architecture comparison 

From the results in Table 10 and Table 11, we do not see an improvement in 

architecture times. This is because the prototype always runs on the same system. 

Therefore the results are roughly the same. The architecture of the prototype does 

its job within two tenth of a second depending on how much post processing is 

required to filter results. 

Original database versus the architecture 

Looking at the previous comparisons, Table 14 shows the performance 

improvements between the original audit database and the architecture on the 

database server. The measurements as presented in the ‗Architecture‘ column are 

the sum of the averages of the data warehouse plus the architecture measurements 

from Table 10 and Table 11. The comparison is done for both systems on which 

the tests have been performed to evaluate the influence of adding more hardware. 

We observe an average improvement of 62 to 68% for the laptop environment 

and an average of 25 to 29% for the database server environment. Like in the 

preceding comparisons, the exceptions are Questions 5, 7, 8 and 10. These 

questions differ from the average for both test set results. The reasons why these 

questions differ has already been explained before.  

An important observation is that the improvements on the database server are 

much lower than on the laptop environment. Based on that, we could conclude that 

adding more powerful hardware would reduce the degree of improvement, which 

sounds unlikely. From Table 12, we have seen that the addition of more hardware 

improves the measurements on the original database with 62 to 63%. From Table 

13, we can observe that the measurements on the data warehouse increase with 73 

to 74%. Since the data set is too small for a representative comparison, the 

measurements on the original database have a high percentage of improvement. 

The whole database does fit in memory, which speeds up the tests and gives faster 

results than when the database would not fit into memory. For this reason, the 

improvement percentages for the original database are too high to be really 
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representative. Because of the unrealistic increase in performance, the performance 

improvements on the database server, shown in Table 14, are misleading. Based on 

the results of the data warehouse comparison, shown in Table 13, in which we see 

the performance improves generally with more than 70%, we can assume that with 

a larger data set the performance on the database server will improve 60% or more 

compared to the original database performance. 

 Laptop Database server 

 

Original  

database 
Architecture 

Improvements 
Laptop (in %) 

Original  

database 
Architecture 

Improvements 
Database server  

(in %) 

Q1 37143 ms 12794 ms 65,55 % 13830 ms 3296 ms 28,36 % 

Q2 37650 ms 12851 ms 65,87 % 13777 ms 3393 ms 27,96 % 

Q3 37627 ms 12098 ms 67,85 % 13768 ms 3089 ms 28,38 % 

Q4 37627 ms 12061 ms 67,95 % 13768 ms 3045 ms 28,50 % 

Q5 37537 ms 33508 ms 10,73 % 13791 ms 83714 ms -186,28 % 

Q6 37412 ms 13986 ms 62,62 % 13659 ms 5934 ms 20,58 % 

Q7 89 ms 20881 ms -23361,80 % 14 ms 5644 ms -6325,84 % 

Q8 37552 ms 4591 ms 87,77 % 14070 ms 1665 ms 13938,20 % 

Q9 38256 ms 14166 ms 62,97 % 13720 ms 3903 ms 25,66 % 

Q10 37418 ms 33457 ms 10,59 % 13766 ms 21464 ms -20,12 % 

Table 14: Comparison original audit database and complete architecture 

Scalability 

Since we were not able to perform tests on a real-life environment, we make 

assumptions about the scalability of the architecture and the effects on the 

performance. We know that the audit log of 64 GB (the one that runs in the 

production environment of Topicus, obtained from 6 months of logging) cannot be 

queried at all. When converting the data to the data warehouse, the data would have 

a size of around 39 GB (61% decrease in size due to the obtained information 

about the test conversion in Section 4.4). Based on the disk size in the data 

warehouse (4% content, 96% link tables, shown in Table 6) there is about 1.6 GB 

content to go through when questioning the data, divided over several tables. From 

that we expect that the architecture can handle a log of at least 1 year without 

breaking down. The bottleneck will probably lie in the amount of link tables in the 

data warehouse and the number of joins that are required for a particular question. 

The 64 GB log will have roughly 275 million log records. In case several tables 

must be joined, the performance is expected to decrease, as seen in our own results. 

We expect that the link tables are too large to be able to perform all the joins. 

7.7 Conclusion 

Based on our tests and observations, we can conclude that the proposed solution 

improves the performance of questioning the data, on average between 70% and 

75%. However, the time it takes to answer a question is closely related to the type 

of question: the more specific the question the faster the results are obtained. When 

a question involves a lot of joins with a lot of records in the result set, the 

performance decreases rather fast. From our tests and observations, we conclude 

that the strength of the architecture is to quickly identify the correct records that 

answer a question, but reconstructing a record and obtaining the correct values 
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corresponding to the identified records is the bottleneck. The fastest results are 

obtained by asking really specific questions preferably with a small amount of 

records as result. Selecting columns to be displayed (showlabels) that are not 

relevant for the answer (or to the questioner) should be avoided.  

We conclude that the architecture performs better than the original audit trail 

implementation. Apart from that, the architecture will be able to handle a lot more 

data before it breaks down or performance tweaks are required. Nevertheless, we 

cannot state when that point is reached. 
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8 Conclusion and Future Work 

This chapter provides a final conclusion based on our research, the results of the 

tests and the observations made while performing the tests. We provide answers to 

the research questions which were formulated at the beginning of the project, and 

propose directions for future work. 

Organization of this chapter: Section 8.1 provides answers to the research 

questions. First, we answer the sub questions and then we answer our main 

research question. In Section 8.2 proposes directions for future work. 

8.1 Subquestions 

Q1: What is an audit trail? The audit trail, as explained in Section 2.1 is a 

form of logging in which everything is stored chronologically. It can be seen as a 

change log. The audit trail is a very detailed log, usually it logs every change made 

to a database or data model of an application.  

Q2: What data warehouse architecture is suited for storing audit trail logs? 
In order to answer this question, a theoretical comparison is done on several data 

warehouse architectures. Based on criteria that were defined, each architecture was 

evaluated and the architectures have been compared. From the comparison, it 

turned out that a normalized data warehouse architecture suits the problem best. By 

normalizing logs, which have a high redundancy rate in general, redundancy 

disappears. Without redundancy, records that need to meet certain conditions are 

obtained much faster, since there is less data to process. Also, after logging for a 

longer period, the amount of new data to the data warehouse is limited, since most 

data is redundant and already present in the data warehouse. Because of that, the 

data warehouse does not increase linearly, but decreases more exponentially over 

time. 

Q3: What is a generic architecture for handling audit trails? This question 

has been answered by answering the following subquestions: 

Q3.a: What meta data is required by the architecture to obtain 

understanding of the data? To create a generic architecture that could be used for 

any audit trail, we had to find a way to talk about the data. The data could be about 

everything. To cover this issue, the concept of labeling is introduced. Using 

labeling, the meaning of data can be captured by means of a label. The architecture 

does not know anything about the data, merely labels, which can occur in different 

forms. The main two types of labels are showlabels and conditionlabels. By 

making the the mapping between labels and data configurable, the architecture 

becomes more generic. All information the architecture needs to know is how 

labels are mapped onto data. To cover that, the LabelBase component has been  

introduced. The architecture uses LabelBase to resolve the labels to find out their 

meaning to gain understanding of their data. 

Q3.b: What does a (generic) model, to represent audit trail data, look like? 
By using the concept of labeling, the meaning of data can be captured by means of 

a label. Labels are defined in two main categories, namely showlabels and 

conditionlabels. Since the audit data can be addressed by a label, a model is 

defined that describes labels rather than actual data. By doing so, the questions 

about the data is based on labels rather than knowledge about the actual content. 

This makes it easier for questioners to ask questions about data, since there is no 

knowledge required about the data or how it is stored in the data warehouse. The 

architecture needs a model to represent the different types of labels, the (structure 
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of the) question and the mapping of the labels onto data after being resolved. We 

defined a model for this purpose and this model represents questions in the form of 

labels rather than actual data. The model (and architecture), can be reused for other 

audit trails as well. Our question model is described in Section 5.6. 

Q3.c: What architectural changes to the model have to be made in order to 

make it domain specific? In order to use the architecture, as proposed in Chapter 

6, some configurations are required in order to make it work for a different audit 

trail. First, the audit trail data must be prepared to fit in the structure of the data 

warehouse. The structure is in a rather straightforward normalized form explained 

in Section 3.2. Second, the mapping between labels and data must be defined in the 

LabelBase component. Simplelabels are one-to-one mappings between labels and 

columns in the data warehouse. These labels become the set of labels from which 

new labels with conditions can be derived. Third, extra functionality can be 

inserted in the post-processing component of the architecture. Apart from that, 

there are no structural changes required to the architecture that cannot be 

configured when the domain is changed. 

Q4: What is the performance increase (measured in units of time) of the 

proposed architecture? To answer this question, tests have been performed on a 

prototype. From these tests, we conclude that the architecture speeds up the 

questioning process with generally 62 to 68%, depending on the type of question. 

The performance is affected mostly by the amount of columns the questioner 

requires. Obtaining a complete log record takes much more time than obtaining one 

or two columns, with the same conditions. The performance is also influenced by 

how specific a question is. A lot of conditions and possibly a small result help 

produce fast results. The time the architecture needs, excluding query execution 

times, is shown to be minimal. Without post processing, the architecture performs 

its tasks within a quarter of a second. Based on the test conversion (Section 4.4) we 

know that the data warehouse grows slower than the original audit trail database. It 

takes longer before the architecture, or data warehouse, breaks down and is not be 

able to answer questions. However, the exact moment when that point is reached 

cannot be determined based on the performed tests and obtained knowledge during 

this project. 

8.2 Main question 

What is a generic architecture for efficient questioning of audit trail logs? 

Based on a our research using a business case from at Topicus, our goal was to 

define a model that could work with audit trail logs and improve the performance 

in data retrieval times. The audit logs contain a lot of detailed information. Getting 

desired information from the data required knowledge of the data as well as a lot of 

effort, time wise. Since all audit trail loggings have the same underlying general 

structure, we tried to abstract from the business case aiming to create a solution 

that is applicable to any audit trail log. During this research we have defined a 

model that could handle any audit trail log once stored in the data warehouse. To 

abstract from the actual content and increase the generic aspect of the architecture, 

labeling was introduced. Because the meaning of the data has to be defined in the 

LabelBase component, the architecture itself has no specific knowledge about the 

data for the business case. Therefore, we conclude that, once the audit data can be 

restructured to fit in the data warehouse as defined in Section 4.3.2, the architecture 

can handle any audit log. Using tests on the available data we got some insights 

about the time performance of the prototype. Based on the tests we can conclude 
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that the architecture increases the performance drastically in comparison with the 

old implementation and thus improves the time-efficiency of questioning the data. 

Due to lack of more test data and legislations, we cannot perform tests on the most 

realistic environment to get an indication of how the performance scales over time, 

when the data increases. However, by extrapolating the execution speed of the 

architecture and little growth of the data warehouse when adding more log records, 

we predict that the architecture can handle a lot more data before the architecture 

reaches its limit. The limit of the architecture should be determined in future work. 

8.3 Future Work 

Based on the results of this research, we propose some directions for future 

work. 

First, the performance of the architecture could be tested on a stable server 

environment with more log data to evaluated how the performance scales over 

time. Next to that, the queries which are generated by the architecture might not 

always produce the optimal and/or fastest queries. There might be room for 

improvement on the queries generation process to increase execution times. 

Second, the architecture should be extended with functionality to facilitate the 

definition of the labels. A possible direction is, when a questioner defines a 

question with a complex condition part with several labels and conditions. With a 

simple click on a button, the condition could be saved as a new condition label in 

order to be reused later. 

Third, possible applications for which the architecture can be used, could be 

researched such as, a system that detects fraud. Such a system could use the 

architecture to obtain data that can be used in the fraud detection process. Fraud is 

an important issue in the financial world. Other forms of analysis of the audit trail 

data can be researched. One could also investigate how the architecture could 

contribute in that process. 
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Appendix A 

The Antlr Grammer for the Question language 

tokens { 

 QUESTION; 

 SHOWLABEL; 

 CONDITION; 

 TOP; 

 SHW     = 'show'; 

 COND   = 'conditions'; 

 DOUBLEQUOTE = '"'; 

 COMMA  = ','; 

 WILDCARD = '%'; 

 NOT  = '!'; 

 MIN  = 'MIN'; 

 MAX  = 'MAX'; 

 TOPTOKEN = 'TOP'; 

} 

 

public start  :  question -> ^(QUESTION question); 

question   : SHW! showLabels+ conditions*; 

showLabels  : optionShowLabel (showLabel)* -> 

       ^(SHOWLABEL optionShowLabel) ^(SHOWLABEL showLabel)*; 

optionShowLabel : opt? IDENT; 

opt   : MIN | MAX | top -> ^(TOP top); 

top   : TOPTOKEN TOPNUMBER; 

showLabel  : COMMA! IDENT; 

conditions  : COND! leftSide (LOGOP^ rightSide)*; 

leftSide  : condition -> ^(CONDITION condition); 

rightSide  : condition -> ^(CONDITION condition); 

condition  : NOT? IDENT (OPERATOR TIDENT)?; 

 

LOGOP  : 'AND' | 'OR'; 

OPERATOR : '=' | '>' | '<' | '>=' | '<='; 

LETTER      :  'a'..'z'|'A'..'Z' ; 

DIGIT       :  '0'..'9' ; 

TIDENT : DOUBLEQUOTE IDENT WILDCARD? DOUBLEQUOTE; 

TOPNUMBER : (DIGIT)*; 

IDENT   : (LETTER | DIGIT)*; 

 

WS    :   (' '|'\t')+ {Skip();} ; 
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Appendix B 

The complete query that returns all the content of the data warehouse and which 

is used in the model-to-MsSQL mapping in the database layer component. 

SELECT  

 lo.recordId as Id, 

 at.auditType as AuditType, 

 cd.changeddate as Datumwijziging, 

 en.entityName as Entiteit, 

 kp.klantpropositieId as KlantpropositieId, 

 em.employeeId as MedewerkerId, 

 em.employeeName as MedewerkerNaam, 

 vcn.value as NieuweWaarde, 

 vnn.value as NieuweWaardeId, 

 vco.value as OudeWaarde, 

 vno.value as OudeWaardeId, 

 pr.propertyName as Property, 

 e.entityId as EntityId, 

 vcn.compressed as IsNieuweWaardeCompressed, 

 vco.compressed as IsOudeWaardeCompressed 

FROM  

 AuditType at, ChangedDate cd, 

 EntityName en, Employee em, 

 Property pr, Entity e, 

 LogRecord lo 

LEFT JOIN RecordKlantPropositie rkp ON lo.recordId = 

rkp.record_id 

LEFT JOIN KlantPropositie kp ON kp.klantpropositieId = 

rkp.klantpropositie_id 

LEFT JOIN RecordValueCharacterNew rvcn ON lo.recordId = 

rvcn.record_id 

LEFT JOIN ValueCharacterNew vcn ON vcn.valueId = 

rvcn.value_id 

LEFT JOIN RecordValueCharacterOld rvco ON lo.recordId = 

rvco.record_id 

LEFT JOIN ValueCharacterOld vco ON vco.valueId = 

rvco.value_id 

LEFT JOIN RecordValueNumericNew rvnn ON lo.recordId = 

rvnn.record_id 

LEFT JOIN ValueNumericNew vnn ON vnn.valueId = rvnn.value_id 

LEFT JOIN RecordValueNumericOld rvno ON lo.recordId = 

rvno.record_id 

LEFT JOIN ValueNumericOld vno ON vno.valueId = rvno.value_id 

WHERE lo.recordId IN 

( 

 --generated conditions are placed here 

) 

 AND at.audittypeId = lo.audittype_id 

 AND cd.changeddateId = lo.changeddate_id 

 AND en.entityNameId = lo.entityname_id 

 AND em.employeeId = lo.employee_id 

 AND pr.propertyId = lo.property_id 

 AND e.entityId = lo.entity_id 

ORDER BY lo.recordId 
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Appendix C 

In this section, the requirements for the project are presented. 

Do‘s 

Req 1. The system should increase performance for the retrieval of 

information without compromising the performance for logging 

information. 

The functionality to retrieve information from the audit log in the applications is 

disabled currently. The reason is that the performance is so low that the page gets a 

time out and crashes. The acceptable time to fulfill any request should not take 

longer than 10 seconds. 

Req 1a. The system should keep the current audit implementation as it is. 

As described before, the current implementation was designed to store 

information. We keep this component as it is and will use the log its produces as 

our source of input. 

Req 2. The system should retrieve information from the audit trail logs 

Either application changes and product definitions should be retrievable. 

Req 2a. The system should retrieve a change log of X over time, where X is 

i. a field 

ii. an object 

iii. an invoice 

Important functionality is to be able to retrieve a change log of a field, object or 

product definition and how it‘s values evolved over time. In such changelog, 

information can be found about who changed a certain field, at what time and how 

many times. 

Req 2b. The system should reproduce a version of an invoice of a given 

point in time 

Once there is a log about how an invoice evolved over time, there is also the 

possibility to reconstruct an application. In this context, the word ‗application‘ does 

not refer to a software application but to a client asking for an invoice. For 

example, an employee of the mortgage company would like to see how application 

1001 looked like (thus with what values) at any point t in time. This application 

specific information (application numbers etc.) is not present in the current logs 

and has to be added somehow. 

Req 3. The system should have the functionality to filter and order 

information during or after retrieval 

The user that requests data should have the functionality to filter the data to get 

a good overview. This could be specified before the request is made to the system, 

and filters could be applied once the data is visible on screen. Filtering is used to 

create a sub-selection with a certain ordering. 

Req 4. The system should clearly display its information and within 

context for the viewer. 

Once a user gets data on his screen as a result from a request he made, it should 

be clear to the user what data he is looking at. With large datasets and large result 

sets data can be overwhelming. Therefore putting the data in context, the user 

should immediately know what kind of data he is looking at. 
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Optional: 

Req 5. The system could extract scripts of data changes made in order to 

playback the changes to other databases 

There are different databases on different environments which have to be 

merged from time to time. This is a time consuming activity. The audit logging 

from different test and setup environments can log all changes made. Once the 

changes should be merged with the production database, the audit log could be 

executed on a different database. This cannot cover a complete and clean merge of 

two databases since values can be changed on several environments. So conflicts 

still need to be solved. But detecting such conflicts can be done automatically. 

Dont‘s: 

These requirements are based on analysis of the data and the possibility to detect 

anomalies. We cannot fulfill such requirements since our input is a logfile, thus we 

have a process delay of unknown time depending on the circumstances like the 

speed of the conversion process, server load and current size of the logfile. Some 

other requirements were decided  to be found out of scope. 

Req 6. The system will not support fraud detection 

By defining fraud scenario‘s and rules, analysis on the data could detect 

violation of those rules or matching scenario‘s. Detection can be done on a later 

point in time and does not need to be done real-time. Detection could be  additional 

functionality to the system to be build, but the time needed to research and 

implement such functionality is time we don‘t have. 

Req 7. The system will not support automatic analysis of data 

Analysis on the logged data for the purpose of data mining of to draw statistics 

from. At this point there is no use for such knowledge and because of privacy 

violation we are not allowed to the data. Thus the degree of what kind of statistics 

and what sorts of data mining we are allowed to do have to be investigated. 

Req 8. The system will not monitor data and alert users 

The audit logging can be used together with self learning algorithms to predict 

abnormal behavior. For example in the workflow of an mortgage application. Once 

patterns are found that actions/changes are always in the sequence of ‗ABC‘ then 

the algorithm that is analyzing the loggings can warn the user or a another person if 

a workflow of action sequence ‗ACB‘ is detected. We could detect such situations,  

but cannot give feedback since the system is not looking real-time at the data. 

Therefore there is no interaction possible with the user.  

Environmental requirements 

In consultation with Topicus we have defined some requirements and 

restrictions, regarding the environment, for the solution and prototype: 

Req 9. The prototype must be developed in .Net 

Req 10. The interface of the prototype must be web-based 

Req 11. Authentication is not part of the prototype 

Req 12. The current audit trail implementation remains untouched 

The current implementation remains because it works as intended and we see no 

room for improvement there. 

Req 13. Preferably a MsSQL database should be used for the data 

warehouse. 
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For the data warehouse the request is made to take a MsSQL database. This is 

because this type of database is commonly used within the company. Of course, 

with strong arguments there is room to change the type of data storage. 

Req 14. The current audit trail log is our only input for the system 

The information that is present in the current log might not be sufficient to meet 

all the requirements. Nevertheless we treat the current log as our only source of 

input. external data could possibly be added as metadata to the data warehouse. 

Req 15. Due to legislations, all data has to be simulated 

All data we will use during the project must be fake or scrambled data. Due to 

legislations and violation of privacy rules we are not allowed to look into the 

content of the information that is logged by the audit trail.  
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Appendix D 

The test suite that is used to test the performance of the old audit trail database, the new data 

warehouse and the architecture. The queries for the old audit trail database are different from the 

generated ones from the architecture, but they provide the exact same results and are therefore 

considered represent the same question. In this appendix, the queries and questions for the test 

suite are provided. 

First, the questions, in a natural language form are listed. Second, the questions are translated 

into queries for the old audit trail database, Third, the questions as asked using the Question 

language are presented. Fourth and last, the MsSQL queries that are generated by the 

architecture for the corresponding questions. 

The questions in natural language: 

Questions # results 

1. Show the employee names and id‘s from the log records for which the 

employee is an administrator 
27313 

2. Show the unique employee names and id‘s that are administrator 
2 

3. Show the employee names and id‘s from the log records from the seventh 

week of 2011, for which the employee is an administrator 
1012 

4. Same as question 3, but defined differently in the question language later 

on 
1012 

5. Show all the complete log records which have a Entity ‗HypotheekDeel‘ 

and Property ‗RenteProduct‘ or ‗VervolgRenteProduct‘ 
4138 

6. Show all the unique properties of the Entity „HypotheekDeel‟ 
39 

7. Show the complete log records between 100400 and 100900 
500 

8. Show all the employee names and id‘s of the employees who ‗changed‘ 

the Property ‗NominaleRente‘ from the Entity ‗HypotheekDeel‘ into the 

value ‗0,03170‘ 

9 

9. Show all the employee names and id‘s of the employees who ‗changed‘ 

the Property ‗NominaleRente‘ from the Entity ‗HypotheekDeel‘ into the 

value ‗0,03170‘ for invoice with number ‗16828‘ 

2 

10. Show the complete log records for which the Property ‗NominaleRente‘ 

from the Entity ‗HypotheekDeel‘ ‗changed‘ into the value ‗0,03170‘ for 

invoice with number ‗16828‘ 

3 

 

The queries for the old audit trail database corresponding to the questions. 

1. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE 

MedewerkerNaam = 'Beheer' OR MedewerkerNaam = 'Beheer1' 

2. SELECT DISTINCT(MedewerkerId), MedewerkerNaam FROM Audittrail WHERE 

MedewerkerNaam = 'Beheer' OR MedewerkerNaam = 'Beheer1' 

3. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE 

(MedewerkerNaam = 'Beheer' OR MedewerkerNaam = 'Beheer1') AND 

Datumwijziging BETWEEN '2011-02-08 16:21:00' AND '2011-02-08 16:32:00' 

4. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE 

(MedewerkerNaam = 'Beheer' OR MedewerkerNaam = 'Beheer1') AND 

Datumwijziging BETWEEN '2011-02-08 16:21:00' AND '2011-02-08 16:32:00' 
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5. SELECT * FROM Audittrail WHERE Entiteit = 'HypotheekDeel' AND 

(Property = 'RenteProduct' OR Property = 'VervolgRenteProduct') 

6. SELECT DISTINCT(Property) FROM Audittrail WHERE Entiteit = 

'HypotheekDeel' 

7. SELECT * FROM Audittrail WHERE Id > 100400 AND Id <= 100900 

8. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE Audittype = 

'Update' AND Entiteit = 'HypotheekDeel' AND NieuweWaarde = '0,03170' 

AND Property = 'NominaleRente' AND MedewerkerId != 1 

9. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE Audittype = 

'Update' AND Entiteit = 'HypotheekDeel' AND Property = 'NominaleRente' 

AND MedewerkerId != 1 AND NieuweWaarde = '0,03170' AND 

KlantpropositieId = 16828 

10. SELECT * FROM Audittrail WHERE Audittype = 'Update' AND Entiteit = 

'HypotheekDeel' AND Property = 'NominaleRente' AND MedewerkerId != 1 

AND KlantpropositieId = 16828 

The questions in the question language corresponding to the questions: 

1. show Employee conditions Administrator 

2. show Employee conditions Administrator (with the ‗unique‘ option activated) 

3. show Employee conditions Administrator AND inWeek7 

4. show Administrator conditions inWeek7 

5. show CompleteLogRecord conditions HypotheekDeelRente 

6. show f_Property conditions f_Entity = "HypotheekDeel" (with the ‗unique‘ option activated) 

7. show CompleteLogRecord conditions CompleteLogRecord > "100400" AND 

CompleteLogRecord <= "100900" 

8. show Employee conditions ChangesToNominalInterest = "0,03170" 

9. show Employee conditions ChangesToNominalInterest = "0,03170" AND f_KlantPropositieId 

= "16828" 

10. show CompleteLogRecord conditions ChangesToNominalInterestForKlantPropositieId = 

"16828" 

The queries as generated by the architecture corresponding to the questions in the 

question language: 

1 SELECT  

  em.employeeId as MedewerkerId,  

  em.employeeName as MedewerkerNaam  

FROM  

  Employee em,  

  LogRecord lo  

WHERE  

  lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE EXISTS ( 

      SELECT employeeId  

      FROM Employee  

        WHERE  

          (employeeName = 'Beheer1' OR employeeName = 'Beheer' )  

          AND employeeId = employee_id 

    ) 

  )  

  AND em.employeeId = lo.employee_id  

ORDER BY lo.recordId; 

2 SELECT  

  em.employeeId as MedewerkerId,  

  em.employeeName as MedewerkerNaam  
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FROM  

  Employee em,  

  LogRecord lo  

WHERE  

  lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE EXISTS ( 

      SELECT employeeId  

      FROM Employee  

        WHERE  

          (employeeName = 'Beheer1' OR employeeName = 'Beheer' )  

          AND employeeId = employee_id 

    ) 

  )  

  AND em.employeeId = lo.employee_id  

ORDER BY lo.recordId; 

3 SELECT  

  em.employeeId as MedewerkerId,  

  em.employeeName as MedewerkerNaam  

FROM  

  Employee em,  

  LogRecord lo  

WHERE ( 

  lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE EXISTS ( 

      SELECT employeeId  

      FROM Employee  

      WHERE  

        (employeeName = 'Beheer1' OR employeeName = 'Beheer' )  

        AND employeeId = employee_id) 

    )  

  AND lo.recordId IN ( 

    SELECT recordId  

 FROM LogRecord  

 WHERE  

   (changeddate_id BETWEEN '790' AND '800') 

  ) 

)  

AND em.employeeId = lo.employee_id  

ORDER BY lo.recordId; 

4 SELECT  

  em.employeeId as MedewerkerId,  

  em.employeeName as MedewerkerNaam  

FROM  

  Employee em,  

  LogRecord lo  

WHERE 

  lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE EXISTS ( 

      SELECT employeeId  

      FROM Employee  

      WHERE  

        (employeeName = 'Beheer1' OR employeeName = 'Beheer' )  

        AND employeeId = employee_id) 
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    )  

  AND lo.recordId IN ( 

    SELECT recordId  

 FROM LogRecord  

 WHERE  

   (changeddate_id BETWEEN '790' AND '800') 

  )  

AND em.employeeId = lo.employee_id  

ORDER BY lo.recordId; 

5 SELECT  

  kp.klantpropositieId as KlantPropositie,  

  DATEADD(MI,cd.changeddate,'1970-01-01') as DatumWijziging,  

  pr.propertyName as Property,  

  e.entityId as EntityId,  

  en.entityName as Entiteit,  

  at.auditType as AuditType,  

  em.employeeId as MedewerkerId,  

  em.employeeName as MedewerkerNaam,  

  vnn.value as NieuweWaardeId,  

  vno.value as OudeWaardeId,  

  vcn.value as NieuweWaarde,  

  vcn.compressed as IsNieuweWaardeCompressed,  

  vco.value as OudeWaarde,  

  vco.compressed as IsOudeWaardeCompressed  

FROM  

  ChangedDate cd,  

  Property pr,  

  Entity e, 

  EntityName en,  

  AuditType at,  

  Employee em,  

  LogRecord lo  

  LEFT JOIN RecordKlantPropositie rkp ON lo.recordId = 

rkp.record_id  

  LEFT JOIN KlantPropositie kp ON kp.klantpropositieId = 

rkp.klantpropositie_id  

  LEFT JOIN RecordValueNumericNew rvnn ON lo.recordId = 

rvnn.record_id  

  LEFT JOIN ValueNumericNew vnn ON vnn.valueId = rvnn.value_id  

  LEFT JOIN RecordValueNumericOld rvno ON lo.recordId = 

rvno.record_id  

  LEFT JOIN ValueNumericOld vno ON vno.valueId = rvno.value_id  

  LEFT JOIN RecordValueCharacterNew rvcn ON lo.recordId = 

rvcn.record_id  

  LEFT JOIN ValueCharacterNew vcn ON vcn.valueId = rvcn.value_id  

  LEFT JOIN RecordValueCharacterOld rvco ON lo.recordId = 

rvco.record_id  

  LEFT JOIN ValueCharacterOld vco ON vco.valueId = rvco.value_id  

  WHERE lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE  

      (property_id = '45' OR property_id = '49' ) 

  )  

  AND lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE  

      (entityname_id = '4' ) 
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  )  

  AND cd.changeddateId = lo.changeddate_id  

  AND pr.propertyId = lo.property_id  

  AND e.entityId = lo.entity_id  

  AND en.entityNameId = lo.entityname_id  

  AND at.audittypeId = lo.audittype_id  

  AND em.employeeId = lo.employee_id  

ORDER BY lo.recordId; 

6 SELECT  

  pr.propertyName as Property  

FROM  

  Property pr,  

  LogRecord lo  

WHERE lo.recordId IN ( 

  SELECT recordId  

  FROM LogRecord  

  WHERE EXISTS ( 

    SELECT entityNameId  

    FROM EntityName  

    WHERE  

      (entityName = 'HypotheekDeel' )  

      AND entityNameId = entityName_id 

  ) 

)  

AND pr.propertyId = lo.property_id  

ORDER BY lo.recordId; 

7 SELECT  

  kp.klantpropositieId as KlantPropositie,  

  DATEADD(MI,cd.changeddate,'1970-01-01') as DatumWijziging,  

  pr.propertyName as Property,  

  e.entityId as EntityId,  

  en.entityName as Entiteit,  

  at.auditType as AuditType,  

  em.employeeId as MedewerkerId,  

  em.employeeName as MedewerkerNaam,  

  vnn.value as NieuweWaardeId,  

  vno.value as OudeWaardeId,  

  vcn.value as NieuweWaarde,  

  vcn.compressed as IsNieuweWaardeCompressed,  

  vco.value as OudeWaarde,  

  vco.compressed as IsOudeWaardeCompressed  

FROM  

  ChangedDate cd,  

  Property pr,  

  Entity e, 

  EntityName en,  

  AuditType at,  

  Employee em,  

  LogRecord lo  

  LEFT JOIN RecordKlantPropositie rkp ON lo.recordId = 

rkp.record_id  

  LEFT JOIN KlantPropositie kp ON kp.klantpropositieId = 

rkp.klantpropositie_id  

  LEFT JOIN RecordValueNumericNew rvnn ON lo.recordId = 

rvnn.record_id  

  LEFT JOIN ValueNumericNew vnn ON vnn.valueId = rvnn.value_id  

  LEFT JOIN RecordValueNumericOld rvno ON lo.recordId = 

rvno.record_id  

  LEFT JOIN ValueNumericOld vno ON vno.valueId = rvno.value_id  
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  LEFT JOIN RecordValueCharacterNew rvcn ON lo.recordId = 

rvcn.record_id  

  LEFT JOIN ValueCharacterNew vcn ON vcn.valueId = rvcn.value_id  

  LEFT JOIN RecordValueCharacterOld rvco ON lo.recordId = 

rvco.record_id  

  LEFT JOIN ValueCharacterOld vco ON vco.valueId = rvco.value_id  

  WHERE ( 

    lo.recordId IN ( 

      SELECT recordId  

      FROM LogRecord  

      WHERE  

        (recordId > '100400' ) 

    )  

    AND lo.recordId IN ( 

      SELECT recordId  

      FROM LogRecord  

      WHERE  

        (recordId <= '100900' ) 

    ) 

  ) 

  AND cd.changeddateId = lo.changeddate_id  

  AND pr.propertyId = lo.property_id  

  AND e.entityId = lo.entity_id  

  AND en.entityNameId = lo.entityname_id  

  AND at.audittypeId = lo.audittype_id  

  AND em.employeeId = lo.employee_id  

ORDER BY lo.recordId; 

8 SELECT  

  em.employeeId as MedewerkerId,  

  em.employeeName as MedewerkerNaam  

FROM  

  Employee em,  

  LogRecord lo  

WHERE  

  lo.recordId IN ( 

    SELECT record_id  

    FROM RecordValueCharacterNew  

    WHERE EXISTS ( 

      SELECT valueId  

      FROM ValueCharacterNew  

      WHERE  

        (value = '0,03170' )  

        AND valueId = value_id 

    ) 

  )  

  AND lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE 

      (property_id = '39' ) 

  )  

  AND lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE  

      (entityname_id = '4' ) 

  )  

  AND lo.recordId IN ( 

    SELECT recordId  
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    FROM LogRecord  

    WHERE  

      (audittype_id = '1' ) 

  )  

  AND lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE  

   (employee_id != '1' ) 

  )  

  AND em.employeeId = lo.employee_id  

ORDER BY lo.recordId; 

9 SELECT  

  em.employeeId as MedewerkerId,  

  em.employeeName as MedewerkerNaam  

FROM  

  Employee em,  

  LogRecord lo  

WHERE ( 

  lo.recordId IN ( 

    SELECT record_id  

    FROM RecordValueCharacterNew  

    WHERE EXISTS ( 

      SELECT  

        valueId  

      FROM  

        ValueCharacterNew  

      WHERE  

        (value = '0,03170' )  

        AND valueId = value_id) 

    )  

    AND lo.recordId IN ( 

      SELECT recordId  

      FROM LogRecord  

      WHERE (property_id = '39' ) 

    )  

    AND lo.recordId IN ( 

      SELECT recordId  

      FROM LogRecord  

      WHERE  

        (entityname_id = '4' ) 

    )  

    AND lo.recordId IN ( 

      SELECT recordId  

      FROM LogRecord  

      WHERE  

        (audittype_id = '1' ) 

    )  

    AND lo.recordId IN ( 

      SELECT recordId  

      FROM LogRecord  

      WHERE  

        (employee_id != '1' ) 

    )  

    AND lo.recordId IN ( 

      SELECT record_id  

      FROM RecordKlantPropositie  

      WHERE EXISTS ( 

        SELECT klantPropositieId  
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        FROM KlantPropositie  

        WHERE  

          (klantPropositieId = '16828' )  

          AND klantPropositieId = klantPropositie_id 

      ) 

    ) 

  )  

  AND em.employeeId = lo.employee_id  

ORDER BY lo.recordId; 

10 SELECT  

  kp.klantpropositieId as KlantPropositie,  

  DATEADD(MI,cd.changeddate,'1970-01-01') as DatumWijziging,  

  pr.propertyName as Property,  

  e.entityId as EntityId,  

  en.entityName as Entiteit,  

  at.auditType as AuditType,  

  em.employeeId as MedewerkerId,  

  em.employeeName as MedewerkerNaam,  

  vnn.value as NieuweWaardeId,  

  vno.value as OudeWaardeId,  

  vcn.value as NieuweWaarde,  

  vcn.compressed as IsNieuweWaardeCompressed,  

  vco.value as OudeWaarde,  

  vco.compressed as IsOudeWaardeCompressed  

FROM  

  ChangedDate cd,  

  Property pr,  

  Entity e, 

  EntityName en,  

  AuditType at,  

  Employee em,  

  LogRecord lo  

  LEFT JOIN RecordKlantPropositie rkp ON lo.recordId = 

rkp.record_id  

  LEFT JOIN KlantPropositie kp ON kp.klantpropositieId = 

rkp.klantpropositie_id  

  LEFT JOIN RecordValueNumericNew rvnn ON lo.recordId = 

rvnn.record_id  

  LEFT JOIN ValueNumericNew vnn ON vnn.valueId = rvnn.value_id  

  LEFT JOIN RecordValueNumericOld rvno ON lo.recordId = 

rvno.record_id  

  LEFT JOIN ValueNumericOld vno ON vno.valueId = rvno.value_id  

  LEFT JOIN RecordValueCharacterNew rvcn ON lo.recordId = 

rvcn.record_id  

  LEFT JOIN ValueCharacterNew vcn ON vcn.valueId = rvcn.value_id  

  LEFT JOIN RecordValueCharacterOld rvco ON lo.recordId = 

rvco.record_id  

  LEFT JOIN ValueCharacterOld vco ON vco.valueId = rvco.value_id  

WHERE  

  lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE EXISTS ( 

      SELECT klantpropositie_id  

      FROM RecordKlantPropositie  

      WHERE  

        (klantpropositie_id = '16828' )  

        AND klantpropositie_id = klantpropositieId 

    ) 
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  )  

  AND lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE  

      (property_id = '39' ) 

  )  

  AND lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE  

      (entityname_id = '4' ) 

  )  

  AND lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE  

      (audittype_id = '1' ) 

  )  

  AND lo.recordId IN ( 

    SELECT recordId  

    FROM LogRecord  

    WHERE  

      (employee_id != '1' ) 

  )  

  AND cd.changeddateId = lo.changeddate_id  

  AND pr.propertyId = lo.property_id  

  AND e.entityId = lo.entity_id  

  AND en.entityNameId = lo.entityname_id  

  AND at.audittypeId = lo.audittype_id  

  AND em.employeeId = lo.employee_id  

ORDER BY lo.recordId; 

 


