

MASTER THESIS

Towards a generic model for audit trails

T. Harleman

Department of Computer Science

August, 2011

Examination Committee

dr. I. Kurtev, University of Twente
dr. L. Ferreira Pires, University of Twente
ir. R. Zagers, Topicus Finance
J. Logtenberg, Msc, Topicus Finance

3

Acknowledgements

This thesis marks the end of the master ‗Computer Science – Software

Engineering‘ of the University of Twente, which I followed since September 2008.

This research is performed at Topicus Finance in Deventer where I have worked

for about 8 months.

I would like to thank Topicus Finance for the opportunity to do this inspiring

and challenging project. A special thanks to my supervisors from Topicus: Robin

Zagers, for the technical assistance, feedback and for providing useful suggestions

during my research. Further, for the fun at the office, which made the time fly.

Jeroen Logtenberg, for endlessly reviewing my work and providing useful

suggestions and positive criticism, which kept me sharp.

Also, I would like to thank my supervisors from the university of Twente: Ivan

Kurtev, for guiding me throughout the project and providing me with useful

suggestions to keep me in the right direction. Luis Ferreira Pires for reviewing my

work in great detail, despite the late involvement in the project.

Last but not least, I want to thank my parents for their support during my study

and Mark Oude Veldhuis and Martijn Adolfsen, my fellow students, for the good

times we had while completing most of the courses.

-Tim Harleman

August 2011

5

Table of contents

TABLE OF CONTENTS ... 5

1 INTRODUCTION ... 7

1.1 CONTEXT ... 7
1.2 PROBLEM STATEMENT .. 8
1.3 RESEARCH QUESTIONS ... 8
1.4 APPROACH AND OUTLINE .. 9

2 BASIC CONCEPTS ... 10

2.1 AUDIT TRAIL ... 10
2.2 PROVENANCE ... 10

2.2.1 Workflow provenance .. 10
2.2.2 Data provenance .. 11
2.2.3 Provenance and archiving .. 12

2.3 MODELLING PURPOSES ... 13
2.4 MODELING AND LOGGING ... 14
2.5 APPROACHES FOR AUDIT TRAIL ANALYSIS .. 15

2.5.1 Fraud in administrative ERP systems ... 15
2.5.2 Rule-based system for universal audit trail analysis 16

2.6 DOMAIN OF MORTGAGES .. 16
2.6.1 Organization .. 17
2.6.2 Process ... 17

3 DATA WAREHOUSE ARCHITECTURES ... 20

3.1 APPROACH ... 20
3.2 NORMALIZED DATABASE ... 21
3.3 OLAP ... 22
3.4 FLUIDDB ... 23
3.5 INFOBRIGHT ... 25

3.5.1 Layers ... 26
3.5.2 Data Manipulation Language .. 26
3.5.3 Example of query handling... 27

3.6 ARCHITECTURE COMPARISON .. 29
3.7 CONCLUSION .. 31

4 DATA WAREHOUSE DESIGN ... 32

4.1 APPROACH ... 32
4.2 AUDIT TRAIL LOG ANALYSIS .. 32
4.3 DATA WAREHOUSE CONVERSION .. 33

4.3.1 Conversion rules and exceptions .. 34
4.3.2 Data warehouse schema .. 35

4.4 TEST CONVERSION RESULTS ... 36
4.5 DISCUSSION ... 38
4.6 CONCLUSION .. 38

5 AUDIT TRAIL QUESTION MODEL .. 40

5.1 APPROACH ... 40
5.2 GENERIC MODEL ... 40
5.3 POSSIBLE AUDIT TRAIL QUESTIONS... 41
5.4 QUESTION LANGUAGE .. 41

6

5.5 LABELING ... 42
5.6 QUESTION META MODEL ... 43
5.7 CONCLUSION .. 44

6 AUDIT TRAIL ARCHITECTURE.. 45

6.1 ARCHITECTURE .. 45
6.2 QUESTION PARSER .. 46
6.3 LABELBASE ... 48
6.4 LABEL RESOLVER ... 50
6.5 DATABASE LAYER .. 52
6.6 POST PROCESSING LAYER .. 54
6.7 POSSIBILITIES AND LIMITATIONS BEYOND REQUIREMENTS .. 54
6.8 CONCLUSION .. 55

7 PROTOTYPE ... 56

7.1 APPROACH ... 56
7.2 REQUIREMENTS .. 56
7.3 DESIGN ... 57
7.4 IMPLEMENTATION ... 58

7.4.1 User Interface ... 58
7.4.2 Query generation ... 59

7.5 PERFORMANCE TEST .. 60
7.5.1 Test Approach .. 61
7.5.2 Test suite .. 62
7.5.3 Test results ... 63

7.6 DISCUSSION ... 64
7.7 CONCLUSION .. 67

8 CONCLUSION AND FUTURE WORK ... 69

8.1 SUBQUESTIONS ... 69
8.2 MAIN QUESTION ... 70
8.3 FUTURE WORK ... 71

REFERENCES .. 72

APPENDIX A ... 73

APPENDIX B ... 74

APPENDIX C ... 75

APPENDIX D... 78

7

1 Introduction

Financial applications that support processes involving money, like banking

applications, need to be fault proof. To gain the trust of customers, financial

companies spend a lot of time, money and resources on validating their software.

Systems that concern money or health require a higher degree of fault proof

systems then systems that don‘t.

Within the domain of mortgages, banks and mortgage companies loan money to

clients so that they can finance a house. When a person wants to buy a house,

generally they have to go to a mortgage company to get a mortgage for the house.

Getting a mortgage involves a lot of paperwork and requires a variety of

information about the current and historical financial situation of the buyer. For

example, the buyer has to supply information about his yearly income, if the buyer

has or had other loans, identification documents and so on. The mortgage company

on their turn has a lot of different mortgage products. There are life insurance

mortgages, linear mortgages, mortgages with a variable interest or mortgages

where money is invested. These days there are over a hundred different mortgage

products, often in combination with insurances. In order to keep track of all

provided mortgages, with all these complex products and insurances, software

systems are necessary.

Software that is used in this process has to be reliable for both parties involved.

From the client‘s point of view, all information about their mortgage should be

correct, such as interest, satisfied payments, interest rate, mortgage products,

insurances and so on as been agreed upon during the negotiations. From the view

of the mortgage company, the system should keep correct records about all the

provided mortgages. When such system contains faults, the company could lose

money because of incorrect interest rates or by paying out insurances that a client

does not have. On the other side, the company has to be able to ensure the data is

correct and be able to verify this to its clients. This could be the case when a client

claims he paid his monthly payment or that a mortgage product is different than

what was agreed upon during the negotiations.

Proving the correct information is stored is an important factor in financial

systems. A common approach within administrative applications is the use of audit

trails. Audit trail is a logging strategy which makes it possible to store and retrieve

information about changes made in the process of creating the mortgage invoice.

An audit trail can provide a complete history of how the end product is formed by

backtracking the historical data of changes. However, strategy focuses more on

storing and less on retrieving the historical information.

1.1 Context

Topicus is a software company that has different units located in Deventer, The

Netherlands. Topicus Finance is the department where this research has been

performed and they are one of the leading companies that focus on mortgage

software systems. These systems support the whole process from the application by

the customer to the invoice, which allows clients to get the mortgage. Due to

legislations, all changes made by users of the system and by the system itself must

be logged. To achieve this, an audit trail is used. An audit trail is a very detailed

change log. The audit logs can be used for several purposes, such as possible

mistakes which are made in the process can be backtracked and to see why values

are as they exist in a specific invoice. When analyzing the logs in real-time, these

8

logs can be used for functionality like fraud detection. Currently, when Topicus

wants to query the audit trail, the database server crashes or the query gets a time

out. Either way, no results are obtained from the audit trail. Because of poor

performance, this research has focused on how we can improve the current use of

the audit trails within Topicus and how to make the data questionable with

acceptable performance, in units of time.

1.2 Problem statement

Some clients and Topicus Finance themselves are SAS 70 [1] certified. This

standard prescribes that the client and Topicus Finance must define a that justifies

the data in their current database. For this they use an Audit Trail. The audit trail

logs every database change, made in the application in a separate database. With

this log, the clients and Topicus can justify the current state of for example, a field

within the database, by retrieving historical information. Further, with this log they

can reconstruct the database state at any point in time.

The problem is that the audit trail was optimized to store. Later, clients asked for

functionality to be able to retrieve information from the audit logs. Due to this

change in requirements, the audit trail implementation now has poor structure and

performance to meet the requests of the clients. The audit trail logs a lot of data

without being able to retrieve any information from the logs within reasonable

time. To get information from the audit trail, the data has to be distributed into

multiple smaller databases in order to get any results at all. The data set is too large

for the database server to handle in its current database schema. Therefore,

functionality for the audit trail data cannot be added to their applications as

requested by their clients.

1.3 Research Questions

In this section we propose the research questions which we have addressed

during this research. This research has aimed at finding a solution, in the form of a

design, which makes it possible to question the audit trail data with a better

performance than the current audit trail.

What is a generic architecture for efficient questioning of audit trail logs?

1. What is an audit trail?

We have introduced the concept of audit trails in Section 1.1. More information

about audit trails can be found in [2].

2. What data warehouse architecture is suited for storing audit trail logs?

3. What is a generic architecture for handling audit trails?

a. What meta data is required by the architecture in order to

understand the data?

b. How should a (generic) model, to represent audit trail data, look

like?

9

c. What architectural changes to the architecture or model have to

be made in order to make it domain specific for any domain?

To efficiently go through a large bulk of data, extra information, called meta

data, is commonly used to group and find data faster and more efficiently. In

previous research [2], we have seen that data provenance uses the notion of

labeling to label data in order to address data by referring to its labels.

4. What is the performance increase (measured in units of time) of the

proposed architecture?

In order to verify the performance of the proposed solution for the business case,

we have implemented the architecture in a prototype. By running tests, the

architecture could be compared with the performance of the current audit trail

implementation.

1.4 Approach and Outline

In order to answer the research questions mentioned in Section 1.3, we start with

some preliminaries in Chapter 2, which give an introduction to the terms Audit

trail, provenance, data warehousing, modeling and modeling concepts.

In order to find a suitable data warehouse architecture and to answer the third

research question, we did some research on several types of data warehouse

architectures. We compared these architectures based on relevant criteria and chose

an architecture. The comparison is described in Chapter 3.

To see if practice matches the theory, a simple test was performed to see how

the architecture would perform for this business case. A data conversion is

performed to obtain information about the data storage efficiency of the new

architecture compared to the current situation. All of that is described in Chapter 4.

To answer the fourth research question, first, a definition for the term „generic

model‟ is given. Interviews were held to find out what types of questions are going

to be asked about the audit trail data and what output is expected. From that, we

abstract from the domain specific parts to design a model that could, ideally, be

applied on any type of logging. While abstract from the domain, we kept in mind

that the amount of architectural changes for a domain specific design should be

kept at a minimum. Last, a solution regarding meta data is required to let the

generic model understand what data it handles. All of that is described in Chapter

5.

Chapter 6 describes the audit trail architecture in more detail. We zoom in on

every component in the model to show the responsibilities and how it works

internally, specifically for our business case.

To be able to say anything about the performance of the model we implemented

a small prototype. By running some example questions we compared the results, in

units of time, with the current implementation of the audit trail. From these results

and observations made during prototyping, we drew some conclusions about the

performance of the model. The prototype and test results can be found in Chapter

7.

Finally, the thesis will end with the final conclusions in which we look back at

the research questions and provide the obtained answers.

10

2 Basic Concepts

This chapter discusses the basic concepts that the reader should be familiar with

to fully understand the terms and techniques used in this thesis.

Organization of this chapter Section 2.1 explains the term audit trail, Section

2.2 introduces the term provenance, what it is and how it is used. Section 2.3 talks

about why there is need for a model for software in general. Section 2.4 focuses on

what modeling can add to logged data. Section 2.5 shows some approaches of how

the audit trail is used in practice. Last, Section 2.6 gives an introduction to the

domain of mortgages and the process of getting a mortgage.

2.1 Audit Trail

We consider the definition of the concept ‗Audit Trail‘ from [3]:

“An audit trail or audit log is a chronological sequence of audit records, each

of which contains evidence directly pertaining to and resulting from the execution

of a business process or system function.”

In the context of this research an Audit Trail is a log that holds all changes made

to a database, usually changes made by users of a system. A big problem with this

form of logging, as with almost all forms of logging, is that the logs grow very big,

very quickly. This is often compensated by selective logging or keeping the logs

for shorter periods. Our business case consists of a situation where there is no room

for compensations and all data needs to be logged for a long period. With this

research we aim at finding a solution to obtain information from these large audit

logs.

2.2 Provenance

Since logging, like an audit trail, easily grows out of manageable proportions,

we need some data storage structure to keep some performance on the long run and

that can support the storage and retrieval of historical data. For that, we look into

data provenance. Provenance (also referred to as lineage or pedigree) means origin

or source. Some call it “the history of ownership of a valued object or work of art

or literature”[4]. From a scientific point of view, data sets are useless without

knowing the exact provenance and processing pipeline used to produce derived

data sets. In relation to our problem, when an invoice for a mortgage is created it is

valuable knowing what data is altered during the process of creating the invoice.

We look into two flavors of provenance, namely workflow provenance and data

provenance to determine which seems more applicable to our problem.

2.2.1 Workflow provenance

A workflow can be thought of as a sequence of steps which can be either

computational steps, human-machine interaction or a combination of these two.

Workflow provenance refers to the record of the entire history of the derivation of

the final output of the workflow. In our scenario, the mortgage invoice generation

process could be considered as the workflow. Applying workflow provenance

provides us the functionality to retrieve the full history of the steps taken in order

to produce an invoice. That is the final output in our workflow. The amount of

information that is stored for the workflow provenance may vary. It may include

complete historical records of the steps taken in the workflow to arrive at a

11

particular dataset. Sometimes records are kept about software versions, brand and

models of hardware and use of external software within the workflow. When using

external processes within the workflow provenance is usually coarse-grained,

which means, that only the input, output and external software is recorded. Those

external processes are seen as black boxes.

The idea is shown in Figure 1 below. The audit process logs information on the

log moments, indicated with vertical arrows. With black boxes in the process, the

only log moments are before and after the black box. White boxes can have

internal log moments. Workflow provenance logs more snapshots of the data at the

log moments rather than the explicit changes.

Figure 1: Workflow example

2.2.2 Data provenance

Data provenance gives a more detailed insight about the derivation of a piece of

data that is the result of some transformation step. In our scenario, the resulting

product could be the mortgage invoice. A particular case of data provenance is very

popular within the database community and is extensively researched, which is the

when this transformation is performed by database queries. The following

explanation comes from [20]. Suppose a transformation on a database D is

specified by query Q, the provenance of a piece of data i in the output of applying

Q on D is the answer to the following question: ―Which parts of the source

database D contribute to i according to Q?‖ We can further categorize this into

where- and why- (or how-) provenance.

 Where-provenance identifies the source elements where the data in the

target is copied from.

 Why-provenance describes why a piece of data is present in the output.

Sometimes why-provenance is referred to as ‗how‘-provenance and some

authorsdefined it as a variant of why-provenance. We ignore this variant in this

research.

We explain these categories by means of an example derived from [5].

Suppose ("Jan", 657) is an answer to the following query on the tables shown

below.

Select name, telephone

From employee e, department d

Where e.id = d.id AND d.name = "Computer Science"

12

Employee Department

id name id emp_id name phonenumber

1 Jan 11 1 Computer Science 657

2 Henk 12 2 Embedded Systems 739

The where-provenance of the name ‗Jan‘ is simply the corresponding record in

the name tuple of the Employee table. It only tells you where the data is copied

from. This is marked in the table above. The why-provenance includes not only the

record in the employee table, but also the Computer Science record corresponding

to its employee id. Without the department record, ‗Jan‘ would not be included in

the result set. These records are marked in the table above.

 Data provenance has two general approaches, namely annotated and non-

annotated. Non-annotated provenance calculates the provenance using the input,

output and query where the annotated provenance can be calculated lateron using

extra information that is stored after the execution of a query. The problem with

annotated provenance is that it adds a lot of overhead and might be less suitable for

very large data sets. The positive side is that it gives more control about what data

is more important by annotating it. The downside of non-annotated provenance is

that calculations can only be performed during query execution. Afterwards new

information cannot be added, unlike the annotated approach where annotations can

be added at any time.

2.2.3 Provenance and archiving

Within data provenance, there is a notion of archiving. With the audit log,

structural changes of the database can be expected and therefore should also be

considered in the solution.

Database schemas change over time for almost every application. For logging

systems, structural changes in the database are usually not a big concern. Logging

is more about content than structure. Structural changes can be changes in the

structure of a field (integer to character) and the removal or addition of fields. It is

uncommon practice to reuse the original schema of the database for logging

purposes. Archiving is especially crucial for scientific data, where scientific

breakthroughs are typically based on information obtained from a particular

version of a database. Hence, all changes or all versions of the database must be

fully documented for scientific results to remain verifiable. Nonetheless, if there

are requirements to reconstruct data structures from loggings, like we have in our

case, we might want to keep structural changes to the logs in mind. In our problem

domain, mortgage invoices are created with the information that was present at that

time. For example, we would like to see the history of a mortgage application, and

assume a column of a table was deleted at some point in time. To be able to

retrieve information of an application before the column deletion, we have to

somehow record this change. This problem can be solved by using provenance

archiving. We explain how archiving works by means of an example shown in

Figure 2.

13

Figure 2: Archiving structural database changes

In our scenario we consider two databases: The production database where

applications run on and which holds the most recent information (Table C in Figure

2), and the Audit trail database which is responsible for holding the logged

information. Table A contains the logged information about Table C. Every record

has an additional column with a timestamp indicating when a change occurred.

Table B holds the structural changes about Table A, in which we can see which

columns were added, deleted or changed. We have a function f(x), which takes a

timestamp as value for ‟x‟ to calculate the state of a record or table during the given

point in time x.

Assuming we would like to retrieve the values of the record of the application

with „app_id = 101‟ at f(20-12-2010 11:45). From Table B we conclude that

column „attr_3‟ was not included at that point in time, but „attr_2‟ would be

present. From Table A we see that the deletion of „attr_2‟ did not occur yet before

11:45. The result is therefore, (101, 1002, 5.05).

Assuming we would ask the same question again, but now for „x = 20-12-2010

12:10‟. From table B we conclude that „attr_3‟ was added and thus should the

value for this column be included in the result. From Table A we see that some

changes have been made before 12:10. The result is therefore (101, 1002, 5.09,

401).

From the archiving point of view this approach works. A detailed registration is

held about the structural changes of the application and is easily retrievable.

Nevertheless, the storage of Table A is inefficient since it holds a lot of redundant

information. This example explains how the archiving of structural database

changes can be recorded. How the content is stored is a different point of concern.

2.3 Modelling purposes

Modeling in software engineering is a way to represent complex structures in a

simplified manner. Modeling is used to be able to understand the complexity of a

problem and to make it easier to talk about it. When making models for data,

models can bring structure to facilitate reasoning about the data.

14

Modeling is often used in the process of designing software. Small projects do

not necessarily need a model before building the real system. These types of small

projects mostly share the following five characteristics [6];

1. The problem domain is well known.

2. The solution is relatively easy to construct.

3. Very few people need to collaborate when building or using the system.

4. The solution requires minimal ongoing maintenance.

5. The scope of future needs is unlikely to grow substantially.

Larger projects, that do not have the characteristics above, usually require a

some sort of model. There is always a possible tradeoff to model a system or build

it straight away. The tradeoff is based on the complexity of the project and, the risk

of building software without making a modeling. Modeling provides architects and

others with the ability to visualize entire systems, assess different options and

communicate designs more clearly before taking on the risks —technical, financial

or otherwise — of actual construction. Some software systems support important

health-related or money-related functions, making them complex to develop, test

and maintain. These days, software become more and more important for almost

any business process. Therefore, developers need a better understanding of what

they are building. Modeling is an effective way increase the understanding. More

specifically, by modeling software, developers can:

 Create and communicate about software designs before committing

additional resources.

 Trace the design back to the requirements, helping to ensure that they

are building the right system.

 Practice iterative development, in which models facilitate quick and

frequent changes.

2.4 Modeling and logging

To be able to retrieve information from large datasets like audit trail logs, the

structure of the data is an important aspect. Structuring large datasets has a few

advantages. Structured logs, or databases in our case, are readable to some extent.

Structure provides better understanding of the content, which facilitates the design

of software or models to give purpose to the data. In practice, several purposes for

audit trails can be found. For example, the logs can be used as logs as intended,

thus when something goes wrong and the cause needs to be found. Another

purpose which seems to become more popular is analysis of audit trails and other

logs. In this report we define two types of analysis:

Passive analysis: A combination of questioning the logs for e.g. tracing

problems and using the logs to generate statistics or use it for data mining.

Reactive analysis: Done real-time and can be used to detect errors made by the

user and generate a notification..

Reactive analysis is more intertwined with applications while passive analysis

can be supported by a separate component. A problem that arises with reactive

analysis is that performance becomes an issue depending on what information is

analyzed. When someone has permission to change a value can be done fairly

quickly, To find out whether a set of values has been changed more than five times,

with a large log can take too much time. Passive analysis has no real-time

requirements and therefore performance is less of an issue.

15

2.5 Approaches for audit trail analysis

A lot of approaches, concerning audit trails, focus on the areas of intrusion

detection and fraud detection. Audit trail are generally monitored and analyzed to

build up a dataset. This dataset is used to compare real-time actions in a particular

software system to detect fraud or intrusion by comparing the actions with what is

known or expected behavior. In the following sections, some approaches are

discussed.

2.5.1 Fraud in administrative ERP systems

In financial and administrative applications, logging analysis is used mainly to

detect or prevent any form of fraud. In [7], P. Best refers to five essential steps for

detecting fraud in software systems.

1. Understanding the business or operations.

2. Performing a risk analysis to identify the types of frauds that can occur.

3. Deducing the symptoms that the most likely frauds would generate.

4. Using computer software to search for these symptoms.

5. Investigating suspect transactions.

In [7] they use audit trails as a means to detect fraud in ERP (Enterprise

Resources Planning) systems. ERP systems are software systems in which

administrative information is stored about the company. ERP systems can be

centralized so that there is one administrative system for large companies with

multiple settlements in different cities or countries.

P. Best,[7], focuses on fraud in such administrative systems. To do so, they

define various types of audit trails. Security audit trails log information of user

activity to the system. These logs often include successful logins, failed logins,

starting of a transaction or action, failed starts of (trans)actions (i.e. prevented

because of role permissions) and changes in roles. Usually these audit trails may be

retained for periodic review, then archived and/or deleted. Accounting audit trails

log specific information concerning financial transactions, like who does payments,

when are they performed, who made the payments, who checked financial balances

and so on. With this log the financial companies can backtrack every payment that

is performed or viewed within the system. [7] defines an audit trail approach to

support detection of fraud. The approach consists of two stages:

1) threat monitoring, which involves high-level surveillance of security audit

logs to detect possible ‗red flags‘. To decide what a possible threat is, they use the

audit logs to build up a profile of each user over a certain time period. This profile

gives an indication of the frequently performed actions of a user, or patterns in the

actions. A knowledge base system may also be developed to generate forecasts of

expected user activity. Changes in actual user behavior may then be detected

promptly and investigated. The forecast of predicted actions can be improved by

creating user profiles in a smaller time frame and compare this to see shifts in the

profile. For example, a user can perform different actions in the beginning of the

week than at the end of the week.

2) Automated extraction and analysis of audit log data to provide documentation

of user actions. This stage creates documentation of users and their activities

focused on the fraud sensitive area‘s (e.g. financial transactions). Those reports

contain facts and can be reviewed to detect fraud that might not have been detected

in the first stage.

16

2.5.2 Rule-based system for universal audit trail analysis

The University of Namur in cooperation with Siemens Nixdorf Software S.A.

developed a rule based language for universal audit trail analysis for UNIX. The

language is called RUSSEL [8] (Rule-baSed Sequence Evaluation Language) and

tailored to the problem of searching for arbitrary patterns of records in sequential

files, like audit trails. The built-in mechanism allows records to pass the analysis

of the sequential file from left to right. The language provides common control

structures, such as conditional, repetitive and compound actions. Primitive actions

include assignments, external routine calls and rule triggering. A RUSSEL program

consists of a set of rule declarations that are identified by a rule name, a list of

formal parameters and local variables and an action part. The action part can

consist of user-defined or built-in C-routines. A simple and clearly specified

interface with C allows users to extend the RUSSEL language with any desirable

feature. This can include simulation of complex data structures, specifications of

alarm messages (mail, text message, popup), locking a user account and so on.

When analyzing audit trail logs, the system executes all the active rules on every

record. The execution of an active rule may trigger or activate new rules, raise

alarms, write report messages or alter (global) variables. Rules can be activated for

the current record or the next. Once all rules are executed for a single record, a new

record is obtained from the log and all rules return to their initial state. This means

that, rules that were triggered to be active become inactive again unless triggered to

stay active. The abstract syntax of RUSSEL can be found in [8]. Example rules can

be found in [9]. The operational semantics of the RUSSEL language can be

summarized as follows:

 Records are analyzed sequentially. The analysis of records consists of

executing all active rules. An active rule can trigger other rules, raise

alarms, write report messages, alter variables etc.

 Rule triggering is a special mechanism by which a rule is made active

either for the current or the next record. In general, a rule is active for

the current record because a prefix of a particular sequence of audit

records has been detected. The rest of the sequence has to be possibly

found in the rest of the log. Parameters in the set of active rules

represent knowledge which is obtained from the already analyzed

records. This knowledge is used while analyzing the rest of the records.

 When all the rules active for the current record have been executed, the

next record is read and the rules triggered for this record in the previous

step are executed in turn.

 To initialize the process, a set of so-called initialization rules are made

active for the first record.

2.6 Domain of mortgages

The mortgage domain has its own vocabulary, concepts and terms. Therefore we

first introduce some terms that are often used and later describe the general process

of a mortgage request. The process description will end when the mortgage

application is approved. The process of paying off mortgages and insurance

activities are not described and irrelevant for this research.

17

2.6.1 Organization

In order for a mortgage company sell mortgages to clients, there are a few

parties involved. The mortgage company also needs ways to be profitable and gain

its money. Figure 3 indicates of the involved parties.

Figure 3: Global organization of a mortgage company (from [10])

Within mortgage companies, three offices are usually defined, namely Front-,

mid- and back-office. The front-office usually refers to the different sales and

distribution channels a mortgage company knows. Some mortgage companies have

their own sales department, but outsourcing that activity to different distribution

partners seem to happen more often. Distribution partners are intermediaries or

franchisers. This kind of people sell mortgages for different companies. The

advantage is that consumers (people looking for a mortgage) have more choice in

mortgages from various companies with an ‗independent‘ advice when they visit

an intermediary of franchiser. Naturally, mortgage companies give bonuses when

an intermediary sells their products. Such bonuses make advice less ‗independent‘.

The mid-office performs the process of making offers for consumers, validating the

applications and accepting applications. The back-office comes after the mid-office

and performs the process after the mortgage deal is closed. It focuses on consumers

paying off their mortgages. Chain partners are specialized companies that can take

over some of the processes of a mortgage company. Examples are outsourcing of

the back-office, but also authorities that supervise the mortgage market, like AFM

[11]. Like car manufacturers need resources to build cars, mortgage companies also

need resources to be able to sell mortgages. Those resources are called financial

means and are gained from the financial market. Traditionally, banks use its clients

savings as resources but mortgage companies are not always banks, thus they need

other ways for getting money.

Nowadays, mortgage companies sell their mortgage wallets (a set of mortgages)

to third parties. In that way, mortgage companies can directly use money again and

the paying off risks now lay at the third party holding the wallet. Another popular

approach is ‗securitization‘. Mortgage companies sell their wallet to a so called an

SPV (Special Purpose Vehicle), which is a Ltd. Company to be founded. The SPV

generally transforms the mortgage wallet into obligations on the stock exchange

and sells them. Each SPV is responsible for getting money from its consumers,

paying interest and repaying the obligations. When a wallet ends with loss, the

obligations with the lowest rating end up with the loss. The higher the ranking of

the obligation, the less risk is in case the wallet ends with loss.

2.6.2 Process

 We consider the process here from the point of view of the mortgage company.

Sometimes they have their own sales department although sales could also be done

via an intermediary. An intermediary sells mortgages for various companies and

the mortgage company makes deals with these intermediaries to boost the sales of

18

their products. In Figure 4 a schematic overview of the primary process of a

mortgage company is shown. These days, a lot of insurances are sold together with

a mortgage. Insurances are not included in the primary process. The primary

process describes only the phases that are usually adopted in the processes of the

mortgage companies. Variations of this process and perhaps totally different

processes. For simplicity, we use this general process to characterize the mortgage

process.

Figure 4: Primary process for mortgages

Each phase is discussed below.

Sales – Front office

Advice: The sales of mortgages is done by either a sales department of the bank

or mortgage company or by intermediaries and franchisers. Sometimes you see

mortgages are sold via the internet. In this phase, the seller tries to find out the

needs of the client and an estimation is made whether the client would be accepted

by the mortgage company. Based on the needs, a mortgage product is selected and

proposed to the client.

Offer – Mid office

Validation: When the client has interest in the mortgage that was proposed

during the sales phase, the client can ask for an offer. The mortgage company will

validate the application and will check according to a checklist to see if the

company can offer the mortgage the client requests. Mostly some background

information is looked up about the client and some global financial information

from BKR [12]. If the application passes these checks, the offer can be created. A

full acceptance check is done later.

Offer creation: In this phase the offer is created and presented to the client.

Acceptance – Mid office

Client Acceptance: The client accepts the conditions described in the offer, signs

the documents and sends them back to the mortgage company. Here he formally

agrees on his side of the agreement.

Document completion: The mortgage company starts with gathering all sorts of

documents that are required for the application of a mortgage. Sometimes via the

intermediary. These documents can consist of copies of identification documents,

pay slips and a variety other documents that highly depend on which mortgage is

offered.

19

Bank acceptance: When all the required documents are gathered, the documents

are read and checked where necessary. When all documents are checked and

accepted, the mortgage company agrees on their side of the agreement for the

mortgage offer. The mortgage application is now complete and the client gets

access to the money.

Transfer

This phase is about the transfer of the house from seller to buyer.

Mortgage document: The mortgage company sets up a notary instructions

document in which the mortgage company describes how the house will be

financed. The payment can be fully covered by the mortgage or that a part will be

paid by the client. For example, from money that was left over from the sales of

another house. This document is also an agreement between the client and

mortgage company.

Property transfer: The seller and buyer sign the house-transfer document. The

buyer is now officially the new owner of the house.

Register property: Every property has to be registered at the ‗Land register‘ This

is a central register in which the property rights and mortgage rights on property

are registered.

Management – Back office

Mortgage management: Once the property is officially transferred, the loan of

the mortgage is activated. Mortgage management concerns about every action

related to paying off the mortgage. An action can be a monthly fee over interest, a

payment in between or any amount or changes to the mortgage conditions during

the pay off period. This is the standard process.

Debt management: If a client does not pay his mortgage, the client ends up in

the debt management. These clients are handled separately from the rest and are

monitored more intensively. Once the client catches up with his payment he is

transferred back to the standard mortgage management. If the client keeps paying

late or not at all, the mortgage company might be forced to sell the property. The

profit of sales is for the mortgage company.

Closing

Pay off & expel: Just like other products, mortgages have a lifecycle. The cycle

starts with the first contact with the client and ends in this phase. The cycle ends

when either the mortgage is paid off or on initiative of the client which has to pay

off the mortgage by, usually, getting a new mortgage for another house.

20

3 Data warehouse architectures

A data warehouse is required to store the audit trail data. Therefore we spent

some time selecting a suitable data warehouse architecture. This chapter focuses on

the selection of a data warehouse architecture that is suitable for working with

audit trails in general and how the selected architecture would be applied on our

business case.

Organization of this chapter: Section 3.1 describes the approach that aims at

answering the second research question. Section 3.2 looks into several data

warehouse architectures from which we have made our choice. We discuss the

characteristics of each individual architecture. Section 3.3 covers the comparison of

the architectures by looking at their strengths and weaknesses and grading them

according to the predefined criteria. Last, in Section 3.4 holds the conclusion about

the chosen architecture and the results of the comparison.

3.1 Approach

In order to answer the second research question (“What data warehouse

architecture is suited for storing audit trail logs”), the following has been done.

We selected four data warehouse architectures. From those four, two are specific

products, that have been selected since they implement an interesting variant of a

standard architecture, or the underlying architecture is specifically designed for its

product. Therefore some product were selected, but the focus is on their underlying

architecture. The different architectures are selected based on the differences in the

underlying architecture and their theoretical performance. The information about

performance is obtained from experts and the (product) developers. Four different

data warehouse architectures and products were selected, namely OLAP,

Normalized Data warehouse, FluidDB [13] (uses EAV data triples [2]) and

InfoBright [14] (which uses compression and a special form of indexing). We will

introduce each architecture or product and list their strengths and weaknesses.

The selected data warehouse architectures are compared on several criteria that

are relevant for our business case. The architectures are compared according to the

following criteria:

 (Analytic) query performance. Most architectures are designed for either

analytic or regular queries. We look at how the architectures perform

on both these types of queries in relation to each other, as stated by

experts and developers. Grading: 1(bad) – 5(very good)

 Maximum data size. Roughly for which the architectures still performs

acceptable. Beyond the indicated size, the performance goes down

exponentially. Grading: 1(small size) – 5(large size), relative

comparison between the architectures and kept in mind an expected

audit trail size in the order of 30 to 50 Gb.

 Meta information. Information that is added by the architecture itself.

Meta information becomes overhead, unless it is helpful information to

our solution. Therefore, meta information forced by the architecture

should be limited. Grading: 1(a lot) – 5(none)

 Support to textual data. To what degree the architectures are designed to

handle textual data Grading: 1(bad) – 5(very good)

 Data Redundancy. Whether the architectures allow redundant data and

to what degree. Redundancy is seen as overhead and should be limited.

21

Audit logs tend to have a very high degree of redundancy, therefore the

grading is doubled for this criteria. Grading: 1(A lot) – 10(None)

 Scalability. How the architecture scales, horizontally (addition of

servers) and/or vertically (addition of CPU/memory to a server)

Grading: 1(bad) – 5(very good)

 Maintainability. How much effort, in units of time, is required to

maintain the data warehouse. Grading: 1(bad) – 5(very good)

 Side-effects. Caused by possible insert/update/delete actions. Audit trails

log a lot of information. To keep the data warehouse up-to-date, a

continuous stream of insertions are performed for new log records. The

insertions should not have negative side effects. Grading: 1(None) – 5(a

lot)

By looking at the strengths and weaknesses of the different architectures and by

giving grades from 1(bad) to 5, or 10(very good) to the criteria above, we got an

overall score for each architecture. The scores have been assigned based on

literature, known research, opinions of experts or our own knowledge. Based on

the score, the appropriate architecture has been selected.

3.2 Normalized database

For the structure of our data warehouse we looked into the field of sensor data

storage. Sensors produce a lot of data which needs to be stored and retrieved. Our

problem involves less data than sensor storage has to cope with, therefore we think

that if a solution works for the storage of sensor data, it would perform well in our

case.

The University of Central Florida [15] did a comparison between normalized

data warehouses and denormalized data warehouses to show the advantages

between the two. Based on their results, when normalizing a database, the number

of records increases (records generally have 2 or 3 columns) and the data volume

decreases, meaning less size on disk. Since we handle large data sets, we are more

concerned in reducing the space on disk rather than the number of records. When

normalizing, the costs for administration raises and the labeling takes a little extra

storage. Depending on how the data warehouse is set up, this could be an issue.

With logs, the redundancy rate is extremely high. By removing redundancy using

normalization, the extra costs of the extra administration probably does not add up

to the decrease in data size.

Since we do not have to handle the data real-time, the time it takes to populate

the warehouse is less of an issue. The last ‗weakness‘ in the comparison from [15]

is that transformations on normalized databases are harder. This is true for the

general case, since the normalized databases have more tables. Also, a data

warehouse should not be used for other purposes than questioning the data in the

way the data warehouse was set up. Apart from that, transforming a data

warehouse is usually done only once and not on a regular bases. Considerations

regarding possible transformations should be known and kept in mind when

designing the data warehouse.

In the field of databases, normalizing a database is the first step towards

maximizing performance. Five normal forms have been defined. The higher the

form, the more normalized the database is. The different normal forms are

explained in [2].

22

Comparison

Table 1 shows the evaluation of the normalized data warehouse architecture

regarding the criteria, which are defined in Section 3.1

Table 1: Evaluation of the normalized database architecture.

Criteria Evaluation

(score)

Motivation

Query performance Good (4) Normalization is applied to increase the query

performance in general

Analytic query

performance

Good (4) Due to the standard functionality (from SQL) to

calculate multi cubes

Scalability Good (4) Tables could be divided over multiple servers and

more memory increase cache size, thus

performance

Data redundancy None (10) The goal of normalization is to minimize or

prevent data redundancy

Max. database size 10 – 50 GB (3) Depending on the size of the individual tables,

hardware and difficulty of queries

Meta information None (5) By itself, a normalized database does not generate

meta information about its content.

Textual data Good (4) Textual searches are always slower then numeric

searches, but due to low/no redundancy, the

amount of text to be searched is limited.

Side effects None (5) By normalizing a data warehouse, no relevant side

effects appear.

Maintainability Good (4) It has a simple database schema and there is good

tool support for maintenance.

3.3 OLAP

OLAP stands for Online Analytic Processing and is an approach to handle multi-

dimensional analytic queries. OLAP systems generally are used for business

intelligence reporting tools and data mining where data cubes are used to retrieve

the desired information. OLAP is a sort of layer that runs on top of a normal

database. There are three types of OLAP architectures, namely, MOLAP, ROLAP

and HOLAP. The biggest weakness is that OLAP products are not suitable for

handling data with multi-hierarchical and unbalanced structures. The strength lies

in retrieving analytical and statistical information from data sets.

Several comparisons have been made between the different types of OLAP. We

use a comparison performed at the Uppsala University [16]. From their results and

observations we can conclude that for our case, MOLAP is not suited, since the

data sets we want to handle exceed the limit of MOLAP, which is said to be around

1-2 Gb. Therefore, it is better to go into the direction of ROLAP or HOLAP.

Considering the goal of our project, we feel ROLAP would be better than HOLAP.

HOLAP aim more at analytic questions about the data. We aim at a generic

solution, therefore we do not focus specifically on dealing with analytical questions

but all kinds of queries. ROLAP has more efficient disk space usage because it can

be optimized by normalization. HOLAP uses more disk space because of the

multidimensional cubes, that are precomputed for analytic questions that contain a

copy of the actual data. ROLAP can create and (optionally) store these cubes, but

23

does not pre-compute them. ROLAP can be used using normal SQL tools, since it

is a layer on top of a normal database, which makes it more generic for average use

than having to study OLAP tools in order to work with it. Last, loggings generally

contain quite some textual data. ROLAP is said to handle this kind of data pretty

well. For all these reasons we select ROLAP as the OLAP representative for our

project based on the conducted comparison in[16].

Evaluation

Table 2 shows the evaluation of the ROLAP architecture regarding the criteria

defined in Section 3.1.

Table 2: Evaluation of the ROLAP architecture.

Criteria Evaluation

(score)

Motivation

Query performance Good (4) The architecture is designed to obtain information

from large data sets

Analytic query

performance

Very Good (5) The multi dimensional cubes improve the

performance of the analytic queries

Scalability Good (4) Tables could be divided over multiple servers and

more memory increase cache size, thus

performance

Data redundancy Average (6) When the multi dimensional cubes are stored they

hold copies of the original data.

Max. database size 10 – 50 GB (3) Depending on the size of the individual tables,

hardware and difficulty of queries

Meta information None/Little (4) When multi cubes are calculated and stored, the

cubes hold statistical/analytical information about

the content.

Textual data Good (4) Textual searches are always slower than numeric

searches, but due to low/no redundancy, the

amount of text to be searched is limited.

Side effects Yes (3) Stored computed multi cubes might have to be

recomputed from time to time.

Maintainability Good (4) It has a simple database schema and proper tool

support for maintenance is available.

3.4 FluidDB

FluidDB, developed by FluidInfo [13], aims at becoming the ‗wikipedia of

databases‘. FluidDB is a form of cloud computing which is based on storing social

data. Cloud computing is a service that provides data, software and hardware via

the Internet and is location-independent. The cloud provider stores the data and

makes sure it is accessible via the internet, usually via a browser interface. Social

data is publicly accessible and can be questioned by anyone. For example, an

application based on FluidDB, called tickery [17] (twitter query), collects twitter

messages and stores it as data triples. FluidDB is the database to which everyone

could add information to it or about data that is already in it. It is a publicly

writable database so that all related information can be stored about some particular

information. For example, by supplying the information about facebook friends,

one could query who Person A follows on Twitter, as well as his Facebook friend.

24

FluidDB uses an architecture based on Entity-Attribute-Value (EAV) triples, or

data triples. The architecture is implemented so that the data is stored in a relational

database, and the actual content is stored as compressed XML. Via those triples,

the location of the actual content in the compressed XML can be obtained. The

EAV architecture is used as a lookup system for the actual content. In FluidDB,

there are four key concepts, namely:

 Objects: Represents the actual content

 Tags: Labels attached to objects which define the attributes of objects.

 Namespaces: Organizes or groups tags

 Permissions: Handles access control

Figure 5: FluidDB data format.

The object represents the actual content, the ‗about‘ tag is optional but should be

unique and an id can be used to retrieve the actual content. Per object, additional

tags can be attached. A tag consists of a namespace followed by the name of the

tag, and a value. The data triples consist of an object, a tag and a value. An

example of an object is represented in Figure 6:

Figure 6: Visualisation of data triples for an object in FluidDB

FluidDB also supports the handling of permissions. Traditionally you would

have permissions on an object. In FluidDB, the permissions are set on the

namespaces, tags and tag-values. A permission consists of a namespace, tag or tag-

value where the permission should be applied, a scope (e.g. see, create or read) and

a list of exceptions. Exceptions mean that the permission restriction does not apply

for the specified users. This approach keeps maximum flexibility for setting

permissions but results in a (possibly) huge permission table. The permission

information is stored as data triples as well.

25

In our own research [2], we concluded that data triples is not the best

architecture for our problem. FluidDB made some improvements to the concept of

data triples and showed it can be effective for large sets of data, like tickery. But,

the use of cloud computing, makes FluidDB an unsuitable choice. Its architecture is

tailored towards social data which is publicly accessible, which is something we do

not want looking at the confidentiality of the audit data. Cloud computing is getting

more secure for private use, but the client has to have faith in that security. The

permission system on the other hand is simple and effective but might get out of

hand when permissions need to be set for a lot of users and a huge tag set,

especially when the tags can be defined by any user per object. Tag management,

therefore, should be managed closely so that it does not get out of hand.

Evaluation

Table 3 shows the evaluation of the FluidDB data triple architecture regarding

the criteria defined in Section 3.1.

Table 3: Evaluation of the FluidDB data triple architecture.

Criteria Evaluation

(score)

Motivation

Query performance Good (4) The architecture is designed to obtain small pieces

of information from large datasets.

Analytic query

performance

Poor (2) Analyzing the data triples with possible different

labels per object takes a lot of effort.

Scalability Average (3) Good scalability, horizontally due to cloud

computing. Average scalability vertically.

Data redundancy Little (8) Not intended, but the architecture does not restrict

it.

Max. database size 450 – 500 GB

(4)

Data triple architectures are measured in number

of triples rather than size. They can handle a few

billion triples. A rough indication is 250 kb per

triple * 2 billion = 450 – 500 GB

Meta information A lot (1) Tags attached to objects are considered meta

information

Textual data Good (4) Has no limitations that restrict the performance on

textual data lookups

Side effects None (5) The usage of data triples has no unintended side

effects

Maintainability Poor (2) Due to the billion of triples, maintainability

suffers. Tool support is limited.

3.5 InfoBright

Infobright [14] is a company that focuses on analytic data warehouse products.

They have a commercial and open source variant of their product called Infobright,

named after the company. Infobright gives support especially for very large

datasets (up to 50 TB). It combines smart compressions with good performance

and low installation and maintenance costs.

Infobright is easily deployed, is simply installed and configured and is self-

contained, i.e. has no external dependencies. Infobright is easy to manage because

no indexes, data partitioning, data partitioning or tuning is needed. It has a very

small hardware footprint, which makes it possible to support databases up to 50

26

TeraByte on a single industrial standard database server. About performance and

scalability they claim fast load speed, which remains constant as the size of the

database grows, fast query speed on large volumes of data and they offer high data

compression with a ratios between 10:1 to over 40:1. This results in less storage

and less I/O requirements. Another important factor is that Infobright is column

oriented and not row oriented as in traditional databases.

3.5.1 Layers

The architecture behind Infobright consists of 3 layers: Data Packs, Knowledge

Grid, Optimizer.

Data Packs. The actual content is stored using efficient compression algorithms.

Data is stored in Data Packs, so that the data of columns is divided in Data Packs of

64k elements. Each Data Pack is compressed individually and the compression

method can vary according to the data type and repetitiveness of the data within a

Data Pack. By doing so, the compression can be optimized by selecting the best fit

per Data Pack.

Knowledge grid. The Knowledge grid consists of two parts, namely the Data

Pack Nodes (DPN) and the Knowledge Nodes (KN) on top of the DPN. The DPN

contains aggregated information about a Data Pack, such as MIN, MAX COUNT

(# of rows, # of NULLS) and SUM information. For each Data Pack, there is a

Data Pack Node. The Knowledge Nodes keep information about data packs,

columns or table combinations. Unlike the indexes required for traditional

databases, DPNs and KNs are not manually created, and require no ongoing care

and maintenance. Instead, they are created and managed automatically by the

system. In essence, the Knowledge Grid provides a high level view of the entire

content of the database with a minimal overhead of approximately 1% of the

original data.

Optimizer. The optimizer is the most intelligent part in the architecture. It uses

the Knowledge Grid to determine the minimum set of Data Packs needed to be

decompressed in order to satisfy a given query in the fastest possible time by

identifying the relevant Data Packs. By looking into the summarized information in

the Knowledge Grid, the optimizer groups the Data Packs in three categories:

 Relevant Packs: Data pack elements hold relevant values based on the

DPN and KN statistics.

 Irrelevant packs: Data pack elements hold no relevant values based on

the DPN and KN statistics

 Suspect Packs: Data pack elements hold some relevant elements within

a certain range, but the Data Pack needs to be decompressed in order to

determine the detailed values specific to the query.

The Relevant and Suspect packs are used in answering queries. In some cases,

for example if we‘re asking for aggregates, only the Suspect packs need to be

decompressed because the Relevant packs will have the aggregate value(s) pre-

determined (in the DNs). However, if the query is asking for record details, then all

Suspect and all Relevant packs have to be decompressed.

3.5.2 Data Manipulation Language

DML. Data Manipulation Language is a set of statements used to store, retrieve,

modify, and erase data from a database. Infobright is a data warehouse that makes

27

extensive use of compression and grouping ordered data. A big question that arises

is how inserted, updated or deleted data is handled. Since all data is compressed, it

is not practical to recompress all data after each DML statement.

DML functionality is not available in the Community Edition (ICE), only in the

(commercial) Enterprise Edition (IEE). ICE makes use of a bulk import for the

data.

Insert. On insertion, the data warehouse buffers multiple rows of incoming data

and appends them to the final (partial) data pack. The pack is recompressed only

after it is full, or the INSERT operation is complete. A lot of insertions result in

two data sets, the original ordered data packs and the newly inserted data packs that

contains random information. That results in an increase in the number of data

packs that need to be decompressed per query. Therefore, a total recompression of

the data is necessary in the case of a lot of insertions.

Delete. On deletion of a row, the data warehouse marks rows as deleted using a

separate ―delete mask.‖ This means that the data is not actually deleted, but will be

ignored by queries. It impacts performance not that much as insertion, but when a

lot of data gets deleted, the data packs get a lot of overhead from the deleted rows.

The rows are deleted from disk when the data warehouse is recompressed.

Update. The update functionality is implemented as a deletion followed by an

insertion of the new row with the updated information.

3.5.3 Example of query handling

By means of an example we explain how Infobright handles a query. Assume

we have the following query:
SELECT COUNT(*)

FROM user

WHERE zipcode = „2468FG‟

AND registrationdate > „1-1-2011‟

AND gender = „M‟

To evaluated the query, the optimizer uses the constraints of the query to

identify the relevant data packs. The optimizer questions the knowledge grid to

find out, which data packs are relevant or suspects, using the Data Pack Nodes. The

Knowledge Nodes indicate which DPNs are relevant for the query (the user table).

Then, the DPNs that belong to the zipcode column from the user table are found.

Using the MIN and MAX values the DPNs hold about their data packs, the data

packs can be identified that hold the value ‗2468FG‘ for zipcode. If the data pack

would purely hold the requested zipcode (and thus the MIN and MAX values are

the same) the data pack is marked relevant. Next, the other restrictions from the

query are evaluated in the same way, except that the only subset of rows that were

identified by the previous restriction are evaluated. The selection of data packs is

shown in Figure 7. Once all restrictions are evaluated and a subset of data packs is

returned, those data packs are decompressed and the count can be performed.

28

Figure 7: Selection of Data Packs in InfoBright (from [18])

Evaluation

Table 4 shows the evaluation of the Infobright data triple architecture regarding the

criteria, which can be found in Section 3.1

Table 4: Evaluation of the InfoBright architecture.

Criteria Evaluation

(score)

Motivation

Query performance Very Good (5) Due to the power of the knowledge grid

Analytic query

performance

Good (4) Due to the power of the knowledge grid

Scalability Very Good (5) Scales well horizontally and vertically

Data redundancy Little (6) Does no effort to prevent redundant data but due

to good compression redundant data does not take

much disk space

Max. database size => 50TB (5) Tailored for large datasets of several terabytes

Meta information Average (3) The DPN‘s and KN‘s in the knowledge grid hold

meta information about the content

Textual data Good (4) Has no limitations that restrict the performance on

textual data lookups

Side effects Yes (2) Due to compression of the content, the whole

database has to be recompressed periodically to

keep up the performance

Maintainability Very good (5) Choices for optimal compression algorithms and

indexes are done by the system. Close to self-

maintainable

29

3.6 Architecture Comparison

In this section we compare the different data warehouse architectures. All results

are summarized in Table 5. The scores are determined based on literature and

knowledge of experts.

From the comparison in Table 5 we see that the normalized database

architecture seems to be the best fit for our business case. Its strongest point for our

case is the removal of redundant data. Logging in general consist of a lot of

repetitive information. Therefore we double the score for the ‗data redundancy‘

criteria. By removing the redundancy the disk size is decreased drastically and

implicitly the performance should increase. Infobright seems a good alternative,

but its architecture and compression starts paying off at extremely large databases.

From the numbers we got about the audit trail growth, the audit trail should run a

few years before a product like InfoBright should be considered.

Because of our generic approach we cannot argue whether our solution would be

used for merely analytical questions. Therefore picking an OLAP solution seems

illogical. FluidDB uses cloud computing and cannot be installed locally inside a

company but is only accessible as a service via the internet. Since we deal with

confidential data we don‘t want to add a third party and certainly not stream the

data over the internet, although cloud computing becomes more secure.

Nevertheless, we have rejected FluidDB as a possible solution.

Criteria Normalized Database (R)OLAP FluidDB InfoBright

Query performance Good 4 Good 4 Good 4 Very Good 5

Analytic Query

performance

Good, due to the

standard

functionality to

calculate multi cubes

4 Very Good, due to its

calculation of the multi

cubes

5 Poor, due to its storage as

data triples which makes

these type of queries

expensive

2 Good, due to the power of

the knowledge grid

4

Scalability Good 4 Good 4 Average (horizontally

good)

3 Very Good, horizontally and

vertically

5

Data redundancy

(double score due to

importance)

None 10 The computed multi cubes

that are stored in the

database

6 Not intended, but can arise

easily when its data comes

from different sources

8 Does no effort to prevent

redundant data but due to

good compression redundant

data does not take much disk

space

6

Stable performance

up to

10 – 50 GB 3 10 – 50 GB 3 450 – 500 GB 4 > 50 TB 5

Meta information None 5 None / Little 4 A lot, tags attached to

objects are to be

considered as meta

information

1 Average, the DPNs and KNs

in the knowledge grid hold

meta information about the

content

3

Handling textual

data

Good 4 Good 4 Good 4 Good 4

(Side) Effects due to

inserts/updates/

deletion

No 5 Yes, Pre-computed cubes

have to be recomputed

3 No, it is designed to do this

without side effects but it

might be necessary to

change permission settings.

5 Yes. Due to compression of

the content, the whole

database has to be

recompressed periodically to

keep up performance.

2

Maintainability Good, simple

structure and a lot of

supporting tools

available

4 Good, simple structure and

a lot of supporting tools

available

4 Hard, due to the public

accessibility and simple

triple store structure

2 Very good. Choices for

optimal compression

algorithms and indexes are

done by the system. Close to

self-maintainable.

5

Total 43 points 37 points 33 points 39 points

Table 5: Data warehouse architecture comparison

3.7 Conclusion

From Table 5, we can conclude that the normalized database architecture is the

most suitable architecture for our problem. It has good query performance, no

overhead by generated metadata, no relevant side effects, it is easy to maintain and

most importantly, it removes redundancy. Logging generates a lot of data, but with

a extremely high redundancy rate. By removing redundancy, the size of the log

decreases. When dealing with logs up to 100 GB, every decrease in size, without

losing information should contribute to faster retrieval times when questioning the

data. When the data warehouse grows, with the normalized architecture, the

amount of new values that arise should decrease over time. The growth of the data

warehouse is expected to decrease exponentially.

The comparison in Table 5 also shows that InfoBright (commercial version)

would be the best alternative. Nevertheless it would be an alternative with some

consequences. It is a commercial product, so there are time and effort costs to

install and learn the product before it can be used. Another reason not to choose

InfoBright, at this point, is that it has been specially designed for very large data

sets. The data is stored and compressed in sets of 64k records. When we would

remove the redundant values from the test data, there won‘t be many fields that

have more than 64.000 unique values. If applied to the data we have, almost the

whole data warehouse needs to be decompressed for every query, which takes time.

Therefore we conclude that InfoBright is definitely not suited for the data set we

have. We believe that InfoBright becomes a suitable alternative when the log size

gets in the order of several TeraBytes.

The comparison is performed based on reports and statements from experts and

other sources, since we are not expects in the field ourselves. The reliability of the

comparison might therefore be questioned. Based on the reliability of the

references, we believe the comparison is well-founded. On forehand, we expected

the normalized data warehouse architecture to be the best architecture, especially

for this business case. However, over time, when the content in the data warehouse

increases, there must be a point where other architectures become a better choice,

like InfoBright, as explained before. Also, there might be better architectures

available, which are not included in the comparison. However, for this business

case, we believe the normalized database architecture is the best one of the selected

four.

32

4 Data warehouse design

Based on the comparison from the previous chapter, the normalized data

warehouse architecture was selected. Normalizing a data warehouse removes

redundancy and increases lookup speed, since the search tables become (relatively)

small because the resulting tables only contain unique values. In this chapter we

describe the design of the data warehouse schema, guidelines for transforming

audit logs to the data warehouse and a test conversion we performed to check the

size of the log files. The assumption is that, when the log size drastically decreases,

the performance is positively influenced. Apart from that, the test conversion

should helps us predict the growth of the data warehouse over time.

Organization of this chapter Section 4.1 describes the approach that we used

while designing the data warehouse. Section 4.2 talks about a short analysis that we

have done on the test data sets that Topicus provided. Section 4.3 covers the design

of the data warehouse and the process of converting any audit log to a data

warehouse schema, using guidelines. Section 4.4 discusses the results that we

obtained while executing a test conversion in order to see the decrease in size

between the log and the data warehouse. Section 4.5 holds a discussion on the test

results and observations made during the test. Last, Section 4.6 holds the

conclusion.

4.1 Approach

In this chapter we discuss the design of the data warehouse schema for the audit

trail test set. From chapter 3, we concluded that the normalized database

architecture is the best choice for our problem. The design of the data warehouse

schema is based on the test data. Since we design a data warehouse that can contain

any audit log, guidelines for the data warehouse schema must be defined. These

guidelines ensure the data warehouse is always buil of certain constructions and

that any audit log can be represented by a schema. Initially, the data warehouse

schema is according to the normalization forms [2]. Based on these normalization

forms, optimization guidelines are defined to improve the system performance and

reduce the data size.

Once the schema has been designed, the data warehouse should be populated

with the test data. In order to do that, the data has to be converted. By performing a

test conversion, we get an indication of the decrease in size with respect to the

original log size. When the size would decrease drastically, it will help boost the

performance of querying the data, since there is less data to go through. With logs

up to hundreds of Gigabytes, every reduction of data without losing information, is

welcome. Also, by observing the results of the test conversion there will be a better

understanding of by how much the data warehouse would grow over time.

4.2 Audit trail log analysis

In previous research [2], we looked into what kind of data the audit trail stores

based on the design documentation for the audit trail. Based on that, we looked into

the actual structure of the audit trail database of two applications. The schema‘s are

shown in Figure 8:

33

Figure 8: Fields of the audit trail from two applications

Figure 7 shows that there is quite a lot of overlap in what the different

applications log. The basic information that is logged conforms with the

specification as described in [2]. Apart from the basic information, the databases

are extended with some application specific information. We think that the

Aubittrail_B gives us more useful information then Audittrail_A. The Aubittrail_B

trail logs information about ‗klant propositie‘ / customer propositions and

‗overeenkomst‘ / invoices. Based on that, we decided to take a data set of the audit

trail from Application B as the input for our design. Due to legislations concerning

privacy, we are not allowed to look into the actual database content and therefore

we didn‘t analyze the audit trail any further than the database schema. For this

research, a representative test set has been used. The test set contains two types of

fields: obligatory fields, meaning every log record holds a value for that particular

field, and optional fields, meaning that these fields can be empty or have NULL

values.

4.3 Data warehouse Conversion

Based on the analysis of the available audit trail data test set, a data warehouse

schema has to be defined. We have little knowledge and insight in the actual

content of the data and the goal is to design a generic data warehouse which can

handle any audit trail, the concept of labeling is introduced. The idea is based on

annotated data provenance. Data provenance uses a form of labeling which adds

meta information to data in order to group and relate data. By means of those

labels, information gets meaning. Data then can be referred to via labels rather than

actual content. As a result, the data warehouse has no knowledge of the data it

holds, which means any log/data could be inserted into the data warehouse as long

as the data warehouse schema for the audit log is conform certain guidelines.

Section 4.3.1, describes the process of obtaining a data warehouse schema for

any audit log. By following the rules and guidelines, the data warehouse schema

34

always has the same characteristics. Based on these characteristics, the

architecture, that will be designed on top of the data warehouse, can use the generic

structure of the database.

4.3.1 Conversion rules and exceptions

To get a generic data warehouse, we are looking for rules to convert a log that is

stored as a flat table in a database, to a normalized data warehouse.

Initially, any log could be converted according to the known normalization

algorithms[2]. By definition, the conversion produces a schema in the pattern as

shown in Figure 9. The schema is an approved schema according to the

normalization rules, but it is not an optimal solution. Every column of the log is

placed in a separate table, and attached through a link table to the central

LogRecord table. By introducing some exceptions, the schema produces a more

optimal solution that still conforms to the normalization rules. The reason to add

these exceptions is to decrease the database size and reduce the number of tables.

The more tables, the slower the data warehouse becomes, since more joins are

required.

When looking only at the column names, we see that some values are related

and therefore should be stored together instead of in separate tables. We observed

four main situations in which the data warehouse schema can be optimized without

introducing new patterns in the schema.

 Exception 1: When the audit log contains a username and a field that already

uniquely identifies a user (e.g., user_id), those two columns could be combined

instead of storing separately in two columns in the data warehouse. So the table

would become {user_id, username} instead of the default two columns

{user_id_id, user_id } and {username_id, username} with two link tables.

 Exception 2: When there are columns in the audit log which are related to each

other, such as, a ‗firstname‘ and a ‗lastname‘ column. Neither of the two

uniquely identifies the other, but both are attributes of a person. Therefore these

fields should end up in the same table with a unique identifier: {person_id,

firstname, lastname}.

 Exception 3: Use enumerations for fields that have a fixed number of values,

like a ‗gender‘ field.

 Exception 4: Add all the columns that occur in every log entry (and can

therefore be considered obligatory) to the central table (LogRecord as shown in

Figure 9). The number of link tables are reduced and we are sure that, by doing

so, that we do not introduce empty fields in the center table, which is against the

database normalization rules.

Based on the exceptions, the schema can be optimized. When converting an

audit log to the standard structure of the schema as shown in Figure 9, the data

warehouse schema can be optimized by applying the exceptions to obtain a more

optimal data warehouse schema.

35

Figure 9: Initial conversion from log to data warehouse

4.3.2 Data warehouse schema

The design of the data warehouse schema is based on the two audit logs as

shown in Section 4.2. We have chosen to take the log from application B as our

business case, but a similar schema for another application can be obtained using

the same conversion rules.

Our proposed data warehouse schema for the audit trail is shown in Figure 10.

We call this the ONAT (Optimized Normalized Audit Trail schema) schema. This

schema has been optimized using the 4 exceptions as described in Section 4.3.1.

An exception has been made on exception 1. The fields Entity and Entity_id

(shown in Figure 10) are not combined into one table. Although the Entity_id

uniquely identifies the Entity, storing those fields in one table was shown, after

analysis of the data, to be inefficient. The analysis showed that there are very few

entities in comparison to the amount of ids. The same entity can occur with

multiple ids. This results in a high redundancy ratio in the text field ‗EntityName‘.

These ratios ended up around roughly 5000 : 1, meaning every EntityName would

appear around 5000 times in the table. Since the goal of normalizing a database is

to reduce redundancy to a minimum and due to the fact that relational databases

perform faster with numbers then text, we decided not to apply exception 1 on this

particular case.

36

Figure 10: Optimized Normalized Audit Trail (ONAT) schema

The ONAT schema is the result of several test conversions that we have

performed to discover areas for improvement of the original NAT schema, in terms

of disk size. The NAT schema is the predecessor of the ONAT schema. The NAT

was designed using the initial conversion principle (Figure 9) where the four

exceptions, as explained above, were not applied.

4.4 Test conversion results

Test conversions are performed between the original audit trail log, the NAT

schema and the ONAT schema. By means of the test conversions we evaluated

how much the disk space would be reduced by both the NAT and ONAT schema in

comparison to the original audit log as provided. During the test we converted 1

million records in batches of 100.000 records. The records were obtained randomly

from the complete data set. The size on disk for the 1 million records is 224 Mb.

Figure 11 and Figure 12 show the results of the test conversion.

Figure 11 shows the total size (in kb) of the data warehouses per batch. The

original schema, our benchmark, increases the fastest, the NAT schema results in

less disk space, but not as drastically as the ONAT schema. All schemas grow quite

linearly as it can be seen in Figure 11. The decrease in disk size stays relatively

constant over time. The data stored in the NAT schema reduces the disk size

between 18 and 21 percent, where the ONAT schema reduces the disk size with 59

and 63 percent. The reason for this drastic difference between NAT and ONAT is

the amount of obligatory fields. There are 7 fields identified as obligatory, which

means 7 link tables can be removed saving 7 million records. This proves to be a

drastic storage saver as well as a theoretical increase performance, due to the

removal of several link tables.

37

Figure 11: Total data warehouse size in kb per batch of 100k records

Figure 12: Total decrease in percentage per batch of 100k records

After converting 1 million log records, we see that the disk space for the ONAT

schema is divided as shown in Table 6. A distinction is made between the link

tables and the content tables. 96.23% of the data consist of link tables, which

means only 3.77% of the data is considered as actual content. Some numbers on the

disk size of the ONAT schema after conversion are shown in Table 6.

Table 6: Overview of the conversion results for the database schemas.

Disk Size of Size in kb Percentage w.r.t.

original

Percentage w.r.t.

ONAT schema

Original audit trail 224024 100 % -

ONAT schema 85232 38.05 % 100 %

ONAT link tables 82019 36.61 % 96.23 %

ONAT content tables 3213 1.43 % 3.77 %

When logging an application for a long period of time, the chance that values

from a new log record are not yet in the data warehouse generally gets smaller over

0

50000

100000

150000

200000

250000

si
ze

 in
 k

b

of log converted records

Original

NAT

ONAT

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

d
is

k
si

ze
 d

e
cr

e
as

e
 in

 %

of converted log records

ONAT

NAT

38

time. From this assumption we predict that the percentage of content data decreases

with respect to the size of the link tables. At some point, the data warehouse

increases roughly linearly because the data warehouse always needs to store

administrative information that links the values of a complete log record together.

4.5 Discussion

In the old situation, the audit trail produces roughly 130 Gb a year, in the

original schema. Based on the test conversion we performed and the relatively

constant results, we can now predict the total disk size for the data warehouse for

the audit trail. If we take an average of 61 percent disk size decrease (the average

of ONAT schema), we predict that the audit trail, after a year, would be around

50.7 Gb. The test log has, on average, 434,000 log records per day.

While performing the conversion test, we observed that the conversion takes

longer each batch. We noticed that the conversion takes roughly lineary longer

each batch. Although we have no facts to support this observation, we can reason

about it to support these observations. When a new log record is converted, each

value has to be checked for existence. When the data warehouse grows, the new

value has to checked against more and more values. For the test data, 16 values

have to be checked. We believe this is the main reason the conversion becomes

slower over time. At start the roughly 400.000 records were converted in 30

minutes. At the end, the conversion handled about 100.000 in 30 minutes. These

are indications through observation since it was not part of the tests. The 9.1

million records were converted in about 18 hours. Assuming the conversion

performance goes down linear, we can conclude that the conversion handles 9.000

records less every 30 minutes. Assuming an application generates 450.000 records

a day, the conversion reaches a point where it cannot process this amount in a day

and from that point onwards, the conversion falls behind. Based on the observation,

and linear increase in conversion time, the converter keeps up until the data

warehouse holds around 4.5 billion records. That is, based on the average, 100 days

of logging.

4.6 Conclusion

From the data warehouse schema design and the test conversion results we can

conclude that the ONAT schema is a suitable schema for the audit log we have.

Referring to the test conversion results in Table 6, the data warehouse holds less

than 1,5% actual content (when normalized) in the data warehouse w.r.t. the disk

usage of the original audit log. The rest of the data is administration for linking the

values for each log record.

In case the data warehouse gets too large over time, or the conversion process

cannot keep up the log generation speed, it is possible to backup only the link table.

By doing so, the data warehouse loses about 96% of its size which means there is

room for it to grow again. The link tables are merely used to be able to reconstruct

a log record and can therefore be stored elsewhere without losing information,

since the content remains. Another option is to investigate how the conversion

process can be optimized.

Last, due to the simple structure of the data warehouse, the schema is generic

which should facilitate interaction with the architecture that has been designed on

top of the data warehouse.

39

From the tests on the test data we conclude the data warehouse already grows

linearly after 100,000 records. Therefore we conclude the data warehouse is

saturated in an early stage of the conversion. Once saturated, little new information

is added by new log records that are added to the data warehouse. The data

warehouse then grows linearly because of the administration costs to link a log

record to the correct values. The linear growth is shown in Figure 11.

40

5 Audit Trail Question Model

The audit trail data is now stored in the ONAT data warehouse structure. To

make the audit data questionable, an architecture is designed on top of the data

warehouse. The architecture provides the functionality to let users ask questions

about the data. The architecture then translates questions into queries. The

architecture contains an internal model to represent the question that is translated

into queries which provides the answer to the given question. In this chapter the

model is introduced and explained together with the question language that is used.

Organization of this chapter Section 5.1 describes the approach that aims at

answering the third research question. Section 5.2 is about the definition of the

term ‗generic model‘ that is used throughout the chapter. In Section 5.3, a few

possible questions, that could be asked about the audit data, are discussed. In

section 5.4, we describe the language which we designed in order to ask questions

about the audit data. Section 5.5 discusses the concept of labeling and how that

concept is used in the architecture. Section 5.6 explains the meta model which is

used as an internal model by the architecture. Finally, Section 5.7 holds the

conclusion.

5.1 Approach

In order to answer the third research question (“What is a generic architecture

for handling audit trails?”), the following has been done. We started by holding

some interviews to understand the problem and to get a better insight in what

information Topicus would like to get out of the audit trail logs. The information

obtained from these interviews became the input for the designing an architecture

that would solve the problem with the audit trail. We decided to define a model on

top of the data warehouse that helps the user get information from the audit trail.

Since the same problem can arise with other forms of logging, the goal is to come

up with a generic model. Based on the gathered information, an architecture to

support the questioning of the audit data is designed. Next to that, the architecture

needs an internal model to represent the question. Last, we try to identify the weak

points of the architecture and the model which are most vulnerable to change when

the problem or domain changes.

5.2 Generic model

We designed a generic model to represent the questions throughout the

architecture. To clarify, we define a definition that describes the term generic

model. This definition is used throughout the rest of the chapter.

Definition 1: Generic model, A model which can be reused for the same

purpose with different content in possibly a different domain. The model itself has

no specific parts that point to the content it describes. Every equivalent problem

can be represented by the same (generic) model.

The model we propose has been designed with this definition in mind. However,

in order to realize that, the model needs to abstract from the actual content. To do

this, we introduced labeling (from data provenance) and a specific language that is

defined in which questions can be asked about the data.

41

5.3 Possible audit trail questions

From interviews with several stakeholders and supervisors within Topicus, we

obtained possible questions. These questions give us an idea of the type of

questions that the model should be able to handle. Some possible questions are:

 What is the current interest rate of invoice X?

 When was the last time property X was changed?

 When and by who was property X changed last?

 What is the change log for Object X?

 What are all interest modifications performed by ―Jan‖

 What are all properties from Object X that are changed more than 4

times for invoice Y.

 Who, and when changed the interest rate to value X for invoice Y?

 After analyzing possible questions, we devised a structure in which all these

questions could be represented.

5.4 Question Language

The language uses the concept of labeling from data provenance. Data is

referred to by (user)definable labels and the language is based on the use of labels.

The language asks questions about labels rather than actual the content. Therefore,

a specific language is required. The questions will be asked in this so called

question language. The language itself has two main goals: 1) To be intuitive and

easy to use for the questioner. 2) To be relatively expressive without forcing the

underlying model or architecture to lose their generic aspects.

The question language is mainly based on the notion of labels. Labels are

translated into queries and refer to actual content. The labels themselves can be

thought of as predefined sub queries that are represented by a label. These labels

make the language more expressive than it might look at first glance. When

comparing to SQL in general, with logging, queries that require a ‗join‘ hardly

occur because logs have a simple structure. Because of that, the question language

can have less expressiveness then SQL for example. When defining the question

language, the example questions are used to see if we can express then in terms of

the question language.

The grammar for the question language is defined in EBNF. The complete

grammar can be found in Appendix A. Below, the most relevant parts are shown to

give an impression of the language. A question in the question language consists of

two main parts: a show part and a condition part. The labels in the condition part

describe the conditions that are applied to the data to select the correct subset of log

records. The labels in the show part represent the information that will be shown

about the records that were selected based on the provided conditions.

question : 'show'! showLabels+ conditions*;

showLabels : optionShowLabel (showLabel)*;

optionShowLabel : IDENT;

showLabel : ','! IDENT;

conditions : 'conditions'! leftSide (LOGOP

 rightSide)*;

leftSide : condition;

rightSide : condition;

condition : '!'? IDENT (OPERATOR TIDENT)?;

42

LOGOP : 'AND' | 'OR';
TIDENT : DOUBLEQUOTE IDENT WILDCARD? DOUBLEQUOTE;

IDENT : (LETTER | DIGIT)*;

A question can have multiple conditions connected to each other using the „and‟

and „or‟ keywords.

5.5 Labeling

In data provenance, labeling is used to label certain groups of data. Labels

generally describe the data or some of its characteristics. Based on these groups,

data can be easily looked up by referring to a label. In the proposed model, the idea

of labeling is adopted. Before we can use labels in the questions, we devised a way

to represent questions using labels. The goal is to distinguish different categories of

labels. At first, two types of labels were defined, namely, „simple labels‟ and

„composed labels‟. Labels are mapped directly on a column in the underlying data

warehouse. Composed labels are composed of other (composed) labels. Every

composed label can be decomposed in, recursively, a set of simple labels.

After trying to apply these labels to the example questions, it became clear these

two categories are not sufficient. A label can be used in two ways within a

question. Generally when asking a question about data, you specify what you want

to obtain from the result set and some conditions that affect the result. Based on

that observation two main categories are defined, namely, „showlabels‟ and

„conditionlabels‟. Both categories can have a simple and a composed variant. Now

it is possible to use the same label (name) in the show or condition context. For

example, assume we have a label ‗Administrators‘. When the label is used as a

showlabel, the employeeName and employeeId fields of the records in the result

set are shown. If the label is used as a conditionlabel, the result set only contains

log records for those employees who are administrator. The condition values for

conditionlabels can be provided in two ways:

1) it is supplied inside the question by the questioner, e.g. Employee = ―Jan‖.

2) The conditions are predefined.

Predefined means that the conditions are related to a specific label and therefore

stored somewhere together with the labels. For example. the label ‗Administrators‘

has the (predefined) condition that the employeeId‘s are ‗15‘ or ‗19‘. The concept

of a „composed showlabels‟ will be clarified below by means of an example:

Question 1.a: Show Employee conditions Administrators

The result of Question 1.a is the name and id of the employee‘s who are

Administrator.

The same question can asked using ‗Administrator‘ as a composed showlabel:

Question 1.b: Show Administrators

Now, the label Administrator consists of:

- A showLabel, which shows the name and id of employee‘s from the result

set

- A condition part, which holds the condition that the employee‘s are

administrator.

We have categorized the labels in which every example question can be

represented. Now, these label categories must be defined in a model that can

43

represent the structure of the question, in the question language, and also be able to

represent the different label categories.

5.6 Question meta model

The question model is a generic model that is used in the proposed architecture

as an internal data model. The question meta model is instantiated for each

question. That model represents the structure of the question and the composition

of the labels. The term ‗model‘ here refers to any instantiation of the metamodel.

The architecture that uses the model consists of several components which all

contribute to populating the information for the model. The metamodel of the

question model is shown in Figure 13.

The metamodel is explained by discussing the most important elements:

 DataSource: Holds information about the mapping on the database.

 Condition: Holds information about the characteristics of a condition,

such as whether it is a negation, what condition values need to be

applied, the type of values (range or exact values), the comparison

operator (‗=‘ ‗>‘ ‗=<‘ etc.) and to which DataSource needs to be

applied.

 SimpleConditionLabel: A label with a name that is directly mapped on a

field in the data warehouse. Optionally with a predefined condition for

the particular label.

 ComposedConditionlabel: A label with a condition that consists of a set

of other (Composed/Simple)ConditionLabels.

 ConditionNode: A node that either holds an ‗And‘ or an ‗Or‘ operator

with a left and right side. The left and right sides can either be a

(Composed/Simple) ConditionLabel or another ConditionNode. It forms

a tree-like structure.

 ShowLabel: A label which holds a set of DataSources that represent the

fields which are shown from the records in the result set.

 ComposedShowLabel: A combination of a ShowLabel and a set of

ConditionLabels.

 Question: The ‗root‘ element of every instantiation of the metamodel.

Holds a set of Showlabels and the root node of the condition part tree.

44

Figure 13: Question Metamodel

5.7 Conclusion

By comparing the definition of a generic model with the model that is defined

we conclude that the model conforms to the definition and can be called generic

and can be applied in many situations. The model has no specific knowledge about

the data due to the concept of labeling. Labels make the model generic because all

knowledge is attached to the labels which are configurable. The labels are the

metadata the model needs to gain understanding of the data it handles. The

(meta)model has knowledge about how to represent labels and how labels are

structured (conditions and mappings). Further, the model has no knowledge

specifically to the mortgage domain. Therefore, this model could be applied on any

other domain

45

6 Audit Trail Architecture

The question model described in Chapter 5, is used in an architecture that

supports the whole process from asking a question in a specific language to

obtaining the correct results. In this chapter the architecture and its components are

explained in more detail. The role of the model within the architecture is also

discussed.

Organization of this chapter Section 6.1 describes the overall structure of the

architecture, explaining what the function of each of the components is and how

they interact with each other. Section 6.2 till Section 6.6 goes into detail for the

components in the architecture and discusses their internal workflow. To clarify,

the role of each components is explained using an example that is used throughout

the chapter. Section 6.7 describes the areas of the architecture and the model which

are most vulnerable to change. Further we discuss when the architecture is, and is

not, not suited for a particular problem. Last, Section 6.8 holds a conclusion and

some discussion about the architecture and the choices that were made while

defining it.

6.1 Architecture

The architecture is responsible for the whole flow from accepting a question,

analyzing the question and producing the correct answers. As described in the

Chapter 5, questions are asked using labels in the question language. To get the

correct answer to a question, four steps have to be taken:

1. Question must be parsed and analyzed.

2. Labels must be resolved to determine their meaning.

3. The question with the resolved labels must be translated into queries.

4. Possible post-processing and conversion to an output format has to take

place.

The global architecture and its data flow are shown in Figure 14. Each step can

be mapped onto a component in the architecture.

Label Resolver

LabelBase

Question parser

Data

warehouse

Database Layer Database Layer

Post Processing Layer

Question

Result as XML

Figure 14: Components within the architecture

46

Each component in the architecture has its responsibilities supported by its

functionality. The responsibilities of each components are outlined briefly below.

Question: The question is the input provided as plain text and conforming with

to the specified question language.

Question Parser: The Question parser takes the textual input and parses the

question using the defined grammar. The parsed question is then transformed to an

instantiation of the question meta model that is used throughout the architecture.

The model is filled with all available information, which mainly guarantees that the

structure of the question stays unchanged. This internal model is called the

Question model and is described in Section 5.6.

LabelBase: The LabelBase holds all knowledge about the labels. The mapping

of the labels onto the content is stored inside the LabelBase. This mapping is; the

mapping on the data warehouse, what conditions apply on a label, what fields need

to be shown when a label is used as a showlabel and out of what labels

composedlabels are composed. The input of the LabelBase is a textual description

consisting of the label name and the type of the label (show or condition). The

LabelBase returns all information that it knows about the label in a part of the

Question Model.

Label Resolver: The Label Resolver takes the question model as input, and is

responsible for identifying and resolving the labels which are used in the question.

The LabelBase resolves the labels. The Label Resolver extracts all labels with their

type (show or condition) and feeds that information to the LabelBase. The

LabelBase returns the resolved labels in parts of the Question model. The Label

Resolver collects all model parts of the resolved labels and merges that with the

input model (which holds the structure of the question). The Question model is

then complete and given as output.

Database Layer: The database layer is responsible for generating queries from

the completely instantiated question model. In our case, the model is translated into

MsSQL queries. The queries are executed onto the data warehouse and the results

are obtained. The format of the result set depends on the implementation language.

Every language has its own default format for storing results from the database.

The result in a default format is given as output.

Post-Processing Layer: The post-processing layer provides the opportunity to

insert modules for post processing of the result set, or other functionality, like a

fraud analyzer or a converter to HTML or XML. When there is no post processing

required, this layer does nothing other then converting the result set to some default

standard like XML as output.

6.2 Question Parser

The internal workflow of the question parser is shown in Figure 15. The

question parser gets a textual input that represents the question, in the question

language. The question parser takes the grammar of the question language and

parses, using ANTLR [19], the question into an Abstract Syntax Tree (AST). The

AST holds the structure of the question and extracts its labels. The next step in the

flow converts the AST into an initial model of the question using the question meta

model. The result is an instance of a model for the specific question that is filled

with all available information at this point, like the structure of the question and the

label names. Here we assume that all labels are simplelabels because the Question

parser is not responsible for the understanding of the labels.

47

input

input

output

input

input

output

Question as text

ANTLRGrammar

Question Analizer

AST parse tree

Question Meta

Model

Question Model

Figure 15: Workflow of the Question parser

Example:

To give an impression of how all the components in the architecture work

together to produce a correct answer, an example is used throughout this section.

After the explanation of each component, the output of that component is shown

and explained. In this section the following example question is used:

“show Employee conditions Property = “Interest” AND inWeek5”

In natural language, we would like to see all employee‘s (id and name) that

changed the property ‗Interest‘ in the 5
th
 week of 2011.

 The object diagram in Figure 16 shows the instantiation of the model as

produced and outputted by the question parser. It is a quite straight forward

mapping from the AST, as displayed in Figure 17.

 In the object model we see a clear distinction between the show and condition

part. The question has a showlabel named ‗Employee‘. The condition part has a

root node, which is the AND- operator. On the left side of the AND-operator there

is a condition label called ‗Property‘ that has a condition, namely that its value

should be equal (‗=‘) to ‗Interest‘. On the right side, there is a label called

‗inWeek5‘. At this point there is no information available regarding the condition.

Now that the AST is converted, the model can serve as input for the next

component, the Label Resolver.

48

question : Question

name : string = "Employee"

slabel1 : ShowLabel

showlabel

logicalOperator : string = "AND"

rootNode : ConditionNode

conditions

name : string = "Property"

clabel1 : SimpleConditionLabel

name : string = "inWeek5"

clabel2 : SimpleConditionLabel

left right

values : List = {"Interest"}

operator : string = "="

negation : bool = False

type : ConditionType

condition1 : Condition

condition

values : List

operator : string

negation : bool = False

type : ConditionType

condition2 : Condition

condition

Figure 16: Resulting object diagram of the example question

Figure 17: AST of the example question.

6.3 LabelBase

The meaning of labels have to be defined somewhere. This is done in the

LabelBase. The LabelBase is responsible for the administration of the labels and

their meaning. The LabelBase holds the following information about labels:

 The mapping of a label onto columns and records in the data

warehouse.

 Predefined conditions attached to a label.

 Fields that have to be shown per label (in the case of show labels)

 Structure of composed labels.

The internal workflow of the LabelBase is shown in Figure 18. It accepts textual

input which is the name of the label to be resolved. The output is a data structure

for the resolved label, according to the Question meta model.

The LabelBase uses a cache in which it stores the already resolved labels.. There

are three flows for the Labelbase are presented in Figure 18.

1. An event can trigger a process which resolves all labels from the

LabelBase and puts it in the cache (dotted lines).

2. The label to be resolved, is already in the cache, so that the data

structure already built for that label, is returned (solid lines).

49

3. The label is not in the cache, which means that the data structure has to

be built using the question meta model and the information in the

LabelBase database. Once resolved, the structure is placed in the cache

(dashed lines).

The LabelBase is used by the Label Resolver component to obtain information

about the meaning of the labels.

Within the LabelBase, the condition values are stored by its internal ids. In a

normalized data warehouse, every value is uniquely identified by an id. When

labels are added to the LabelBase, the exact condition values are resolved to their

internal ids before being stored. By doing these lookups beforehand, these queries

do not have to be executed each time a condition is used in a question, which yields

faster results. For example, when a condition for Employee would be ―Jan‖, then

―Jan‖ is resolved to its internal id (let‘s say, 13). The LabelBase then holds the

condition value 13 instead of ―Jan‖.

input

In Cache?

no

yes

input

output
input

output

output

input

input

input

event

output

input

LabelBase

Cache

Label as text

Label as text

Label as text

Label as a model

Label as a model

Cache

lookup

Load

cache

Label

lookup

Result Set

Label Meta

Model

Instantiate Label

Model

Figure 18: Workflow of the LabelBase

Example:

When the labels ‗Property‘ and ‗inWeek5‘ from the example question are given

to the LabelBase to be resolved, The LabelBase produces a resulting data structure

as is shown in Figure 19.

The Figure 19(a) shows the resolved ‗Property‘ label. The property label seems

to be a SimpleConditionLabel with no condition values, but the mapping onto the

data warehouse is known. There was a condition value provided in the question,

namely ―Interest‖ and that value will be inserted later into the condition by the

LabelResolver. The structure for a SimpleConditionLabel is the simplest data

structure the LabelBase can return. Figure 19(b) shows the resolved label

‗inWeek5‘. It turns out to be a ComposedConditionLabel composed of exactly one

SimpleConditionLabel with a condition. The condition is an interval/range

50

restriction on the ‗ChangedDate‘ label and has to be applied on the corresponding

DataSource.

Once all labels are resolved using the LabelBase, the LabelResolver obtains all

information that is required to complete the model instantiation.

name : string = "Property"

sclabel1 : SimpleConditionLabel

values : List = {}

operator : string = "="

negation : bool = False

type : ConditionType = 1

sclabel1 : Condition

tableName : string = "Property"

columnName : string = "propertyName"

pkColumn : string = "propertyId"

linkTableName : string = "LogRecord"

ds3 : DataSource

condition

applyOn

name : string = "inWeek5"

cclabel : ComposedConditionLabel

name : string = "ChangedDate"

sclabel2 : SimpleConditionLabel

composedOf

values : List = {"1002","1204"}

operator : string = "="

negation : bool = False

type : ConditionType = 2

condition2 : Condition

condition

tableName : string = "LogRecord"

columnName : string = "changeddate_id"

pkColumn : string = "recordId"

linkTableName : string

ds4 : DataSource

applyOn

+EXACT : int = 1

+RANGE : int = 2

ConditionType

(a) (b)

Figure 19: (a) Resolved label Property (b) Resolved label inWeek5

6.4 Label Resolver

The LabelResolver recieves a minimal instance of the question model as input

and its responsibility is to complete the model using the LabelBase to resolve the

labels and obtain the missing information. The workflow of the LabelResolver is

shown in Figure 20.

The input is a minimal instantiation of the question model. First, the

LabelResolver analyzes the model and extracts the labels. They are divided in two

groups, namely showlabels and conditionlabels. Each of the names of the labels in

these groups are sent to the LabelBase to be resolved. The result is a set with

question model fragments, representing the data structure of the labels. The last

step is to combine all those model fragments and merge them with the input model.

The input model holds mainly the structure of the question. The meaning of the

labels is then added resulting in a complete instantiation of the question model. The

resulting model is the output for the LabelResolver component and is ready to be

converted into queries by the Database layer.

51

LabelBase

input

output output

inputinput

outputoutput

output

input

input

input

output

Question Model

Question Model

Show label

Objects

Condition label

Objects
Label analyzer

Show label

resolver

Condition label

resolver
Label as text

Labels as model

fragments

Update Question

Model

Question Meta

Model

Figure 20: Workflow of the LabelResolver

Example:

The example question is structurally represented by the question parser, shown

in Figure 16. After that, all the labels were resolved by the LabelResolver using the

LabelBase, as shown in Figure 18, and then combined into a complete model by

the last process of the LabelResolver, resulting in the model shown in Figure 21.

From this model the queries can be generated and the result of the original question

can be obtained.

question : Question

showlabel

conditions

tableName : string = "Employee"

columnName : string = "employeeId"

pkColumn : string = "employeeId"

linkTableName : string = "LogRecord"

ds1 : DataSource

tableName : string = "Employee"

columnName : string = "employeeName"

pkColumn : string = "employeeId"

linkTableName : string = "LogRecord"

ds2 : DataSource
show

show

logicalOperator : string = "AND"

rootNode : ConditionNode

name : string = "Employee"

slabel : ShowLabel

name : string = "Property"

sclabel1 : SimpleConditionLabel

values : List = {"Interest"}

operator : string = "="

negation : bool = False

type : ConditionType = 1

condition1 : Condition

tableName : string = "Property"

columnName : string = "propertyName"

pkColumn : string = "propertyId"

linkTableName : string = "LogRecord"

ds3 : DataSource

name : string = "inWeek5"

cclabel : ComposedConditionLabel

name : string = "ChangedDate"

sclabel2 : SimpleConditionLabel

tableName : string = "LogRecord"

columnName : string = "changeddate_id"

pkColumn : string = "recordId"

linkTableName : string

ds4 : DataSource

values : List = {"1002","1204"}

operator : string = "="

negation : bool = False

type : ConditionType = 2

condition2 : Condition

right

left composedOf

condition condition

applyOnapplyOn

Figure 21: Complete model instantiation for the example question

52

6.5 Database Layer

The Database layer is responsible for generating queries from the complete

model, which it gets as input. The dataflow for the database layer is shown in

Figure 22. The database layer consists of two processes: The first is process

translates the model to queries using mapping rules that are specific for the query

language, in this case is MsSQL. The second process obtains and converts results

from the data warehouse.

The mapping consists of a single complete query which, if executed, joins all

tables together and returns all the log records of the whole data warehouse. The

model-to-MsSQL process has a three steps:

 Generate queries from the condition labels of the model. This is mainly

the ‗where‘ part of an SQL query.

 Select the required parts of the query from the mapping, based on the

show labels of the model. This is the ‗select‘ part of an SQL query.

 Combine the generated condition queries with the selection queries,

obtained from the mapping, creating the final query that answers the

question.

input

output

Data

warehouse

input output

input

input

output

Question model DataSet

MsSQL queries

Model-to-MsSQL

mapping

Result set

(records)

Model to MsSQL
Create DataSet

(.Net Object)

Figure 22: Workflow of the database layer

To convert an instantiated question model to MsSQL, a mapping is defined

between the question meta model, Section 5.6, and MSSQL. Two processes are

used to convert a model to MsSQL as explained before.

The ‗select‘ part of the query is generated by looking at the DataSource objects

of the showlabels in the model. The DataSource objects hold what fields need to be

shown. Based on that information, the correct lines of MsSQL are selected from a

main query. The main query returns all content in the data warehouse.

The condition (where) part of the query is responsible for collecting the record

ids that meet the conditions specified in the original question. The show (select)

part of the query is responsible of selecting the desired fields and corresponding

values using the selected record ids.

The condition part of the query is generated from the model itself on runtime.

Each condition part has the following syntax:

53

recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE (...)

)

Each conditionlabel in the instantiated model is evaluated. The conditionlabel

obtains information from its condition object. The condition holds the condition

values, the type (range restriction, static values) and whether or not the condition is

negated (including or excluding the condition values). Using the DataSource

objects, attached to conditions, we know to what fields in the data warehouse the

restrictions need to be applied.

Once the final query is generated, the query is sent to the MsSQL server that

hosts the data warehouse which executes the query. The result is then sent back to

the database layer. The result is then converted into some data structure that is

suitable for the specific programming language in which the architecture is written.

In this case, a DataSet is a C# object holding all the returned records from the data

warehouse. The DataSet is the output of the Database Layer.

Example:

In our running example, the database layer converts the instantiation of the

model, shown in Figure 21 into queries. The show part and condition part

contribute separately to the resulting query, as presented in Figure 23. The lines

marked preceded with a dashed line pattern represent the lines of the query that are

obtained via the show labels and the mapping of the database layer. The lines

preceded by the solid line are generated from the condition labels of the model.

They are combined, producing a single query that selects the log records that will

answer the question.

Figure 23: The query generated from the model of the example question

54

6.6 Post Processing Layer

The workflow of the post processing layer is shown in Figure 24. This

component is optional and provides room to add additional functionality. Some

examples of additional functionality could be:

 Application of filters on the data as obtained from the database layer.

 Drawing statistics from the data.

 Adding plugins that connect the output to other systems like, for

example, fraud detection systems.

 Output conversion, like conversions to XML or HTML, for displaying

purposes.

input

output
input

output

Convert

Result to XML

Post Processing

Component

DataSet

DataSet

Result in XML

format

Figure 24: Workflow of the post processing layer

In case no additional functionality is added, the process converts the data to

some standard format, like XML.

6.7 Possibilities and limitations beyond requirements

To check whether the architecture is applicable to different domains, scenarios

are defined to identify the changes that may be required in order to apply the

proposed architecture to another domain. Assume the following scenario:

Scenario: The architecture is used to question an access log of a company

network. The logs are already stored in some MySQL database and a database

conversion is not an option. The company would like to get statistics out of the

data.

There are several changes in this scenario compared to our business case,

namely:

 Different database language

 Different database schema

 Different content

 Analytic questions are asked

The different database language can be relatively easily solved by modifying the

component which translates the question model to queries.

Under some conditions, the different database schema can be a problem. It relies

on whether labels can be defined according the format of the architecture. Only in

the case of complex table relations of multiple levels, the model cannot support the

different database scheme. Depending on the database schema, the DataSource

element of the metamodel might be modified, by adding information to realize the

55

mapping between label and data. otherwise, the database needs a conversion or the

architecture is not suited for the problem.

The difference in content is no issue, due to the fact that the architecture has no

notion direct notion of content, because of the use of labels which hold the

content/label mapping. The hard part lies in the definition of the labels. The labels

should be defined by a domain expert together with someone who has knowledge

about the structure of the logging/database.

The analytic questions can form an issue due to possible performance degration.

The architecture is not specifically tailored to handle analytic questions. The

problem can be covered by performing smaller queries and put the analytic

functionality at a component in the post-processing part of the architecture. In

theory it is possible, but performance might suffer because post processing is

generally slower than letting a database perform analytic queries directly. If the

performance becomes an issue, the question language needs to be extended. Based

on the impact of the changes in the language, to architecture might need some

change.

6.8 Conclusion

In this chapter we report on the architecture designed to support the process of

asking questions about the audit trail data. The workflow of the individual

components of the architecture are discussed and the responsibilities of the

components are mentioned. To clarify the working of the components in the

architecture, an example was used to show expected inputs and outputs of these

components. From the example, we assert that the architecture works as intended.

A question is asked in the question language, the architecture converts the question

into the question model and all missing information is obtained from the

Labelbase. Queries are generated and are executed on the data warehouse.

After identifying the weakness of the architecture and the limitations, we have a

clear overview when the architecture can be applied, and when not, for a particular

problem. From that, the conclusion is drawn that the architecture can be applied for

the same problem in any domain without architectural changes. Most of the work

will go in the definition of the labels.

56

7 Prototype

In order to evaluate the performance of the architecture, a prototype is built.

Based on the test results we draw conclusions about the performance of the

architecture. This chapter describes the prototype, the tests that are performed, the

obtained results, their validity and conclusions we draw from the results.

Organization of this chapter: Section 7.1 describes the approach for answering

the fourth and last research question: ―What is the performance increase (measured

in units of time) of the proposed architecture?‖. Section 7.2 holds the requirements

for the prototype, which were defined at the beginning of the project. Section 7.3 is

about the design of the prototype and its scope. Section 7.4 describes some

implementation choices that are made. Section 7.5 discusses the tests we defined,

and the results are presented in Section 7.6. Section 7.7 concludes the chapter about

the performance of the architecture based on the tests and their results.

7.1 Approach

In order to answer the fourth research question (―What is the performance

increase (measured in units of time) of the proposed architecture?”), the following

has been done. After defining an architecture that theoretically solves our

problems, we evaluate the performance of the architecture. To get information

about the performance, we built a prototype to check the architecture would

perform in practice. To test the theory, a prototype is built. The implementation of

the prototype is kept to a minimum and captures only the mandatory and crucial

parts of the architecture, as explained in Section 7.3.

The goal of the tests has been to assess how well the architecture performs in

relation to the current audit trail implementation, which is a database. The tests

consists of several questions about the data. First, the old database has been tested

for performance against the new data warehouse. Then the architecture is tested,

with the data warehouse underneath it, i.e., the architecture is built as a layer on top

of the data warehouse. The tests give an indication of how much time the

architecture takes on top of the execution times of the queries themselves.

Based on these tests, we estimated the performance increases with the new

architecture and how the execution times are distributed over the architecture and

the underlying data warehouse.

By analyzing the results of the tests, we draw some conclusions about the

performance of our audit trail architecture.

7.2 Requirements

The requirements for the prototype were obtained by doing several interviews

with employees of Topicus. The interviewed employees covered various roles in

the organization like analysts, programmers, testers and management. The

interviews were about the current implementation, current usage of its

functionality, points for improvement and possible functionality that could be

added. From the outcome of the interviews, the requirements were defined.

In this section we mention only the most important requirement regarding the

prototype. The complete list of requirements can be found in Appendix C. The

most important requirements are:

57

- The prototype should retrieve information from the audit trail logs. This is

the main goal of the whole project. The prototype must be able to answer

questions about the audit trail.

- The prototype should increase performance for the retrieval of information

without compromising the performance for logging records. The storage

performance does not change, since the old implementation stays intact. The

data is transferred to the data warehouse on which the prototype runs. By

implementing a prototype, we evaluated about the performance of the

architecture of the proposed solution.

- The prototype should have the functionality to filter and order information

during or after retrieval. Conditions can be defined using the question

language. Based on the provided conditions, the data is filtered to present

the correct information to the questioner. The results are always ordered by

the record ids to get consecutive results in the order the changes occur.

7.3 Design

The design of the prototype has been based on the architecture, defined in

Chapter 5. Due to limited time and resources, we kept the prototype to a minimum.

This section describes the design of the prototype and discusses the scope of the

prototype.

First, a grammar needed to be defined that defines the question language. This

grammar was defined in ANTLR, and can be found in Appendix A. The grammar

supports the complete language as described in Section 5.4. Only the bracket

support is not included. The brackets can be used to group conditions like ((label a

AND label b) OR label c). The support for brackets are left out, since the

functionality is not relevant to the tests and has no impact on the test results.

Second, the prototype does not support adding, deleting or modifying labels via

any form of interface or wizard. The database for the LabelBase is filled with a set

of predefined labels. These are simplelabels that are directly mapped onto fields in

the audit trail data warehouse. Other labels are used during the tests, which all use,

or are composed of, simple labels. The LabelBase looks up every label that needs

to be resolved and does not make use of caching. This indirectly means that the

external event to fill the cache with all labels, as described in Section 6.3 is not

supported either.

The LabelResolver component has been completely implemented as described

in Section 6.4.

The Database layer needs to convert the model into queries. As described in

Section 6.5, the process is divided into two phases:

1. The first phase generates the conditional part of the query, based on the

conditions in the model. Since the condition part of the model is a tree-like

structure, with a ConditionNode containing a left and a right side (see Figure

13). To realize that, the interpreter pattern[20] has been used.

2. The second phase uses a mapping to obtain the selection part of the query to

be built. The mapping consists of a query that returns all data in the whole

data warehouse. The query is manually defined, but could be generated, based

on the data warehouse schema for the audit trail data (Figure 10). After the

query is generated and executed on the data warehouse, the obtained results

are stored in one of the standard data structures of the implementation

language.

58

The post-processing layer in the prototype has two functions:

1. Convert the database results to HTML, so that it can be easily displayed.

2. Display unique log records from the result set.

Assume the example question: “Show Employee conditions Administrator”. The

resultcontains employee information for all log records that meet the condition

that the employee is an administrator. This means that if Employee A has 1

million records in the audit trail, his name ends up 1 million times in the result set.

Intuitively, the questioner might not expect this behavior, but expects a list of the

employees that are administrator, meaning that Employee A only occurs once in

the result set. To overcome this situation, functionality has been added to the post-

processing layer that filters the result from the database so that it will only show

unique values to the questioner. Thus, for the example question, each employee

occurs once in the result set.

7.4 Implementation

The implementation of the prototype is based on the original design as described

in Chapter 6 but simplified as explained in the previous section (Section 7.3).

During the implementation, some choices have been made and the most important

ones are discussed in this section.

The main functionality of the prototype is to form questions about the audit trail

data based on predefined labels. The prototype answers the questions and display

the results to the questioner.

7.4.1 User Interface

For the prototype, the questions can be asked via a web interface. The interface

is shown in Figure 25. On top, the questioner can choose how the results should be

displayed. In the form of log records (each record that meets the conditions is

shown in the result) or unique values (only unique results are shown).

In the textbox, labeled ‗show‘, the showlabels are placed. In the list, the

available showlabels are presented. If selected, a description is shown saying which

columns of data the label is shown. The same goes for the conditions, where the

description explains the conditions for a certain label. To form a question, the

labels can be inserted in the textbox by double clicking on a label and by typing it

in. When all labels are placed and possible condition values are entered, the

question is stated and ready to be answered by the architecture.

59

Figure 25: The prototype interface

7.4.2 Query generation

For the generation of the condition part of the query, a interpreter pattern is

used. According to [20], the intention of the Interpreter pattern is: To map a

domain to a language, a language to a grammar, or a grammar to a hierarchical

object-oriented design.

 The interpreter pattern for the prototype is implemented as shown in Figure 26.

The interpreter pattern starts at the root with the Question object, and calls the

interpret method. The question object calls the interpreter method of the root of the

tree of the condition part of the model. From that point onwards it performs a

recursive process until all leaves (labels) have been visited. The calls have a top-

down approach, but the query generation is done bottom-up. The queries are built

up while traversing back up the tree. Each parent node combines the queries

generated by its leaves and passes it on to its parent in the tree. When the process

gets back at the root, the condition queries are generated.

Figure 26 : Implementation of the interpreter pattern

+interpret(in context : Context)

Question

+interpret(in context : Context)

IConditionNode

+interpret(in context : Context)

IConditionLabel

conditions

Client

Context

rightleft

60

For the show part of the model, the queries are generated differently. The

database layer contains a model-to-MsSQL mapping. Within this mapping, one

SQL query is defined that returns our complete data warehouse. In our case the

query is defined manually, but it is possible to generate it using the data warehouse

schema. This is a simple SQL query which is divided in five parts as shown in

Table 7. The complete ‗main‘ query can be found in Appendix B.

Table 7: Structure of the generated query.

Part # Clause Explanation

1 SELECT The columns that can be displayed

2 FROM The tables from which columns can be displayed

3 LEFT JOIN The tables that need to be joined to the core (logrecord)

table.

4 WHERE Conditions that must be applied, these are generated and

inserted later.

5 AND Standard conditions that connect the tables to the core

(logrecord) table that do not require a join.

The Where-clause part is generated using the interpreter pattern, as discussed

before in this section. For the other four parts, the main query is separated per line

and stored in a Dictionary. A Dictionary is a C# data structure (like a HashSet in

Java), which is used as follows. Each record in the Dictionary has a key and a

value. For the key we use the syntax ―tablename.columname‖. For the value, we

used the corresponding line of SQL code.

The required information is obtained from the DataSource objects in the model.

These DataSource objects hold information about the columns and tables onto

which labels are mapped. By doing so, only the relevant parts of the initially main

query are selected. Later, the conditional queries that were generated before are

inserted, and the query is finished. By selecting only the relevant parts of the main

query, unnecessary joins and selections are avoided, which improves the

performance of the query.

 After the query is executed, the results have to be shown via the webpage to the

questioner. For simplicity, the results from the data warehouse are stored in a

DataSet or DataTable, which are C# data structures. The content of these

DataTables/DataSets are bound to a Grid on the webpage. Once the results from

the data warehouse are obtained, the resulting records are rendered into the grid on

the webpage, showing the answers to the question. If the questioner selected

‗Unique‘ at the top of the page, the results go first through a filter. The filter

eliminates all repetitive values before rendering the results into the grid that

answers the question.

7.5 Performance test

After the implementation of the prototype, the tests suite that was designed up

front, have been executed on the prototype. The test suite contains tests that give an

indication about the performance of the architecture. The performance of the

architecture is compared to the performance of the existing audit trail

implementation. Identical questions have been asked to both onto the old database

and the new data warehouse and via the architecture.

61

7.5.1 Test Approach

The goal of the tests is to evaluate the performance of the architecture and the

data warehouse separately, as well as a whole. The results of the tests are compared

to the performance of the original audit trail database using identical questions. The

test questions are defined in a test suite (Section 7.5.2). The tests are performed on

the following databases with the provided record count and size on disk shown in :

Table 8: Facts about the used databases.

Database # of Records Disk size

Original audit trail database 9.119.905 2.235.328 kb

Audit trail Data warehouse 9.119.905 848.520 kb

Audit trail logs can grow very large. The audit trails within Topicus produce

currently about 130 GB a year, per application. Compared to these numbers, our

test data set is rather small and not completely representative for the performance

of an audit log in a year‘s time. Due to legislations concerning privacy we are not

allowed to use the real audit logs. This forces us to make assumptions based on the

test result that will be obtained with the test set that we have.

The tests have been performed on a laptop, because it is a stable environment

and we can eliminate a few factors that might influence the results, like concurrent

use of a server or network delay. After that, the tests have been repeated on a

database test server. The server is faster than the local environment and has more

memory. The server environment is still not a totally realistic environment, since

the production environment has even better hardware but it is the most realistic

environment available for testing. By performing the tests locally and afterwards

on a server, the influence of more powerful hardware should reflect on the

execution times and thus the performance. The interface application and

architecture have ran on the laptop during all tests. Only the database is moved to

the database server.

The tests will be conducted on systems with the specifications shown in Table 9:

Table 9: Specifications of the hardware in the test environment.

Specification System1 - laptop System2 – database server

CPU Intel Core2Duo 2.1 GHz Quad 2.83 GHz Intel Xeon

memory 2GB 8GB

The tests have been measured in units of milliseconds. For the database and data

warehouse, the time is measured using a command from the MsSQL server. The

following commands display the execution time of a query.

SET STATISTICS TIME ON

-- Query to be executed is placed here

SET STATISTICS TIME OFF

To ensure that caching does not influence the results, the cache is cleared before

the execution of a query from the test suite. The cache is cleared by using the

following MsSQL command.

dbcc dropcleanbuffers

For the architecture, the time is measured from the point that the architecture

gets the question to the point the results are obtained from the data warehouse. The

delay from the web interface is eliminated, because the rendering of browsers is

62

usually inconsistent (time wise) and not relevant for the performance of the

architecture itself. The architecture is responsible for the process that starts with

receiving a question in the question language to delivering a result in its default

format. Therefore only this process is measured.

The tests has been performed in the following order:

1. On the first system (laptop):

a. Perform the tests on the original audit trail database.

b. Perform the tests on the audit trail data warehouse

c. Perform the tests on the architecture using the web interface.

2. On the second system (database server)

a. Perform the tests on the original audit trail database.

b. Perform the tests on the audit trail data warehouse

c. Perform the tests on the architecture using the web interface.

Once the tests were performed, the results have been compared. We compared

the difference in execution time between the old database and the data warehouse

and how much time the architecture takes to convert a question, generate the

models and generate queries. The same comparison is done for the tests on the

database server. Last, the results on the different environments are used to evaluate

the influence in the execution times by adding more powerful hardware. Based on

the test results and observations on these comparisons, we draw conclusions about

the performance of the architecture.

7.5.2 Test suite

The test suite is a collection of test cases, in this case a set of questions. Since

the tests have been executed on two databases, the questions were translated for

each system under test. The databases has a different structure, thus the queries

have to be adapted to the specific database schema. The queries for the data

warehouse are generated by the architecture. The queries for all systems had to be

the same, so that the results can be compared. Once the results are identical, we can

conclude that the same question has been asked for each system.

The queries for the test suite are selected based on the diversity in the number of

results, question complexity (number of conditions etc.) and label complexity

(composed labels, multiple predefined conditions etc).

The complete test suite can be found in Appendix D. The tests have been

performed 12 times per batch. The highest and lowest times were eliminated and

the average was calculated. The reliability of the results is determined by the

standard deviation between the results. The results are found to be reliable when

the standard deviation is less than 2.5% from the average. Whenever a test run has

a higher standard deviation, the test should be done again.

The following questions are asked to each system under test:

1. Show the employee names and ids from the log records for which the

employee is an administrator.

2. Show the unique employee names and ids that are administrator.

3. Show the employee names and ids from the log records from the seventh week

of 2011, for which the employee is an administrator.

4. Same as question 3, but defined differently in the question language.

5. Show all the complete log records which have a Entity ‗HypotheekDeel‘ and

Property ‗RenteProduct‘ or ‗VervolgRenteProduct‘

6. Show all the unique properties of the Entity ‗HypotheekDeel‘

63

7. Show the complete log records between 100400 and 100900.

8. Show all the employee names and ids of the employees who ‗changed‘ the

Property ‗NominaleRente‘ from the Entity ‗HypotheekDeel‘ into the value

‗0,03170‘.

9. Show all the employee names and ids of the employees who ‗changed‘ the

Property ‗NominaleRente‘ from the Entity ‗HypotheekDeel‘ into the value

‗0,03170‘ for invoice with number ‗16828‘.

10. Show the complete log records for which the Property ‗NominaleRente‘ from

the Entity ‗HypotheekDeel‘ ‗changed‘ into the value ‗0,03170‘ for invoice

with number ‗16828‘.

7.5.3 Test results

In this section, we present the results of the tests that have been performed on

the original audit trail database, the data warehouse and via architecture.

The results are displayed in Table 10 and Table 11. Table 10, shows the test

results obtained on the laptop environment, while Table 11 shows the test results

obtained on the database server environment. The question numbers refer to the

numbers in the test suite. The columns have the following meaning:

 The times in the ‗Original database‘ column are the average execution times

in ms for the queries on the original audit trail database.

 The percentages in the ‗std.dev original‘ column represent the standard

deviation for the execution times of the test run on the original database,

based on the average.

 The times in the ‗Data warehouse‘ column are the average execution times

in ms for the queries on the data warehouse.

 The percentages in the ‗std.dev. Data warehouse‘ column represent the

standard deviation for the execution times of the test run on the data

warehouse, based on the average.

 The times in the ‗architecture‘ column are the average execution times in ms

that the architecture needs to parse the question, create a model, convert the

model into queries and possible postprocessing. These times do not include

the data warehouse execution times.

The prototype runs, for all tests, on the same system. This means the prototype

measurements are roughly the same for both systems. Only the databases ran on

different systems. The standard deviation for the architecture is not mentioned

because the execution times are so short, that standard deviation is relatively large.

However, that does not mean that the results are unreliable. We are more

concerned about the average times the architecture needs on top of the execution

times of the queries.

64

Original database
(ms)

Std dev. original
(in %)

Data warehouse
(ms)

Std dev. Data
warehouse

(in %)
architecture

(ms)

Q1 37143 ms 0,66 % 12724 ms 0,92 % 70 ms

Q2 37650 ms 1,95 % 12724 ms 0,92 % 127 ms

Q3 37627 ms 1,80 % 12019 ms 1,89 % 79 ms

Q4 37627 ms 1,80 % 12019 ms 1,89 % 42 ms

Q5 37537 ms 2,01 % 33445 ms 0,98 % 63 ms

Q6 37412 ms 1,13 % 13622 ms 1,33 % 364 ms

Q7 89 ms 7,16 % 20853 ms 0,77 % 28 ms

Q8 37552 ms 1,01 % 4531 ms 1,26 % 60 ms

Q9 38256 ms 2,07 % 14090 ms 1,20 % 76 ms

Q10 37418 ms 2,08 % 33335 ms 1,81 % 122 ms

Table 10: Test results on the laptop environment

Original database
(ms)

Std dev. original
(in %)

Data warehouse
(ms)

Std dev. Data
warehouse

(in %)
architecture

(ms)

Q1 13830 ms 0,96 % 3242 ms 1,42 % 54 ms

Q2 13777 ms 1,00 % 3242 ms 1,42 % 151 ms

Q3 13768 ms 0,89 % 3004 ms 1,40 % 85 ms

Q4 13768 ms 0,89 % 3004 ms 1,40 % 41 ms

Q5 13791 ms 0,86 % 83664 ms 1,46 % 50 ms

Q6 13659 ms 0,84 % 5575 ms 1,56 % 359 ms

Q7 14 ms 13,58 % 5616 ms 1,18 % 28 ms

Q8 14070 ms 1,22 % 1611 ms 1,86 % 54 ms

Q9 13720 ms 0,59 % 3821 ms 1,87 % 82 ms

Q10 13766 ms 0,64 % 21363 ms 1,20 % 101 ms

Table 11: Test results on the database server environment

7.6 Discussion

From the test results, as shown in Table 10 and Table 11, there are a lot of

comparisons possible. We will start with discussing the results on the laptop

environment, shown in Table 10.

Laptop results

The original database performs rather steady, due to a full table scan for each

query. Only Q7 is much faster. The obtained results for question 7 are 500

consecutive log records. This type of query seems to be really fast on a flat table.

The results for the data warehouse are quite constant, looking at the standard

deviation, but the results between the questions differ. Question 5, 7, 8 and 10

stand out. Question 5, 7 and 10 produce complete log records as a result, which

requires several joins to obtain all information. Joins are rather slow which shows

65

in the execution times. Question 8 is by far the fastest. The question does not

involve joins and has a very small result set (9 records), which gives a fast answer.

The times the architecture needs to parse the question, build up a model,

generate queries and possibly do post processing on the obtained data seems to be

quite fast. Most questions do not require more than a tenth of a second (0,1 sec).

Question 2, 6 and 10 take longer. Question 2 and 6 need to do post-processing to

filter unique results from the, possible, large result set. The filtering is performed

by the architecture and therefore takes longer than other queries. Question 10 has a

complex condition label, which takes a little bit more time. We expect that most of

the time goes into obtaining the model for the label from the LabelBase.

Database server results

Looking at the results on the database server, Table 11, we observe, that the

times are steady for all questions, again, with the exception of question 7 as

explained before. For the data warehouse results, we make the same observations

as the data warehouse results on the laptop. Again, Question 5, 8 and 10 stand out.

The same goes for the results for the architecture. Apart from that, we observed

nothing unusual.

Original database comparison

By analyzing the results of the original database execution times, we see that, by

adding more powerful hardware, the performance roughly goes up by 63% (see

Table 12). Only Question 7 is much faster, but this improvement is caused by the

type of question which is more affected by the addition of better hardware.

Laptop

Database

Server

Improvements
(in %)

Q1 37143 ms 13830 ms 62,77 %

Q2 37650 ms 13777 ms 63,41 %

Q3 37627 ms 13768 ms 63,41 %

Q4 37627 ms 13768 ms 63,41 %

Q5 37537 ms 13791 ms 63,26 %

Q6 37412 ms 13659 ms 63,49 %

Q7 89 ms 14 ms 84,42 %

Q8 37552 ms 14070 ms 62,53 %

Q9 38256 ms 13720 ms 64,14 %

Q10 37418 ms 13766 ms 63,21 %

Table 12: Original database comparison

Data warehouse comparison

By analyzing the results of the data warehouse execution times, we see

improvements, as shown in the last column of Table 13. Most of the questions (1-4,

7 and 9) have an average improvement of around 73%. Question 6 and 8 have a

little less improvement, but without a clear reason. The deviation is not that big to

make it a big concern. Questions 5 and 10 deviate quite a lot from the average

improvements. Question 10 requires 10 joins, which takes time. The results show

that performing joins is less affected by the addition of more powerful hardware.

Question 5 is slower on the database server than the laptop, which is a remarkable

result. Question 5 also performs 10 joins, which could be the reason why this

question was relatively slower than other questions, but this does not explain why

66

more powerful hardware brings down the performance of the question. The

question has been retested several times on different times, but the results stay the

same. The question has no different characteristics compared to Question 10 and

we could not find an explanation for this behavior.

Laptop

Database

Server

Improvements
(in %)

Q1 12724 ms 3242 ms 74,52 %

Q2 12724 ms 3242 ms 74,52 %

Q3 12019 ms 3004 ms 75,01 %

Q4 12019 ms 3004 ms 75,01 %

Q5 33445 ms 83664 ms -150,15 %

Q6 13622 ms 5575 ms 59,08 %

Q7 20853 ms 5616 ms 73,07 %

Q8 4531 ms 1611 ms 64,45 %

Q9 14090 ms 3821 ms 72,88 %

Q10 33335 ms 21363 ms 35,91 %

Table 13: Data warehouse comparison

Architecture comparison

From the results in Table 10 and Table 11, we do not see an improvement in

architecture times. This is because the prototype always runs on the same system.

Therefore the results are roughly the same. The architecture of the prototype does

its job within two tenth of a second depending on how much post processing is

required to filter results.

Original database versus the architecture

Looking at the previous comparisons, Table 14 shows the performance

improvements between the original audit database and the architecture on the

database server. The measurements as presented in the ‗Architecture‘ column are

the sum of the averages of the data warehouse plus the architecture measurements

from Table 10 and Table 11. The comparison is done for both systems on which

the tests have been performed to evaluate the influence of adding more hardware.

We observe an average improvement of 62 to 68% for the laptop environment

and an average of 25 to 29% for the database server environment. Like in the

preceding comparisons, the exceptions are Questions 5, 7, 8 and 10. These

questions differ from the average for both test set results. The reasons why these

questions differ has already been explained before.

An important observation is that the improvements on the database server are

much lower than on the laptop environment. Based on that, we could conclude that

adding more powerful hardware would reduce the degree of improvement, which

sounds unlikely. From Table 12, we have seen that the addition of more hardware

improves the measurements on the original database with 62 to 63%. From Table

13, we can observe that the measurements on the data warehouse increase with 73

to 74%. Since the data set is too small for a representative comparison, the

measurements on the original database have a high percentage of improvement.

The whole database does fit in memory, which speeds up the tests and gives faster

results than when the database would not fit into memory. For this reason, the

improvement percentages for the original database are too high to be really

67

representative. Because of the unrealistic increase in performance, the performance

improvements on the database server, shown in Table 14, are misleading. Based on

the results of the data warehouse comparison, shown in Table 13, in which we see

the performance improves generally with more than 70%, we can assume that with

a larger data set the performance on the database server will improve 60% or more

compared to the original database performance.

 Laptop Database server

Original

database
Architecture

Improvements
Laptop (in %)

Original

database
Architecture

Improvements
Database server

(in %)

Q1 37143 ms 12794 ms 65,55 % 13830 ms 3296 ms 28,36 %

Q2 37650 ms 12851 ms 65,87 % 13777 ms 3393 ms 27,96 %

Q3 37627 ms 12098 ms 67,85 % 13768 ms 3089 ms 28,38 %

Q4 37627 ms 12061 ms 67,95 % 13768 ms 3045 ms 28,50 %

Q5 37537 ms 33508 ms 10,73 % 13791 ms 83714 ms -186,28 %

Q6 37412 ms 13986 ms 62,62 % 13659 ms 5934 ms 20,58 %

Q7 89 ms 20881 ms -23361,80 % 14 ms 5644 ms -6325,84 %

Q8 37552 ms 4591 ms 87,77 % 14070 ms 1665 ms 13938,20 %

Q9 38256 ms 14166 ms 62,97 % 13720 ms 3903 ms 25,66 %

Q10 37418 ms 33457 ms 10,59 % 13766 ms 21464 ms -20,12 %

Table 14: Comparison original audit database and complete architecture

Scalability

Since we were not able to perform tests on a real-life environment, we make

assumptions about the scalability of the architecture and the effects on the

performance. We know that the audit log of 64 GB (the one that runs in the

production environment of Topicus, obtained from 6 months of logging) cannot be

queried at all. When converting the data to the data warehouse, the data would have

a size of around 39 GB (61% decrease in size due to the obtained information

about the test conversion in Section 4.4). Based on the disk size in the data

warehouse (4% content, 96% link tables, shown in Table 6) there is about 1.6 GB

content to go through when questioning the data, divided over several tables. From

that we expect that the architecture can handle a log of at least 1 year without

breaking down. The bottleneck will probably lie in the amount of link tables in the

data warehouse and the number of joins that are required for a particular question.

The 64 GB log will have roughly 275 million log records. In case several tables

must be joined, the performance is expected to decrease, as seen in our own results.

We expect that the link tables are too large to be able to perform all the joins.

7.7 Conclusion

Based on our tests and observations, we can conclude that the proposed solution

improves the performance of questioning the data, on average between 70% and

75%. However, the time it takes to answer a question is closely related to the type

of question: the more specific the question the faster the results are obtained. When

a question involves a lot of joins with a lot of records in the result set, the

performance decreases rather fast. From our tests and observations, we conclude

that the strength of the architecture is to quickly identify the correct records that

answer a question, but reconstructing a record and obtaining the correct values

68

corresponding to the identified records is the bottleneck. The fastest results are

obtained by asking really specific questions preferably with a small amount of

records as result. Selecting columns to be displayed (showlabels) that are not

relevant for the answer (or to the questioner) should be avoided.

We conclude that the architecture performs better than the original audit trail

implementation. Apart from that, the architecture will be able to handle a lot more

data before it breaks down or performance tweaks are required. Nevertheless, we

cannot state when that point is reached.

69

8 Conclusion and Future Work

This chapter provides a final conclusion based on our research, the results of the

tests and the observations made while performing the tests. We provide answers to

the research questions which were formulated at the beginning of the project, and

propose directions for future work.

Organization of this chapter: Section 8.1 provides answers to the research

questions. First, we answer the sub questions and then we answer our main

research question. In Section 8.2 proposes directions for future work.

8.1 Subquestions

Q1: What is an audit trail? The audit trail, as explained in Section 2.1 is a

form of logging in which everything is stored chronologically. It can be seen as a

change log. The audit trail is a very detailed log, usually it logs every change made

to a database or data model of an application.

Q2: What data warehouse architecture is suited for storing audit trail logs?
In order to answer this question, a theoretical comparison is done on several data

warehouse architectures. Based on criteria that were defined, each architecture was

evaluated and the architectures have been compared. From the comparison, it

turned out that a normalized data warehouse architecture suits the problem best. By

normalizing logs, which have a high redundancy rate in general, redundancy

disappears. Without redundancy, records that need to meet certain conditions are

obtained much faster, since there is less data to process. Also, after logging for a

longer period, the amount of new data to the data warehouse is limited, since most

data is redundant and already present in the data warehouse. Because of that, the

data warehouse does not increase linearly, but decreases more exponentially over

time.

Q3: What is a generic architecture for handling audit trails? This question

has been answered by answering the following subquestions:

Q3.a: What meta data is required by the architecture to obtain

understanding of the data? To create a generic architecture that could be used for

any audit trail, we had to find a way to talk about the data. The data could be about

everything. To cover this issue, the concept of labeling is introduced. Using

labeling, the meaning of data can be captured by means of a label. The architecture

does not know anything about the data, merely labels, which can occur in different

forms. The main two types of labels are showlabels and conditionlabels. By

making the the mapping between labels and data configurable, the architecture

becomes more generic. All information the architecture needs to know is how

labels are mapped onto data. To cover that, the LabelBase component has been

introduced. The architecture uses LabelBase to resolve the labels to find out their

meaning to gain understanding of their data.

Q3.b: What does a (generic) model, to represent audit trail data, look like?
By using the concept of labeling, the meaning of data can be captured by means of

a label. Labels are defined in two main categories, namely showlabels and

conditionlabels. Since the audit data can be addressed by a label, a model is

defined that describes labels rather than actual data. By doing so, the questions

about the data is based on labels rather than knowledge about the actual content.

This makes it easier for questioners to ask questions about data, since there is no

knowledge required about the data or how it is stored in the data warehouse. The

architecture needs a model to represent the different types of labels, the (structure

70

of the) question and the mapping of the labels onto data after being resolved. We

defined a model for this purpose and this model represents questions in the form of

labels rather than actual data. The model (and architecture), can be reused for other

audit trails as well. Our question model is described in Section 5.6.

Q3.c: What architectural changes to the model have to be made in order to

make it domain specific? In order to use the architecture, as proposed in Chapter

6, some configurations are required in order to make it work for a different audit

trail. First, the audit trail data must be prepared to fit in the structure of the data

warehouse. The structure is in a rather straightforward normalized form explained

in Section 3.2. Second, the mapping between labels and data must be defined in the

LabelBase component. Simplelabels are one-to-one mappings between labels and

columns in the data warehouse. These labels become the set of labels from which

new labels with conditions can be derived. Third, extra functionality can be

inserted in the post-processing component of the architecture. Apart from that,

there are no structural changes required to the architecture that cannot be

configured when the domain is changed.

Q4: What is the performance increase (measured in units of time) of the

proposed architecture? To answer this question, tests have been performed on a

prototype. From these tests, we conclude that the architecture speeds up the

questioning process with generally 62 to 68%, depending on the type of question.

The performance is affected mostly by the amount of columns the questioner

requires. Obtaining a complete log record takes much more time than obtaining one

or two columns, with the same conditions. The performance is also influenced by

how specific a question is. A lot of conditions and possibly a small result help

produce fast results. The time the architecture needs, excluding query execution

times, is shown to be minimal. Without post processing, the architecture performs

its tasks within a quarter of a second. Based on the test conversion (Section 4.4) we

know that the data warehouse grows slower than the original audit trail database. It

takes longer before the architecture, or data warehouse, breaks down and is not be

able to answer questions. However, the exact moment when that point is reached

cannot be determined based on the performed tests and obtained knowledge during

this project.

8.2 Main question

What is a generic architecture for efficient questioning of audit trail logs?

Based on a our research using a business case from at Topicus, our goal was to

define a model that could work with audit trail logs and improve the performance

in data retrieval times. The audit logs contain a lot of detailed information. Getting

desired information from the data required knowledge of the data as well as a lot of

effort, time wise. Since all audit trail loggings have the same underlying general

structure, we tried to abstract from the business case aiming to create a solution

that is applicable to any audit trail log. During this research we have defined a

model that could handle any audit trail log once stored in the data warehouse. To

abstract from the actual content and increase the generic aspect of the architecture,

labeling was introduced. Because the meaning of the data has to be defined in the

LabelBase component, the architecture itself has no specific knowledge about the

data for the business case. Therefore, we conclude that, once the audit data can be

restructured to fit in the data warehouse as defined in Section 4.3.2, the architecture

can handle any audit log. Using tests on the available data we got some insights

about the time performance of the prototype. Based on the tests we can conclude

71

that the architecture increases the performance drastically in comparison with the

old implementation and thus improves the time-efficiency of questioning the data.

Due to lack of more test data and legislations, we cannot perform tests on the most

realistic environment to get an indication of how the performance scales over time,

when the data increases. However, by extrapolating the execution speed of the

architecture and little growth of the data warehouse when adding more log records,

we predict that the architecture can handle a lot more data before the architecture

reaches its limit. The limit of the architecture should be determined in future work.

8.3 Future Work

Based on the results of this research, we propose some directions for future

work.

First, the performance of the architecture could be tested on a stable server

environment with more log data to evaluated how the performance scales over

time. Next to that, the queries which are generated by the architecture might not

always produce the optimal and/or fastest queries. There might be room for

improvement on the queries generation process to increase execution times.

Second, the architecture should be extended with functionality to facilitate the

definition of the labels. A possible direction is, when a questioner defines a

question with a complex condition part with several labels and conditions. With a

simple click on a button, the condition could be saved as a new condition label in

order to be reused later.

Third, possible applications for which the architecture can be used, could be

researched such as, a system that detects fraud. Such a system could use the

architecture to obtain data that can be used in the fraud detection process. Fraud is

an important issue in the financial world. Other forms of analysis of the audit trail

data can be researched. One could also investigate how the architecture could

contribute in that process.

72

References

[1]. American Institute of Certified Public Accountants (AICPA). SAS70

Standard. 1992. http://www.aicpa.org/soc.

[2]. Harleman, T. Research Topics - Audit trail. University of Twente. 2011.

[3]. Su, L. User Behaviour Based Access Control Decision. Inner Mongolia

University. Hohhot, China : s.n.

[4]. Simmhan Y., Plale B., and Gannon D. A Survey of Data Provenance in E-

Science. SIGMOD Record. 2005. pp. 34:31–36.

[5]. Buneman P., Khanna S., Wang-Chiew T. Why and Where: A

Characterization of Data Provenance. University of Pennsylvania. 2001.

[6]. Cernosek G., Naiburg E. The value of modeling. IBM. June, 2004.

[7]. P.J., Best. Project Frodo Progess Report. Queensland University of

Technology. 2005.

[8]. Mounji A., Le Charlier B., Habra N., Mathieu I. ASAX: Software

Architecture and Rule-Based Language for Universal Audit Trail Analysis.

University of Namur. 1992.

[9]. Mounji, A., Le Charlier, B., Zampunieris, D., Habra, N. Distributed

Audit Trail Analysis. Los Alamitos, CA : Proceedings of the ISOC‘95 symposium

on network and distributed systems security, 1995.

[10]. van der Geest, T., Wieringa, G., Viegen, R. De Nederlandse

hypotheekmarkt, De Hypotheekprofessional part 1. Februari, 2008.

[11]. AFM. Autoriteit Financiële Markten. http://www.afm.nl/en/over-afm.aspx.

[12]. BKR. Registratie, Bureau Krediet. http://www.bkr.nl/.

[13]. FluidDB. http://fluidinfo.com/.

[14]. InfoBright. http://www.infobright.com/.

[15]. Hightower, R. Data warehouse architecture. University of Florida.

September, 2009.

[16]. S., Badiozamany. Microsoft SQL Server OLAP Solution – A Survey.

Department of Information Technology, Uppsala University. Sept 2010.

[17]. Tickery. FluidInfo. http://tickery.net/.

[18]. InfoBright. High Performance Log Analytics: Database Considerations.

March 2010.

[19]. ANTLR. http://www.antlr.org/.

[20]. SourceMaking. http://sourcemaking.com/design_patterns/interpreter.

73

Appendix A

The Antlr Grammer for the Question language

tokens {

 QUESTION;

 SHOWLABEL;

 CONDITION;

 TOP;

 SHW = 'show';

 COND = 'conditions';

 DOUBLEQUOTE = '"';

 COMMA = ',';

 WILDCARD = '%';

 NOT = '!';

 MIN = 'MIN';

 MAX = 'MAX';

 TOPTOKEN = 'TOP';

}

public start : question -> ^(QUESTION question);

question : SHW! showLabels+ conditions*;

showLabels : optionShowLabel (showLabel)* ->

 ^(SHOWLABEL optionShowLabel) ^(SHOWLABEL showLabel)*;

optionShowLabel : opt? IDENT;

opt : MIN | MAX | top -> ^(TOP top);

top : TOPTOKEN TOPNUMBER;

showLabel : COMMA! IDENT;

conditions : COND! leftSide (LOGOP^ rightSide)*;

leftSide : condition -> ^(CONDITION condition);

rightSide : condition -> ^(CONDITION condition);

condition : NOT? IDENT (OPERATOR TIDENT)?;

LOGOP : 'AND' | 'OR';

OPERATOR : '=' | '>' | '<' | '>=' | '<=';

LETTER : 'a'..'z'|'A'..'Z' ;

DIGIT : '0'..'9' ;

TIDENT : DOUBLEQUOTE IDENT WILDCARD? DOUBLEQUOTE;

TOPNUMBER : (DIGIT)*;

IDENT : (LETTER | DIGIT)*;

WS : (' '|'\t')+ {Skip();} ;

74

Appendix B

The complete query that returns all the content of the data warehouse and which

is used in the model-to-MsSQL mapping in the database layer component.

SELECT

 lo.recordId as Id,

 at.auditType as AuditType,

 cd.changeddate as Datumwijziging,

 en.entityName as Entiteit,

 kp.klantpropositieId as KlantpropositieId,

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam,

 vcn.value as NieuweWaarde,

 vnn.value as NieuweWaardeId,

 vco.value as OudeWaarde,

 vno.value as OudeWaardeId,

 pr.propertyName as Property,

 e.entityId as EntityId,

 vcn.compressed as IsNieuweWaardeCompressed,

 vco.compressed as IsOudeWaardeCompressed

FROM

 AuditType at, ChangedDate cd,

 EntityName en, Employee em,

 Property pr, Entity e,

 LogRecord lo

LEFT JOIN RecordKlantPropositie rkp ON lo.recordId =

rkp.record_id

LEFT JOIN KlantPropositie kp ON kp.klantpropositieId =

rkp.klantpropositie_id

LEFT JOIN RecordValueCharacterNew rvcn ON lo.recordId =

rvcn.record_id

LEFT JOIN ValueCharacterNew vcn ON vcn.valueId =

rvcn.value_id

LEFT JOIN RecordValueCharacterOld rvco ON lo.recordId =

rvco.record_id

LEFT JOIN ValueCharacterOld vco ON vco.valueId =

rvco.value_id

LEFT JOIN RecordValueNumericNew rvnn ON lo.recordId =

rvnn.record_id

LEFT JOIN ValueNumericNew vnn ON vnn.valueId = rvnn.value_id

LEFT JOIN RecordValueNumericOld rvno ON lo.recordId =

rvno.record_id

LEFT JOIN ValueNumericOld vno ON vno.valueId = rvno.value_id

WHERE lo.recordId IN

(

 --generated conditions are placed here

)

 AND at.audittypeId = lo.audittype_id

 AND cd.changeddateId = lo.changeddate_id

 AND en.entityNameId = lo.entityname_id

 AND em.employeeId = lo.employee_id

 AND pr.propertyId = lo.property_id

 AND e.entityId = lo.entity_id

ORDER BY lo.recordId

75

Appendix C

In this section, the requirements for the project are presented.

Do‘s

Req 1. The system should increase performance for the retrieval of

information without compromising the performance for logging

information.

The functionality to retrieve information from the audit log in the applications is

disabled currently. The reason is that the performance is so low that the page gets a

time out and crashes. The acceptable time to fulfill any request should not take

longer than 10 seconds.

Req 1a. The system should keep the current audit implementation as it is.

As described before, the current implementation was designed to store

information. We keep this component as it is and will use the log its produces as

our source of input.

Req 2. The system should retrieve information from the audit trail logs

Either application changes and product definitions should be retrievable.

Req 2a. The system should retrieve a change log of X over time, where X is

i. a field

ii. an object

iii. an invoice

Important functionality is to be able to retrieve a change log of a field, object or

product definition and how it‘s values evolved over time. In such changelog,

information can be found about who changed a certain field, at what time and how

many times.

Req 2b. The system should reproduce a version of an invoice of a given

point in time

Once there is a log about how an invoice evolved over time, there is also the

possibility to reconstruct an application. In this context, the word ‗application‘ does

not refer to a software application but to a client asking for an invoice. For

example, an employee of the mortgage company would like to see how application

1001 looked like (thus with what values) at any point t in time. This application

specific information (application numbers etc.) is not present in the current logs

and has to be added somehow.

Req 3. The system should have the functionality to filter and order

information during or after retrieval

The user that requests data should have the functionality to filter the data to get

a good overview. This could be specified before the request is made to the system,

and filters could be applied once the data is visible on screen. Filtering is used to

create a sub-selection with a certain ordering.

Req 4. The system should clearly display its information and within

context for the viewer.

Once a user gets data on his screen as a result from a request he made, it should

be clear to the user what data he is looking at. With large datasets and large result

sets data can be overwhelming. Therefore putting the data in context, the user

should immediately know what kind of data he is looking at.

76

Optional:

Req 5. The system could extract scripts of data changes made in order to

playback the changes to other databases

There are different databases on different environments which have to be

merged from time to time. This is a time consuming activity. The audit logging

from different test and setup environments can log all changes made. Once the

changes should be merged with the production database, the audit log could be

executed on a different database. This cannot cover a complete and clean merge of

two databases since values can be changed on several environments. So conflicts

still need to be solved. But detecting such conflicts can be done automatically.

Dont‘s:

These requirements are based on analysis of the data and the possibility to detect

anomalies. We cannot fulfill such requirements since our input is a logfile, thus we

have a process delay of unknown time depending on the circumstances like the

speed of the conversion process, server load and current size of the logfile. Some

other requirements were decided to be found out of scope.

Req 6. The system will not support fraud detection

By defining fraud scenario‘s and rules, analysis on the data could detect

violation of those rules or matching scenario‘s. Detection can be done on a later

point in time and does not need to be done real-time. Detection could be additional

functionality to the system to be build, but the time needed to research and

implement such functionality is time we don‘t have.

Req 7. The system will not support automatic analysis of data

Analysis on the logged data for the purpose of data mining of to draw statistics

from. At this point there is no use for such knowledge and because of privacy

violation we are not allowed to the data. Thus the degree of what kind of statistics

and what sorts of data mining we are allowed to do have to be investigated.

Req 8. The system will not monitor data and alert users

The audit logging can be used together with self learning algorithms to predict

abnormal behavior. For example in the workflow of an mortgage application. Once

patterns are found that actions/changes are always in the sequence of ‗ABC‘ then

the algorithm that is analyzing the loggings can warn the user or a another person if

a workflow of action sequence ‗ACB‘ is detected. We could detect such situations,

but cannot give feedback since the system is not looking real-time at the data.

Therefore there is no interaction possible with the user.

Environmental requirements

In consultation with Topicus we have defined some requirements and

restrictions, regarding the environment, for the solution and prototype:

Req 9. The prototype must be developed in .Net

Req 10. The interface of the prototype must be web-based

Req 11. Authentication is not part of the prototype

Req 12. The current audit trail implementation remains untouched

The current implementation remains because it works as intended and we see no

room for improvement there.

Req 13. Preferably a MsSQL database should be used for the data

warehouse.

77

For the data warehouse the request is made to take a MsSQL database. This is

because this type of database is commonly used within the company. Of course,

with strong arguments there is room to change the type of data storage.

Req 14. The current audit trail log is our only input for the system

The information that is present in the current log might not be sufficient to meet

all the requirements. Nevertheless we treat the current log as our only source of

input. external data could possibly be added as metadata to the data warehouse.

Req 15. Due to legislations, all data has to be simulated

All data we will use during the project must be fake or scrambled data. Due to

legislations and violation of privacy rules we are not allowed to look into the

content of the information that is logged by the audit trail.

78

Appendix D

The test suite that is used to test the performance of the old audit trail database, the new data

warehouse and the architecture. The queries for the old audit trail database are different from the

generated ones from the architecture, but they provide the exact same results and are therefore

considered represent the same question. In this appendix, the queries and questions for the test

suite are provided.

First, the questions, in a natural language form are listed. Second, the questions are translated

into queries for the old audit trail database, Third, the questions as asked using the Question

language are presented. Fourth and last, the MsSQL queries that are generated by the

architecture for the corresponding questions.

The questions in natural language:

Questions # results

1. Show the employee names and id‘s from the log records for which the

employee is an administrator
27313

2. Show the unique employee names and id‘s that are administrator
2

3. Show the employee names and id‘s from the log records from the seventh

week of 2011, for which the employee is an administrator
1012

4. Same as question 3, but defined differently in the question language later

on
1012

5. Show all the complete log records which have a Entity ‗HypotheekDeel‘

and Property ‗RenteProduct‘ or ‗VervolgRenteProduct‘
4138

6. Show all the unique properties of the Entity „HypotheekDeel‟
39

7. Show the complete log records between 100400 and 100900
500

8. Show all the employee names and id‘s of the employees who ‗changed‘

the Property ‗NominaleRente‘ from the Entity ‗HypotheekDeel‘ into the

value ‗0,03170‘

9

9. Show all the employee names and id‘s of the employees who ‗changed‘

the Property ‗NominaleRente‘ from the Entity ‗HypotheekDeel‘ into the

value ‗0,03170‘ for invoice with number ‗16828‘

2

10. Show the complete log records for which the Property ‗NominaleRente‘

from the Entity ‗HypotheekDeel‘ ‗changed‘ into the value ‗0,03170‘ for

invoice with number ‗16828‘

3

The queries for the old audit trail database corresponding to the questions.

1. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE

MedewerkerNaam = 'Beheer' OR MedewerkerNaam = 'Beheer1'

2. SELECT DISTINCT(MedewerkerId), MedewerkerNaam FROM Audittrail WHERE

MedewerkerNaam = 'Beheer' OR MedewerkerNaam = 'Beheer1'

3. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE

(MedewerkerNaam = 'Beheer' OR MedewerkerNaam = 'Beheer1') AND

Datumwijziging BETWEEN '2011-02-08 16:21:00' AND '2011-02-08 16:32:00'

4. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE

(MedewerkerNaam = 'Beheer' OR MedewerkerNaam = 'Beheer1') AND

Datumwijziging BETWEEN '2011-02-08 16:21:00' AND '2011-02-08 16:32:00'

79

5. SELECT * FROM Audittrail WHERE Entiteit = 'HypotheekDeel' AND

(Property = 'RenteProduct' OR Property = 'VervolgRenteProduct')

6. SELECT DISTINCT(Property) FROM Audittrail WHERE Entiteit =

'HypotheekDeel'

7. SELECT * FROM Audittrail WHERE Id > 100400 AND Id <= 100900

8. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE Audittype =

'Update' AND Entiteit = 'HypotheekDeel' AND NieuweWaarde = '0,03170'

AND Property = 'NominaleRente' AND MedewerkerId != 1

9. SELECT MedewerkerId, MedewerkerNaam FROM Audittrail WHERE Audittype =

'Update' AND Entiteit = 'HypotheekDeel' AND Property = 'NominaleRente'

AND MedewerkerId != 1 AND NieuweWaarde = '0,03170' AND

KlantpropositieId = 16828

10. SELECT * FROM Audittrail WHERE Audittype = 'Update' AND Entiteit =

'HypotheekDeel' AND Property = 'NominaleRente' AND MedewerkerId != 1

AND KlantpropositieId = 16828

The questions in the question language corresponding to the questions:

1. show Employee conditions Administrator

2. show Employee conditions Administrator (with the ‗unique‘ option activated)

3. show Employee conditions Administrator AND inWeek7

4. show Administrator conditions inWeek7

5. show CompleteLogRecord conditions HypotheekDeelRente

6. show f_Property conditions f_Entity = "HypotheekDeel" (with the ‗unique‘ option activated)

7. show CompleteLogRecord conditions CompleteLogRecord > "100400" AND

CompleteLogRecord <= "100900"

8. show Employee conditions ChangesToNominalInterest = "0,03170"

9. show Employee conditions ChangesToNominalInterest = "0,03170" AND f_KlantPropositieId

= "16828"

10. show CompleteLogRecord conditions ChangesToNominalInterestForKlantPropositieId =

"16828"

The queries as generated by the architecture corresponding to the questions in the

question language:

1 SELECT

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam

FROM

 Employee em,

 LogRecord lo

WHERE

 lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE EXISTS (

 SELECT employeeId

 FROM Employee

 WHERE

 (employeeName = 'Beheer1' OR employeeName = 'Beheer')

 AND employeeId = employee_id

)

)

 AND em.employeeId = lo.employee_id

ORDER BY lo.recordId;

2 SELECT

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam

80

FROM

 Employee em,

 LogRecord lo

WHERE

 lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE EXISTS (

 SELECT employeeId

 FROM Employee

 WHERE

 (employeeName = 'Beheer1' OR employeeName = 'Beheer')

 AND employeeId = employee_id

)

)

 AND em.employeeId = lo.employee_id

ORDER BY lo.recordId;

3 SELECT

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam

FROM

 Employee em,

 LogRecord lo

WHERE (

 lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE EXISTS (

 SELECT employeeId

 FROM Employee

 WHERE

 (employeeName = 'Beheer1' OR employeeName = 'Beheer')

 AND employeeId = employee_id)

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (changeddate_id BETWEEN '790' AND '800')

)

)

AND em.employeeId = lo.employee_id

ORDER BY lo.recordId;

4 SELECT

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam

FROM

 Employee em,

 LogRecord lo

WHERE

 lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE EXISTS (

 SELECT employeeId

 FROM Employee

 WHERE

 (employeeName = 'Beheer1' OR employeeName = 'Beheer')

 AND employeeId = employee_id)

81

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (changeddate_id BETWEEN '790' AND '800')

)

AND em.employeeId = lo.employee_id

ORDER BY lo.recordId;

5 SELECT

 kp.klantpropositieId as KlantPropositie,

 DATEADD(MI,cd.changeddate,'1970-01-01') as DatumWijziging,

 pr.propertyName as Property,

 e.entityId as EntityId,

 en.entityName as Entiteit,

 at.auditType as AuditType,

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam,

 vnn.value as NieuweWaardeId,

 vno.value as OudeWaardeId,

 vcn.value as NieuweWaarde,

 vcn.compressed as IsNieuweWaardeCompressed,

 vco.value as OudeWaarde,

 vco.compressed as IsOudeWaardeCompressed

FROM

 ChangedDate cd,

 Property pr,

 Entity e,

 EntityName en,

 AuditType at,

 Employee em,

 LogRecord lo

 LEFT JOIN RecordKlantPropositie rkp ON lo.recordId =

rkp.record_id

 LEFT JOIN KlantPropositie kp ON kp.klantpropositieId =

rkp.klantpropositie_id

 LEFT JOIN RecordValueNumericNew rvnn ON lo.recordId =

rvnn.record_id

 LEFT JOIN ValueNumericNew vnn ON vnn.valueId = rvnn.value_id

 LEFT JOIN RecordValueNumericOld rvno ON lo.recordId =

rvno.record_id

 LEFT JOIN ValueNumericOld vno ON vno.valueId = rvno.value_id

 LEFT JOIN RecordValueCharacterNew rvcn ON lo.recordId =

rvcn.record_id

 LEFT JOIN ValueCharacterNew vcn ON vcn.valueId = rvcn.value_id

 LEFT JOIN RecordValueCharacterOld rvco ON lo.recordId =

rvco.record_id

 LEFT JOIN ValueCharacterOld vco ON vco.valueId = rvco.value_id

 WHERE lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (property_id = '45' OR property_id = '49')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (entityname_id = '4')

82

)

 AND cd.changeddateId = lo.changeddate_id

 AND pr.propertyId = lo.property_id

 AND e.entityId = lo.entity_id

 AND en.entityNameId = lo.entityname_id

 AND at.audittypeId = lo.audittype_id

 AND em.employeeId = lo.employee_id

ORDER BY lo.recordId;

6 SELECT

 pr.propertyName as Property

FROM

 Property pr,

 LogRecord lo

WHERE lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE EXISTS (

 SELECT entityNameId

 FROM EntityName

 WHERE

 (entityName = 'HypotheekDeel')

 AND entityNameId = entityName_id

)

)

AND pr.propertyId = lo.property_id

ORDER BY lo.recordId;

7 SELECT

 kp.klantpropositieId as KlantPropositie,

 DATEADD(MI,cd.changeddate,'1970-01-01') as DatumWijziging,

 pr.propertyName as Property,

 e.entityId as EntityId,

 en.entityName as Entiteit,

 at.auditType as AuditType,

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam,

 vnn.value as NieuweWaardeId,

 vno.value as OudeWaardeId,

 vcn.value as NieuweWaarde,

 vcn.compressed as IsNieuweWaardeCompressed,

 vco.value as OudeWaarde,

 vco.compressed as IsOudeWaardeCompressed

FROM

 ChangedDate cd,

 Property pr,

 Entity e,

 EntityName en,

 AuditType at,

 Employee em,

 LogRecord lo

 LEFT JOIN RecordKlantPropositie rkp ON lo.recordId =

rkp.record_id

 LEFT JOIN KlantPropositie kp ON kp.klantpropositieId =

rkp.klantpropositie_id

 LEFT JOIN RecordValueNumericNew rvnn ON lo.recordId =

rvnn.record_id

 LEFT JOIN ValueNumericNew vnn ON vnn.valueId = rvnn.value_id

 LEFT JOIN RecordValueNumericOld rvno ON lo.recordId =

rvno.record_id

 LEFT JOIN ValueNumericOld vno ON vno.valueId = rvno.value_id

83

 LEFT JOIN RecordValueCharacterNew rvcn ON lo.recordId =

rvcn.record_id

 LEFT JOIN ValueCharacterNew vcn ON vcn.valueId = rvcn.value_id

 LEFT JOIN RecordValueCharacterOld rvco ON lo.recordId =

rvco.record_id

 LEFT JOIN ValueCharacterOld vco ON vco.valueId = rvco.value_id

 WHERE (

 lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (recordId > '100400')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (recordId <= '100900')

)

)

 AND cd.changeddateId = lo.changeddate_id

 AND pr.propertyId = lo.property_id

 AND e.entityId = lo.entity_id

 AND en.entityNameId = lo.entityname_id

 AND at.audittypeId = lo.audittype_id

 AND em.employeeId = lo.employee_id

ORDER BY lo.recordId;

8 SELECT

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam

FROM

 Employee em,

 LogRecord lo

WHERE

 lo.recordId IN (

 SELECT record_id

 FROM RecordValueCharacterNew

 WHERE EXISTS (

 SELECT valueId

 FROM ValueCharacterNew

 WHERE

 (value = '0,03170')

 AND valueId = value_id

)

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (property_id = '39')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (entityname_id = '4')

)

 AND lo.recordId IN (

 SELECT recordId

84

 FROM LogRecord

 WHERE

 (audittype_id = '1')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (employee_id != '1')

)

 AND em.employeeId = lo.employee_id

ORDER BY lo.recordId;

9 SELECT

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam

FROM

 Employee em,

 LogRecord lo

WHERE (

 lo.recordId IN (

 SELECT record_id

 FROM RecordValueCharacterNew

 WHERE EXISTS (

 SELECT

 valueId

 FROM

 ValueCharacterNew

 WHERE

 (value = '0,03170')

 AND valueId = value_id)

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE (property_id = '39')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (entityname_id = '4')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (audittype_id = '1')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (employee_id != '1')

)

 AND lo.recordId IN (

 SELECT record_id

 FROM RecordKlantPropositie

 WHERE EXISTS (

 SELECT klantPropositieId

85

 FROM KlantPropositie

 WHERE

 (klantPropositieId = '16828')

 AND klantPropositieId = klantPropositie_id

)

)

)

 AND em.employeeId = lo.employee_id

ORDER BY lo.recordId;

10 SELECT

 kp.klantpropositieId as KlantPropositie,

 DATEADD(MI,cd.changeddate,'1970-01-01') as DatumWijziging,

 pr.propertyName as Property,

 e.entityId as EntityId,

 en.entityName as Entiteit,

 at.auditType as AuditType,

 em.employeeId as MedewerkerId,

 em.employeeName as MedewerkerNaam,

 vnn.value as NieuweWaardeId,

 vno.value as OudeWaardeId,

 vcn.value as NieuweWaarde,

 vcn.compressed as IsNieuweWaardeCompressed,

 vco.value as OudeWaarde,

 vco.compressed as IsOudeWaardeCompressed

FROM

 ChangedDate cd,

 Property pr,

 Entity e,

 EntityName en,

 AuditType at,

 Employee em,

 LogRecord lo

 LEFT JOIN RecordKlantPropositie rkp ON lo.recordId =

rkp.record_id

 LEFT JOIN KlantPropositie kp ON kp.klantpropositieId =

rkp.klantpropositie_id

 LEFT JOIN RecordValueNumericNew rvnn ON lo.recordId =

rvnn.record_id

 LEFT JOIN ValueNumericNew vnn ON vnn.valueId = rvnn.value_id

 LEFT JOIN RecordValueNumericOld rvno ON lo.recordId =

rvno.record_id

 LEFT JOIN ValueNumericOld vno ON vno.valueId = rvno.value_id

 LEFT JOIN RecordValueCharacterNew rvcn ON lo.recordId =

rvcn.record_id

 LEFT JOIN ValueCharacterNew vcn ON vcn.valueId = rvcn.value_id

 LEFT JOIN RecordValueCharacterOld rvco ON lo.recordId =

rvco.record_id

 LEFT JOIN ValueCharacterOld vco ON vco.valueId = rvco.value_id

WHERE

 lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE EXISTS (

 SELECT klantpropositie_id

 FROM RecordKlantPropositie

 WHERE

 (klantpropositie_id = '16828')

 AND klantpropositie_id = klantpropositieId

)

86

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (property_id = '39')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (entityname_id = '4')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (audittype_id = '1')

)

 AND lo.recordId IN (

 SELECT recordId

 FROM LogRecord

 WHERE

 (employee_id != '1')

)

 AND cd.changeddateId = lo.changeddate_id

 AND pr.propertyId = lo.property_id

 AND e.entityId = lo.entity_id

 AND en.entityNameId = lo.entityname_id

 AND at.audittypeId = lo.audittype_id

 AND em.employeeId = lo.employee_id

ORDER BY lo.recordId;

