
Design of a Fused Multiply-Add
Floating-Point and Integer Datapath

Tom
 M
. Bruintjes

University of Twente
Faculty of Electrical Engineering, Mathematics

and Computer Science
Computer Architectures for Embedded Systems chair

Design of a Fused Multiply-Add Floating-Point and Integer
Datapath

Master’s thesis by

Tom M. Bruintjes

Graduation committee:
ir. Karel H.G. Walters
dr.ir. Sabih H. Gerez
ir. Bert Molenkamp

Enschede, the Netherlands, May 16, 2011

Abstract

Traditionally floating-point and integer arithmetic have always been separated both spatially and con-
ceptually. Even though the floating-point unit is an integral part of most contemporary microprocessors,
it uses its own dedicated set of arithmetic components. Due to the high data width of floating-point
numbers, these arithmetic components occupy a significant percentage of the silicon area needed for a
processor. Low-cost and low-power driven processor design, which is becoming increasingly more impor-
tant due to the ever growing market for battery-operated hand held devices and the need for sustainable
usage of energy resources, are therefore difficult targets for floating-point arithmetic.

In this thesis we present a solution in the form of a new architecture that combines integer and floating-
point arithmetic in a single datapath. Both types of arithmetic are tightly integrated by mapping
functionality to the same basic hardware components (the multipliers, adders, comparators etc.). The
advantage of such an approach is two-fold. Because the floating-point unit can be scheduled for integer
instruction, we are able to cut-down on integer dedicated resources making floating-point units justifi-
able in a low-cost environment. Additionally, the hardware needed for floating-point arithmetic can be
used much more efficiently, because in realistic scenarios then the amount of floating-point instructions
performed is much less that a typical floating-point unit can process.

The architecture we present is tailored for a minimal silicon area and energy-efficiency. However, perfor-
mance also remains an important factor. A particularly powerful architecture known as fused multiply-
add (FMA) is chosen as the base for a floating-point unit with integrated integer functionality. Besides
higher throughput, the added value of floating-point fused multiply-add (A×B+C) is higher accuracy, a
result of the fact that only a single rounding operation is performed per instruction. From an area conser-
vative point of view, FMA is also eligible. Instructions such as multiplication and addition/subtraction
can simply be derived by using 0 and 1 for the addend (C) and multiplicand (B) respectively, hence there
is no need for hardware that implements basic multiplication and addition. The architecture is further
optimized for area efficiency and performance by using smart design principles like Parallel Alignment,
Partial Product Multiplication, End-Around Carry Addition, Leading Zero Anticipation, Leading Zero
Detection and high component re-use. The leading zero detection circuit is worth mentioning explicitly.
A new approach based on earlier work [1] is presented that yields much better area (up to almost 50%
reduction) for input that is not a power of two.

The resulting design is a balanced three stage pipeline with considerable integer re-use. The floating-
point arithmetic is numerically compliant with IEEE-754, based on a 41-bit (8-bit exponent and 32-
bit significand sign-magnitude) floating-point representation. Integer arithmetic is performed in 32-bit
signed two’s complement format. As a proof of concept, a VHDL structural description is implemented
in STMicroelectronics 65nm technology. A performance driven implementation reaches a theoretical
peak bandwidth of 2.4 GFLOPs at 1200MHz, and a low-power implementation yields a circuit that
can be clocked at a maximum frequency of 500MHz. Post synthesis/place-and-route estimates of area
and power consumption are provided. Comparisons with other architectures and a realistic scenario
for system-on-chip (SoC) integration show that the architecture is suitable for low-cost energy-efficient
hardware solutions.

i

ii

Preface

From collecting rare and exotic pieces from the past to designing the next generation of chips myself,
hardware has always been of great interest to me. So when I went looking for a thesis project, I knew
immediately which people I had to ask. After a short discussion with my curriculum advisor and fellow
hardware/VHDL enthusiast Bert Molenkamp, it was concluded that Karel Walters would most likely
have interesting ideas within my area of interest. And sure, as always (I had the pleasure to work with
Karel on several other occasions in the past) he had an idea that could be investigated. It was to create
or modify a floating-point unit such that it can just as easily process integer data. A most unusual
approach but exactly the kind of thing I was looking for. It is well known that floating-point is among
the most challenging subjects in processor design. Yet, at the time Karel was explaining me his idea, I
had already decided that I did not need to look any further.

As can be expected with floating-point hardware, it took me a while to complete this design. A year after
starting, there is finally a correctly working datapath and this comprehensive report. I hope thatthe
latter has been written thoroughly enough and that the ideas presented here will prove to be useful. The
time that I have spent on the results presented in this thesis has been a year well spent. Working in the
CAES group1 is great, the brilliant discussions during the coffee break and the overall open atmosphere
undoubtedly make floor 4 the best place to be during a normal working day. Thank you all CAES-people.

I would not have been able to complete all this work without the help and guidance of my committee:
Karel Walter, Bert Molenkamp and Sabih Gerez. I would like to take the opportunity to express my
gratitude to them. Karel, thanks for your day-to-day supervision. The time that you spent helping
me understand and master the ASIC tool chain and the many discussions we had regarding complex
arithmetic design principles, I highly appreciate them. Bert, of course being a VHDL specialist but also
someone that pays attention to the finest details, thank you for guiding me during the final phase but
also during my entire master’s curriculum. Also, I would like to say that although very convenient, it
can also be a little frustrating that after spending several hours on a VHDL issue someone comes up
with the answer in just under a minute. Last but not least Sabih, your sharp remarks and input have
helped improve my writing considerably. I especially want to convey my thanks to you for taking the
time to review my work when time was pressing and there was little of it.

Tom Bruintjes
Enschede, May 2011

1http://caes.ewi.utwente.nl/caes/

iii

http://caes.ewi.utwente.nl/caes/

iv

Acronyms

ALU arithmetic logic unit

ASIC application specific integrated circuit

BCD binary coded decimal

CISC complex instruction set computer

CMOS complementary metal oxide semiconductor

CSA carry-save adder

DSP digital signal processing

EPIC explicitly parallel instruction computing

FA full adder

FFT fast fourier transform

FIR finite impulse response

FLOP floating-point operation

FMA fused multiply-add

FPGA field programmable gate array

GCC GNU compiler collection

GPP general purpose processor

GPSVT general purpose standard voltage threshold

GPU graphics processing unit

HDL hardware description language

IC integrated circuit

IP intellectual property

v

ISA instruction set architecture

LPHVT low power high voltage threshold

LSB least significant bit

LZA leading zero anticipation

LZD leading zero detection

MAC multiply-accumulate

MFU mutable function unit

MIMD multiple instruction stream, multiple data stream

MPPB massively parallel processor breadboarding

MPSoC multiprocessor system-on-chip

MSB most significant bit

NaN tot-a-number

NoC network-on-chip

PPE Power PC element

RISC reduced instruction set computer

RMS root mean square

RTL register transfer level

SIMD single instruction multiple data

SNR signal to noise ratio

SoC system-on-chip

SPE synergistic processing element

SQNR signal to quantization noise ratio

SRA shift right arithmetic

SRL shift right logical

ULP units in the last place

VLIW very long instruction word

VHDL VHSIC hardware description language

VHSIC very high speed integrated circuit

vi

Contents

Preface iii

1 Introduction 1

1.1 Motivation and Problem Statement . 2

1.2 Research Goals . 2

1.3 Approach . 2

1.4 Thesis Overview . 3

2 Background 5

2.1 Introduction . 5

2.2 Number Representation . 5

2.3 Floating-Point Numbers . 7

2.4 Floating-Point Number Representation . 8

2.5 The IEEE-754 Standard for Binary Floating-Point Arithmetic 9

2.6 Floating-Point Arithmetic . 11

2.7 Summary . 18

3 Related Work 19

3.1 Introduction . 19

3.2 The UltraSparc T2 Floating-Point Unit . 20

3.3 The Intel Itanium Floating-Point Architecture . 24

vii

3.4 The Vector Floating-Point Unit of the Cell Processor . 27

3.5 Dual-Path Adders . 30

3.6 Combining Integer and Floating-Point Arithmetic . 31

3.7 Summary . 31

4 A Fused Multiply-Add Floating-Point and Integer Architecture 33

4.1 Introduction . 33

4.2 Approach . 34

4.3 Floating-Point Integer Arithmetic Logic Datapath . 35

4.4 Summary . 49

5 Arithmetic Design Principles 51

5.1 Introduction . 51

5.2 Alignment . 52

5.3 Multiplication . 55

5.4 Addition . 60

5.5 Normalization . 64

5.6 Rounding . 69

5.7 Summary . 70

6 Implementation 71

6.1 Introduction . 71

6.2 Input Formatting and Instruction Decoding . 73

6.3 Alignment Shift and Exponent Adjustment . 75

6.4 Comparing Operands . 78

6.5 Fused Multiplication-Addition . 80

6.6 Normalize . 86

6.7 Rounding . 89

6.8 Output Formatting and Exceptions . 91

6.9 Summary . 93

7 Realization 95

7.1 Introduction . 95

viii

7.2 FPGA Prototyping . 95

7.3 ASIC Implementation . 96

7.4 Comparison . 105

7.5 Realistic SoC Integration Scenario . 108

7.6 Summary . 109

8 Verification 111

8.1 Test Bench . 111

8.2 Test Set . 113

9 Conclusion 115

9.1 Introduction . 115

9.2 Summary . 115

9.3 Evaluation and Recommendations for Improvement . 117

9.4 Conclusion . 121

A Quantization Effects 123

A.1 Quantization . 123

A.2 Operations . 126

A.3 Practical Applications . 130

B Common Mistakes in Floating-Point Arithmetic 133

B.1 IEEE-754 Floating-Point Arithmetic and Zero . 133

B.2 Rounding and Sticky-Bit . 134

B.3 Fused Multiply-Add and Overflow . 136

C Instructionset Specification 137

D Dataflow and Datapath Usage 143

References . 154

ix

x

1
Introduction

The need for energy-efficient, low-cost hardware solutions has never been higher. With the ongoing
growth in the average number of battery operated hand held devices per person, this is no surprise.
Perhaps an even more important drive is the fact that sustainable management of energy resources is
now truly becoming a pressing matter. On the other hand, the demand for more processing power is
also increasing. Think of the ever improving quality in real-time 3D graphics, combining more and
more functionality into a single device (e.g., smart phones) but also less evident examples such as the
many embedded systems in for example TVs, cars, microwaves and washing machines. Combining high
performance and energy-efficiency is only possible when algorithms and available hardware resources are
analyzed up to the finest details, and then tightly coupled to each other. Currently some of the most
efficient hardware solutions are achieved with heterogeneous SoCs that are (to some extent) tailored to
a specific domain (e.g, digital signal processing (DSP)).

The current state-of-the art in energy efficient hardware platforms is dominated by multiprocessor system-
on-chips (MPSoCs), fabricated with low-power technologies (e.g., [2]). Such architectures often comprise
a fast, low-cost, power-efficient RISC processors such as the ARM [3], several ‘number crunching’ stream-
ing processors and a network-on-chip (NoC) for energy-lean on-chip communication. These heteroge-
neous multi-core architectures are highly efficient, yet their support for floating-point operations is weak
and sometimes completely lacking. This can be explained by the fact that the physical properties of a
floating-point unit often conflict with the targets (area and power constraints) set out for such hardware
platforms. In most cases the floating-point unit is substituted by fixed-point arithmetic or emulated by
software. Both alternatives are viable from an energy and area conserving point of view, however, in
terms of performance (either expressed as raw processing power or simply the kind of range and precision
that is supported), they are not very satisfactory.

For fractional computations we would rather have a real floating-point unit on-board. However, how can
we justify a floating-point unit in hardware solutions that are supposed to be energy efficient and area
conservative? One way to look at is is that once the floating-point unit is there, we better make the best
possible use of it. Preferably resulting in meaningful silicon usage close to 100% of the time. In a more
realistic scenario, the usage of floating-point hardware will most likely not even reach 50%. If we could
schedule the floating-point unit for the more common integer operations, the benefits would be two-fold.
The needed hardware will be used more efficiently and we may be able to reduce the amount of integer
specific silicon which would be beneficial both in terms of area and energy consumption.

However, there is still a clear gap between floating-point and integer arithmetic, both spatially and
conceptually. Research needs to be conducted to find out how integer operation can be mapped to a
floating-point unit. In this thesis the feasibility of combining floating-point and integer arithmetic into
a single datapath is therefore investigated.

1

Chapter 1. Introduction

1.1 Motivation and Problem Statement

High performance floating-point arithmetic coincides with large amounts of silicon. This does not com-
bine well with the targets we generally have in mind for low-cost energy-efficient hardware. However,
if we could combine integer and floating-point functionality into a single datapath, the total area of a
chip could be lowered by reducing the amount hardware dedicated for integer arithmetic. The usage of
fully fledged floating-point units in low-power hardware solutions by sharing its datapath with integer is
highly unconventional. Currently little is known about this subject.

That being said, the central problem addressed in this thesis is the definition of a (low power and silicon
driven) floating-point datapath that is capable of executing integer operations with high performance.

1.2 Research Goals

The objective set out for this thesis is the exploration of combining integer and floating-point arithmetic
efficiently. The work presented here focuses on the architectural aspect of designing hardware that is
capable of the aforementioned. Some of the questions raised and answered by this work include:

• What floating-point and integer formats can most efficiently be combined?
• What floating-point architectures are suitable for low-cost energy efficient hardware solutions?
• How can integer operations most efficiently be mapped to floating-point hardware?

1.3 Approach

A hybrid solution between conventional integer arithmetic logic units (ALUs) and floating-point units is
proposed in an attempt to conserve area and energy. To evaluate if this approach is worthwhile, a proof
of concept is made using the structural hardware description language ‘VHSIC hardware description
language (VHDL)’. The design is implemented in a deep sub-micron (65nm) low-power technology for
realistic estimates of timing, area and power consumption.

Before investigating the possibilities for the new architecture, several requirements were set up:

• Support for at least multiplication and addition of floating-point and integer operands
• The architecture should preferably be limited to two or three pipeline stages
• The design should be fully synthesizeable in a 65 or 90nm low-power process

The second and last requirement are crucial parameters for timing considerations. The first major
structural design choices are driven by latency reduction, in order to achieve high performance under
these constraints. However, since area and power considerations are at least as important, the later
development stages are mostly focused on minimizing area and power consumption. This two-stage
design approach is reflected in this thesis. The first chapters are mostly focused on performance related
subjects while the later chapters deal with area and energy-efficiency.

Furthermore, we believe that although research should go beyond the state-of-the-art, usability is also
a very important aspect when proposing architectural changes. It would not be the first time a new
architecture is introduced only to be neglected due to incompatibilities and steep learning curves that
have to be overcome in order to use new concepts to the full potential. It is therefore imperative that
the transition from floating-point to integer operation (and vice versa) should be as seamless as possible.
Considerable attention is given to the subject of fluent transition with the least amount of overhead.

2

1.4. Thesis Overview

1.4 Thesis Overview

Chapter 2 introduces the reader to the basic principles of floating-point arithmetic. Definitions and
concepts used throughout the remainder of the thesis are explained here.

Chapter 3 presents a short overview of the work related to the research conducted in this thesis. The
floating-point fused multiply-add datapath and re-use of floating-point hardware for integer purpose are
emphasized.

Chapter 4 proposes the basic architecture for a fused multiply-add datapath that shares its function-
ality with integer operations. A precise specification of the instruction set architecture is provided and
the data flow for an efficient datapath discussed.

Chapter 5 discusses optimizations and design principles that are applied to the basic architecture of
Chapter 4. This chapter mostly focuses on latency reduction and increased throughput to obtain good
performance in low-power technology realization.

Chapter 6 elaborates on the implementation details. In contrast to Chapter 5, this chapter puts more
emphasis on reducing area and energy consumption for low-cost solution such as embedded systems.

Chapter 7 evaluates the physical properties (area and power) of a 65nm low-power and general
purpose implementation of the new architecture. The consequences for SoC integration are explored and
a comparison is made with other floating-point solutions, to obtain a rough estimate of the overhead
imposed by the concepts introduced in the previous chapters.

Chapter 8 explains how a complex architecture like a floating-point unit can be tested thoroughly
with the least amount of effort. In particular when floating-point formats are used that are not strictly
conform to the IEEE standard, reliable points of reference are scarce. This chapter presents an elegant
solution in the form of a test bench that uses the VHDL-2008 standard for floating-point functionality.

Chapter 9 concludes the thesis by summarizing the main results. The limitations of our solution are
mentioned here as well as a number of improvements to the architecture and new research topics to be
investigated in the future.

3

Chapter 1. Introduction

4

2
Background

2.1 Introduction

The purpose of this thesis is to design a new kind of ALU that efficiently combines floating-point and
integer arithmetic/logic. Because arithmetic and logic are very different for binary floating-point and
integer operands, this is not easily achieved. One should have ample understanding of computer arith-
metic before undertaking such a task. In this chapter we introduce the reader to computer arithmetic
and in particular floating-point arithmetic.

2.2 Number Representation

If we are to perform arithmetic on integer and floating-point numbers, we first have to know how such
numbers are represented. In a purely mathematical sense, the possibilities for representing numbers are
endless. To illustrate this, Table 2.1 lists a few representations of the number 640.

What differentiates most of these representations is their base and their radix point. The base of a
numeral system is determined by the amount of unique symbols available for representation. Decimal
numbers for example, are all base-10 numbers. Ten unique symbols are used in decimal representation:
0,1,...,9. (A subscript often indicates the base of a number, e.g., decimal 640 becomes 640d). In the
binary numeral system, only two unique symbols are used: zero and one (0 and 1). Since fewer unique
symbols are used, the string of symbols automatically becomes longer. The radix point is the symbol

Format Representation
Decimal (3 significant numbers) 640
Decimal (5 significant numbers) 640.00
Scientific Notation 0.64× 103

Scientific Notation Normalized 6.4× 102

Binary 1010000000

Binary Coded Decimal 0110 0100 0000

Octal 1200
Hexadecimal 280

Table 2.1: A selection of representations for the number 640

5

Chapter 2. Background

Decimal Sign-Magnitude Two’s Complement
Representation Representation Representation

+4 0100 0100

+3 0011 0011

+2 0010 0010

+1 0001 0001

+0 0000 0000

-0 1000 0000

-1 1001 1111

-2 1010 1110

-3 1011 1101

-4 1100 1100

Table 2.2: Sign-magnitude and two’s complement representation

used to separate the integer part from the fractional part.

The most relevant representation in digital computers is binary. In the binary numeral system, we usually
assume that strings of 0’s and 1’s represent natural numbers (0,1,2,...). For example, the decimal number
136 is represented in binary by the string 10001000. However, if we also consider negative numbers,
the same string could be interpreted as -8. There are several conventions to represent binary signed
numbers. The most intuitive representation is sign magnitude. In sign magnitude representation, the
most significant bit (MSB) determines the sign of the number. A 1 often means negative while 0 means
positive. The remaining bits determine the magnitude (absolute value) of the number. There are two
drawbacks to sign-magnitude representation. One is that for addition and subtraction the sign-bits need
to be taken into account explicitly, the other is that there are two possible representations for zero (+0
and −0). The latter is not very convenient because is makes testing for zero slightly more complex and
when a result is exactly zero, it is ambiguous whether it should be +0 or −0.

Because of these drawbacks, sign-magnitude is not often used for binary arithmetic. More common is
the two’s complement notation. A formal expression [4] for n-bit two’s complement numbers is

−2n−1an−1 +

n−2∑
i=0

2iai

where n indicates the index of the bits 1. For positive numbers, the term an−1 is zero, so all positive
numbers in two’s complement are exactly the same as in sign magnitude representation. Negative
numbers on the other hand, are quite different and require slightly more effort to derive. An easy
procedure to obtain the two’s complement form of a certain negative number is to use one’s complement
as an intermediate step. To find the one’s complement representation of a binary number, all bits
simple need to be inverted. The two’s complement is then obtained by incrementation and ignoring
the carry-out. Table 2.2 provides an overview of the first four positive and negative numbers in sign
magnitude and two’s complement notation. The biggest advantage of two’s complement notation is that
the logic needed to perform arithmetic on it is much simpler than for a sign magnitude representation.
The drawbacks of of the unbalanced range and the additional complexity of comparing numbers are
significantly outweighed by the simplicity of implementing of two’s complement arithmetic.

Note that with the number representations that were mentioned so far, we are limited to integers
(0,1,2,...). It is not possible to represent a fraction like 3/2 (1.5). This limitation can be overcome
by redefining the binary string, such that somewhere in the string an imaginary point is present: the

1Assuming big-endian notation

6

2.3. Floating-Point Numbers

0

Significand

31 30 22

ExponentSign

Figure 2.1: IEEE-754 single precision (32-bit) floating-point word

radix point. For binary numeral systems, this is called fixed-point notation. Formally a fixed-point no-
tation is defined as a fixed number of digits to the left of a the radix point and a fixed number of digits
right of the radix point. Such a representation strongly depends on the base. Representing numbers
in base-10 fixed-point notation happens naturally for humans. If we want to represent 5/4, we almost
automatically write down 1.25. Formally this result is derived by: 1 × 100 + 2 × 10−1 + 5 × 10−2 =
1 + 0.2 + 0.05 = 1.25. For binary fixed-point, the same principle applies. The number 5/4 is represented
by 1.01 (1× 20 + 0× 2−1 + 1× 2−2).

With fixed-point notation it is possible to represent fractions. In the example shown, the fraction had an
exact decimal and binary equivalent. This is however not always the case. Often we can not find a finite,
exact, representation for a number using fixed-point notation (e.g., 1/3). This is a fundamental problem
for which there is no real solution, only approximations. Another problem is that the range of fixed-point
numbers is severely limited. Because the number of bits before and after the radix point is fixed, it is
difficult to represent very large numbers and very small numbers at the same time. The same problem is
also present in the the decimal numeral system. The scientific notation is used to overcome this issue. A
large number like 136, 000, 000, 000 becomes 1.36×1011 and a small number like 0.000000000136 becomes
1.36× 10−10. The number of symbols used for scientific notation is significantly smaller. When a similar
notation is used for binary numbers, we speak of floating-point numbers.

2.3 Floating-Point Numbers

A floating-point number is of the form:

±S× B±e

where
S is called the significand (or mantissa)
B the base of the numeral system
e the exponent

Because the base of a floating-point representation is the same for every number, it does not have to be
stored. Figure 2.1 shows a typical 32-bit floating-point word. This is the format used in the IEEE-754
standard for floating-point arithmetic, which will be discussed in more detail later. The leftmost bit is
the sign-bit, a 0 is for positive and a 1 for negative. The next eight bits are used for the exponent. Most
(modern) floating-point formats use a biased exponent. This means that a constant number is added
to the true exponent value, such that there is no need for a representation of negative numbers. In a
base-2 floating-point format, the bias of a k -bit exponent typically equals (2k−1) or (2k−1 − 1). The
last segment of 23 bits is used to store the fraction. Although this part is often referred to as mantissa,
Blaauw and Brooks point out in [5] that formally the mantissa is the logarithm of the significand. In
this text we will refer to the fraction as the significand, which is encouraged by IEEE.

The name floating-point is derived from the fact that the radix point can be placed anywhere relative to
the base. In most cases the radix point is located after the most significant bit of the significand:

7

Chapter 2. Background

±s.sss· · ·s× 2±e

To simplify floating-point operations, the significand is almost always normalized. A normalized number
is a number whose most significant bit is not a zero. In a binary representation, this means that the first
bit is always 1. A significand like this can only represent numbers in the interval [1,2). It is therefore not
necessary to store the first bit, it can be made implicit. As a consequence, the precision of the significand
can be increased by one bit. On the other hand, denormalized numbers linearly fill the gap between
zero and the smallest normalized number. Much smaller numbers can be represented if denormalized
numbers are allowed. This allows calculations to gradually converge to zero instead of the sudden drop
observed with normalized numbers.

Considering the properties mentioned above, the range of the floating-point numbers that can represented
is easily determined. For example, the IEEE-754 single precision floating-point format has the following
ranges:

Negative numbers: −(2− 2−23)× 2127 to −2−126

Positive numbers: 2−126 to (2− 2−23)× 2127

This shows that floating-point numbers are very well capable of representing number with great precision
over long ranges (unlike fixed-point). The smallest positive number follows from the smallest significand
(1.000· · · 0) combined with the smallest exponent (-126). The largest positive number is determined by
the the largest significand (1.111· · · 0) and the largest exponent (127). Note that the exponent ranges
from -126 to 127 due to the bias 127 notation. Despite these large ranges, there are numbers that can
not be represented. These number can be categorized in four regions:

1. Negative overflow: every negative number below −(2− 2−23)× 2127

2. Negative underflow: every negative number above −2−126

3. Positive overflow: every positive number above (2− 2−23)× 2127

4. Positive underflow: every positive number below 2−126

Most floating-point formats have reserved bit patterns to represent numbers from these categories. Un-
derflow is often approximated by zero (all 0’s) while overflow is represented by ±∞ (all 1’s). Exceptional
cases such as

√
−1 are symbolized by tot-a-number (NaN). Table 2.5 lists all floating-point encodings

used in IEEE-754 format.

Note that there is a trade-off between precision and range. When more bits are used for the significand,
the floating-point number will be more accurate. However, because only a limited amount of numbers
can be represented in 32-bits, the range of numbers will decrease. The other way around results in more
range but less accurate numbers. The only way to increase both accuracy and range is to use more bits.
This is why a lot of floating-point units implement double (and in some cases even quadruple) precision
in addition to single precision.

2.4 Floating-Point Number Representation

The floating-point example shown in the previous section is only one of many in existence. Most processor
architectures used to have their own floating-point format. Manufacturers such as IBM, HP, DEC
and Cray have all used proprietary floating-point formats in the past, severely limiting portability of
programs depending on floating-point arithmetic. Today, almost all floating-point arithmetic is based
on the IEEE-754 standard for floating-point arithmetic [6]. This standard was conceived from many
years of experience. The influence of legacy floating-point arithmetic can still be found in IEEE-754. For
example the formats used by IBM and Cray.

8

2.5. The IEEE-754 Standard for Binary Floating-Point Arithmetic

2.4.1 IBM Floating-Point Numbers

IBM has used more than one floating-point representation in the past. Their most noteworthy being
the System/360 floating-point format. In this format a single precision binary floating-point number is
stored in a 32-bit word. The first bit is used as a sign-bit followed by a 7-bit bias-64 (2k−1) exponent and
a 24-bit significand. What really sets aside the IBM format from the others, is that it uses a hexadecimal
base for the exponent.

The advantage of base-16, and any large base in general, is that less alignment and normalization is
required (Section 2.6). The drawback is that a larger base results in less precision.

2.4.2 Cray Floating-Point Numbers

Another influential format is the one used in the Cray-1 machines. The most notable difference between
Cray and IBM formats is the increased precision and the binary base. The smallest Cray floating-point
representation requires 64 bits (the same amount used by the double precision IBM representation).
Floating-point numbers in Cray machines are by default twice as large as in IBM machines. The philos-
ophy of Cray floating-point arithmetic is that with such large numbers, the occurrence of overflow and
underflow is minimized. Obviously, this approach is very costly in terms of area.

Just like IBM, Cray switched to the IEEE-754 format. An interesting observation that can be made is
that Cray still holds on to their original philosophy. Modern Cray computers use 64-bit floating-point
operations by default. In most other architectures this corresponds to double precision where single
precision is the default.

2.5 The IEEE-754 Standard for Binary Floating-Point Arith-
metic

The IEEE-754 Standard for Binary Floating-Point Arithmetic [6] was introduced in 1985 with the goal
to improve the portability of floating-point computations. Virtually all contemporary modern processors
and co-processors support IEEE-754, making floating-point units highly compatible as opposed to the
IBM and Cray formats that were discussed. The standard can be implemented in hardware or software
(or a combination of both) as long as the result are guaranteed to adhere to the rules defined in [6].
The IEEE-754 standard for floating-point arithmetic defines much more than just the representation of
numbers. The most important aspects are enumerated below. In the remainder of this section we will
discuss the aspects of IEEE-754 standard in more detail, because a lot of work presented in this thesis
deals with this floating-point format.

• Arithmetic (interchange) formats - binary (and decimal) floating-point data
• Operations - operations applicable to arithmetic formats
• Rounding - rounding arithmetic results
• Exceptions - exceptional conditions occurring during arithmetic

Arithmetic Formats

The format that IEEE has chosen consists of a signed significand and a biased exponent. The format is
radix independent but only binary and decimal are officially defined in [6]. The first IEEE-754 definition
included single, double and quadruple precision for the binary format, and single and double precision
for the decimal format. Since 2008, half precision is also part of the standard. Custom precision formats

9

Chapter 2. Background

Precision Significand (+hidden-bit) Exponent (bits) Bias
Binary
half (16-bit) 11 5 15
single (32-bit) 24 8 127
double (64-bit) 53 11 1023
quadruple (128-bit) 113 15 16383
custom (k-bit, k≥128) k - round(4×log2(k)) + 13 * round(4×log2(k))− 13 2(k−s−1)-1 **

Precision (decimal digits) Exponent (decimal digits) Bias
Decimal
single (32-bit) 7 11 101
double (64-bit) 16 13 398
quadruple (128-bit) 34 17 6176
custom (k-bit, k≥32) 9×(k/32) -2 k/16 + 9 3×2k/16+3+s-2
* The round function rounds to the nearest integer.
** s is the significand width.

Table 2.3: Segmentation of the different formats described by IEEE-754

are also allowed. However, a certain ratio between exponent and significand has to be maintained. Any
multiple of 32 bits can however be used. The segmentation of the different allowed floating-point words
is shown in Table 2.3.

Figure 2.2(a) and 2.2(b) show the single and double precision binary floating-point numbers respectively
(by far the most widely used representations). The IEEE-754 format includes an implicit (hidden) bit
before the imaginary radix point. Due to normalization, the MSB of every floating-point number is
always 1. By not explicitly storing this bit, the precision can be increased from 23 to 24 (or 52 to 53)
bits. For the exponent, a (2k−1)− 1 bias was chosen.

Operations

IEEE-754 goes further than just specifying the formats for floating-point numbers. Most arithmetic
operations and rounding algorithms are also specified. This does not concern implementation details but
rather the behavior. Below a short list of the most important operation is shown. We do not go into
detail here.

• Arithmetic operation (e.g., add, subtract and multiply)
• Precision conversion (e.g., double to single precision)
• Scaling and quantizing

Exponent Significand

7 bits 23 bits

(a) Single precision

Exponent Significand

11 bits 52 bits

(b) Double precision

Figure 2.2: Common IEEE-754 floating-point words

10

2.6. Floating-Point Arithmetic

Mode Description

Round toward nearest, ties to even Rounds toward the nearest value, if the number
falls midway it is rounded to the nearest even
value (LSB of 0)

Round toward nearest, ties away from zero Rounds to the nearest value, if the number falls
midway it is rounded to the nearest larger value
(for positive numbers) or smaller (for negative
numbers)

Round toward 0 Rounds toward zero (i.e., truncation)
Round toward +∞ Rounds toward positive infinity
Round toward -∞ Rounds toward negative infinity

Table 2.4: IEEE-754 rounding modes

• Copying and manipulating signs bits
• Comparisons and ordering
• Classification and testing for exceptions
• Testing and setting flags
• Miscellaneous operations.

Rounding

It was already mentioned that most arithmetic operations do not result in a number that can be repre-
sented exactly. In such cases the result needs to be rounded to a number that can be represented in a
given format. The IEEE-754 standard defines five rounding algorithms, listed in Table 2.4.

The most popular mode is round toward nearest, ties to even. This rounding mode generally introduces
the smallest error as the result of round toward nearest is the number closest to the exact value. However,
certain applications such as interval arithmetic perform better on simpler rounding mode like round
toward zero. For this reason IEEE-754 includes directed rounding modes as well.

Exceptions

When exceptions occur, they need to be handled as described in the standard. The minimum required
action taken is status bit flagging. The five exceptions covered by the standard are:

• Invalid operation
• Division by zero
• Overflow
• Underflow
• Inexactness.

Most of these exceptions require a unique representation. In IEEE-754 certain bit-patterns are reserved
for these exceptional cases. Table 2.5 lists all possible bit patterns that can be expected in a 32-bit
(single precision) floating-point result, and how they should be interpreted.

2.6 Floating-Point Arithmetic

Now that number representation has been discussed, we can focus on arithmetic. We assume that the
reader is familiar with integer arithmetic, if not then [7, 4, 8] provide good starting points. Here, we

11

Chapter 2. Background

focus on basic floating-point arithmetic only.

Floating-point arithmetic is considerably more complex than integer arithmetic. We will limit our dis-
cussion to the three most basic floating-point arithmetic operations: addition/subtraction, multiplication
and division. In addition, we give attention to rounding which is mandatory for most arithmetic opera-
tions. The objective is not to provide the most efficient algorithms or give an exhaustive overview of all
floating-point arithmetic, but rather to show the complexity involved in computations with floating-point
numbers.

2.6.1 Floating-Point Addition/Subtraction

In contrast to integer arithmetic, addition and subtraction are more complicated than multiplication and
division. This is best shown by example. Suppose we want to add 2.01× 1012 and 1.33× 109.

2.01× 1012

1.33× 109
+

This immediately shows why floating-point addition is not straightforward. The exponents first need to be
equalized before the fractions can be added. There are two possible ways to do this. The largest exponent
can be decremented or the smallest exponent can be incremented. The consequence of decrementing the
larger exponent is that the radix point of the fraction needs to be shifted to the right. Incrementing
the smaller exponent requires shifting the radix point to the left. Assuming that a finite number of
digits is used, this mean loss of precision. Left-shifting the fraction affects the MSBs of the fraction and
right-shifting the LSBs. Loss of MSBs is most problematic, hence left-shifting is most undesirable. For
this reason, the smaller exponent is usually incremented.

2.01× 1012

0.00133× 1012
+

When precision is assumed to be infinite, the result of this addition is 2.01133 × 1012. However, in a
more realistic scenario, only a finite number of digits is used. If for example only three digits are used

Interpretation Sign Biased Exponent Significand
Positive zero 0 0 (all 0’s) 0 (all 0’s)
Negative zero 1 0 (all 0’s) -0 (all 0’s)
Plus infinity 0 255 (all 1’s) ∞ (all 0’s)
Minus infinity 1 255 (all 1’s) -∞ (all 0’s)
Quiet NaN - 255 (all 1’s) NaN (non-zero)
Signaling NaN - 255 (all 1’s) NaN (non-zero)
Positive nonzero (normalized) 0 any number 1.any number
Negative nonzero (normalized) 1 any number 1.any number
Positive nonzero (denormalized) 0 0 (all 0’s) 0.any number
Negative nonzero (denormalized) 1 0 (all 0’s) 0.any number

Table 2.5: Interpretation of the IEEE-754 format

12

2.6. Floating-Point Arithmetic

to represent the fraction in the example above, the result becomes 2.01 × 1012. The last three bits are
truncated. In this particular example the result is already normalized and needs no further processing.
Often this is not the case. Assume a certain intermediate result of 0.0201 × 1010. To normalize this
number, the first non-zero digit (2) needs to occupy the first position of the fraction. This means the
fraction needs to be shifter to the left twice, and the exponent incremented twice as well.

The most basic algorithm for floating-point addition and subtraction can be described by the exact same
actions shown in this example. From a highly simplified point of view, the algorithm can indeed roughly
be divided into three phases.

1. Aligning significands
2. Adding/Subtracting significands
3. Normalizing the result

Overflow and underflow occurrences are quite frequent: any of the three pases can result in overflow or
underflow. In some cases overflows and underflows can even be triggered without actual overflow/un-
derflow occurring. These cases have to be detected and compensated. In addition problems can arise
due to zero operands being used. This illustrates that floating-point addition/subtraction is much more
complex than often thought.

Using Algorithm 2.6.1, addition and subtraction is explored more thoroughly. The input of this algorithm
is assumed to be formatted according to Table 2.3. For every operand N, the exponent is indicated by
Ne, the significand by Ns and the sign by Nsign. Also, before any operation starts, the hidden-bits must
first be made explicit.

The initial steps of the implementation are preparatory. Addition can be turned into subtraction by
inverting the sign-bit of the subtrahend (operand B). If one of the two operands is zero, the result simply
equals the other operand. In such cases, the algorithm simply halts and returns the value of the other
operand. If the result is not zero, the next step is to align the exponents such that they equal.

The decimal example already showed that shifting to the right is preferred over shifting to the left because
the loss involved in right-shifting is less severe than left-shifting. Alignment is achieved by repeatedly
shifting the significand of the smallest number one digit to the right and incrementing the exponent
until the exponents are equal. If this result in the smallest operand becoming zero, the other operand is
returned.

When the exponents are equal, the significands can be added. The actual addition is the same as for
integers. The result may overflow due to this addition. This can be corrected by shifting the significand
to the right and incrementing the exponent. If the exponent also overflows, the result truly overflows
and an exception occurs. Exponent overflow can not be corrected, hence the overflow condition must be
reported and the algorithm halts.

The final step is to normalize the result. Normalization is almost the opposite of the alignment. The
significand is shifted to the left until the first digit is no longer a zero. The exponent is decremented
each time the significand shifts a position to the left. Due to the shifting process, underflow may occur
in the exponent. Underflow can not be corrected and should be reported. If no underflow occurs, the
number can be rounded and the final result returned. Rounding is postponed to the very last moment
to minimize its effect on the precision of the result. Rounding itself will be discussed in Section 6.7.

2.6.2 Floating-Point Multiplication

Floating-point multiplication and division are much simpler than addition/subtraction. Let us first look
at multiplication. In decimal scientific notation two numbers are multiplied by adding the exponents and
multiplying the fractions. For example, 2.01×1012 multiplied by 1.33×109 equals (2.01×1.33) ×10(9+12)

= 2.6733×1021. The algorithm for floating-point multiplication, which is based on this principle, is shown

13

Chapter 2. Background

Algorithm 2.6.1 Floating-point addition/subtraction

Input: Normalized floating-point operands: A, B
Output: Normalized floating-point result of A-B: Result

1: if opcode = subtract then
2: Bsign = not(Bsign)
3: end if
4: if A = 0 then
5: Result ← B
6: halt
7: else if B = 0 then
8: Result ← A
9: halt

10: else if Ae 6= Be then
11: “Designate smaller exponent operand as N1 and the other as N2”
12: while N1e 6= N2e do
13: Increment N1e
14: Right-shift N1s
15: if N1s = 0 then
16: Result ← N2
17: halt
18: end if
19: end while
20: end if
21: Results ← As + Bs
22: if Results = 0 then
23: Result ← 0
24: halt
25: else if Rs overflows then
26: Right-shift Rs

27: Increment Re

28: if Re overflows then
29: Report overflow
30: halt
31: end if
32: end if
33: while Results is not normalized do
34: Left-shift Results
35: Decrement Resulte
36: if Resulte underflows then
37: Report underflow
38: halt
39: end if
40: end while
41: Round Result
42: halt

14

2.6. Floating-Point Arithmetic

in Algorithm 2.6.2. The pre-conditions for addition/subtraction also hold for multiplication. We assume
that the input is of the normalized IEEE format and that the hidden-bit has been made explicit.

First the operands are checked for zero. If either of the two is zero, the result immediately becomes zero
and the algorithm halts. The exponents are added in the next step. Because both exponents are biased,
the bias accumulates when exponents are added. To compensate for the extra bias addition, the bias is
subtracted from the resulting exponent again. After subtraction, the result is checked for overflow and
underflow. If one of these exceptions is detected, this will be reported and the algorithm halts.

If the exponent is still within range, the significands can be multiplied. This multiplication is performed
the same way as for integers. In sign-magnitude only the magnitudes need to be multiplied (the sign
is simply the XOR of the two input signs), However, the multiplication can also be performed in two’s
complement notation for better performance (Chapter 5). In both cases, the product will be at least
double the length of the input operands. These extra bits are dropped in the rounding stage. The
multiplication is followed by the normalization and rounding steps as described for addition/subtraction.

Algorithm 2.6.2 Floating-point multiplication

Input: Normalized floating-point operands: A, B
Output: Normalized floating-point result of A×B: Result

1: if Ae = 0 OR Be = 0 then
2: Result ← 0
3: halt
4: else
5: Resulte ← Ae + Be
6: Resulte ← Resulte - bias
7: if Resulte overflows then
8: Report overflow
9: halt

10: else if Resulte underflows then
11: Report underflow
12: halt
13: else
14: Results ← As × Bs
15: while Results is not normalized do
16: Left-shift Results
17: Decrement Resulte
18: if Resulte underflows then
19: Report underflow
20: halt
21: end if
22: end while
23: Round Result
24: halt
25: end if
26: end if

2.6.3 Floating-Point Division

The division algorithm (Algorithm 2.6.3) is very similar to multiplication. However, instead of adding
the exponents, they are subtracted and instead of multiplying the fractions they are divided.

The first step is testing for zero again. If the divisor is zero, an error occurs (division by zero) and
result is asserted to NaN. Some non-IEEE implementations may set the result to infinity instead. If the

15

Chapter 2. Background

dividend is zero then the result automatically also becomes zero. In the next step, the divisor exponent
is subtracted from the dividend exponent. The bias accumulation must be compensated again.

The result is tested for underflow and overflow, and when applicable an exception is raised. If no
exceptions occur, the dividend significant is divided by the divisor significand. The final steps are again
normalization and rounding.

Algorithm 2.6.3 Floating-point division

Input: Normalized floating-point operands: A, B
Output: Normalized floating-point result of A/B: Result

1: if Ae = 0 then
2: Result ← 0
3: halt
4: else if Be = 0 then
5: Result ← NaN
6: halt
7: else
8: Resulte ← Ae - Be
9: Resulte ← Resulte - bias

10: if Resulte overflows then
11: Report overflow
12: halt
13: else if Resulte underflows then
14: Report underflow
15: halt
16: else
17: Results ← As / Bs
18: while Results is not normalized do
19: Left-shift Results
20: Decrement Resulte
21: if Resulte underflows then
22: Report underflow
23: halt
24: end if
25: end while
26: Round Result
27: halt
28: end if
29: end if

2.6.4 Multiply-Accumulate

Multiplication and addition are sometimes combined to a single operation called multiply-accumulate.
Certain applications (e.g., matrix multiplication) perform this operation so often that it is worthwhile
to implement the operation in hardware. Such multiply-accumulate (MAC) units are for example of-
ten found in digital signal processors. Multiply-accumulate can also be implemented for floating-point
numbers. When floating-point multiplication and addition are combined with only a single rounding
operation, we speak of FMA. FMA not only offers improved performance, the precision also increases
due to the elimination of a rounding operation.

16

2.6. Floating-Point Arithmetic

2.6.5 Rounding

Because floating-point numbers have to be represented in a finite number of digits, there is only a limited
amount of numbers within a certain range that can be represented. Most numbers can therefore not be
represented exactly, such that rounding is required to find the closest possible representation.

As the exponent of floating-point numbers increases, so does the space between the two closest repre-
sentable numbers. This means that numbers closer to zero can be represented more accurately than num-
bers further away from zero. For example the first number after 1.11110×21 (1.9375d) is 1.11111×21

(1.96875d), a difference of 0.03125d. The difference between 1.11110 ×25 (62d) and 1.11111×25 (63d)
is already 1.0d.

The above emphasizes that inexactness is almost inherent in floating-point arithmetic. It is therefore
important to have a means of measuring this error. Consider a decimal floating-point format with a
precision of three digits. If the result of an arbitrary operation is 3.12 × 10−1 and the result of an
infinite precise computation is 0.314159, it is common practice to identify the error as 2 units in the last
place (ULP). Similarly, if the ‘exact’ number 0.0314159 is represented by 3.14× 10−2, then the error is
0.159 ULP. When floating-point format s.ss· · ·ss × βe is used to represent an arbitrary number n, the
the inexact error [9] is measured by:

∣∣∣s.ss· · ·ss− (nβe)
∣∣∣× βp−1

where
β is the base of the floating-point format
e the exponent
p the precision

To improve arithmetic precision, operations are often performed with more precision than the register
formats provide (i.e., when 23 bits are used to store the significand, arithmetic is performed with 25-bit
precision). IBM (Section 2.4.1) already introduced the guard-bit with their System/360. A single bit to
the right of the LSB was used to store the last bit that is shifted out during alignment of two exponents.
All computations performed with one addition bit of significance, produce surprisingly more accurate
results.

The importance of a guard-bit can easily be demonstrated with a small example. Suppose two floating-
point numbers that are close in value are to be subtracted. For example 1.00000×21− 1.11111×20

(2d − 1.96875d).

1.00000× 21

1.11111× 20
−

To subtract the smaller number from the other, it must be shifted to the right.

1.00000× 21

0.11111× 21

0.00001× 21
−

17

Chapter 2. Background

One bit of significance is now lost. The loss in precision (cancellation) can become so large, that every
digit of the result becomes meaningless. After normalization, this example results in 1.00000 ×2−4. Let
us now compare this result with an infinitely precise computation. The 6-bit restricted example yielded
0.0625d. If it would have been performed with infinite precision, the result would have been 2d - 1.96875d
= 0.03125d. The error that is introduced here is 100% (1 ULP). Now we perform the same computation
with one guard-bit.

1.00000 0× 21

0.11111 1× 21

0.00000 1× 21
−

The result is now 0.00000 1×21, which is 0.03125d. Notice that this is precisely the result we got from
performing the subtraction with infinite precision. In this case, the guard-bit completely eliminates the
inexact error. Unfortunately this is not always the case. If however, two guard bits and a sticky-bit
are used in conjunction, results can be computed as if they were infinitely precise and then rounded [9].
The sticky-bit is called ‘sticky’ because once this bit becomes 1 during alignment, it keeps this value.
IEEE-754 requires that operations are performed as if they are infinitely precise. Hence, the majority
of IEEE-754 compatible floating-point units maintain two guard bits (a guard-bit and a round-bit) and
compute a sticky-bit for rounding.

The additional bits must be disposed of before the result is written back to memory. This is achieved
by actual rounding. We already mentioned that there are several rounding policies that can be applied
for IEEE-754 compatible rounding. Based on such a policy, the intermediate result is either incremented
and truncated or just truncated. Rounding routines using guard, round and stick bits, perform pattern
matching to implement these IEEE-754 policies. The patterns to be found in the guard round and sticky
bits can be derived from analyzing inexactness.

For round to nearest this means that if the bits to the right of the LSB of the normalized result have
weight > 1

2 ULP (101 or 110), the result is rounded up. If the bits have have weight < 1
2 ULP, the

result is rounded down. When the bits are exactly 1
2 ULP the result must be rounded to the nearest

even number. For round to zero, only truncation is applied. Note that this requires the least amount of
processing. Some floating-point units only implement round to zero because this considerably simplifies
the rounding stage, allowing higher clock frequencies. In Chapter 5, the implementation of the different
IEEE-754 rounding algorithms is explained more thoroughly.

2.7 Summary

The basic algorithms for floating-point arithmetic have been shown in a simplified form. From this
it should have become clear that although floating-point arithmetic is much more complicated than
integer arithmetic, the essence is similar. The operations performed on the significand are the same
as performed on integers. Combining integer and floating-point operations on a single datapath, seems
therefore a promising solution for area and energy critical hardware platforms. In the next chapters we
investigate how this idea can be realized efficiently (in particular for FMA).

18

3
Related Work

3.1 Introduction

Since the first floating-point capable computer was completed by Konrad Zuse in 1938, much has changed
in the field of floating-point arithmetic. Zuse’s first design, the Z1 [10], was a mechanical system based
on sliding metal parts. This electrically driven machine was capable of 22-bit binary floating-point
arithmetic (add, subtract, multiply, divide) at a speed of 1 Hz. Its first noteworthy successor, the
Z4, was completed shortly after the discovery of digital electronic circuits. Although this meant the
transition to semiconductor technology had been made, the machine still had the the dimensions of a
cabinet and consumed several kilowatts of power. Due to extensive research and continuous improvements
in manufacturing technology, the size of floating-point units (and digital computers in general) has been
brought back to the order of square millimeters. At the same time computational performance has
increased almost linearly over time.

Another remarkable observation is that over the course of time, floating-point interests have changed
considerably. When digital electronic computers first appeared, most effort was put into optimizing
performance and throughput of floating-point units. More recently, area and energy efficient solutions
are are gaining interest. The cost and area of integrated circuits (ICs) has scaled down far enough to start
considering using floating-point units for more area and energy critical applications such as an embedded
system. We can see a clear trend in recent publications putting more emphasis on area reduction and
minimizing energy consumption. Migration of integer functionality to floating-point units is a concept
that perfectly fits this trend. Yet, the research devoted to this idea is still very limited.

In this chapter we first compare three different floating-point units to obtain ample understanding of
the basic mechanisms used in contemporary floating-point units. The architectures and concepts of
the UltraSparc T2, the Intel Itanium and Cell processors are explored. Their architectures and design
principles serve as a base for an efficient floating-point datapath. We also shortly discuss a technique
called ‘dual path’ adders which we decided not to use due to a tight area budget. These adders could be
considered for further optimization if the area requirement is reduced. We conclude by a short overview
of what has already been done to integrate floating-point and integer arithmetic in a single ALU.

19

Chapter 3. Related Work

3.2 The UltraSparc T2 Floating-Point Unit

The UltraSparc T2 processor is a multi-core, multi-threaded microprocessor introduced by Sun Mi-
crosystems in 2007. Because it is a modern processor that still employs a rather classical approach
for floating-point arithmetic, we will shortly discuss its internal architecture to give an idea how many
conventional floating-point units are put together. The UltraSparc T2 has eight cores and supports eight
threads per core. Each core is equipped with one floating-point unit. This floating-point unit is fully
IEEE-754 compliant and implements double and single precision floating-point operations.

A simple overview of the UltraSparc T2 floating-point architecture is shown in Figure 3.1.

Instruction Fetch

256x64bit Register File
Load

Store

Integer
Source

Integer
Result V

IS
(S

IM
D

)

A
d

d
/M

u
l

D
iv

/S
q
rt

Figure 3.1: UltraSparc T2 floating-point architecture [11]

Most notable about this architecture is the clear distinction of instruction specific datapaths. Addition
and multiplication can for example clearly be differentiated from division and square root. To some
extend addition/subtraction and multiplication can also be seen as separate datapaths, however in the
UltraSparc T2 specifically, they are considered to be merged because they share some common hardware
components. The use of dedicated datapaths has been applied by computer architects for many years.
A floating-point unit consisted of a datapath for addition and subtraction, a datapath for multiplication,
for division and sometimes for square root and/or other instructions. More recently the FMA datapath
has appeared (Section 3.3), that is slowly gaining popularity over the classical approach shown here.
Despite the fact that addition and multiplication are performed on the same datapath, the UltraSparc
T2 does not support multiply-accumulate operations. Some other properties that are characteristic for
the UltraSparc T2 floating-point unit [11] are:

• A pipelined design that is focused on area and power reduction
• A partially merged floating-point add/subtract/multiply datapath
• Integer multiplication and division can use the floating-point datapath
• Single and double precision support in hardware
• Clock gated design for energy efficiency

Every floating-point instruction in the UltraSparc T2 is implemented in a pipelined fashion, except
for division and square root. A special combinatorial datapath is used for division and square root
instructions. Both instruction are non-blocking and have a fixed latency. However, when the datapath
is used for integer division the latency is variable.

20

3.2. The UltraSparc T2 Floating-Point Unit

3.2.1 Unified Addition and Multiplication Datapath (Add/Mul)

The main floating-point execution pipeline (Add/Mul) of the UltraSparc T2 is shown in Figure 3.2.
The amount of new terminology introduced can be overwhelming. In Chapter 5 the exact meaning of
each individual component will become clear. The purpose of Figure 3.2 is merely to show how the
pipeline stages of the UltraSparc’s floating-point unit are utilized. The pipeline consists of six stages and
is responsible for the execution of addition, subtraction, multiplication and non-arithmetic operations.
Because the UltraSparc T2 architecture supports only one instruction issue per clock cycle, there is no
need for spatially separated addition and multiplication datapaths. This property is exploited by using
parts of the addition/subtraction datapath for multiplication.

FcompAformat Bformat

B−A

Asignificand Bsignificand

Format
and

Booth
Recoder

Wallace
Tree

int2flt

LZD
SwapSwap

=

Small SignificandLarge Significand

+

Intermediate
Exponent

and
Shift Count

Exponent
Adjust

Normalize Round

Sum Format

LZD

Align

+

Ae Be

Figure 3.2: UltraSparc T2 addition/multiplication datapath [11]

Stage Add Multiply
1 Format input operands

Compare significands Booth encoding

2
Align operands Generate partial products
Invert smaller operand if subtract

Reduce partial products (Wallace tree)
3 Computer intermediate result (A+B)
4 Determine normalization shift amount Add partial products
5 Normalize and round
6 Format output

21

Chapter 3. Related Work

Addition

The first stage of the pipeline is mainly used to format the operands such that they can be processed
(e.g., normalization of denormalized input). Since the exponents must be equal before addition can start,
the second stage performs alignment of the significands, such that the exponents match. The UltraSparc
T2 always shifts the operand with the smallest exponent. The significands are swapped if needed. The
exponent logic that computes the shift count for the shifters is divided over the first two stages. During
alignment, guard bits are used to catch bits that are shifted out of range. Sticky-bit logic is used for bits
that are entirely discarded. After the operand has been shifted, it is inverted for subtraction.

The actual addition/subtraction is performed in stage three. The main adder in the UltraSparc is
a partitioned 64-bit adder (Section 3.2.3) that operates on the unmodified significand of the largest
operand and the aligned smallest operand. In case of subtraction, the inverted significand is added. To
support both single and double precision in the same datapath, an internal 64-bit representation is used
for all data (i.e., single precision is extended to double precision). After subtraction the result is inverted.

Multiplication

Multiplication immediately starts in the first stage of the pipeline. The multiplier in the UltraSparc T2
performs 64x64 bit multiplication. The multiplier is implemented as a combination of carry-save adders
(CSAs) in a Wallace tree organization with Booth encoding [12]. This involves two basic operations:
the generation of partial products, and the reduction of the partial products. The generation process
takes place in the first stage and reduction is distributed over stage two and three. Booth-4 encoding
reduces the number of partial products that have to be generated. The Wallace tree configuration of
CSAs accumulates the partial products to a 128-bit sum and a 128-bit carry. The sum and carry are
added using a regular carry-propagate adder.

Normalization and Rounding

After multiplication/addition, the process of post-normalization and rounding begins. Post-normalization
is achieved by shifting the mantissa left while decrementing the exponent until the first bit to the left
of the radix point becomes 1. In the UltraSparc T2, normalization is only required after addition or
subtraction. Because the UltraSparc T2 only accepts normalized input, the result of multiplication will
be either 01.-- or 10.--. In these cases, normalization is only a matter of shifting the result one position
to the left based on the value of the MSB. For subtraction or addition, the number of positions to be
shifted is determined in the leading zero detection (LZD) circuit in stage four. The result is encoded in
a 11-bit two’s complement control signal for the normalization shifter and exponent datapath.

Non-Arithmetic

Non-artithmetic instructions are implemented on the Add/Mul datapath. The list below show the
instruction that are supported and the hardware that is used for the respective operation.

• Compare exponent and significand (comparator)
• Convert from integer (shifter and adder)
• Convert to integer (shifter and adder)
• Convert double to single (adder)
• Convert single to double (adder)

22

3.2. The UltraSparc T2 Floating-Point Unit

3.2.2 Division and Square Root Datapath (Div/Sqrt)

The division and square root datapath implements both floating-point division and square root, as well as
integer division instructions, in a non-pipelined manner. Floating-point operations have a fixed latency,
19 cycles for single precision and 33 for double precision. For integer division the latency varies between
12 and 41 cycles. Additionally, for a number of instructions results can be determined without performing
actual calculations. Early completion is allowed to decrease overall latency. Given the fact that eight
threads share a single datapath, variable latencies are preferred over a fixed (longest) delay. The division
datapath is non-blocking with respect to the other two datapaths.

Even though floating-point division and square root have a dedicated datapath, the unified add/multiply
datapath is used to calculate the resulting sign and exponent. Under normal conditions, the unified
datapath is used to calculate the intermediate exponent for division or square root as if the instruction
was pipelined. The result is stored until the combinatorial datapath has finished, and both results can
be combined. Special cases are executed entirely on the unified add/multiply datapath. This occurs on
one of the following scenarios:

Division

• Either one or both sources are NaN
• Either one or both sources are infinity
• Either one or both sources are zero
• Either one or both sources are denormalized
• Overflow occurs, this is predetermined by hardware
• Underflow occurs, also predetermined by hardware

Square root

• The input is NaN
• The input is infinity
• The input is zero
• The input is denormalized
• The input is negative

3.2.3 VIS Datapath

The VIS datapath can be used for vectorized instructions (single instruction multiple data (SIMD)).
These instructions are mostly used to accelerate graphics (VIS 2.0 pixel formatting instructions). The
UltraSparc T2 uses partitioned adders and multipliers to provide the means for vector instructions. Since
these are outside the scope of this thesis, we will not go further into details. The VIS datapath is well
documented in [11].

3.2.4 Power Management

Power reduction in the UltraSparc T2 is achieved in two ways: clock gating and reduced switching
activity. Clock gating is applied to different clock domains. The first domain is the main clock signal.
When no instruction is executed in the floating-point datapath, the main clock is disabled to minimize
activity. The second and third domains are the add/multiply and devision datapaths. When the floating-
point unit performs addition, the division datapath is disabled and vice versa. Switching activity is
reduced by keeping large buses stable. For example the 64-bit data-out bus, that is held at a constant
value when the floating-point unit does not have to store data.

23

Chapter 3. Related Work

3.3 The Intel Itanium Floating-Point Architecture

The Itanium architecture (Figure 3.3) is the result of an attempt to change the de facto standard (x86)
in microprocessors. Because Moore’s law can not be maintained indefinitely, reduced instruction set
computer (RISC) processors, such as those based on the well-established x86 architecture, started to
show their limitations well over a decade ago. As a result, Intel and HP started a joint effort in 1998 to
develop a new processor architecture that could push performance beyond the limits of existing designs.
Focusing on parallelism and processing as many bits and instructions per clock cycle as possible, the
Itanium aims to replace RISC with very long instruction word (VLIW). Features such as a large set of
128×82-bit registers and the ability to execute multiple instructions per cycle characterize the Itanium
architecture. Itanium boasts a particularly powerful floating-point architecture.

The floating-point architecture of the Itanium [13, 14] is based on three objectives. First and foremost,
it was designed for high computational performance. This is accomplished by architectural features such
as pipelining, instruction parallelism and a particularly large register file. Secondly, high precision was
desired. Several high precision floating-point formats and very wide registers to support them provide
the means for high precision floating-point arithmetic. The last objective that Itanium wants to achieve
is full IEEE-754 compliance.

Branch

IP-relative
Prediction

Next
Address

L1I

TLB

L1I

Instruction

Cache

IP Relative Address

and Return Stack Buffer

Instruction

Streaming

Buffer

IA-32
Engine

L2I

TLB

Pattern

History

Instruction Buffer:
8 bundles (24 instructions)

P
ip

e
lin

e
C
o
n
t
r
o
l

F
lo

a
t
in

g
P
o
in

t
U
n
it

(
2
)

L2D

TLB

L2
Tags

L2

Cache

L3 Cache

&
System
Interface

Hardware

Page

Walker

Register Stack Engine

Scoreboard &
Hazard Detection

ALAT

(32 entries)

LID
Cache

Integer
ALU (6)

Instruction Decode and Dispersal

Integer Renamer

Integer

Register File

FP

Renamer

FP
Register File

Branch

Integer

&
Multi-Media

(6)

Prediction

Figure 3.3: Intel Itanium architecture [4]

3.3.1 IEEE-754 Compatible Floating-Point Arithmetic

Itanium floating-point instructions are fully compliant with the IEEE-754 standard. All rounding modes
have been implemented, a 64-bit floating-point status register keeps track of all five exceptions and all
mandatory and recommended operations have been implemented, either in hardware or software routines.

24

3.3. The Intel Itanium Floating-Point Architecture

Format Significand (bits) Exponent (bits)
IA-32 single precision 24 15
IA-32 double precision 53 15
IA-32 double extended precision 64 15
Full register single precision 24 17
Full register double precision 53 17
Full register double-extended precision 64 17
Single precision pair (SIMD) 24 8

Table 3.1: Intel Itanium floating-point formats

Floating-Point Representation

The Itanium architecture supports the standard IEEE-754 single and double precision formats as well
as several custom floating-point formats. The IA-32 format (a 15-bit exponent and a 24, 53 or 64-bit
significand), full register file format (a 17-bit exponent and a 24, 53 or 64-bit significand) that exploits
the full potential of the floating-point registers and a ‘single precision pair’ format for SIMD instructions
(an 8-bit exponent and a 24-bit significand). These formats, listed in Table 3.1, can be used freely by
compilers or assembly code writers. The format used for a given computation is determined by the
instruction. However, the custom formats can only be used for intermediate computations, they are not
available for high level numeric programmers. Only single, double and double-extended formats can be
stored in external memory.

Internally, every floating-point number is stored in 82-bit register format: a 64-bit significand and a
17-bit exponent. This is two more bits than minimally required for the highest possible precision. There
are several reasons to justify the two additional bits. Among them are the fact that overflow and
underflow can occur in intermediate results without the additional bits and the fact that denormalized
double-extended numbers require a 17-bit exponent.

3.3.2 Itanium Floating-Point Instructions

All operations from the IEEE-754 standard have a corresponding Itanium floating-point instruction. For
example:

fma.[pc].[sf].f1 = f3 f4 f2

where
fma is the operation (multiply-add)
pc is for precision control (single, double or other precision formats)
sf is for exception control (status field)
fi are the operand/result registers

The operation corresponding to this particular example is f1 ← f3×f4+f2 (multiply-accumulate or
multiply-add when speaking of floating-point operations). The multiply-add instruction is one of the
main features of the Itanium. The FMA architectures fuses multiply (A×B) and add (A+C) into a
single operation (A×B+C). The advantage is two-fold. Firstly the multiply-add instructions introduce
only one rounding error where the result of separate multiplication and addition would introduce two.
Secondly performance of multiply-accumulate operations is increased. Since MAC is among the most
frequently used instructions, FMA unit can be quite attractive. Increasingly more floating-point units
now include a FMA datapath. Sometimes FMA entirely replaces the classic addition and multiplication
datapath(s); Itanium is the prime example of this. Multiply-add is basically the only operation that has

25

Chapter 3. Related Work

been implemented directly in hardware. All other instruction are derived from, or implemented based
on multiply-add operations. For example the add instruction:

fadd.[pc].[sf].f1 = f3f2 (A×1+C)

where register f4 is replaced by a register with content (1.0)d
1, and the multiply instruction

fmpy.[pc].[sf].f1 = f3f4 (A×B+0)

where register f2 is substituted by a register with content (0.0)d.

Operations that are not direct derivatives of multiply-add (e.g., divide, square root, integer conversion
and remainder operations) are handled by software routines that are based on multiplications and addi-
tions. Division and square root for example, use the iterative Newton-Raphson approximation method.
A detailed described of these algorithms can be found in [14] and [13]. Two special instructions are avail-
able to make the first Newton-Raphson approximation. Floating-point reciprocal approximation (fcrpa),
which returns an 8-bit approximation of 1/B, and floating-point reciprocal square root approximation
(frsqrta) which returns an 8-bit approximation of 1/

√
|A|. A lookup table is used to find the actual

approximations. In special cases where operand A or B is zero, the instruction returns the result imme-
diately and clears a register that serves specifically these situations. In all other cases, both division and
square root operations need thirteen instructions to complete.

floating-point comparisons can be performed directly between numbers in register format, using the fcmp
instruction. Six comparison operations have been implemented directly in hardware.

= (eq) > (gt)
< (lt) ≥ (ge)

≤ (le) ? (unord) *

* unord (“unordered”) is a special IEEE re-
lation that is true if one or both operands
are NaN

The inverse (neq, nlt, nle, ngt, nge and ord) of these instructions has been implemented as pseudo-
operations. The remaining fourteen comparisons [6] specified in the IEEE standard can be performed as
combinations of these primary twelve.

3.3.3 Exception Handling

Itanium operations can signal all IEEE-754 defined exceptions plus a number of additional Intel specific
exceptions for denormal operands. Software assisted operations can also be signaled, but will not surface
to user level. These exceptions are automatically dealt with by the ‘Software Assistance handler’. The
status bits in the floating-point status register indicate the status of operations. These bits are sticky,
meaning that they need to be cleared explicitly after each exception occurrence.

Exceptions are often obstructions for portability because many exceptions are custom defined data struc-
tures. The Itanium has adopted the optional IEEE-754 floating-point filter that pre-processes the excep-
tion information before it is passed on to the user. This simplifies the task of exception handling because
the filter abstracts the user away from interpreting and decoding all system specific information.

1Register f0 is hardwired to +0.0 and f1 to +1.0 . Both are read-only registers.

26

3.4. The Vector Floating-Point Unit of the Cell Processor

3.3.4 Architecture

Unfortunately there is no detailed information available regarding the Itanium’s internal floating-point
hardware organization. Most likely due to the fact that it is a commercial product. However, from
Figure 3.3 we can deduce that the floating-point unit is a five stage pipelined design. Another known
fact is that the multiplier and adder are fused and that invariant registers are used to implement the
derivatives of the multiply-add instruction. This indicates that the multiplier or the adder are not
bypassed for add and multiply instructions, so that the instruction latency for multiplication and addition
is just as long as for full multiply-add. The architecture also provides the means for SIMD floating-
point instructions, which means that there are multiple floating-point cores present in a single Itanium
processor.

3.3.5 Failure to Success

Intel and HP intended the Itanium to set the new standard for microprocessors; first targeting the high-
end market and eventually the entire industry. The Itanium is however not as successful as Intel and
HP had hoped. This is partially due to the Itanium architecture being so different from the legacy x86
architecture. Most applications that predate the Itanium are not very compatible with its architecture.
They would first have be be adopted which requires either very sophisticated compilers or human effort.
Such compiler have proven to be notoriously hard to write and as such they do not always result in efficient
machine code. Manual modifications are usually too expensive such that Itanium is often ignored.

3.4 The Vector Floating-Point Unit of the Cell Processor

Like the Itanium, Cell is also the result of combined efforts. In the year 2000, Sony, IBM and Toshiba
started working on a new processor architecture. Five years later, the first generation Cell processors
were commercialized. Cell [15] is a multi-core design (Figure 3.4) that consists of a single Power PC
element (PPE) connected to a number of synergistic processing elements (SPEs) [16]. The ideology of
the Cell processor is that existing software can run on the more established architecture of the PPE,
while computational intensive applications can gradually be migrated to SPEs.

Each of the SPEs contains a floating-point unit. Mueller et al. present the floating-point unit of the
first generation Cell processors in [17]. This vector based floating-point unit supports 4-way SIMD
single precision instructions and 2-way SIMD double precision instructions. The Cell’s floating-point
architecture is based on separate single and double precision hardware, rather than a double precision
floating-point unit that also supports single precision instructions. The reason for this is that the Cell’s
major target applications, real-time 3D graphics and multimedia streaming, demand very high single
precision throughput. Since a double precision datapath does not meet these requirements, separate
datapaths are used: a highly optimized single precision datapath and a more conservative double precision
datapath.

3.4.1 Architecture

The floating-point unit of a SPE consists of a 128-bit frontend that provides the input, a 64-bit double
precision arithmetic core and four 32-bit single precision cores. The frontend can select from multiple
input sources, such as the register file or the result multiplexer. The primary set of operand registers
in the frontend feed the single precision cores, while a second set of operand registers is used for both
the double precision core and a ‘formatter’. The formatter is used for integer multiplication, conversion

27

Chapter 3. Related Work

Power Processor Element

(64-bit PowerPC)

I/O

I/O

Memory

Memory

SPE1

SPE2

SPE3

SPE4

SPE5

SPE6

SPE7

SPE8
E

lem
en

t
In

terco
n

n
ect

B
u

s

Controller Controller

ControllerController

Figure 3.4: Cell processor schematic

and interpolation. Every single precision core is a six stage pipelined FMA design, comparable to the
Itanium. The double precision core uses a nine stage pipeline.

3.4.2 Single Precision Floating-Point Core(s)

The class of instructions directly implemented in the single precision core is multiply-add. Division,
square-root and conversion between integer and floating-point numbers are implemented in software
routines, supported by hardware instructions for 1/A and 1/

√
|A| (the initial estimates). Further refine-

ment of this first approximation is achieved by exploiting the FMA architecture with Newton-Raphson
iterations. This shows that the floating-point unit of the Cell processor is quite similar to the one found
in the Itanium. Floating-point comparisons are executed on the Cell’s fixed-point unit.

Although the Cell’s single precision floating-point unit is based on the IEEE-754 standard, it considerably
deviates from the standard to improve performance. For example, denormalized numbers are forced to
zero and operands with exponent 255d are not treated as NaN or infinity because the meaning of NaN and
infinity is not particularly useful in most of the Cell’s target applications. Additionally, only the ‘round
to zero’ rounding mode is supported. This eliminates the need for sticky-bit computations and reduces
rounding to simple truncation. The speed up and area reduction of these optimizations is considerable,
however they are quite radical.

3.4.3 Double Precision Floating-Point Core

Just like the single precision case, double precision is based on IEEE-754, but not fully compliant with the
standard. Cell does not support double precision denormalized numbers or NaN arithmetic. However,
in contrast to the single precision case, the double precision floating-point core supports all rounding
modes. Therefore, a special converter provides a means of extending single precision to double precision
for single precision operations that require rounding modes other than ’round to zero’.

As mentioned earlier, double precision arithmetic is implemented in a 9-stage pipeline. The first three
cycles of the pipeline are reserved for the multiplier and alignment shifter. Stage four and five are used

28

3.4. The Vector Floating-Point Unit of the Cell Processor

Operands from Register File

Frontend

MultiplierAlign

Carry-Save Adder

LZA

Incrementer

Adder

Exponent
Adjust Normalize

S
at

u
ra

te

LZD

To Double

From Double

Precision Core

Precision Core

Figure 3.5: Cell single precision floating-point core

for leading zero anticipation (LZA), LZD and addition. Rounding and normalization is accomplished in
the remaining four cycles.

3.4.4 Cell’s Excellent Performance

The first generation of Cell processors runs at an impressive 3.2GHz, achieving a theoretical throughput
of 6.4 GFLOPS per SPE, or 25.6 GFLOPS per Cell processor. This kind of performance required some
very aggressive and radical optimizations. The most radical design choice being the removal of rounding.
Not only does this save an entire pipeline stage, also the sticky-bit logic can be omitted. Another
major contribution to the Cell’s high performance is the lack of denormalized number support. Every
denormalized number is forced to zero instead of being normalized, saving another pipeline stage. The
Cell architecture even incorporates special logic to boost adder carry propagation, which demonstrates
the amount of effort that was put into achieving this kind of performance. This performance excellence
is however not obtained solely at architectural level. A state-of-the-art high performance manufacturing
technique was used for realization of the processor and a lot transistor-level optimizations have been
applied to achieved an ideal fan-out.

3.4.5 Power Management

Since floating-point units are present in all of the Cell’s SPEs, their power consumption contributes to
the overall power consumption of the chip considerably. To reduce power consumption, clock gating is
applied. Clock gating is applied at three levels. At the highest level, the entire floating-point unit can
be disabled by means of the global clock signal. At pipeline level, the stages that do not contribute

29

Chapter 3. Related Work

Exponent Difference

Right Shift

LZA
Add

Left Shift

Right Shift

Add

Multiplexer

Close Path Far Path

(n positions)

(n positions)

&
LZD &

Round

Round
&

Normalize

& Swap

(1 position)

Exponent Difference
& Swap

Figure 3.6: Dual path floating-point adder [21]

to the execution of a valid instructions are deactivated. The last level is based on opcode and data-
depending clock gating control. Only the components within a pipeline stage that are actually needed
for the operation currently executed in that stage are active (e.g., the multiplier is disabled during add
operations).

3.5 Dual-Path Adders

We have seen three floating-point units that rely on different strategies. Although the Cell and Itanium
are among the most progressive and optimized solutions in existence, even more exotic ideas exist. The
‘dual-path’ floating-point adder is an example of such concepts. The idea of a ‘dual-path’ adder stems
from the observation that a full-length alignment shift (n-positions) and a full-length normalization shift
are mutually exclusive. In other words, if alignment requires a large shift then normalization does not and
vice versa. The dual-path adder, first introduced by Farmwald [18], exploits this property by splitting the
datapath for addition in two separate paths. The Close Path that is chosen when the difference between
the input exponents is zero or one, and the Far Path that is chosen when the difference is greater than
one.

The general structure for such a dual-path significand adder is shown in Figure 3.6. Instead of having
two large shifters in the critical path, there is now only one large shifter and a simpler ‘shift’ to move
the significand one position to the left or to the right. A dual-path architecture result in a considerable
amount of redundant hardware. However, since cancellation never happens in the Far path, leading zero
detection is not needed here. The latency reduction that can be achieved by this strategy is worthwhile.
Moreover, the dual-path approach has recently been investigated for application in FMA [19]. Although
the performance results are promising, the penalty is that the area increases up to approximately 45%
[20]. Dual-path addition is not used in the ALU we designed for this thesis. It could however be a useful
addition to the architecture if higher throughput is desired and area is on a less tight budget.

30

3.6. Combining Integer and Floating-Point Arithmetic

3.6 Combining Integer and Floating-Point Arithmetic

The concept of mapping integer functionality to floating-point hardware is not entirely new. In the
UltraSparc T2 we have seen that integer multiplication can be performed on the floating-point multiplier
and division on the floating-point divider. Similarly the Cell SPEs supports some integer operations by
pre-formatting the input in the frontend of the floating-point unit. In both cases, the effect that additional
integer functionality has on the floating-point datapath is poorly described. Most architectures capable
of performing both integer and floating-point arithmetic on a single datapath are patented and therefore
closed for public. However, although being scarce, there is published work that discussed the possibilities
and advantages of this concept.

The potential of combined integer/floating-point units is for example recognized by Palacharla and
Smith. In [22] they conduct a feasibility research and indicate what integer operation can be migrated
to a modified floating-point architecture. Their conclusion is that that approximately 40% of the com-
mon integer instructions can be offloaded to a standard floating-point unit. The instructions they find
suitable for execution of floating-point hardware include addition, subtraction, shifts and other simple
logical operations. Palacharla and Smith do not provide details regarding the modifications needed for
augmented integer functionality on a floating-point unit. However, in response to their work, Solihin
et al. present an ALU, which they call mutable function unit (MFU), that can switch between integer
and floating-point functionality at runtime [23]. The floating-point adder from the MIPS R10000 pro-
cessor is modified to perform integer operations. Based on the findings of Palacharla and Smith, the
MFU is designed to support integer addition, shift and logic operations. In addition address generation
functionality is added for memory operations (load/store). The modifications that are described are
widening the significand adder and inserting switches to make the hardware reconfigurable. According
to the authors, the area remains roughly the same (i.e., the overhead resulting from the modifications
to support hardware configuration is neglible). The additional integer performance gain that can be
achieved by the MFU (measured by simulation) is reported to be 8% to 14%.

Another reconfigurable hybrid adder, that is almost identical to the one described by Solihin, is presented
in [24]. The architecture of this reconfigurable floating-point adder is shown in Figure 3.7. The circles
represent programmable switches that determine if the adder is in integer or floating-point mode. The
top switch disables the swap unit for integer operations, causing integer B to always proceed directly to
the barrel shifter which is controlled by a second switch. The bottom switches select between integer
and floating-point input for the adder/subtracter. Integer operands are fetched directly from registers
while floating-point input first passes through the shifter and swap units.

3.7 Summary

Floating-point units have been around since the introduction of the first semiconductor microprocessors.
In the classical situation floating-point arithmetic was spatially separated from integer arithmetic. Even
though floating-point units are now integral parts of most contemporary microprocessors, they are still
clearly segregated from the main integer ALU. Some research has already been done in the field of
combining floating-point and integer arithmetic, the result are however still immature and limited. A
modern processors like the Cell offers limited support for execution of integer additions on the floating-
point units in the SPEs. Similarly the UltraSparc T2 only allows integer multiplication and division on
the floating-point unit. For as far as we can tell, no existing architecture offers full floating-point and
integer arithmetic in a single datapath.

In the next chapters a new floating-point architecture is presented that is based on the FMA architecture
as seen in the Itanium and Cell processor. Unlike the architectures presented so far, this ALU is designed
to get the most integer potential out of floating-point hardware. It offers the same arithmetic functionality
for integer as it does for floating-point.

31

Chapter 3. Related Work

Logic Unit

Barrel Shifter

SwapA−B B−A

Add/Subtract

A−BSign

LZD

Left shift

sum sum+1

Integer

Floating-point

In
st

ru
ct

io
n

s A B

A B

Int/FP

A B

Figure 3.7: Reconfigurable floating-point integer adder [24]

32

4
A Fused Multiply-Add Floating-Point and Integer Architecture

4.1 Introduction

In the previous chapters we have seen that floating-point arithmetic is much more complex than integer
arithmetic. This is directly reflected in the hardware requirements and as such, floating-point processors
are rarely seen in low-cost (small area, low power consumption) architectures like embedded micropro-
cessors or microcontrollers. When low-cost systems require fractional arithmetic, designers often choose
to sacrifice performance or substitute floating-point with something less computationally intensive.

The most common alternative for floating-point is fixed-point. Like the name already suggests, fixed-
point has a fixed radix point and lacks a dynamic exponent. These properties make it much less versatile
than floating-point numbers, but also much less demanding. In a binary (radix-2) fixed-point notation,
the exponent is always 1, hence all numbers are of the form 〈q.f 〉×21 where q is the integer part and
f the fractional part. Suppose we want to represent numbers in a 16-bit fixed-point format. We then
have to decide how many bits are used for the integer part and how many for the fraction. The example
below shows a fixed-point number with two integer bits and 14 fractional bits.

01.10000100100100 (1.517822265625d)

This example immediately shows the limitations of fixed-point notation. With only two integer bits, the
range is limited to [0, 3). If the format would support signed numbers, the range is limited even more.
The only way to increase the range is by sacrificing precision and vice versa.

Another alternative for true floating-point is block floating-point [25]. Block floating-point can be con-
sidered as a hybrid form of fixed-point and floating-point. When a floating-point number becomes too
small or too large, the hardware automatically scales up or down by shifting the significand and adjust-
ing the exponent. In block floating-point arithmetic, all numbers share the same exponent at a certain
moment in time (i.e., Figure 4.1: there is only one register to store the exponent and its value is used
for every significand currently in memory). The programmer decides when to scale up of down the ex-
ponent. Therefore, arithmetic such as addition and multiplication is no more complex than fixed-point
arithmetic, while a larger ‘semi-dynamic’ range can be achieved. It is not difficult to see that block
floating-point still suffers from some of the shortcomings of fixed-point notation. Although the exponent
offers dynamic range, only a small portion of fractional numbers can be expressed at once. Moreover, it
is the programmer who has to make sure that the exponent is adjusted before the numbers run out of
range, a task that is preferably handled by hardware.

A last option that can be considered is floating-point emulation in software. In Chapter 2 we saw

33

Chapter 4. A Fused Multiply-Add Floating-Point and Integer Architecture

0.1101000

0.0001010

1.0111001

0101

Significand

Exponent

Figure 4.1: Block floating-point

that floating-point operations essentially consist of multiple smaller elementary operations (e.g., shifts,
additions and multiplications). In principle these operations can all be executed on regular integer
hardware. If we break down a floating-point operation, it is possible to use software routines to implement
floating-point arithmetic on basic integer ALUs. For software emulation we do not have to make a trade-
off between precision and range, the exact same behavior of a real floating-point unit can be achieved.
However, because all elementary operations are performed sequentially, performance will be extremely
low. Moreover, many basic operations that are simple to perform in hardware are difficult to implement
in software (e.g., computing the sign-bit already requires many bit-masking operations just to obtain the
individual sign bits of the input operands). Software implementation should therefore only be considered
when floating-point operations are rarely used or when there is absolutely no other provision for fractional
arithmetic.

4.2 Approach

A number of alternatives for floating-point arithmetic have been presented. The great majority of
digital signal processors, embedded processors and other area/power critical devices use one of the above
alternatives for fractional arithmetic. Whether it is performance or expressiveness, they all compromise
something to achieve area and power efficiency. Of course they do this with good reasons, floating-point
units simply require too much hardware to justify for such devices.

It is exceptionally difficult, if not impossible, to design fast floating-points unit with a small area.
Yet, combining high performance and low-cost floating-point arithmetic is a major objective of the
work presented here. To achieve this goal we take an entirely different approach than discussed so
far. A floating-point unit is rarely used as a stand-alone processor anymore. Especially now multi-core
architectures have gained immense popularity, it is much more likely to co-exist next to other, usually
simpler, integer based processing cores. Instead of trying to reduce the area of the floating-point unit
itself, we accept that it requires a lot of area, focus on multi-core architectures (in particular power
lean MPSoCs) and try to achieve area reduction by mapping the functionality of integer cores onto the
larger floating-point core so some of the integer specific hardware is no longer needed. The hardware
of a floating-point unit shares great similarities with its integer counterpart. Although not trivial, it is
possible to perform integer operations on floating-point hardware. If all essential integer operation can
be mapped to a floating-point unit, there is less need for separate integer processors. A floating-point
unit with augmented integer functionality replaces the dedicated floating-point unit and integer cores
(Figure 4.2). This should make the larger area of a floating-point unit justifiable for low-cost systems.

4.2.1 Design Methodology

An integer/floating-point unit (I/FPU) was designed as part of this thesis. Although hardware design
can still be performed by hand, logic synthesis is preferred, especially for larger more complex systems
like a floating-point unit. Logic synthesis is a practice where a desired circuit behavior is described in
a hardware description language (e.g., VHDL or Verilog) and transformed to a netlist of logic gates.
The translation from HDL to logic gates is automated, usually backed up by sophisticated optimization

34

4.3. Floating-Point Integer Arithmetic Logic Datapath

Alu1 Alu2 Alu3 Alu4 FPU

Ctrl Main Bus

Local Peripheral Bus

Alu1

Ctrl Main Bus

Local Peripheral Bus

I/FPU

Figure 4.2: Typical multi core SoCs whith dedicated (left) and shared (right) integer/floating-point
units

algorithms. This relieves the designer from the most tedious work involved in designing complex digital
systems. Logic synthesis has advanced to the point where most logic synthesis results surpass human
design efforts. Hence, the architecture that we will present in this thesis was designed by means of logic
synthesis. This is reflected in the level of detail we present the proposed ALU. We will mainly focus on
the architectural and logical levels, much less on physical aspects.

Logic synthesis is parameterized. The algorithms can optimize a design for speed, area and power con-
sumption. The target technology may also differ. Some synthesis tools translate to field programmable
gate arrays (FPGAs) (for fast prototyping) and others to application specific integrated circuits (ASICs).
In this thesis we are mostly interested in ASIC technology. To be more specific, we want a power lean,
area-efficient and fast ASIC device. A very effective solution to achieve energy efficiency with logic syn-
thesis is to use low-power technology libraries. Synthesis tools require technology libraries that contain
technology specific information about timing and area of the logic cells that are used to form the netlist.
More details regarding low-power technology will be elaborated in Chapter 7. For now one specific as-
pect is of importance: low-power libraries result in slow hardware. The delay of low-power technology
is averagely twice as large as a general purpose technology. This aspect greatly influences the design
choices we have made.

A lot of performance is lost by using low-power technology. To regain some of this performance, archi-
tectural optimizations need to be applied to the datapath. Especially for floating-point arithmetic, a lot
of effort is required to achieve high performance in low-power technology. For this reason we initially
focus on high performance (Chapter 5). The resulting datapath is then analyzed and modified to support
integer operations (Chapter 6).

4.3 Floating-Point Integer Arithmetic Logic Datapath

Before we start describing the microarchitecture of the ALU, two fundamental design choices need to
be settled first. A number representation and a instruction set architecture (ISA) have to be chosen.
As discussed in Chapter 2, numbers can be represented in various ways. This new type of ALU must
support two different kinds of numbers: integers and floating-point numbers. Because the same hardware
must process both kinds, their respective representations have to be matched as close to each other as
possible. The ISA defines what instructions a processor facilitates.

4.3.1 Number Representation

Let us first focus on floating-point numbers. Since 1985, the most obvious choice for floating-point
numbers is the format described in the IEEE-754 standard [6]. It may not always be the most effi-
cient format for implementation, but especially in case of floating-point numbers, standardization is an

35

Chapter 4. A Fused Multiply-Add Floating-Point and Integer Architecture

important aspect in the representation. In Chapter 2 we already discussed that the standard for floating-
point arithmetic defines multiple binary and decimal floating-point formats. There are several predefined
formats such as half, single, double, quadruple precision, but also custom defined precision is allowed
(Table 2.3). The choice for a certain format strongly depends on the class of algorithms targeted by the
architecture. At this point no such set has been defined because we would like to target as many appli-
cations as possible. Single and double precision are the most common formats implemented in hardware.
Half precision is also gaining popularity for graphics processing units (GPUs), but 16 bits is very small
in terms of floating-point. Double precision on the other hand is a massive 64 bit floating-point format.
Implementing a double precision high performance floating-point unit is costly, especially multiplication
requires a lot of hardware. At first glance single precision seems appropriate for high performance low-
cost floating-point solutions. However, we should also consider that the hardware will be used for integer
operations.

For integer representation, we usually stick to a word length that is a power of two. Most programming
languages define integer types like short (16 bits), int (32 bits) and long (64 bits). Not entirely coinciden-
tally we mentioned single precision as an appropriate candidate for floating-point number representation.
It is exactly 32 bit wide which maps nicely to 32-bit integer numbers. This eliminates the need for special
floating-point registers. The encoding of integer numbers is mostly done in two’s complement because
the hardware for arithmetic in two’s complement is much simpler than for sign magnitude. However,
because we propose an ALU that uses sign magnitude representation for floating-point numbers, a sign
magnitude representation for integers is also a plausible alternative. Nevertheless, two’s complement is
chosen in favor of sign magnitude because it is such a widely adopted notation. Almost all contem-
porary processors use two’s complement encoding for integer arithmetic. Sign magnitude would make
information exchange with external devices much harder.

So far we have determined that single precision floating-point and 32 bits integers can be stored efficiently
in the same memory, which makes them suitable candidates for an ALU that combines integer and
floating-point processing. In terms of arithmetic however, both formats do not map so nicely. The
significand of single precision floating-point is only 23 bits wide while we want to have 32-bit hardware
for integer operation. There are three choices to deal with this difference: The integer numbers can be
reduced from 32 bits to 23 bits; the significand of the floating-point numbers can be extended to 32 bits;
we can support both 32 bit integers and 23 bits significand and end up with an irregular ALU. Irregularity
is something that should be avoided. Moreover, the hardware is not used efficiently (enough) when 23-
bit computations are performed on 32-bit components. On the other hand, 23-bit integer operands are
unaccustomed and might discourage programmers to use the proposed platform. For these reasons the
significand of the floating-point format is extended to 32 bits. The consequence is that a floating-point
number can not be stored in a 32 bit register anymore. Each floating-point number will require two
registers. One for the significand and another for the exponent and sign-bit. The latter is of course not
very elegant1, but what we have gained is eight bits more floating-point precision and, more importantly,
the possibility to design a nice and regular datapath that can be used for both integer and floating-point
arithmetic.

The proposed floating-point format is no longer entirely compliant with the IEEE-754 standard. However,
this custom format has some benefits over standard single precision and for practical purposes the
differences are very small. A preliminary study (Appendix A) was done to determine what the benefits
of eight bits more precision mean for floating-point arithmetic. The conclusion that can be drawn
from these early simulations, is that in terms of quantization noise effects, eight bits more precision are
certainly beneficial for some of the most common DSP algorithms (33% more signal to quantization
noise ratio (SQNR)). The biggest drawback of a 32-bit significand is the separate storage of exponent
and sign-bit. However, this disadvantage also provides oppurtunities for future research. For example,
compression techniques that exploit exponent sharing, similar to block floating-point but at a more fine
grained level. Or flexible architectures that can easily be remanufactured to accomodate larger exponents

1There is no way to completely hide the mismatch because floating-point numbers have a separate exponent and integers
do not.

36

4.3. Floating-Point Integer Arithmetic Logic Datapath

in case more range is required.

To summarize number representation, the proposed ALU supports the following input:

41-bit Floating-Point

Width 41 bits
Significand 32 bits
Exponent 8 bits (bias-127)
Encoding IEEE-754
Decimal Range −(2− 2−32)× 2127 to −2−126 and 2−126 to (2− 2−32)× 2127

0

Significand

31078

ExponentS

Figure 4.3: Floating-point format

32-bit Integer

Width 32 bits
Encoding two’s complement
Decimal Range −231 to 231 − 1

031

Two’s complement Integer

Figure 4.4: Integer format

IEEE-754 Adherence

As mentioned before, the floating-point format from Figure 4.3 is not a valid IEEE-754 interchange
format. Recall from Chapter 2 that the IEEE-754 standard for floating-point arithmetic specifies more
than just the format of floating-point numbers. Also rounding modes, operations and exception handling
have to meet certain standards in order to comply with IEEE-754. The intention of the research in this
thesis is not to design a floating-point unit that is completely in agreement with the IEEE standard. We
merely pursue an arithmetic core that saves hardware by mapping integer functionality to a floating-point
datapath. The IEEE-754 standard is only a tool we use for sound floating-point arithmetic. Indeed,
there are several more areas where the arithmetic of our proposed solution differers from what IEEE
defines, to simplify the datapath:

• NaN not supported
• Denormalized numbers not supported
• Round to nearest, ties away from zero not supported
• Only a subset of (arithmetic) operations is supported (in hardware)2

• Invalid operation, Division by zero and Inexact exceptions not supported

IEEE-754 defines unique representations for special numbers such as infinity, zero and NaN. Because
NaN only occurs during division, square root or other higher order functions, it was decided not to include
explicit NaN recognition. This greatly simplifies the datapath because we do not have to worry about
incompatible arithmetic. A similar argument hold for denormalized numbers. Although denormalized
numbers fill the gap between zero and the smallest normalized number, the practical use for such small

2These do provide enough functionality to implement the remaining mandatory operations in software.

37

Chapter 4. A Fused Multiply-Add Floating-Point and Integer Architecture

differences is hard to justify for low-cost systems because of the additional normalization hardware
required. Hence, only normalized input is supported.

The latest IEEE-754 standard (2008) defines two round to nearest modes. Round to nearest, ties to
even and Round to nearest, ties away from zero. The last rounding mode is not included because the
additional value over Round to nearest, ties to even is hardly worthwhile the additional complexity.

The hardware only supports basic arithmetic operation such as add, subtract, multiply and multiply-add.
The logical operation only include greater than, smaller than and equal to. Many more are described in
the standard (e.g., conversions, scaling, testing and classification). Although these are not supported by
the hardware directly, they can be added with software routines. This is not directly in violation with
the standard, the functionality can still be added with software emulation. We mention it because some
functionality is commonly implemented in hardware.

From the five exceptions defined by the standard (invalid operations, division by zero, overflow, underflow
and inexactness), only two are supported: overflow and underflow. For basic arithmetic these are the
most useful. Invalid operations are not an issue for FMA and derivatives, because NaN results do not
occur and neither does division by zero. Inexactness is not signaled because almost all results are inexact.
The practical use of this status information is small enough.

Despite the above mentioned deviations from IEEE-754, the proposed floating-point arithmetic is nu-
merically sound. It results in a faster and smaller floating-point datapath that allows easier integration
of integer arithmetic. The downside is that we give up some of the formality of the IEEE-754 standard.
However, these shortcomings have no major impact on most practical applications.

4.3.2 Instruction Set Architecture

Formally the instruction set architecture, or instruction set, of a processor includes much more than just
the set of instructions implemented by the microarchitecture. The instruction set defines native data
types (e.g., floating-point, fixed-point or integer), instruction and data registers, memory architecture
and addressing, interrupt handling, I/O and much more. However, in this thesis we are mostly interested
in the concept of a sharing a datapath between integer and floating-point data. We therefore limit our
discussion here to instruction support of the ALU.

Instruction sets can be categorized by the goal they try to achieve. Some examples of well known
instruction sets are the complex instruction set computer (CISC), RISC, VLIW, the Itanium’s explicitly
parallel instruction computing (EPIC) and vector instruction sets such as SIMD. The goal that RISC
pursues is simplicity. By implementing very simple instructions, high performance is obtained in RISC
architectures. CISC and VLIW try to do the exact opposite of RISC. A CISC architecture implements
more powerful instructions that can perform several simple operations (load, store and arithmetic) within
one instruction. EPIC and SIMD try to exploit parallelism. Operations like complex multiplication
(that involve four multiplications and two additions and a subtraction) lend themselves excellently for
parallel and vectorized instruction sets. The current trend in microprocessor instruction sets is RISC.
RISC is also what we propose for combined integer and floating-point arithmetic. By implementing
simple instructions that perform common arithmetic/logic operations in hardware, we can achieve high
performance with a relatively small area. The more complex operations that are not performed as often,
can be implemented in software routines.

The most basic and common arithmetic operations are addition/subtraction and multiplication. Both
are implemented natively in hardware for floating-point and integers to ensure maximum performance.
Another interesting arithmetic operation is multiply accumulate (multiply-add). Many applications
benefit from this powerful operation because is eliminates load and store overhead of two separate
instructions. In addition, the operation improves the quality of floating-point operations because only
one round-off error is made. Another common, but less often used, arithmetic operation is division.

38

4.3. Floating-Point Integer Arithmetic Logic Datapath

Instruction Input Operation

Multiply-Add A,B,C: Floating-point/Integer (signed) A×B + C
Multiply A,B: Floating-point/Integer (signed) A×B
Add A,C: Floating-point/Integer (signed) A+ C

Compare less than A,B: Floating-point/Integer (signed) A < B
Compare grater than A,B: Floating-point/Integer (signed) A > B
Compare equal A,B: Floating-point/Integer (signed) A = B

Shift right A,n: Integer (signed) A� n
Shift left A,n: Integer (signed) A� n

Table 4.1: Instruction set

Because a division operation can efficiently be implemented on multiply-accumulate hardware [26], it
is not natively supported. The same argument holds for even more complex arithmetic such as the
square root and sine/cosine functions. The only arithmetic operations that we natively support in the
instruction set are multiplication, addition, subtraction and multiply-accumulate.

For logic operations the same RISC approach is taken. Only the most basic compare instructions are
implemented directly in hardware. Two register values can be compared with one of the following
operators: less than (<), greater than (>) or equal (=). Any other compare operation (e.g., 6) can be
derived. Bitwise operations are not implemented, except for the more common integer operations shift
left (�) and shift right (�). Looking ahead to Figure 4.11 we can see that a floating-point datapath
includes both a shift left for normalization and a shift right for alignment. Due to the availability of
hardware we have decided to include shift left and right in the instruction set. Both shifting operations
are arithmetic shifts (Figure 4.5(a) and 4.5(b)) that can shift a two’s complement number n positions to
the left or right. As opposed to logical shifting, an arithmetic shift right operation duplicates the sign-bit.
For two’s complement encoding this is much more useful than logical shifting because all numbers are
sign extended. The sign-bit will not flip due to shift operations. Chapter 6 explains how arithmetic
shifters can be used for normalized floating-point input as well.

1 1 0 1 1 0 1 0

1 1 0 1 1 0 11

(a) Shift right

1 1 0 1 1 0 1 0

1 0 1 1 0 1 0 0

(b) Shift left

Figure 4.5: Arithmetic shifts (n = 1)

Data handling and control (branching) instruction are outside the scope of this thesis. We strictly focus
on the arithmetic and logic within the ALU. An extensive instruction set specification can be found in
Appendix C. Table 4.1 provides a less detailed overview of the same specification.

4.3.3 Input/Output

We are now ready to specify a datapath that implements the functionality of Table 4.1 based on the
number representation of Figure 4.3 and Figure 4.4. The first thing that will be settled is I/O. Multiply-
add instructions require a maximum number of three operands. The three operands can be 32-bit integer
numbers or 41-bit floating-point numbers. In the previous section we already mentioned that we wanted
to store the 41-bit floating-point numbers divided over two 32-bit registers such that the same local
registers can accommodate both floating-point and integer data. Input and output is based on this

39

Chapter 4. A Fused Multiply-Add Floating-Point and Integer Architecture

concept which yields a 64-bit based I/O system. The I/O consists of three 64-bit data input buses, a
smaller 5-bit instruction bus for instruction selection and control, a 64-bit data output bus for results
and a 3-bit status bus to indicate the status of the output (e.g., overflow and underflow).

Operand A

Operand B

Operand C

Result

Status

ALU

Instruction

Figure 4.6: Datapath I/O model

Because formatting and requirements for I/O differ per instruction, a mapping is defined.

Bus Level Mapping

Arithmetic instructions includes addition, subtraction, multiplication and multiply accumulate. For
multiplication the two primary operand inputs A and B are used. For multiply accumulate, A and B
are used for the product (A×B) and C for the addend. Addition and subtraction both use input A and
C for implementation convenience.

All of the floating-point and integer compares use input A and B. The shift instructions only use input
C.

Bit Level Mapping

When the ALU reads data from the input, it does not read all 64 bits. For floating-point data two input
registers are read per operand. The content of the significand register is mapped to the 32 LSBs of the
input. The content of the exponent register to the 32 MSBs of the input. From the 32 MSBs, only nine
are actually used. Bit eight is the sign-bit and bits 7..0 accommodate the biased exponent, the other bits
are meaningless and will be ignored by the datapath. This mapping corresponds directly with Figure 4.3.

Integer data is read from the 32 LSBs of each input. For arithmetic and compare instructions, the MSBs
are ignored. For both shift instructions, we use some of the MSB for the shift amount. The maximum
shift amount can be encoded in seven bits3, hence only the seven lower bits of the MSB are used. They
are read as a 7-bit unsigned integer, the direction of the shift is determined by the instruction opcode.

Floating-point results are mapped to the output in a similar way as they are read from the input. The
significand can be found on the 32 LSBs, the exponent and sign-bit in the MSBs. The status bits indicate
whether the result overflows or underflows. If neither is the case, then a default value will be found on
the status bus. For logical compares, the status bits are the only valid bits. They should indicate either
true or false.

Integer results are a little less straightforward. Although integer input is limited to 32 bits, the output
can be up to 64 bits. Integer arithmetic always produces a 64-bit sign extended result. Because 32-bit
integer arithmetic can never overflow 64 bits, the status bits only indicate if the result exceeds the 32
bits of the first register result. If this is the case then the lower order bits are mapped to the LSBs and
the higher order bits to the MSBs. The result of shift instructions maps to the LSBs and for logical
compares only the status bits are valid.

3Integer shifts can actually be encoded with even less bits, the shifts for floating-point require seven bits (Chapter 5)

40

4.3. Floating-Point Integer Arithmetic Logic Datapath

Normalize

Round

Multiply

A B

Align

C

Add

(a) Floating-point multiply-add

Multiply

A BC

Add

(b) Integer multiply-accumulate

Figure 4.7: Floating-point and integer multiply-add comparison

4.3.4 Dataflow

The dataflow is entirely based on fused multiply-add. Traditional floating-point datapaths spatially
separated each operation. A multiplication was performed on multiplication hardware, additions on
addition/subtraction hardware and division on division hardware. Such floating-point units can actually
be thought of as a collection of datapaths, one for each operation. When the first FMA unit was produced
[27], it was only complementary to the primary hardware for multiplication and addition. A more recent
development is that the FMA unit entirely replaces the per operation structure. Good examples of this
approach are the SPE of the Cell processor [17] and the Itanium [13] architecture that were discussed in
Chapter 3. Any combination of multiplication and addition/subtraction can easily be derived from FMA.
Table 4.2 shows how the primary functionality is derived. By using the constants 1 and 0, multiplication,
addition and subtraction are easily realized on FMA units.

Input Effective Operation
A B C A×B+C
A B −C A×B−C
A 1 C A+C
A 1 −C A−C
A B 0 A×B

Table 4.2: Functional derivatives of fused multiply-add

The same technique can be applied to a integer MAC unit. The difference between floating-point FMA
and integer MAC units is not that large. FMA units first have to align the addend and the result needs to
be normalized and rounded. As shown in Figure 4.7, MAC can easily be mapped to FMA. All it requires
is bypassing some of the floating-point specific components. Of course some minor modifications have
to be made to the basic components in order to support both two’s complement and sign magnitude,
however the basic structure provides excellent opportunities to share the hardware.

Figure 4.7(a) already provides a good impression of an actual datapath. What misses is functionality
to compare two operands and functionality to check for exceptions that might occur during arithmetic.
If this functionality is added, we have a datapath that meets the requirements of the instruction set we
composed earlier. Figure 4.8 shows such a datapath, although still in a highly simplified manner.

In the remainder of this chapter a more precise definition of this datapath is given by looking deeper
into its functionality. The majority of the depicted functional units can not be found off-the-shelf
because they are too complex and target very specific goals. Their functionality will be analyzed to

41

Chapter 4. A Fused Multiply-Add Floating-Point and Integer Architecture

Normalize

Round

Multiply

A B

Align

C

Add

Compare

Generate
Status

Figure 4.8: Simplified dataflow

find more elementary operations that describe the same behavior such that we can implement it with
existing hardware components and find similarities between the integer and floating-point case to create
opportunities to share as much hardware as possible.

Align

Alignment is a floating-point specific part of the datapath. In Chapter 2 we already discussed the
alignment of two operands for addition and subtraction. For multiply-add, the C operand also needs
to be aligned to the A×B product before it can be added. From Chapter 2 we know that to align
the exponents, the absolute difference δ must be found by subtracting the exponents. For FMA, the
exponent of A and B must first be added causing the bias to accumulate. To correct this, the bias must
be subtracted again. Once δ is found, the significand of the smallest operand is shifted δ positions to
the right and its exponent increased by δ.

Alignment needs adders, subtracters, a comparator and a logical (right) shifter. It is rather straightfor-
ward to implement the alignment, a circuit such a Figure 4.9 can be used for alignment. However, for
FMA it is costly to shift the smallest operand. Before this operand can be designated, the multiplication
of A and B must be completed. This results in a massive delay. There are ways to carry out alignment
more efficiently for multiply-add. The basic idea is to always shift the C operand which is immediately
available at the start of the operation. This involves some mathematical manipulation which we will
explain in the next chapter. Here we assume that the operands can be aligned by always shifting the C
operand. The hardware that is required for the exponent adjustment hardly has any purpose for integer
operands. The shifter on the other hand, can be used for arithmetic right-shift instructions. This requires
a small modification in the shifter because floating-point shifts should be a logical shift and integer shifts
should be arithmetic shifts. The input of the shifter is extended by one bit. For integer operand the
sign-bit is copied (sign extended) while for floating-point input this position is always asserted to 0.

Multiply

Multiplication of two numbers is a well-known arithmetic operation. Together with addition, multipli-
cation is the main resource to optimize for utilization in both integer and floating-point instructions.
Many highly optimized multiplier designs exist that can be used to facilitate the multiplication of A and
B. The challenge here is that multiplication of floating-point significand is unsigned (only the magnitude
is multiplied) while the integer numbers are two’s complement signed. In addition, the multiplication

42

4.3. Floating-Point Integer Arithmetic Logic Datapath

Shifter

+

Ae Be

−

Ce

−

Bias

Aligned Exponent Aligned Significand

As×Bs Cs

<

mux

Figure 4.9: FMA operand alignment

needs to be performed fast for high performance. Fast multipliers are trees or arrays of adders. They
are large components making them high priority candidates for area optimization. The next chapters
will explain in detail how a multiplier can be designed to support both signed (two’s complement) and
unsigned multiplication with minimal area overhead and maximum performance.

Add

Addition is, just like multiplication, a very basic operation. Although we have called the operation Add
so far, we actually want a component that can both add and subtract. In most ALUs, addition and
subtraction is performed in two’s complement notation. In two’s complement, subtraction works just
like addition if the carry-out is ignored. Regular adders can be used to implement both addition and
subtraction. Adders can also be modified to perform addition and subtraction in two’s complement on
unsigned input. They conditionally complement their input (either by multiplexed inverters or XOR
gates) and feed 1 to the carry-in of the adder such that the input is converted to two’s complement. For
FMA this is a feasible solution. However, an even more elegant solution exist that is called end-around
carry addition. This form of addition requires only the C operand to be conditionally complemented
and re-complemented. A more thorough analysis of end-around carry addition is given in Chapter 5.
The carry propagation of adders is usually among the largest in arithmetic circuits. A vast amount of
optimizations for latency reduction exist. In the subsequent chapter we will explain in detail how the
best results for floating-point addition is obtained. In the chapter thereafter we look at the modification
required to make the adder execute both integer and floating-point additions/subtractions.

Normalize

To normalize a floating-point number, its leading zeros must be removed and the exponent must be
adjusted accordingly. To remove leading zeros from the significand, we can keep shifting it to the left
until the MSB is a 1. Shifting one position at a time is time consuming and highly irregular due to the
number of leading zeros varying per operation. It is therefore more common to count the number of
leading zeros and use that number to drive a single cycle shifter. Counting leading zeros is less trivial
than it may seem. Not only do the zeros have to be detected, they also have to be encoded to a binary
number. There are basically two distinct methods to count zeros, one method creates a monotonic
string of zeros followed by ones and uses a special manchester carry chain adder [28], the other uses a
hierarchical tree structure to directly encode the zeros to a binary number [1]. Both methods have their
advantages and disadvantages as discussed by Schmookler and Nowka [29]. The datapath we propose
incorporates a tree structure because they show an energy efficiency advantage over monotonic string

43

Chapter 4. A Fused Multiply-Add Floating-Point and Integer Architecture

031

Guard Round Sticky

Significand

SG R

Figure 4.10: Guard, Round and Sticky-bit positioning

production. Normalization suffers from a similar problem as alignment. Before the number of zeros can
be detected, the results from the adder have to be know. To improve performance, the LZD circuit
can be accompanied by a LZA component. LZA (Section 5.2) predicts the number of leading zeros
based on the input of the adder. The number of leading zeros can be detected based on this prediction
allowing us to count the leading zeros in parallel with addition. The actual shift and corresponding
exponent adjustment can be implemented on conventional hardware. Just like the alignment shifter can
be used for arithmetic right-shift instructions, the normalization shifter can be used for arithmetic left
shift instructions.

Round

Rounding normalized results is finding the closest representation to the exact result. Because most
decimal numbers can not be represented exactly in decimal floating-point format, we have to settle for
the closest possible representation. This can be either the normalized result itself (truncated to n-bits)
or the incremented normalized result. The rounded result is easily obtained by 2-to-1 multiplexing the
result of an incrementer (adder with carry-in of 1) and the result directly obtained from normalization.
The selection is however a more complicated process. IEEE-754 stipulates that rounding is done with
infinite precision. That means the result of rounding n-bit floating-point numbers should provide exactly
the same result as rounding the same floating-point number with infinite bits of precision. Proof exists
that such results can be obtained by using guard, round and sticky bits [9], positioned as shown in
Figure 4.10. The guard and round-bits are merely a two bit extension of the datapath during arithmetic.
The sticky-bit is defined as the logical OR of all the bits that are lost during execution. If a 1 is shifted
out of range during alignment, the sticky-bit becomes 1, otherwise is remains 0. Because the alignment
shift is not performed bit after bit, special sticky-bit logic is required to find the logical OR of the bits
lost during alignment. Once the guard, round and sticky bits are known, a rounding selection can be
made relatively easy by pattern matching. The patterns are well documented, for example in [30] or [31].

Compare

The ALU must also provide the means to compare two register values of the same type (i.e., it is only
possible to compare two integer or two floating-point numbers, not a combination of both). Comparing
two floating-point numbers hardly shares any resemblance with comparing two integers in two’s com-
plement. This is unfortunate because we prefer to use only one comparator for area efficiency reasons.
To compare two floating-point numbers in the format presented in Figure 4.3, one 8-bit unsigned com-
parator is needed for the exponents and and one unsigned 32-bit comparator for the significands. In
addition the sign-bit has to be examined separately. Comparing two integer operands also requires a
32-bit comparator, however this one should be two’s complement. Using a two’s complement comparator
for significands will not produce correct results for floating-point numbers because the significand’s MSB
does not represent a sign-bit like the MSB in two’s complement. The other way around yields even more
complications. We solve the problem by extending the input of the comparator by one bit like we did for
the shifters. For a floating-point significand this bit will always be 0, all integer input is sign extended.

44

4.3. Floating-Point Integer Arithmetic Logic Datapath

Generate Status

As described in Section 4.3.3 the status bits of the ALU are shared between the outcome of logical
compare instructions and the status of arithmetic instructions. Producing the correct status still requires
a substantial amount of logic. First the status must be multiplexed between the two different instruction
types, and secondly the status of the arithmetic results must be generated. Multiplexing based on
instruction selection is easy and straightforward. We regard this as control which will be discussed
shortly. Generating correct arithmetic status is done by checking the result for overflow and underflow.
Officially IEEE-754 requires that NaN and inexact exceptions are also flagged but we do not support
this for practical reasons (NaN does not occur in multiply accumulate and inexactness is true for almost
any computation) and to increase performance. A number of simple (not full) comparators is used to
check the results in order to generate a correct status.

Putting Things Together

Now that we have given a brief introduction to our proposed architecture and some of the basic principles
and opportunities of sharing integer and floating-point arithmetic/logic, we can finally present a first
actual datapath. Figure 4.11 depicts the interconnection of the most prominent components discussed
so far. In the top left we see the exponent adjustment block and right shifter. This logic implements
the alignment of floating-point operands and arithmetic right shifts of integers, the shifter is disabled for
integer arithmetic. To the right of the shifter, sticky-bit logic detects if precision is shifted out of range
during alignment by logical OR’ing all bits beyond the LSB of the shifter output. The sticky-bit is used
for rounding normalized results.

A fast multiplier and adder/subtracter are used to perform the actual multiply-add operation and its
derivatives: multiply, add and subtract. Both components are designed to accept two’s complement
signed integer input as well as unsigned floating-point significand magnitudes. The result of the adder
is passed on to a left shifter for normalization. The same shifter can also be used for shifting integer
operands. The shifter needs no modifications because the entire normalize/round blocks are skipped
during integer arithmetic and logical left shift is exactly the same as arithmetic left shift. To detect the
number of leading zeros for normalization, LZD logic is placed between the adder and shifter. The shown
datapath can be sped up by including LZA logic. Figure 4.8 does not show this optimization (yet). To
round the normalized result, an incrementer is included. The normalized result and the incremented
normalized result always include the closest to exact representation. A section is made based on the
sticky-bit, a guard-bit and a round-bit. The two latter are implemented by expanding the arithmetic
datapath by two bits.

A two’s complement comparator is modified by sign extending the input to provide the functionality
of comparing both integer and floating-point compare instructions. The result is multiplexed with the
arithmetic status that is obtained by a collection of small comparators in the final stage of the datapath.
These comparators check for overflow and underflow. There is clearly still a strong resemblance between
the hardware components in Figure 4.11 and the more mathematical view of the datapath in Figure 4.8.
There is also still a lot of detail missing. In the upcoming chapters this datapath is further optimized
and more detail is added.

4.3.5 Pipelining

The datapath of Figure 4.11 is an enormous combinatorial circuit. The critical path of this circuit runs
all the way from the input registers to the output registers, passing several large component such as the
multiplier, the adder, the normalization shifter and rounding logic. The critical path of a combinatorial
circuit is the path with the longest delay. Ultimately this path determines the maximum achievable clock

45

Chapter 4. A Fused Multiply-Add Floating-Point and Integer Architecture

LZD

Shifter

Exponent

Comparator

Incrementer

Comparator

Sticky-bit

Round

Align

Multiplier

Adder/Subtracter

Result Status

Shifter

Adjust

Normalize

Generate
status

C A B

Figure 4.11: Proposed FMA floating-point and integer datapath

speed of the system. If we would synthesize this datapath, the expected performance will be rather low.
The latency is simply too massive to reduce to acceptable levels by simply relying on the optimization
heuristics of logic synthesis tools. One way to deal with extremely long critical paths is pipelining.

Pipelining is a technique that separates long critical paths in smaller paths by placing registers between
combinatorial circuits or parts of those circuits. The smaller critical path allows faster clock speeds
making the overall system run faster. We have to keep in mind though that pipelining only increases
throughput and does not actually reduce the latency of the operation. Pipelining even adds more
delay to the total latency by inserting flip-flops (registers) into the combinatorial circuit. However,
since throughput is what we are usually interested in, pipelining is an excellent means of increasing the
performance of ALUs. We will first illustrate why pipelining is beneficial for floating-point arithmetic.

Suppose we perform a number of floating-point multiply-add instructions. For such an instruction, the
ALU has to take the following actions: align a third operand to the multiplication of the two primary
inputs operands (we will refer to this action as Aln), multiply the two primary operands (Mul), add
the aligned operand (Add), normalize the result (Nrm) and round the normalized result (Rnd). We can
pipeline this instruction by placing register between each of these operations (i.e, the hardware blocks
that implement these actions). In an unpipelined datapath all the action have to be completed before
another instruction can be initiated. In a pipelined datapath on the other hand, we can already initiate
the next instruction after the Aln step has completed. This way, major parts of the instruction latency
overlap such that the wall time of the instruction is reduced significantly. Figure 4.12 illustrates the
advantage of a pipelined versus a non-pipelined sequence of instructions

This example suggests that the more pipeline stages we create, the more throughput can be achieved
and thus a faster system is obtained. In essence this is true but there are a few drawback for deeply
pipelined architectures. The first major drawback is that pipeline hazards can occur. A pipeline hazard
occurs when the nth and n-1 th stage of two consecutively issued instructions simultaneously require

46

4.3. Floating-Point Integer Arithmetic Logic Datapath

time

Mul Add RndNrmAln

Mul Add RndNrmAln

Mul Add RndNrmAln

Mul Add RndNrmAln

Mul Add RndNrmAln

Mul Add RndNrmAln

time

Figure 4.12: Pipelined vs. non-pipelined multiply-add instructions

the same hardware. Obviously only one instruction can be executed on a certain part of the datapath.
Solving pipeline hazard can become quite complex, and when hardware is shared between pipeline stages,
the chance of hazards increases as the number of stages becomes larger. A second major drawback is
that scheduling instructions for a pipeline is harder than for single cycle systems. Previous work on
reconfigurable processors [32] has shown that compilers for such platforms are notoriously hard to make.
Pipelining the ALU will only add more the difficulty. Since we expect a strong dependency between the
number of stages and the difficulty of compiling to efficient machine code, the number of pipeline stages
is kept to a minimum.

Based on earlier work [17, 33] and preliminary latency estimates, the minimum number of pipeline
stages for the performance we desire is set to three. For maximum effectiveness, the pipeline stages
must be balanced. This means that the latency of each pipeline stage should be roughly the same. A
balanced pipeline is shown in Figure 4.13. With some special techniques (Chapter 5), the latency of
a fast multiplier and alignment of C is comparable to that of a large adder. Similarly, the latency of
normalization and rounding can be matched to that of the multiplier and the adder.

Retiming

The balance between the pipeline stages shown in Figure 4.13 can be further fine tuned with automated
retiming [34]. Retiming is a technique where registers are structurally relocated to improve performance
without affecting functional behavior. Take for example an arbitrary pipelined circuit implemented in
a non-particular fictional technology4 as shown in Figure 4.14(a). The balance between these pipeline
stages is far from optimal. The second stage is three times longer than the first stage. As mentioned
before, the maximum clock speed is determined by the length of the critical path, in this case 3ns or
333MHz. After retiming (Figure 4.14(b)) the balance is better (optimal in this example), both stages
are 2ns resulting in a much faster clock speed of 500MHz.

The three pipeline stages are based on estimates and are therefore not perfectly balanced. Retiming this
circuit by hand is cumbersome. Fortunately, most modern synthesis tools facilitate automatic retiming
for sequential circuits. The design we present in this chapter relies on automatic retiming. However,
the imperfections without retiming are small. Even without retiming the presented pipelined design
guarantees good performance.

4The delay per component highly depends on the technology used, here we just assume some convenient numbers that
by no means represent actual synthesis results

47

Chapter 4. A Fused Multiply-Add Floating-Point and Integer Architecture

Shifter

LZD

Shifter

Exponent
Adjust Comparator

Incrementer

C A B

Comparator

Sticky-bit

Multiplier

Adder/Subtracter

Stage 1

Stage 2

Stage 3

Result Status

Figure 4.13: Pipelined datapath

1ns

3ns

(a)

2ns

2ns

(b)

Figure 4.14: Arbitrary sequential circuit before and after retiming

48

4.4. Summary

4.3.6 Control and Datapath Reconfiguring

So far we have mainly focused on dataflow and not so much on the control to steer the data flow in
the correct directions. Because the hardware is shared, controlling the dataflow is quite comprehensive.
Almost all the major components have select signals to switch between two’s complement and unsigned
input. In addition, large parts of the floating-point datapath can be skipped for integer operands. In
fact, the entire final stage can be skipped for all but the shift left instruction. For consistency all integer
instructions complete in two clock cycles and all floating-point instructions in three cycles, despite the
fact that compares and shifts could also be done in a single cycle. The output and inter-stage registers
are multiplexed to provide the means of controlling the dataflow.

Configuring and reconfiguring hardware can be done in two ways. One can pre-configure all components
and multiplexers to set the dataflow for a typical instruction, which is quite efficient for bursts of the
same instruction. The other way is to configure the hardware during execution of the instruction for
seamless transition between different instructions. This has the advantage that the datapath can quickly
switch between different types of instructions without any noticeable overhead. Configuration of the ALU
presented here is based on the last alternative. We believe the maximum use of a shared ALU is achieved
when the overhead is the least. Pre-configuration would require at least one extra clock cycle although
but it may also have a benefit for area and energy efficiency. In the first stage the opcode is translated
into control signals that set up the components (multiplexer, shifter, comparators) for signed or unsigned
execution. The same control signal also set up the multiplexers for the next stage. In the second stage
more control, generated by the logic of the first stage, sets up the components in the current pipeline
stage. This continues for the last stage until the final output is formatted and the instruction completed.
The control signals flow with the data through the datapath configuring the hardware on-the-fly for
correct processing.

One last issue that needs to be discussed is the pipeline hazard caused by a difference in duration of
floating-point and integer instructions. The transition from integer to floating-point operation is trouble-
free if we ignore the output for one cycle. Switching from floating-point to integer always results in two
sources driving the same output because both instructions complete at the same time. This can only be
solved by issuing a NOOP (NO OPeration) instruction between each transition from floating-point to
integer operation. In practice, this means that no relevant data should be processed by the ALU in that
clock cycle.

4.4 Summary

We have shown a domain independent ALU for integer and floating-point arithmetic in multi-core sys-
tems. The ALU supports full 32-bit integer arithmetic and a custom 41-bit floating-point format that
strongly resembles IEEE single precision. The difference is that the significand of this floating-point
format is 32-bit instead of the usual 23. This provides additional precision and a nice regular datapath
that can be shared more easily between both data types. The datapath of this ALU consists solely of
a FMA unit with a comparator. All arithmetic operations are derived from the FMA unit by using
constants 1 and 0 for addition and multiplication respectively. The datapath has been divided in three
pipeline stages for higher throughput. All floating-point instructions take three clock cycles to complete
and all integer instructions two. The transition from floating-point to integer processing is seamless,
from integer to floating-point causes a data hazard which is solved by stalling the pipeline with a NOOP

instruction. The implementation of this datapath is not straightforward. Most of the components needed
are not off-the-shelf and need clever and robust design principles. The next two chapters thoroughly
describe the details of implementing the datapath presented in this chapter. The last chapter discusses
the physical aspects of the ALU such as area and power consumption.

49

Chapter 4. A Fused Multiply-Add Floating-Point and Integer Architecture

50

5
Arithmetic Design Principles

5.1 Introduction

In the previous chapter, a general outline for a FMA floating-point unit with augmented integer function-
ality was discussed. Such a processing core is not straightforward to implement, especially implementing
floating-point arithmetic is a comprehensive task. History shows that floating-point units are notorious
for being error-prone. A few missing entries in the FDIV lookup table cost Intel approximately 475 mil-
lion dollars. This stipulates that one needs to be very cautious with floating-point arithmetic. Errors are
easily introduced and hard to find in floating-point hardware. On the other hand, floating-point arith-
metic is also known for being slow. Equivalent floating-point instructions usually need considerably more
clock cycles than integer instructions. The floating-point datapath must often be deeply pipelined in
order not to affect the processor’s performance. In most cases architectural optimizations are a necessity,
hence we have a real need for robust design techniques for fast floating-point FMA.

This chapter provides a mathematical background for implementing efficient (FMA) floating-point units.
Because floating-point arithmetic has been around for a considerable amount of time, many design
principles have been documented, although not always very thoroughly. Some work only covers a lo-
cal optimization, in other work entire floating-point units are described. The work described here is
based on local architectural optimizations. The different stages of floating-point arithmetic: exponent
alignment, addition/multiplication/subtraction/division, normalization and rounding will be discussed
in chronological order. Although the majority of the principles discussed is applicable to any type of
floating-point arithmetic, our focus will be FMA units.

Sometimes alternatives are available for optimizing a specific step. Also the classical trade-off between
area/energy efficiency and performance (latency) plays an important role in this chapter. If alternatives
are important to understand the benefit of a certain design choice, they will shortly be elaborated.
However, we will not discuss the details. References are available for the interested reader.

The idea behind the proposed ALU is that it is suitable for low-power (embedded) systems. For this
reason it was decided to design with a low-power manufacturing technology in mind. These libraries
generally mean low(er) performance. Combined with the fact that the number of pipeline stages is
restricted to three, performance is seriously affected. Therefore a lot of effort was put into optimizing for
low latency to gain as much performance as possible. In this chapter noticeably more attention is given
to performance optimization. Area efficiency will be more prominent in Chapter 6, where we discuss the
implementation details.

51

Chapter 5. Arithmetic Design Principles

5.2 Alignment

The first obstacle one finds in implementing FMA is the alignment of the product A×B and the addend
C. Normally when floating-point addition is performed, the operands are compared and the smallest
operand is shifted to the right to preserve as much precision as possible (see Chapter 2). As expected,
this still applies to FMA, however such a straightforward approach will result in a major performance
penalty. In a typical floating-point adder, both operands are available at the beginning of first cycle,
whereas the A×B product in FMA usually requires at least one clock cycle before it is known. This
means that before alignment can start, we would have to wait until the product is available. Once the
product is known, a large compare would have to be performed (A×B is be twice as large as the original
input) to determine which operand is the smallest. Only then can the operands be aligned by shifting
the smallest one. Such an approach requires at least an additional pipeline stage (i.e., an additional clock
cycle).

In FMA, we preferably always shift the C operand with respect to A×B because it is immediately
available. However, this operand does not necessarily have to be the smallest operand. When C is larger
than A×B, a left-shift is needed to align the exponents. This could result in catastrophic events where
MSBs are shifted out of range and the entire computation returns incorrect answers. The solution is to
treat the product as having a fixed-point and place the C operand all the way in front of the product
such that the alignment can be implemented as a right-shift only.

Assume we apply this to a single precision floating-point format (23-bit significand and 8-bit exponent).
After the hidden-bit has been made explicit, each significand is 24 bits wide. After multiplying A and B,
we end up with a product of 48 bits. Recall that the floating-point in IEEE format is right behind the
hidden-bit. If we treat the point as fixed, we first have to account for the fact that after multiplication,
there will be two bits before the point.

1.------- <23> ---------

--.-------------- <46> ----------------

A:

A×B:

1.------- <23> ---------B:

By placing the significand of C in front of the product, we can always shift to the right because in
fixed-point representation this number will always be larger than the product. All 24 bits of C must be
placed at least in front of the MSB of the product. However, it is very convenient to place two more
empty positions (0s) in between for several reasons.

00

1.------- <23> -------C:
A×B:

two extra bits

--.-------------- <46> ----------------

For correct rounding, we require a guard-bit and a round-bit. Normally when we add two floating-point
numbers these will be the two LSBs. However, because we only shift C as proposed, we can also place
them between C and A×B. The benefit of placing the guard and round-bit here is that the significand
will never overflow during addition. Because both positions are zero, a carry can never propagate any
further than the first position.

The actual shift amount for alignment is determined by the absolute difference between the exponents of
the two operands. For FMA this is the exponent of A×B minus the exponent of C. Because the exponents
are biased in IEEE-754 format, the bias is accumulated during addition of A and B. This needs to be
corrected by subtracting the bias again. This still does not produce a correct answer, because we have
altered the position of the floating-point by placing C entirely in front of the product. By placing C in

52

5.2. Alignment

front of A×B, the floating-point has moved 26 positions to the left (significand width + hidden-bit +
guard-bit + round-bit). In addition we have to account for the fact that a multiplication results in two
bits in front of the point as explained earlier. The result is an offset of 27 bits. By combining the offset
and the bias, a new constant is obtained that needs to be subtracted from the exponent obtained by
simply taking the difference between A×B and C. The shift amount is found by Equation 5.1.

Exponent = Ae + Be − Ce − Bias + (Significand width + (Hidden, Guard and Round-bit) + 1) (5.1)

What is often neglected in literature, is how all this affects the exponent. In regular floating-point
addition, the new exponents will be equal to the exponent of the operand that is not shifted. However,
in FMA the exponent changes due to the imaginary fixation of the floating-point. As a starting point
we can take the exponent found after adding A and B. To find the correct exponent, compensate for the
bias accumulation and take the offset by placing C all the way in front of the product into account.

Exponent = Ae + Be − Bias + (Significand width + (Hidden, Guard and Round-bit) + 1) (5.2)

5.2.1 Sticky-Bit

Inexact sticky-bit (or just sticky-bit) calculation is closely related to the alignment phase of floating-point
addition. The sticky-bit is required to guarantee correct rounding in the final stage of floating-point
arithmetic (Chapter 2). The purpose of the sticky-bit is to indicate that the unrounded result is inexact.
Result are inexact if meaningful bits (1s) fall outside the maximum range of the final output. In a typical
FMA datapath, inexactness can occur in two places: when bits are shifted out of range during alignment
of C, and when the intermediate result is scaled back to register size after normalization.

During alignment, the sticky-bit calculation can be thought of as an extra bit position behind the shifter
that records all bits that pass through it while being shifted out of range.

1.0010011010001000

1.0010011010

S
ti
ck
y
-b
it

1.0010011010001 000
001000

0
1

If a 1 passes through, the sticky-bit will remember this and stay 1 regardless of the other bits that
pass through. This can not directly be implemented in hardware, because most shifters do not shift
bit-after-bit (this is highly inefficient). The sticky-bit can however be found by OR’ing all bits beyond
the LSB into a sticky-bit. All we have to know is which bits fall out of the range after shifting.

The easiest way of implementing this is extending the shifter such that bits will never really be discarded.
No bits are lost and the part that is not used to further compute the multiply accumulate can be OR’ed
into a sticky-bit. This is very inefficient because the already large shifter (approximately three times as
wide as the significand) will be even further extended, increasing its latency tremendously. For example,
the theoretical maximum shift in IEEE single precision is 127 − (−126) = 253 positions. To ensure no
bits are lost a 277-bit shifter would be required. Alignment shifting is part of the critical path in the
first stage, thus we can not tolerate the additional latency. By distinguishing the worst and best cases,
a more efficient solution can be found.

53

Chapter 5. Arithmetic Design Principles

First we have to determine when bits will fall out of the representable range. In case of the alignment
method described above, the operand that is shifted has been extended to three times the significand
width plus its hidden-bit and the guard and round-bit (e.g., 3× 23 + 2 for IEEE single precision). When
the shift amount is more than two times the significand width plus hidden-bit, plus the guard- and
round-bit (68 for IEEE single precision), bits are starting to shift out of range. This is a constant we
can use to improve sticky-bit calculation.

The best case is when the shift amount is lower than the constant. No bits are lost and the sticky-bit
is simply 0. The worst case is when all input bits are shifted beyond this constant, i.e., when the shift
amount is significand width + hidden-bit bits more. If all bits are shifted out of range, we can compute
the sticky-bit by OR’ing all of the input bits together. Cases in between the best- and worst case are a
bit more difficult because the input bits are partially shifted out and we have to determine which bits.
A ‘container’ needs to catch the bits shifted out. We can do this by padding the input with zeros up
to twice its original length. This input is shifted by a second (smaller) shifter that only shifts by the
amount of positions equal to the original shift amount minus twice the significand width plus hidden-bit
and the guard and round-bit. The bits that are shifted out are now contained in the lower (significand
width + hidden-bit) bits of the output. By OR’ing these bits, we find the sticky-bit as shown in the
example below.

1.0010011010001000

1.0010011010 001000

OR-reduce

significandwidth 0

Shift 6
Positions

significandwidth+1

The entire procedure for sticky-bit calculation is shown in Algorithm 5.2.1 again for clarification.

Algorithm 5.2.1 Sticky-bit calculation

Input: (operand) C and shift (amount)
Output: sticky

1: if shift ≥ (3×(significandwith + hiddenbit) + guardbit + hiddenbit) then
2: sticky ← or reduce(C)
3: else if shift ≥ (2×(significandwith + hiddenbit) + guardbit + hiddenbit) then
4: sticky ← ‘0’
5: else
6: newshift ← shift - (3×(significandwith + hiddenbit) + guardbit + hiddenbit)
7: shifted ← resize(C,2×(significandwith + hiddenbit)) >> newshift
8: sticky ← or reduce(shifted)
9: end if

Because we have distinguished the best, worst and ‘in-between’ cases, we can ensure that bits are shifted
no further than the significand width plus hidden-bit. With this property the size of the ‘container’
that has to catch the bits that shift out can be constrained to the length of the input. We achieve two
objectives with this approach. Firstly, the required shifter(s) are smaller than one shifter that ensures no
bit are lost. Secondly, we can start calculating the sticky-bit in parallel with the actual shift, resulting
in a faster circuit. Both latency and area are improved.

The second time inexactness can occur is when the intermediate result is normalized and resized back
to the original input size. The internal floating-point datapath is much wider that the final result. It
is almost inherent that we loose precision when the internal representation is scaled back. Just like the
bits that are shifted out during alignment, we can OR the bits that are discarded after normalization

54

5.3. Multiplication

into a second sticky-bit. By OR’ing this sticky-bit with the one we found during alignment, we end up
with a sticky-bit that accounts for all precision that was possibly lost during multiply accumulate.

5.3 Multiplication

Multiplication is an example of the most elementary operations in computer arithmetic in general. This
heavily used operation is unfortunately also very costly to implement. Fundamentally, a multiplication is
a series of additions. A binary n-bit multiplication can be realized by performing a series of n shifts and
additions. We have a choice to fold these over time or space. The most area-efficient solution is to perform
every shift and addition on the same hardware, but this would mean that a 32-bit multiplication requires
32 cycles to complete. This is unacceptable for the purpose of our proposed ALU. The alternative is to
expand over space by using n adders and shifters, which is why high performance multiplication is so
expensive to implement. Because multiplication is essential for many algorithms, designing multipliers
that are high-speed, low-power, and/or regular in layout have always been of substantial research interest.
There are many optimizations in existence but the most popular are Wallace Trees and Booth encoding.
The multiplication process consists of two steps, generating partial products and summing the partial
products to a final product. Booth encoding [12] is aimed at reducing the number of partial products.
The Wallace tree [8] focuses on summing the partial products in a very efficient way. Many floating-point
units incorporate both techniques in the multiplier.

5.3.1 Booth Encoding

Booths’ algorithm serves two purposes. First it enables us to multiply signed (two’s complement) numbers
and secondly it helps reduce the number of partial products. Although the first is not directly relevant
for (IEEE) floating-point multiplication, the second property can increase the speed of the multiplier
and reduce its area. To understand Booth multipliers we first have to recapitulate the basics of binary
multiplication. Several important observation can be made in binary multiplication:

• In multiplications (A×B) we have a multiplier (A) and a multiplicand (B). For each digit in the in
the multiplier, a partial product is generated.

• If the multiplier bit is 0, the partial product is zero, otherwise the partial product is the multiplicand.
• The final product is produced by repeatedly shifting a partial product to the left and adding it to

the preceding partial product.

A small example of binary multiplication is shown below

101110 Multiplicand
010011 Multiplier
101110 Partial products
101110

000000

000000

101110

00000

001101101010

Each time a 1 is encountered in the multiplier, the multiplicand is shifted and added the the previous
partial product. When a 0 is encountered, we only shift the partial product. Now consider a positive
multiplier with a block of 1s surrounded by 0s, for example 00111110. Multiplied by an arbitrary
multiplicand M we find the product by

55

Chapter 5. Arithmetic Design Principles

M × 00111110 = M× (25 + 24 + 23 + 22 + 21) = M× 62

The same multiplication can be performed by

M ×(26 − 21) = M× 010000(-1)0 = M ×62

This eliminates several consecutive 1s, reducing the number of required operations. Booth has shown
that the above example can be extended to any number of blocks of 1s. Therefore it is possible to
simplify multiplications with simpler operation by string manipulation. Booth formulated the algorithm
as shown in Algorithm 5.3.1. A and S are two predetermined values that are conditionally added to
product P. Let m and r be the multiplicand and the multiplier and x and y the width of m and r
respectively.

Algorithm 5.3.1 Booth multiplication

1: Determine A and S, and the initial value of P. All numbers should have length (x + y + 1).
A : Fill MSBs with the value of multiplicand m. Fill remaining (y + 1) bits with 0s.
S : Fill MSBs with the value of (-m) in two’s complement and the remaining (y + 1) bits with 0s.
P : Fill the x MSBs with zeros and append the value of r. The LSB is 0.

2: Determine the two least significant (rightmost) bits of P.
3: if 01 then
4: Pnext ← P +A
5: else if 10 then
6: Pnext ← P + S
7: else if 00 then
8: Pnext ← P
9: else if 11 then

10: Pnext ← P
11: end if
12: (Arithmetic) shift the obtained value one position to the right.
13: Repeat steps 2-12 , y times.
14: Drop LSB from P to find the product of m and r.

If the 1s in the multiplier are grouped into long blocks, Booth’s algorithm performs fewer additions and
subtractions than a normal multiplication algorithm. Booth encoding is however not directly applicable
to high speed multipliers based on tree structures (Section 5.3.2). Tree structures are static which means
all partial products have to be known a-priory while the reduction achieved by Booth encoding entirely
depends on the input. The tree structure must account for the maximum number of partial products,
hence no improvement is made by using Booth encoding. Booth’s algorithm can only be exploited in
combination with tree structures when the radix of the multiplication is increased.

Modified Booth Encoding

The examples shown so far were all radix-2 multiplications. In radix-2 multiplication each bit of the
multiplier generates a partial products. By using radix-4 multiplication, the number of partial products
can be halved at the cost of more complicated partial product generation. In radix-4 multiplication, two
adjacent multiplier bits are used per partial product generation, as shown in the example below.

101110

010011

Multiplicand:

Multiplier:

101110

010011

101110

301

56

5.3. Multiplication

101110

1 0 3

10001010

000000

101110

001101101010

To make this example work, the multiplier must first evaluate 1×, 0× and 3× multiples of the multi-
plicand. The 1× and 0× multiples are not a problems, they can both easily be found by shifting the
multiplicand. The 3× multiple (001101101010) on the other hand is highly irregular and requires special
hardware to pre-calculate. By using Booth encoding, the 3× multiple can be re-written to (4×)-(1×).
Thus Booth encoding eliminates the 3× multiple and the set of multiples (-2×, -1×, 0×, 1×, and 2×) is
once again restricted to regular multiples of the multiplier that are trivial to determine.

By using an even higher radix, we run into irregularities that are not easily solved (Booth encoding does
not help for 3- and 5-bit numbers). For this reason, the majority of the high speeds binary multiplier
designs stick to radix-4 booth encoding. They usually implement Booth encoding by placing a Booth
recoder before one of the inputs of the multiplier. When the input of the multiplier is n bits wide,
radix-4 booth encoding is able to reduce the number of additions (and therefore the number of CSA
elements in the tree) from n+ 1 to d(n+ 1)/2e. Since Booth encoding can be done carry free and fully
parallel for each multiple [8], the optimization not only reduce the area of the multiplier tree, but also
the corresponding latency. Moreover, the multiplier supports two’s complement signed numbers from
which we will benefit by re-using the floating-point multiplier for integer multiplication (Chapter 6).

5.3.2 Wallace Tree

Once the partial products are determined they have to be summed to form the final product. Depending
on the radix chosen for the multiplication, the number of partial products can become quite large. If
we would just perform one addition after another, the latency of the multiplier will render it useless
in terms of performance. To improve this, partial products are summed in a tree-like structure called
a Wallace tree. This reduces the delay from n additions to log2(n) additions. However, due to carry
propagation, the latency is still too large compared to alignment of C. A special adder that eliminates
carry propagation is needed for the multiplier to match the latency of alignment such that the latency
of the critical path in the first stage is minimal.

5.3.3 Carry-Save Adders

The adder is also one of the oldest and most widely used arithmetic components in digital processors.
Its purpose is to add two operands A and B. In its simplest form a binary adder adds two bits. Such a
combinatorial circuit is called a half adder. The elementary operations of a half adder are 0 + 0 = 0,
0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 10. When both the augend and addend are 1, the output consists
of two bits. Because of this, the output of an adder is always represented by two bits, the sum and the
carry. If n-bits operands are added, the carry of bits in position i-1 (i ≤ n) is added to the next higher
order pair of bits i. This requires a combinatorial circuit that can perform addition on three bits: A, B
and the carry in. Such a circuit can be constructed from two half adders combined with an OR-gate and
is called a full adder.

To add two n-bit operands, a chain of n full adders can be used in cascade, with their carry out from
the full adder connected to the carry in of the next full adder, as shown in Figure 5.2. This simple and
straightforward implementation is know as a ripple carry adder. An obvious problem with the ripple
carry adder is the latency of the propagating carry. In the worst case, the carry has to propagate all

57

Chapter 5. Arithmetic Design Principles

the way from the LSB to the MSB. For a typical ripple carry adder the carry propagation is 2n+n gate
delays. A well-know optimization for this problem is the carry lookahead adder [7].

In carry lookahead, the addition is separated into smaller groups of bits (often four bits per group).
For each group, carry lookahead logic determines if a carry is going to propagate to the next group.
Simultaneously all 1-bit adder components produce their one bit results (the carry will still propagate
through each group). When the carry is going to propagate to the next group of bits, the carry lookahead
logic will already have deduced this. The net result is that the carries propagate through each (4-bit)
group, just as in a ripple-carry adder, but then four times as fast. Leaping from one lookahead carry
unit to the next. The number of bits in a group is not an arbitrary choice. The more bits per group,
the more complex carry lookahead logic becomes and the longer the latency will be. However, smaller
groups means more groups have to be traversed and less acceleration is achieved. No matter how good
the optimization, carry propagation will always result in high latencies. In most cases, too high for a
multiplier.

The carry-save adder (CSA) is a type of adder that computes the sum of three or more binary inputs.
It differs from other binary adders in that it outputs two numbers of the same dimensions as the inputs,
one which is a sequence of partial sum bits and another which is a sequence of carry bits. Due to this
redundant form of output, carry propagation is completely eliminated. A single bit, three bit input CSA
is shown in Figure 5.1, compared to a full adder.

FA CinCout

A B

Sum

CSA

A B

Carry Sum

C

Figure 5.1: Full-adder and carry-save adder

For a single bit, the only difference between a CSA and a full adder is the way we interpret the output.
However, just like a regular carry-propagate adder, we can create n-bit CSAs by connecting multiple
1-bit CSAs as shown in Figure 5.2. It clearly shows why CSA is preferred over carry propagate when
the width of the operands becomes larger. While the latency of a normal adder increases linearly with
the width of the input, the CSA’s latency remains the same for any length.

FAFAFAFA CSA CSA CSA CSA

Cout

Cout

Figure 5.2: CSA carry elimination

Let us illustrate a CSA operation with a small example. Consider two 8-bit input operands, perform
addition but ignore the carries:

A 01000101

B 11010111

Sum 10010010

Now perform the same addition, but only pay attention to the carries:

58

5.3. Multiplication

CSA

CSA

CSA

CSA

FA

(a) Cascaded CSA array

CSA CSA CSA

CSA CSA

CSA

CSA

FA

(b) CSA Tree

Figure 5.3

A 01000101

B 11010111

Carry 01000101

We end up with a redundant carry-save format of the addition. A sum 10010010 and the carries
01000101. What is nice about this redundant format is that if we add the sum and carries in a normal
fashion (i.e., let the carry propagate), we end up with the same result as if we had performed addition
with carry propagation.

Sum 10010010

Carry 01000101

Result 100011100

A 01000101

B 11010111

Result 100011100

Thus, the redundant carry-save form is converted back to the normal binary representation by adding
the sum and carry with a full adder. This might sound as if the CSA is only overhead, but this is not
true. The CSA is very useful when multiple additions have to be performed consecutively. In a m × m
multiplication, m additions are performed. Multipliers implemented based on full adders yield a massive
m × m latency due to carry propagation. If all but the last addition are carried out by CSAs, the latency
of carry propagation is reduced to m + m. For the final addition, we can take one of the traditional fast
carry propagate adders to minimize the latency of the final addition.

5.3.4 Wallace Tree Configurations

Instead of placing the CSAs in a cascaded array as shown in Figure 5.3(a), the CSAs can be placed in a
tree-like structure as shown in Figure 5.3(b). The latency of the multiplier is then even further reduced
to log2(m) + m. A tree of CSAs is called a Wallace Tree. With this tree structure of CSAs, it is often
possible to match the delay of alignment. Despite the fact that the array of Figure 5.3(a) is much slower
than a tree structure, it can still be interesting for certain applications. An array is much more regular
in structure and uses shorter wires to connect the individual components. Both properties are beneficial
for low-power design.

The simple example of Figure 5.3(b) is only one of many possible configurations of the Wallace tree.
The optimal configuration of a Wallace tree highly depends on the width of the input operands and the
type(s) of CSAs used. Figure 5.3(b) depicts a Wallace tree constructed from solely 3:2 CSAs (3 input 2

59

Chapter 5. Arithmetic Design Principles

Full Adder

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

4:2
CSA

4:2
CSA

4:2
CSA

carrysum

Figure 5.4: Wallace Tree

output). Every CSA in this tree reduces three partial product to two partial products. Because of this
property, the CSAs are also known as 3:2 compressors. Compressors can also be made to reduce four
input values, or even larger numbers. However, the higher order compressors have never really become
popular. Most Wallace trees are constructed from 3:2 and 4:2 CSAs.

Figure 5.3(b) shows a Wallace tree configuration that is popular for single precision floating-point mul-
tipliers. By using 4:2 compressors in the last stages, one level of compression is eliminated which is
beneficial for the latency of the multiplier. Of course the 4:2 compressors will have to be implemented
efficiently and not just cascade two 3:2 CSAs [30].

5.3.5 Partial Product Multipliers

The use of CSAs in multiply arrays (trees), provides one of the most elegant and efficient solutions for
multiply-accumulate. In the before-last stage of the multiplier, all partial products have been reduced
to a product in carry-save format. By inserting one more CSA between the partial products from this
stage and the full adder (Figure 5.5), we can almost freely ‘inject’ the addend into the multiply array
before the cary-save format is converted by the final carry-propagate adder.

5.4 Addition

So far we have seen that C can efficiently be aligned to the product in parallel with the multiplication
of A and B itself. Even adding C to the product does not require many resources or additional delay.
However, we have not yet mentioned anything about negative numbers. A problem arises when the signs
of A×B and C are different or when we simply want to subtract C from A×B.

60

5.4. Addition

SRL

Full Adder

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

CSA
3:2

4:2
CSA

4:2
CSA

4:2
CSA

Figure 5.5: Fused multiply-add

Given that A and B are sign-magnitude numbers, negative numbers are only differentiated from positive
numbers by their sign-bit. When multiplying two sing-magnitude numbers, it is sufficient to multiply
the magnitudes and deal with the sign-bit separately (a single XOR-gate computes the correct sign).
Addition and subtraction on the other hand, are more complicated. We can only treat the sign-bit apart
from the magnitudes when both signs are equal. Eight different scenarios can be distinguished when
performing signed addition/subtraction 1:

A + B
-A + -B
A + -B (A > B)
A + -B (A < B)
A - B (A > B)
A - B (A < B)

-A - -B (A > B)
-A - -B (A < B)

When dealing with signed numbers, addition and subtraction are not fundamentally different operations.
A - B is effectively the same as A + -(B). Based on this observation, the list of different scenarios to
account for can be reduced considerably:

A + B
-A + -B
A + -B (A > B)
A + -B (A < B)

1The signs of A and B are interchangeable, these differences do not affect the operation and are not counted

61

Chapter 5. Arithmetic Design Principles

This set of operations is just as powerful as the initial one while the number of different cases to ac-
count for is significantly reduced, therefore simplifying the problem at hand. The sign of a number in
sign-magnitude representation can easily be changed by swapping the sign-bit, making this reduction
very interesting for hardware implementations. The first two cases can be implemented by adding the
magnitudes and keeping the sign-bit unchanged. However, with a normal adder, subtraction is still not
possible and ideally we would like to have a FMA unit that accepts any number, positive or negative, on
every input. These problematic cases will be referred to as effective subtractions, the other are effective
additions.

5.4.1 End-Around Carry Addition

As discussed in Chapter 2, we can deal with addition and subtraction in a normal adder by converting
the sign magnitude representation to one’s or two’s complement and use a regular adder to perform
the effective addition or subtraction. This is however a very costly operation, especially in the case of
multiply-add where three operands will have to be converted. A more elegant solution is End-around
Carry Addition.

End-around Carry Addition requires a basic carry propagation adder that operates on two unsigned
numbers of length n. The magnitudes of A and B (unsigned significands), are denoted as |A| and |B|
respectively. Assuming that the operation is effective addition, the magnitude of the result is equivalent
to the addition of |A| + |B|, just like expected. Effective subtraction on the other hand results in a
positive number when |A| > |B| and a negative number when |A| < |B|. According to the theorems of
end-around carry addition [35], if |A| > |B| we can compute the magnitude by

|R| = |A| − |B| = |A|+ |B|+ 1 (5.3)

This basically means that |B| is inverted (converted to one’s complement) before being added to |A|.
After the addition, the result in incremented to find the correct magnitude. An important property of
end-around carry addition is that the carry out is always 1 is this case. The proof is omitted here but
can be found in [35].

If |A| < |B|, the resulting magnitude can be computed by

|R| = |A| − |B| = |A|+ |B|+ 0 (5.4)

In this case the carry out is always 0. Just like in the first case, the |B| operand is inverted. However,
the resulting magnitude is not incremented but inverted again. From 5.3 and 5.4 we can derive a more
generalized equation for effective subtraction. In 5.3, the result is incremented and the carry out of the
adder is 1. In 5.4, the result is not incremented and the carry out is 0. A logical consequence is that we
can just add the carry out of the adder to the result.

Σ = |A|+ |B|+ Cout

For effective addition we can do the same, except that |B| should not be inverted.

Σ = |A|+ |B|∗ + Cout

|B|∗ is equal to |B| for effective addition and |B| for effective subtraction.

62

5.4. Addition

Sum

A BSign

c
a
r
r
y

0

Adder

Adder

n

n

nn n

n

Figure 5.6: End-around carry addition

The only thing remaining is that the result must be inverted when the effective operation is subtraction
and |A| < |B|. This case can be detected by combining the signs of the operands with the carry out of
the adder (see also Section 5.4.2)

∆ = Cout ∧ effective operation

When ∆ is 1 we invert and otherwise we leave the result unchanged. This can be done by two-to-one
multiplexers but also by XOR gates. A string that is bit-wise XOR’ed with 1s is inverted while a string
that is XOR’ed with 0s remains the same.

So, a generalized equation for end-around carry addition is

|R| = Σ⊕∆

A possible implementation of end-around carry addition is shown in Figure 5.6.

5.4.2 Sign-Bit

Knowing the effective operation and the carry out of the magnitude is sufficient to determine the sign-
bit of the result (Rsign). At the beginning of this section a number of different cases were shown that
separated effective addition from effective subtraction. For effective addition (-A + -B or A + B), the
sign-bit of the result is equal to that of input A. For effective subtraction, the sign-bit may change
depending on the magnitude of A and B. If |A| > |B|, the sign-bit still equals the sign of input A. When
|A| < |B| the sign will change. To illustrate this, a few small examples are shown below:

Computation Effective Operation and Magnitude Resulting Sign
2 + 1 = 3 addition positive (unchanged)
−2 +−1 = −3 addition negative (unchanged)

2 +−1 = 1 subtraction (|A| > |B|) positive (unchanged)
−2 + 1 = −1 subtraction (|A| > |B|) negative (unchanged)

2 +−3 = −1 subtraction (|A| < |B|) negative (changed)
−2 + 3 = 1 subtraction (|A| < |B|) positive (changed)

To find the resulting sign-bit, the sign-bit of A×B is combined with the effective operation and the carry
out of the adder. The sign of A×B is used as a base for the resulting sign. The effective operation is

63

Chapter 5. Arithmetic Design Principles

straightforward to determine. First the sign-bit of the A×B product can be found by Asign ⊕ Bsign.
Now if the sign-bit of C equals that of the product, the computation is effective addition and otherwise
effective subtraction. Notice the second exclusive or relation, the effective operation is found by ((Asign⊕
Bsign)⊕Csign). If effective operation (1 for effective subtraction and 0 for effective addition) is addition,
the resulting sign-bit is just the sign of A×B, otherwise it may or may not be swapped depending on
whether |A×B| > |B| ot not. Remember that the carry out (Cout) of the end-around carry adder is 1 if
|A| > |B| and 0 if |A| > |B|, hence the sign-bit of the result (Rsign) is capture by Equation 5.5.

Rsign = (Asign ⊕ Bsign)⊕ effective operation ∧ Cout (5.5)

This equation can also be written as shown in Equation 5.6. This form can directly be translated into
hardware.

Rsign = (Asign ⊕ Bsign)⊕ ((Asign ⊕ Bsign)⊕ Csign) ∧ Cout (5.6)

Assuming the unique zero representation of the IEEE-754 format, both the sign-bit and the magnitude
are always zero (except when round to negative infinity is used). Equation 5.6 does not always produce
the correct sign-bit when the magnitude is zero. To include the unique zero representation Equation 5.7
must be used.

Rsign = (Asign ⊕ Bsign)⊕ ((Asign ⊕ Bsign)⊕ Csign) ∧ Cout ∧ Rzero (5.7)

This requires a check for zero at the very last stage of the floating-point computation. Since FMA is
only part of the IEEE-754 standard since 2008, the sign-bit for multiply-add operations has not always
settled correctly yet. One example is the newly adopted floating-point standard for VHDL-2008 [36].
More common floating-point mistakes and in particular the ones regarding the sign-bit are discussed in
Appendix B.

5.5 Normalization

In the final stage, after having multiplied A with B and after having added C, the result will most likely
have to be normalized and rounded. Normally these operations contribute to the critical path. We can
improve the situation by using a technique called LZA. A prediction of the number of leading zeros that
can be performed in parallel with addition.

5.5.1 Leading Zero Anticipation

In Chapter 2 we discussed the benefits of having normalized numbers. All normalized floating-point
numbers must have a ‘1’ as leading significand bit. In most cases, an intermediate result is not normalized.
Hence, a floating-point unit must be able to normalize its results. The normalization process involves
detection of leading zeros (discussed in 5.5.2). Leading zero detection quickly becomes part of the critical
path due to the fact that it depends on the outcome of the adder, which in itself entails a considerable
latency. leading zero anticipation tackles this problem by predicting the number of leading zeros in
parallel with addition.

Leading zero anticipation algorithms operate on the same input (A,B) as the adder. The result is a
string of indicators 0k1x* where each indicator in position i indicates if the bit on that position possibly
is the leading one. Here k represents zero or more instances of 0 and x* is either zero or one followed

64

5.5. Normalization

A 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0

B 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0

LZA pattern Z Z Z Z T T T T Z Z T G G G G Z T Z

A + B 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 0

Leading one - - - - X - - - - - - - - - - - - -

Table 5.1: Leading zero anticipation example, case I [30]

by zero or more instances of x. The first ’1’ in the indicators string marks the position of the leading ’1’
after addition. Kershaw et al. [28] first recognized that such a string of indicators could be derived from
the same input as the adder. Knowles further formalized the equations in [37] by providing the truth
table to set each indicator i. Different variations of LZA exist as discussed in [29], however they are all
based on the same principles. LZAs make use of a propagate (T), a generate (G) and a kill (Z) function.
These functions are defined as

T = A⊕ B (5.8)

G = A ∧ B (A B) (5.9)

Z = A ∧ B (A B) (5.10)

As the names already suggest, these functions look for carry generation, carry termination and carry
propagation. They help find patterns in the input (tuples (Ai−1,Bi−1), (Ai,Bi), (Ai+1,Bi+1) per indicator
i) that generate the appropriate indicator bit for position i.

If the adder is able to perform addition on signed numbers, the LZA algorithm becomes a bit more
complicated. It should not only be able to detect leading zeros, but also leading ones (see Section 5.4.1).
Several cases can be distinguished in which different patterns have to be matched to find the leading
one.

Case 1 A > 0, B > 0, Result > 0
Case 2 A < 0, B < 0, Result < 0
Case 3 A and B have different signs, Result > 0
Case 4 A and B have different signs, Result < 0

Schwarz illustrates the pattern matching in [30], chapter 8. For case 1, the following pattern must
precede the leading one: Z+:Z (i.e., one or more instances of Z followed by one instance of Z inverted).
An example that corresponds to this case is shown in Table 5.1. In case 2, A and B are both negative
numbers. This case is not relevant for FMA units because the result of A×B is always positive (only
the magnitude is multiplied). However, for completeness this case is included. The following pattern
can always be found in case 2, G+:G. In case 3, A and B have opposite signs and the result is positive.
T+:G:Z:Z is the pattern to look for here. The last case is when A and B have opposite signs and the
result is negative. In this case we have to find the pattern T+:Z:G*:G.

All cases considered, a predictor equation can be derived that produces a string of indicators that correctly
predicts for both positive and negative results. The equation has to work for all cases and all cases must
exclude each other. After some boolean manipulation, Schwarz derives the following equation:

fi = (Ti−1ZiZi+1) ∨ (Ti−1GiZi+1) ∨ (Ti−1GiZi+1) ∨ (Ti−1GiGi+1) (i > 0) (5.11)

65

Chapter 5. Arithmetic Design Principles

However, in a more compact notation, the LZA equation can be written as:

fi =

{
T0T1 i = 0

Ti−1(GiZi+1 ∨ ZiGi+1) ∨ Ti−1(ZiZi+1 ∨GiGi+1) i > 0
(5.12)

This equation easily translates to hardware.

Mispredictions

The predicted leading bit may be off by one position. If this is the case, then it can be proven that
it is always off one position to the right of the actual leading one. This is a very regular error, which
can easily be corrected during the last shift in the normalization stage. Other LZA techniques exist
that produce exact results [29], however they always trade off area for correctness and performance (i.e.,
exact solutions require much more hardware). Such solutions are only interesting for LZA instruction in
fixed-point processors, or when the adder latency entirely overlaps the latency of the exact LZA and the
normalization stage is a critical path.

5.5.2 Leading Zero Detection

LZA as discussed so far only predicts where the leading one will be located (approximately). Whether or
not LZA is incorporated in a floating-point unit, the number of leading zeros still needs to be counted.
leading zero detection (LZD) algorithms are used to actually count the number of leading zeros. Usually
this is done by encoding the indicator string or addition result into a binary representation of the
number of leading zeros. In the known literature, LZD can be categorized into two distinct methods.
One method is based on the creation of a monotonic string of zeros followed by ones. The other is based
on a hierarchical tree structure.

LZD Alternatives

In monotonic string methods, the input is first preprocessed such that the input string becomes of the
form 0*1+ (monotonic). This preprocessing is usually implemented by OR’ing and AND’ing specific
parts of the input in combination with manchester carry, or look-ahead speedup techniques. Once a
monotonic string is found, it is encoded using logic expressions that are restricted to AND and OR
operations. Kershaw [28] provides a more detailed description of the monotonic string LZD method, we
will not go into details here.

The other method for LZD is based on tree structures. A string on n inputs is first divided into n/2
adjacent pairs. For each pair a leading zero count is performed. At the next level the output is multiplexed
into a 4-bit leading zero count and so on. This continues for log2(n) levels until a count for the entire
input has been found.

The monotonic string method is faster than a tree structure if a manufacturing process is used that
allows extra wide AND an OR gates. However, this method is less attractive for low-power technology
[29]. If LZD is not part of the critical path (which is often the case when combined with LZA), the
hierarchical tree structure is the preferred choice.

66

5.5. Normalization

LZD2 LZD2

LZD4
2

V P

V0 P0 V1 P1

(a) Four bit LZD circuit

mux

2

P0 P1 V1V0

P V

(b) LZD4 logic

Figure 5.7

LZD by Tree Structures

Despite the fact that energy efficiency of monotonic string methods has improved [38], we believe that
the tree structured LZD circuit still offers the best solution for low-cost, low-power architectures. A
well-known tree structured LZD solution is presented by Oklobdzija in [1]. In his work he describes a
scalable algorithm for generating LZD circuits. In the remainder of this section, his work is explained.

At the most basic level, a two bit leading zero count circuit is defined. The input for this circuit is a two
bit pattern that can be either 1X, 01, 00 (X is don’t care). The output also consists of two bits; one to
indicate the position of the leading 1 (which is the same as the number of leading zeros) and a valid bit
that indicates if there was a 1 present in the input. The truth table for this simple circuit is shown in
5.2. This logic easily translates to hardware by using multiplexers or even directly in logic gates.

Pattern Position Valid

1X 0 1 (yes)
01 1 1 (yes)
00 X 0 (no)

Table 5.2: Two bit LZA truth table

The 2-bit case can be extended to a four bit counter in a hierarchical way. Two 2-bit counters are
connected to form a 4-bit counter, one counter for the two MSBs (left) and one counter for the MSBs
(right). Let P0 indicate the position of the leading 1 in the two MSBs and P1 of the LSBs. V0 will
be the valid bit for P0 and V1 for P1. The two 2-bit LZD circuits are connected with four bit LZD
logic (LZD4) as shown in Figure 5.7(a). The logic for the lower LZD4 block is shown in Figure 5.7(b)
and in truth-table form in Table 5.3. A four bit variant can also be implemented directly in logic gates.
However, multiplexers are generally faster.

Pattern Position (binary) V0 Valid Position (logical) Valid

1011 0 (00) 1 (yes) V 0P0 1 (yes)

0100 1 (01) 1 (yes) V 0P0 1 (yes)

0011 2 (10) 0 (no) V 0P1 1 (yes)

0001 3 (11) 0 (no) V 0P1 1 (yes)

0000 XX 0 (no) 0 (no) XX

Table 5.3: Four bit LZA truth table

67

Chapter 5. Arithmetic Design Principles

Now we can also take two groups of four bits and connect them together for an an 8-bit leading zero
detector. We can go further by connecting two 8-bit counters for a 16-bit counter and so on. The
generalized algorithm for creating 2n wide LZDs is shown in Algorithm 5.5.1

This algorithm is scalable for input that is a power of two. Input that is not a power of two will have
to be padded with zeros. In the worst case, this means that the leading zero detector is almost twice as
large as required (e.g., for input of length 33 we need a 64-bit counter). With some minor modifications,
this circuit can be made more area-efficient and support any length of input that is even. The worst case
can be reduced to one bit overhead. These modifications are discussed in Chapter 6.

Once the number of leading zeros is determined, the last step of normalization is trivial. The number
of leading zeros is the amount of positions to shift the significand to the left and also the number to
subtract from the intermediate exponent.

Handling the Error of Inexact LZA

Earlier we mentioned that LZA is not always exact. In some cases, the actual leading 1 is located one
position to the right. Although solutions have been proposed for exact LZA, there is always a trade off
between area/energy efficiency and guaranteed correctness. Exact solutions (e.g., [39, 38, 29] eliminate
the need for correction and thus improve latency, however, the latency reduction often comes at the cost
of a considerable area increase. In many cases where area is of importance, postponed correction is much
more attractive because it can be implemented with considerable less hardware. The price one pays for
misprediction is not very high. A two-to-one multiplexer in terms of latency, and an adder or subtracter
for exponent correction; insignificant compared to the cost of exact LZA.

Correction after misprediction is easily achieved. After shifting the significand to the left by the amount
resulting from counting the leading zeros in the indicator vector, a simple check on the MSB of the
‘normalized’ significand reveals the error. If the MSB is 1, then the prediction was correct and no
further action is required. If the MSB is 0, then the prediction was incorrect and the significand needs to
be shifted one more position to the left, and the exponent decremented. In terms of hardware this can
be realized by using two exponent subtracters in parallel (one that subtracts the amount predicted by
the LZA and one that subtract the same amount plus one) and selecting the result based on the MSB of
the shifted significand. Another solution would be to conditionally increment the amount to subtract.

Algorithm 5.5.1 Leading zero detection

1: Form a pair of bits Bi, Bi+1 for 0 ≤ i ≤ (n− 1).
2: Determine the P and V bit for each pair.
3: while depth < log2{n} do
4: Determine the Pnext and Vnext bits from the P and V bits as follows:
5: Vnext = Vleft ∨ Vright
6: if Vleft = 1 then
7: Pnext = 0 & Pleft (concatenation)
8: else if Vright = 1 then
9: Pnext = 1 & Pright (concatenation)

10: else
11: Vnext = 0

12: end if
13: end while

68

5.6. Rounding

5.6 Rounding

The normalized results often need to be rounded because most numbers can not be represented exactly
in floating-point representation. Rounding is nothing more than choosing between the two representable
numbers that are closest to the exact answer of the operation. This means the intermediate result
obtained after normalization is either incremented or truncated. In principle a simple operation that
requires only one adder. The real difficulty of rounding floating-point numbers is making the decision to
increment or truncate. Several types of rounding exist. Always truncate, always increment or truncate in
one case and increment in another. The preferred type of rounding strongly depends on the application.
For this reason, the IEEE-754 standard for floating-point arithmetic defines four rounding modes.

• Round to zero
• Round to minus infinity
• Round to infinity
• Round to nearest even

To comply with the IEEE standard, all these rounding modes have to be implemented. In addition, the
final result must be computed as if it was performed in infinite precision and then rounded. Algorithms
for IEEE rounding have been explored extensively, for example in [40], [30] and [31]. Most of them are
based on the concept of guard, round, and sticky bits as explained in Chapter 2 and at the beginning of
this chapter. With only three additional bits, all floating-point arithmetic can be rounded as if it was
computed with infinite precision [9]. The guard and round-bit are nothing more than a two bit extension
of the datapath, i.e., all computations are performed with two extra bits of width. The sticky-bit was
explained in Section 5.2.1.

Round to Nearest Even

Perhaps the mostly used rounding mode in IEEE floating-point arithmetic is round to nearest even. In
this rounding model all numbers are rounded to the nearest representation, and if there is no nearest
representation (if we are exactly in between), the result is rounded to the nearest even number. For this
round mode, the round-bit, the guard-bit, the sticky-bit and the LSB of the normalized result must be
know. A possible rounding algorithm is shown in Algorithm 5.6.1 [31].

Once the guard, round and sticky-bit are know, round to nearest even is pretty straightforward. The
guard-bit is the first bit after the result’s LSB. If this bit is 1, then the discarded bits (including the
guard-bit itself) have at least half the weight of the LSB (i.e., one ULP). If not, then the nearest

Algorithm 5.6.1 IEEE-754 round to nearest even

Input: guard-bit G, round-bit R, sticky-bit S, the normalized result truncated up to the original input
width plus the hidden-bit Significandnormalized, and the least significand bit of the normalized
result LSB

Output: Significandrounded
1: if G = 0 then
2: Significandrounded ← Significandnormalized
3: else if R = 1 ∨ S = 1 then
4: Significandrounded ← Significandnormalized + 1
5: else if LSB = 0 then
6: Significandrounded ← Significandnormalized
7: else
8: Significandrounded ← Significandnormalized + 1
9: end if

69

Chapter 5. Arithmetic Design Principles

representable number is always the truncated normalized result. For all other cases the round and
sticky-bit have to be examined to determine if the nearest or nearest even numbers needs to be selected.
If either the round or sticky-bit is 1 in combination with the guard-bit being 1, the discarded bits have
more weight than half a ULP and the result will have to be incremented.

If neither of the above cases is true, the algorithm must find the nearest even number. The algorithm
by Park et al. [31], uses the LSB of the unrounded result. If neither the guard, round or sticky-bit is 1,
the result is truncated and otherwise incremented.

Round to Infinity

In a similar way round to ∞ can be described. IEEE-754 defined both round to +∞ and round to −∞.
Algorithm 5.6.1 shows how to implement round to +∞. To implement both round the +∞ and −∞,
the sign-bit must be added as an additional parameter. For rounding to −∞, the procedure shown in
Algorithm 5.6.1 must be inverted. When normally we would increment, we truncate and vice versa.

Algorithm 5.6.2 IEEE-754 round to infinity

Input: guard-bit G, round-bit R, sticky-bit S, the normalized result truncated up to the original input
width plus the hidden-bit Significandnormalized, and the least significand bit of the normalized
rersult LSB

Output: Significandrounded
1: if G = 1 ∨ R = 1 ∨ S = 1 then
2: Significandrounded ← Significandnormalized + 1 (round)
3: else
4: Significandrounded ← Significandnormalized (truncate)
5: end if

Round to Zero

The simplest rounding mode is truncation, known as round to zero in the IEEE standard for floating-
point arithmetic. This rounding mode always truncates the normalized result, regardless of the state of
the guard, round and sticky-bit. Because this mode is so simple and does not require any additional
hardware to implement, some high-speed floating-point units choose to support only this rounding. The
SPEs in the Cell Processor (Section 3.4) are a good example of this approach.

5.7 Summary

We have shown a number of techniques that can be used to build efficient floating-point units. From
efficient alignment of operands to rounding that is compliant with IEEE-754. These techniques can not
blindly be applied to any floating-point datapath. For example the alignment of C as described in 5.2
results in a floating-point representation three times the size of the original input. To align this with
the product of A and B, operand extension is mandatory. In other cases, such as the LZD circuit, the
techniques are described in such a way that they are independent of the floating-point precision. When a
supported format has been decided upon, the circuits can often be further optimized for area or speed. In
the next chapter we will discuss such implementation details. We will then also discuss how to maximize
the use of the floating-point hardware by re-using it for integer operations.

70

6
Implementation

6.1 Introduction

Chapter 4 outlined a (multiply-add) datapath for shared integer and floating-point functionality. Chap-
ter 5 mainly focused on optimizing the datapath for high speed by presenting techniques for local improve-
ments to the architecture. In this chapter, we finalize the design by describing how the optimizations,
basic hardware blocks and control are combined into a fast and area-efficient design. A detailed block
diagram of the augmented integer floating-point unit is shown in Figure 6.1.

Despite the fact that this diagram only shows dataflow and omits the necessary control, it gives a good
impression of the complexity involved in designing an efficient datapath for floating-point and integer
arithmetic. To avoid losing overview, the datapath is divided into seven sectors:

• Input formatting and instruction decoding
Instruction Decoder/Input Formatter

• Alignment and exponent adjustment
Exponent Adjustment and Shift Count, Shift Right, Sticky-bit

• Comparing operands
Compare

• Fused Multiplication-Addition
Partial Product Multiplier, Conditional Complement, Carry-Save Adder,

Carry-Propagate Adder, Conditional Re-Complement

• Normalization
Leading Zero Anticipation, Leading Zero Detection, Normalize

• Rounding
Sticky-bit, Round

• Output formatting and signaling exceptions
Output Formatter

For each sector, the (non-trivial) implementation details are discussed per hardware block. Their func-
tionality and purpose should be clear by now. Therefore, every section only provides a minimalistic
introduction to the functionality. We start at the input formatter in first stage and follow the dataflow
through the datapath until the output formatter is reached. Emphasis is put on how components have
to be modified to support both two’s complement input for integer arithmetic and unsigned input for
floating-point arithmetic. Every components is implemented such that the area is minimized without
affecting the performance obtained from the optimizations described in Chapter 5

71

Chapter 6. Implementation

33
33

33
8

7

9

2

102

102 102

102102

sign extension

102

3

6868

33 33

5

Exponent Adjustment
and

Shift Count

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Sticky-bitShift Right

Compare

Sum CarryExponentStatus

s
ig

n
b
it
s

e
x
p
o
n
e
n
t

c
o
m

p
a
r
e

Carry-Propagate Adder

Conditional Re-Complement

Leading Zero Anticipation

Leading Zero Detection

102102

102

c
a
r
r
y

Sum

102

ExponentStatus

Instruction Decoder/Input Formatter

101(LSBs)

Normalize

Round

Status

A left A right B left B right C left C right

Status Left Right

32 32 32 32 32

32

5

9
101

sign extension

7 (LSBs) 102

3 32 32

s
t
a
t
u
s 101sticky bit

8

s
t
ic
k
y

101(LSBs)

Output Formatter

8 8

shiftcount

muxmux

e
x
p
o
n
e
n
t

32

s
ig

n

s
ig

n
if
ic

a
n
d

A

s
ig

n
if
ic

a
n
d

B

s
ig

n
if
ic

a
n
d

C

101 (LSBs)7

7

5

Instruction

DW

DW

DW

Figure 6.1: Detailed datapath overview (DW indicates Synopsis DesignWare component)

72

6.2. Input Formatting and Instruction Decoding

6.2 Input Formatting and Instruction Decoding

At the very start of the first stage in the ALU, all operands pass through the instruction decoder and
undergo a slight transformation to accelerate processing and guarantee correct output. The instruction
decoder performs three tasks:

• Decoding opcodes
• Extending operands
• Checking for zeros

6.2.1 Opcode Decoding

The ALU supports seven floating-point instructions and six integer instructions in hardware. To dif-
ferentiate the instructions, a 5-bit opcode is used (one spare bit for future extension of the instruction
set).

Opcode Encoding Type Operation

FMAN 00001 Float Multiply-Add round to nearest even
FMAZ 00010 Float Multiply-Add round to zero
FMAP 00011 Float Multiply-Add round to positive infinity
FMAM 00100 Float Multiply-Add round to negative infinity
FLTV 00101 Float Compare, less than
FGTV 00110 Float Compare, greater than
FETV 00111 Float Compare, equal to

IMAC 10000 Int Multiply-Accumulate
ISLV 10001 Int Arithmetic shift left
ISRV 10011 Int Arithmetic shift right
ILTV 10101 Int Compare, less than
IETV 10110 Int Compare, greater than
IGTV 10100 Int Compare, equal to

Table 6.1: ALU opcodes

As explained in the previous chapter, each instruction requires a different dataflow through the datapath.
FMAN instructions for example, must flow through the normalization and rounding blocks while its integer
counterpart IMAC can skip the entire last stage. To control dataflow in the ALU each opcode is decoded
into control signals that (re)configure the ALU such that the dataflow corresponds to its instruction.

The opcodes are translated into four control signals that determine the initial configuration of the data-
path. One to differentiate between floating-point and integer instructions, one to differentiate arithmetic
from logic instructions and another to differentiate shift instructions from the rest. The last control
signal is a 2-bit round mode encoding, used in the last stage to configure the floating-point rounding
logic. Decoding the opcodes into control signals is straightforward to implement by multiplexers, we will
therefore not discuss this in detail.

6.2.2 Operand Extending

Every IEEE floating-point number includes a hidden-bit. Because normalized numbers always start with
a 1, this bit does not have to be stored in memory. By assuming this bit implicitly, the precision of
floating-point numbers can be extended by one additional bit, without the need for larger registers.

73

Chapter 6. Implementation

Opcode

0

Input

Extended Input

&

33

32

mux

Figure 6.2: Operand extension

However, in order to perform arithmetic on such numbers, the hidden-bit first needs to be made explicit
again. The ALU we present does not support denormalized numbers. Consequently, for every floating-
point instruction, the instruction decoder extends all 32-bit significands to 33 bits by placing a 1 in front
of the MSB (except when the operand is zero, see Section 6.2.3). For a datapath that is purely intended
for floating-point arithmetic, this simply requires that the new MSB is tied to the logical ‘high’ value
(Vdd). However, the same input is also used to perform integer arithmetic. A 32-bit two’s complement
notation is used to represent integer numbers which does not require any extension of the operand.
Nevertheless the floating-point datapath is 33-bit, forcing us to extend the integer operands as well. To
solve this problem, the two’s complement integer operands can be extended by sign extension. Sign
extension means that the sign-bit is duplicated.

Every operand that goes into the ALU is extended in the instruction decoder by concatenating (&) one
additional bit to the left of the MSB. The value of this bit is determined by the opcode as depicted in
Figure 6.2.

6.2.3 Checking for Zero

Zero is an exceptional case in the IEEE floating-point format. Unlike any other valid number, zero
does not use a biased exponent. This causes all sorts of problems that are discussed more detailed in
Appendix B. For example 0×M is expected to return 0 [6]. When no action is taken, one will find
that such computations will incorrectly underflow. The problem can be explained by the fact that bias
accumulation is compensated by the datapath (Section 5.2). When the operand is zero, there is no
bias so compensating (subtracting the bias) will not produce the correct result. The exponent can even
become negative, which is not allowed, hence the underflow exception will be raised.

To prevent problems like this, every operand is checked for zero when they arrive at the instruction
decoder/input formatter. Based on the produced zero-check control signal, measures can be taken to
prevent incorrect zero-arithmetic. The exponent of any floating-point number that is in accordance with
IEEE-754, is zero if and only if the operand is zero. We can benefit from this property by checking
only the exponents of the input. If an exponent is zero then the operand is zero, otherwise the input
would be invalid (denormalized numbers are not supported). Consequently, the zero checks require only
three 8-bit comparators. Moreover, the comparators only have to check for 0s which is inexpensive to
implement in hardware. For each operand there is a separate zero check control signal.

Note: some of these problems may be resolved by converting all exponents to two’s complement. This
is however not very area-efficient and adds more delay than a comparator.

74

6.3. Alignment Shift and Exponent Adjustment

6.3 Alignment Shift and Exponent Adjustment

After passing through the instruction decoder/operand formatter block, operand C is aligned with the
product while operands A and B are multiplied to form the product itself (Figure 6.3). Alignment of
two floating-point numbers consists of two actions: adjusting the exponent of one operand to match the
exponent of the other, and shifting the significand of that same operand to match the new exponent.
Adjustment of the exponents is often not discussed in publications related to floating-point arithmetic.
This is mostly because it is assumed to be trivial. In a purely mathematically sense this is true, viz.,
multiplication is just addition of the exponents and for floating-point addition/subtraction the exponent
simply equals the exponent of the operand that is not shifted. In binary floating-point arithmetic however,
we have to deal with overflow, underflow and non-regular (e.g., zero and infinity) input. Especially in
the case of FMA, exponent adjustment is anything but trivial.

33 8

7

102

Exponent Adjustment
and

Shift Count

Sticky-bitShift Right

8 8

Figure 6.3: Operand alignment sector

6.3.1 Exponent Adjustment

The IEEE-754 floating-point interchange formats specify that the exponent is biased. This choice was
made for historical reasons because comparing biased numbers by hand is a lot easier and quicker than
comparing for example two’s complement numbers. Unfortunately biased notation entails a few very
unfortunate adverse properties for arithmetic implementation. Some of these properties include the
accumulation of the bias during addition and the difficulty of underflow detection. A solution that is
often implicitly assumed is to convert the exponent to a signed representation. In a signed representation
(usually two’s complement) exponents can be added and subtracted without having to worry about bias
accumulation and underflow is easier to detect because the sign-bit inverts. However, we have chosen
not to convert the exponent to a signed representation for two reasons:

• Conversion would add additional delay to the critical path of the first stage. All exponents would
have to be converted before the actual computation starts, making it very difficult to overlap the
conversion delay with other processing delays.

• If we assume two’s complement representation, conversion would require a converter consisting of
an inverter a subtracter and an incrementer. In terms of area and energy efficiency, this is costly.

The solution we propose is to keep using the biased notation and extend the exponent by one bit. This
means we still have to compensate for bias accumulation, but at least this can be done in parallel with
the significand multiplication. Because we extended the exponent by one bit, overflow is easily detected.
When after addition, either the MSB is 1 or all the other bits are 1, the intermediate exponent has
exceeded the maximum representable number (Table 2.3). Both cases are easily detectable. The MSB
OR’ed with the AND-reduced LSBs provides a 1-bit overflow control signal (1 meaning overflow).

75

Chapter 6. Implementation

In FMA, overflow handling is a little more complicated than multiplication or addition separately. During
multiply-add operations a third operand is added or subtracted. This could very well mean that although
the intermediate result of A×B overflows, the final result of A×B−C is within the representable range
of the floating-point unit. By using one more bit in the exponent, we can continue normally without
checking for overflow, because two 8-bit biased exponents can not overflow in a 9-bit representation.
Besides the addition/subtraction of C, normalization could also prevent the final result from overflowing.
This even holds for non-FMA floating-point units. Only when the exponent still exceeds the maximum
after normalization will the result truly overflow, hence overflow detection is postponed until after nor-
malization. It should even be postponed until after rounding because the result may still overflow during
round-off (Section 6.7).

Underflow is even more difficult to detect than overflow. A floating-point number underflows when its
biased exponent is smaller than or equal to zero. Assuming that none of the exponents is initially zero,
the intermediate exponent may underflow during compensation for bias accumulation. For example,
multiplication of two floating-point numbers with the minimal exponent of -126 (00000001 in binary
bias-127 notation) yields -125 (00000010). This result now includes the bias twice, so we have to
subtract the bias to find the actual exponent. Obviously 127 is much larger than the exponent itself so
the result will underflow. Detection of underflow in the result itself is very difficult. It is much easier
to predict if the result will underflow based on the intermediate result (before subtracting the bias). If
this result is smaller than or equal to the bias (or as explained shortly, the bias minus a constant offset
for FMA), we have detected underflow. The only requirement is a 9-bit comparator. The cost of this
comparator can be justified by sharing it with floating-point compare instructions. These instructions
require an exponent comparator regardless of the exponent representation that is used.

Unlike overflow, normalization can not recover the result from underflowing. However, in FMA the
addition of C could mean the final result does not underflow. If a floating-point computation underflows,
the result is usually represented by zero [6]. Thus adding C to the product results in C again, unless
C itself is also zero. Therefore based on the zero-check control signals retrieved from the instruction
decoder, either the C operand is forwarded to the next stage or the result really underflows (when C is
zero) and the status bits are asserted to the underflow status.

Now that the overflow and underflow detection is settled, we can focus on the dataflow of exponent
adjustment itself. The main part of the exponent aligner is depicted in Figure 6.4.

+
91

-

Ae Be Ce

9 9 9

8 8 8

ShiftExponent

<

dlog2(102)e + 1 = 8

Status

95

127

-

Figure 6.4: Exponent alignment and shift count

This flow is based on Equation 5.2. The equation states that after adding the exponents of A and B, the
bias must be subtracted and an implementation specific offset must be added. The bias and the offset
are both constant so Equation 5.2 can be simplified to one addition and one subtraction. The bias for

76

6.3. Alignment Shift and Exponent Adjustment

an 8-bit exponent is 127 and the offset for a significand of 32 bits with a guard and round-bit is 36 (1
hidden-bit + 32 significand bits + 1 guard-bit + 1 Round-bit + 1 multiply compensation):

Exponent = Ae + Be − 127 + 36

= Ae + Be − 91 (6.1)

Equation 6.1 is implemented by adding the exponent of A and B in a 9-bit adder and subtracting the
constant in a 9-bit subtracter as shown in Figure 6.4. The result is also used to drive the shifter that
aligns the significands.

6.3.2 Significand Shift

Section 5.2 explained how C can efficiently be aligned with the product by placing C entirely in front of
A×B. Equation 5.1 was derived to find a right-shift count for C. This equation, that actually describes
the absolute difference between the exponents of A×B and C, only slightly differers from the one used
to find the exponent. By subtracting Ce we find the shift count needed to drive a shifter that aligns the
significands. Because the exponent of A×B is already known at this point, the required shift count is
straightforward to implement. The exponent of C is however not a constant, so another subtracter is
needed, as shown in Figure 6.4.

Integer Re-use

The alignment optimization discussed in Section 5.2 minimally requires a 101-bit shifter (3×33+2). This
shifter needs to be a logical shifter to ensure that 0s are shifted in from the left. However, to save area,
we want to use the same shifter for integer shift-right instructions. To be able to shift two’s complement
integer input in a meaningful way, an arithmetic shifter (Figure 4.5(a)) is required. Arithmetic shifting
is not suitable for floating-point alignment because the MSB of the normalized input is 1. To facilitate
both integer and floating-point shift, an arithmetic shifter is used but it is extended to 102 bits. For
floating-point alignment the MSB is asserted 0 with the significand placed immediately to the right as
shown in Figure 6.5(a). The arithmetic shifter now shifts in zeros as desired for floating-point alignment.
The integer operands can of course be sign extended as described earlier.

Integer input is mapped differently to the shifter to aid datapath regularity. In Chapter 4 we agreed to
set the duration of every integer instruction to two clock cycles. Because the shifter produces a result

0

Significand

67101

032

0

(a) Floating-point alignment

033

032

101

Significand

(b) Integer shift-right

Figure 6.5: Input mapping to right shifter

77

Chapter 6. Implementation

every clock cycle, an additional register and control would be needed to temporarily store the outcome
of the shift instruction and route it to the output of the ALU. For area-efficiency reasons, the output
of the shifter is instead routed through the adder. The outcome is effectively the same if one or both
inputs to the multiplier are zero.

(A� n) = 0× 0 + (A� n)

Theoretically the shift count can be 253 for bias-127 exponents. With such large shifts the C operand
will have no effect on the product of A and B. The shifter itself can only shift 102 positions, so a 7-bit
(dlog2(102)e) shift count is sufficient to drive the shifter. However eight bits (256 positions) are used
to represent the shift amount, because this is convenient for sticky-bit calculation (Section 5.2.1). Any
amount that is larger than 102 will be ‘saturated’ by the shifter. The shifter will shift out C entirely so
it does not affect the result. A negative shift (detected by another comparator not shown in Figure 6.4)
indicates if A×B is too small to affect C. In this case we overwrite the shift count with zero. C remains
unaffected and will flow through the datapath to the output of the ALU.

Facilitating Compare Instructions

We already shortly mentioned that the comparator used for underflow detection is also used to compare
exponents for floating-point compare instructions. The input of the comparator is multiplexed between
Ae and Ce, and Be and 127 (the bias) respectively. Both multiplexers are controlled by a 1-bit signal,
obtained by the instruction decoder, that differentiates arithmetic from logic operations. Once the
multiplexers are configured for logical compare operations, the output of the comparator indicates if the
exponent of A is smaller than the exponent of B (1 if true and 0 if false). For a full comparator, greater
than and equal to are also mandatory. If one of the two is known then the third can be derived. In
hardware the latter requires less area and is therefore implemented. The exponent adjustment block
produces two 2-bit encoding for further comparison in the Compare block. The MSB encodes the logic
value for ‘less than’ (1 meaning true) and the LSB encodes ‘equals’ (1 meaning true).

6.3.3 Sticky-Bit

The primary sticky-bit (inexactness caused by alignment) is computed by special sticky-bit logic. Algo-
rithm 5.2.1 was derived for efficient OR reduction of the bits shifted out during alignment. The actual
implementation does not differ from the algorithm. A 66-bit shifter is driven by a subtracter that sub-
tracts an implementation specific constant. In this case 68; which is two times the extended significand
width plus the guard and round bits. The shifter output is OR reduced by a tree of OR-gates.

6.4 Comparing Operands

Comparing floating-point operands is very different from comparing integers. For a full floating-point
comparison, the exponents, significands and sign bits have to be evaluated individually. For two’s
complement integer compare, the sign and magnitude have to be compared together. Comparing in
two’s complement notation is more difficult than sign magnitude. As mentioned before, to support the
full range of logical compares (i.e., ‘less than’, ‘greater than’ and ‘equal to’), only two out of three have
to be implemented. The third can be derived from the other two. Since ‘less than’ and ‘equal to’ require
the least area, these are the compares that are physically present in the compare block.

78

6.4. Comparing Operands

Let us first focus on floating-point less than (FLTV(A,B)). Obviously when A is negative and B positive,
A is smaller than B. There is however one exception:

IEEE-754 states that “Comparisons shall ignore the sign of zero (so +0 = -0)”

Hence, if the zero check control signals from the input formatter indicate that A and B are zero, the
outcome is forced to equal (false from a ‘less than’ viewpoint). If both signs are equal, the exponent is
the next parameter that determines which of the two operands is smaller. At the end of the previous
section, we explained that the alignment block already provides the means for comparing exponents. If
the two exponents are equal, then the significand determines the outcome of the operation.

For a ‘less’ than compare predicate we need at least a sign-bit comparator, an 8-bit exponent comparator
(<) and a 32-bit significand comparator (<). For ‘equal to’, similar comparators are needed although
they are much simpler because equality comparators (=) only have to compare the input bit-for-bit. An
efficient implementation for full comparison is shown in Figure 6.6. Instead of comparing everything at
the same time, a more hierarchical approach is taken. First the signs, exponents and significands are
compared separately and subsequently encoded in a single bit true/false value. Custom pattern matching
logic then evaluates the obtained values against the opcode to determine the correct outcome. A design
like this yields better synthesis result than flattened comparison because most tools are not able to
recognize that only one set of comparators is needed to support full floating-point compare functionality
(<, = or >).

Integer Re-use

To compare two integers, we require a 32-bit two’s complement comparators. The floating-point sig-
nificand comparator is 32-bit (we do not have to compare the hidden-bit), which makes it a candidate
for hardware re-use. This comparator is however not directly compatible with two’s complement input.
Although configurable comparators exist, tools will not be able to recognize the need for them without
explicitly pointing this out. As with the alignment shifter, the input is therefore sign extended for in-
tegers and 0-extended for floating-point operands. A common two’s complement comparator can then
be used to compare both types of input. The pattern matching logic accounts for the fact that integer
compare depends solely on the result of this single comparator.

A
e
<
B
e

A

32

33

A
e

=
B
e

B

32

33

<

=

Pattern Match

33 33

True/False

A
s
ig
n

B
s
ig
n

O
p

co
d

e

4

Figure 6.6: Comparator

79

Chapter 6. Implementation

6.5 Fused Multiplication-Addition

At the heart of the ALU lies the multiply-add structure. By the multiply-add structure mean the partial
product multiplier, the carry-save adder and the carry-propagate adder from Figure 6.1. Combined, these
components provide the basic means for multiplication and addition. The conditional complementer and
re-complementer also have to be included in order to support subtraction. In the upcoming sections we
will focus on this core functionality of the datapath.

102

102 102

102102

sign extension

102

6868

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Shift Right

Sum Carry

Carry-Propagate Adder

Conditional Re-Complement

102102

102

c
a
r
r
y

101

33 33

Figure 6.7: Core multiply-add functionality

6.5.1 Conditionally Complementing

After being aligned, the 102-bit addend C may need to be complemented as discussed in Section 5.4.1. C
only needs to be complemented in case of effective subtraction. Fortunately, the effective operation is very
easy to determine. Effective subtraction only occurs when the signs of two operands differ. Therefore,
((Asign XOR Bsign) XOR Csign), indicates whether or not the effective operation is a subtraction. There
is one exception: if any of the operands is zero, the addend should never be complemented. If A or B
is zero, the C operand is simply forwarded to the output (i.e., A×0+C=C or 0×B+C=C). If C itself is
zero, it should not influence the result (A×B+0=A*B), hence C should never be complemented if any
of the operands is zero. The effective operation is therefore combined with the logical OR of the zero
detect signals from the instruction decoder. Based on the evaluation of the resulting control signal, the
addend C is inverted to obtain its complement.

The (complemented) addend is also extended by one bit. Because the partial product obtained from the
multiplier is always signed due to Booth encoding, a false carry out may occur. By explicitly including
the sign-bit, some of these false carry out cases are eliminated. Although including the sign-bit is not
sufficient to solve the entire problem, we mention it here because the entire datapath needs to be arranged
for 102-bit wide data.

80

6.5. Fused Multiplication-Addition

I/O Signal Width Direction Function

A n Input Multiplier
B n Input Multiplicand
tc 1 Input Two’s Complement Control

0 = unsigned
1 = signed

PP l n+ 2 Output Partial product
PP r n+ 2 Output Partial product

Table 6.2: Partial product multiplier parameters

6.5.2 Partial Product Multiplier

In Chapter 5 we showed that the for FMA architectures, the most efficient multiplier is a partial product
multiplier based on modified radix-4 Booth encoding and a Wallace tree structure. Despite the availability
of sophisticated tools, designing such a multiplier is a complex matter. Even non-Booth multipliers
based on trees or arrays require substantial design effort. For this reason, many tools support operation
inferencing. When a certain operation such as addition or multiplication is encountered in the RTL
description, the compiler consults technology independent libraries that contain parameterized building
blocks like multipliers and adders. Not only does inferencing reduce development time, the result is often
much more optimized than the result obtained from manual design efforts.

Some tools may be able to recognize multiply-add operations and deduce a structure based on a partial
product multiplier as described in Section 5.4.1. However, because the 102-bit aligned C operand does
not match the 66-bit multiplication product of A×B, most tools are not capable of recognizing the
exact design we presented in Chapter 5. And even if they did, the multiply-add structure would be
either signed or unsigned, not a combination of both. Inferencing multiplication and addition separately
will also not produce the desired result. Without proper guidelines, the compiler may deduce a fast
Wallace tree multiplier, but it will also include the final stage carry propagate adder. This is unwanted
since inserting an additional CSA before the final carry propagate addition (Figure 5.5), significantly
contributes to the performance of the FMA datapath. Although this means we can not rely on operation
inferencing, a complete manual design of the multiply-add logic is not a viable solution either, considering
the required development time. Fortunately, most compilers allow explicit instantiating building block
from the before mentioned libraries. So does Synopsis DesignCompiler [41], the compiler that is used for
the realization (Chapter 7) of the ALU we describe here. The Synopsis DesignWare library1 contains
over 140 re-usable datapath IP components including a partial product multiplier (DW02 multp). The
most relevant parameters of this partial product multiplier are listed in Table 6.2. For the specific design
of this thesis, a partial product multiplier with n=33 is instantiated.

The block diagram corresponding to the instantiated partial product multiplier is shown in Figure 6.8. As
can be seen, it consists of a Booth recoder to generate the partial products, a Wallace tree to reduce the
partial products and additional routing logic to position the partial product for the initial level of CSAs.
Exactly the kind of combination required for fast FMA. Because DW02 multp is fully parameterized, we
benefit from both the convenience of design automation and the flexibility of manual design. The tooling
can for example find the best combination of CSAs for an efficient Wallace tree, based on the input
length n. At the same time the partial products are directly accessible, giving us full control of the data
flow after the Wallace tree (i.e., an additional CSA can be inserted for fast multiply-add). The Booth
recoder is controlled by the tc signal. With this signal we can configure the multiplier for floating-point
arithmetic or integer arithmetic. With tc = 1, the Booth recoder scans the input as two’s complement
data, with tc = 0 as an unsigned number. It should be noted that in case of multiplication by constant
(e.g., A×1, for the FMA derivative A+C), the constant should be mapped to port B for optimal results.

1http://www.synopsys.com/IP/SOCInfrastructureIP/DesignWare/Pages/default.aspx

81

Chapter 6. Implementation

Regardless of the two’s complement control signal, the output is always signed due to Booth encoding.
This has consequences for re-complementation (carry-out after addition), which we will discuss at the
end of this chapter. Due to Booth encoding, the output is also two bits wider than the minimum (66 bits)
that we would expect from a multiplier. However, when the outcome is positive (which is always the case
for floating-point arithmetic), the two MSBs can be ignored according to the DesignWare specification.
After adding the partial products, both positions will be 0 which is ideal because we need them to be
zero for the guard and round-bit positions (Section 5.2). For the integer case we can also ignore the
MSBs due to sign extension.

Booth

Recoder

R
ou

tin
g

L
ogic

3
3

3
3

Wallace

Tree

6
8

6
8

···
···
···
···

A

B

PP r

PP l

tc

Figure 6.8: Synopsys DesignWare partial product multiplier (DW02 multp)

The Synopsys DesignWare partial product multiplier perfectly suits our needs. However, this component
makes the design highly vendor dependent. Since DesignWare is Synopsys proprietary, it can not be used
in combination with other tooling. A partial product multiplier is a very specific component that not
all tools may have available. In principle the Synopsys tools should cover all the needs for realization.
Synplicity can be used for FPGA prototyping (Section 7.2) and DesignCompiler for ASIC migration.
However, in the event that the Synopsys tools can not be used, the partial product multiplier will have
to be substituted with a similar building block or (re)designed by hand. We will not discuss in length all
the details of manually designing efficient partial product multipliers. The basic design principles have
been explained in Chapter 5 and Schwarz also covers a lot of detail in [30].

There is however one point of interest that is often a problem with combining the partial product and the
addend prior to reducing them to one final product. Due to sign extension of the partial products, there
is a chance of erroneous carry out propagation that needs to be ignored. As discussed in Section 5.4.1,
the carry out of the final adder is used to determine if the result needs to be re-complemented. The
carry out of an effective subtraction with a positive sum must be detected and separated from the other
carries. Schwarz describes a method that maintains an additional bit in the CSA tree. However, since
we have no control over this structure and the data sheet of DW02 multp does not mention anything
regarding sign extension carry out suppression, additional custom control is used to detect erroneous
carry out bits of the adder.

6.5.3 Carry-Save Adder

The partial products and the aligned and conditionally complemented addend are compressed with a
single 3:2 CSA, before converting the redundant carry save format with the final adder of the multiplier
tree. Although such a CSAs is easily designed by hand, the CSA from the DesignWare library (DW01 csa)
was used to further reduce development time. Of course this CSA is also fully parameterized like the
partial product multiplier. All its parameters are listed in Table 6.3.

To use this CSA properly, the carry-in should be fixed to 0 and the carry-out ignored. It does not
matter how the partial product and addend are connected to the input, however for naming convention

82

6.5. Fused Multiplication-Addition

I/O Signal Width Direction Function

A n Input e.g. left partial product
B n Input e.g. right partial product
C n Input e.g. addend
ci 1 Input Carry-in
Sum n Output Sum output data

Carry n Output Carry output data
co 1 Output Carry-out

Table 6.3: Carry-save adder parameters

the addend is connected to port C. As shown in Figure 6.7, the Carry and Sum obtained from 3:2
compression are first stored in a local register before they are further processed by the final adder.

Note that manually designing a n-bit 3:2 CSA can be done by using n full adder elements in parallel,
without connecting the carry out and carry-in of the elements.

6.5.4 Final Adder

The final adder for end-around carry addition should be a fast carry propagate adder. Moreover, end-
around carry addition requires that the final addition is incremented when the effective operation is
subtraction, and the magnitude of the product is smaller than that of the addend (Equation 5.3). The
most cost effective solution for incrementing is asserting the carry-in of the adder to 1. Unfortunately
this is not possible here because the increment directly depends on the carry-out of the adder. We are
forced to use two adders, one to compute the sum and one to find the incremented sum. Because the
increment is conditional, a compound adder is commonly found in the final stage of end-around carry
addition. Compound adders produce both the sum and sum+1. The correct result is selected with a
two-to-one multiplexer driven by the carry-out of the adder. The advantage of compound adders is that
they work in parallel, which means less delay. Alternatively, two adders can be used sequentially by
connecting the carry-out of the first adder to the carry-in of the second adder. This solution was already
shown in Figure 5.6 and has an area advantage over compound adders because it does not require the
multiplexer.

The final addition implementation is shown in Figure 6.9. Post-synthesis results (Chapter 7) show that
two 102-bit adders working sequentially are not the critical path. Since sequential adders provide a
marginal area improvement, this solution was chosen in favor of the compound adder. By connecting
one of the inputs of the second adder to an internal fixed constant of value zero, it becomes the functional
equivalent of an incrementer. As indicated in Figure 6.9, the first adder element is another instantiated
DesignWare component (DW01 add). The reason for this is that they provide easy access to the carry-in
and out, in contrast to HDL operand inferencing.

Overflow

The carry-out of the second adder can be ignored. Due to the positioning of the guard and round-bit, as
described in the beginning of Chapter 5, the significand will never overflow. Both positions are initially
0, stopping any carry from propagating further than the round-bit position as depicted in Figure 6.10.

83

Chapter 6. Implementation

A B

c
a
r
r
y

0Adder

Adder

n

nn

n

n

Sum

DW01 add

Figure 6.9: End-around carry adder

6.5.5 Integer-reuse

Most floating-point hardware re-use is achieved in the core of the datapath, that was just described.
For integer multiply-accumulate, the partial product multiplier, the CSA and the final carry propagate
adder are used to obtain the exact same functionality that the datapath also provides for floating-point
numbers. With tc=1, the partial product multiplier reads the input as two 33-bit two’s complement
numbers and produces two 68-bit signed partial products. The alignment block takes into account that
integer arithmetic input should not be shifted or complemented, such that it can immediately be added to
the partial products, after being sign extended. The CSA compresses the addend C and partial products
into a redundant carry-save format that is converted to a single two’s complement result by the carry
propagate adder.

The overhead needed to map integer multiply-accumulate to fused multiply-add is minimal due to the
configurable partial product multiplier and flexibility of two’s complement notation. The only modifica-
tion that is needed sign extension of the addend and partial products, instead padding them with zeros.
The shift amount is fixed to zero and the complementers disabled such that the dataflow remains regular.
This requires only one additional control signal that differentiates integer arithmetic from floating-point
arithmetic (obtained by the instruction decoder). Because two’s complement arithmetic does not differ-
entiate between addition and subtraction, the final adder will simply perform both operation without
the need of complementers.

Integer Arithmetic Status Control

Although not explicitly shown in Figure 6.1, an additional control block evaluates integer arithmetic
results for single (32-bit) register overflow. Because integer instructions will never result in actual over-

0011.-------------- <64> ----------------
----- <n> -----

C

A×B

0000000 <33> 0000000
11111 <32> --------------- <101-n-33> ---1.111

G
u
a
r
d

R
o
u
n
d

C
a
r
r
y

a
lw

a
y
s
0

Figure 6.10: Significand overflow elimination by guard and round-bit

84

6.5. Fused Multiplication-Addition

flow, the status bits are used to indicate if the result can be stored in a single register. It is easily shown
that two 32-bit two’s complement integers will never overflow. Considering that maximum representable
number is 231−1, the highest possible arithmetic result is 264−232+231 ((231−1)×(231−1)+(231−1)).
This still falls well within the 64-bit range (263 − 1), which also holds for the most negative result. It
is therefore more useful to indicate if the results overflow in a single register (32 bits), because this can
reduce memory usage.

Due to sign extension, detecting single register overflow is very easy to deduce. If the 32 MSBs all have
the same value, then the result will also fit in a single register. To implement this detection mechanism,
we AND-reduce and OR-reduce the 32 MSBs of the adder outcome. If this results in either 1 or 0

respectively, then the result will fit a single register.

6.5.6 Conditional Re-complement

The final step in end-around carry addition for floating-point operands is conditionally re-complementing
the sum. Section 5.4.1 already hinted that the complement of the adder sum can be found by using XOR
gates. If an arbitrary string of bits is XOR’ed with 0, the outcome will be exactly the same as the input.
By XOR’ing with 1, every bit is inverted.

By connecting every bit position of the sum to an XOR gate, inversion of the sum can easily be controlled
with the other XOR input. We could also use inverters and multiplexers which may have a latency
advantage. However, as mentioned before, the second stage is not critical for the overall performance
so in terms of performance the difference will not be noticed. Because the difference in area is also
negligible, the XOR approach was chosen as it is closest to the definition of end-around carry addition
by Vassiliadis et al. [35]

The effective operation and the carry-out of the final adder control the inversion. The logical value of
(((Asign XOR Bsign) XOR Csign) ∧ Cout) is fed to the secondary input of the XOR gates. It is easily
shown that this results in correct inversion if we look back at Equation 5.4. If the carry-out is 0 and the
addend was complemented for effective subtraction, the result must be re-complemented.

Erroneous Re-complementation

In some cases the datapath as described so far may detect the need for re-complementing when this is
actually not required. As mentioned earlier, a faulty carry-out of the final adder can cause such an event.
The sign-bit is therefore included in the addition explicitly [33] such that the carry will never propagate
all the way through for effective addition (i.e., both sign-bits 0).

Other cases where faulty re-complementation might occur is zero-arithmetic. Earlier we described that
in case A or B is zero, or when C is zero, the other operand is simply forwarded to the output. Unless,
the complementer is aware of this, it will still complement its input if the conditions are met (effective
subtraction with a carry-out of 0). Two measures are taken to make the complementer aware of such
situations.

• Include control that disables the re-complementer when no complement was performed

• Include control that disables the re-complementer when A or B is zero, or when C is zero (and
either A or B or both are not)

85

Chapter 6. Implementation

6.6 Normalize

The sum obtained from the multiply-add core may have to be normalized in case of floating-point
arithmetic. To speed up this process, it is divided over two pipeline stages. In the second stage the
LZA and LZD circuits determine the number of leading zeros by means of prediction. In the last stage
a shifter actually performs the left shift and the according exponent adjustment based on the prediction
of the second stage. Together the leading zero anticipator, leading zero detector and shifter form the
Normalize sector of the datapath (Figure 6.11). Because LZA can deviate one position from the actual
number of leading zeros, a correction may have to be performed before rounding the result.

Leading Zero Anticipation

Leading Zero Detection

Normalize

101

101

mux

101

7

101 101

Figure 6.11: Normalization sector

6.6.1 Leading Zero Anticipation

LZA is a technique to predict the number of leading zeros based on the input of the adder. It improves
overall performance by taking normalization off the critical path. In Section 5.5.1, a boolean relation
was derived that forms a string of indicators (f) from the adder input (A and B). These indicators (fi)
predict if position i of the result after addition will be 1 or 0. For convenience the equation is repeated
here.

fi =

{
T0T1 (i = 0)

Ti−1(GiZi+1 ∨ ZiGi+1) ∨ Ti−1(ZiZi+1 ∨GiGi+1) (i > 0)

where

Ti = Ai ⊕Bi
Gi = AiBi

Zi = Ai Bi

Based on the prediction of f, the number of leading zeros can be counted in parallel with addition, which
allows us to reduce the delay of normalization.

The input for the LZA logic is the same input as for the adder. However, the sign-bit is explicitly included
for end-around carry addition. To perform correct LZA, the sign-bit must not be included, hence the

86

6.6. Normalize

fi

A
i
-1

B
i
-1

A
i

B
i

A
i

+
1

B
i

+
1

A
i

B
i

A
i

+
1

B
i

+
1

A
i
-1

B
i
-1

A
i

B
i

A
i

+
1

B
i

+
1

A
i

B
i

A
i

+
1

B
i

+
1

Figure 6.12: Leading zero anticipation logic

MSBs of A and B are removed by the leading zero anticipator. We already mentioned that the logic for
LZA is quite straightforward to implement after the logic relation for each indicator has been found. It
consists solely of inverters, AND, OR and XOR gates. One aspect that needs extra attention is that the
first and last indicator positions are different from the rest. Because the boolean equation for indicator
position i is defined based on input positions i − 1, i and i + 1, the first and last positions are defined
differently. For position i = 0, the indicator is defined as T0T1. The least significant indicator should be
0.

LZA logic is comparable to an adder in terms of area. The latency however, is significantly smaller.
Figure 6.12 depicts the (unoptimized) logic for one positional leading zero anticipation. Even without
any optimization, this circuit is only six logic gates deep. For comparison, the carry of the adder
propagates through 101 full adder elements that are each three logic gates deep.

6.6.2 Leading Zero Detection

Leading zero detection is based on the work of Oklobdzija [1], slightly modified for area efficiency.
Algorithm 5.5.1 showed how a hierarchical tree structure can be created that encodes the number of
leading zeros into a binary number. This algorithm scales well for powers of two. Without any overhead,
a 4-bit leading zero detector is created from two 2-bit leading zero detectors, an 8-bit leading zero
detector from two 4-bit leading zero detectors and so on. After addition of A×B and C, the intermediate
floating-point significand is 101 bits (2×33+2) wide. The closest power of two is 27 = 128. Instantiating
a 128-bit LZD leads to area overhead, hence the algorithm from Oklobdzija was modified for a more
area-efficient solution.

A 101-bit leading zero detector is the most desirable solution, however 101 is not a multiple of two (the
smallest possible leading zero detector described by Algorithm 5.5.1) making it very hard to create such
a tree structure efficiently. The closest alternative is 102 bits. The area overhead of a 102-bit LZD is
minimal and can be made fairly easy by combining smaller LZD circuits. We use 64, 32, 4 and 2-bit
LZDs to obtain a 102-bit version. Individually these counters are all powers of two that can be generated
according to Algorithm 5.5.1. First the 64 and 32-bit trees are combined to form a 96-bit circuit. Then
the 4 and 2-bit LZDs are combined to obtain a 6-bit counter. The final step is to combine the resulting
96-bit and 6-bit LZD circuits into a 102-bit counting tree. This last step requires modifications to the
algorithm from Oklobdzija, that can best be explained by a small example.

87

Chapter 6. Implementation

LZD2 LZD2
V0 P0 V1 P1

01 01

0 & 1 = 01 (1d)

0101

LZD2 LZD2
V0 P0 V1 P1

00 10

1 & 0 = 10 (2d)

0010

1 0

Figure 6.13: 4-bit LZD example

Consider the combination of two 2-bit LZDs (Figure 5.7(a)). Oklobdzija states that if the valid bit of
left LZD (V0) is 1, a 0 is concatenated to the positional bits of the right LZD (P1). Otherwise, if the
valid bit of the right LZD is 0, a 1 is concatenated to the positional bits of the left LZD. Figure 6.13
illustrates that this works flawlessly.

Now consider the combination of a 6-bit LZD and a 2-bit LZD. If the same principle is applied, the zero
count is not always correct. In Figure 6.14 we can see that if the valid bit of the left LZD is 1, detection
is still accurate. However, when the valid bit is 0, the result is no longer what we expect. This can be
explained by the fact that a 6-bit counter is not a power of two. It holds in general that combinations
of LZDs that are not both powers of two, Oklobdzija’s algorithm does not produce correct results.

A solution can be found by analyzing what exactly goes wrong. If two n/2 LZD circuits are connected
to perform a n-bit zero count, the result of the left LZD is the number of leading zeros in the upper n/2
bits, while the right LZD counts the zeros in the lower n/2 bits. When the left count is valid, the right
count does not matter, hence a 0 is concatenated with the left result. If the left count is not valid and
the right count is, we know that all the bits that precede the lower n/2 bits are zeros. If the left LZD is
a power of two, a 1 on position (n/2)+1 equals the number of upper bits and therefore also the number
of zeros. A concatenation of 1 with the positional bits from the right LZD still produces a correct result.
However, when the left LZD is not a power of two, a 1 on on position (n/2)+1 does not equal the number
of zeros. For example, the 6-bit LZD shown in Figure 6.14 uses three bits to represent the leading zero
count. A 1 on position (3) + 1, represents eight which is more than the maximum of six.

What Oklobdzija’s algorithm actually does is adding both counts in a very clever way. Unfortunately
this also restricts it to certain lengths. A slight modification is applied to remove this restriction. Instead
of concatenation, an adder is used to combine the results of both LZD circuits when the number of zeros
is larger than the left leading zero detector can count. First the result of the smaller counter is extended
to match the output of the larger counter. The results are then added but the outcome will equal the
number of leading zeros minus one. The left leading zero detector only counts up to (n/2)− 1 positions,
if the number is larger then the invalid bit is flagged. This means that the result from the left leading

LZD6 LZD2
V0 P0 V1 P1

000101 10

0 & 011 = 0011 (3d)

00010110

1

LZD6 LZD2
V0 P0 V1 P1

000000 10

00000010

0
1 & 000 = 1000 (8d 6= 6d)

Figure 6.14: 6-bit LZD example

88

6.7. Rounding

zero detector must be incremented for accurate detection. This can be implemented by a common adder
with a carry in of 1. Hence, to combine the 96 and 6-bit LZDs, a 7-bit adder is used with the carry in
fixed to 1. A multiplexer, driven by the valid bit of the left leading zero detector selects between the
cases where the the leading zero count from the left LZD should be used of the output of the adder.
Figure 6.15 shows that this solution works for the 6-bit example that initially failed.

LZD6 LZD2
V0 P0 V1 P1

000000 10

110 (6d)

00000010

+ 1

000101

110 (6d)

mux

Figure 6.15: Modified leading zero detection

6.6.3 Shift Left and Exponent Adjustment

The LZA and LZD circuits produce a binary encoded leading zero count. This is merely a preparation
for the actual normalization though, as the significand still needs to be shifted until the MSB is 1. For
normalization a left shifter is needed. Of course the intention is to share this shifter between floating-
point normalization and integer shift left instructions. It turns out that this is simpler for a left shifter
than for a right shifter. There is no difference between an arithmetic shift-left and a logical shift-left. In
both cases zeros are shifted in from the right. A common 101-bit shifter suffices for both purposes.

To match the two clock cycle delay of integer arithmetic, the input for the shifter is stored for one clock
cycle, before it is sent to the shifter. To save one register, the input of the inter-stage summation register
is multiplexed instead of the input of the shifter itself. The main purpose of this register is to store the
intermediate significand of A×B+C. Because this result still includes the sign-bit, the MSB is removed
before the left-shifter normalizes the significand. Since the MSBs from the shifter proceed for further
processing, the integer input should also be mapped to the MSBs for datapath regularity. However, this
also means that the input should be corrected for the loss of the MSB, as shown in Figure 6.16(b).2

6.7 Rounding

The rounding unit supports four out of five IEEE rounding modes. “Round to nearest ties away from
zero” was omitted due to the strong resemblance with “round to nearest ties to even” which is used
much more often. Selection between rounding modes is made based on the the opcodes from Table 6.1.
When the opcodes are interpreted by the instruction decoder, a two bit round mode control signal is
generated. These encodings can be found in Table 6.4.

At the time the intermediate normalized floating-point result arrives at the rounding block, it is still 101
bits wide. Before it is being rounded, we truncate it to 35 bits, a 33 bits significand plus a guard and

2For ISLV the input is not extended

89

Chapter 6. Implementation

101

0101

Significand

(a) Floating-point normalization

67

031

100

Integer

(b) Integer shift left

Figure 6.16: Input mapping to left shifter

round-bit as shown in Figure 4.10. The discarded bits are logically OR’ed into a secondary sticky-bit
which is then combined with the sticky-bit we found during alignment. The sticky-bit is paired with the
round and guard bits to form a triple that serves as a bit pattern for rounding selection (Figure 6.17).
Rounding algorithms 5.6.1, 5.6.2 and round to zero are implemented exactly as they are described in
Chapter 5.

The hardware requirement for actual rounding are modest. A 33-bit incrementer, several small com-
parators for pattern matching and the control logic to select the rounding mode. The major penalty
of rounding comes from sticky-bit calculation. Both the primary and secondary sticky-bit calculation
require a 66-bit OR-gate tree to reduce the discarded bits to a single sticky-bit.

Similarly to the normalization hardware, rounding has no influence on integer arithmetic as the entire
third stage is bypassed for this type of instruction. This also means that none of the rounding hardware
is re-used for integer purposes.

6.7.1 Overflow

Because rounding involves incrementing the significand, an overflow can occur. At the begin of this
chapter it was already mentioned that overflow detection is best postponed until after rounding. This
has not yet been implemented but a solution is presented in Section 9.3.

Mode Encoding Description

ZERO 00 Rounds to zero (i.e., truncates the result)
NEAREST 01 Rounds to nearest, ties to even

POSINFINITY 10 Rounds to +∞
NEGINFINITY 11 Rounds to −∞

Table 6.4: Round modes

90

6.8. Output Formatting and Exceptions

65100

100

064

101-bit Normalized Significand

0

secondary sticky-bit
primary sticky-bit

G
u
ard

-b
it

R
ou

n
d
-b
it

OR-reduce

G
u
ard

-b
it

R
ou

n
d
-b
it

S
tick

y
-b
it

from alignment

1

+

Sign bit

Round mode

33-bit Significand

33-bit Significand

33-bit Significand

33-bit Rounded Significand

Mux rounding
logic

Figure 6.17: IEEE-754 rounding for FMA

6.8 Output Formatting and Exceptions

The output formatter can be found at the very end of the pipeline. It serves three purposes.

• Routing data to the correct output
• Performing the final checks for overflow/underflow, and flag exceptions
• Correcting the sign-bit

6.8.1 Routing

Once the data has been processed, it is prepared for register storage by routing it to the data-out bus
in a specific way. The output formatter has access to two 32-bit data buses (referred to as Left and
Right) and a 3-bit status signal (Figure 4.6). The output of of the ALU is formatted to match its input,
although for integer numbers this is not always possible. The floating-point results are all normalized,
have a 32-bit significand, an 8-bit exponent and a sign-bit. The integer output is two’s complement and
in principle occupies twice the original storage amount of the input (i.e., 64 bits).

Floating-Point

When the formatter receives floating-point numbers, they are segmented into a 33-bit significand, a 9-bit
exponent and a sign-bit. This data is mapped to the output as depicted in Figure 6.18. The MSB of
the significand is dropped (i.e., becomes a hidden-bit) and the significand is routed to the right data
bus. The exponent is also resized by dropping the MSB. The sign-bit is concatenated to the left of the
exponent and the combination is mapped to the LSBs of the left data bus. The remaining positions are
forced to 0.

91

Chapter 6. Implementation

03163

SignificandS Exponent

Figure 6.18: Floating-point output formatting

Integer

Because integer words can be up to twice as long as the original input, the result is divided over two
registers. The upper bits (HI) are mapped to the left data bus and the lower bits (LO) to the right bus.

031

LOHI

63

Figure 6.19: Integer output formatting

6.8.2 Status Control

The ALU differentiates six conditions of two different types, arithmetic and logic status. A 3-bit encoding
is used to indicate the status of the ALU.

Status Encoding Applies to Description

TRUE 111 Floating-point/Integer Logic Outcome is true
FALSE 000 Floating-point/Integer Logic Outcome is false
DEFAULT 100 Floating-point/Integer Arithmetic No overflow/underflow
OVERFLOW 001 Floating-point Arithmetic Overflow occurred
UNDERFLOW 010 Floating-point Arithmetic Underflow occurred
EXCEEDS32B 101 Integer Arithmetic Result larger than 32 bits

Table 6.5: Status bits description

Logical compare instructions either result in true or false. Since no exceptions can occur, the status
bits themselves are used to indicate what the outcome of the respective comparison is. During floating-
point arithmetic, two exceptions are flagged by the ALU: overflow and underflow. If neither is the case,
a default arithmetic value is asserted to the status bits. For integer arithmetic the rules are slightly
different. Since overflow and underflow can not truly occur (Section 6.5.5), the status bits indicate if the
result can be represented in 32 bits (Table 6.5).

For reasons that where explained in Section 5.2, overflow should be detected at the very end of arithmetic
instructions. Since the operand formatter is the final stage, a number of comparators must be place here
to provide the means for detection3. Overflow is easy to detect due to the 9-bit exponent extension.
If the exponent value is either 1-------- or 011111111, the exponent has exceeded the maximum
and we encountered an overflow. Besides signaling this exception with the status bits, the output is also
overwritten with the IEEE-754 infinity representation (Table 2.3), as dictated by the IEEE-754 standard.
Underflow is detected with the help of LZD. In IEEE-754 format, the same pattern is used to represent
both zero and underflow. Simply checking for zero in the output formatter is therefore not sufficient to
detect underflow. The leading zero anticipator described in Section 5.5.1 can help detect underflow by
inspecting its valid bit. If the valid bit is 0, we know that the significand consists of solely zeros. LZD
also provides a leading zero count that equals the shift amount for normalization. If this shift amount

3The current datapath actually checks for overflow and underflow after normalization (Section 6.7.1), it is better to
postpone until after rounding but this has yet to be implemented.

92

6.9. Summary

is larger than the exponent, the result will underflow and the status bits can be asserted to encode the
underflow exception.

The underflow detection described above does not work for the special case where all input is zero.
Regardless of the sign-bit, if the magnitude of all input is zero, underflow will be detected. This must be
corrected by the output formatter. The input formatter already checks for zero input, hence those control
signals can simply be evaluated by the output formatter to see if the status bit should be overwritten
with the default value.

6.8.3 Sign-Bit

The sign-bit as calculated by Equation 5.7 is correct except for arithmetic with zero and infinity. The
way the sign-bit has mathematically been defined in IEEE-754 does not correspond to this equation.
A more elaborate discussion of zero-arithmetic can be found in Appendix B. The IEEE-754 standard
surprisingly does not explicitly discuss the sign-bit for arithmetic with infinity. Infinity arithmetic is
therefore based on the results obtained from x86 processors with an IEEE-754 compatible floating-point
unit. This basically comes down to the exclusive or of the sign bits Asign and Bsign. If the XOR is 1,
then the sign-bit is 1, otherwise it is 0.

IEEE-754 states the following about the sign-bit for zero-arithmetic:

“When the sum of two operands with opposite signs (or the difference of two operands with like signs) is
exactly zero, the sign of that sum (or difference) shall be +0 in all rounding-direction attributes except
roundTowardNegative; under that attribute, the sign of an exact zero sum (or difference) shall be -0.
However, x + x = x - (-x) retains the same sign as x even when x is zero.

When (a×b) + c is exactly zero, the sign of fusedMultiplyAdd(a, b, c) shall be determined by the rules
above for a sum of operands. When the exact result of (a×b) + c is non-zero yet the result of fusedMul-
tiplyAdd is zero because of rounding, the zero result takes the sign of the exact result.”

To adhere to these rules, we check if the result is exactly zero, differentiation from underflow as discussed
earlier. If the result appears to be zero, we must force the sign-bit to 0, except when the rounding mode
is NEGINFINITY or in the exact cases of (-0)×0-0 and 0×(-0)-0.

6.9 Summary

A complete design has been established. With relatively small overhead, large parts of the (originally
floating-point) datapath can be re-used for integer arithmetic. The most drastic measure is the additional
control needed to configure the hardware for signed (two’s complement) or unsigned operating mode.
The effects are most notable in terms of performance. The area overhead is minimal since the basic
building blocks only need very small modification to support both signed and unsigned input. In many
cases sign/0-extension is sufficient to make the synthesis tools understand that the same hardware is
used for a different purpose. In Appendix D we provide an additional overview of the datapath usage
per instruction(type), by means of illustrations.

Although this design shows the feasibility of combining floating-point and integer arithmetic in a single
datapath, we have yet to determine the actual effectiveness of such a shared datapath. In the next chapter
we therefore look at the realization of this datapath. Implementations in different technologies will be
evaluated and compared with other (classical) approaches to decide if augmented integer floating-point
units are worthwhile. We also look at the consequences of integrating the presented ALU in a state-of-
the-art MPSoC.

93

Chapter 6. Implementation

94

7
Realization

7.1 Introduction

Tight area budget and the need for energy efficiency lead to the design of a new kind of ALU that
combines floating-point and integer arithmetic/logic in a single datapath. Chapters 4, 5 and 6 showed
how such a datapath can be devised. However, the physical properties such as area, clock frequency
and energy consumption have yet to be presented. Because an actual implementation is subjective to
fewer assumptions than any kind of model, it provides by far the most accurate and reliable readings of
physical properties. Hence, in this chapter we discuss the findings of an implementation in 65nm process
technology.

A standard netlist to GDSII (the de facto IC layout file system) design flow was used, based on Synopsys
DesignCompiler [41] and Cadence Encounter [42]. With the current design, the tool chain is restricted
to Synopsys tools due to the use of the aforementioned DesignWare components (see Chapter 6). This
drawback is less of an inconvenience than it may seem at first glance. The synthesis tools by Synopsys
are amongst the most widely used and are well supported by the semiconductor industry. In addition
the DesignWare components are highly optimized. Manual designs of these components are unlikely
to match the quality, speed and area efficiency of the DesignWare equivalents. In order to make the
design completely vendor independent, a partial product multiplier and carry-save adder will have to be
developed.

The hardware has not actually been manufactured. It should therefore be noted that although the
numbers shown in this chapter are fairly accurate, they should still be regarded as estimates. Especially
the quantities related to energy consumption should be used carefully. They are based on post place-
and-route results from Cadence Encounter, which still showed some minor load capacitance problems.

7.2 FPGA Prototyping

Before hardware is manufactured, it is wise to evaluate it in an FPGA prototype first. Although not
being the main purpose of this thesis, FPGA synthesis has been performed to ensure that the current
design is compatible with FPGA prototyping. The ALU has been synthesized targeting a Xilinx Virtex
5 LXT (XC5VLX330T-2FFG1738) FPGA, using Synopsys Synplify D-2010.03-SP1 in conjunction with
DesignWare foundation C2009.06-SP5. A summary of the resource utilization is shown in Table 7.1.
The critical path is located in the third pipeline stage, running from the summation register through
the normalizer, rounder and formatting to the left output of the ALU. The critical path limits the clock

95

Chapter 7. Realization

Cell Usage

FDE 3
FDR 513
GND 1132
LDCP 2
MUXCY 10
MUXCY L 364
MUXF7 4
VCC 1129
XORCY 329
LUT1 122
LUT2 1428
LUT3 2509
LUT4 259
LUT5 542
LUT6 1105
LUT6 2 12
IBUF 129
IBUFG 1
OBUF 67
BUFG 1
I/O Register bits 0
Register bits not including I/Os 516 (0%)
Latch bits not including I/Os 2 (0%)
Global Clock Buffers 1 of 32 (3%)
Total LUTs 5977 (2%)

Table 7.1: Virtex-5 (XC5VLX330T-2FFG1738) resource utilization

frequency to 105MHz. An interesting observation is that the imbalance between the timing critical stage
(i.e., stage three) stage following (the first stage) is very small. When retiming is disabled there is a
0.658ns slack observable. This indicates that the design is by itself already fairly well balanced.

7.3 ASIC Implementation

Once simulations and FPGA prototyping show that a design operates properly, the final steps before
tape-out1 can be initiated. In this section we describe the evaluation of ASIC migration of the ALU.
ASIC design can roughly be divided in two steps: synthesis and place-and-route. During synthesis the
hierarchical structural description of the architecture is translated into a flat netlist of standard cells
found in technology libraries. The place-and-route (layout) phase consists of placing the synthesized
components on a die, inserting a power-grid, synthesizing a clock tree and routing the interconnect
wires. Although post place-and-route results are in principle the most accurate, in this case post-
synthesis results are regarded to be more reliable. Because there are still some issues related to routing
density and load capacitance, the post-place and route figures should only be interpreted in the order of
magnitude.

1Final GDSII files were originally placed on magnetic tapes. This moment was fittingly called tape out.

96

7.3. ASIC Implementation

ASIC Libraries

The technology libraries chosen for implementation are:

• CORE65LPHVT: STMicroelectronics 65nm low power high voltage threshold (LPHVT)
• CORE65GPSVT: STMicroelectronics 65nm general purpose standard voltage threshold (GPSVT)

CORE65GPSVT synthesis is used to asses the maximum clock frequency that can be achieved with the
current design. From the technology libraries at our disposal, this general purpose complementary metal
oxide semiconductor (CMOS) process delivers the highest performance. For energy-efficient applications
the CORE65LPHVT library is more interesting. This low power high voltage threshold library is op-
timized for reduced energy consumption. The price that is paid for this reduction, is increased area
(roughly 30% increase) and limited performance (the maximum achievable clock frequency is aproxi-
mately half of what can be reached with GPSVT implementations).

Procedures

The quality of results obtained from synthesis and place-and-route strongly depends on the tools and
setting used during the process. We will therefore discuss the tool chain more thoroughly before we
present the results. Synthesis was done in Synopsys DesignCompiler (C-2009.06-SP5), using DesignWare
foundation (C-2009.06-SP5), the ultra compile command and the following settings:

• Minimal area target (using the area high effort parameter)
• Disabled ungrouping for detailed area analysis

(due the architectural structure of the design, ungrouping does not yield improved area or latency)
• Target clock speeds of 200/550(500)/1350(1200)MHz

(550/1350MHz are the maximum achievable for low power and high performance respectively, before
place-and-route)

• Clock gate insertion enabled
• Full scan chain insertion (for testability)

Post-synthesis simulations (Chapter 8) have been performed using the back-annotated netlists (i.e.,
with timing constraints) obtained from synthesis, to verify that the synthesis results are reliable. After
synthesis, the low-power designs have undergone place-and-route in order to extract accurate power
figures. Cadence Encounter (09.12-s159 1) was used to place-and-route the design with the placeDesign
and nanoRoute commands. A basic script provided by STMicroelectronics was run, modified with the
following (key) settings/constraints:

• Floorplan design aimed at 70% core utilisation
• Power net based on four power rails, evenly distributed over the die
• Automatic clock tree synthesis
• Fanout maximized at 20 (ST 65nm LPHVT technology determined)
• Transitions maximized at 0.700 ns (ST 65nm LPHVT technology determined)
• Capacitances maximized at 0.070 pF (ST 65nm LPHVT technology determined)
• Timing and power driven placement and routing
• High timing driven efforts
• Clock gate aware routing

Now that a precise definition of the procedures used for realization is given (such that the results are
reproducible), we can discuss the results.

97

Chapter 7. Realization

7.3.1 Timing

The maximum clock frequency for the ALU implemented in LPHVT technology is, according to the
synthesizer, 550MHz. In a GPSVT process, the design can be synthesized at 1350MHz without running
into timing issues. At first this does not seem impressive at all. Especially compared to the Cell’s
floating-point unit which runs well over 3GHz. However, if things are put in perspective, the overall
picture becomes more positive. The ALU discussed in this thesis is based on three pipeline stages
where the Cell processor uses six stages. In addition the Cell architecture does not apply rounding
and is primarily optimized for speed. In terms of speed, the architecture we present is on par with the
floating-point unit of the UltraSparc T2 processor. The latter is clocked at 1200MHz by default and
can be boosted to 1600MHz. This processor also uses a much deeper pipeline and is not based on FMA
architecture, such that multiply-add performance will be lower. On the other hand, the UltraSparc T2
datapath does support normalized and double precision numbers.

The synthesis estimates appear to be too optimistic. After place-and-route, the upper bound of the
clock frequency for the the low-power implementation seems to be 500MHz. However we believe that
the place-and-route result are rather poor due to lacking knowledge in this field on our part. The post
place-and-route results shown in this thesis are based on a very basic script that STMicroelectronics
provided, extended with a number of additional constraints. We believe the results obtained with this
script are too pessimistic. For area and timing, post place-and-route result are therefore not particularly
more meaningful than synthesis results. Hence, we will take the post-synthesis result with a penalty of
10% latency overhead (based on work of others) due to place-and-route. 200MHz and 500MHz low-power
implementations are used to estimate the needed area. The GPSVT implementation is expected to reach
1200MHz after place-and-route.

The critical path location depends on the constraints used during synthesis. In the timing driven im-
plementations (i.e., 500MHz LPHVT and 1200MHz GPSVT), the critical path is located in the first
stage. Starting at the instruction selection input, it ripples through the formatter, the partial product
multiplier and the CSA to end in the inter-stage register that stores the carry-save sum. Synthesis in
lower clock speeds, which is interesting for low-power designs, result in a different critical path. When the
LPHVT design is synthesized for a target clock speed of 200MHz, the critical path is located in the third
stage. This path starts at the normalization shifter input and runs through the normalizer, rounder and
output formatter. Table 7.2 shows detailed timing analysis for 200, 500 and 1200MHz implementations
(excluding setup times). Figure 7.1 illustrates how the critical paths run through the datapath.

The fact that the critical path changes depending on the clock constraint is a good indication for the
balance between the pipeline stages. The difference between the first and last stage are minimal, otherwise

Process Location Arrival (ns) Departure (ns)

LPHVT - 200MHz
Normalize 0.00 3.14
Round 3.14 4.71
Output Formatter 4.71 4.86

LPHVT - 500MHz
Instruction Decoder/Input Formatter 0.00 0.30
Partial Product Multiplier 0.30 1.67
Carry-Save Adder 1.67 1.87

GPSVT - 1200MHz
Instruction Decoder/Input Formatter 0.00 0.16
Partial Product Multiplier 0.16 0.68
Carry-Save Adder 0.68 0.77

Table 7.2: Critical path analysis

98

7.3. ASIC Implementation

Exponent Adjustment

and

Shift Count

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Sticky-bitShift Right

Compare

Sum CarryExponentStatus

Carry-Propagate Adder

Conditional Re-Complement

Leading Zero Anticipation

Leading Zero Detection

SumExponentStatus

Normalize

Round

A left A right B left B right C left C right

Status Left Right

Output Formatter

Instruction

Instruction Decoder/Input Formatter

High Frequency Critical Path

Low Frequency Critical Path

Figure 7.1: Critical paths

the location of the critical path would not depend on the implementation efforts of the tools. A good
balance in the architecture of the pipeline is advantageous because it makes the design less depending
on tools that support retiming. Despite the well balanced architecture, the low-power design can not
be synthesized at 550MHz when retiming is disabled. A slack of -0.2ns is reported which indicates that
about 60MHz is gained by retiming. In the GPSVT process, our design can still be realized at 1350MHz
with retiming disabled.

It is difficult to determine how much the overhead caused by integrating integer operations into the
floating-point datapath affects the maximum achievable clock frequency. The architecture has been
designed with integer functionality in mind from the start, hence the integer functionality can not simply
be disabled. Due to the fact that the dataflow has been designed as regularly as possible (Chapter 6),
we think the difference is hardly noticeable. However, in order to obtain accurate numbers, a complete
redesign is needed. The overhead created by irregularities in IEEE-754 arithmetic is much worse and
easier to identify. Stage one and three (both critical paths) are seriously affected. The input and output
formatters are solely needed to compensate for zero-arithmetic and exceptional sign bits. Early designs
that did not account for the irregularities in the IEEE-754 sign-bit and zero-arithmetic could run as fast
as 700Mhz in LPHVT technology.

99

Chapter 7. Realization

7.3.2 Area

In the worst case scenarios (highest clock frequency, scan chain insertion and clock gating enabled),
the area of the architecture is approximately 0.04mm2 for both the LPHVT and GPSVT libraries.
Although this number is based on synthesis estimates and therefore does not include filler cells and
routing overhead, it is still a quite meaningful number. Post place-and-route results including all overhead
(clock tree, power net, routing wires, buffers and filler cells) show a unexpected area increase of over
100% in LPHVT. Table 7.3 provides an overview of the timing and area differences between the GPSVT
and LPHVT libraries. Parameters we are currently unable to determine are marked with ‘-’. In addition
to the uncertainty in the post place-and-route results (Section 7.3), an ALU is never implemented in
isolation. These place-and-route numbers are therefore not particularly more meaningful in this case.
Hence, the area discussion is based on synthesis estimates that only include the total standard cell area.

For three interesting implementations, the area is evaluated more thoroughly. Two designs based on the
highest possible (estimated) clock frequencies of 500 and 1200MHz in LPHVT and GPSVT respectively,
and a 200MHz implementation because this is a frequency likely to be found in current low-power hard-
ware platforms [2]. Tables 7.4, 7.5 and 7.6 show the hierarchical area distribution for the above mentioned
implementations. The components shown in first column roughly match the ones from Figure 6.1. The
second column is the absolute area expressed in square micrometers, the third column the area expressed
in percentage of the total area. Note that the percentages shown do not add up to 100. The difference
is overhead not worth mentioning in detail. The last column shows which DesignWare components are
instantiated, either by hand or by operator inference. The area of the DesignWare component is also
shown as the percentage of the total area of the specific component.

Figure 7.2 shows the averages of the percentages per implementation of the major components plotted
in a pie chart for convenience. At almost one third of the total area, the multiplier is by far the largest
component in the datapath. As expected this component is the constraining factor in the design, both
in terms of latency and area. Parallel alignment and normalization also require a substantial amount
of silicon area. Mostly due to parallel alignment, the registers for pipelining are among the components
with the largest area . However, the area/performance trade-off is worth the extra silicon as we will show
shortly. Based on the exact numbers shown in the tables, we can conclude that the area overhead in this
design has been kept to almost a bare minimum. The components that require the most area are already
highly optimized. Also the overhead caused by integrating integer functionality is very small. Although
very accurate numbers are hard to derive because of the fact that the datapath has been designed with
integer functionality in mind from the start, the numbers shown in this section indicate that the area
required for augmented integer functionality is at most 3 to 4% (determined by parts of the Input and
Output Formatters and the area unacounted for by Table 7.4, 7.5 and 7.6).

Property LPHVT GPSVT

Theoretical Maximum Clock Frequency Estimated by Synthesis 550MHz 1350MHz
Estimated Maximum Clock Frequency after Place-and-Route 500MHz 1200MHz
200MHz Synthesis Estimated Area 0.03mm2 0.03mm2

500MHz Synthesis Estimated Area 0.04mm2 0.03mm2

1200MHz Synthesis Estimated Area - 0.04mm2

200MHz Place and Route Core Area 0.092mm2 -
500MHz Place and Route Core Area 0.112mm2 -

Table 7.3: ST 65nm technology library overview

100

7.3. ASIC Implementation

Component(s) Area (µm2) Percentage (%) DesignWare Instances

Overflow Control 97.7 0.3 -
Sticky-bit Generation 275.1 0.7 -
Output Formatter 421.7 1.1 -
Comparator 537.6 1.4 DW cmp (50%)
Instruction Decode & Input Format 578.7 1.5 -
Exponent Adjustment 707.7 1.9 -
Round 922.4 2.4 DW01 inc (46%)
Leading Zero Detection 962.0 2.5 -
Carry Save Adder 1099.2 2.9 DW01 csa (100%)
EAC & Recomplement 1864.7 4.9 DW01 inc (57%)
Adder 2126.2 5.6 DW01 add (100%)
Leading Zero Anticipation 2327.5 6.2 -
Alignment Shift & Complement 3143.9 8.3 -
Non-Combinatorial (Registers) 4533.8 12.0 -
Normalizer 5341.9 14.1 -
Partial Product Multiplier 11535.6 30.6 DW02 multp (100%)
Total 37758.8 100.0 -

Table 7.4: Hierarchical area distribution - 65nm GPSVT implementation at 1200MHz

Component(s) Area (µm2) Percentage (%) DesignWare Instances

Overflow Control 93.6 0.2 -
Sticky-bit Generation 278.2 0.7 -
Output Formatter 507.0 1.2 -
Comparator 537.2 1.3 DW cmp (54%)
Instruction Decode & Input Format 728.0 1.8 -
Exponent Adjustment 787.3 1.9 -
Leading Zero Detection 1014.5 2.5 -
Round 1091.5 2.7 DW01 inc (37%)
Carry Save Adder 1187.2 2.9 DW01 csa (100%)
EAC & Recomplement 1961.4 4.8 DW01 inc (56%)
Adder 2250.5 5.5 DW01 add (100%)
Leading Zero Anticipation 2487.7 6.1 -
Alignment Shift & Complement 3478.3 8.5 -
Non-Combinatorial (Registers) 4668.5 11.4 -
Normalizer 6329.0 15.5 -
Partial Product Multiplier 12248.0 30.1 DW02 multp (100%)
Total 40730.6 100.0 -

Table 7.5: Hierarchical area distribution - 65nm LPHVT implementation at 500MHz

101

Chapter 7. Realization

Component(s) Area (µm2) Percentage (%) DesignWare Instances

Overflow Control 92.0 0.3 -
Sticky-bit Generation 276.6 0.8 -
Output Formatter 324.5 1.0 -
Exponent Adjustment 420.2 1.3 -
Instruction Decode & Input Format 440.4 1.3 -
Comparator 523.6 1.6 DW cmp (50%)
Round 639.6 2.0 DW01 inc (45%)
Leading Zero Detection 916.7 2.8 -
Carry Save Adder 950.6 2.9 DW01 csa (100%)
EAC & Recomplement 1707.6 5.2 DW01 inc (54%)
Adder 1841.8 5.6 DW01 add (100%)
Leading Zero Anticipation 2369.1 7.2 -
Alignment Shift & Complement 2723.2 8.3 -
Normalizer 4272.3 13.1 -
Non-Combinatorial (Registers) 4213.5 14.7 -
Partial Product Multiplier 9747.9 29.8 DW02 multp (100%)
Total 28519.9 100.0 -

Table 7.6: Hierarchical area distribution - 65nm LPHVT implementation at 200MHz

Carry-Save Adder
3%

Round

3%

Leading Zero Detection

3%

Leading Zero Anticipation

6%

Alignment and Complement

8%

End-Around Carry Addition

10%Registers

12%

Normalize
14%

Partial Product Multiplier

30%
Rest

11%

Figure 7.2: Area distribution of ALU components

102

7.3. ASIC Implementation

Gate Count

The absolute physical area of a hardware design is highly depending on the technology used for imple-
mentation. Because technology is constantly improving, a comparison between two designs based on
their absolute total area is unlikely to be fair. To obtain a more technology independent measure for
comparison, the gate count is used. The gate count is obtained by dividing the total circuit area by the
gate area of a two input NAND gate (NAND2). In this way, a relatively fair comparison can be made
between the area of two different design that do not necessarily have to be implemented using the same
technology.

The NAND2 area of the two 65nm ST technology libraries used for ASIC realization of our proposed
architecture are listed below:

• CORE65LPHVT : 3.12 µm2 (HS65 LH NAND2AX7)
• CORE65GPSVT : 2.08 µm2 (HS65 GS NAND2X7)

Using these dimensions, we can express the area of our design in gate numbers:

Implementation Absolute Area (µm2) Gate Count
GPSVT - 1200MHz 37758.8 18153
GPSVT - 500MHz 32475.0 15613
LPHVT - 500MHz 40730.6 13054
LPHVT - 200MHz 28519.9 9141

These result are not surprising. When more speed is desired synthesis tools will use more gates. For
comparison the gate count of a 500MHz GPSVT implementation is also included. This clearly indicates
that low-power design requires much more area to meet the same timing constraints.

7.3.3 Power Consumption and Energy-Efficiency

Because the purpose of the architecture partially is to provide low-cost floating-point functionality in
energy-efficient hardware environments, the ALU itself should also be energy-efficient. Power analysis
has been performed to obtain insight into the power consumption and energy efficiency of the hardware.
A lot of power is consumed by the wires that interconnect the different components inside the ALU. An
accurate power model should include wire load, which can only only be obtained by placing and routing
the design. All the data discussed in this section is therefore based on post place-and-route results.
Despite the fact that place-and-route results are not completely reliable, power estimates are are much
more accurate after place-and-route. They should however still be interpreted in orders of magnitude
only.

Energy consumption of a circuit can be expressed by:

E =
1

2
CVdd

2 (7.1)

Where Vdd is the supply voltage and C the total load capacitance of the design. Since the supply voltage
is squared, lowering Vdd is usually quite effective in reducing energy consumption. The supply of 65nm
ST technology is relatively low at 1.2V. The implementations are therefore by itself already quite energy-
lean. At architectural level, energy consumption can be minimized by lowering C. There are several ways
to do this, one way is to apply clock-gating. Clock-gating is what was chosen to improve energy-efficiency
in this design. The effect of clock-gating on the energy consumption of our ALU is discussed at the end
of this section.

103

Chapter 7. Realization

Switching 200MHz 500MHz

20% 6.683mW 8.834mW
50% 13.62mW 18.17mW
80% 17.96mW 25.99mW

20 50 80

10

20

6.68

13.6

17.9

8.83

18.1

25.9

P
ow

er
C

o
n

su
m

p
ti

o
n

(m
W

)

Switching Activity (%)

200MHz 500MHz

Figure 7.3: ALU power consumption estimates

Total power consumption of a chip, or any arbitrary piece of hardware, can be divided into static power
and dynamic power. Currents flow through the transistors even when they are turned off. This is what
causes static power. Static power can be considered as wasted energy as it does not contribute in any
way to the system’s functionality. In modern process technology (65nm and beyond), almost half of
the energy consumption can be attributed to static power. Power dissipated by activity of the system
(i.e., the system performing some function) is called the dynamic power. Within dynamic power, two
subcategories can be distinguished: switching power and internal power. Switching power is caused by
charging and discharging the load capacitance of the cells in a design. The total load capacitance is the
summation of the interconnect capacitance and the the capacitance, hence it is better to base energy
consumption on post place-and-route results power estimates.

The LPHVT library is very efficient at reducing static power. Since we are using deep-submicron tech-
nology, the use of low-power CMOS is almost mandatory for energy-efficiency (viz., static power contri-
bution). Power measurements are therefore only performed for the low-power implementations 2. The
worst case scenario is assumed during power analysis. This means simulations are performed for 1.1V
supply and 125◦C environment temperature. Because power consumption scales with the clock frequency,
estimates for 200 and 500MHz (with 0.258 and 0.113ns slack respectively) are compared. Usually the
switching activity is based on actual data (e.g., an FFT computation). However, since such data is not
readily available and because we only test an ALU and not a complete processor with memory, primary
input switching activity is based on pre-set scalars (20% - low, 50% - average, 80% - high switching
activity). Figure 7.3 shows the power estimates distiled from the power reports produced by Cadence
Encounter (09.12-s159 1). Since energy en power are directly related (power is defined as energy divided
by time), these are a good indication of the energy consumption of the circuit.

Power consumption strongly depends on the clock frequency. We therefore normalize it with respect to
the frequency. The average power consumption is then defined as:

20% Activity: 51.08 µW/MHz
50% Activity: 104.4 µW/MHz
80% Activity: 141.7 µW/MHz

2A comparison between general purpose and low-power implementations could not been performed withing the time
frame reserved for power analysis

104

7.4. Comparison

Clock Internal Switching Leakage

200MHz 5.045mW 8.461mW 0.1147mW
500MHz 7.136mW 10.83mW 0.2074mW

5 10 15

200

500

C
lo

ck
F

re
q
u

en
cy

(M
H

z)

Power Consumption (mW)

Internal Dynamic Leakage

Figure 7.4: Detailed ALU power consumption estimates (50% activity)

Even more detailed power information is shown in Figure 7.4. In this figure the consumption of internal
power, switching power and leakage power is distinguished for 50% input switching activity. This data
confirms that most power is lost due to dynamic power. As mentioned earlier, without clock gating, the
power caused by switching activity would have been even higher.

Clock-Gating

Clock gating is a techniques that inserts clock enable gates in the design. When certain part of the
system are not required, the clock is disabled. By disabling the clock, these part become static thus
lowering the dynamic power consumption.

The architecture has been synthesized and routed for 200MHz with clock gating disabled to show effective
clock gating is. As can be seen in Table 7.7, clock gating reduces power consumption by almost 50%.
We think this high percentage can be explained by the fact that the synthesis tool reckognises that the
pipeline registers can be clock gated. By clock gating the registers, large parts of the datapath become
idle because the input does not change.

7.4 Comparison

The data shown above provides a good indication of the physical properties of the new architecture when
it is implemented. To give more meaning to the bare numbers, we will compare them to the properties
of other architectures. A comparison between two implemented architectures is not trivial, especially in
this case because the functionality (e.g., the non-IEEE floating-point format) and its implementation are
relatively unconventional. Currently there are no equivalent datapaths to compare with. We therefore
compare our solution with another implementation that approximates the functionality of our ALU,
based on VHDL built-in floating-point support. In addition we compare the solution we propose to
a more conventional IEEE-754 compatible floating-point unit: the GRFPU. GRFPU is what Aeroflex
Gaisler has available for LEON-based SoCs.

Switching Activity Without Clock Gating With Clock Gating

20% 11.83mW 6.683mW
50% 22.53mW 13.62mW
80% 33.07mW 17.96mW

Table 7.7: Power consumption with and without clock gating

105

Chapter 7. Realization

7.4.1 VHDL-2008 Standard Implementation

First a comparison between the newly found architecture and the VHDL standard interpretation of
floating-point is made. Since the introduction of VHDL-2008, floating-point (arithmetic) has been de-
fined as part of the VHDL-1076 standard. The behavior of this floating-point functionality has directly
been derived from the fixed and floating-point packages originally written by David W. Bishop [36]
(Section 8.1). These packages, based on VHDL-93 syntax, can be compiled and synthesized. Moreover,
according to the FAQ [36], the synthesized results are quite efficient:

“Q: What synthesis results can I expect?
A: Under the hood, all of the fixed and floating-point functions call functions from the numeric std

package. Much work was done to make sure that these algorithms would be as fast as possible.”

Synthesizing the desired functionality from this package is therefore a quick and convenient method to
add floating-point support to any given architecture. Especially when research and development is on
low budget or time-to-market is short, this flexible but instant solution is a likely choice.

For a fair and meaningful comparison the following components have been synthesized:

• Floating-point FMA unit (only support for ‘round to nearest’ and sticky-bit is disabled)
• Floating-point comparator (less than)
• Floating-point comparator (greater than)
• Floating-point comparator (equal)
• (Integer MAC unit)
• (Integer comparator (less than))
• (Integer comparator (greater than))
• (Integer comparator (equal))
• (Integer shifter (left))
• (Integer shifter (right))

To match the functionality of the ALU described in this thesis as close a possible, integer functionality
has been included. It should be noted that synthesis tools are not smart enough to derive resource
sharing between the floating-point and integer hardware like described in this thesis. The comparison is
therefore of great interest, it clearly shows the benefits of combining integer and floating-point. There are
some restrictions to the FMA hardware generated from Bishop’s packages. Firstly, there is no support
for multiple rounding modes. Per instance of the mac routine that implements FMA, only one rounding
mode can be specified. Synthesis tools are unable to derive that two instances with different parameters
share the majority of their needed hardware. Implementing all rounding modes would therefore make
the comparison unfair. Secondly the sticky-bit had to be disabled due to version incompatibilities 3.
However, if these two minor differences are ignored, the functionality is equivalent, including the non-
IEEE floating-point format.

The results of synthesis can be found in Table 7.8. The last column shows the absolute area and the area
relatively to the implementations shown in the previous section (we compare the maximum achievable
clock frequency realizations and a design at 200MHz). The architecture by Bishop does not use parallel
alignment or LZA. This can immediately be noticed in terms of latency. Using three pipeline stages in
combination with retiming and the exact same settings as described in Section 7.3, the low-power design
could not be realized for clock frequencies over 360 MHz (2.75ns period constraint). Also in terms of
area, parallel alignments appears to be beneficial when high clock frequencies are desired. Even though
the components are 50% wider than for non-paralelized alignment, the synthesizer manages to produce
an implementation that requires an equal amount of silicon area for a much faster datapath. The area
overhead of this implementation compared to our implementation ranges from 20 to 44%. Considering

3The synthesizeable package has been written for and tested on DesignCompiler C-2006.06-SP4, version C-2009.06-SP5
was used for this comparison and appears to be incompatible.

106

7.4. Comparison

Process Area (µm2)

LPHVT - 200MHz
Floating-Point 30961.3
Floating-Point & Integer 41163.7 (∼144%)

LPHVT - 360MHz
Floating-Point 35178.2
Floating-Point & Integer 52049.9 (∼128%)

GPSVT - 925MHz
Floating-Point 31946.7
Floating-Point & Integer 50769.6 (∼120%)

Table 7.8: Area VHDL-2008 implementation

that the maximum clock frequencies for realization of of Bishop’s implementation are lower, the 44%
area overhead indication by the 200MHz implementation is likely the most realistic one.

To give an impression of the area that can be saved purely by integrating integer functionality in a
floating-point datapath, we have also synthesized a datapath that is based on solely the floating-point
hardware. The reduction achieved is certainly worthwhile. At a clock frequency of 200MHz, the area of
an FMA unit with integer functionality integrated is 12644 µm2 smaller than a design based on separate
FMA and MAC units. This comes down to a reduction of approximately 30%.

7.4.2 Aeroflex Gaisler GRFPU

For SoCs or MPSoC based on the openly available 32-bit LEON processor by Gaisler Aeroflex, the
GRFPU is the most natural choice for accelerated floating-point support. This floating-point unit is based
of the Sparc V8 architecture which is also the base of the UltraSparc T2 floating-point unit described
in Section 3.2. Hence, the architectures are very similar (most notably being the unpipelined hardware
support for division and square). The Product information sheet mentions the following features:

• IEEE-754 compliant, supporting all rounding modes and exceptions
• Operations: add, subtract, multiply, divide, square-root, convert, compare, move, abs, negate
• Data formats: single and double precision (32- and 64-bit floats)
• Fully pipelined, 4 clock cycles latency for all operations except divide and square-root
• Non-blocking parallel execution of divide or square-root operations with other operations
• Supports all SPARC V8 floating-point instructions

The IEEE-754 mandatory instructions can be characterized as follows:

Instructions Throughput Latency Description
FADD(S/D), FSUB(S/D), FMUL(S/D) 1 4 Add, subtract, multiply
FITO(S/D), F(S/D)TOI, FSTO(S/D) 1 4 Convert float/integer
FCMP(S/D), FCMPE(S/D) 1 4 Compare
FDIV(S/D) 16/17 16/17 Divide (single/double)
FSQRT(S/D) 24/25 24/25 Square-root (single/double)

Before looking at the physical properties of the GRFPU, it is good to determine the architectural
differences. First of all it should be noted that this floating-point unit support double precision operands.
It also uses one additional pipeline stage for the instructions we support natively in our datapath.
However, it does not implement fused multiply-add. Furthermore it is interesting to see that division
and square root require 16/17 and 24/25 clock cycles to complete respectively. This gives us confidence
that a software implementation of these instructions is feasible. Looking at the Itanium FMA-based

107

Chapter 7. Realization

implementation of these instructions (13 clock ticks before completion each), it should not be a problem
to match the performance of the GRFPU.

According to Gaisler this floating-point unit can be produced at 400 MHz (400 MFLOPS) on a typical
130nm standard cell process, using approximately 80 kgates. In the worst case scenario (1200MHz), the
new type of ALU we propose does not even come near that amount. Less than a fourth of the number
of gates is needed while the GRFPU is almost certainly going to be outperformed based on the primary
instructions (addition, subtraction and multiplication). Yet, it should not be forgotten that the GRFPU
offers more precision and a slightly more elaborate instruction set.

7.5 Realistic SoC Integration Scenario

Earlier it was mentioned that an ALU is almost never stand-alone. Usually is is part of a processor or
a system-on-chip. To conclude our discussion of realization related aspects, a realistic scenario of inte-
grating the ALU in a modern state-of-the art MPSoC is investigated. The massively parallel processor
breadboarding (MPPB) [2] architecture is chosen as an example platform. MPPB is part of ongoing
research that focuses on the shortcoming of current DSP solutions for space exploration. The demand
for digital signal processing from on-board applications in earth observation, science and telecommuni-
cation is continuously growing while the only European radiation hard DSP processor TSC21020F is old
technology. The performance requirements of many applications often lead to ASIC development for
single purpose in order to meet the requirements. FPGAs which provide more flexibility are not yet able
to deliver the needed performance. MPPB fills the gap by providing a future-proof architecture that is
both flexible and delivers high performance.

The most basic MPPB architecture (shown in Figure 7.5) consists of many different subsystems as is
the case for most SoCs. The major components are the Xentium cores, the LEON processor, the NoC,
the ADC/DAC, the memories and the AMBA bus system. Due to the presence of multiple Xentium
cores, MPPB delivers unmatched processing power. The Xentium is a integer/fixed-point DSP core with
a versatile instruction set which makes it a very (energy-)efficient processor. In this example, one of
the Xentium cores is the candidate to be replaced by a combined floating-point/integer ALU. Despite
the fact that the Xentium integer instruction set is much richer that the one we natively support in our
ALU, the added floating-point support could be well worth the sacrifice. Besides, the most basic and
most used integer instructions are supported.

The most important characteristics of the Xentium core are shown in Table 7.9. For good measurement: a
single Xentium core consists of ten smaller functional units. Two of these units can perform multiplication
and six can do addition and subtraction. These units operate on 32 or 40-bit wide data that can be
loaded from and stored to local memories of the same size (i.e., 40-bit registers). Note that this is almost
the amount needed for the floating-point format proposed for the solution shown in this thesis.

The numbers in Table 7.9 are based on 65nm low-power and general purpose implementations using
exactly the same procedures as described in Section 7.3. A comparison is therefore easily made. Recall
that the area of our ALU is approximately 0.04mm2 for a performance driven implementation at 500MHz,
and slightly less than 0.03mm2 at 200MHz in low-power technology. Since the Xentiums run at 200MHz,

Property CORE65LPHVT CORE65GPSVT

Maximum Clock Frequency 220MHz 444MHz
Total Area (200MHz) 0.823mm2 0.715mm2

Combinatorial Area 0.363mm2 0.252mm2

Area Memories 0.305mm2 0.317mm2

Table 7.9: Xentium post-synthesis results

108

7.6. Summary

NoC

LEON2
NoC Bridge APB Bridge

SDRAM

Controller

Flash

Controller

AHB Multilayer

APB

SpW 0

Memory

Tile

ADC/DAC

Bridge

GBIF

SpW 1

SpW 2

Xentium Xentium

0 1

AHB-M AHB-S APB-M AHB-S AHB-SAHB-S

SDRAM

Controller

APB-M APB-MAPB-S APB-SAHB-M AHB-S

RTCTimers &

Watchdog

LCD

Bridge
GPIOUART

APB-S APB-S APB-S APB-S APB-S

Bridge

GBIF

SpW 1

SpW 2

SpW 0

RS232

DAC

ADC

SDRAM

SDRAM

Flash

2x16 LCDRS232 HeaderLEDsButtons

0

1

Figure 7.5: MPPB platform architecture

it should be no problem to drive the ALU at the same frequency as the Xentiums. At 0.363mm2 (Xentium
memories excluded), more than ten floating-point integer cores will fit in the area of a single Xentium.
This indicates that also in terms of area, our ALU is hardly a bottleneck. Moreover, based on these
number we believe it should even be possible to make the floating-point/integer an integral part of the
Xentium. Unfortunately we can not say much about how the energy consumption of the ALU relates
to for example a Xentium. At the time there are no meaningful power estimates (i.e., based on input
switching activity) available for the MPPB components. We also have not yet computed actual energy
consumption for some functions (e.g., finite impulse response (FIR) or fast fourier transform (FFT)), a
good comparison can therefore not yet be made.

7.6 Summary

This chapter outlined a 65nm implementation approach, discussed physical properties and compared
them with other architectures. The ALU can be implemented in low-power CMOS process at a maxi-
mum clock frequency of approximately 500MHz with an area of roughly 0.04mm2. At 500MHz, the ALU
consumes only 104.4µW/HMz when clock gating is used. With clock gating enabled, power consumption
is reduced roughly 50%. A 200MHz implementation shows even more promising results for low-cost and
energy-efficient hardware solutions. The area for 200MHz is only 0.03mm2 and power consumption as
low as 51.08µW/HMz. The highest clock frequency that can be reached with general purpose imple-
mentations is 1200MHz. With such a high speed circuit, a theoretical bandwidth of 2.4GFLOPs can be
reached.

When the architecture is compared to less advanced architectures that do not combine integer and
floating-point arithmetic, we see that by combining integer and floating-point arithmetic, about 20 to
40% area overhead is eliminated. Also the many architectural principles described in Chapter 5 and 6
yield a very fast datapath. The VHDL standard implementation of floating-point multiply-add, which

109

Chapter 7. Realization

is already optimized for speed, can not be clocked higher than 360MHz while in theory our architecture
could be clocked at 550MHz (500MHz is more realistic). The architecture also matches the performance
of classical floating-point units such as the Sparc V8 architecture implemented by the GRFPU from
Gaisler. Higher speed and less area are facts, however it should be mentioned that our instruction set
is slightly less extensive and the GRFPU fully support double precision which requires a much larger
multiplier. In terms of energy-efficiency, we can not yet say much. However, initial power estimates show
satisfying results in the order of miliwats, which is within the low-power domain.

110

8
Verification

Without being properly tested, complex hardware components like ALUs, are likely to contain errors.
Any error has to be detected and repaired before tape-out. A small and barely noticeable malfunction in
the P5 Pentium floating-point unit cost Intel approximately $475.000.000. Hence, to verify the functional
correctness of the ALU that we presented here, a flexible regression test has been used. Because a proper
test for the floating-point arithmetic that we propose is not trivial, we shortly discuss the test in this
chapter.

8.1 Test Bench

As usual with hardware designs, a testbench environment is placed around the ALU to test its behavior.
The test setup is depicted in Figure 8.1. Instead of pre-determining what output is expected from the
ALU, its results are compared against a reference design of which we know the result to be correct.

A sequencer reads instructions (opcodes and data) from a text-file (instructions.bin) and converts
them to binary data. This binary data (the test set) is stored in a small register file. After reading all
data, the sequencer dispatches the opcodes and instructions to both the implementation and reference
ALU simultaneously. After the data has been processed by both ALUs, it is bit-wise compared in the
comparator. Because the behavioral description of the reference design completes any instruction in just
one clock cycle, a two cycle delay (buffer) is placed between the output of the reference design and the
comparator. If a mismatch occurs, an error has been found and is reported. If the entire test set has
been processed and no mismatches occurred, the test passes. Although this does not prove that the ALU
is error free, it shows that the ALU behaves as expected and ensures the absence of errors anticipated
by the test set.

A big advantage of this test setup is that no manual testing is required. Whenever a new feature or
modification is implemented, all previous tests can easily be repeated to see if the modification has
affected any of the earlier functionality (i.e., regression testing). Another advantage is the flexibility
of the test set. The data can be generated in many different ways (Section 8.2) and moreover, the
implementation design can easily be replaced by the post synthesis and post place-and-route netlists for
testing with timing constraints and performing accurate power analysis.

111

Chapter 8. Verification

512x196bit
regfile

Sequencer

Reference ALU

-(behavioral RTL)

Implementation ALU

-(structural RTL)

-(post synthesis netlist)

-(post place&route netlist)

Comparator

2-
cy

cl
e
bu

ffe
r

.bin

Read from File

“Pass/Fail”

=

G
en

er
at

e

E
rr

o
r

R
ep

o
rt

Figure 8.1: Testbench

8.1.1 Reference ALU

Finding a reference for floating-point arithmetic as proposed in Chapter 4 is difficult because this format
can not be categorized as a valid IEEE representation. Indeed, most floating-point implementations
(hardware or software) only support IEEE single, double and double-extended formats. A solution can
be found in the VHDL-2008 floating-point support library. This library, originally introduced by David
W. Bishop [36] to bridge the gap between VHDL-93 and VHDL-2008, provides floating-point arithmetic
functionality compliant with IEEE-754. A floating-point format of any length (exponent and significand
length being independent) can be defined. Arithmetic and logic can be performed on the defined format,
according to the rules of IEEE-754:

VHDL example of floating-point instantiation

1 variable f a : f l o a t (8 downto −32) ; −− 8−bit exponent , 32−bit significand
2 variable f b : f l o a t (8 downto −32) ;
3 variable f c : f l o a t (8 downto −32) ;
4 variable f r : f l o a t (8 downto −32) ;

The package supports multiply-add (mac) and can be fine-tuned per operation. In the example below,
denormalized number support has been disabled and three guard bits are used (i.e., one guard-bit, one
round-bit and a sticky-bit). The round style has been set to ‘Round to nearest, ties to even’ and exception
handling has been enabled:

VHDL example of floating-point fused multiply-add

1 f r := mac(l => f a , r => f b , c => f c , −− a∗b+c
2 denormal ize => f a l s e , −− denormalized numbers forced to 0
3 c h e c k e r r o r => true , −− exception handling enabled
4 round s ty l e => round nearest , −− round result to nearest
5 guard => 3) ; −− 1 guard−bit , 1 round−bit 1 sticky−bit

112

8.2. Test Set

Besides arithmetic operation, logic operations such as the ‘less than’ compare are also available, as shown
below:

VHDL example of floating-point compare

1 i f (l t (l => f a , r => f b , denormal ize => f a l s e , c h e c k e r r o r => f a l s e)) then −− a < b
2 s t a t u s r e g n e x t <= STATUS LOGIC TRUE;
3 else −− a !< b
4 s t a t u s r e g n e x t <= STATUS LOGIC FALSE;
5 end i f ;

Recently this package has been standardized (i.e., accepted by the board of commissioners of the VHDL-
1076 standard) and adopted in the ieee library. Even though the package has been approved, some
issues still reside as we found out during our tests. The observed problems are discussed in Appendix B.
Despite the small problems encountered, we believe that the VHDL-2008 floating-point library provides a
viable solution for reference purposes. To verify the functionality of the package itself, single and double
precision instantiations of it have been compared against a GCC floating-point multiply-accumulate
implementation (fmaf for single precision and fma for double precision), running on Intel and AMD x86
processors.

8.2 Test Set

Test sets are collections of input data that are used to verify devices. Because the detection of errors
heavily relies on a test set, it is important to apply a constructive test set to the device under verification.
The test set for the test bench of Figure 8.1 is read from file (instructions.bin). This offers great
flexibility, because as long as the data is formatted correctly, the data in this file can be generated by
whichever means is practical. The test set that was used in this particular case, separates instructions
(197 bits) by newlines. Each instruction begins with a 5-bit opcode (Table 6.1) followed by three floating-
point or integer operands (Figure 4.3 and 4.4). When the instruction only requires two operands, the
remaining input must be filled with zeros.

A practical means of generating floating-point data for this test bench is to use the floating-point package
from Bishop. The to float instruction is capable of converting the VHDL real datatype to any given
floating-point format. The example below shows the creation of a binary floating-point word representing
5.20 with an 8-bit exponent and 32-bit significand:

VHDL example of floating-point test data generation

1 a := t o s l v ((t o f l o a t (5 . 2 0 , 8 , 32))) ; −− convert 5.2 to f loat and then to binary

In this format the operands can easily be written to file.

The test that was applied to verify our design primarily focuses on corner cases. This means it mostly
tests operations such as arithmetic including zeros and infinity and overflow/underflow detection, but
also the sign-bit is tested extensively. Although this test covers a large number of the potential problems,
further testing is needed as discussed in Section 9.3.

113

Chapter 8. Verification

114

9
Conclusion

9.1 Introduction

This chapter presents an overview of our findings, an evaluation of these findings, some recommendations
for improvement and the final conclusion of this thesis. The primary goal of this thesis was to investigate
the possibilities for increasing floating-point hardware usage by incorporating integer functionality in
the arithmetic logic datapath, such that the floating-point unit can be scheduled for integer operations.
During the search for such an architecture, that also needed to be both energy-efficient and low-cost as
well as high performance, many (sometimes unforeseen) interesting and useful discoveries were made.
Before a conclusion is given, we first summarize our most important findings and pinpoint the successes
and shortcomings of the architecture presented in this thesis.

9.2 Summary

In Chapter 1 we set out three research topics for this thesis. The first one was “What floating-point
and integer formats can most efficiently be combined?” After comparing several different floating-point
and integer storage formats in Chapter 2, it should be clear by now that IEEE-defined floating-point
formats are almost obligatory. Similarly, two’s complement notation is the standard for representing
signed integer operands. For a low-cost floating-point and integer solution, IEEE-754 single precision
and 32-bit two’s complement integer is a good combination (double precision would be too much of a
bottleneck). However, because only 23 bits of the floating-point numbers are used for the significand, the
arithmetic hardware for single precision floating-point is not sufficient for 32-bit integer operands. The
floating-point format we propose instead, is an extended single precision based format. Eight additional
bits in the significand are used (i.e., a sign-bit, an 8-bit exponent and a 32-bit significand) in order
to make efficient use of the the hardware that is needed for 32-bit integer arithmetic. The result is a
regular datapath (Chapter 4) that supports both common 32-bit integer input (two’s complement) and
a floating-point format that strongly resembles single precision format, but uses eight more fractional
bits. A major drawback is that the floating-point format is no longer entirely IEEE-754 compatible
(Chapter 4). In addition, storage will be either very inefficient (exponent and sign-bit have to be store
separately from the significand if standard 32-bit registers are used) or custom unconventional memories
are needed. On the other hand, the eight additional bits offer more precision (Appendix A) that partially
make up for the absence of double precision support.

The second topic states: “What floating-point architectures are suitable for low-cost energy efficient
hardware solutions?”. From the many architectures in existence (Chapter 3), we believe the FMA

115

Chapter 9. Conclusion

(A×B+C) architecture is currently one of the more attractive ones. Multiply-accumulate (or multiply-
add) instructions are very common and greatly benefit from the FMA architecture. Not only is FMA
faster, it also yields more accurate results because only a single round operation is performed. Single
multiply or add/subtract operations can easily be derived from multiply-add (A×1+C and A×B+0). A
FMA unit is however not a floating-point unit. Division, square root, integer/floating-point conversion
and comparison instructions are mandatory for IEEE-754 compliance. Division and square root are
particularly expensive to implement in hardware. These instructions are only sparsely needed which
made us decide not to support them in hardware. Chapter 3 gave a short overview of the Itanium
processor, which implements both division and square root in software, requiring only 11 instructions
and additional support in the form of a (hardware) lookup table. Comparisons are more common and
require much less resources. These operations can be implemented natively in the architecture. Note
that for full comparison (>, = and <), only two out of three primary compares have to be implemented,
the third can be derived. Conversions are omitted entirely since we see little need for such functionality.

The last en most important question is: “How can integer operation most efficiently be mapped to floating-
point hardware?” This question can be answered by looking deeply into the floating-point datapath and
distill the basic arithmetic that is used within. For the primary floating-point instructions directly
supported by FMA (i.e., multiply-add, addition, multiplication and subtraction), the most prominent
components (also the components suitable to process integer data) needed are a high-speed multiplier, an
adder/subtracter, a right shifter for alignment and a left shifter for normalization. Multiply-accumulate,
multiplication, addition and subtraction, as well as shift left and right (integer) instructions can be
mapped to these components. Sharing these components between two’s complement integer and sign-
magnitude floating-point can be as trivial as sign extension (Chapter 6) but sometimes also requires
sophisticated architectural exploits, such as modified Booth encoding (Chapter 5). In most cases the
components themselves do not need any modification at all. A lot of integer functionality can be obtained
from a floating-point datapath by cleverly routing the dataflow (Chapter 6).

Besides research topics, also a number of requirements were formulated. Firstly it was stated that the
new architecture should at least support multiplication and addition of both floating-point and integer
operands. The FMA architecture we propose meets this requirement and even supersedes it. Floating-
point fused multiply-add is more accurate and faster than separate multiply and add instructions. The
FMA implementation we presented can also perform subtraction on the adder, by means of a tech-
nique called End-Around Carry Addition (Chapter 5). The entire multiply-add core functionality (the
multiplier, adder and additional hardware to support subtraction) is re-used for integer MAC. Integer
multiplication and addition/subtraction can be derived in a similar fashion as for floating-point (i.e., by
using literals 1 and 0).

The second requirement was that the pipeline would be limited to two or three stages. This is a severely
restrictive factor considering the last requirement is that the design should be fully synthesizeable in a 65
or 90nm low-power process. The combination of these two requirements has defined the architecture as
has been presented in this thesis. Low-power technology and long combinatorial paths such as a floating-
point datapath do not combine easily. It is not difficult to see why. For a full multiply-add operation,
two 32-bit significands first need to be multiplied. The third significand then needs to be shifted so that
the exponents match. Only then can the product and aligned addend be added. Once addition has been
performed, the result needs to be normalized by shifting the significand to the left until the MSB is 1.
This requires that the number of leading zeros is determined even after being normalized, the result still
needs to be rounded. We have not even mentioned the many exceptions and irregularities the datapath
has to account for. Often a pipeline of six or more stages is used to implement all this functionality with
a reasonable latency/throughput.

For short pipelines, multiplication and alignment is a serious bottleneck. Because normally we always
shift the smallest operand for a floating-point additions, this means that for multiply-add we would have
to wait until the multiplication has completed. Two or three stages are needed to prevent this massive
delay of lowering the maximum clock frequency to unacceptable levels. By always aligning the addend
(C operand), we can parallelize alignment with multiplication such that parts of the delay overlap. To

116

9.3. Evaluation and Recommendations for Improvement

be able to align C not knowing if this is the smallest operand, it needs to be rewritten such that its
fraction is entirely located to the left of the radix point of the product. This requires that the datapath is
extended, the shifter and adder become 50% larger to support parallel alignment. Despite the increased
area, this optimization pays out (also in terms of area for high speed implementations) as we have shown
in Chapter 7. In addition to paralel alignment, the addition can be optimized to further reduce latency.
Fast multipliers consist of many CSAs that are combined into two partial products in carry-save format.
The sum and carry have to be added in a normal fashion to obtain the actual product. If such a multiplier
is used, FMA can be implemented elegantly by inserting another CSA that compresses the aligned added
into the carry and sum before the final addition is performed. Only one carry-propagation is needed
then, a significant reduction considering adder-carry propagations are among the longest delays in ALUs.
Another crucial optimization is LZA. By predicting where the leading zero will be based on the input
of the final adder, another stage can be eliminated from the datapath. LZA is accompanied by LZD,
which actually transforms the prediction into a binary number that can be used to shift the summation
for normalization. A new, more area-efficient, way for LZD has been found and presented. With this
new approach up to 50% area can be saved for LZD applied to input that is not a power of two. When
optimizations such as the ones described above are applied, a three stage pipeline can be found that is
reasonably balanced. Registers are placed after multiplication and between addition and normalization
(Figure 4.13). The best results are obtained if retiming is enabled during synthesis. However, also
without retiming the three stage pipeline reaches high clock frequencies (500MHz in low-power and
1200MHz in general purpose technology).

9.2.1 Contributions

In retrospect, several important contributions have been made by answering the questions raised at the
begin of this thesis:

First and foremost the definition of a new architecture for combined integer and floating-point arith-
metic and logic. A fully functional ALU design is presented in detail. This architecture is suitable for
energy-efficient low-cost hardware platforms and provides high (multiply-add) performance. To prove
the feasibility of this concept, the architecture has been implemented into a netlist suitable for IC man-
ufacturing. Detailed and accurate timing, area and power consumption estimates are provided.

Secondly, several contributions are made in the form of improvements in area efficiency of various hard-
ware components required for the proposed architecture. One of the more notable optimizations is a
modification for area optimizing the energy-efficient leading zero detect circuit by [1]. With the new
approach, area savings up to almost 50% can be achieved.

9.3 Evaluation and Recommendations for Improvement

Chapter 7 showed that the architecture that was developed as part of this thesis can be realized with
attractive physical properties. The result is high performance as well as low-cost and energy-efficient
when manufactured in low-power technology. However, there is still room for further improvement. More
importantly, the current design still needs minor modifications for numerical correctness.

9.3.1 Resolving Known Issues and Further Testing

Several small issues still reside in the architecture presented so far. The most critical problem is overflow
due to rounding. Because the overflow check is performed after normalization, the increment of rounding
is not taken into account. In some cases this increment may cause overflow in the significand. To account
for this overflow, the overflow check should be performed after rounding which requires only a minor

117

Chapter 9. Conclusion

change to the architecture. An elegant solution would be to increase the length of the incrementer by
one bit. If the MSB of the result is 1 after rounding, we simply take the 32 MSBs including the overflow-
bit and increment the exponent. The overflow check performed to the exponent field, as described in
Section 6.8.2, still applies. If the exponent overflows then the result overflows.

Additionally some special cases of zero-arithmetic produce a faulty sign-bit. To be more precise, when
the product of A×B is −0 and C is also −0, the sign-bit of the result should be minus (1). The
current implementation produces a positive sign-bit for this case. An easy solution would be to add
another exception for this specific occasion. However, maybe a better solution exists that accounts for
all exceptions in a more general fashion. It would be worthwhile to search for a more elegant way of
generating the correct sign-bit.

Aside from these two known issues described above, it may be possible that more problems, which are
not found by the current test set (Chapter 8), are still hidden within the design. Currently only corner
cases and an arbitrary set of regular input is used to test the design. Smarter and more profound testing
is needed to obtain better insight in the functional correctness of the design. Well-known tests that
we plan to use for further validation are for example ‘Testfloat’ [43] which is based on the high quality
software IEEE-754 implementation ‘SoftFloat’, and the ‘IEEE 754 Compliance Checker (IeeeCC754)’
[44] which is even accompanied by a publication [45].

9.3.2 Scalability and Portability

The structural VHDL description is parameterized. This means that the architecture can easily be
realized for other floating-point/integer combinations as well (e.g., double precision and 64-bit integer).
However, the new approach for LZD has not yet been parameterized. Currently the best combination of
smaller LZD circuits has been designed by hand for an efficient 102-bit LZD. The new algorithm should
be formulated as a uniform algorithm such that a general case is described.

Currently the design still relies on the DesignWare library for the partial product multiplier and the
CSA. The CSA should be easy to re-produce in a more vendor independent way. The partial product
multiplier unfortunately is not. It will be difficult to match the efficiency of DesignWare (especially in
Design Compiler Synthesis) because these components are the result of years of accumulated experience.
Yet in the future it may be needed to manually re-design the DesignWare components, to make entirely
vendor independent version of the architecture’s HDL description.

9.3.3 Extending the Instruction Set

Although the ALU provides the basic set of instructions needed for most practical applications, it does
not yet provide the full range as found in many more mature floating-point architectures. Furthermore,
there are still opportunities to exploit the hardware for integer purposes even further than has been done.

Software Routines

As discussed in earlier chapters, some basic instructions such as division and square root have deliberately
not been implemented in hardware for area efficiency. The area required for a hardware implementation
of these instructions would dwarf the current design [46], eliminating all area minimizing efforts presented
in this thesis. It was also mentioned that these instructions can efficiently be implemented as software
routines due to properties of FMA (e.g., single instruction multiply-add for accumulation of iterations
and single rounding for high precision). Iterative approximation algorithms have been proven to produce
results that are equivalent to infinitely precise computations rounded to a finite number of bits [47].
The Itanium architecture, discussed in Section 3.3, has demonstrated that software implementation of

118

9.3. Evaluation and Recommendations for Improvement

division and square root is a feasible solution. The best known algorithm of software approximation for
division and square root is the Newton Raphson method [13]. However, more recently Goldschmidt’s
algorithm has also been investigated and shows promising results [47]. It should be noted that in order
to implement these software routines, lookup tables are required for initial estimates [13]. These lookup
tables are usually implemented in hardware. Therefore, hardware is still needed though considerably less
than for an actual hardware implementation of both operations.

Although operations like division and square root should be implemented first, more functionality needs
to be added for full IEEE-754 compliance. Conversion from and to integer is required and several simpler
transformations such as sign-bit swapping and producing absolute values. Furthermore, the differences
for integer and floating-point approximations of division and square root should be investigated. Neither
division or square root have been implemented for integer operations.

Despite the formal need for these operations, one could ask if they are really needed before implementing
the routines. In many cases division, and square root to an even larger extend, is not often needed.
Digital filters and Fourier transforms can perfectly be implemented on solely a FMA unit.

Hardware Extensions

Several new features could be added to the datapath. A simple modification that could be valuable is to
provide an actual single precision floating-point integerchange format. Although being more precise, the
floating-point format we proposed in Chapter 4 could be a disadvantage for external communication (i.e.,
when the receiver strictly expects 32-bit single precision). By applying the round algorithms described
in Section 5.6 in a more flexible way, we could produce actual single precision numbers. The most
critical resources are already available. Using multiplexers we could simply apply rounding to the 23
normalized MSBs instead of 32 bits. The downside of this feature is that rounding is located in the last
pipeline stage. Currently this is already the critical path which means the modification would affect the
performance.

Another interesting feature would be SIMD-like (vector) instruction support. By partitioning the major
components of the datapath shown in Figure 6.1, multiple integer instructions can be performed in
a single clock cycle. In the current design, many components already have the capacity to perform
multiple smaller integer operations. For example the adder, which is 102 bits wide. By partitioning
the adder as shown in Figure 9.1, two 32-bit integer additions can be performed in a single clock cycle.
Even the output of the ALU is ready for vectorized hardware utilization. In the case of addition,
only correct partitioning and overflow detection need to be added. Both are relatively easy and cheap
to implement. Other instructions can also be vectorized, although more effort is required. The right
shifter, used for alignment, is 101 bits wide. By mapping the input in a similar way as done with the
adder, two shifts can be performed at the same time, given that the shift amount does not differ. The
left shifter (normalization) would have to be made wider in order to support two 32-bit input operands.
Multiplication and multiply-accumulate are the most difficult to implement. Currently the multiplier
can only perform one 32×32 multiplication, a second multiplier would be needed for vector support.
However, multiple passes could be used to mimic a SIMD architecture. Even though this would not yield
increased performance, a full vector-instruction set could be provided.

9.3.4 Reducing Area and Increasing Performance

Due to the nature of the architecture itself and the many fine grained optimizations that have already
been applied, reducing the area of the datapath is difficult without taking radical steps. That being
said, for hardware that is on a really tight area budget, the Cell approach to rounding may be useful
(i.e., truncate every result after normalization). Round to zero requires absolutely no resources and can
therefore still reduce the total area of our design. However, Table 7.5 shows that removing the rounding

119

Chapter 9. Conclusion

0{aaa· · · aaa}
2
000· · · 000{bbb· · · bbb}

2
0{aaa· · · aaa}

1
000· · · 000{bbb· · · bbb}

1

0{aaa· · · aaa}12000· · · 000{bbb· · · bbb}12

031101 69

a1 + a2 b1 + b2

Figure 9.1: Vectorized (SIMD) addition

logic, including the sticky-bit generation unit, is only a marginal improvement in terms of area. A mere
3.4% of the total area can be removed. In terms of latency, the removal of IEEE rounding may be more
useful, since the round logic is part of the critical path (Section 7.3.1). Appendix A discusses the effect of
eight addition precision bits. It would be interesting to know if this additional precision could replace the
‘round to nearest even’ round mode (effectively elimination the need for a round block). The research of
Appendix A would have to be extended by performing the same computations on the new architecture.

To increase performance, the dual path adder that was described in Section 3.5 might be a good start.

9.3.5 Reducing Dynamic Power Consumption

Power analysis shows that the ALU is already quite energy efficient. Especially with the ST 65nm
LPHVT library, power consumption estimates look very promising. Using low power technology is an
effective way to reduce the overall power consumption of a chip. By using a low-power library, static
power dissipation and current leakage are minimized. Dynamic power dissipation is also a major factor
in energy-efficiency. Currently only automatic clock gating (Section 7.3.3) is applied to reduce power
dissipation caused by charging and discharging of load capacitances (i.e., switching from logical high
to low and vice versa). Although clock gating is a major improvement, power consumption can be
reduced even further. A technique called power gating could be used. Appendix D shows that although
the utilization of the datapath is very high, there are still large static parts during each instruction.
Switching these parts off entirely may yield better results than clock gating. In addition, we could apply
architectural changes such that dynamic switching is eliminated in non-critical parts of the datapath.
Figure D.3 illustrates that only a very small part of the datapath is actually used. By keeping all input
of the components not used completely stable, no power is dissipated due to charging or discharging.

9.3.6 Other Research Directions

Aside from the hardware changes and instruction set extensions proposed above, other research directions
may be worthwhile to investigate. The first thing that comes to mind is the inefficient storage of the
floating exponents. Only nine out of 32 bits (eight bits for the exponent and one for the sign-bit) are
used when local floating-point and integer registers are shared. Even if the inefficiency can be solved
elegantly, there is still the problem of matching exponents with significands. A straightforward solution
would be to always store the exponent and significand adjacently. However, because integers require
only a single register, segmentation of the register file will quickly become an issue. Algorithms such as
heap compaction could be borrowed from the field of compiler design.

Another direction is to address the scheduling problems that appear when integer instructions are inter-
leaved with floating-point instructions. A transition from integer to floating-point mode requires flushing
the pipeline. Although the pipeline in not very deep, each transition means a penalty of one clock cycle.

120

9.4. Conclusion

To keep the number of transitions to a minimum, instructions can be buffered and executed later if
scheduling allows it. However, this brings many problems (e.g., starvation) that operating systems also
have to deal with. In [22] compiler techniques are described that are aware of these problems. The
authors indicate that the modifications that need to be applied to established compilers to support this
kind of hardware are manageable. However, their findings are merely a first step in the right direction.
Much more research is needed to get the most potential out of the hardware.

9.4 Conclusion

With the design and implementation of a new architecture for floating-point and integer arithmetic and
logic, the objective of this thesis has been fulfilled. Namely, to find an architecture that is suitable for
low-cost floating-point support in energy-efficient hardware platforms. An important lesson that can
be learned from this work is that the success of such an architecture can not be credited to one or a
few techniques. Only if every aspect is thoroughly analyzed and optimized to the fine details, can high-
performance be combined with low-power and small area. The 65nm implementation has shown that
the architecture is feasible and is well within the bounds of justification for energy-efficient and low-cost
hardware solutions.

A typical 65nm low-power implementation at 200MHz has an area of 0.03mm2 and consumes about
104.4µW/MHz based on an average switching activity of 50%. The theoretical floating-point bandwith
of the design is then 400MFLOPs due to the powerful fused multiply-add architecture. If low-power
is of less concern, the performance can be streched to 2.4GFLOPs with a 1200MHz implementation in
general purpose technology. Because clock gating can be applied very effectively in this architecture, it
is also highly energy-efficient. After automatic clock gate insertion, the energy consumption is reduced
to about 50%.

Finally, the use of the floating-point hardware has been increased by incorporating integer functionality
in the datapath, by re-using the basic floating-point arithmetic blocks. Full integer MAC can be imple-
mented as well as shift left and right, without using additional (noteworthy) hardware. The overhead of
combining integer with floating-point arithmetic and logic in a single datapath is minimal. In terms of
area the additional resources can be neglected, less than 2% ot the total area is spent on multiplexers
and hardware configuring to support integer instructions. Also in terms of latency, the consequences can
hardly be noticed. Based on the findings in this theses, it can be concluded that integer and floating-
point can indeed be combined efficiently and that floating-point is feasible for low-cost and low-power
hardware platforms.

121

Chapter 9. Conclusion

122

A
Quantization Effects

The precision of an arbitrary number represented in floating-point notation is directly correlated to the
numbers of bits used in the significand. To increase precision, one simply increases the number of bits
in the significand. Many processors with floating-point support, offer two levels of precision: IEEE-754
single precision (23+1 bits significand) and double precision (52+1 bits significand). The format proposed
in Chapter 4 can be categorized in between single and double precision. It is basically single precision
format with eight additional bits in the significand. To obtain some insight in how the additional bits
affect precision, we look at quantization effects.

A.1 Quantization

Quantization is the process of converting continuous values (infinitely precise) to a finite set of discrete
values. This introduces an error in the values (due to rounding or truncation) which is referred to as
the quantization error. It does not require a lot of imagination to see that more bits result in smaller
quantization errors. Of course quantization also occurs when the precision of (already) digital numbers
is lowered, hence the quantization errors provide a good base for investigation of the advantages of
additional bits in the significand. In many scientific and engineering fields (e.g., DSP), the signal to
noise ratio (SNR) is an often-used measure to quantify how much a signal has been corrupted by noise.
SNR is defined as the power ratio between a meaningful signal and the unwanted background noise:

SNR =
Psignal
Pnoise

=

(
Asignal
Anoise

)2

(A.1)

where A is the root mean square (RMS) amplitude. SNRs are often expressed using the logarithmic
decibel scale, such that:

SNR = 10 · log10
(
Asignal
Anoise

)2

= 20 · log10
(
Asignal
Anoise

)
(A.2)

When the corruption is a result of quantization effects, this ratio is called the signal to quantization noise
ratio (SQNR). The advantage of having more precision bits will be shown by comparing SQNRs. We
distinguish two different types of quantization noise. The noise introduced by quantization itself, and
the additional noise resulting from operations that are performed in finite precision (a direct result of
quantization). Figure A.1 shows how these ratios are found.

123

Appendix A. Quantization Effects

f(t)

*, +, FIR

*, +, FIR

*, +, FIR

*, +, FIR

Double Precision

Single Precision

Fixed-Point 16

Fixed-Point 32

FFT FFT

Figure A.1: Signal to quantization noise ratio flow

First an input signal f(t) (or any arbitrary sequence of numbers) is quantized. For practical reasons, a
double precision representation of a continuous signal is used as the reference (uncorrupted) signal 1.
Several different levels of quantization are applied to the reference signal: single precision floating-point,
32-bit fixed-point and 16-bit fixed-point. Unfortunately, no tools are available that easily provide the
means to perform floating-point computation in formats other than specified in IEEE-754. Therefore we
have chosen to mimic our increased precision format by a fixed-point representation with 32 fractional
bits. The input is chosen such that the advantage of the dynamic range, floating-point numbers have
over fixed-point numbers, is minimal. The input is normalized between 0.0 and 1.0 (Figure A.2)). The
16-bit fixed-point representation is included because this format is commonly found in embedded (signal)
processors. After quantization, a 1024 point FFT is performed. Analyzing the spectral output of a FFT
to determine SQNR is not only common practice, it also shows a noise floor that can be used to quickly
get an impression of the quantization error/noise. The input signal is a perfect sine wave that fits exactly
in a 1024 point FFT window. This ensures that effects such as spectral leakage will be minimal. Before
we look any further into the flow of Figure A.1, we first discuss the spectral output (of the first FFT)
after purely quantizing the signal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

Figure A.2: Normalized input signal f(t)

In Figure A.2 we see the normalized input signal. The fixed-point representations are signed with a
1-bit integer part and 16 or 32-bit fraction. Therefore, the input signal must be normalized between
0.0 and 1.0. If an infinitely precise FFT is applied to the non-quantized input, we would see a spectral
output consisting of only a large spike at the frequency of the sine, and an infinitely low noise floor.
Figure A.3 shows the FFT output of the different levels of quantization of the sine signal. By default
the FFT algorithm produces results for the inverse frequencies of a signal, resulting in a second spike
(all the data to the right of the center in Figure A.3). We have chosen to plot this raw FFT output here.
The different levels of noise resulting from quantization can clearly be distinguished by the level of the
noise floors. The FFT output has been normalized and plotted on logarithmic scale, such that the peaks

1For this investigation we used Matlab R2010b [48], which only supports floating-point numbers up to double precision.
This means double precision can not be included in our analysis.

124

A.1. Quantization

0 0.2 0.4 0.6 0.8 1

-350

-300

-250

-200

-150

-100

-50

0

Frequency (Hz)

L
o
ga

ri
th

m
ic

am
p

li
ti

d
e

(d
B

)

sin
gle

prec
isio

n

double
prec

isio
n

16-bit fra
cti

on

32-bit fra
cti

on

Figure A.3: FFT output of quantized sine signal

land exactly on the 0dB level. In that case, a lower noise floor means less quantization effects and thus
a more precise representation.

When we apply Equation A.2 to the FFT output of Figure A.3, we find the corresponding SQNR. The
measured SQNRs can be found in the first column of Table A.1. In most literature on analog to digital
conversion, one often finds the following formula to approximate the SNR of an arbitrary fixed-point
format with Q bits in the fraction [49]:

SQNRfixed = 6.02 ·Q+ 1.761dB (A.3)

Less known is the similar approximation for floating-point numbers [50]:

SQNRfloat = 6.02 ·Q+ 7.44dB (A.4)

The SQNRs as predicted by these relations have been listed in Table A.1 as well. As expected, these
theoretical numbers are very close to the result we found from our experiment.

From these finding we can conclude that using eight additional significand bits will give us approximately
50dB more SQNR, which is approximately 33% more than standard single precision floating-point.

Precision Measured SQNR (dB) Predicted SQNR (dB)
Single Precision 153.426 151.92

Fixed-Point 32-bit 199.028 200.421
Fixed-Point 16-bit 103.380 104.101

Table A.1: Measured and predicted SQNR

125

Appendix A. Quantization Effects

Normally this would also cost 33% more bits (8/24 bits), however, since the hardware is already 32
bits wide to support 32-bit integer operations, the additional precision is free. Table A.1 also clearly
shows that the SNR increases linearly with the number of bits used in the fraction. The SNR of 16-bit
fixed-point is almost half of that of the 32-bit fixed-point representation. This tells us that there is a
very simple relation between the number of bit and the maximum SNR that can be achieved. To double
the SNR one doubles the number of fractional bits (not taking the bounady cases such as Q < 2 into
account).

A.2 Operations

Now that we have shown the effects of quantization we can proceed to the analysis of operations. Unfor-
tunately there is no straightforward and fair way to compare fixed-point and floating-point operations.
Fixed-point precision degrades much faster than floating-point due to the lack of an exponent. In many
cases a floating-point number can be adjusted by shifting the significand to the left and decreasing the
exponent accordingly. With fixed-point operations, the least significand bit are inherently shifted out of
the representable range. Therefore, substituting 32-bit fixed-point for 32-bit significand floating-point
numbers, is less meaningful than initially thought. The following result should therefore be considered
only as really rough estimates.

A.2.1 Multiplication

The two main operations supported by the ALU, addition and multiplication, are tested. First we
repeatedly multiply the input signal with a number of constants between 0.0 and 1.0. These constants
are representable exactly in binary fractions such that the precision of the constants does not influence
the outcome. Each multiplication introduces additional noise, which means that if we keep accumulation
multiplications the noise will constantly increase. The severity of this effect greatly depends on the
precision of the format used. When the operations are finished, we take the FFT of the output and
compare it to the other levels of precision. We can also determine the absolute difference in noise before
and after the operation to see what the quantization effect of a certain operation is.

The spectral output of the 1024 point FFTs after multiplication(s) have been visualized in Figure A.4.
After one multiplications the effects can hardly be noticed (Figure A.4(a)). After four multiplications, we
can see that the noise floor of single and double precision floating-point remains the same while the noise
floor of the fixed-point format has moved up noticeably. After even more multiplications (Figure A.4(c)),
we can see that the precision of a 32 bits fraction in fixed-point is already at the level of single precision
floating-point, which has only 24 effective bits. This can be explained by the fact that in fixed-point
multiplication with constants smaller than 1 basically means shifting precision bits out of the fixed-
point range. The floating-point formats have hardly changed because of the flexibility provided by the
exponent. The actual SQNRs (shown in Table A.2) confirms this observation.

A.2.2 Addition

The effect of addition are considerably less than for multiplication. This is not difficult to see because
multiplication is nothing more than repeated addition. To test additions we subtract (actual addition
would cause clipping in the signal because the fixed-point notation can not exceed 1.0) a number of
small constants. After the ‘additions’ are completed, we use the FFT as the input for our analysis again.
The results can be found in Figure A.5. For addition the SQNR of fixed-point is much better than for
multiplication. Even after eight additions, the differences are minimal. In addition, when we look at the
actual SQNRs in Table A.2, the advantages of floating-point an not as evident as for multiplication.

126

A.2. Operations

0 0.2 0.4 0.6 0.8 1

-350

-300

-250

-200

-150

-100

-50

0

32-bit fra
cti

on
16-bit fra

cti
on

sin
gle

prec
isio

n

double
prec

isio
n

L
o
ga

ri
th

m
ic

ap
li

tu
d

e
(d

B
)

Frequency (Hz)

(a) After one multiplication

0 0.2 0.4 0.6 0.8 1

-350

-300

-250

-200

-150

-100

-50

0

Frequency (Hz)

L
og

ar
it

h
m

ic
ap

li
tu

d
e

(d
B

)

32-bit fra
cti

on16-bit fra
cti

on

sin
gle

prec
isio

n

double
prec

isio
n

(b) After four multiplications

0 0.2 0.4 0.6 0.8 1

-350

-300

-250

-200

-150

-100

-50

0

L
og

ar
it

h
m

ic
ap

li
tu

d
e

(d
B

)

Frequency (Hz)

32-bit fra
cti

on
16-bit fra

cti
on

sin
gle

prec
isio

n

double
prec

isio
n

(c) After eight multiplications

Figure A.4: 1024-FFT noise floors after multiplication

127

Appendix A. Quantization Effects

0 0.2 0.4 0.6 0.8 1

-350

-300

-250

-200

-150

-100

-50

0

L
og

a
ri

th
m

ic
ap

li
tu

d
e

(d
B

)

Frequency (Hz)

32-bit fra
cti

on
16-bit fra

cti
on

sin
gle

prec
isio

n

double
prec

isio
n

(a) After one addition

0 0.2 0.4 0.6 0.8 1

-350

-300

-250

-200

-150

-100

-50

0

Frequency (Hz)

L
og

ar
it

h
m

ic
a
p

li
tu

d
e

(d
B

)

32-bit fra
cti

on16-bit fra
cti

on

sin
gle

prec
isio

n

double
prec

isio
n

(b) After four additions

0 0.2 0.4 0.6 0.8 1

-350

-300

-250

-200

-150

-100

-50

0

L
og

ar
it

h
m

ic
ap

li
tu

d
e

(d
B

)

Frequency (Hz)

32-bit fra
cti

on
16-bit fra

cti
on

sin
gle

prec
isio

n

double
prec

isio
n

(c) After eight additions

Figure A.5: 1024-FFT noise floors after addition

128

A.2. Operations

Single Multiplication
Single Precision 149.5985
32-bit Fraction 194.6003
16-bit Fraction 98.2395
Four Accumulated Multiplications
Single Precision 147.9739
32-bit Fraction 166.4462
16-bit Fraction 70.0052
Eight Accumulated Multiplications
Single Precision 143.9675
32-bit Fraction 156.3405
16-bit Fraction 59.6658

Single Addition
Single Precision 151.4651
32-bit Fraction 197.0935
16-bit fraction 100.9864
Four Accumulated Additions
Single Precision 149.9449
32-bit Fraction 194.8466
16-bit Fraction 99.9449
Eight Accumulated Additions
single Precision 144.3636
32-bit Fraction 194.0638
16-bit Fraction 95.6171

Table A.2: Signal to quantization noise ratio (in dB) after multiplication and addition

An even larger number (32) of multiplications and addition also produces interesting results. Single
precision floating-point representation loses some SQNR but remains roughly the same. Fixed-point on
the other hand suffers greatly from larger numbers of accumulated operation. After 32 multiplications,
16-bit fixed-point precision has degraded to the point where a division by zero occurs, and 32-bit fixed-
point SQNR has been reduced to 39.3637dB. Single precision floating-point on the other hand results
in a very acceptable 137.1697dB. Surprisingly, addition performs even worse in some cases. Both 16-bit
and 32-bit fixed-point have a SQNR of roughly 12.7dB. A big difference with the 147.1921dB of single
precision floating-point.

So far we have only looked at the differences in SQNRs between the different formats. As mentioned
earlier, we can also compare SQNR before and after the operations to get an idea of what the impact of
different operations is on the precision of a computation. Table A.3 shows the additional noise added to
a computation for different operations and different numbers of operations.

1 Multiplication 2 Multiplications 8 Multiplications
Single Precision 4.7586 5.4526 7.9877

Fixed-Point 32-bit 5.4367 32.5818 63.0748
Fixed-Point 32-bit 6.5756 33.3755 63.5824

1 Addition 2 Additions 8 Additions
Single Precision 0.7386 3.4816 7.9520

Fixed-Point 32-bit 0.7380 4.1814 8.6797
Fixed-Point 32-bit 0.7378 4.1226 9.0059

Table A.3: Added noise (in dB) per operation

To summarize our findings so far, we conclude the following:

• A 32 bits significand does indeed provide advantages over standard single precision, approximately
33% more SQNR.

• The additional SQNR of extra fractional bits is linearly related to the number of bits.
• Floating-point offers significantly more precision over fixed-point during multiplication, even if the

number of fractional bits used is smaller.
• In case of addition, fixed-point can be just as precise as floating-point.
• If applications are multiplication intensive, floating-point is favored over fixed-point.
• When operations accumulate, floating-point is favored over fixed-point.

Hence, extending the significand to match the 32-bit input is worthwhile, and using floating-point for
DSP rather than fixed-point can certainly be an improvement.

129

Appendix A. Quantization Effects

A.3 Practical Applications

We have shown what the advantages are of additional significand bits. But what does all this mean for
practical applications such as a digital filter? Filters can be used to remove noise from a signal. In the
case of a FIR filter [49] this is accomplished by a series of multiplications and additions. The generalized
structure of a n-th order FIR filter is shown in Figure A.6. Every output element is a weighted average
of input samples. Averaging is accomplished by multiplication with constants (b0, b1 · · · bn). For every
sample output of a n-th order FIR filter, n+1 multiplications and n additions are involved. However,
the multiplications are not accumulated in contrast to our earlier tests.

In

Out

Z−1 Z−1 Z−1

Σ Σ Σ

b0 b1 b2 bn

Figure A.6: Regular structure n-th order FIR filter

To go from a noisy signal like Figure A.7(a) to a cleaner signal as shown in Figure A.7(b), we have used
a 24th order low pass FIR filter.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(a) Noisy signal

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(b) Filtered signal

Figure A.7: Noisy signal before and after filtering

This filter can of course be implemented with different precision. We use the double precision imple-
mentation as the ideal again. The absolute difference between the different formats and double precision
(the quantization error) has been plotted in Figure A.8.

0 0.5 1

×10−8

0

0.5

-0.5

(a) Single precision

0 0.5 1

×10−11

0

5

-5

(b) 32-bit Fixed-point

0 0.5 1

×10−6

5

0

-5

(c) 16-bit Fixed-point

Figure A.8: Absolute quantization error in 24th order FIR filter

130

A.3. Practical Applications

Precision SQNR 24th order filter SQNR 127th order filter
Single Precision 143.7527 138.3766

Fixed-Point 32-bit 90.0202 84.3353
Fixed-Point 16-bit 186.4696 180.6767

Table A.4: Post-filter SQNRs

What we observe is that the absolute errors differ several orders of magnitude. A second observation is
that the error is almost entirely determined by the number of fractional bits. The floating-point format
hardly provides an advantage over fixed-point. This can be explained by the fact that a FIR filter is
mainly based on additions. Of course, there are n multiplications involved, but these do not accumulate.
This confirms our earlier finding that, when computations are based on additions and not so much on
multiplication, floating-point does not provide much advantage over a fixed-point format. The number
of fractional bits is a more important parameter then. In this small example, the errors can be neglected
compared to the noise that is still present in the signal. However, in certain applications FIR filters are
used with orders in the range of several thousands. A floating-point format with an extended significand
may then show its superiority. The SQNRs after 24th and 128th order FIR filters are listed in Table A.4
for indication.

131

Appendix A. Quantization Effects

132

B
Common Mistakes in Floating-Point Arithmetic

Designing floating-point hardware is notorious for being difficult and error-prone. The many subtleties
related to overflow/underflow, other exceptions and rounding, make that errors are sometimes difficult
to reveal. On several occasions floating-point units have been commercialized only to find out after
production that the hardware sometimes still produced incorrect answers. Think not only of the infamous
Intel FDIV bug, also Cray and IBM have shipped faulty floating-point units. In this section we present a
small selection of concepts that are easily misinterpreted and often go wrong, based on experience from
designing the FMA unit presented in this thesis.

B.1 IEEE-754 Floating-Point Arithmetic and Zero

Whenever arithmetic is performed on one or more operands that are zero (zero-arithmetic), problems
quickly start showing up. In the IEEE-754 floating-point format, zero considerably differs from other
numbers due to the fact that there are two distinct representations for zero (+0 and −0), and the fact
that it does not use a biased exponent like all other valid numbers. Both properties entail different kinds
problems which are discussed next.

B.1.1 Unbiased Exponents

Any combination of operands that does not include zero, will accumulate the bias while adding exponents
for multiplication. A correction has to be performed which subtracts the bias from the resulting exponent.
However, when either one or both operands are zero, such a correction is not needed. If performed
anyway, the exponent is likely to underflow, and definitely does not result in correct output. This is just
one of many examples where the actions taken for non-zero-arithmetic do no apply to zero-arithmetic.
Also complementing for subtraction, normalization and rounding have to be bypassed. Due to these
irregularities, it is very difficult to design zero-arithmetic as an integral part of a floating-point datapath.
It is often more convenient to treat zero as an exception.

A robust solution, also implemented in the architecture described in chapters 4, 5 and 6, is to detect
if the operands are zero in the initial stage. Based on these finding one can control the data flow for
zero-arithmetic, bypassing certain components and performing corrections if needed. If one of the two
product operands (A,B) is zero, C is unaltered and bypasses the alignment shifter. To keep the datapath
as regular as possible and to match the delay of operations that do not involve zeros, C is still routed
through the adder which computes 0+C. Normalization and rounding are disabled such that the output

133

Appendix B. Common Mistakes in Floating-Point Arithmetic

is exactly the same as the input (C). If operand C itself is zero, the inter-stage register that stores the
shifted addend is overwritten with zeros. The adder than computes A×B+0.

B.1.2 Sign Bits

For arithmetic as well as logic operations, the sign-bit in IEEE-754 (multiply-add) is problematic. Es-
pecially in the case of zero, because of the ambiguity related to the presence of both +0 and -0. When
the result of an arithmetic operation is exactly zero, it is not immediately clear whether it should be +0
or -0. For this reason IEEE-754 exactly defines how the sign-bit for zero should be dealt with. These
definitions are mathematically sound, however they are not very convenient from a hardware engineer’s
point of view (Section 6.8.3). When the result of an arithmetic operation is exactly zero, IEEE-754
stipulates that the sign should be positive unless ‘round to −∞’ is used, when the result becomes zero
due to rounding or when both signs are the same (i.e., 0 + 0 and 0 − (−0)). Under the ‘round to −∞’
attribute the sign shall be negative. The sign of results becoming zero after rounding must maintain the
sign of the unrounded result. When both operands have the same sign, the resulting sign-bit retains the
same value as the input operands.

These rules are exceptions to an exception which makes sign handling confusing, especially for FMA
which has only been standardized since the 2008 update of IEEE-754. A few examples (corresponding
to the exceptions just discussed) of cases that are most the likely to go wrong have been listed below:

−5× 2 + 10 = +0 6= −0
0× 0 + (−0) = +0 6= −0

0× (−0) + (−0) = −0 6= +0
roundTowardNegative(−5× 2 + 10) = −0 6= +0

To compute every sign-bit according to the standard requires a considerable amount of control. For the
ALU presented in this thesis, a choice was made to adjust the sign-bit computed by Equation 5.7 for
every result that is zero in the final stage.

To summarize the above, when one is interested in implementing IEEE-754 floating-point arithmetic,
special care should be taken when dealing with zero-arithmetic. Especially the sign-bit requires attention
in the following cases:

• If the result is exactly zero, the sign should by default be positive
• If the result is zero and both addition operands where zero and had the same sign, the resulting

sign should retain the value of the input operands
• If the result is zero and the round using the round to negative infinity attribute, the sign-bit should

be negative

In case of logic operations, the sign for zero operand must be ignored completely. This means that
+0 = −0, no exceptions. Although this rule is very simple, it may not directly be intuitive.

Note: The floating-point reference implementation by Bishop [36] suffers from the sign-bit problems
illustrated above.

B.2 Rounding and Sticky-Bit

The majority of IEEE-754 compatible rounding procedures is based on the guard, round, sticky-bit
principle (Section 2.6.5). Although obtaining these bits is usually not a problem (Section 5.2.1), their

134

B.2. Rounding and Sticky-Bit

11011100010110110101100010001101 11000000010100100100000010011111

OR

G RS

00000000000000000000000000000000 00000000000000000000000000000001

A×B

C

0

0

63

63

33

33

Figure B.1: Wrong sticky-bit usage

usage can be confusing. In particular the use of the sticky-bit in FMA is not always clear. A common
misconception is to use the sticky-bit as an additional guard-bit. The sticky-bit can not simply be
concatenated to the C operand as we do with the guard and round-bits. With a small example we will
illustrate why this may cause problems.

Suppose two arbitrary 32-bit floating-point numbers have been multiplied (A×B) as shown in Figure B.1.
Of the 64-bit product, only 32 bits can be stored in memory. Chapter 5 explained that all bits ‘behind’
the sticky-bit position have to be discarded and are therefore logically OR’ed into the sticky-bit to
indicate inexactness 1. Now suppose we want to add zero using ‘round to zero’ mode. We would expect
to find the 32 MSBs of the product.

11011100010110110101100010001101

00000000000000000000000000000000

11011100010110110101100010001101
+

Instead, we find the incremented 32 MSB of the product. By inserting the sticky-bit into the addend
before addition, a carry-in alters the product:

11011100010110110101100010001101 111
00000000000000000000000000000000 001

11011100010110110101100010001110
+

A similar situations can occur when a very small operand is added to a large product. The sticky-bit
calculated during alignment will cause a carry-in and produces an incorrect result. Hence, the sticky-bit
can not simply be used as a guard-bit.

The question that rises now is how the sticky-bit should be used then. The purpose of the sticky-bit is
essentially to indicate that the result of a certain operation is no longer exact. Whenever the sticky-bit is
1, we know that meaningful bits (tailing 0’s do not contribute to the precision of a floating-point number)
have been shifted out of range, and that the result in infinite precision would be different from the actual
result. The sticky-bit should only be used as an indicator for these situation and not to perform actual
arithmetic with. In the example below we perform the addition with the guard and round bits only.

11011100010110110101100010001101 11

00000000000000000000000000000000 00

11011100010110110101100010001101 11
+

1Sticky-bit calculations in FMA are two-fold: during alignment a sticky-bit is calculated and another one during
normalization/rounding. They are combined into a single sticky-bit for rounding.

135

Appendix B. Common Mistakes in Floating-Point Arithmetic

After completing addition, the sticky-bit is concatenated to the final product used for rounding.

11011100010110110101100010001101 111

The three LSB (111) should then be used as a pattern to determines whether we need to round up or
down according one of the IEEE-754 rounding modes (Algorithm 5.6.1 or Algorithm 5.6.2).

Note: The floating-point reference implementation by Bishop [36] suffers from the sticky-bit problems
illustrated above.

B.3 Fused Multiply-Add and Overflow

Overflow and underflow control for FMA is unconventional, which may also lead to problems. Whenever
multiplication or addition/subtraction are performed separately and overflow or underflow is detected,
the result simply overflows/underflows2. In FMA the situation is different because a second operation is
performed on the intermediate result. If the result of A×B overflows, the subtraction of C could result
in a number that is perfectly representable in the supported range. Similarly, underflow of A×B can be
undone by adding C that is not zero. The addition of C could however also result in overflow/underflow.
In addition normalization and rounding can affect the underflow/overflow status of operations.

From the above it should be clear that detection of overflow/underflow needs to be performed multiple
times for multiply-add instructions. The most important message we would like to express here, is that
the final checks should performed after rounding. However, due to bypasses for zero-arithmetic and data
flow control, one should also keep track of the status of intermediate results.

One additional problem related to the specific implementation of underflow detection presented in Sec-
tion 6.7.1, is that 0×0+0 is detected as underflow. In this implementation, the valid bit of the leading
zero detector partially indicates if a result underflows. Of course LZD performed on 0×0+0 will assert
the valid bit to 0, triggering the underflow exception. A simple solution is to overwrite the status when
all operands are zero. These control signal are available from the operand formatter in the first pipeline
stage, hence a simple correction can be performed in the final stage when all operands appear to be zero.

2In certain cases the shift for normalization may be enough to recover from overflow

136

C
Instructionset Specification

For each instruction implemented in hardware, a specification is provided, consisting of:

• Required input
• Returned output
• Operation(s) performed (expected behavior)
• Round direction (only for floating-point arithmetic)
• Encoding of status bits (exception flags or compare results)
• Associated opcode
• Time to completion

The specifications are based on the following syntax:

$A Operand A in register format (formatting depends on instruction (Section 4.3.1))
$A.lsbs Only the least significand bits of operand A
$A.msbs Only the most significand bits of operand A
$Res Result in register format (formatting depends on instruction (Section 4.3.1))
HI 32 high order bits (MSBs)
LO 32 low order bits (LSBs)
Status 3-bit status pattern encoding (exception flags or compare instruction output)

Floating-point Arithmetic

FMAN - Floating-point Multiply-Add

Description Multiplies two floating-point operands and adds (or subtracts, depending on
the sign) a third operand in a single instruction. Advantages include better
precision and faster execution of multiply-add operations.

Input Three floating-point operands (sign-bit, 8-bit exponent and 32-bit significand):
$A, $B and $C

Output One floating-point result (sign-bit, 8-bit exponent and 32-bit significand):
$Res

Operation $Res = $A × $B + $C
Round direction(s) Nearest, ties to even
Status 100 - default

001 - overflow
010 - underflow

Opcode 00001

Latency 3 clock cycles

137

Appendix C. Instructionset Specification

FMAZ - Floating-Point Multiply-Add

Round direction(s) Zero
Opcode 00010

Other fields similar to FMAN

FMAP - Floating-Point Multiply-Add

Round direction(s) Positive infinity
Opcode 00011

Other fields similar to FMAN

FMAM - Floating-Point Multiply-Add

Round direction(s) Negative infinity
Opcode 00100

Other fields similar to FMAN

Floating-point multiplication, addition and subtraction do not have a unique opcode. They are however
directly supported by the hardware. Literals 1 and 0 are to be used for the multiplicand and the addend
respectively in order to perform addition/subtraction and multiplication. For different rounding modes,
the appropriate multiply-add instruction can be selected.

FMUL - Floating-Point Multiplication

Description Multiplies two floating-point operands. Implemented as FMA derivative with the
addend hardwired to 0

Input Three floating-point operands (sign-bit, 8-bit exponent and 32-bit significand):
$A, $B and 0

Output One floating-point result (32-bit significand, 8-bit exponent and sign-bit:
$Res

Operation $Res = $A × $B + 0 (= $A × $B)
Round direction(s) Nearest/Zero/Positive or Negative infinity
Status 100 - default

001 - overflow
010 - underflow

Opcode N/A (use FMA)
Latency 3 clock cycles

FADD - Floating-Point Addition/Subtraction

Description Adds (or subtracts, depending on the signs) two floating-point operands. Im-
plemented as FMA derivative with the multiplicand hardwired to 1

Input Three floating-point operands (sign-bit, 8-bit exponent and 32-bit significand):
$A, 1 and $C

Output One floating-point result (sign-bit, 8-bit exponent and 32-bit significand):
$Res

Operation $Res = $A × 1 + $C (= $A + $C)
Round direction(s) Nearest/Zero/Positive or Negative infinity
Status 100 - default

001 - overflow
010 - underflow

Opcode N/A (use FMA)
Latency 3 clock cycles

138

Floating-Point Compare

FLTV - Floating-Point Compare ‘Less Than Value’

Description Compares two floating-point operands and determines if one operand is smaller than
the other.

Input Three floating-point operands (sign-bit, 8-bit exponent and 32-bit significand):
$A, $B and 0

Output N/A (only status bits valid)
Operation Status = $A < $C
Status 111 - true

000 - false
Opcode 00101

Latency 3 clock cycles

FGTV - Floating-Point Compare ‘Greater Than Value’

Description Compares two floating-point operands and determines if one operand is smaller than
the other.

Input Three floating-point operands (sign-bit, 8-bit exponent and 32-bit significand):
$A, $B and 0

Output N/A (only status bits valid)
Operation Status = $A > $C
Status 111 - true

000 - false
Opcode 00110

Latency 3 clock cycles

FLTV - Floating-Point Compare ‘Equal to Value’

Description Compares two floating-point operands and determines if they are equal.
Input Three floating-point operands (sign-bit, 8-bit exponent and 32-bit significand):

$A, $B and 0
Output N/A (only status bits valid)
Operation Status = $A = $C
Status 111 - true

000 - false
Opcode 00111

Latency 3 clock cycles

139

Appendix C. Instructionset Specification

Integer Arithmetic

IMAC - Integer Multiply-Accumulate

Description Multiplies two integer operands and adds a third in a single instruction.
Input Three integer operands (3 × 32-bit signed integers):

$A, $B and $C.
Output One 64-bit integer result divided over two register format words:

HI (upper 32 bits) and LO (lower 32 bits).
Operation {HI,LO} = $A × $B + $C
Status 100 - default, result requires 32 bits or less for representation (only LO)

101 - result requires more than 32 bits for representation (HI and LO)
Opcode 10000

Latency 2 clock cycles

Integer multiplication, addition and subtraction do not have unique opcodes. They to perform such
operations, the IMAC instruction should be invoked using literals 1 and 0 for the multiplicand and the
addend respectively.

IMUL - Integer Multiplication

Description Multiplies two integer operands.
Input Three integer operands (3 × 32-bit signed integers):

$A, $B and 0.
Output One 64-bit integer result divided over two register format words:

HI (upper 32 bits) and LO (lower 32 bits).
Operation {HI,LO} = $A × $B + 0 (= $A × $B)
Status 100 - default,, result requires 32 bits or less for representation (only LO)

101 - result requires more than 32 bits for representation (HI and LO)
Opcode N/A (use IMAC)
Latency 2 clock cycles

IADD - Integer Addition/Subtraction

Description Adds or subtracts (depending on the signs of the operands) two integer operands.
Input Three integer operands (3 × 32-bit signed integers):

$A, 0 and $C.
Output One 64-bit integer result divided over two register format words:

HI (upper 32 bits) and LO (lower 32 bits).
Operation {HI,LO} = $A × 0 + $C (= $A + $C)
Status 100 - default, result requires 32 bits or less for representation (only LO)

101 - result requires more than 32 bits for representation (HI and LO)
Opcode N/A (use IMAC)
Latency 2 clock cycles

140

Integer Shift

ISLV - Integer Shift Left Value

Description Left shifts integer operand by specified amount.
Input Two integer operands, one 32-bit signed and one 7-bit unsigned number:

$A.msbs, $B.lsbs
Output One 32-bit signed integer operand
Operation N/A (only status bits valid)
Status 100 - default
Opcode 10001

Latency 2 clock cycles

ISRV - Integer Shift Right Value

Description Left shifts integer operand by specified amount.
Input Two integer operands, one 32-bit signed and one 7-bit unsigned number:

$A.msbs, $B.lsbs (all other input must be zero)
Output One 32-bit signed integer operand
Operation LO = $A.msbs >> $C.lsb
Status 100 - default
Opcode 10011

Latency 2 clock cycles

141

Appendix C. Instructionset Specification

Integer Compare

ILTV - Integer Less Than Value

Description Compares two integer operands and determines if one operand is smaller than the other.
Input Two integer operands (2 × 32-bit signed integers):

$A, $B
Output N/A (only status bits valid)
Operation Status = $A < $C
Status 111 - true

000 - false
Opcode 10100

Latency 2 clock cycles

IGTV - Integer Greater Than Value

Description Compares two integer operands and determines if one operand is bigger than the other.
Input Two integer operands (2 × 32-bit signed integers):

$A, $B
Output N/A (only status bits valid)
Operation Status = $A > $C
Status 111 - true

000 - false
Opcode 10101

Latency 2 clock cycles

IETV - Integer Equal To Value

Description Compares two integer operands and determines if they are equal.
Input Two integer operands (2 × 32-bit signed integers):

$A, $B
Output N/A (only status bits valid)
Operation Status = $A = $C
Status 111 - true

000 - false
Opcode 10110

Latency 2 clock cycles

142

D
Dataflow and Datapath Usage

The following illustrations provide a visualization of the data flow per instruction. Figure 6.1, showing
a complete overview of the datapath, has been redrawn here (Figure D.1) for convenience. All other
figures show the same datapath with the parts that are being used for a specific instruction highlighted.
Every component drawn with thickened lines is required for the respective operation.

Although these images can also be used to quickly get a rough idea of what hardware is needed for a
certain instruction and the (non-control type) overhead resulting from integer integration, they should
not be used as a measure for physical properties such as area usage. See Chapter 7 for details regarding
physical properties such as area and energy consumption. The conceptual hardware blocks shown here
are not drawn proportionally.

143

Appendix D. Dataflow and Datapath Usage

33
33

33
8

7

9

2

102

102 102

102102

sign extension

102

3

6868

33 33

5

Exponent Adjustment
and

Shift Count

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Sticky-bitShift Right

Compare

Sum CarryExponentStatus

s
ig

n
b
it
s

e
x
p
o
n
e
n
t

c
o
m

p
a
r
e

Carry-Propagate Adder

Conditional Re-Complement

Leading Zero Anticipation

Leading Zero Detection

102102

102

c
a
r
r
y

Sum

102

ExponentStatus

101(LSBs)

Normalize

Round

Status

A left A right B left B right C left C right

Status Left Right

32 32 32 32 32

32

5

9
101

sign extension

7 (LSBs) 102

3 32 32

s
t
a
t
u
s 101sticky bit

8

s
t
ic
k
y

101(LSBs)

Output Formatter

8 8

shiftcount

muxmux

e
x
p
o
n
e
n
t

32

s
ig

n

s
ig

n
if
ic

a
n
d

A

s
ig

n
if
ic

a
n
d

B

s
ig

n
if
ic

a
n
d

C

101 (LSBs)7

7

5

Instruction

Instruction Decoder/Input Formatter

Figure D.1: ALU datapath

144

33
33

33
8

7

9

2

102

102 102

102102

sign extension

102

3

6868

33 33

5

Exponent Adjustment
and

Shift Count

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Sticky-bitShift Right

Compare

Sum CarryExponentStatus

s
ig

n
b
it
s

e
x
p
o
n
e
n
t

c
o
m

p
a
r
e

Carry-Propagate Adder

Conditional Re-Complement

Leading Zero Anticipation

Leading Zero Detection

102102

102

c
a
r
r
y

Sum

102

ExponentStatus

101(LSBs)

Normalize

Round

Status

A left A right B left B right C left C right

Status Left Right

32 32 32 32 32

32

5

9
101

sign extension

7 (LSBs) 102

3 32 32

s
t
a
t
u
s 101sticky bit

8

s
t
ic
k
y

101(LSBs)

Output Formatter

8 8

shiftcount

muxmux

e
x
p
o
n
e
n
t

32

s
ig

n

s
ig

n
if
ic

a
n
d

A

s
ig

n
if
ic

a
n
d

B

s
ig

n
if
ic

a
n
d

C

101 (LSBs)7

7

5

Instruction

Instruction Decoder/Input Formatter

Figure D.2: Floating-point arithmetic dataflow

145

Appendix D. Dataflow and Datapath Usage

33
33

33
8

7

9

2

102

102 102

102102

sign extension

102

3

6868

33 33

5

Exponent Adjustment
and

Shift Count

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Sticky-bitShift Right

Compare

Sum CarryExponentStatus

s
ig

n
b
it
s

e
x
p
o
n
e
n
t

c
o
m

p
a
r
e

Carry-Propagate Adder

Conditional Re-Complement

Leading Zero Anticipation

Leading Zero Detection

102102

102

c
a
r
r
y

Sum

102

ExponentStatus

101(LSBs)

Normalize

Round

Status

A left A right B left B right C left C right

Status Left Right

32 32 32 32 32

32

5

9
101

sign extension

7 (LSBs) 102

3 32 32

s
t
a
t
u
s 101sticky bit

8

s
t
ic
k
y

101(LSBs)

Output Formatter

8 8

shiftcount

muxmux

e
x
p
o
n
e
n
t

32

s
ig

n

s
ig

n
if
ic

a
n
d

A

s
ig

n
if
ic

a
n
d

B

s
ig

n
if
ic

a
n
d

C

101 (LSBs)7

7

5

Instruction

Instruction Decoder/Input Formatter

Figure D.3: Floating-point compare dataflow

146

33
33

33
8

7

9

2

102

102 102

102102

sign extension

102

3

6868

33 33

5

Exponent Adjustment
and

Shift Count

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Sticky-bitShift Right

Compare

Sum CarryExponentStatus

s
ig

n
b
it
s

e
x
p
o
n
e
n
t

c
o
m

p
a
r
e

Carry-Propagate Adder

Conditional Re-Complement

Leading Zero Anticipation

Leading Zero Detection

102102

102

c
a
r
r
y

Sum

102

ExponentStatus

101(LSBs)

Normalize

Round

Status

A left A right B left B right C left C right

Status Left Right

32 32 32 32 32

32

5

9
101

sign extension

7 (LSBs) 102

3 32 32

s
t
a
t
u
s 101sticky bit

8

s
t
ic
k
y

101(LSBs)

Output Formatter

8 8

shiftcount

muxmux

e
x
p
o
n
e
n
t

32

s
ig

n

s
ig

n
if
ic

a
n
d

A

s
ig

n
if
ic

a
n
d

B

s
ig

n
if
ic

a
n
d

C

101 (LSBs)7

7

5

Instruction

Instruction Decoder/Input Formatter

Figure D.4: Integer arithmetic dataflow

147

Appendix D. Dataflow and Datapath Usage

33
33

33
8

7

9

2

102

102 102

102102

sign extension

102

3

6868

33 33

5

Exponent Adjustment
and

Shift Count

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Sticky-bitShift Right

Compare

Sum CarryExponentStatus

s
ig

n
b
it
s

e
x
p
o
n
e
n
t

c
o
m

p
a
r
e

Carry-Propagate Adder

Conditional Re-Complement

Leading Zero Anticipation

Leading Zero Detection

102102

102

c
a
r
r
y

Sum

102

ExponentStatus

101(LSBs)

Normalize

Round

Status

A left A right B left B right C left C right

Status Left Right

32 32 32 32 32

32

5

9
101

sign extension

7 (LSBs) 102

3 32 32

s
t
a
t
u
s 101sticky bit

8

s
t
ic
k
y

101(LSBs)

Output Formatter

8 8

shiftcount

muxmux

e
x
p
o
n
e
n
t

32

s
ig

n

s
ig

n
if
ic

a
n
d

A

s
ig

n
if
ic

a
n
d

B

s
ig

n
if
ic

a
n
d

C

101 (LSBs)7

7

5

Instruction

Instruction Decoder/Input Formatter

Figure D.5: Integer compare dataflow

148

33
33

33
8

7

9

2

102

102 102

102102

sign extension

102

3

6868

33 33

5

Exponent Adjustment
and

Shift Count

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Sticky-bitShift Right

Compare

Sum CarryExponentStatus

s
ig

n
b
it
s

e
x
p
o
n
e
n
t

c
o
m

p
a
r
e

Carry-Propagate Adder

Conditional Re-Complement

Leading Zero Anticipation

Leading Zero Detection

102102

102

c
a
r
r
y

Sum

102

ExponentStatus

101(LSBs)

Normalize

Round

Status

A left A right B left B right C left C right

Status Left Right

32 32 32 32 32

32

5

9
101

sign extension

7 (LSBs) 102

3 32 32

s
t
a
t
u
s 101sticky bit

8

s
t
ic
k
y

101(LSBs)

Output Formatter

8 8

shiftcount

muxmux

e
x
p
o
n
e
n
t

32

s
ig

n

s
ig

n
if
ic

a
n
d

A

s
ig

n
if
ic

a
n
d

B

s
ig

n
if
ic

a
n
d

C

101 (LSBs)7

7

5

Instruction

Instruction Decoder/Input Formatter

Figure D.6: Shift left dataflow

149

Appendix D. Dataflow and Datapath Usage

33
33

33
8

9

2

102

102 102

102102

sign extension

102

3

6868

33 33

5

Exponent Adjustment
and

Shift Count

Partial Product

Multiplier

Conditional Complement

Carry-Save Adder

Sticky-bitShift Right

Compare

Sum CarryExponentStatus

s
ig

n
b
it
s

e
x
p
o
n
e
n
t

c
o
m

p
a
r
e

Carry-Propagate Adder

Conditional Re-Complement

Leading Zero Anticipation

Leading Zero Detection

102102

102

c
a
r
r
y

Sum

102

ExponentStatus

101(LSBs)

Normalize

Round

Status

A left A right B left B right C left C right

Status Left Right

32 32 32 32 32

32

5

9
101

sign extension

7 (LSBs) 102

3 32 32

s
t
a
t
u
s 101sticky bit

8

s
t
ic
k
y

101(LSBs)

Output Formatter

8 8

shiftcount

muxmux

e
x
p
o
n
e
n
t

32

s
ig

n

s
ig

n
if
ic

a
n
d

A

s
ig

n
if
ic

a
n
d

B

s
ig

n
if
ic

a
n
d

C

101 (LSBs)7

7

5

Instruction

Instruction Decoder/Input Formatter *

*
C

le
ft

(
7

L
S
B
s
)

Figure D.7: Shift right dataflow

150

Bibliography

[1] V. Oklobdzija, “An algorithmic and novel design of a leading zero detector circuit: comparison
with logic synthesis,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 2,
pp. 124 –128, Mar. 1994.

[2] K.H.G. Walters, S.H. Gerez, G.J.M. Smit, S. Baillou, G.K. Rauwerda, and R. Trautner, “Multicore
soc for on-board payload signal processing.” accepted for Adaptive Hardware and Systems 2011,
June 2011.

[3] D. Seal, ARM Architecture Reference Manual. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2nd ed., 2000.

[4] W. Stallings, Computer Organization & Architecture. Upper Saddle River, NJ, USA: Prentice Hall
Press, eighth ed., 2009.

[5] G. A. Blaauw and J. Brooks F. P., Computer Architecure, Concepts and Evolution. Addison-Wesley,
first ed., feb. 1997.

[6] ”IEEE Task P754”, IEEE 754-2008, Standard for Floating-Point Arithmetic. pub-IEEE-STD, aug.
2008.

[7] M. M. Mano and C. Kime, Logic and Computer Design Fundamentals. Upper Saddle River, NJ,
USA: Prentice Hall Press, 3rd ed., 2004.

[8] B. Parhami, Computer arithmetic: algorithms and hardware designs. Oxford, UK: Oxford University
Press, 2000.

[9] D. Goldberg, “What every computer scientist should know about floating-point arithmetic,” ACM
Comput. Surv., vol. 23, pp. 5–48, March 1991.

[10] R. Rojas, “Konrad zuse’s legacy: the architecture of the z1 and z3,” Annals of the History of
Computing, IEEE, vol. 19, pp. 5 –16, april 1997.

[11] S. Microsystems”, “Opensparc t2 core microarchitecture specification,” tech. rep., Sun Microsystems
Inc., December 2007.

[12] A.D.Booth, “A Signed Multiplication Technique (Part 2),” J. Mech. & Appl. Math, vol. 4, pp. 236–
240, 1951.

151

Bibliography

[13] M. Cornea, J. Harrison, and P. T. P. Tang, “Intel itanium floating-point architecture,” Workshop
on Computer Architecture Education, 2003.

[14] M. Cornea-Hasegan and B. Norin, “Ia-64 floating-point operations and the ieee standard for binary
floating-point arithmetic,” Intel Technology journal Q4, 1999.

[15] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy, “Introduction
to the cell multiprocessor,” IBM Journal of Research and Development, vol. 49, pp. 589 –604, july
2005.

[16] M. Gschwind, H. Hofstee, B. Flachs, M. Hopkin, Y. Watanabe, and T. Yamazaki, “Synergistic
processing in cell’s multicore architecture,” Micro, IEEE, vol. 26, pp. 10 –24, march-april 2006.

[17] S. Mueller, C. Jacobi, H.-J. Oh, K. Tran, S. Cottier, B. Michael, H. Nishikawa, Y. Totsuka, T. Na-
matame, N. Yano, T. Machida, and S. Dhong, “The vector floating-point unit in a synergistic
processor element of a cell processor,” in Computer Arithmetic, 2005. ARITH-17 2005. 17th IEEE
Symposium on, pp. 59 – 67, 27-29 2005.

[18] P. M. Farmwald, On the design of high performance digital arithmetic units. PhD thesis, Stanford
University, Stanford, CA, USA, 1981.

[19] J. Bruguera and T. Lang, “Floating-point fused multiply-add: reduced latency for floating-point
addition,” in Computer Arithmetic, 2005. ARITH-17 2005. 17th IEEE Symposium on, pp. 42 – 51,
june 2005.

[20] S. A. Jain, “Low-power single-precision ieee floating-point unit,” Master’s thesis, Massachusetts
Institute of Technology, 2003.

[21] A. Amaricai, M. Vladutiu, L. Prodan, M. Udrescu, and O. Boncalo, “Exploiting parallelism in double
path adders’ structure for increased throughput of floating point addition,” in Digital System Design
Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on, pp. 132 –137,
29-31 2007.

[22] S. Palacharla and J. E. Smith, “Decoupling integer execution in superscalar processors,” in MICRO
28: Proceedings of the 28th annual international symposium on Microarchitecture, (Los Alamitos,
CA, USA), pp. 285–290, IEEE Computer Society Press, 1995.

[23] Y. Solihin, K. W. Cameron, Y. Luo, D. Lavenier, and M. Gokhale, “Dynamically mutable functional
unit in superscalar processors,” tech. rep., University of Illinois, 2007.

[24] D. Lavenier, Y. Solihin, and K. Cameron, “Integer/floating-point reconfigurable alu,” Proceedings
of the 6th Symposium on New Machine Architectures, 1999.

[25] A. Oppenheim, “Realization of digital filters using block-floating-point arithmetic,” Audio and Elec-
troacoustics, IEEE Transactions on, vol. 18, pp. 130 – 136, June 1970.

[26] A. Robison, “N-bit unsigned division via n-bit multiply-add,” in Computer Arithmetic, 2005.
ARITH-17 2005. 17th IEEE Symposium on, pp. 131 – 139, june 2005.

[27] R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the ibm risc system/6000 floating-point
execution unit,” IBM J. Res. Dev., vol. 34, pp. 59–70, January 1990.

[28] W. Hayes, R. Kershaw, L. Bays, J. Boddie, E. Fields, R. Freyman, C. Garen, J. Hartung,
J. Klinikowski, C. Miller, K. Mondal, H. Moscovitz, Y. Rotblum, W. Stocker, J. Tow, and L. Tran,
“A 32-bit vlsi digital signal processor,” Solid-State Circuits, IEEE Journal of, vol. 20, pp. 998 –
1004, Oct. 1985.

[29] M. Schmookler and K. Nowka, “Leading zero anticipation and detection-a comparison of methods,”
in Computer Arithmetic, 2001. Proceedings. 15th IEEE Symposium on, pp. 7 –12, 2001.

152

Bibliography

[30] E. M. Schwarz, “Binary floating-point unit design,” in High-Performance Energy-Efficient Micro-
processor Design (A. Chandrakasan, V. G. Oklobdzija, and R. K. Krishnamurthy, eds.), Series on
Integrated Circuits and Systems, pp. 189–208, Springer US, 2006.

[31] P. Woo-Chan, L. Shi-Wha, K. Oh-Young, H. Tack-Don, and K. Shin-Dug, “Floating point adder/-
subtractor performing ieee rounding and addition/subtraction in parallel,” IEICE transactions on
information and systems, vol. 79, no. 4, pp. 297–305, 1996.

[32] P. M. Heysters, Coarse-Grained Reconfigurable Processors - Flexibility meets Efficiency. PhD thesis,
Univ. of Twente, Enschede, September 2004.

[33] R. Jessani and M. Putrino, “Comparison of single- and dual-pass multiply-add fused floating-point
units,” Computers, IEEE Transactions on, vol. 47, pp. 927 –937, Sept. 1998.

[34] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,” Foundations of Computer Sci-
ence, Annual IEEE Symposium on, vol. 0, pp. 23–36, 1981.

[35] S. Vassiliadis, D. Lemon, and M. Putrino, “S/370 sign-magnitude floating-point adder,” Solid-State
Circuits, IEEE Journal of, vol. 24, pp. 1062 –1070, Aug. 1989.

[36] D. W. Bishop, “http://www.vhdl.org/fphdl,” May 2011.

[37] S. C. Knowles, “Arithmetic processor design for the t9000 transputer,” in Advanced Signal Processing
Algorithms, Architectures, and Implementations II (F. T. Luk, ed.), vol. 1566, pp. 230–243, SPIE,
1991.

[38] G. Dimitrakopoulos, K. Galanopoulos, C. Mavrokefalidis, and D. Nikolos, “Low-power leading-zero
counting and anticipation logic for high-speed floating point units,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 16, pp. 837 –850, july 2008.

[39] G. Zhang, Z. Qi, and W. Hu, “A novel design of leading zero anticipation circuit with parallel error
detection,” in Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, pp. 676
– 679 Vol. 1, May 2005.

[40] G. Even and P.-M. Seidel, “A comparison of three rounding algorithms for ieee floating-point mul-
tiplication,” Computers, IEEE Transactions on, vol. 49, pp. 638 –650, jul 2000.

[41] Synopsys, “http://www.synopsys.com,” May 2011.

[42] Cadence, “http://www.cadence.com,” May 2011.

[43] J. Hauser, “http://www.jhauser.us/arithmetic/TestFloat.html,” May 2011.

[44] B. Verdonk, A. Cuyt, and D. Verschaeren, “http://cant.ua.ac.be/old/ieeecc754.html,” May
2011.

[45] B. Verdonk, A. Cuyt, and D. Verschaeren, “A precision- and range-independent tool for testing
floating-point arithmetic i: basic operations, square root and remainder,” ACM TOMS, vol. 27,
no. 1, pp. 92–118, 2001.

[46] C. Shuang-yan, W. Dong-hui, Z. Tie-jun, and H. Chao-huan, “Design and implementation of a 64/32-
bit floating-point division, reciprocal, square root, and inverse square root unit,” in Solid-State and
Integrated Circuit Technology, 2006. ICSICT ’06. 8th International Conference on, pp. 1976 –1979,
2006.

[47] P. Markstein, “Software division and square root using goldschmidt’s algorithms,” in In 6th Con-
ference on Real Numbers and Computers, pp. 146–157, 2004.

[48] Mathworks, “http://www.mathworks.com,” May 2011.

153

http://www.vhdl.org/fphdl
http://www.synopsys.com
http://www.cadence.com
http://www.jhauser.us/arithmetic/TestFloat.html
http://cant.ua.ac.be/old/ieeecc754.html
http://www.mathworks.com

Bibliography

[49] J. G. Proakis and D. K. Manolakis, Digital Signal Processing (4th Edition). Prentice Hall, 4 ed.,
2006.

[50] R. Boite, H. Xian-Liang, and J. Renard, “A comparison of fixed-point and floating-point realiza-
tion of digital filter,” in Electrotechnics, 1988. Conference Proceedings on Area Communication,
EUROCON 88., 8th European Conference on, pp. 142–145, jun 1988.

154

	Preface
	Introduction
	Motivation and Problem Statement
	Research Goals
	Approach
	Thesis Overview

	Background
	Introduction
	Number Representation
	Floating-Point Numbers
	Floating-Point Number Representation
	The IEEE-754 Standard for Binary Floating-Point Arithmetic
	Floating-Point Arithmetic
	Summary

	Related Work
	Introduction
	The UltraSparc T2 Floating-Point Unit
	The Intel Itanium Floating-Point Architecture
	The Vector Floating-Point Unit of the Cell Processor
	Dual-Path Adders
	Combining Integer and Floating-Point Arithmetic
	Summary

	A Fused Multiply-Add Floating-Point and Integer Architecture
	Introduction
	Approach
	Floating-Point Integer Arithmetic Logic Datapath
	Summary

	Arithmetic Design Principles
	Introduction
	Alignment
	Multiplication
	Addition
	Normalization
	Rounding
	Summary

	Implementation
	Introduction
	Input Formatting and Instruction Decoding
	Alignment Shift and Exponent Adjustment
	Comparing Operands
	Fused Multiplication-Addition
	Normalize
	Rounding
	Output Formatting and Exceptions
	Summary

	Realization
	Introduction
	FPGA Prototyping
	ASIC Implementation
	Comparison
	Realistic SoC Integration Scenario
	Summary

	Verification
	Test Bench
	Test Set

	Conclusion
	Introduction
	Summary
	Evaluation and Recommendations for Improvement
	Conclusion

	Quantization Effects
	Quantization
	Operations
	Practical Applications

	Common Mistakes in Floating-Point Arithmetic
	IEEE-754 Floating-Point Arithmetic and Zero
	Rounding and Sticky-Bit
	Fused Multiply-Add and Overflow

	Instructionset Specification
	Dataflow and Datapath Usage
	References

