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1 Introduction

The Internet is the cornerstone of the digital information age we currently find ourselves in.
It made the world a smaller place by allowing people to exchange information at dazzling
speeds. The wealth of information and different ways of communicating nowadays requires
most people to be connected to the Internet. But the use of the Internet is not restricted
to humans only. In a broad sense, the users of the Internet can be subdivided into humans
and software agents, each consuming the information that is specifically designed for them.

More and more, the Internet brings forth the need to automatize the repetitive and tedious
tasks normally performed by people. This means that software agents need to consume
information designed specifically for humans. To efficiently present information from the
Internet, it is interwoven with markup, layout and other types of information, before it is
visually presented as a webpage to the user. Since this form of information is primarily
destined for human readers, a problem is often introduced when it needs to be processed
by software agents. Information in this case is defined as the data relevant to a user, or
consumer of a webpage.

Three specific problems can be identified that prevent software systems from interpreting
webpages on the Internet:

• Most of the information is unstructured, or at best semi-structured, and therefore
often not directly interpretable by software. This prevents software from ’under-
standing’ the information.

• Relevant information in webpages is interwoven with information about structure
and design. In the case of webpages, this results in a document often written in
(X)HTML, or (Extensible) Hypertext Markup Language. The practically infinite di-
versity of structure for webpages poses a big problem since the software interpreting
it must anticipate every kind of structure possible.

• Webpages offer a lot of additional information alongside the relevant information
the user is actually interested in (e.g., a navigation menu or widgets containing
information like the weather). This makes it harder to retrieve only the information
that is relevant to the user.

Identifying the different types of information in webpages can aid many different types
of applications. Most prominent among these is the extraction of the main, central infor-
mation on a webpage, for obvious reasons. Another application is that of restructuring
webpages to a format suitable to be shown on different screen dimensions. This need is
caused by the proliferation of devices with Internet browsing capabilities. Since devel-
opers of websites cannot anticipate the different devices the website will be shown on,
the device itself needs to deal with its deviating resolution. Additionally it would take
too much time for developers to take different devices into account by creating different
layouts for a website.
Besides improving accessibility by adapting the layout, people coping with a visual dis-
ability can also benefit. To assist people without the ability to read information from
webpages themselves, applications with structural knowledge about websites can assist.
Visually impaired people use screen readers to acquire information from websites. For
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them to efficiently browse the Internet, these screen readers must have a very precise idea
about the structure and contents of the webpage.

Different proposals have been made to aid software in determining the meaning of in-
formation, among which the semantic web[3] is well known. The semantic web extends
HTML with techniques that describe the information shown on a webpage, enabling soft-
ware systems to also grasp the meaning of the information. But as long as the webpages
on the Internet do not adhere to such an ideology, software stands on its own in figuring
out the meaning of information contained in webpages.

The general approach to automatically extract information from webpages is currently to
use wrappers; software tailored for specific webpages. Since the structure and design of
a webpage is defined in the webpage source code, this information can be exploited. Of
course, this way of automation inevitably leads to problems when the layout or structure
of the webpage changes. Additionally it requires a great deal of manual labor, since the
system needs to be specifically configured for each website.

The main aim of this project is to dehumanize the process of extracting and identifying the
segments of information contained in webpages. Instead of tailoring software to specific
webpages, we propose a general purpose method that will restrict the need for tailoring
and might even be capable of extracting information from sources other than webpages,
such as PDF files or digital news papers. To keep the method generally applicable and
runnable on different devices, it is required that it performs its operations very fast,
enabling real-time application. A general purpose algorithm can be applied in a wide
range of situations, making it a valuable tool. Information can be extracted (e.g., for
a specific information need or serving screen readers), modified (e.g., changes in layout
or eliminating unwanted information), augmented (e.g., showing additional information
or adding related advertisements), etc. The single constant factor of the information on
webpages (and other sources that offer information to humans) is that it is structured in
a way to allow human readers to efficiently discern and identify the different segments of
information offered. Because most information will be made suitable for the human eye,
we approach the problem of finding information segments from a visual perspective, using
only visual aspects that are available to the human reader. Throughout this document,
we will use the terms ’segment’ and ’cluster’ to denote a piece of information on a webpage
that serves some particular function, which we define in chapter 5. The cluster term is
specifically used to emphasize the fact that it is made up of smaller elements, a result
from our automated approach we will elaborate on later in this document.

Given the magnitude of the project, it is subdivided into three, more or less separate parts
that correspond to the main problems we want to tackle. The first task of the project is
a user experiment. In this experiment we will examine the consistency of participants in
discerning different segments of information on various webpages. Additionally the output
of this experiment will be a collection of information segments for each webpage, which
serves as a training and evaluation set for our automated methods of segmentation and
identification. The second task of the project is to create a method that automatically
discerns the different sections of information using only visual properties of a webpage.
The webpages that were prepared during the user experiment phase of this project will
serve as a collection of examples that will allow us to optimize our segmentation method.
After splitting up the webpage in different segments, each of them needs to be identified.
The third task is therefore to identify the different segments of information that were
extracted in the second phase. To accomplish this, a classification model will be build
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using the collection of examples from first phase.

To clearly outline the approach we will take, an overview is given in the following method-
ology chapter. Chapter three will give an overview of the state of the art work already
done concerning the extraction of information from websites. In chapter four we will
generalize these approaches and give an overview of the different sources of information
available to our approach in dealing with webpages. Additionally this chapter will form a
starting point for our approach. Chapter five provides a detailed description of the user
experiment we conducted, while chapters six and seven cover the clustering and classifica-
tion phases of our approach in more detail. We conclude this document with an overview
of the results, discussion and conclusion in chapter 8,9 and 10, respectively.
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2 Methodology

To make sure the approach we take in this project is clear, we will start by explaining the
three subproblems, as mentioned in the introduction, in more detail. Starting with the
user experiment.

2.1 User Experiment

The user experiment essentially is a data composing activity where participants segment
various webpages and label the individual segments with categories we defined. We will
further elaborate on the user experiment in chapter 5. The results from this process serve
three different functions, which are listed below. Instead of segments, we will often use the
term ’clusters’, since the data is composed of multiple elements, which will become clear
in the following chapters. The term ’reference clusters’ is used to indicate the clusters
that were composed by the human participants in this user experiment. These reference
clusters will later serve as a basis for our evaluations and training sets.

Consistency of human classification It is very likely that there is a discrepancy be-
tween reference clusters when they are created by different participants. Either because
the classification instructions are not correctly specified, or because some webpages con-
tain clusters that are too ambiguous to be classified with our categories. To measure the
agreement between different participants, we have the different human classifiers work on
the same subset of webpages and measure the consistency between their resulting refer-
ence clusters and classifications. We reckon the results to depend heavily on the clarity
of the classification instructions and the willingness of the participants. Both factors are
to a large extent in our own hands.

Clustering performance measurement To be able to improve the performance of
our clustering approach, we need to compare different clustering methods and their dif-
ferent configurations with each other. The reference clusters give us an indication of the
performance that could be attained, which we must work towards. Additionally we will
use these reference clusters to optimize the parameters used by our clustering method.

Classification training Next to clustering, we also need to classify the clusters based
on their contents or properties. Either to support the clustering process or to indicate to
the end user what content it most likely resembles. The reference clusters will serve as a
set of training samples which will be used to create a model that embodies the relation
between cluster properties and categories. This model can then be used as a classifier for
the clusters generated by our clustering method.

2.2 Segmentation

After collecting a set of clusters with the user experiment, we can use these reference
clusters to evaluate our method of extracting segments from webpages. The aim of seg-
mentation is to extract various segments from the webpage in which the content of each
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segment has some particular function to which all elements in the segment contribute,
i.e., there must be a certain degree of coherence between the elements in a segment.
Segmentation in this case roughly implies that we divide the webpage into a number of
pieces, but we can also approach the problem from the other end with clustering, which is
the process of finding elements that relate to each other according to some function they
share. Segmentation and clustering in this case are two sides of the same coin and result
in the same type of information. If we take the complete webpage as one single piece
of information, segmentation can be viewed as the top down approach, used to divide it
into different segments. On the other hand, if we represent a webpage by its elementary
parts, clustering is the bottom up approach, used to merge the elements into segments,
or clusters.

Earlier research with goals common to ours mostly undertook a top down approach,
often using the internal webpage structure, which we will later explain in more detail,
to segment a webpage and subsequently use a series of heuristics to look for particular
segments. Consequently, using this structural information creates a webpage specific
dependency and requires updates when the structure of a webpage changes.

In our approach we aim to depend only on visual information i.e., the information people
can directly perceive in a structure that is specifically meant for them. This means we
cannot use any language semantics or source dependent information for operations other
than extracting the visual information we require. The main reason for this is that the
method will be more robust and more likely to be portable to other types of input.
We therefore prefer visual information over structural or semantic information. Visual
information is made available to us through the DOM (Document Object Model, more
about this in chapter 4) of the webpage in the form of text elements with properties
describing their visual characteristics. Simply put, this DOM is a tree structure, where
the elementary texts are located in the leaves. Note that this hierarchical structure of
the DOM tree does not have to correspond to the visual appearance of the texts in the
rendered webpage. This motivates us to start from the bottom up and merge these
elements into groups with the help of the different visual properties of those elements.

In psychology, it is thought that principles of perception from the Gestalt theory[19]
account for the ability to visually ’understand’ wholes from groups of individual elements.
This gives us a firm basis for our clustering methods and thus seems to be a suitable start
for our approach. Although we as humans ultimately construct the wholes from the
visual data we perceive, it should be mentioned that it is not necessarily the case that
the visual properties solely account for our understanding of wholes. Semantic or meta
knowledge about the elements we perceive also contribute to our ability of clustering visual
information. An important question here is to what extend it is possible to determine
the coherent sections on a webpage using only the individual elements with their visual
properties, which will partly follow from the results we will attain using the clustering
methods.

Based on these principles of perception, we will create a clustering method and attempt to
have it generate clusters that resemble the reference clusters created during the user ex-
periment. The reference clusters themselves and their webpages will serve as an evaluation
set that also allows us to optimize the parameters used by our clustering method.
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2.3 Classification

Clusters that were created by our cluster method still lack any indication of what type of
content they contain. To get from a cluster to a category, a classification model needs to
be build that will map a cluster, with the help of its properties, to one of the categories we
defined. Identifying clusters only has a descriptive function, where we classify the cluster
after the clustering process is finished. While it can also be used supportively, in assisting
the clustering methods, we do not use it in this way.

Again we use the reference clusters created during the user experiment to serve as a set
of examples. Using different features from the reference clusters, we will experiment with
different classification methods to build a model that will best fit our reference cluster
set. The model performing best will then be used to categorize the generated clusters.
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3 Related Work

Most of our work involves the segmentation and identification of webpages. Research
that includes these operations has been conducted in various fields, where the majority of
this research operates directly on the DOM (Document Object Model). We will further
elaborate on the DOM in the next chapter, but for now it will suffice to know that the
DOM is a standardized representation of a webpage that offers access to all its properties.
For each field we will now look at most relevant research.

3.1 Information Retrieval

A field that involves a lot of interaction with webpages on the Internet is Information
Retrieval. Segmentation and identification can, for instance, be used to assist search
engines with query expansion. For this purpose Yu et al.[24] proposed the Vision based
Page Segmentation (VIPS) algorithm. This algorithm uses visual cues combined with the
webpage DOM to create a hierarchical structure that reflects the visual representation of
the webpage. Elements in this tree structure are visually separated from their siblings.
Although this gives a good representation of the visual layout of the webpage, it is still
necessary to find the coherent sections located somewhere in the tree. A threshold can be
given that specifies a permitted degree of coherence, stopping the segmentation process
at that level. The VIPS algorithm was initially developed to assist selection of terms for
query expansion, but is now used in various other projects.

A system that specifically targets product information was built by Wu et al.[21]. Their
system builds a DOM from a webpage and subsequently extracts chunks from this DOM.
They then filter these chunks on the basis of several characteristics like spatial cues and
features that are expected to be found in product information chunks. They also use
a DoC (Degree of Coherence) value to determine when to stop filtering. The authors
experimented with shopping websites and concluded that their product based algorithm
outperformed VIPS, which most likely results from the fact that their algorithm is spe-
cially tailored to match the product blocks.

Mehta et al.[13] built a segmentation system based on VIPS, combined with text analysis
to determine the (semantic) coherence threshold. A pre-trained naive bayes classifier is
used to determine the number of topics in each segment. When no segments contain
more than one topic, the segmentation process stops. The algorithm delivers a semantic
structure of the webpage, indicating segments and topics.

To increase precision for document retrieval, Chibane and Doan[6] based their approach
on topic analysis. Their segmentation algorithm uses visual properties (lines and colors)
and structural tags (paragraphs and subtitles) to maximize a solution where the content
within segments is coherent (measured by the relation between terms and a topic) and
distances between segments are large.

3.2 Webpage Transformation

Techniques that aim to transform the layout of a webpage are becoming more common.
The main cause for this is that various Internet browsing enabled devices are being created
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with different screen resolutions (e.g., cellphones and PDAs (personal digital assistants)).
Since it is awkward to browse the Internet on a small screen, researchers look for solutions
by transforming webpages to fit the screen size. Another cause of research in this field is
that content delivery is often expensive. By fragmenting webpages, data transmission can
be kept to a minimum. Baluja[2] developed a system that tries to partition webpages into
nine pieces, each containing one coherent piece of content, which can be used on cellular
phones with WAP (Wireless Application Protocol) browsers. To come to nine correct
pieces, a decision tree is created with the help of an entropy measure. This measure is
biased by the size of the elements, since there should be nine, and the depth of the DOM
node, since lower level DOM nodes usually divide a semantically uniform section.

For the purpose of browsing the Internet on small screens, Xiang et al.[22] developed a
segmentation algorithm based on the webpage DOM structure and visual cues. They
start by building a tag tree from the DOM. By looking for certain tags that cause a line
break, they recursively merge all ’continuous’ elements. The tag tree is then analyzed for
patterns in tag sequences. After that, groups are formed by looking for patterns in the
tag sequences. A weakness here is that the method is very dependent on the tags that
need to be defined as line breaking and non line breaking.

Yang and Zhang[23] developed a method used for adaptive content delivery. They create
a structured document, a hierarchical structure containing container objects. All elements
from a webpage are clustered into container objects based on visual similarity and other
custom defined rules. Clustering of elements here is based on the DBSCAN[8] clustering
algorithm. Suffix trees are then built from the series of clusters and analyzed for patterns
with the help of a list of heuristics.

Romero and Berger[16] worked on a segmentation algorithm to partition webpages into
segments visible on small devices. Their method starts by building a DOM from a web-
page. In a bottom up fashion, adjacent leaves are iteratively clustered together according
to a cost function. In their work, this cost function is a combination of a few DOM dis-
tance measures that determine how far apart elements in the DOM tree are, which can
be sufficient for certain webpages. It is however clear that this method is very dependent
on DOM structure, and that complex webpages require different cost functions.

3.3 Screen Readers

People with a visual impairment that partake in webpage interaction are in need of tools
that can present a webpage in a way they can perceive. A well known application in this
area is the screen reader, which often is a type of text to speech application. To present
a webpage in an effective way to the user, screen readers need to correctly interpret
it by determining the meaning and relation of the various parts of the webpage. To
simply process a webpage in a sequential order, would be very inefficient. For example
in the case where a navigation menu is located at the bottom of a webpage and all
other information is read, or processed, first when the user only wants to navigate. It
is therefore of substantial importance that screen readers can identify the different parts
of a webpage to be able to present them in an effective way. A developer of a webpage
can support visually impaired people in different ways, for example by adding ”talklets”1

to the webpage to improve accessibility. A disadvantage of this approach is that visually

1http://www.textic.com/
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impaired users are dependent on the website creator. The Firefox extension Fire Vox2 is
a popular screenreader for websites that is able to identify certain tags like images and
links, which can already help users navigate more efficiently. A better approach however
would be to create a screen reader that can interpret a webpage and identify the different
segments that are presented. A user can then order the screenreader to immediately read
the main text, or the navigation panel, saving the user a lot of time.

3.4 General

Gupta et al. [10] created an application that essentially tries to remove all the clutter from
a webpage, leaving the actual contents to be processed. First a DOM structure is created
from the webpage, which is then modified to extract the core contents of the webpage.
Different filtering techniques are used that remove certain tags, attributes, advertisements,
or other things from the DOM. The filtering algorithms used rely extensively on the
contents of the DOM elements.

Song et al.[18] tried to derive a relation between properties of content blocks on webpages
and the importance of those blocks. They first had five people classify over 4500 blocks
of many pages on about four hundred different websites. Every block was classified with
an importance level ranging one to four, respectively ranging from noisy information like
advertisements to the main content or headlines. It seemed that the distinction between
level two and three was not very clear, so for the experiments these were combined into a
single level, leaving three levels. The experiment lead to the observation that people have
consistent opinions about the importance of content blocks on webpages. For each block
42 different features were extracted, being spatial, absolute and relative to the webpage.
In this system, the VIPS algorithm was used to extract the blocks from the webpage,
how they dealt with the segmentation threshold was not mentioned, however. Learning
algorithms like support vector machines and neural networks were used to create a model
of the relation between the features and the importance level. The experiment showed
that the performance of the classification algorithm came very close to that of the human
classifiers. The websites chosen in this case all came from three sub websites from yahoo
(news, science and shopping), which are likely to have a similar layout, making the results
dependent on these particular websites.

Chen et al.[5] try to uncover the intention an author had towards certain parts of the web-
page, by first transforming a webpage into an intermediate structure, the FOM (Function
Object Model). A basic FOM is created by first retrieving basic objects from a web-
page with their properties like decoration, navigation and interaction. A DBSCAN[8] like
algorithm is used to cluster the basic objects on the webpage into composite objects. Fol-
lowing is the generation of a specific FOM. Here the objects are classified, determined by
the properties of an object. For every category, a specific detection algorithm is needed.
An example here is an algorithm that detects a navigation bar by using a list of rules,
including the in- and out degree of hyperlinks in an object. We are trying to do some-
thing similar, except we use other properties and employ machine learning techniques to
categorize parts or the webpage.

Work that comes very close to the idea brought forward in this document was undertaken
by Snasel[17]. The idea behind their algorithm is about equivalent to ours (even Gestalt

2http://firevox.clcworld.net
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principles are briefly mentioned) except that they take a very different approach with their
application. Their work is based on pattern dictionaries, where each pattern describes
proximity, similarity, continuity and closure of its elements. The algorithm then tries to
extract segments that are similar to the defined patterns.

3.5 Conclusions

The work reviewed here contains a lot of elements that closely resemble parts of the
project we are undertaking. Depending on the application, most systems concentrate
on one type of information, most prominently being the main information section on
a webpage. Some of the methods directly interpret the webpage, others transform a
webpage into an intermediate structure enabling applications to find useful information
by analyzing this structure. To achieve the various goals, the methods draw different
sources of information from the webpages, such as structural and visual information.

The focus of our project will be to develop a general purpose method that is not restricted
to the recognition of a single type of information. Additionally we will try to keep de-
pendencies to a minimum by ignoring any information inherent to a specific source, such
as structural information in webpages. This leaves only visual information for us to use,
i.e., the information that is also available to the human perceiver. How we extract this
information is explained in the next chapter.
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4 Data Collection

Although we indicated to build a general purpose algorithm, initially extracting the re-
quired data is highly dependent on the information source. Given our aim to only use
(rendered) information that is available for human sight, it would be ideal if a tool exists
that will directly give us this data from analyzing any visual presentation of information.
To our knowledge such a tool does not yet exist, so for now we will specifically focus on
webpages and how we can extract the required data from them. In this chapter we will
first look at the different types of data contained in webpages, followed by the extraction
process and a description of the data that is collected.

4.1 Resources

The core information on a webpage, i.e., the information people are actually interested in,
is mixed with presentational, descriptive, and sometimes, procedural markup to indicate
to a browser how the information should be interpreted and presented. This markup is
what provides structure to a HTML document. The core information itself is however
often not well described or annotated, preventing computer systems from identifying and
recovering the actual meaning of the data. Additionally, webpages are often augmented
with extra pieces of information, often not very interesting for the perceiver.

The (presentational) markup reveals relations between the various pieces of information
included in a webpage, which enables humans to quickly differentiate between them. Given
the advantage we gain from the addition of the markup, we cannot simply remove it from
a webpage to obtain the original information. We would end up with a heap of text and
lose a lot of useful information. We will use the data that comes with the core information
to our advantage to best be able to extract and identify the original information included
in a webpage.

Globally, we can discern three different kinds of information in webpages, being: visual,
structural and semantic. Visual information includes the elements that directly determine
the visual appearance of the webpage. This includes color, spatial and font information.
Structural information includes the markup and logical structure of the document. This
is not directly visible in the rendered webpage, but does add functional meaning to the
information in the webpage. An example of this is a paragraph tag that is used to group
elements with some related function. Finally we have semantic information of the textual
information on the webpage, where the actual meaning of the contents comes into play.

In spite of all the information readily available to us, there are some drawbacks when using
these different types of information. We therefore prioritize the use of them according to
these drawbacks, and aim to utilize only the preferred types. Following now is a detailed
description of each of the three types of information.

Structural Information We already briefly mentioned the different types of markup
that is added to webpages. Markup is included in the HTML document in the form of
a nested tag structure which contains all the information. This structure represents the
structural information and is reflected by the DOM (more about the DOM in section 4.2)
that is generated by browsers, or other webpage interpreters. Using this structural infor-
mation of a webpage comes down to analyzing the tag structure, or the DOM. Important
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to note here is that the visual representation of the website does not have to correspond
with the logical structure of the document, i.e., the location of an information segment in
the markup structure, does not necessarily determine its location in the visual presenta-
tion of the webpage.

A problem with structural information is that the method relies directly on the code or
tag structure of the webpage. Since the underlying structure of a webpage can be sub-
ject to change, it would require maintenance for a system using these tags. Additionally,
analyzing the tag structure makes a method of information extraction useless in combina-
tion with other sources, such as PDF, since they most likely use another kind of internal
representation. Another significant problem is that various structural tags can be inter-
preted in different ways, making it hard to find out their actual function in a webpage.
An example is the table tag, which is often abused by developers to structure page layout
instead of using it for the intended function of structuring information.

Visual Information Visual information is data that has a direct influence on our per-
ception of the webpage and includes color, spatial and font information. While structural
information may be directly available from the source code, acquiring visual information
about the elements of a website requires an additional step in the process. This is because
visual properties are often defined in scripts other than the immediate source code. An
example is the use of CSS (Cascading Style Sheets) files. After a webpage is rendered by
the browser, the visual data is made available through the DOM.

The relation between the visual representation of content and the function of that content
is that viewers must be able to visually discern the different sections, including their
functions on a webpage, in order to be effective in consuming the information that is
shown. Visual information is the one consistent factor that is present in every information
source meant to be consumed by humans.

Semantic Information Since we are mainly dealing with textual elements, meaning
inherent to these texts may also prove to be useful in determining a relation between
elements. The textual information itself is contained in the HTML code as well as in the
DOM structure generated by the browser.

Semantic information relies heavily on the underlying language. Given the interlingual
nature of the Internet, it can be expected that webpages in different languages need to
be analyzed, which will be one of the biggest drawbacks for using semantic information
in webpages.

When dealing with webpages, most of the methods in other work restrict themselves
by relying on structural information. The most prominent drawback is that the methods
are often tailored for specific webpages, which requires maintenance when the website
structure is updated. Additionally, maintenance is needed if the language itself is revised.
This is currently the case with the upcoming HTML5, which introduces a set of new
markup tags. The main reason structural data is still used is that it often corresponds
to the visual representation of the webpage and contains a lot of easily accessible data
about the structure of the information. In our research, however, we want to focus on
finding structure without being dependent on the underlying technologies of webpages.
This means that we will try to only rely on visual information.
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4.2 Data Extraction

Information on webpages is primarily made available through text. Although text can be
embedded in images, flash or other objects, in webpages, text is still the predominant way
to convey information to the user. Extracting texts from a webpage is straightforward
as long as the texts are directly included in the webpage code. Extracting texts from
embedded objects like images or flash is a task in itself, so during this project we restrict
ourselves to only texts that are included in the HTML code. Texts included in objects
other than HTML can in theory always be scanned and extracted with their visual prop-
erties, in order to use them in our method. From here on we will refer to a text with its
specific properties as a webpage element.

4.2.1 Extracting Elements

For a software agent to interpret a webpage, it starts with a request to a specific URL
(Uniform Resource Locator). The response to this request is, in the case of a webpage, the
source code that represents that webpage. This source code often includes other scripts
like CSS (Cascading Style Sheets) and JavaScript that are, among other things, used to
generate a proper visual representation of the webpage.

The visual properties we aim to collect cannot simply be taken directly from the source
code. To determine most visual properties, we have to practically render a webpage first.
This rendering is not an obvious task, given that it is often done differently by different
browsers. This is shown by the Acid3 test for web browsers; an independent conformance
test for web browsers, which is often differently rendered by different engines, resulting in
different visual presentations of a single webpage. The most efficient way to obtain the
information we need is to use an existing browser to render a webpage and then extract the
elements. Among different rendering engines, we will use the open source Gecko rendering
engine from Mozilla, a popular, well maintained engine also used by the Firefox browser,
to do this rendering for us. Given the popularity of Firefox, we assume it is capable of
correctly rendering most websites.

When a webpage is loaded in Gecko, it is transformed into a structure accessible through
the Document Object Model (DOM). The DOM4 is a standardized platform and language
independent interface that is included in most popular browsers. Scripts can use this
interface among all browsers that adhere to this specification to make adjustments to
webpages. The structure of a DOM tree often reflects the visual structure of the webpage,
which is why other methods that rely on this structural information can be very successful.
This resemblance in structure is however no certainty, and when it differs, methods based
on it will fail. It must be noted that well designed webpages do adhere to a logical code
structure that reflects the visual structure of the webpage, since this is more easy to
maintain. To connect to the gecko engine, the open source XPCOM (Cross Platform
Component Object Model) technology is available. XPCOM is a language and platform
independent framework also implemented by the mozilla browser.

Following the DOM tree built by the browser, the texts of a webpage are contained in
special text nodes, which contain only text and do not contain child nodes or any style

3http://www.webstandards.org/
4http://www.w3.org/DOM/DOMTR
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makeup. Often not all of these text nodes are made visible on a webpage. Two causes
account for this. The first is that nodes can be hidden. For example in the case of a
navigation menu, sub-menus are often hidden and made visible when a selection in the
main menu is made. These hidden nodes can be filtered out by traversing to the top
document node and checking for the visibility style with value ”hidden”, or the display
style valued ”none”. Additionally, comments or alternative (ALT) descriptions can be
included in the webpage, which are not visible to the user. The second cause for texts not
being (fully) visible is that texts can be larger than the container fields they are shown
in, resulting in a text being only partially shown. Since visual order and dimensions are
most important when applying a method that only relies on visual characteristics, the
properties of text elements we collect, corresponding to the visual information shown on
the webpage, must be as accurate as possible.

Most style properties can be collected by processing the parent node of the text node.
Some properties however require that we traverse to the root node in the DOM tree. An
example of such a property is the background color, which can be transparent. In this case
we would traverse further towards the root element until when we find a (non-transparent)
color. Another example is the absolute position of an element. The absolute position of
the element can be calculated by traversing from the text node to the root node of the
document and simply adding all distances, since only the distance relative to the parent
node is made available. When we calculate the dimensions of a text node, we need to
keep in mind that a text can be larger than the container that embeds it. To find out the
correct dimensions of the visually shown text, we traverse to the top document node and
keep track of the smallest visual box dimensions, effectively resulting in the visible size of
the text element.

Subsuming elements After we extract all text elements with their properties, one
final step is needed before the data is ready to be clustered. This pre-clustering step is
needed because of a side-effect resulting from the way the text nodes are collected. Every
text element with a different markup is placed in a distinct text node of the DOM tree.
If we have a large text with, in its center, a word that contains a hyperlink to another
webpage, this link word is not contained in the large text node. By using the dimensions
and positions of the text node, we can check for overlapping text nodes. Since the larger
text subsumes the smaller word, they can be safely merged together into one single text.
This pre-clustering step is necessary for our method and will merge only texts that already
belong to each other.

4.2.2 Element properties

The following overview lists the properties extracted for every text node:

Text The text and the number of words it contains.

Font Size, family, style, weight, variant, text-decoration, text-transform and letter-
spacing of the font.
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Color The color of the text and the background color.

Element Size (width and height) and position (top and left) of the text element.

Other
There is one other visual property we need to correctly distinguish different segments

from each other. Often there are situations where two distinct segments are visually
separated by a background image. The properties we use from the text elements do
not give us this kind of information and finding out if and how a background separates
different segments on a webpage is a task in itself and not within the scope of this project.
However, to successfully segment a webpage we do need to take these ‘invisible’ gaps into
account. We therefore turn to structural information found in the DOM tree built from
the webpage, and use information from this structure that corresponds to the visual gaps
between elements. This structural distance measure can later be replaced with one that
is purely visually oriented, relieving our method from this dependency. We can use this
structural data, since each node in the DOM tree represents some part of the webpage
and child nodes are often visually contained within the section of the parent node. Child
nodes located lower in the tree often are semantically more similar, since they represent
a smaller, more coherent, part of the webpage. A result of this is that it is possible to
detect visual separators between elements by looking at the shortest distance between the
two in the DOM tree. The assumption here is that distances between elements within
that segment are relatively short compared to distances between elements from different
segments, where distance is measured as the shortest path between two elements in the
DOM tree. This shortest distance is calculated by first determining the LCA (Lowest
Common Ancestor) for two elements and then adding the distance to this LCA from both
elements. This LCA distance is determined for every combination of elements on the
webpage and will be used to detect visual separators between elements.

4.3 Conclusion

Up to this point the main aspect we focus on is that we only use visual properties of the
textual elements on a webpage. Consequently, at least in theory, this allows us to also
use other information sources with our method of clustering and classification. The text
elements with accompanying properties serve as a basis for the clustering and classification
activities we will undertake in the following chapters.
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5 User Experiment

To support our work on clustering and classification, we need to have a clear idea about
the segments we want to identify on a webpage and what the contents of these segments
are. The segmentation of webpages is a subjective undertaking, because it leads to a goal
where we as the end user define the segment types that are important to us. Despite this,
certain types of segments are present in most webpages, which we expect to be commonly
recognizable by human perceivers. We therefore define a set of the common segments that
will be used in the user experiment. For the sake of clarity, we will refer to these common
segments as reference clusters.

A full description of the purpose of the user experiment can be found in section 2.1 of
the methodology chapter. Note that the user experiment actually delivers two kinds of
results. We gather both the data used for measuring inter-classifier agreement and the
data used for training the clustering and classification methods. It is likely that some
discrepancies are present in the agreement between participants, which we will then use
to correct the deviations in the clusters used for training. We will now list the reference
clusters we defined. Subsequently we will discuss the software we built to collect them,
followed by the procedure we set up for the experiment.

5.1 Reference cluster specification

Our choice of segment categories is a trade-off between specificity and the hours human
classifiers have to put in. We therefore only specify the most generic types of segments
that can be found on most webpages and that actually do serve some useful function that
software agents can use. We want the descriptions to provide enough information for the
classifiers to unambiguously discriminate between all parts of the webpage. For the sake of
the project, it is important that the participants correctly performed two tasks; selection
of the segments, and their classification. A problem often seen with other clustering
techniques, is that it is hard to determine the extend, or specificity, of clustering. We
noticed in an earlier test that participants were struggling to determine the size of the
clusters. In a few iterations with different participants we adjusted the specification, so
that it became more clear what we were expecting. The participants were asked to select
and label clusters with the following categories:

Main Text A single, relatively large text with the main focus on a webpage. This group includes
the main, often large, text on a webpage with the aim to inform the user. Some webpages
do not offer a main text at all (e.g., landing pages of portals like nu.nl or fok.nl). Other
webpages offer multiple texts of different sizes (e.g., a news page displaying a main article
and a list of contributions or reactions from users. Such contributions or reactions then
do not belong to the main text, but to the Additional Text group described below). Keep
in mind that the webpage is built around this main text and that most webpages feature
only one main text revolving around a certain theme.

Additional Text Informative and introductory texts, often relatively small, that do not have the

main focus on a webpage. Besides the Main Text, webpages often display a lot of other
(smaller) texts, that serve as an informative text (e.g., comments) or as an introduction
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for another webpage (containing a Main Text). Additional texts must contain at least
a paragraph of text. Small text lines like a single title, questions in a poll, a copyright
notice, or navigational links do not belong to this group. It can be hard to differentiate
between the Main Text and Additional Texts. A webpage like geenstijl.nl displays a list
of nearly fulltext articles. In these cases keep in mind that a Main text must be the main
item on a webpage, which is not the case on the geenstijl.nl portal, so these texts can
be classified as additional. Most webpages give an overview of articles in the form of
introductions by displaying a short text, title and image. These introductions also can be
labeled as Additional Text.

Link Group A set of links pointing to other webpages, possibly within the same website. A group
of links can often easily be spotted. A link group often includes additional information
like the time of creation or a number indicating the amount of clicks the link has received.
All this additional information is part of the link group. To make things simple, a link
group is simply a series of links that are visually grouped together.

Navigation Menu A single, relatively large navigation menu often present on a webpage. The
navigation menu is the section that offers global website navigation, linking to different
sections of the website. It is essentially a link group, but so prominently present that it
receives special attention and is therefore labeled differently. Webpages usually include
only one or two of these sections.

Advertisement Texts that are indicated to be advertisements. These sections are often clearly
marked with terms like ’ads by ...’ or ’advertisements’ and often attract attention by
visually standing out of the webpage. Their contents can be almost anything, but if it
contains text and is selectable, mark this as an advertisement. Be careful not to include
advertisement-like sections that for example show products that belong to the webpage
in question, these belong to the Other Group label discussed below.

Other Group A set of information that seems to belong together but cannot be classified with the

former categories. All things on the webpage that do not fall under the above mentioned
type definitions but do seem to form a coherent whole, can be grouped together and
labeled Other Group.

Remaining (No Label) All remaining elements can be left as they are, and do not
need to be labeled.

5.2 Software

To support participants with their clustering and classification tasks, we built a Java based
application. The webpages that need to be processed by the participants are already
downloaded and made selectable in a list. For every webpage the source code, all text
elements with their properties, as mentioned in 4.2.2, and a screenshot is stored. This
screenshot is shown instead of rendering the webpage from source code, since sometimes
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external scripts are loaded that change the webpage layout. When this happens, our
stored elements and their details could deviate from those shown in the webpage. When
selecting one of the webpages, the corresponding webpage is loaded in a new window
where different view modes are present:

1. Original; shows the clean page view, where each element is selectable to check its
text contents.

2. Reference Clusters; the view where participants can manage the segments.

3. Clusters; shows the clusters that are generated by our method, mainly used for
debugging.

4. Grid; shows the webpage with a grid of the elements drawn in a lay-over screen,
mainly used for debugging.

The participants mainly operate in the reference clusters view. An addition toggle option
is made available here that indicates the still unclustered elements. Figure 1 gives an
impression of the clustering operation. the red fields are text elements that are not yet
part of a cluster. A cluster can be created by simply dragging the mouse over a portion of
the screen and will be indicated by a green semi transparent area that will automatically
snap to the text elements it contains immediately after releasing the mouse. Clusters can
be removed by performing the double-click operation on them.

Figure 1: Clustering operation

By using the right mouse button, participants can attach a label to a cluster. Consequently
the cluster will get a category specific semi-transparent color, which makes it easier for
participants to verify the cluster categories, which can be seen in figure 2. Additionally
the label of the category is shown in the top left corner of the cluster. Right clicking on
a cluster also allows participants to change or remove a label.
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Figure 2: Classification operation

To prevent unnecessary work in the unlikely event of a software crash, each user action is
immediately stored to disk. This also allowed participants to stop and resume their work
at any time.

5.3 Procedure

To collect the reference clusters, the following procedure is followed for each participant:

1. Explain the project and the role the participant has in it

2. Discuss the categories from the reference cluster specification with the participant

3. Explain the interface and operation of the reference cluster software

4. Have the participant cluster an initial webpage to test his or her understanding of
the interface and task

5. Have the participant create the reference clusters from a set of prepared (already
downloaded) webpages

The software is deployed as a Java executable, so participants are not forced to work on a
computer other than their own. The software is accompanied by a specification document
containing the reference cluster descriptions, as outlined in this chapter. The participants
can take as much time as they need, as long as the clustering and classification choices
are made by themselves and no help from people other than the participant is involved.

A total of 39 websites are used to create the reference clusters (for a complete listing,
see appendix A), which mainly consist of news portals. From each of these websites two
webpages are stored, the homepage of the website (overview page) and a page of a news or
content item (detail page), resulting in 78 different webpages. These overview and detail
pages are spread equally among the participants, so that each participant has the same
number of overview and detail pages, but never of the same website. The only exception
here is that websites used for measuring inter-classifier consistency are present in the form
of both overview and detail pages for each participant.
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To be able to measure consistency of clustering and classification between participants,
an overlap of webpages is necessary. We configure this overlap to be ten webpages, which
comes down to about 8% of the total number of pages. i.e., we expect about 8% of the
clusters to be clustered and classified by two participants.

After finishing their tasks on all webpages in the list, the participants would hand in
their work, which forms the basis for the actual clustering and classification methods we
will discuss in the following chapters. The results from this user study can be found in
section 8.2.
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6 Clustering

The restriction of using only visual information to segment a webpage becomes most
concrete in our method of clustering. The purpose of clustering is to combine elements
on a webpage that visually appear to belong together. This is a somewhat subjective
description, making it hard to translate directly into an algorithm. What we are essentially
trying to do, is mimic the process of human perception. Humans determine coherence
between elements with the help of visual information like distance and color. But also by
analyzing semantics of the text contained in the elements. In our clustering attempt, we
assume that segments of a webpage with different types of content can be distinguished
only by using visual information, i.e., using only visual characteristics of the elements of
a webpage, we deem it possible to cluster them in a proper way so that only one type of
information is contained in a cluster. The information types of the clusters correspond to
the categories we defined in section 5.1.

The assumption that parts of a webpage with different types of content are visually dis-
cernible from each other stems from the fact that designers adhere to specific design
guidelines, consciously or not, to present information in an efficient manner for people
to perceive. A webpage that was not designed according to these guidelines will form a
challenge when consuming information, not only for software, but also for human view-
ers. The most basic of these guidelines are described as the Gestalt laws of perceptual
organization[20], which we will apply with our clustering method.

We will discuss two clustering algorithms that will effectively do most of the clustering,
where the reference clusters from the user experiment will serve as a set of examples used
to tune their parameters. In this chapter we will first outline the basis of the perception
principles: the Gestalt laws, followed by the two algorithms of clustering we developed
to apply them. Afterwards, we will discuss two cluster strategies, which combine the two
clustering algorithms in different ways.

6.1 Perception Theory

When we extract the different pieces of information with their visual properties from
a webpage and try to recover the relations between these elements, we are essentially
carrying out work equivalent to that of the designer of the webpage. The designer also
takes the different pieces of information and combines them into wholes, which ultimately
results in a single webpage. To create a consistent and effective design, designers adhere
to specific design guidelines. These design guidelines are themselves often based on the
low-level laws of perceptual organization from the Gestalt psychology. Basically, this set
of principles indicates how humans perceive patterns by grouping visual elements. These
principles thus play a big part in visual systems like webpages, otherwise a viewer of the
webpage would never get a grip on the information shown.

Segmenting a website and determining the coherent elements that form a cluster with a
single semantic function requires an algorithm that has a human-like conception of what
constitutes these clusters. The Gestalt psychology offers a starting point to get from the
perception of single elements to clusters of elements based on their spatial geometrical
organization and other visual properties, which are outlined in section 4.2.2. Gestalt
psychology deals with the phenomenon that wholes are more, or at least different, than
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simply the sum of their parts. Within Gestalt psychology, laws are formulated that
describe perceptual organization[20]. In our case this comes down to the perception of
clusters made up of a number of elements. The set of laws of perceptual organization
include the following:

• Law of Proximity - Objects appearing closer to each other are more likely to be
perceived as a group.

• Law of Similarity - Objects similar to each other are more likely to be perceived as
a group.

• Law of Closure - Objects that form closed shapes are more likely to be perceived as
a group

• Law of Continuity - Objects that minimize change or discontinuity as a group are
more likely to be perceived as belonging to each other.

• Law of Symmetry - Objects that appear symmetrical are more likely to be perceived
as a group.

• Law of Common Fate - Objects that for example share a common moving direction
are more likely to be perceived as a group.

Not all of these laws can be utilized for our purposes. They are either too complicated to
detect or not suitable to use with the data we have. In our case the most practical laws
are those of proximity and similarity, which translate to the positional and visual aspects
of the elements on a webpage. The laws of closure, continuity and symmetry correspond
to the structure and alignment of elements on a webpage and can also contribute to the
clustering process. The remaining law, common fate, is less straightforward and much
harder to detect, so we will leave this aside in our methods of clustering.

Some research has been done on the organization of the laws. Quinlan and Wilton[14] tried
to find a relation between the laws of proximity and similarity. Since the laws themselves
are not organized, the researchers tried to find out how the two laws interact with each
other. Results were that this is very subjective, varying per person. If objects with close
proximity and different colors feature a conflict between the two different laws, no law
seemed to get a significant priority above the other. In that same research, Quinlan and
Wilton also found that people do prioritize the laws consistently for themselves, always
favoring either proximity or similarity.

The results of Quinlan and Wilton’s study show that even with well defined laws of per-
ception, conflicts can still occur and it is up to the perceiver to sort it out. Since this type
of conflict between proximity and similarity would be a bad choice in presenting informa-
tion, a webpage would have to have a really bad designer for these visual contradictions
or conflicts to occur and thus present information incorrectly for certain users. Although
there is no direct organization of the Gestalt laws, we do have to take note of possible
conflicts when we prioritize them in our clustering method, since we are using multiple
laws, and it can have an effect on the performance of clustering.
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Application of the laws
For a designer, the laws of perception are tools for creating a layout that is under-

standable for other people. A designer always makes use of these laws, consciously or
not, to transform a set of information or functionalities to a structured design. We try
to do something similar. With the laws of perception and the elements with their visual
properties, we use the design to uncover the original structure of information. Following
now is an overview of the different laws of perception and how they relate to the data
available to us.

Law of proximity The law of proximity tells us that objects located closer to each
other are more likely to form a coherent group. In this case, when two elements are closer
to each other, their functional relation tends to become stronger. This law only deals with
one property, distance. Distance between elements can however be measured in several
ways. The most obvious option is to take the Euclidian distance between the centers of
elements. However, this can yield an ambiguous representation. When for example two
large elements are located next to each other, the distance between their centers can be
substantial, while visually the distance between the two elements is negligible. A better
option will therefore be to take the shortest Euclidian distance between the edges of two
elements. This gives a better representation of what is visually perceived and is thus a
better measure to indicate the proximity between elements.

Distances between elements can differ significantly per given segment for different web-
pages, making it likely that the use of a threshold or absolute value to cluster elements
based on distance will perform bad in some cases. In addition to just the distance relation
of two elements, the webpage in question, or context, thus also plays a part in determining
the strength of the relation.

Law of similarity The law of similarity is harder to translate compared to the law of
proximity because a lot of properties lend themselves for measuring similarity, whereas in
the case of the proximity law we had only one property to deal with. Specifically, we can
use all the font and color properties from section 4.2.2 for this similarity measure.

When we try to determine the strength of a relation between elements, these properties
each contribute differently in different webpages. We must evaluate the contribution
these properties make in light of their context, just as in the case of the law of proximity.
However, we now have to deal with a whole set of properties. This begs the question if
these properties interact with each other in determining the relation between elements.
For now we assume these visual properties do not interact with each other and evaluate
them independently.

Comparing elements with the help of these properties can be done in many ways. We
do not differentiate between properties and simply compare them all, resulting in the
number of deviations of properties between the elements, where all differences have an
equal weight. This can be seen as a form of Hamming distance[11] of the properties of the
elements, where this distance determines the strength of the relation between elements.
From hereon we will refer to this distance as the similarity distance. As for the threshold
of this distance, we have to deal with the same problem as discussed in the previous
paragraph; that context might be taken into account to determine a suitable threshold.
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Law of closure, continuity and symmetry The laws of closure, continuity and sym-
metry are concerned with form and structure of multiple elements rather than properties
of two elements. In contrast to the other laws, these laws inherently take the context of
the elements into account and can be said to operate on a higher level. Translated to
the problem of clustering elements, these laws are related in a way that they all prefer
consistency in forms. The most useful property for these laws is the location and size of
the relevant elements. The law of closure favors elements that fill up gaps or complete
structures. The law of continuity favors elements that continue some trend within a struc-
ture, thus punishing elements that deviate from this trend. The law of symmetry favors
elements that mirror others around the center of the complete structure.

Capturing these laws in logical functions can be a valuable addition to our clustering
method and will make the clustering process more robust.

6.2 Initial Structure

Now that we have some idea about the laws of perception and how they can be used to
relate elements on webpages, we will use them in the process of clustering. Webpages
sometimes contain hundreds of elements, resulting in a computationally very expensive
operation if every combination of elements needs to be evaluated. This can be brought
down by only evaluating the relations that matter, which we will determine with the help
of the laws of perception. We will create a representation of the webpage that allows the
clustering algorithms to work more efficiently, which we will refer to as the relationgrid.

Since the law of proximity contains less ambiguity than the law of similarity, we will first
focus on clustering elements based on the distance between them. The law of similarity
will be mostly used as a filtering function, removing relations between elements that are
not similar enough. The laws of closure, continuity and symmetry are used later on in
the process, since these operate on the context of multiple elements, which is represented
by our relation grid.

The law of proximity tells us that elements positioned relatively far from each other are
less likely to be related (other things being equal). It is also a given that a cluster on a
webpage is always a group of elements located directly near each other. As a simplification,
we therefore only take the direct upper, lower, left and right neighbors of elements into
account during the clustering task. The assumption here is that segments are always
presented in a rectangular fashion. Subsequently this is also more efficient, since only the
direct neighboring elements need to be evaluated.

The relationgrid is thus a graph structure where for each element the closest horizontal
and vertical elements are listed. Vertices and edges in this graph represent the elements
and relations, respectively. After the relation grid is created, all non reciprocal edges are
filtered, resulting in a undirected graph. This filtering is done to prevent situations where
multiple elements point to a single side of another element, which will make clustering
unnecessarily complex. This situation is portrayed in figure 3.
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Figure 3: The upper grid is filtered, resulting in the lower grid with only reciprocal connections.

We do not take similarity into account in this phase, so a webpage is represented by only
one possible grid. If we were to take similarity between elements into account during the
initial build of the grid, a webpage could contain multiple intertwined grids, depending on
the similarity of the elements. Figure 4 illustrates this full relationgrid without similarity
filtering. Using similarity to value the relation between elements is left up to the clustering
methods discussed next.

Figure 4: A full relation grid, without similarity filtering.

6.3 Algorithms

With the help of the relationgrid we can apply our clustering algorithms. Note that
the relationgrid is only a structure that supports faster processing, since the clustering
algorithms can, in theory, also operate directly on the DOM tree of webpages. This
would however make the algorithms dependent on the DOM tree, which is something
we want to avoid. We devised two algorithms that look for different types of structures;
block clustering and pattern clustering. Block clustering focuses on rectangular structures
within the relationgrid, while pattern clustering looks for random structures that repeat
themselves. Both algorithms can be applied iteratively, where clusters are treated as
elements in a following iteration. Before we go into detail for each of the algorithms,
we first discuss how elements are merged together to form a cluster, an operation often
performed by the clustering algorithms.

Aggregating elements
A cluster is essentially a pack of one or more elements. The properties of a cluster arise

from the aggregated properties of its elements, which is not a trivial process. Properties
like location and size are fixed and easy to calculate. Font properties and background
color are however a different matter. We want the cluster properties to give a correct
description of the visual characteristics of the cluster, i.e., we take the properties that
cover most of the surface of the cluster, since these will have the most influence on the
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visual perception of that cluster. One last property is harder to determine, which is the
LCA distance. Following the same approach as with the other properties, we take the
LCA distance from the largest element in the cluster. To support multiple iterations of
clustering, clusters will have the same set of properties an element has. An element thus
is equivalent to a cluster containing that single element. When multiple iterations of
clustering take place, gradual differentiation of properties can occur if we keep using the
aggregated cluster properties. We therefore determine the aggregated cluster properties
using only the initial, basic elements present in that cluster.

6.3.1 Block Clustering

Most data on webpages is presented in a rectangular structure. Especially data within a
segment is often organized in a clear tabular form, with rows and columns. With the help
of some of the laws of perception, we can use the relationgrid and look for rectangular
structures that seem to form a coherent whole. The law of closure requires that every
element in the rectangular structure is fully connected. This means that the width of each
row equals the width of the cluster and the height of each column is equal to the height
of the entire structure. A fully connected (sub)grid thus has no gaps or visual outliers.
The law of continuity also plays a role here. If elements are missing in this rectangular
sub-grid, this would mean that continuity within the structure is broken, which makes it
less likely that the structure forms one coherent whole. Figure 5 shows an example of a
relationgrid and the clusters that are found when looking for block structures.

Figure 5: The left side shows the relation grid. The right side the corresponding clusters.

After a rectangular structure has been found in the relationgrid, we want to make sure
this structure does not contain multiple content types. We therefore check if the struc-
ture satisfies certain conditions with the help of the similarity distance. Most rectangular
structures contain repetitive sub patterns that have a similar visual appearance. Because
of this, we cannot simply use the similarity distance threshold between all elements. How-
ever, to present the data in a correct visual format, the rows and columns are consistent
in their difference of similarity. We therefore use the similarity distance to check the
consistency of this difference in similarity. Figure 6 portrays this situation, where each
black arrow points to a set of connections that are compared with each other.

This strategy of simply taking the elements from the largest rectangular structure as a
cluster introduces a problem when two similar structures are positioned next to each other
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Figure 6: Comparing similarity of rows and columns.
The numbers represent: similarity distance / LCA distance between elements.

and seen as one single structure. The reason this situation can occur is that visually these
two distinct structures are separated by whitespace, or by a background image that clearly
separates the two (Figure 7, 8 and 9). To detect this kind of gap between elements, we
turn to the LCA distance already introduced in section 4.2.2. By using this data however,
a new problem is introduced. Namely that we now need to determine a threshold value
that indicates an actual gap between elements. This is related to the problem of finding
such a threshold for the similarity distance mentioned earlier. For now we simply use a
static threshold to look for gaps, which will be determined with the help of the reference
clusters.

Figure 7: Part of the relationgrid of a webpage.

Figure 8: Clustering, not taking the LCA distance between elements into account.

Figure 9: Clustering, taking the LCA distance between elements into account.

The result of applying the similarity and LCA distance filter to the rectangular pattern
will result in a single cluster. Another situation that causes problems is that of single large
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columns or rows that, according to the clustering function, have a stronger relation than
small rectangular clusters. This is illustrated by figure 10. Two solutions can help solve
this problem. The first is that we can give a cluster with a rectangular shape priority over
a single line cluster. This is however a restriction that might not always give us the best
results, because it would always rule out one of the two shapes. The other option is that
we look at structure within the cluster, following the laws of continuity and closure. If we
take another look at the example in figure 10, we can see that there is a discontinuity on
the fifth row, next to the word ’productreviews’. This kind of discontinuity is detected
by explicitly looking for a deviating distance in either the columns or rows. In this case
of a single row or column, we cannot apply the similarity distance as we did before, since
there are no multiple columns and rows. We therefore use the similarity distance as a
threshold for all elements in the row or column. The LCA distance was also used this
way, just as with the multi column and row structures. One minor additional condition
is that we require all LCA distances between the neighboring elements in a single row
or column to be the same. This can be explained by the fact that single row or column
patterns are practically always lists that contain the same elements and have a consistent
visual distance.

Figure 10: On the left is the grid, the middle shows the problem of selecting the largest block,
and the right side is how we would expect it to be.

This clustering based on rectangles continues till all rectangles of a minimum size are
extracted from the relationgrid. In most cases single elements remain that are not con-
tained in clusters and left in the relationgrid. These remaining elements are now listed as
single element clusters, so that after a clustering iteration only clusters remain. The most
important thing at this point is that no clusters are formed that contain elements that
do not belong together. Evaluating this comes down to making sure that the precision
of elements in clusters is close to one, which is explained in more detail in section 8.1.
This process of clustering can be repeated until no new clusters are formed. Note that
in each following iteration of clustering, less clusters are available, resulting in less visual
structure that can be exploited.

Algorithm description
We start by checking for each element if it is part of a cycle (we register every corner it

is part of). A cycle in this case means that four elements are directly connected to each
other in a circular fashion. This is used in the cluster algorithm to speed up the check for
fully connected rectangles (rectangles where each element is part of such a cycle). The
grid in figure 11 contains two cycles, indicated by the two black rectangles, which, as a
whole, form a fully connected rectangle.
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Figure 11: Cycles in the relationgrid, indicated by black rectangles.

In one iteration, the algorithm extracts all sets of elements that satisfy the given condi-
tions (similarity & LCA distance and minimum cluster size). Only after the iteration is
completed we combine all groups of found elements into clusters and create a new rela-
tiongrid that can be used in a next iteration. All elements that were not part of a set of
elements are untouched and placed in a new single element cluster.

1. For each still unused element, we check what the biggest structure is that can be
formed with the unused element at the top left. We continue this until no structure
can be found that satisfies the given conditions.

2. Finding the biggest structure is done as follows:

• Starting with the unused element at the top left, we first determine how much
we can move to the right and to the bottom in the relationgrid, respectively
the maxwidth and maxheight.

• We then start with the maxwidth, and look for the width at height + 1 (go-
ing down) by following the cycles. If the width is less then maxwidth, this
becomes the new maxwidth. This is continued until we reach the maxheight.
Each time we move to a new width, we essentially have a sub-structure that
could be the biggest structure. This structure however needs to be checked for
fragmentation, which is done with the help of the similarity and LCA distances.

• Searching for the biggest fragmented structure goes as follows: from the start-
ing element, we simply go towards the maxwidth and at each step we check
if the LCA and similarity distances are within the threshold range. In case
this accepted range is broken, we register that width and after we vertically
do the same with the height, we return the new dimensions. In this case, as
explained before, the similarity between rows and columns can be very high,
since columns are often displayed differently. Because of this we do not directly
compare the similarity between elements, but the differences in similarity be-
tween elements. This measure gives a good impression of visual deviations.
In the case of a structure with a single row or column, an extra condition is
used to make sure all LCA distances are equal between neighboring elements.

• At this point we keep track of the width and height with the largest number of
elements. After evaluating this biggest structure for all elements in the grid,
we return the width and height of the biggest block structure.

To optimize the block clustering algorithm, we can tweak its three parameters: similarity
distance, LCA distance and the minimum cluster size. The reference clusters will be
used to find values for the three parameters, so that the generated clusters resemble the
reference clusters as close as possible.

29



6.3.2 Pattern Clustering

Rectangular structures are the most obvious patterns to detect in webpages, but that
leaves a lot of coherent structures that do not allow detection that easily. A way to detect
these coherent non-block structures is to look for repetition of similar structures. In a
way this corresponds to the Gestalt law of similarity, only on a more global level. If
multiple, repetitive, equivalent structures of equal shape can be found on a webpage, they
most likely serve some function that is equivalent. Consequently, the elements from these
structures can be clustered together. 12 shows an example of such re-occurring patterns
on a webpage.

Figure 12: An example of a repetitive pattern on a webpage.

Our starting point, again, is the relationgrid, but because no other pattern matching al-
gorithms are available that work with such a structure, we implemented a naive algorithm
that allows us to find repetitive patterns on a webpage. It quickly became apparent that
a lot of heuristics (restrictions in this case) were necessary to lessen the work and be able
to look for patterns in an acceptable time. Very important here is that the rectangular
structures, mentioned before, are already clustered. These rectangular patterns contain
a lot of repetitive structure and by already clustering this, it relieves the pattern finding
algorithm of a lot of work. Besides that, different constraints, such as a LCA distance
threshold, similarity distance threshold and a limit to the clustersize are used to prune
less favorable results during the search.

With this algorithm, we are searching for sets of disconnected equivalent patterns. To
do this, we start with a ’base cluster’ by taking a single element from the relationgrid
and list all other structures that are similar to that base cluster. We then expand this
base cluster according to a traversal strategy and update the compatible structures after
each step. A scoring function keeps track of the highest scoring set of clusters. We
repeat this procedure for each element in the relationgrid to make sure we considered
all possible base clusters. The similarity distance measure is not used here to check if
elements belong together, since this is less relevant on the more global level this method
operates on. Instead, we use the similarity distance to check if new elements added to the
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clusters are alike, keeping all structures equivalent. The LCA distance measures serves
two functions here. First it is used to check if a new element can be added to the base
cluster, i.e., if the element is ’visually’ close enough to the base cluster. Second it is used
to check if new elements attached to the remaining structures (after a traversal step) share
the same distance compared to the new element attached to the base cluster.

For large websites with many elements, this naive approach has some serious performance
implications, so we need to find these patterns more efficiently. The performance problem
lies in the fact that different clusters can conflict with each other, creating the need to
explore multiple possibilities, causing exponential growth in the number of cluster sets
that need evaluation. Our target however, is not to evaluate every possible combination
of clusters, but to find the largest non-conflicting set of clusters (depending on the score
function). When we combine this with the fact that almost all webpages contain isolated
subsets of conflicting, i.e., clusters that do not conflict with clusters from other subsets,
we can optimize the algorithm. We first separate all subsets of conflicting clusters and for
each of these independent subsets we determine the largest set of non-conflicting clusters.
After that we simply add those sets together. In a worst case scenario this approach still
suffers from the upper bound of O(2n), but in practice we will never see such a case.

Algorithm description
Just as with the block structure algorithm, the pattern clustering algorithm operates

on a relationgrid of the webpage and it works as follows:

1. For each element in the relationgrid, we start with that element and put it in a
cluster referred to as the base cluster.

2. We add all other elements of the relation grid as separate clusters in a clusterset,
and remove those clusters that contain elements that are not similar enough to the
one contained in the base cluster, using the similarity distance. At this point we
thus have a base cluster and all the other clusters that are similar to the base cluster.

3. Following a depth first strategy we add connected elements to the base pattern, if
they respect our maximum LCA distance restriction and are not already contained
in the base pattern. At each step we continue with the best scoring pattern. We
continue until only the base pattern is left in the set of clusters, which must occur
at some time. With each addition to the base cluster we must update all the other
clusters that are still present, which is done as follows:

• For each cluster that remains other than the base cluster, we try to find an ele-
ment that corresponds to the one last added to the base cluster. The direction
(up, down, left or right) in the relationgrid and attachment (what element of
the base cluster the new element is attached to) must correspond. Additionally
the similarity of the elements (comparing the new item in the base pattern to
the new item in the current cluster) and the LCA distance (between the new
element and the pattern) must be within the allowed range.

• If a new element is already present in another cluster, a conflict arises. Despite
this possible conflict, we will still add the element and resolve the problem in
the next step.
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• After all clusters are updated (or removed) and thus equal to the base clusters,
we create independent sets of conflicting clusters. For each of these sets we
then list the largest conflict-free combination of clusters.

• To determine the score of the current pattern we combine all largest conflict-
free combinations of clusters into one set, and return the score depending on
the scoring function.

4. For each addition we keep track of the pattern that achieved the highest score accord-
ing to a scoring function. When the algorithm ends we return the best performing
set of clusters.

The following parameters are used to influence the clustering process.

• The traversal strategy. Currently being depth first search, determines how to extend
the best cluster at that moment.

• The maximum number of elements in the base pattern, to restrict the size of the
pattern. We set this to unlimited.

• Maximum allowed LCA Distance between elements in patterns.

• Maximum allowed similarity distance between corresponding elements in all clusters.

• Scoring function. This function determines what types of clusters we prefer:

– If we sum the square of the number of elements in each cluster, fewer bigger
clusters are preferred to multiple smaller clusters.

– If we sum the total number of elements in all clusters, no specific preference is
set and we simply prefer the pattern that clusters the most elements together,
which is what we want to achieve.

– If we sum the total number of clusters, this results in smaller clusters.

To optimize the pattern clustering algorithm, we focus on the similarity distance and
LCA distance parameters. Again, the reference clusters will be used to find values for the
these parameters, so that the generated clusters resemble the reference clusters as close
as possible.

6.4 Strategy

The two cluster methods discussed in the previous subsection can help us determine which
webpage elements belong together. It is however not yet obvious in what order we should
apply them and what values we must use for their parameters, so we need to put together
a strategy that describes an application of the clustering algorithms to obtain the best
possible performance. To do this, we evaluate two approaches to clustering; greedy and
conservative, where we tune the performance by running all possible combinations of
parameter values for the cluster algorithms. The set of reference clusters will help us to
determine the performance of the strategy. The results of these evaluations can be found
in section 8.3. To determine the optimal strategy, there are two things we have to keep
in mind:
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• We start with block clustering to make sure no excessive repetitive structures remain
that would prevent our pattern clustering technique from finishing in a practical time
period.

• We must always try and keep the precision at the highest level. When the precision
gets lower, this means that we clustered too much elements together and since we
do not have any segmentation algorithm that splits up clusters, we cannot correct
such errors.

Greedy Approach
With the greedy approach we start by optimizing the parameters for each cluster

method individually. When a clustering algorithm is run with a specific configuration, we
keep clustering with these settings until no more clusters are formed, which we will refer
to as re-clustering. After running the initially required block clustering iteration to make
sure pattern clustering can be performed efficiently, we keep adding one of the two cluster
algorithms to the strategy, depending on which performs best. We keep doing this until
there is no more improvement in performance. The result will be a strategy that includes
an execution order of (re-clustering) algorithms, most likely with a different configuration
for each of the algorithms.

Conservative Approach
Instead of optimizing individually, we can also choose to optimize combinations of the

cluster algorithms. In this case, we do not perform re-clustering, but execute a single
iteration of clustering. To have the initial block clustering algorithm behave in a more
conservative way, the precision measure can be used. By putting the focus on precision,
less clustering will occur, which translates to a more conservative clustering algorithm.
This is necessary, because we do not have a clustering algorithm that re-evaluates clusters
and breaks them up. To measure the performance of clustering, we use the Fβ-score,
which combines precision and recall into a single measure (more about this can be found
in section 8.1. Because this is a weighted function, it is possible to put more emphasis
on precision, by using the F0.25 measure. Since the pattern clustering algorithm is too
inefficient to start with, we need the block clustering algorithm to cluster just enough of
the structures to allow the pattern cluster algorithm to run efficiently within an acceptable
time. After this we add either another iteration of block or pattern clustering, depending
on which performs best and keep doing this until the performance stops increasing.

The clustering strategy can be applied to a webpage to obtain a set of clusters. This,
however, does not give any indication of the contents of the clusters. In the next chapter
we will discuss our approach to finding the most likely content type for the generated
clusters. The results of the clustering process discussed in this chapter can be found in
section 8.3.
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7 Classification

To discover what type of content is most likely contained in the clusters that we produced
in the clustering phase, we need a model that captures the relation between the properties,
or features, of the cluster and the type of content it contains. This type of content
corresponds to the categories we defined in section 5.1. We use the term features to
describe properties of a cluster that are actually used in the mapping with the category,
while the properties themselves are the elementary properties of a cluster, not necessarily
directly linked to the category. Not all properties are useful in this mapping, so we
only select features that are likely to make a positive difference. Since it is not feasible to
manually device a mapping ourselves, we use the reference clusters to create such a model.
The reference clusters are already classified with the categories, so these will serve as a
training set to create a classification model with the help of supervised machine learning
techniques.

Note that this approach assumes that our clustering algorithm will perform as well as
the human classifiers who created the reference clusters. If the clustering process does
not produce clusters that are ’correct’ as determined by the human classifiers, this may
impact the performance of our classifier.

In this chapter we discuss how we create the classification model. We start with the useful
features that represent a cluster and the normalization of the data that is available to us.
Additionally we need to determine which learning method to employ and configure it to
optimize its performance.

7.1 Feature Selection

The properties of a cluster, mentioned in section 4.2.2, serve as an input for the features
used for learning. Simply using all properties as features is not very useful since most
properties do not directly contribute to the problem of determining the type of content and
are very contradictory among different webpages, i.e., most properties are not suitable for
a cluster representation, caused by the dynamic nature of webpage design. We therefore
interpret the properties in a different way so that they add to the correct and useful
representation of a cluster. This results in a list of features we deem relevant for the
learning methods we will employ.

Standardization Consistency is an important aspect of the features. If we take, for
example, the horizontal position of a cluster, it is necessary to view this value in the
context of the webpage. If the cluster is located 50 pixels from the left side of a webpage
that is 100 pixels wide, we cannot compare this to a webpage with a width of 1000 pixels.
To keep the data in a consistent form, it needs to be normalized. In the case of horizontal
location, we can express it as a fraction of the total website width to provide a new,
invariant, feature.

A trade-off with this normalization of features is that by generalizing in advance, we might
exclude specific information that might also positively contribute to the learning problem.
In most cases however the advantages of preprocessing are obvious.
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Cluster features The visual characteristics of a cluster include the background color,
position and dimension. Note that we deal with the font color as a text property, not as
a visual property. A property like background color by itself does not tell us anything
about the particular cluster, but in a more global context it might give us more useful
information. For example, if a color of a cluster is different from the color of surrounding
clusters, it is likely that it has been given a higher priority by the designer to make it
more noticeable. We can also measure this in the form of a fraction of the surface of
that background color against all surfaces with other colors. When this outcome is lower,
the cluster most likely has a higher priority. Like this example we must also try and
relate the other properties to a more global context in order to make them more useful
for classification.

Dimension is another property that differs per webpage. To be a correct representation,
this value must be normalized, which can be done in different ways. One is to relate the
cluster size to the size of the entire webpage. However, also the dimensions of webpages
differ significantly from each other, so taking the ratio of a cluster size and its page
size does not guarantee a representation we can count on. Another option is to relate
the cluster size to the size of other clusters on the webpage, which will give us a better
representation of its size. We therefore take the cluster/average cluster ratio to represent
the size feature.

Position corresponds to the starting location of a cluster, measured from the top and
the left of the webpage. It was already mentioned that we cannot rely on the sizes of
webpages, so we will indicate the position of a cluster by taking its center and expressing
it as a fraction of the webpage size.

Classification is performed after the clustering operation is finished. It is possible that
the structure of the cluster contains valuable information for classification. Representing
the structure of a cluster, however, is not a trivial operation. To simplify things, we take
the number of elements contained in the cluster, which we will also use as a feature.

Textual features Visually, not much can be said about the text that is contained in
a cluster. The number of lines, for example, cannot be derived from the information we
have. Also, using some sort of linguistic analysis restricts us to a particular language,
which is something we want to avoid. One thing we can use is the number of words, to
indicate the amount of text that is contained in a cluster. For reasons already mentioned
in the previous paragraph, we take the wordamount measure to be the ratio of the number
of words in the cluster and the average number of words in clusters on that webpage.

For all other textual properties, like the font type and font size, we follow the same
strategy as with the previously mentioned background color. By taking the fraction of
surfaces with that property value.

Feature Overview Each cluster is represented by the following features:

• Background color: fraction of the surface with that background color.

• Cluster size: cluster size / average cluster size ratio.

• Cluster position as a fraction of the total width and height.
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• Cluster elements: the number of elements in a cluster.

• Words: Number of words in cluster / average number of words ratio

• Text property: fraction of the surfaces of clusters that contain that property.

Note that we calculate these values using the aggregated values for the generated clusters,
i.e., the calculated fractions will show some discrepancy compared to the actual fraction.

7.2 Learning Method

With the reference clusters at our disposal, we create a dataset of cluster features and
their corresponding categories. The goal is to find a relation between the two in the
form of a model, so that we can also apply it to clusters of which we do not know the
category. Since the dataset can become quite large and devising such a mapping by hand
is not much of an option, applying a machine learning technique seems appropriate here.
Specifically, we are focusing on a classification algorithm and since we have a training set
available, a supervised learning method suits this situation best.

Learning algorithm selection The class of supervised learning algorithms offers a
large diversity of algorithms we can use. Looking at comparable studies, the popular
algorithms MLP (Multi-Layer Perceptron [1]) and SVM (Support Vector Machine [7])
seemed to perform best, which is a reason for us to take them into account. Before we
employ these algorithms, we also need to establish a baseline to check if these algorithms
deliver an acceptable performance. To establish this performance baseline, we will make
the assumption that features do not depend on each other and employ the Naive Bayes [9]
and Logistic Regression [12] algorithms.

WEKA The learning algorithms we will use are provided by the WEKA5 data mining
software. WEKA is written in JAVA and offers an extensive API, enabling us to use it in
our own software. Regarding classification algoritms, WEKA includes the most popular
ones, among which the Multi-Layer Perceptron networks and Support Vector Machines,
all fully configurable. Additionally WEKA offers a wide range of evaluation techniques
that we will use to determine the performance of the generated models.

The results of the different learning algorithms can be found in section 8.4.

5http://www.cs.waikato.ac.nz/ ml/weka/
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8 Results

From the different activities discussed in the previous chapters, we will now disclose the
results. Some aspects of these results are recurring, such as comparing two sets of clusters
or classifications, so we will first introduce our approach to these general operations and
refer to them later on. The results of the different activities are listed in the order they
appeared in this document, so we start with the user experiment and evaluate the reference
clusters. Subsequently we will list the clustering and classification performance, followed
by the combined performance of the complete system.

8.1 Evaluation in general

Evaluating clusters and their classifications is an operation frequently performed in this
project. In this section we discuss our approach to these common evaluations.

8.1.1 Evaluating clusters

There are two inherent properties of our system that matter to this evaluation, which
are also taken into account by the clustering methods. The first is that an element must
always be contained in a cluster (single element clusters are allowed) and the second is
that an element can only be contained in a single cluster (i.e., it can not be part of two
clusters simultaneously). With these properties in mind, each webpage is essentially a
set of elements, where a partition of this set is formed when these elements are clustered.
Measuring cluster similarity then comes down to comparing the two partitions of the
same set of elements. A measure known as the Rand index [15] can be used for exactly
this purpose. The Rand index compares the relations of all pairs of elements between
two partitions, where a relation corresponds to checking if both elements are located in a
single cluster. A correct relation in this case is a relation (both elements contained in the
same cluster: yes or no) that is equal to the relation in the reference webpage. The Rand
index is given by the following fraction:

Rand index =
Corresponding element relations in both webpages

Total number of relations between elements
(1)

A problem with the Rand index is that its outcome will always be very high. This is caused
by the fact that webpages have a lot of elements, which are mostly not related, i.e., not
contained in the same cluster. Since these non-relations are also taken into account, even
with a very bad clustering performance, the rand index score will turn out to be very high.
A more precise indication of clustering performance is given by the precision and recall
metrics, which allow us to be more specific when analyzing the clustering performance.
To make sure we do not encounter the same problem as we did with the Rand index, we
only use the relations between elements in a cluster, the intra-cluster relations. A correct
relation in the case is an intra-cluster relation that is both present in the reference cluster
as well as the generated cluster. Precision and recall are defined as follows:

Precision In addition to the correct elements in the reference cluster, a generated cluster
can have a surplus of elements. Since elements can only be present in a single cluster,
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a consequence of this is that elements are missing in other clusters. We calculate the
precision of a webpage using the following fraction:

Precision =
#Correct intra− cluster relations

#Intra− cluster relations in the generated clusters
(2)

If precision is lower than one, this indicates that too much elements are clustered together,
which is something we want to avoid.

Recall A generated cluster can contain less elements compared to the reference cluster,
indicated by the recall measure. Note that this does not necessarily mean that the missing
elements are abundant in other clusters, since single element clusters can also exist.

Recall =
#Correct intra− cluster relations

#Intra− cluster relations in the reference clusters
(3)

A recall score lower than one indicates that there are still elements that need to be
clustered together.

It is clear that we must find a balance between precision and recall. To indicate the
total performance, the precision and recall measures can be combined, resulting in an
F-measure:

Fβ = (1 + β2) · (Precision ·Recall)
(β2 · Precision) +Recall

(4)

If both recall and precision are equally important, a β value of 1 can be used to balance
them out. Since precision is, in some cases, very important to us, we can lower the β
value, giving precision more weight.

The precision and recall share a very strong relation. Our aim is in the first place to
obtain a high precision score, indicating that clusters are relatively small and not over-
populated. A low precision score can be remedied by tweaking the parameters of the
clustering algorithms to be more strict, but the effect of this is that the recall score will
decrease, since less elements will be clustered together. To also increase the recall score
we can focus in improving the clustering algorithms, or perhaps even add new clustering
algorithms.

8.1.2 Evaluating classifications

Labeling is compared on the level of elements instead of clusters. This way we do not
have to take cluster region similarity into account and can focus purely on the labels.
Of course, classification performance is inextricably connected with the way elements are
clustered. We will ignore this possible effect however, since our goal, ultimately, is not to
optimize classification in isolation, but to optimize the combined system. To express the
similarity between two different sets of labels, we calculate Cohen’s Kappa [4] coefficient.
This kappa coefficient is more robust than a simple agreement percentage calculation,
since it also takes chance into account:

Cohen′sKappa =
Pr(a) − Pr(e)

1 − Pr(e)
(5)

Where Pr(a) is the normal agreement percentage and Pr(e) is the calculated chance that
labels would agree based on the classification results.
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8.2 User Experiment Results

The reference clusters created during the user experiment allow us to measure and op-
timize the performance of our clustering and classification methods. These clusters thus
form a relatively important aspect of our research. To find out the reliability of the ref-
erence clusters and check our assumption that people can, in general, identify different
segments in a webpage, a number of webpages were shared by all participants and clus-
tered according to the definitions in section 5.1. Two aspects of the user experiment can
be distinguished; the overlap of cluster regions and the overlap of the labels these regions
were given. We measure clustering and classification apart from each other.

Two participants were involved in the creation of the reference clusters. Both partici-
pants were higher education students with average computer skills, which was enough to
understand and perform their task. Each participant processed a total of 44 webpages,
which included 10 shared webpages.

Participant consistency
The ten webpages that were shared by the participants allow us to measure the inter

participant agreement. We calculated the Rand Index and Cohen’s Kappa for each shared
webpage, listed in table 1. Both participants forgot to classify two of the pages, so we left
these out and continued with eight webpages.

Website #elements Rand Index Cohen’s κ
Category
Fraction

spitsnieuws.nl 115 1.000 0.831 0.913
trouw.nl 141 0.925 0.631 0.716
rtl.nl 155 0.950 0.513 0.659
leidschdagblad.nl 201 0.995 0.251 0.378
telegraaf.nl 247 0.985 0.185 0.352
elsevier.nl 315 0.786 0.346 0.537
parool.nl 376 0.967 0.495 0.604
computable.nl 461 0.942 0.054 0.128
Weighted Mean - 0.935 0.329 0.460

Table 1: The agreement between two participants for each of the shared webpages.

Table 1 only gives an outline of the classification results. With regard to clustering, we
express this with a weighted F1 score, which was 0.743. The following confusion matrix
shows the agreements of classifications between the two participants:
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- Main Add. Link Nav. Adv. Other Uncl. Total
Main Text 0 68 0 5 0 1 0 74
Add. Text 0 209 115 0 0 12 0 336
Link Group 0 0 354 91 0 27 10 482
Nav. Menu 0 0 7 148 0 0 12 167
Advertisement 0 7 28 0 40 10 41 126
Other Group 0 25 158 25 0 168 61 437
Unclassified 0 41 251 0 1 89 7 389
Total 0 350 913 269 41 307 131 926

Table 2: The confusion matrix of the classifications by the two participants, where the columns
and rows list the results for participant 1 and 2, respectively. The total in the right
bottom corner is that of the similarly classified elements for all categories.

The confusion matrix shows some disagreement between participants. Before we continue,
some adjustments are needed to make sure that the reference clusters do not contain too
much conflicts before they are used for training and evaluation. How we remove these
inconsistencies is mentioned in the discussion section (chapter 9). This update operation
results in a set of clusters, from 77 webpages (since both participants forgot the same
webpage, we left this out), with the following characteristics:

- #clusters #elements
Main Text 39 (0.015) 821 (0.051)
Add. Text 580 (0.226) 2132 (0.133)
Link Group 718 (0.280) 7295 (0.454)
Nav. Menu 135 (0.053) 1435 (0.089)
Advertisement 86 (0.034) 683 (0.042)
Other Group 540 (0.211) 3184 (0.198)
Unclassified 467 (0.182) 548 (0.034)
Total 2565 (1) 16098 (1)

Table 3: Properties of the reference clusters. The total number of clusters here includes the
unclassified clusters. Without the unclassified clusters the total number amounts to
2098.

These 2098 reference clusters form the objective for our clustering strategy and serves as
a training set for the creation of the classification model.

8.3 Clustering Results

The reference clusters serve as a basis that allows us to compose a strategy from the two
cluster algorithms we designed. Before we look at the complete strategy, table 4 gives us
an impression of the scores obtained prior to clustering. As we would expect, precision is
very high since every single element must be present in the reference clusters, while recall
is very low because most elements are missing in the (single element) clusters when we
compare them to reference clusters.
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Recall 0.039
Precision 0.980
F1 Score 0.075

Table 4: Precision and recall before applying the cluster methods.

Since the pattern clustering algorithm cannot deal with too much repetitive structure, we
are forced to always start with a block clustering iteration. The block clustering method
requires us to optimize the LCA distance, similarity distance and minimal cluster size
parameters. If we simply loop through all possible combinations of these parameters, the
values shown in table 5 obtain the highest F1 score.

Maximal Similarity distance 3
Maximal LCA distance 8
Minimal cluster size 0
Recall 0.774
Precision 0.658
F1 Score 0.712

Table 5: Best performing block clustering configuration, based on F1 score.

The above mentioned model parameters were fitted to the complete training set. To verify
generalization of the clustering algorithm, we performed a 6-fold cross validation on this
first block clustering iteration. The optimized parameter values for every fold were equal
to the ones listed in table 5. This makes it very likely that the clustering algorithm will
perform similarly on unseen webpages.

The graph in figure 13 displays the effect of the LCA and similarity distance on the F1

score.
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Figure 13: The effect of the maximum LCA and similarity distance on the F1 score.

We can say a few things about the graph in figure 13:

• The similarity distance has a smaller range than the LCA distance. This is because
we deal with a limited number of features that make up the similarity distance by
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calculating the hamming distance. Allowing a distance of more than six simply does
not make a difference anymore.

• The LCA distance on the other hand is bound by a larger range, since it is related
to the largest LCA distances on a webpage. This stabilizes around a distance of
twenty as we can see in the graph.

• If we look at both variables in isolation, we find that the similarity measure enjoys
most freedom. When we would remove the LCA distance (set it to infinite), a low
maximum similarity distance is enough to obtain a relatively high F1 score. By
contrast, the LCA distance would attain a high F1 score only within a very small
range of values (6 - 9).

Greedy approach
We first try to build a strategy using the greedy approach. For each iteration of clus-

tering we keep clustering with the same parameter values until no new clusters can be
formed (referred to as re-clustering). Table 6 shows the results of this approach with
two iterations, where the first is only the required block clustering. In each iteration, all
possible combinations of parameters were evaluated to find the optimal configuration.

Iteration Type Sim Dist LCA Dist F1 Precision recall
1 Block 3 8 0.712 0.658 0.774
2 Block 0 9 0.713 0.657 0.778
2 Pattern 0 2 0.712 0.658 0.774

Table 6: Results from the greedy clustering approach, combining the best methods from each
iteration based on the the F1 score.

Conservative approach
The first step to take for the conservative approach is to execute the block clustering

algorithm a single time. Not using re-clustering like we did in the greedy approach.
Combined with the F0.25 measure this gives us a configuration of block clustering that
forms a solid basis for the future cluster iterations to work with. The results of this
approach are listed in table 7. Each iteration follows the best configuration from the
previous ones, based on the F0.25 score. As with the greedy approach, to find the optimal
configuration, all possible combinations of parameters were evaluated.

Iteration Type
Sim
Dist

LCA
Dist

F0.25 F1 Precision recall

1 Block 2 8 0.883 0.605 0.941 0.446
2 Pattern 5 4 0.886 0.626 0.938 0.469
2 Block 2 4 0.885 0.639 0.933 0.486
3 Pattern 0 5 0.887 0.634 0.936 0.479
3 Block 0 3 0.886 0.629 0.937 0.474

Table 7: Results from the conservative clustering approach, combining the best methods from
each iteration based on the the F0.25 score.
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8.4 Classification Results

Classification is performed after the clustering process is finished. To find the most suit-
able and best performing classification model, we evaluate different classification tech-
niques. The reference clusters serve as a basis for the training samples used for each
classification model, which describes a mapping between the cluster features and the cat-
egories we defined. Note that to create these models, we use the reference clusters created
in the experiment. In this subsection we will only deal with classification, the next sub-
section will show the combined results that follow from applying the best performing
classification model to the clusters created by our best performing clustering strategy.

To create the different classification models, WEKA is used. After generating the training
set in a WEKA compatible format, the stand-alone WEKA application is used to create
the classification models and evaluate them, which is done using 6-fold cross-validation.
The dataset was comprised of 2098 training instances, with 15 features describing the
clusters.

Multi-Layer Perceptron We start with the training of a Multi-Layer Perceptron net-
work. We configured it with 10 hidden nodes and 6 output nodes (one for each category).
Backpropagation is used for learning with a momentum of 0.2 and learning rate of 0.3.
During each fold, 500 iterations are used for training, yielding the following results:

Correctly Classified Instances 1533 73.07 %
Incorrectly Classified Instances 565 26.93 %

Table 8: Results of the Multi-Layer Perceptron model created with the reference cluster dataset.

- Main Add. Link Nav. Adv. Other Total
Main Text 29 6 4 0 0 0 39
Add. Text 2 486 54 2 0 36 580
Link Group 2 36 575 10 8 87 718
Nav. Menu 0 0 7 116 0 12 135
Advertisement 2 14 34 0 3 33 86
Other 2 52 146 11 5 324 540
Total 37 594 820 139 16 492 1533
Correct 0.744 0.838 0.801 0.859 0.035 0.6 0.731

Table 9: Confusion matrix displaying the mistakes of the Multi-Layer Perceptron model. The
columns and rows represent the outcome from the model and the correct reference
clusters, respectively. The bottom right corner shows the total number of correctly
classified elements.

Support Vector Machine The Support Vector Machine classifier used a polynomial
kernel, yielding the following results:
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Correctly Classified Instances 1359 64.78 %
Incorrectly Classified Instances 739 35.22 %

Table 10: Results of the Support Vector Machine model created with the reference cluster
dataset.

- Main Add. Link Nav. Adv. Other Total
Main Text 27 7 5 0 0 0 39
Add. Text 0 492 26 1 0 61 580
Link Group 0 129 484 7 0 98 718
Nav. Menu 0 4 17 86 0 28 135
Advertisement 0 22 31 0 0 33 86
Other 0 95 149 26 0 270 540
Total 27 749 712 120 0 490 1359
Correct 0.692 0.848 0.674 0.637 0.0 0.5 0.648

Table 11: Confusion matrix displaying the mistakes of the Support Vector Machine model. The
columns and rows represent the outcome from the model and the correct reference
clusters, respectively. The bottom right corner shows the total number of correctly
classified elements.

Naive Bayes To get an impression of a baseline for the dataset, we use the Naive Bayes
Classifier:

Correctly Classified Instances 1164 55.48 %
Incorrectly Classified Instances 934 44.52 %

Table 12: Results of the Naive Bayes classifier created with the reference cluster dataset.

- Main Add. Link Nav. Adv. Other Total
Main Text 38 0 0 0 1 0 39
Add. Text 17 497 29 10 16 11 580
Link Group 60 199 385 11 17 46 718
Nav. Menu 3 3 26 96 1 6 135
Advertisement 0 32 26 1 13 14 86
Other 7 188 139 50 21 135 540
Total 125 919 605 168 69 212 1164
Correct 0.97 0.857 0.536 0.711 0.151 0.25 0.555

Table 13: Confusion matrix displaying the mistakes of the Naive Bayes classifier. The columns
and rows represent the outcome from the classifier and the correct reference clusters,
respectively. The bottom right corner shows the total number of correctly classified
elements.

44



Logistic regression Another, relatively simple, algorithm we use to indicate a baseline
is Logistic Regression.

Correctly Classified Instances 1465 69.83 %
Incorrectly Classified Instances 633 30.17 %

Table 14: Results of the Logistic Regression model created with the reference cluster dataset.

- Main Add. Link Nav. Adv. Other Total
Main Text 29 8 2 0 0 0 39
Add. Text 4 498 32 0 0 46 580
Link Group 4 43 538 9 8 116 718
Nav. Menu 0 0 3 114 0 18 135
Advertisement 0 17 32 0 2 35 86
Other 2 85 134 30 5 284 540
Total 39 651 741 153 15 499 1465
Correct 0.744 0.859 0.750 0.844 0.023 0.526 0.698

Table 15: Confusion matrix displaying the mistakes of the Logistic Regression model. The
columns and rows represent the outcome from the classifier and the correct reference
clusters, respectively. The bottom right corner shows the total number of correctly
classified elements.

8.5 Combined Results

Now that we have pinned down a clustering strategy and a classification model, both can
be used to segment and classify webpages. To measure the performance of clustering and
classification combined, we will use the webpages from which the reference clusters were
created and analyze the generated clusters in a similar fashion compared to our analysis
of the reference cluster consistency in section 8.2.

From the results in the previous subsection we can make up that the MLP (Multi-Layer
Perceptron) classification model performs best. We will now combine the best strategy
from both the greedy and conservative approach with the MLP classification model and
and display the results in table 16 and table 17, respectively. Since we already listed the
clustering results in section 8.3, we only list the classification results. Again, we compare
the cluster classifications on the level of elements.

45



- Main Add. Link Nav. Adv. Other Uncl. Total
Main Text 525 306 318 0 3 75 55 1282
Add. Text 65 928 470 4 126 183 75 1851
Link Group 114 588 5619 109 205 1271 126 8032
Nav. Menu 12 16 80 1211 13 204 58 1594
Advertisement 0 0 18 0 27 48 0 93
Other 105 294 790 111 309 1403 234 3246
Unclassified 0 0 0 0 0 0 0 0
Total 821 2132 7295 1435 683 3184 548 9713
Correct 0.639 0.435 0.770 0.844 0.040 0.441 0.0 0.603

Table 16: Confusion matrix displaying the mistakes of the strategy based on the greedy ap-
proach. The rows and columns represent the outcome of the strategy and the reference
clusters, respectively. The totals in the right bottom corner are that of the similarly
classified elements.

- Main Add. Link Nav. Adv. Other Uncl. Total
Main Text 276 141 532 24 0 28 26 1027
Add. Text 379 1466 2395 5 232 627 133 5237
Link Group 42 83 3091 250 65 770 57 4358
Nav. Menu 0 1 37 987 0 67 22 1114
Advertisement 0 0 5 0 27 7 0 39
Other 124 441 1235 169 359 1685 310 4323
Unclassified 0 0 0 0 0 0 0 0
Total 821 2132 7295 1435 683 3184 548 7532
Correct 0.336 0.688 0.424 0.688 0.040 0.529 0.0 0.468

Table 17: Confusion matrix displaying the mistakes of the strategy based on the conservative
approach. The rows and columns represent the outcome of the strategy and the
reference clusters, respectively. The totals in the right bottom corner are that of the
similarly classified elements.

46



9 Discussion

The results will be interpreted in the order they appeared in the preceding results chapter.

User Experiment
The user experiment was set up to gather data that served as examples for clustering

and classification. Additionally we wanted to find out how participants would segment
and classify a collection of webpages using a set of clearly defined content types commonly
found on webpages. Because it was a lot of work for participants to annotate the webpages,
we combined both activities and served a single set of webpages for both purposes.

To determine the value of this user generated data, we measured the agreement of clusters
and classifications between two participants. The results in section 8.2 show that there
is a notable difference between the overlap in clustering and the overlap in classification.
Clustering, with a weighted F1 score of 0.743, shows some discrepancy between the clusters
of both participants, which mostly stems from the difference in specificity. Where one
participant would neatly classify a series of adjacent equivalent clusters individually, the
other would select them as a whole (probably to save time). While this does not have
any effect on classification results, since all elements in those clusters can still be labeled
with the same category, it does largely account for difference in clustering.

With regard to classification results, the overlap shows a poor result. As we expected,
the rand index looks very positive, but does not represent the cluster overlap very well.
When we do not take chance into account, and look at the percentage of overlap, about
46% (weighted mean) of the elements have been classified with the same category. The
confusion matrix in table 2 allows us to make a few observations concerning classification
agreement:

1. Participant one (columns) did not use the Main text category. Instead these clusters
were classified as being an Additional text. Inquiry showed that this participant
completely forgot about this class.

2. Participant two (rows) forgot to classify part of a page, which accounts for the high
number of unclassified elements.

3. Where participant two often used the other group, this was often classified as a link
group by participant one.

4. There was some confusion between the link group and navigation classes, where
participant one tended to classify more elements as navigation while participant
two saw these as link groups.

To make sure the reference clusters could serve as proper training data, we used these
observations to minimize the discrepancies. In most cases this was done in an objective
fashion, correcting the differences mentioned above. In a few cases however, we also had
trouble making a distinction between categories, making the adjustments rather arbi-
trary, or subjective. This was primarily the case with small texts that could be classified
as an additional text or an advertisement and can be explained by the fact that most
advertisements are created to seamlessly blend in to webpages and are therefore hardly
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distinguishable from other content. Apart from the difference in the specificity of cluster-
ing, we can state that the participants had a general consensus of cluster regions on the
webpages, since they could consistently keep them apart. Consequently we can say that
clustering had a minimal effect on the classification results.

Given the observations we made, based on the confusion matrix in table 2, it is likely that
our descriptions of the categories fell short, even though we already revised them based
on observations with other participants. This is confirmed by one of the participants,
who stated that there is simply too much variety of information on webpages, sometimes
making it very hard to distinguish between categories. It seems that by making the
category descriptions more explicit, participants would have less trouble distinguishing
between categories. However, this would also leave less room for interpretation by the
participants, which we also needed to set up this user experiment. This was the result
of the trade-off we had to make for a single user experiment with two purposes. The
fact that the participants first had to be made familiar with the categories we defined
already indicates that the categories themselves are not inherent to the understanding of
a webpage structure by a perceiver. The clusters, on the other hand, were consistently
kept apart, where we expect the category definitions to have contributed to the clustering
process by indicating the specificity of the clusters. We can state that our assumption of
visual discernibility of the segments of a webpage was correct. We might have gotten a
more complete picture if we involved more than the bare minimum of two participants
but we found the current results to be sufficient for pointing out the discrepancies that
our experiment produced.

Clustering
Intuitively we expected that a strategy created by the conservative approach would

have less of a chance of ending up in a local optimum, because of the finer, more gradual
improvements, and yield better results compared to the greedy approach. We were proven
wrong by the results. Table 7 denotes that the conservative approach does leave more room
for improvement compared to the greedy approach in table 6. However when we compare
F1 scores, the greedy approach does deliver better results, already in the first iteration. It
seems that the pattern clustering algorithm hardly contributes to the clustering process.
We expect this to be caused by the relatively small number of repetitive structures in the
webpages that the pattern algorithm operates on. Most of the webpages contain a lot of
rectangular structures, already clustered by the block clustering algorithm.

The most prominent reason for some sites to score low is the static LCA distance. An
LCA distance that is too low will prevent structures from clustering, causing a low recall,
while a value that is too high will cause a low precision because too much is clustered.
Results may be improved by calculating an LCA distance threshold for each webpage
independently, for example by relating it to the average distance on that webpage. LCA
distance is however still structural information which we want to eliminate and replace
with a boundary measure truly based on only visual aspects of the webpage.

The influence of the block clustering parameters (LCA and similarity distance) on the F1

score is depicted in figure 13. This graph clearly indicates that a good performance is
attainable with an LCA distance within the range of 6 - 9, irrespective of the similarity
distance. However, also taking the similarity distance into account does help increase
performance a bit more. If we take the similarity distance in isolation, it performs a
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little under the LCA distance, indicating that the LCA distance is the more important
parameter. When the two parameters both get too high, the performance collapses, caused
by the excessive clustering which decreases precision.

The less than perfect clustering performance has its effect on the classification results.
Since the classification model was trained on the reference clusters, clusters deviating
from them are likely to decrease classification performance.

Classification
Of the Naive Bayes and Logistic Regression classifiers, the best performance was ob-

tained by using the Logistic Regression function, with a success rate of almost 70%. The
Naive Bayes model fell behind with approximately 55% of the samples correctly classi-
fied. From the confusion matrices in section 8.4 we can see that Naive Bayes had trouble
with most of the categories, in particular with ’advertisement’ and ’other group’, with
an correctness score of 0.151 and 0.25 respectively. These two categories also obtained
the worst performance with Logistic Regression, where ’advertisement’ scored 0.023 and
’other group’ 0.526. Other than that, Logistic Regression scored remarkably well.

Of the more complex models, the Multi-Layer Perceptron model (73% correctly classi-
fied) beat the Support Vector Machine model (65%). As with the other classifiers, the
’advertisement’ and ’other group’ scored lowest. Note that these classification models
were created using the (perfect) reference clusters.

Combined
When we combine our clustering strategies with the MLP classification model we find

the results in section 8.5. Combined with the strategy from the greedy approach (clus-
tering F1 score of 0.713), over 60% of the elements were correctly classified, while the
conservative approach strategy (clustering F1 score of 0.634) attained less then 47%. This
can partly be explained by the fact that the greedy approach seems to favor the link group
more than the conservative approach, leveraging the high weight it has in the complete
score. The difference between the two clustering approaches indicates that the clustering
performance definitely has a big impact on classification performance. We do expect to
see similar scores on unseen webpages, since n-fold evaluation for both clustering and
classification was used to verify generalization. In general, we cannot say too much about
this performance, since comparable studies dealt with completely different datasets. If
we take the most obvious baseline of classifying all instances with the largest occurring
category in the greedy approach, this would result in a score of 45,3%, which our method
seems to seriously outperform. Looking more closely at the individual categories we see
big differences between the two approaches in the first four categories. The link category
has a lot of impact since it makes up nearly 45% of all elements, but other than that the
main text and navigation categories also show a remarkably better score with the greedy
approach. The only noteworthy exception is the additional text category scoring much
higher with the conservative approach.
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10 Conclusion

The task we set out to do was to create a general purpose method that automates the
recognition of common segments in webpages using only visual aspects of the webpage.
With the help of different principles from the Gestalt theory, we devised two clustering
algorithms and combined these in a cluster strategy that was fitted to a set of sample
webpages created in a user experiment.

The user experiment made clear that people consistently distinguish the different sections
on webpages, following a set of section definitions. However, the classifications of these
segments show less agreement. We ascribe this discrepancy to the nature of human sight.
Where principles of Gestalt theory account for the ability to keep different segments apart
from each other, there is no intrinsic understanding of the definitions for such segments.
Although our segment definitions were very general and present on most webpages, they
first had to be studied before participants could apply them. Additionally, the nature
of design provides for an endless variety in segment designs, making it very hard to
capture them in exact descriptions, thus leaving a lot of room for interpretation by the
participants. Our assumption that these common segment types were easily recognizable
by the participants therefore did not completely hold.

The optimal configuration of our system provided just over 60% of the text elements on
the webpages with the correct label, where we did not take images, flash or other objects
containing information into account. This result was obtained with a classification model
that was trained using the reference clusters. We expect the results to be better when
clusters generated with our clustering algorithms are used as training data for the clas-
sification model. This would however require human participants to manually categorize
them. The usefulness of our results depend on the segments we are looking for. Segments
like advertisements are hardly recognizable when semantics are not taken into account,
while navigational segments can be extracted with a lot more certainty. When specific
types of information need to be extracted from webpages, structure-specific methods are
likely to outperform a general purpose method we proposed in this document. Our re-
search does however indicate that it is possible to use principles from human psychology
to create a general purpose segmentation method based on aspects that are not inherent
to the medium used. An important result is that clustering based solely on visual proper-
ties is possible, excluding the need for semantic or meta information about the elements
from the information source. And while this method may not deliver perfect clustering
or classification, it can be used to give a rough estimation of the clusters to be found on
webpages. Another important aspect of our method is the applicability. With our current
method, the performance depends on the size and structure of the webpage. Real-time ap-
plication of the process can be ensured by imposing restrictions on the clustering process,
which was not needed for the webpages we encountered.

The open character of our method allows for many optimizations and extensions, where
future improvements can mostly be found in the clustering methods. The two clustering
methods we devised incorporated certain principles from gestalt theory. These principles
can be interpreted in many different ways. It would be interesting to see how the different
interpretations or uses of the laws, such as the laws of symmetry or common fate, would
influence the clustering performance. With our methods we expect the biggest improve-
ment to be parameter values that are dynamically evaluated on the basis of a webpage,
instead of using threshold values for all webpages. Also, we assumed that the visual
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properties used for similarity measurement did not interfere with each other. It might
however be the case that these are not as independent as we thought, which may have an
impact on the results. Concerning classification, in our project this only had a descriptive
function. It can however also fulfill a supporting role for clustering, by indicating content
types during the clustering process. This will require that another classification model
needs to be created, since the clustering methods typically deal with smaller segments. To
speed up the project, the single deviation from the visual only requirement was the usage
of distances between elements in the structure of the webpage. The use of this struc-
tural information was required, because it represents important visual separators between
elements and was based on the assumption that the webpage code structure reflects its
visual structure. This specific type of structural information can be replaced by a distance
measure that is purely visually oriented. For instance by analyzing a screenshot of the
webpage and looking for visual cues such as background color or lines. Another solution
would be to use a VIPS like visual detection algorithm to find these separators.

One of the principles of our vision based general purpose method is that it does not need
tailoring for specific webpages and can, in theory, also be used with other information
sources, such as PDF files. A condition however is that all text elements with their
properties need to be extracted first, which is a process that differs for each type of
information source. Subsequently we deem it necessary to first optimize the clustering
and classification parameters for the information source, before segmentation can take
place, which signifies a dependence. Irrespective of this dependence, we think this general
purpose vision based segmentation system shows promise for the future, especially if the
system is optimized for a specific purpose.
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A Reference Cluster webpages

The following websites were used to create the reference clusters. For each websites we
collected the home (or landing) page, and a detail page listing a news item.

• www.dft.nl

• www.elsevier.nl

• www.rtlz.nl

• www.telegraaf.nl

• www.trouw.nl

• www.volkskrant.nl

• www.frieschdagblad.nl

• www.iex.nl

• www.mkbnet.nl

• www.nieuws.nl

• www.nrc.nl

• www.omroepflevoland.nl

• www.parool.nl

• www.zibb.nl

• www.mt.nl

• www.wsj.com

• www.nyt.com

• www.trends.be

• www.rtlnieuws.nl

• www.metronieuws.nl

• www.spitsnieuws.nl

• www.adformatie.nl

• www.emmen.nl

• www.europarl.europa.eu

• www.amsterdam.nl

• www.computable.nl

• www.sp.nl

• www.leidschdagblad.nl

• www.scp.nl

• www.at5.nl

• www.distrifood.nl

• www.eindhovensdagblad.nl

• www.emerce.nl

• www.foodholland.nl

• www.gelderlander.nl

• www.gooieneemlander.nl

• www.leeuwardercourant.nl

• www.nhd.nl

• www.tweakers.net
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