
Context – Free – Language Parser for
Advanced Network Intrusion Detection

Alvise Costa

March 29, 2010

2

Contents

1 Introduction 5
1.1 Types of Intrusion Detection Systems 6
1.2 Signature – Based IDSs . 6

1.2.1 Limitations of signature – based IDSs 7
1.2.2 Some Examples . 8

1.3 Current Alternatives to Signatures 10
1.3.1 Anomaly – Based Intrusion Detection Systems 11
1.3.2 Vulnerability Signatures 11

1.4 Research Question . 11
1.4.1 How to improve performances 12

2 Attacks 15
2.1 SQL Injection . 16

2.1.1 A standard SQL Injection attack 16
2.1.2 Regular – Expressions – based signatures for SQL In-

jection . 17
2.2 Cross – Site Scripting . 19

2.2.1 Stored XSS Attacks . 19
2.2.2 Reflected XSS Attacks 21
2.2.3 Regular – Expression – based signatures for Cross Site

Scripting . 21

3 High – Level Language Recognition 25
3.1 Context – Free Grammars . 26

3.1.1 Context – Free Grammars VS Regular Expressions . . 27
3.2 Language Processing . 29

3.2.1 Scanner . 31
3.2.2 Parser . 31

3

4 CONTENTS

4 System Architecture 33
4.1 Network packets capture . 34

4.1.1 libpcap sniffer . 35
4.1.2 Snort 3 Detection Engine 37

4.2 Deep packet inspection . 37
4.2.1 Automatic scanner generator flex [8] 38
4.2.2 Automatic parser generator Bison [6] 40

5 Testing 41
5.1 SQL Injection detection . 42

5.1.1 SQL Injection signature 42
5.1.2 SQL Injection data set 43

5.2 Cross – Site Scripting . 44
5.2.1 Cross – Site Scripting signature 44
5.2.2 Cross – Site Scripting data set 45

5.3 Performances . 46

6 Conclusions 49

Appendices 52

A Overview on Modern IDSs 55
A.1 Snort . 55

A.1.1 Snort 3.0 . 55
A.2 PHPIDS . 60

B Programs examples 63
B.1 SQL Injection signature extract 63
B.2 Cross – Site – Scripting signature extract 67

Bibliography 67

Chapter 1

Introduction

Intrusion detection is the activity of detecting unauthorized intrusions per-
formed by an attacker onto a computer network/system. Hence, an Intrusion
Detection Systems (IDS) is a software and/or hardware designed to detect
unwanted attempts at accessing, manipulating or disabling computer sys-
tems, mainly through a network such as the Internet.

To be more specific, an IDS is a specialized tool that can read and inter-
pret the contents of log files from routers, firewalls, servers or other network
devices and uses this informations to detect and deflect several types of ma-
licious behaviors which could compromise the security of a computer system.
Moreover, some types of IDSs can operate in real–time mode, that is they
can detect an attack as it is performed without the necessity of logs [2].

An IDS is usually composed of two main components:

• Sensors that generate security events and pass them to the internal de-
tection engine, which records events logged by the sensors in a database
and uses a system of rules to generate alerts from security events re-
ceived;

• a Management Console to monitor events and alerts and control the
sensors;

There are many ways to categorize an IDS depending on the types and
location of the sensors and the methodology used by the engine to generate
alerts.

5

6 CHAPTER 1. INTRODUCTION

1.1 Types of Intrusion Detection Systems

It is possible to distinguish IDSs by the kinds of activities, traffic, transaction,
or system they monitor. An IDS can be classified by its functionality into
one of the following three main categories [2] [9]:

• Network – Based Intrusion Detection System (NIDS), an independent
platform that identifies intrusion by examining network traffic and
monitors multiple hosts.

• Host – Based Intrusion Detection System (HIDS), an agent on a host
which identifies intrusions by analyzing system calls, applications logs,
file – system modifications and other host activities and state.

• Distributed Intrusion Detection System (DIDS), a group of IDSs func-
tioning as remote sensors and reporting to a central management sta-
tion.

In practice, a combination of network, and host, and/or application–based
IDS systems are used.

IDSs can also be categorized according to their differing approaches to
event analysis. There exist two main models used for detecting attacks [3]:

• Misuse – or Signature – based IDSs that examine network traffic for
pre–configured and predetermined attack patterns known as attack sig-
natures or exploit signatures. This technique is called misuse detection

• Anomaly – based IDSs that use rules or predefined concept about “nor-
mal” and “abnormal” system activity to distinguish anomalies from
normal system behavior and to monitor, report on, or block anomalies
as they occur. This technique is called anomaly detection.

Most of the IDSs used today are signature – based. This is mainly due to the
fact that they are easier to implement, configure and maintain than anomaly
– based.

1.2 Signature – Based IDSs

A NIDS monitors an entire network segment and can also monitor all commu-
nications on that network segment. In a signature – based IDS, the detection

1.2. SIGNATURE – BASED IDSS 7

engine attempt to match the packet data against a set of pre–defined pat-
terns called signatures. A signature is a pattern, usually defined as a string
or as a regular expression (more often a combination of both), whose aim
is to specify a single attack or either an entire class of attacks. Thus, once
the network data packets have arrived from the network card, they will be
decoded and then processed by the detection engine usually by a pattern –
matching algorithm.

By analogy, a signature – based IDS does for a network what an antivirus
software does for files that enter a system. That is, signature – based IDSs,
as well as antivirus software, use a signature database of well – known attacks
to match against to the current input data: a successful match will trigger
an alert. Nevertheless, similarly to an anti – virus software, which fails to
detect brand new viruses, a signature – based IDS fails to detect brand new
attacks.

As cyber – attacks diversify, signature – based IDSs are likely to miss
an increasingly part of attack attempts. However, most of the IDSs in use
today are signature – based. The reason for this is that — also according to
Kruegel and Toth [7] — a signature – based IDS is easier to implement and
simpler to configure and maintain than an anomaly – based IDS, i.e. it is
easier and less expensive to use.

1.2.1 Limitations of signature – based IDSs

As mentioned before, signature – based IDSs suffer of some limitations [3].

System upgrade and signatures development

Despite their ease of use, the task of upgrading the system is such important
to the extent that it could seriously weights upon the proper functioning of
the system itself. One of the motivation for the importance of this task is
the fact that, almost every day, new security threats are discovered and new
rules has to be developed (another motivation is that existing rules have to
be patched).

Developing a signature is also a troubling task. Once a new attack is
performed, and then made public, developers first need to carefully analyze
it. The attack could exploit a well – known vulnerability or a new one. A
signature should be developed in order to detect the way an attack exploits
a given vulnerability rather than the specific attack payload. The reason for

8 CHAPTER 1. INTRODUCTION

this is that it is easy for an attacker to modify the attack payload without
diminishing its effectiveness.

False Positives\False Negatives

Abstracting an attack is not always possible and it usually requires some
efforts. It is very difficult to find a good agreement between a specific sig-
nature, which is not able to detect a simple attack variation, and a general
signature, which will classify legitimate network traffic as an attack attempt.
In other words, another limitation of signature – based IDSs is the false
positive\false negative rate.

False positives occur when the IDS raises a warning when it should not.
Basically, a false positive is a false alarm. The user might spent some time in
properly tuning the system in order to decide what is relevant to his network
and what is not.

On the opposite end, a false negative happens when the IDS do not detect
an intrusion. This limitation is mainly due by the previously mentioned
limitation of signature – based IDSs, which cannot detect unknown attacks
until the ruleset has not been updated.

Leak of semantics in regular – expressions – based signatures

As we mentioned before, despite their ease of use and flexibility, regular
– expressions – based signatures are likely to miss an increasingly part of
attacks attempts. As we will show, this is mainly due to the fact that regular
expressions are not so powerful to check for semantics in the attacks patterns.

In other words, regular expressions cannot detect the context of the pat-
tern they are checking because they can only be used for pattern – matching.
That is, if a pattern is matched, according to a certain regular – expression,
we cannot state whether that match is only a coincidence or it is a real threat,
because we have no information about the context we are working in.

1.2.2 Some Examples

Polymorphic viruses

One of the tasks that is not properly attended by attack signatures is the
detection of polymorphic viruses. These kinds of viruses attack by executing
the core instructions differently in subsequent generations.

1.2. SIGNATURE – BASED IDSS 9

Figure 1.1: When disassembled, the code does not contain the target instruction. Thus,
the false positives can occur when only pattern matching engine is used.

As the example illustrated in Figure 1.1 shows, simple pattern search can
be ineffective or prone to false positives for such attack since sequence of bytes
are different based on the locations and the content of the inserted codes.
Referring to Figure 1.1, code segment A is a common target instruction in
viruses. Segment B shows a possible byte sequence to look for when seeking
the presence of the virus. Segment C shows the code containing the actual
sequence been sought. The actual instructions D shows that segment as part
of a NOP (null – operation) instruction. Missing, however, is the target
instruction. This leads to false positive alerts when only pattern matching is
used.

Injection Attacks

Injection attacks have become very common in the last few years together
with the wide developing of dynamic web sites. This kinds of attacks are
performed against the web application layer. The two attack techniques that
are mainly and widely used are SQL Injection and Cross – Site Scripting.
SQL Injection refers to the technique of inserting SQL meta – characters
and commands into web – based input fields in order to manipulate the
execution of the back – end SQL queries. Cross – Site Scripting attacks work
by embedding script tags in URLs and “attracting” unsuspecting users to
click on them, thus ensuring that the malicious script — usually Javascript
— gets executed on the victim’s machine.

Figure 1.2 shows an example of signature used by a modern IDS in order
to detect SQL Injection attacks. This complex filter, based on regular ex-
pressions, will catch the widely used attack pattern “ ’ or 1=1-- - ” but

10 CHAPTER 1. INTRODUCTION

will miss another, though equally threatening, pattern: “ ’ or 2=2-- - ”.
Again, simple pattern matching reveals to be ineffective and, in this case,
prone to false negatives.

Figure 1.2: An signature for SQL Injection Attacks

1.3 Current Alternatives to Signatures

Many solutions have been proposed by researchers and security teams, in
order to overcome signatures limitations. So far, efforts to contrast these
defections seem to focus on two main areas [3]: anomaly – based IDSs and
vulnerability signatures.

1.4. RESEARCH QUESTION 11

1.3.1 Anomaly – Based Intrusion Detection Systems

As mentioned before, an anomaly – based IDS works according to a model
of “normal” data/usage patterns and uses a similarity metric to compare the
current input with the model itself. As soon as the network\system behaves
in “abnormal” way an anomaly is detected and the IDS will react according
to model rules. Thus, an anomaly – based IDS has the ability to detect
previously unknown attacks as soon as they occur. However, setting up an
anomaly – based IDS usually requires expert personnel. Many parameters
need to be carefully configured and furthermore, each anomaly – based IDS
is also different from the others, making it difficult to migrate to a different
system that better fits user requirements.

1.3.2 Vulnerability Signatures

An alternative approach is to use signature – based IDS with other, and more
powerful, kinds of signature. A vulnerability signature describes the class of
data that trigger a vulnerability on the system. Vulnerability signatures are
exploit – generic because they focus on how the end host interprets the data,
rather than how the particular exploits works, and thus can detect variations
of well – known attacks. This kind of signatures are very powerful because
they reduce false negative, but they have some problems as well.

A vulnerability signature is useful only with respect to a single vulnera-
bility, that is it can detect all (or most of) the variations of a certain vulner-
ability but will miss all the other types of threats.

Vulnerability signatures usually employ protocol parsing to retrieve the
semantic content of the communication. This feature allows vulnerability
signatures to be both more general and more precise than exploit signatures.
However, this comes at a high performance cost and it requires very good
knowledge on protocol level communication to be properly managed.

1.4 Research Question

So far we stated that signature – based IDSs are the most deployed in pro-
duction environments, and the reason for this is their ease of use.

12 CHAPTER 1. INTRODUCTION

At deployment time, a signature – based IDS requires little work to set
up. It can be deployed almost with an out – of – the – box configuration.
Users con perform a selection of needed signatures, a task known as tuning,
to avoid future false alerts: e.g., a signature for the IIS web server is useless
when only Apache – based installations are in use. Tuning is performed once,
and then updated from time to time. Thanks to tuning, a signature – based
IDS generally generates a low rate of false alerts.

Furthermore, signature – based IDSs offer great flexibility for users. Users
can write custom signatures, to detect specific events and patterns, or refine
existing rules to improve detection. Users can manipulate the IDS engine as
they wish.

However, although the mentioned pattern matching filters can be power-
ful tools for finding suspicious packets in the network, they are not capable
of detecting other higher – level characteristics that are commonly found in
network attacks. Signature syntax is quite easy, since it is mainly based
on regular expression, however it is not as much as powerful as the modern
network attacks would require.

To be more specific, regular expression are a regular language, or type 3
language according to Chomsky hierarchy. Parser for this kind of language
can only check for syntactical correctness, but most of the attacks thrown
today need to be checked for their “malicious behavior” to be detected.

All this means, it would be useful for a signature – based Intrusion De-
tection System, to be able to define a rule with another, and more powerful,
kind of syntax: e.g., an expression might be parsed and checked in order to
find semantic correctness. The main idea is then to allow a network detection
engine to recognize language structures described by context – free (or type
2) grammars. This type of grammars is commonly used to define high – level
computer programming language. This advanced detection feature also gives
to IDSs the possibility to introduce a threat grade, that will turn out to be
very useful and will add even more flexibility for users.

1.4.1 How to improve performances

We hypothesize that the ability to detect an advanced feature such as the
language structure can lead to more accurate and advanced forms of detection
engines. In other words, if the malicious code structure, embedded in the
packet payload, can be examined, it may be possible to classify and detect
an entire class of attack – variants with one grammar.

1.4. RESEARCH QUESTION 13

Therefore, for the motivations mentioned above, we focus our work on
Network – Based Intrusion Detection Systems and we propose an advanced
network intrusion detection engine that uses a parser to check for attack
patterns in the network packet stream.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Attacks

As me mentioned before, in the last few years, attacks against the Web
application layer have required increased attention from security profession-
als. This is because no matter how strong firewall rulesets are or how diligent
patching mechanisms may be, if Web application developers haven’t followed
secure coding practices, attackers will walk right into the system through port
80.

The two main attack techniques that have been used widely are SQL
Injection and Cross Site Scripting attacks. SQL Injection refers to the tech-
nique of inserting SQL meta-characters and commands into Web – based in-
put fields in order to manipulate the execution of the back-end SQL queries.
These are attacks directed primarily against another organization’s Web
server. Cross Site Scripting attacks work by embedding script tags in URLs
and enticing unsuspecting users to click on them, ensuring that the mali-
cious Javascript gets executed on the victim’s machine. These attacks lever-
age the trust between the user and the server and the fact that there is no
input/output validation on the server to reject Javascript characters.

In this chapter we will present some of the most used web – attack tech-
niques and we will show how they can be exploited to evade the signatures
of Snort, one of the most widely used intrusion detection and prevention
system1.

1For a more precise description of Snort functionalities refer to paragraph 4.1.2 or to
Appendix A

15

16 CHAPTER 2. ATTACKS

2.1 SQL Injection

A SQL Injection attack leverages vulnerabilities to inject a SQL query /
command as an input, possibly via web pages. It is a type of web hacking
that requires nothing but port 80 and it attacks on the web application (like
ASP, JSP, PHP, CGI, etc) itself rather than on the web server or services
running in the OS.

Many web pages take parameters from web user, and make SQL queries to
the database. It is the case of a common user – login web page that requires
name and password and makes a SQL query to the database to check if a
user has valid name and password. With SQL Injection, it is possible for an
attacker to send crafted user name and/or password field that will change
the SQL query and thus grant him something else.

An attacker only needs a web browser to perform this kind of attack. He
will, most likely, look for pages that allow him to submit data, i.e: login
page, search page, feedback, etc2.

2.1.1 A standard SQL Injection attack

Let’s consider the following SQL query:

SELECT * FROM Users

WHERE Username= $username AND Password= $password

A similar query is generally used from the web application in order to authen-
ticate a user. If the query returns a value it means that inside the database
a user with that credentials exists, then the user is allowed to login to the
system, otherwise the access is denied. The values of the input fields are
generally obtained from the user through a web form. Suppose we insert the
following Username and Password values:

$Username = 1’ OR ’1’ = ’1

$Password = 1’ OR ’1’ = ’1

The query will be:

SELECT * FROM Users

WHERE Username= ’1’ OR ’1’ = ’1’ AND Password= ’1’ OR ’1’ = ’1’

2A SQL Injection attack that exploits the widely – used “email me my password” link
can be found at: http://unixwiz.net/techtips/sql-injection.html

2.1. SQL INJECTION 17

Let’s suppose that the values of the parameters are sent to the server through
the GET method, and that the domain of the vulnerable web – site is
www.example.com; then the request that we will carry out is:

http://www.example.com/index.php?username=1’%20or%20’1’%20=%20’

1&password=1’%20or%20’1’%20=%20’1

After a short analysis we notice that the query returns a value (or a set of
values) because the condition is always true (OR 1=1). In this way the system
has authenticated the user without knowing the username and password.

Sometimes, HTML pages use POST command to send parameters to
another ASP page. Therefore, an attacker may not see the parameters in
the URL. However, he can check the source code of the HTML, and look for
“FORM” tag in the HTML code, probably finding something like this:

<FORM action=Search/search.asp method=post>

<input type=hidden name=A value=C>

</FORM>

Everything between the <FORM> and </FORM> have potential parameters
that might be useful (exploit wise).

2.1.2 Regular – Expressions – based signatures for SQL
Injection

A trivial regular expression to detect SQL injection attacks is to watch out for
SQL specific meta–characters such as the single–quote (’) or the double–dash
(--). In order to detect these characters, the following regular expression may
be used:

/(\’)|(\-\-)|(#)/ix

We first detect the single-quote or the presence of the double-dash. These
are SQL characters for MS SQL Server and Oracle, which denote the begin-
ning of a comment, and everything that follows is ignored. Additionally, if
we’re using MySQL, we need to check for presence of the #. Finally, pcre
modifiers ’i’ and ’x’ are used in order to match without case sensitivity and
to ignore whitespaces, respectively.

The above regular expression could be added into a signature–based IDS
ruleset. For example, a new Snort rule would be composed as follows:

18 CHAPTER 2. ATTACKS

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"

SQL Injection - Paranoid"; flow:to_server,established;uricontent:

".php";pcre:"/(\’)|(\-\-)|(#)/i"; classtype:Web-application-

attack; sid:9099; rev:5;)

This rule will clearly trigger many false positives alerts because the char-
acters we are trying to detect will often appear in normal network traffic.

In the previous regular expression, we detect the double–dash because
there may be situations where SQL injection is possible even without the
single–quote. Let’s consider, for instance, a SQL query which has the where

clause containing only numeric values. Something like:

SELECT value1, value2, num_value3 FROM database

WHERE num_value3=some_user_supplied_number

In this case, the attacker may execute an additional SQL query, by sup-
plying an input like:

3; insert values into some_other_table

The above signature could be additionally expanded to detect the occur-
rence of the semi–colon as well. However, the semi–colon has a tendency
to occur as part of normal HTTP traffic. In order to reduce the false pos-
itives from this, and also from any normal occurrence of the single–quote
and double–dash, the above signature could be modified to first detect the
occurrence of the = sign. As we see in the previous section, user input will
usually occur as a GET or a POST request, where the input fields will be
reflected as:

username=user_supplied_value&password=user_supplied_value

Therefore, the SQL injection attempt would result in user input being
preceded by a = sign. The resulting modified regular expression would be
something like:

/(=)[^\n]*((\’)|(\-\-)|(;))/i

This signature first looks out for the = sign. It then allows for zero or more
non–newline characters, and then it checks for the single–quote, the double–
dash or the semi–colon. A typical SQL injection attempt of course revolves
around the use of the single quote to manipulate the original query so that it
always results in a true value. Most of the examples that discuss this attack
use the string 1’or’1’=’1, as we saw before. However, detection of this
string can be easily evaded by supplying a value such as 1’or2>1--.

2.2. CROSS – SITE SCRIPTING 19

2.2 Cross – Site Scripting

Cross – Site Scripting (XSS) attacks are a type of injection problem, in which
malicious scripts are injected into the otherwise benign and trusted web sites.
XSS attacks occur when an attacker uses a web application to send malicious
code, usually in the form of a browser – side script, to a different end user.

A typical scenario is that in which a web application gathers malicious
data from the attacker and creates an output page for the unsuspecting
end user containing that malicious data, in a manner to make it appear
as a valid content from the web site. The data is usually gathered in the
form of a segment of JavaScript, but may also include HTML, Flash or any
other type of code that a browser may execute. The end user’s browser has
no way to know that the script should not be trusted, and will execute it.
Because the browser “thinks” that the script came from a trusted source,
the malicious script can access any cookies, session tokens, or other sensitive
information retained by the browser and used with that web site. The variety
of attacks based on XSS is almost limitless, but they commonly include
transmitting private data like cookies or other session information to the
attacker, redirecting the victim to web content controlled by the attacker, or
performing other malicious operations on the user’s machine under the guise
of the vulnerable site.

Cross – site – scripting attacks can generally be categorized into two
categories: stored and reflected.

2.2.1 Stored XSS Attacks

Stored attacks are those where the injected code is permanently stored on
the target servers, such as in a database, in a message forum, visitor log,
comment field, etc. The victim then retrieves the malicious script from the
server when it requests the stored information.

Example

Let’s consider a web – site that permits us to leave a message to other users.
We inject a script instead of a message in the way described in Figure 2.1.

The server will store the “message” we sent. Now, when a user clicks on
our fake message, his (or her) browser will execute our script as shown in
Figure 2.2.

20 CHAPTER 2. ATTACKS

Figure 2.1: Injection of a “malicious” script

Figure 2.2: A user’s click on the link will execute the “malicious” script

2.2. CROSS – SITE SCRIPTING 21

2.2.2 Reflected XSS Attacks

Reflected attacks are those where the injected code is reflected off the web
server, such as in an error message, search result, or any other response that
includes some or all of the input sent to the server as part of the request.
Reflected attacks are delivered to victims via another route, such as in an
e-mail message, or on some other web server. When a user is tricked into
clicking on a malicious link or submitting a specially crafted form, the in-
jected code travels to the vulnerable web server, which reflects the attack
back to the users browser. The browser then executes the code because it
came from a “trusted” server.

Example

The following JSP code segment reads an employee ID, eid, from an HTTP
request and displays it to the user.

<% String eid = request.getParameter("eid"); %>

...

Employee ID: <%= eid %>

The code in this example operates correctly if eid contains only standard
alphanumeric text. If eid has a value that includes meta–characters or source
code, then the code will be executed by the web browser as it displays the
HTTP response.

Initially this might not appear to be much of a vulnerability. After all,
why would someone enter a URL that causes malicious code to run on their
own computer? The real danger is that an attacker will create the malicious
URL, then use e-mail or social engineering tricks to lure victims into visiting
a link to the URL. When victims click the link, they unwittingly reflect the
malicious content through the vulnerable web application back to their own
computers.

2.2.3 Regular – Expression – based signatures for Cross
Site Scripting

When launching a cross-site scripting attack, or testing a Website’s vulnera-
bility to it, the attacker may first issue a simple HTML formatting tag such
as for bold, <i> for italic or <u> for underline. Alternatively, he may try

22 CHAPTER 2. ATTACKS

a trivial script tag such as <script>alert("OK")</script>. This is likely
because most of the printed and online literature on XSS use this script as
an example for determining if a site is vulnerable to XSS. These attempts
can be trivially detected.

The following regular expression checks for attacks that may contain
HTML opening tags and closing tags <> with any text inside. It will catch
attempts to use or <u> or <script>. The regular expression is case –
insensitive:

/(<)(\/)*[a-z0-9]+(>)/ix

We first check for opening angle bracket, then we look for the forward slash
for a closing tag, then again we check for alphanumeric string inside the tag
and finally we check for closing angle bracket.

The above regular expression could be added into a signature–based IDS
ruleset. For example, a new Snort rule would be composed as follows:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"

Cross-site scripting attempt"; flow:to_server,established;pcre:

"/(<)(\/)*[a-z0-9]+(>)/ix"; classtype:Web-application-attack;

sid:9000; rev:5;)

Cross-site scripting can also be accomplished by using the

technique. The following regular expression could be used in a Snort rule to
detect attacks using this technique:

/(<)(i)(m)(g)[^\n]+(>)/ix

This signature first looks out for the opening angle bracket. Then it checks
for the letters ’img’ followed by any characters other than a new line and
finally it looks for a closing angle bracket.

The technique is clearly not the only one an attacker can
exploit. An attacker could use any HTML tag that permits him to insert
malicious code inside them. For example, tags like <frame> or <object>

could be used.
Thus someone could be forced to use a signature like the following one to

protect his system against XSS attempts:

/(<)[^\n]+(>)/ix

2.2. CROSS – SITE SCRIPTING 23

The above “paranoid” signature simply looks for the opening HTML tag,
followed by one or more characters other than the newline, and then followed
by the closing tag.

Adopting such kind of signatures will grant the detection of anything that
even remotely resembles a cross – site scripting attack, but will also end up
with pretty much false positive alerts.

Unfortunately, most of the modern IDS, such as Snort, in order to avoid
or reduce false positive alerts, supply default signatures for XSS that can be
easily evaded.

24 CHAPTER 2. ATTACKS

Chapter 3

High – Level Language
Recognition

A compiler is a program that can read a program in one language — the
source language — and translate it into an equivalent program in another
language — the target language. That is, computer program compilers map
a source program into a semantically equivalent target program. This process
can be, at first, divided into two parts: analysis and synthesis.

The analysis part breaks up the source program into constituent pieces
and imposes a grammatical structure on them. It then uses this structure to
create an intermediate representation of the source program. If the analysis
part detects that the source program is either syntactically ill formed or
semantically wrong, then it must provide informative messages, so the user
can take corrective action. The analysis part also collects information about
the source program and stores it in a data structure called the “symbol table”,
which is passed along with the intermediate representation to the synthesis
part.

The synthesis part constructs the desired target program from the inter-
mediate representation and the information stored in the symbol table.

The analysis part is mainly focused on verifying and constructing software
structure using the grammatical rules while the synthesis part is responsible
for detecting semantic errors and checking type usage.

25

26 CHAPTER 3. HIGH – LEVEL LANGUAGE RECOGNITION

3.1 Context – Free Grammars

A context – free grammar (CFG) is a set of recursive rewriting rules (or
productions) used to specify the syntax of a language. A context – free
grammar has four components[1]:

1. A set of terminal symbols, sometimes referred to as “tokens”. The
terminals are the elementary symbols of the language defined by the
grammar.

2. A set of nonterminals, sometimes called “syntactic variables”. Each
nonterminal represents a set of strings of terminals, in a manner we
shall describe.

3. A set of productions, where each production consists of a nonterminal,
called the head or left side of the production, an arrow, and a sequence
of terminals and/or nonterminals, called the body or right side of the
production. The intuitive intent of a production is to specify one of
the written forms of a construct; if the head nonterminal represents a
construct, then the body represents a written form of the construct.

4. A designation of one of the nonterminals as the start symbol.

The most common formal system for presenting such rules for humans to
read is Backus – Naur Form or “BNF”, which was developed in order to
specify the language Algol 60. Any grammar expressed in BNF is a context
– free grammar. This formal representation is more powerful than the regu-
lar expression. In addition to regular expression, it is able to represent more
advanced programming language structures such as balanced parenthesis and
recursive statements like if – then – else. Given such powerful formal repre-
sentation, it may be possible to devise more efficient and accurate signature
for advanced forms of attack.

A CFG for Arithmetic Expressions

An example grammar that generates strings representing arithmetic expres-
sions with the four operators +, -, *, /, and numbers as operands is:

1. < expression >−→ number

2. < expression >−→ (< expression >)

3.1. CONTEXT – FREE GRAMMARS 27

3. < expression >−→< expression > + < expression >

4. < expression >−→< expression > − < expression >

5. < expression >−→< expression > ∗ < expression >

6. < expression >−→< expression > / < expression >

The only nonterminal symbol in this grammar is < expression >, which
is also the start symbol. The terminal symbols are {+, -, *, /, (,), number}.
(We will interpret “number” to represent any valid number.)

The first rule (or production) states that an < expression > can be
rewritten as (or replaced by) a number. In other words, a number is a valid
expression.

The second rule says that an < expression > enclosed in parentheses is
also an < expression >. Note that this rule defines an expression in terms
of expressions, an example of the use of recursion in the definition of context
– free grammars.

The remaining rules say that the sum, difference, product, or division of
two < expression >s is also an expression.

3.1.1 Context – Free Grammars VS Regular Expres-
sions

To understand the differences between regular expressions and context – free
grammars, we can contrast the expression grammar described above against
the following regular expression:

((ident|num)(+| − | ∗ |/))∗(ident|num)

Both the regular expression and the CFG describe the same set of expressions.
Regular expressions can be described by regular – grammars or, equivalently,
by Finite Automata (FA). In a regular – grammar productions are restricted
to two forms, either A −→ a, or A −→ aB, where A, B are nonterminal
symbols and a is a terminal symbol.

In contrast, a context – free grammar allows productions with right –
hand sides that contain an arbitrary set of terminal and nonterminal sym-
bols. Thus regular regular grammars are a proper subset of context – free
grammars.

28 CHAPTER 3. HIGH – LEVEL LANGUAGE RECOGNITION

It is trivial to notice that context – free grammars are strictly more pow-
erful than regular expressions. More precisely:

• Any language that can be generated using regular expressions can be
generated by a context-free grammar.

• There are languages that can be generated by a context-free grammar
that cannot be generated by any regular expression.

As a corollary, CFGs are strictly more powerful than Deterministic Finite
Automata (DFA) and Non – Deterministic Finite Automata (NDFA), which
are the two types of Finite Automata used to describe Regular Languages.

The proof is in two parts:

• Given a regular expression R , we can generate a CFG G such that
L(R) == L(G).

• We can define a grammar G for which there there is no FA F such that
L(F) == L(G).

Where L(X) is any language generated by grammar X.
With the example of arithmetic expressions we showed that CFGs are at

least as powerful as regular expressions. With the following example we will
demonstrate that Context – Free Grammars are much more powerful and
expressive with respect to Regular Expressions, focusing on one particular
aspect of CFGs that is the fact that they can count.

A CFG with no corresponding RE

Finite Automata, and thus Regular Expressions, cannot count. That is no FA
can recognize the language {0n1n|n >= 1} (i.e., the set of strings containing
one or more zeros followed by an equal number of ones).

Assume such an FA exists, and it has N states. What happens when the
input string has N+1 zeros in it, followed by N+1 ones?

• Since the FA only has N states, we must visit some state sT twice on
seeing N+1 zeros.

• The FA cannot know whether we are entering sT for the first time,
when we’ve seen i ¡ N zeros, or the second time, when we’ve seen j ¿ i
zeros.

3.2. LANGUAGE PROCESSING 29

• There must be a path from sT to an accepting state, since the input
string is in the language.

• The FA will accept an input string without an equal number of zeros
and ones, since i != j, and there is a path to an accepting state from
sT on the remaining input.

This language is generated by the following CFG:

1. < S >−→ 0 < S > 1

2. < S >−→ 01

We can prove that this grammar generates the language by induction on
n, the number of zeros and ones in the string.

1. For the basis step, n = 1, and the string is 01. This string is generated
by applying the second production once.

2. For the inductive step, assume we can generate 0n1n. The last pro-
duction applied must have been production 2, so the string must have
been 0(n − 1) < S > 1(n − 1). If we apply production 1 and then
production 2, we get 0n < S > 1n, and then 0(n + 1)1(n + 1). Thus,
we can generate all strings of the form {0n1n|n >= 1}.

3. Since we can only apply production 1 some number of times followed
by production 2, these are the only strings generated by the grammar.

3.2 Language Processing

The compilation process operates as a sequence of phases, each of which
transforms one representation of the source program to another. A typical
decomposition of a compiler into phases is shown in Figure 3.1. The symbol
table, which stores information about the entire source program, is used by
all phases of the compiler.

The phase that is used for detecting tokens from regular expressions is
called the lexical analysis or scanning. The lexical analyzer reads the stream
of characters making up the source program and groups the characters into
meaningful sequences called lexemes. For each lexeme, the lexical analyzer

30 CHAPTER 3. HIGH – LEVEL LANGUAGE RECOGNITION

Figure 3.1: Phases of a Compiler

3.2. LANGUAGE PROCESSING 31

produces as output a token that it passes on to the subsequent phase, syntax
analysis. Scanners can be automatically generated by tools such as Lex or
flex.

The second phase of the compiler is syntax analysis or parsing. The parser
uses the first components of the tokens produced by the lexical analyzer to
create a tree – like intermediate representation that represents the grammat-
ical structure of the token stream. A typical representation is a syntax tree
in which each interior node represents an operation and the children of the
node represent the arguments of the operation. For modern compilers, the
parsers are automatically generated, according to the rules defined in the
grammars, through tools such as Yacc or Bison.

The subsequent phases of the compiler use the grammatical structure to
help analyze the source program and generate the target program. For our
application we are only interested in syntactic acceptance, therefore we focus
our research efforts on understanding lexical and syntactical analysis of the
compilers.

3.2.1 Scanner

The first phase of language recognition is the conversion of sequence of bytes
to sequence of predefined tokens. There are several similarities between a
token scanner and the signature matcher of an IDS. Both systems are re-
sponsible for detecting and identifying predefined byte patterns from the
stream of data input. The scanner is provided with a point in the input
stream at which it is to produce sequence of tokens. Therefore, the token
sequence produced by a lexical scanner is unique. On the other hand, a
signature matcher does not constrain where the embedded string starts; it
simply detects matching patterns as it scans the stream at every byte offset.

3.2.2 Parser

The parser obtains a string of tokens from the lexical analyzer and veri-
fies that the string of token names can be generated by the grammar for
the source language. Conceptually, for well – formed programs, the parser
constructs a parse tree and passes it to the rest of the compiler for further
processing.

There are three general types of parsers for grammars: universal, top –
down and bottom – up. The methods commonly used in compilers can be

32 CHAPTER 3. HIGH – LEVEL LANGUAGE RECOGNITION

classified as being either top – down or bottom – up. As implied by their
names, top – down methods build parse trees from the top (root) to the
bottom (leaves), while bottom – up methods start from the leaves and work
their way up to the root. In either case, the input to the parser is scanned
from left to right, one symbol at a time.

The most efficient top – down and bottom – up methods work only for
subclasses of grammars, but several of these classes, particularly, LL (suitable
for top – down parsing) and LR grammars (suitable for bottom – up parsing),
are expressive enough to describe most of the syntactic constructs in modern
programming languages.

Chapter 4

System Architecture

Computer program source codes are analyzed with scanner and parser to
determine correctness in the language structure. We propose to adapt the
concept into the packet inspection system to effectively recognize structure
within the network traffic.

Figure 4.1 is a block diagram of our advanced inspection process. After
the header and the payload inspection, the pattern indices are converted
to the streams of tokens by the scanner. The streams of tokens are then
forwarded to the hardware parser to verify its grammatical structure. When
the parser finds that the token stream conforms to the grammar, the packet
can be marked to be suspicious.

Figure 4.1: Processing phases of a network packet

Our aim is that of developing a high – performance software version of
the system described above and to test it against well known classes of attack
such as SQL Injection and Cross Site Scripting, for which there not exist, at
present, any kind of properly working signature.

33

34 CHAPTER 4. SYSTEM ARCHITECTURE

4.1 Network packets capture

As shown in Figure 4.1, the first issue we have to face in the development
of our system is that of network packets capture. Packet capture is the act
of capturing data packets crossing a network. Deep packet capture (DPC) is
the act of capturing complete network packets (header and payload) crossing
a network. Once captured and stored, either in short-term memory or long-
term storage, software tools can perform Deep packet inspection (DPI) to
review network packet data and, in our case, identify security threats.

Packet capture has the ability to capture packet data from the data link
layer on up (layers 2 – 7) of the OSI model. This includes headers and
payload. As it’s been said already, headers include information about what
is contained in the packet, while the payload includes the actual content
of the packet and therefore is the part of the packet we are interested in
for inspection. Complete capture encompasses every packet that crosses a
network segment, regardless of source, protocol or other distinguishing bits
of data in the packet. Thus, complete capture is the unrestricted, unfiltered,
raw capture of all network packets. The capture of packets for which public
visualization is not allowed, is called sniffing.

DPC devices usually have the ability to limit capture of packets by pro-
tocol, IP address, MAC address, etc. With the application of filters, only
complete packets that meet the criteria of the filter (header and payload) are
captured, diverted, or stored. For our purpose, as we are dealing with attacks
directed to web applications, we limit our inspection on HTTP traffic, thus
looking up for TCP traffic on port 80 of our dedicated web server.

At data link layer level there is a distinction between networks using
packet switching and networks not using it. In non – switching networks,
Ethernet packets go through every device on the network assuming that
each device will accept only packets destined to itself. Nevertheless, is quite
simple to set a network device in promiscuous mode so that it can examine
all the packets independently from their destination address. To this extent,
in Unix – like systems, we can use the ifconfig command, i.e. ifconfig

eth0 promisc. Thus, promiscuous – mode packet sniffing on non – switching
network, allows us to obtain any kind of useful information.

4.1. NETWORK PACKETS CAPTURE 35

4.1.1 libpcap sniffer

A standard programming library called libpcap can be used in order to
capture packets from a network segment, in a reliable and portable way.
Program 1 is an example of how to use libpcap library to set up a very
simple C – language – based sniffer.

Program 1 raw sniffer.c

#include <pcap.h>

...

int main() {

struct pcap_pkthdr header;

const u_char *packet;

char errbuf[PCAP_ERRBUF_SIZE];

char *device;

pcap_t *pcap_handle;

int i;

device = pcap_lookupdev(errbuf);

if(device == NULL){

... //some logic for error managing

}

pcap_handle = pcap_open_live(device, 4096, 1, 0, errbuf);

if(pcap_handle == NULL){

... //some logic for error managing

}

for(i=0; i<3; i++) {

packet = pcap_next(pcap_handle, &header);

... //some logic for packet inspection

}

pcap_close(pcap_handle);

}

First thing to do is to include pcap.h header – file, that supplies several
structures and definitions used by pcap functions. pcap functions use an error
buffer in order to output error messages, thus errbuf variable represents

36 CHAPTER 4. SYSTEM ARCHITECTURE

this buffer. Variable header is a pcap pkthdr structure that contains extra
informations about the packet (i.e. the capturing – date and its length).
Pointer pcap handle acts in a very similar way of a file – descriptor but it is
used to refer to a packet – capture object. Function pcap lookupdev() looks
up for a proper device to sniff on, and returns a string – pointer, referring to a
static – function memory area. The return value represents the first available
device, if no proper interface is found, the return value is NULL. Function
pcap open live() opens a device for packet capture and returns a handle
to it. Arguments of this function are the sniffing device, packet maximum
dimension, a flag for promiscuous mode, a timeout value and a pointer to the
error buffer. Finally, the packet capture loop uses pcap next() to capture
next packet. This function returns a pointer to the actual packet. Then
function pcap close() closes the capture interface.

With a bit more effort we can write a sniffer that can decode packet –
headers on different levels: Ethernet, IP, TCP, and so on. Furthermore,
libpcap contains a function called pcap loop() which supplies a better so-
lution for packets capture, with respect to a simple loop on a pcap next()

function call. pcap loop() utilizes a callback function; this means that it
gets, as argument, a pointer to a function which will be called any time a
packet has been captured.

Another issue we have to face developing our system is packet fragmenta-
tion and defragmentation, that is the action of disassembly and reassembly
a packet (or a stream of packets). Packet fragmentation and defragmenta-
tion is one of the main jobs of the IP protocol. The IP protocol defines the
maximum size of a packet as 64 KB, which comes from the fact that the
“len” field of the header, which represents the size of the packet in bytes,
is a 16-bit value. However, not many interface types can send packets of a
size up to 64 KB. This means that when the IP layer needs to transmit a
packet whose size is bigger than the Maximum Transmit Unit (MTU) of the
egress interface, it needs to split the packet into smaller pieces. Regardless
of how the MTU is computed, the fragmentation process creates a series of
equal-size fragments. The Identification field, and Fragment offset field along
with Don’t Fragment and More Fragment flags in the IP protocol header are
used for fragmentation and reassembly of IP datagrams. A fragmented IP
packet is normally defragmented by the destination host, but intermediate
devices or applications that need to look at the entire IP packet may have to
defragment it, too. Unfortunately, libpcap has some limitations and does
not supply any function that can help us with that.

4.2. DEEP PACKET INSPECTION 37

4.1.2 Snort 3 Detection Engine

In order to exceed libpcap limitations, we also developed an engine module
for Snort 3.0, the latest Snort implementation.

Snort 3.0 architecture essentially consists in two main components. The
first component is the “Snort Security Platform 3.0” or SnortSP, which pro-
vides functionality such as loading, logging and event generation, data ac-
quisition, decoding and validation, flow management and so on. The second
major component are “engines” which basically are the analysis modules that
plug into SnortSP. The basic idea in SnortSP is to instantiate data source,
engine, analyzer and output modules, link them together and then start the
engine. Once the engine is running we can manage it via the command shell
interface1.

In Snort 3 the data source is the set of subsystems that handle data
acquisition (e.g. pcap, af packet), decode, flow management and IP defrag-
mentation. Data sources are a core element of SnortSP 3.0, they acquire
traffic from the network, decode it, put it into the flow table subsystem and
then hand it on to the rest of the analysis and reporting elements within a
processing thread. For intrusion detection purposes, we need to link a data
source to an engine in order to get some packet inspection capabilities.

Engines are the central organizing mechanism in SnortSP, an engine has a
data source, analyzer(s), output manager and so on. An engine contains the
control logic for interfacing data sources with analysis engines and managing
data flow and the engine threads that perform any packet analysis.

Analyzers are the modules that analyze the packet data and generate the
appropriate events. Outputs are modules that can be configured to output
events generated by the analytic instances.

Unfortunately, Snort 3.0 is delivered with no documentation on how to
properly program an engine module, but the C – code of a sample dummy
engine is available. Thus, we “hacked” a bit that code in order to make our
system work as an analytic module for SnortSP.

4.2 Deep packet inspection

As we can see in Figure 4.1, after packet capture, our system architecture
begins the packet inspection phase, in order to detect any attack attempt.

1For a more precise presentation of Snort refer to Appendix A

38 CHAPTER 4. SYSTEM ARCHITECTURE

In this phase, our application tries to accomplish its main task exploiting the
idea we presented in Chapter 1, that is to utilize context – free – language
parsing technologies for network intrusion detection.

As we said in Chapter 32, for our application we are only interested in lex-
ical and syntactical analysis of the packet payload because we want to check
for syntactic correctness. Thus, the “signatures” our application utilizes are
split into two parts: the first part is used to perform lexical analysis, and the
other one to perform syntactical analysis.

For the development of this part of the system, we take advantage of
widely used automatic scanner generator flex and automatic parser gener-
ator Bison.

4.2.1 Automatic scanner generator flex [8]

flex is a tool for generating high – performance scanners. The flex program
reads the given input files for a description of a scanner to generate. The
description is in the form of pairs of regular expressions and C code, called
rules. flex generates as output a C source file. This file can be compiled
and linked with the flex runtime library to produce an executable. When
the executable is run, it analyzes its input for occurrences of the regular
expressions. Whenever it finds one, it executes the corresponding C code.

The flex input file consists of three sections: definitions, rules and user
code. The definitions section contains declarations of simple name definitions
to simplify the scanner specification, and declarations of start conditions, a
mechanism for conditionally activating rules. The rules section of the flex

input contains a series of rules of the form:

pattern action

The patterns in the input are written using an extended set of regular expres-
sions. Each pattern in a rule has a corresponding action, which can be any
arbitrary C statement. Finally, the user code section is used for companion
routines which call or are called by the scanner.

At runtime, the generated scanner analyses its input looking for strings
which match any of its patterns. Once the match is determined, the action
corresponding to the matched pattern is executed, and then the remaining
input is scanned for another match.

2Paragraph 3.2

4.2. DEEP PACKET INSPECTION 39

Token Streams

For our application, it is not possible to predict the start of a malicious code
before processing begins. Thus, every token must be searched for at every
byte offset to have complete intrusion detection. When a token is detected
at a given byte offset, the scanner will insert its offset to the output stream
regardless of other tokens that might overlap the pattern. Since no two
consecutive tokens from scanner input should overlap each other, the output
must be reformed into one or more valid token streams.

A specific attack scheme can often embed its payload at more than one
location within a packet. Therefore, the scanner has to look for tokens at
every byte alignment. Furthermore, the scanner maybe looking for several
starting tokens for grammars representing different classes of attacks.

Figure 4.2: Multiple token streams from a single data stream.

Figure 4.2 is an example of how one input byte stream maybe properly
recognized as four independent token streams. If we knew where the code
started, as with compilers, only one of the four streams would be of interest.
Since the code of the attack may be located anywhere in the payload, all four
streams must be considered viable threats. Therefore we have modified our
pattern scanner to produce multiple streams.

40 CHAPTER 4. SYSTEM ARCHITECTURE

4.2.2 Automatic parser generator Bison [6]

Bison generates optimized parsers for LALR(1) grammars. In these gram-
mars, it must be possible to tell how to parse any portion of an input string
with just a single token of lookahead. That is, parsers for LALR(1) gram-
mars are deterministic, meaning that the next grammar rule to apply at any
point in the input is uniquely determined by the preceding input and a fixed,
finite portion (called a lookahead) of the remaining input.
A context – free grammar can be ambiguous, meaning that there are multi-
ple ways to apply the grammar rules to get the same inputs. Unambiguous
grammars can also be non – deterministic, meaning that no fixed lookahead
always suffices to determine the next grammar rule to apply. With the proper
declarations, Bison is also able to parse these more general context – free
grammars, using a technique known as GLR parsing (for Generalized LR).
Bison’s GLR parsers are able to handle any context – free grammar for which
the number of possible parses of any given string is finite.

A Bison grammar file has four main sections: prologue, declarations, rules
and epilogue. The prologue section contains macro definitions and declara-
tions of functions and variables that are used in the actions in the grammar
rules. The declarations section contains declarations that define terminal
and nonterminal symbols, specify precedence, and so on. The rules section
contains one or more Bison grammar rules. A Bison grammar rule has the
following general form:

result: components...

;

where result is the nonterminal symbol that this rule describes, and compo-
nents are various terminal and nonterminal symbols that are put together
by this rule. Finally, the epilogue is copied verbatim to the end of the parser
file, just as the prologue is copied to the beginning.

At runtime, the Bison parser parses the language described by the gram-
mar we supplied as an input file for Bison utility. The job of the Bison parser
is to group tokens into groupings according to the grammar rules. As it does
this, it runs the actions for the grammar rules it uses. The tokens come from
a function called the lexical analyzer that is supplied by the flex scanner.

Chapter 5

Testing

To validate our new detection engine, we benchmark it against two different
signature – based Intrusion Detection Systems. One of the IDSs we use for
benchmarking is Snort (engine version 2.8.5.3); Snort is one of the most em-
ployed signature – based IDS today. The other IDS we use in the validation
phase is PHPIDS which is a state - of - the - art and open – source system
for PHP – based web applications. The latter IDS also has an interesting
feature: it computes an overall impact value of the attack string it recognizes.

To carry out the test, we employ two different data sets. Because of the
lack of publicly – available data sets, containing sufficient data to perform
a verifiable benchmark, we were forced to develop our own data sets. Thus,
the data sets we benchmark the system against have been developed by us
and are based upon different documents publicly available in the Internet.

To carry out our validation we set up a LAMP Web Server. LAMP is an
acronym for a solution stack of free, open source software, originally coined
from the first letters of Linux (operating system), Apache HTTP Server,
MySQL (database software), and PHP, Python or Perl (scripting language),
principal components to build a viable general purpose web server. For our
purpose we used the following combination of software:

• Debian GNU/Linux 5.0 (lenny)

• Apache 2.0

• php 5.2.6-1

• perl 5.10.0

41

42 CHAPTER 5. TESTING

Our server hosts a web site which has two particular pages that could be
exploited for web – based attacks. One of these web pages is a fake login
form with usual user – name and password fields. In the other web page a
user can submit a message that will be displayed on the page itself.

We focus on HTTP traffic because nowadays Internet attack are mainly
directed to web servers and web – based application: Symantec Corporation
[4] reports that, in the first half of year 2008, 65% of total discovered vulner-
abilities were related to web services and, during the same period, more than
60% of easily exploitable vulnerabilities (whenever the exploitation code is
not needed or well – known) affected web applications. Symantec also states
that typical examples of easily exploitable vulnerabilities are SQL Injection
and Cross – Site Scripting (XSS) attacks.

5.1 SQL Injection detection

5.1.1 SQL Injection signature

The first part of our signature for SQL Injection is a flex input file that
describes a scanner. We don’t need to set up a complete SQL scanner,
we just focus on those most employed keywords used to carry on an attack.
Consulting the available literature we selected a set of SQL statements which
encompasses all of the statements such as OPEN, CLOSE, and SELECT
that actually manipulate a data base1 and thus could be used to perform a
significative attack. This choice leads to the definition of a “partial grammar”
for SQL.

An extract of the rules section of this partial scanner is shown by Pro-
gram 2 and Program 3. The action corresponding to each pattern, is focused
on returning a token value for the next step of signature elaboration (e.g.
parsing). However we can take advantage of this part of the rule definition
to make the scanner do something more. Thus, any time we find a “danger-
ous” token, we update a global counter called tokno. We will exploit this
counter to compute a simple threat – score as we introduced in paragraph ??.

The second part of the signature is a Bison grammar file that describes
the language we want to parse. This file mainly consists in a set of grammar
rules whose task is to construct each nonterminal symbol from its parts.

1Of course this selection is due to the fact that we are using MySQL Server. For
MSSQL Server we shod use some different keyword

5.1. SQL INJECTION DETECTION 43

These rules are defined by a BNF – like syntax. Program 4 and Program 5
show an extract of the grammar rules we employ in our signature.

5.1.2 SQL Injection data set

To test our system on SQL Injection attacks, we set up a data set composed of
five SQL Injection attempts and five legal requests. The five attack attempts
are shown in Table 5.1.

ID Username Password
1 x’OR’1’=’1 x’OR’1’=’1

2 x’OR’2’>’1 x’OR’2’>’1

3 x’OR’attack’<’threat x’OR’attack’<’threat

4 x’OR’1’/*comm ents*/=’1

5 UNION /*comments*/ SELECT * FROM [...]

Table 5.1: SQL Injection attempts thrown against our dedicated server.

We used two types of signature – evasion technique. The first type is
the well known “OR 1=1” technique: patterns 1, 2 and 3 are all variations of
this widely used type of attack. The second technique consists in taking a
C – like comment into the attack string. The aim of the latter technique is
to evade those signatures attempting to detect a SQL keyword followed, or
preceded, by any amount of white spaces. In most cases the C – like syntax
for comments can replace any of the spaces. Pattern 4 of our data set is
a mixed form of the techniques described above. Pattern 5 is completely
based on the second technique; this string can be inserted directly in the url
request or maybe in one of the available input field once we got access to
the database with one of the previous techniques. Finally, in order to check
for false positive alerts, we inserted five other requests that a qualified user
would have insert to login, i.e. allowed username and password. Thus, we
sent a total amount of ten requests.

Snort has a total amount of twelve rules for SQL Injection attempts
detection, they are divided between two files: eight signatures are located
in sql.rules2 and the other four rules are located in web-misc.rules3.

2Lines: 113, 125, 126, 130, 131, 135, 139 and 146
3Lines: 337, 495, 512 and 513

44 CHAPTER 5. TESTING

All the rules used by PHPIDS are collected into the same XML file, called
default filters.xml. PHPIDS has a total amount of eighteen rules for
SQL Injection attempts detection.

Figure 5.2 summarizes the results we obtained at the end of the test. We
submitted a total amount of ten requests. Snort did not detect any of the
attack attempts, none of the twelve SQL – Injection – related rules matched
any submitted pattern. PHPIDS detected all of the attack attempts; more
precisely, pattern 1 as well as pattern 2 matched four rules, on pattern 3 we
had five matches, on pattern 4 six matches and again six matches on pattern
5. Our system too detected all of the attack attempts reaching a detection
rate of 100%.
False positive rate is 0% for all of the three systems, meaning that no false
alerts were triggered.

Rates CoDE Snort PHPIDS
DR 100% 0% 100%
FP 0 (0%) 0 (0%) 0 (0%)

Table 5.2: Comparison between our system and Snort using our own crafted data set;
DR stands for Detection Rate (attack instance percentage), while FP is the False Positive
Rate (packets and corresponding percentage).

5.2 Cross – Site Scripting

5.2.1 Cross – Site Scripting signature

The first part of our signature for SQL Injection is a flex input file that
describes a scanner. In the same way we did for SQL Injection detection,
we don’t need to set up a complete script language scanner, we just focus
on those most employed keywords used to carry on an attack. Consulting
the available literature we selected the following set of keywords, including
Javascript statement as well as HTML statements: script, alert, img, src,
onerror, javascript, iframe, eval, location, object. The selection of the
previous statements results in a “mixed – language scanner”.

The definition of the scanner is shown by Program 6. In this part of
the signature, we take advantage of flex start condition mechanism. Any

5.2. CROSS – SITE SCRIPTING 45

ID Attack Pattern
1 <script>alert(document.cookie);</script>

2 <script language="JavaScript">alert(’document.cookie’);</script>

3

4 <FRAMESET><FRAME SRC=\"javascript:alert(’document.cookie’);\"></FRAMESET>

5 <script>document.write("Here your cookie:"+unescape(document.cookie));</script>

Table 5.3: Cross – Site scripting attempts thrown against our dedicated server.

rule whose pattern is prefixed with “<SC>” will only be active when the
scanner is in the start condition “SC”. Start conditions are managed within
a stack structure and three routines are available for manipulating the stack.
These routines correspond to the three operations available for any stack
structure, that is: push, pop and top. This mechanism allow us to fine tune
the computation of the threat score, that is we can assign different scores to
the same token depending on the context we find that token in.

The second part of the signature is a Bison input file that describes a
parser for the token stream coming from the scanner we described above in
this section. This file mainly consists in a set of grammar rules whose task is
to construct each nonterminal symbol from its parts. These rules are defined
by a BNF – like syntax. Program 7 and Program 8 show the grammar rules
we employ in our signature.

5.2.2 Cross – Site Scripting data set

To test our system on Cross – Site scripting attacks, we set up a data set
composed of five legal requests and five XSS attempts. The five XSS attempts
are quite different and they are shown in Table 5.3.

We built up the other, non – threatening, requests in order to simulate
normal traffic that “accidently” contains some keywords that could trigger
an alert. For example a message like the one in Example 1 should not trigger
any alerts even if it contains the </script> tag.

A Cross – Site scripting attack could be attempted using the <script> tag
followed by some javascript code and the </script> tag.

Example 1: A message containing keywords that could trigger an alert.

46 CHAPTER 5. TESTING

Although most of the signature – evasion techniques, for XSS attacks,
are based on the hex encoding of the attack payload, our data set is only
composed of plain – text patterns. The reason of encoding is that to hide the
request an unaware user is involuntarily sending. Thus, encoding is useless
for our purpose because we do know the requests we are sending and we just
want to test our system in order to see whether it will detect those selected
attacks. However, Snort, the IDS we are benchmarking our system against, is
not detecting all of the attacks we are throwing, even if they are not encoded.

Snort has a total amount of thirteen rules for XSS attempts detection. All
rules are collected into web-misc.rules file4. PHPIDS has a total amount
of forty rules for XSS attempts detection. These rules are also collected in
the same XML file we mentioned above for SQL Injection rules.

Table 5.4 summarizes the results we obtained at the end of the test. As
well as in the previous test, we submitted a total amount of ten requests.
Snort detected attack 1 and attack 5 reaching a detection rate of 40%, one of
the thirteen XSS – related rules matched both patterns. Snort also triggered
one false alert, meaning that one of the non – threatening request we sent
contained some tokens that matched one or more rules. PHPIDS detected all
of the attack attempts, pattern 1 matched 6 rules, pattern 2 and 3 matched
ten rules then we had 9 matches on pattern 4 and pattern 5. PHPIDS also
triggered 2 false alerts. Our system too reached a detection rate of 100% but
it triggered no false alerts.

Rates CoDE Snort PHPIDS
DR 100% 40% 100%
FP 0 (0%) 1 (10%) 2 (20%)

Table 5.4: Comparison between our system and Snort using our own crafted data set;
DR stands for Detection Rate (attack instance percentage), while FP is the False Positive
Rate (packets and corresponding percentage).

5.3 Performances

Snort uses the Boyer–Moore pattern–matching algorithm when attempting
content matching on the packet payload [5]. This pattern-matching algorithm

4Lines: 26, 246, 251, 252, 468, 469, 488, 491, 492, 496, 499, 505 and 506

5.3. PERFORMANCES 47

is one of the most efficient algorithms for string matching and is often used
for the search and/or replace commands within a text editor. The worst-case
to find all occurrences in a sequence needs approximately 3*N comparisons,
hence the complexity is O(N), where N is the length of the sequence, regard-
less whether the text contains a match or not. The Boyer–Moore algorithm is
good for a single string search, but when dealing with a NIDS a single packet
can partially match many different rules and for each rule the algorithm will
have to be run.

As we stated before, regular – expressions are a nice and powerful for-
malism, but they can not describe all languages thus they have some limits
in the context we are interested in. Any language that can be described
by a regular expression is called a regular language. To go beyond regular
expressions, we looked at context – free grammars. Context – free grammars
are a generalization of regular expressions. Using context – free grammars
we can describe more languages.

Given a sequence (e.g. the packet payload) and a context – free grammar,
it is possible to decide if the sequence is described by the grammar in O(N3)
time and O(N2) space. This isnt very good, so tools that are based on
context – free grammars usually restrict the grammars they accept so as to
allow strategies that result in O(N) time and O(N) space. These restrictions
restrict the set of languages the tools can handle; this is rarely a problem in
practice, since people tend to create languages that can be parsed quickly.
Bison is a popular tool for generating C programs that dissect a file according
to a given (restricted) context – free grammar.

48 CHAPTER 5. TESTING

Chapter 6

Conclusions

We have presented a new approach for signature – based network intrusion
detection by developing a system which, taking advantage of high – level –
language processing technologies, performs advanced network packet inspec-
tion.

The most effective way to protect a computer network against intrusions,
is at present represented by Intrusion Detection and Prevention Systems.
Unlike firewalls, these systems search for specific patterns in all parts of the
packets, increasing the packet inspection effectiveness. However, most of
the current IDS implementations do not extend beyond recognizing a set of
predefined regular expressions and that makes IDSs prone to false positive
alerts and false negatives. Although these pattern matching filters can be
powerful tools for finding suspicious packets in the network, they are not
capable of detecting other higher – level characteristics that are commonly
found in malware.

In Chapter 1, we introduced some motivations for which modern IDSs are
to be considered leaking in performances. We hypothesize that IDS’ main
limitation is that they cannot check for semantics in attack patterns and this
is because regular – expressions – based filters do not have the possibility (i.e.
they are not so powerful) to detect the context they are working in. That is,
if a pattern is matched, according to a certain regular – expression, we can
not state whether that match is only a coincidence or it is a real threat, and
this leads to false negatives alerts and to false positives. Thus, our system is
based on the idea that the ability to detect high level features of the pattern,
like the language structure, can lead to more accurate and advanced forms
of filters, improving intrusion detection capabilities and drastically reducing

49

50 CHAPTER 6. CONCLUSIONS

false positive alerts.
In order to catch those high level features, we took advantage of high –

level – language processing technologies. As we stated in Chapter 3, language
recognition process can be divided into two parts: analysis and synthesis.
Analysis is mainly focused on verifying and constructing software structure
using grammatical rules, while synthesis is responsible for detecting semantic
errors and checking type usage. The analysis phase can be ulteriorly divided
into two steps: lexical analysis, or scanning, and syntax analysis, or parsing.
As we are not interested in semantic errors nor in code generation, we focused
our efforts on understanding how to adapt the analysis phase of language –
processing process for network packet inspection purposes.

As well as compilers, which use scanners and parsers to analyze computer
program source codes in order to determine correctness in the language struc-
ture, our systems exploits scanners and parser to effectively recognize lan-
guage structures within network traffic. During lexical analysis, our system
reads the stream of characters making up the pattern and converts the char-
acters into predefined sequences called tokens. Then, syntax analysis uses
the tokens produced during lexical analysis to create a syntax tree repre-
senting the grammatical structure of the token stream. The rules describing
which tokens are allowed and how to set those tokens up in the syntax tree
are defined by a grammar; thus grammars are the signatures of our system.
Using grammars as signatures allow us to catch an entire class of attacks (i.e.
all or most of the attack variations). Our system architecture is described in
detail in Chapter 4.

To validate our system we benchmarked it against two well known and
widely used IDSs: Snort and PHPIDS. Since nowadays Internet attacks are
mainly directed to web servers and to web – based applications, we focused
our tests on HTTP traffic and particularly on two typical examples of easily
exploitable vulnerabilities (i.e. whenever exploitation code is not needed or
well – known): SQL Injection and Cross – Site Scripting. In Chapter 2 we
have presented some examples of the most employed techniques to perform
those attacks, of which regular – expressions – based signatures maybe used
to detect the attack patterns and how those signatures could be evaded.
Thus, we developed one signature for each SQL Injection and Cross – Site
Scripting attacks, by defining two restricted grammars. SQL Injection signa-
ture is a partial grammar for SQL which describes only those manipulative
statements mostly used in attacks patterns. Cross – Site Scripting signature
is a mixed grammar which encompasses a meaningful subset of both HTML

51

and Javascript keywords. The signatures we employed in the testing phase
are described in Chapter 5 and in Appendix B.

To carry out the tests, we set up one data set for each class of attack. Each
data set is composed by an equal amount of attack patterns and innocuous
patterns. The results we obtained are summarized in Chapter 5. Our system
totally satisfied our initial hypothesis, reaching a detection rate of 100% and
a false positives rate of 0% on both SQL Injection and Cross – Site Scripting
data sets. PHPIDS also reached the same detection rate of our system on
both data sets but it triggered some false alerts while checking for Cross – Site
Scripting attempts. Snort had worse results with respect to both PHPIDS
and our system, detecting only 40% of Cross – Site Scripting attempts and
none of SQL Injection attempts.

Relying on the results we obtained on our tests, we can state that Snort
default signatures are quite ineffective, mostly those concerning SQL Injec-
tion. We believe that the main reason for this unacceptable ineffectiveness is
to be found in the specificity of Snort signatures. Snort default rules are not
as much general as it would be required, meaning that they focus on a specific
variant of an attack and they are not taking in account all other variants.
This make Snort signatures very easy to evade. Furthermore, in previous
versions of Snort detection engine, a ruleset file named web-attacks.rules

was available, whose aim was to detect common attack patterns which ex-
ploit web applications vulnerabilities, however this file is no more available in
latest Snort version. The reason for this fact is explained by Snort developers
team itself:

These signatures are going away. They were based on generic
signatures that would catch common commands issued to exploit
form variable vulnerabilities, but it is so trivial to evade these
that it gives the user a false sense of security. Plus, many of
them were wrong.

This “guiltiness admission” confirms what we stated before about the moti-
vations for which Snort signatures are ineffective.

PHPIDS get rid of this problem by augmenting the number of signa-
tures for each class of attack. In this way the system detection capabilities
are certainly improved but the cost of this improvement is an augmented
CPU consumption and false positives rate. Furthermore, PHPIDS is PHP –
dependent thus it can only be employed in PHP based web application.

52 CHAPTER 6. CONCLUSIONS

Thus, we can state that our approach to intrusion detection is an effective
alternative to the state–of–the–art intrusion detection systems in terms of
detection rate, false positive rate, performances and portability. Of course
some improvements have to be done. Future works will focus on a better
tuning of the threat score, that we just introduced as a possible feature of
our system, on the capability of processing encoded patterns, which is one of
the most used signature – evasion technique and maybe on the employment
of the system in professional or enterprise environments.

Appendices

53

Appendix A

Overview on Modern IDSs

A.1 Snort

Snort is a signature – based IDS, it uses a set of rules (signatures) to check
for errant packets in the monitored network 1. Snort can carry out several
tasks, for example it can analyze network traffic, getting packet off the wire
and matching them against a set of well – known attack signatures, or it
can verify protocols used by packets in order to check for traffic anomalies.
Snort has the ability to notice port scan activities, which usually precede
an attack attempt. Moreover, each one of the possible threats identified by
these control tasks, can be signaled in many ways.

The latest Snort implementation is Snort 3.0

A.1.1 Snort 3.0

Snort 3 Architecture consists of two main component:

• Snort Security Platform 3.0 or SnortSP

• Detection Engines

SnortSP is designed to perform essentially as an “operating system” for
packet – based network security applications. It provides common functional-
ities that all programs that deal with packets need such as configuration load-

1As mentioned before a rule, or signature, is a set of requirements that would trigger
an alert.

55

56 APPENDIX A. OVERVIEW ON MODERN IDSS

ing, logging and event generation, data acquisition, decoding and validation,
flow management and so on. This is the core of the Snort 3.0 architecture.

The second major component are “engines” which is really more of a term
to define the analysis modules that plug into SnortSP. SnortSP is designed
to be able to run one or more engines, passing them traffic, processing their
output and even taking action upon the traffic streams in real – time.

SnortSP

Data Source The Data Source component encapsulates common function-
alities required by any network traffic analyzer, functions that will have to
be performed prior to running almost any analysis task. The data source
incorporates a number of components including:

• Data Acquisition (DAQ) — The DAQ provides an interface between
the rest of the engine and the host OS packet facilities. This is where
we get packets from the underlying hardware and where we talk to
that hardware regarding the disposition of those packets. The DAQ
subsystem allows Snort 3.0 to incorporate arbitrary external packet
interfaces including things like libpcap, IPQ and divert sockets.

• Decoder — Validates the packets, detects protocol anomalies and pro-
vide a referential structure for the rest of the program to operate upon.

• Flow Manager — The Flow Manager provides services for tracking con-
versations between endpoints on the network. Snort 3.0 also includes a
mechanism called “flow slots”, that other subsystems can use to store
stateful “flow local” information.

• IP Defragmenter — This module provides services for defragmenting
IPv4 and IPv6 datagrams and includes mechanisms to allow target –
based fragment reassembly.

• TCP Stream Reassembler — As with the IP Defragmenter, provides
target-based services for reassembling TCP segments into normalized
streams and presenting them to the underlying analytics.

• Data Source API — An abstraction API between the facilities provided
by the data source and the rest of the Snort 3.0 software framework.

A.1. SNORT 57

Figure A.1: Snort 3 Architecture

58 APPENDIX A. OVERVIEW ON MODERN IDSS

Action System The Action System handles event queuing, notification
and logging when the system fires events. The supported output types in
Snort 3.0 are text (console), syslog and Unified 2, a serialized binary stream
format.

Attribute Management System (AMS) The AMS will store network
contextual data about the operational environment being defended by a par-
ticular Snort instance. This subsystem will be addressable continuously at
runtime and provide interactive interfaces to the command shell as well as
analytics modules that can leverage its data.

Dispatcher The Dispatcher coordinates information flow between different
components of Snort 3.0 and manages traffic queuing and disposition across
analytics threads. It also ties together all of the objects in a runtime instance
of a Snort engine, uniting data source, analytics, action system and the
attribute manager into a single manageable entity for the purposes of process
and threat management from the command shell.

Snortd and the command shell Snortd is the daemon process that pro-
vides marshaling services for the objects that are instantiated in a particular
framework instance. The command shell also runs attached within a thread
to snortd. The command shell provides interactive object management ser-
vices for different software modules, runtime management of the process and
threads, health management and a full scripting language for Snort 3.0. The
command shell is running the Lua2 scripting language, a lightweight embed-
dable scripting language that is fast and portable as well as being very nice
for implementing Domain Specific Languages.

2Lua is designed, implemented, and maintained by a team at PUC – Rio, the Pontifical
Catholic University of Rio de Janeiro in Brazil. Lua was born and raised at Tecgraf,
the Computer Graphics Technology Group of PUC – Rio, and is now housed at Lablua.
Both Tecgraf and Lablua are laboratories of the Department of Computer Science of PUC
– Rio. “Lua” means “Moon” in Portuguese. As such, it is neither an acronym nor an
abbreviation, but a noun. More specifically, “Lua” is a name, the name of the Earth’s
moon and the name of the language.

A.1. SNORT 59

Detection Engines

Analytics System The Analytics System is where the Snort detection
engine threads are located. The idea in Snort 3.0 is to put all detection logic
in analytics modules that run as separate threads, all the other code exists
to support the functions of the Analytics System. Multiple threads may
operate on the data coming from a dispatcher instance simultaneously. The
Analytics System is structured so that all interactions between the analytics
modules and the rest of the Snort 3.0 framework is brokered by an API called
the “Snort Abstraction Layer” (SAL).

60 APPENDIX A. OVERVIEW ON MODERN IDSS

A.2 PHPIDS

PHPIDS (PHP – Intrusion Detection System) is a simple to use, well struc-
tured, fast and state–of–the–art security layer for PHP based web applica-
tions. The IDS neither strips, sanitizes nor filters any malicious input, it
simply recognizes when an attacker tries to break the web site and reacts in
exactly the web – site administrator wants it to. Based on a set of approved
and heavily tested filter rules any attack is given a numerical impact rating
which makes it easy to decide what kind of action should follow the hacking
attempt. This could range from simple logging to sending out an emergency
mail to the development team, displaying a warning message for the attacker
or even ending the user’s session. PHPIDS enables the user to see who’s
attacking his site and how and all without the employment of log files or
searching hacker forums for user’s domain. PHPIDS is licensed under the
LGPL.

Currently the PHPIDS detects all sorts of XSS, SQL Injection, header
injection, directory traversal, RFE/LFI, DoS and LDAP attacks. Through
special conversion algorithms the PHPIDS is even able to detect heavily ob-
fuscated attacks this covers several charsets like UTF-7, entities of all forms
such as JavaScript Unicode, decimal- and hex-entities as well as comment
obfuscation, obfuscation through concatenation, shell code and many other
variants.

PHPIDS requires at least PHP 5.1.6 to use all its features. Depending on
which kind of logging and caching the users choses he might need a database
that is able to work together with PDO. SimpleXML is required if the user
wishes to use the XML based filter rules, as an alternative he can use the
fallback JSON based rules. A nice to have for the generic attack detection is
Unicode support for the PCRE engine.

Users can configure all important values in the Config/Config.ini. The
settings should work out of the box most times but then and when a user
might want to tweak the paths or change the way of how the PHPIDS uses
caching.

The impact value indicates the severity of the attack. The PHPIDS brings
around fifty filter rules to detect attacks and each one of them has an impact,
the more rules match on the incoming data, the more likely it’s an attack
and the higher ranks the resulting impact.

Users can store the impact as session value, if they want to track an
attackers activity for some time and wish to react later, for example when

A.2. PHPIDS 61

session impact has risen to 50 or 100. A usual very first attack impact is
around 5 – 10, sometimes 15 – 20. A typical XSS probing monitored by
session based impact usually results in an impact of 50 – 150. So its pretty
easy to separate the false alerts from the real attacks using session based
impact value.

The PHPIDS is being developed under constant profiling with xdebug
and performance measurements to make sure that web applications will not
become noticeably slower. Only request parameters are checked whose values
inhabits characters besides a–Z, 0–9, @ and . Furthermore, the performance
hungry components are only included and used in case there is input coming
in with a key matching the ones given in the Config.ini, thus normally they
won’t be loaded during about 95% of all requests.

62 APPENDIX A. OVERVIEW ON MODERN IDSS

Appendix B

Programs examples

B.1 SQL Injection signature extract

Program 2 Rules for SQL Injection scanner

ALL { return ALL; }

AVG { return AMMSC; }

MIN { return AMMSC; }

MAX { return AMMSC; }

SUM { return AMMSC; }

COUNT { return AMMSC; }

AND { return AND; }

ANY { return ANY; }

BETWEEN { return BETWEEN; }

BY {return BY; }

CHAR(ACTER)? { return CHARACTER; }

CLOSE { ++tokno; return CLOSE; }

COMMIT { ++tokno; return COMMIT; }

CONTINUE { return CONTINUE; }

DECIMAL { return DECIMAL; }

DELETE { ++tokno; return DELETE; }

DISTINCT { return DISTINCT; }

DOUBLE { return DOUBLE; }

DROP { return DROP; }

63

64 APPENDIX B. PROGRAMS EXAMPLES

Program 3 Rules for SQL Injection scanner

ESCAPE { return ESCAPE; }

EXISTS { return EXISTS; }

FETCH { ++tokno; return FETCH; }

FLOAT { return FLOAT; }

FOUND { return FOUND; }

FROM { ++tokno; return FROM; }

GO[\t]*TO { return GOTO; }

GROUP { return GROUP; }

HAVING { return HAVING; }

IN { return IN; }

INDICATOR { return INDICATOR; }

INSERT { ++tokno; return INSERT; }

INT(EGER)? { return INTEGER; }

INTO { ++tokno; return INTO; }

IS { return IS; }

LIKE { return LIKE; }

NOT { return NOT; }

NULL { return NULLX; }

NUMERIC { return NUMERIC; }

OPEN { ++tokno; return OPEN; }

OR { return OR; }

PRECISION { return PRECISION; }

REAL { return REAL; }

ROLLBACK { ++tokno; return ROLLBACK; }

SELECT { ++tokno; return SELECT; }

SET { return SET; }

SMALLINT { return SMALLINT; }

SOME { return SOME; }

UNION { ++tokno; return UNION; }

UPDATE { ++tokno; return UPDATE; }

USER { return USER; }

VALUES { ++tokno; return VALUES; }

WHENEVER { return WHENEVER; }

WHERE { ++tokno; return WHERE; }

WORK { return WORK; }

B.1. SQL INJECTION SIGNATURE EXTRACT 65

Program 4 Rules for SQL Injection parser
sql_list:

sql’;’

| sql_list sql’;’

;

/* Partial SQL language */

sql: manipulative_statement

;

manipulative_statement:

close_statement

| commit_statement

| delete_statement_searched

| fetch_statement

| insert_statement

| open_statement

| rollback_statement

| select_statement

| update_statement_searched

| query_spec

;

close_statement:

CLOSE cursor

;

commit_statement:

COMMIT WORK

;

delete_statement_searched:

DELETE FROM table opt_where_clause

;

fetch_statement:

FETCH cursor INTO target_commalist

;

insert_statement:

INSERT INTO table opt_column_commalist values_or_query_spec

;

66 APPENDIX B. PROGRAMS EXAMPLES

Program 5 Rules for SQL Injection parser
open_statement:

OPEN cursor

;

rollback_statement:

ROLLBACK WORK

;

select_statement:

SELECT opt_all_distinct selection

INTO target_commalist

table_exp

;

[...]

update_statement_searched:

UPDATE table SET assignment_commalist opt_where_clause

;

query_spec:

SELECT opt_all_distinct selection table_exp

;

B.2. CROSS – SITE – SCRIPTING SIGNATURE EXTRACT 67

B.2 Cross – Site – Scripting signature extract

Program 6 Rules for Cross – Site Scripting scanner

"script" {

if (BEGIN(S)) {

++tokno;

return SCRIPT;

}

}

[<]?"img" {

if (BEGIN(I)) {

return IMG;

}

}

"iframe" {return IFRAME;}

"eval" {

return EVAL;

}

"location" {return LOCATION;}

<S,I>src= {return SRC;}

<S,I>"javascript" {

++tokno;

return SCRIPT_TYPE;

}

<S,I>alert {

++tokno;

return ALERT;

}

<I>onerror {return ONERROR;}

68 APPENDIX B. PROGRAMS EXAMPLES

Program 7 Rules for Cross – Site Scripting scanner (1)
script:

script_pure |

script_html

;

script_pure:

SCRIPT alert_stmt |

SCRIPT src_stmt

;

simple_par:

INTNUM |

NAME

;

script_html:

img_stmt |

iframe_stmt |

obj_stmt |

loc_stmt |

eval_stmt

;

input_par:

’(’INTNUM’)’|

’(’NAME’)’

;

img_stmt:

IMG src_stmt |

IMG src_stmt onerror_clause

;

iframe_stmt:

IFRAME src_stmt

;

B.2. CROSS – SITE – SCRIPTING SIGNATURE EXTRACT 69

Program 8 Rules for Cross – Site Scripting scanner (2)
obj_stmt:

OBJECT src_stmt

;

src_stmt:

SRC embedded_script |

SRC simple_par |

SRC input_par

;

onerror_clause:

ONERROR alert_stmt |

ONERROR ASSIGN alert_stmt |

ONERROR ASSIGN eval_stmt

;

embedded_script:

SCRIPT_TYPE ’:’ alert_stmt

;

alert_stmt:

ALERT input_par |

ALERT simple_par

;

eval_stmt:

EVAL input_par |

EVAL ’(’src_stmt’)’|

EVAL ’(’alert_stmt’)’

;

loc_stmt:

LOCATION embedded_script |

LOCATION simple_par

;

70 APPENDIX B. PROGRAMS EXAMPLES

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Thechniques, and Tools. Addison Wesley, 2 edition,
August 31, 2006.

[2] Jay Beale, James C. Foster, Jeffery Posluns, and Brian Caswell. Snort
2.0 Intrusion Detection. Syngress Publishing, 2003.

[3] Damiano Bolzoni. Revisiting Anomaly - Based Network Intrusion Detec-
tion Systems. PhD thesis, University of Twente, Distributed and Embed-
ded Security Group, 2009.

[4] Symantec Corporation. Internet security threat report 2008, 2008. http:
//www.symantec.com/enterprise/threatreport/index.jsp.

[5] Neil Desai. Increasing performance in high speed nids, a look at snort’s
internals. http://packetstorm.linuxsecurity.net/papers/IDs/, 2002.

[6] Charles Donnelly and Richard Stallman. Bison. 2.4.1 edition, 2009.

[7] C. Kruegel and T. Toth. Using decision trees to improve signature - based
intrusion detection. RAID’03: Proc. 6th Symposium on RecentAdvances
in Intrusion Detection, Volume 2820 of LNCS:Pages 173–191, 2003.

[8] Vern Paxson, Will Estes, and John Millaway. Flex manual. 2.5.35 edition,
2007.

[9] Wikipedia. Intrusion detection system, 2009. http://en.wikipedia.org/
wiki/Intrusion-detection_system.

71

