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Summary 
A flood forecasting system is a complex system which consists of many different components 

and each of these components can contain, to some extent, an uncertainty. Studying the 

uncertainties in flood forecasting, quantifying and propagating them through the system can 

help to gain more information about the different sources of uncertainty that may affect the 

forecasts. This information can later be added to the forecasts to improve their quality. These 

issues bring several challenges to the study of flow forecasting uncertainty: firstly, what is the 

impact of different sources of uncertainty on the quality of flood? Secondly, forecasts among 

all sources of uncertainty that stem from different components of the system, which sources 

significantly affect flood forecasts? Thirdly, which methods can be used to efficiently quantify 

and propagate those uncertainties through a forecasting model? Finally, which measures 

should be used to evaluate the uncertainty quantification and their impact on the quality of 

the forecasts? The aims of this research is to quantify and propagate the different kinds of 

uncertainty sources which play a role in flood forecasting; and to investigate methods to 

assess the quantified uncertainties and proper measures to evaluate the uncertainty 

quantification. 

In this research, the GRPE forecasting system, an ensemble prediction system based on the 

lumped GRP hydrologic model, is applied to three catchments in France. The uncertainties 

from precipitation data (input precipitation which is used for flow simulation and forecast 

precipitation used for flow forecasting), hydrological initial conditions (discharge data) and 

model parameters, which are acknowledged as important sources of uncertainty in 

hydrological modelling and forecasting, are studied. They are individually quantified and then 

propagated together through the forecasting system with an experimental approach by 

multiplying the simulations. The model structure uncertainty is not considered in the scope of 

this research.  

Methods for uncertainty quantification are defined and applied to each source of uncertainty. 

Two ensemble prediction systems from ECMWF and Météo-France are used to account for 

the forecast precipitation uncertainty for lead times from 1 to 9 days. For the uncertainty of 

input precipitation data, geo-statistical simulations of spatially averaged rainfall, conditioned 

on point data, and available for one study catchment, are chosen to provide the multiple 

statistical realizations of daily spatial rainfall fields over the study area. The hydrologic initial 

condition uncertainty is quantified by using an ensemble of discharges to update the state of 

the routing reservoir of the forecasting model. These discharges are retrieved from the 

analysis of uncertainties affecting the rating curves of each study catchment. Ten different 

periods of data, with the length of 5 years each, are selected to calibrate the model and thus 

to account for calibration period uncertainty. Finally, the Generalized Likelihood Uncertainty 

Estimator (GLUE) method is alternatively used to quantify the parameterization uncertainty. 

This is done by taking a large number of 125.000 sets of parameters to find the confidence 

intervals. To assess the results of uncertainty quantification, two probabilistic evaluation 

measures, the Brier (Skill) Score and the reliability diagram, are employed. In addition, 

confidence intervals of the forecasts are used to visualize the outcome of the research. 
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The results show that input precipitation uncertainty does not have noticeable impact on the 

forecast output. This may be due to the method used to quantify the uncertainties from this 

source, which may be inappropriate to correctly capture them. For the catchments studied, 

this source of uncertainty can, therefore, be neglected when propagating different sources of 

uncertainty through the system. The other sources of uncertainty show large impacts on flow 

forecasts. Initial condition uncertainty shows large impacts for small lead times (up to 2 days). 

After that, forecast precipitation uncertainty has the largest impact; this impact is more 

significantly pronounced at high lead times. Depending on the catchment, parameter 

uncertainty can have more impact if it is evaluated from the variation of the calibration period 

or from the GLUE method. 

Based on the results of this research, and on the catchments and methods investigated, it is 

recommended to take into consideration the uncertainty of forecast precipitation, initial 

condition and model parameters in flood forecasting. There are different ways to account for 

parameter uncertainty, but the proposed approach of using different calibration periods 

proved to be a simple method but able to improve the quality of the forecast outputs. 
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1 Introduction 

1.1 Motivation 

Flood is a major natural disaster in many countries all over the world. The consequences of 

flooding can be enormous in term of property loss and fatalities. According to the European 

Commission (2011), in Europe, there were more than 100 major damaging floods only in a 

period of three years between 1998 and 2002, which represents, on average, more than 30 

floods per year. Among those, there was the catastrophic flood along the Danube and Elbe 

rivers in 2002; which was a 100 year-flood that caused billions of Euros of damage in many 

countries in Eastern Europe (BBC, 2002). Since 1998, floods have caused some 700 fatalities, 

the displacement of about half a million people and at least 25 billion Euros in insured 

economic losses in Europe (European Commission, 2011). 

Flood forecasting is one of the solutions to prevent the consequences of flooding, as it can 

provide information on whether a potential flood might happen in the long or short term 

future. Based on the flood forecasts issued, flood warning, prevention and evacuation 

solutions can be implemented. According to the American Meteorological Society Glossary 

(American Meteorological Society, 2011), "flood forecasting is the use of real-time 

precipitation and streamflow data in rainfall-runoff and streamflow routing models to 

forecast flow rates and water levels for periods ranging from a few hours to days ahead, 

depending on the size of the watershed or river basin". 

However, telling something that might happen in the future is not an easy task as the future 

itself is anyway something we cannot know at this moment and hence uncertain. Lack of 

knowledge about the physical processes involved in flooding and the data used, as well as 

inherent unpredictability of severe events can lead to uncertainties in the forecasts. Errors in 

the forecasting of flood may lead to (Smith and Ward, 1998):  

- under-preparation and therefore to otherwise avoidable damage (if the forecast stage 

is too low and/or the forecast timing of inundation is late), or 

- over-preparation, unnecessary expense and anxiety, and to a subsequent loss of 

credibility (if the forecast stage is too high and/or the forecast timing of inundation is 

premature).   

A typical example of how not taking into account the errors in flood prediction can lead to 

severe consequences is reported by Krzysztofowicz (2001) for the flood event of Spring 1997 

on the Red River in the Grand Forks, North Dakota, USA. The estimated 15 meter flood crest, 

with no uncertainty bounds associated to this value, led city officials and residents to prepare 

for the future event as if this estimate were a perfect forecast. However, the forecast actually 

seriously underestimated the event and the actual flood crest was of 16.5 meters, 

overtopping the dikes, and inundating 80% of the city which forced almost the total 

evacuation of its citizens.  
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Therefore, it can be seen that assessing uncertainties in flood forecasting is a very crucial 

issue; especially in a well-developed world nowadays where a great number of sophisticated 

infrastructure systems were built or are being built, which makes people much more 

vulnerable to natural disasters. Understanding the uncertainties that exist in the flood 

forecasting chain will help people to be aware of them and be better prepared for the future 

events. Furthermore, uncertainty assessment also helps scientists to find innovative solutions 

to quantify and reduce those uncertainties. Besides the forecast quality is affected by the lack 

of knowledge on uncertainty, and therefore, the quantification of uncertainty also contributes 

to adding more information/knowledge into the flow forecasting procedure to improve the 

quality of the forecasts. Forecasts can thus become more reliable in terms of probability, 

or/and more accurate in terms of magnitude. 

In the coming section, a general overview of uncertainty analysis in streamflow prediction is 

presented. The focus is on the identification, quantification, propagation and evaluation of 

flow forecasting uncertainty. 

1.2 Uncertainty analysis in flood forecasting 

There are different sources of uncertainty that might affect flow forecasting. In the context of 

flood forecasting, Maskey et al. (2004) classified the sources of uncertainty as model 

uncertainty, input uncertainty, model parameter uncertainty, natural and operational 

uncertainty. Except the last source of uncertainty, which originates from the nature and the 

operation and is not related to the forecasting model, others come from the different 

components of the flow forecasting model as illustrated in Figure 1. The input data for a flow 

forecasting model have two kinds, input for flow simulation and forecasting; uncertainty of 

the input data can arise from both of these sources. Other source of uncertainty that is not 

mentioned by Maskey et al. (2004) is initial condition uncertainty which comes from the 

inappropriate estimation of the initial state for flow forecasting. All of these sources of 

uncertainty can propagate into the forecast outcome and cause the uncertainty of the flow 

forecasting. In addition, the forecasts are often verified against a reference which is often 

taken as the observed discharge. However, as the measurement of discharge is not error free, 

uncertainty can also stem from this component. 

 

Figure 1: Main components of a typical hydrological forecasting chain  
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1.2.1 Quantification of uncertainties in flow forecasting 

Many studies can be found in the literature that study one or some of the uncertainty sources 

mentioned above. Most of them show that taking into consideration the uncertainties would 

improve the reliability of the forecast.  

Using the ensemble prediction systems (EPS) is a popular approach to assess the uncertainty 

in flow forecasting due to precipitation forecast uncertainty. Many published literature, which 

have used EPS, are listed in Cloke and Pappenberger (2009). The authors also showed the 

attractiveness and potential of using ensemble prediction systems (EPS) to account for 

uncertainty from the forecast of precipitation in flow forecasting. Ensemble forecasts of 

precipitation take into account the uncertainties in the atmospheric state and initial 

conditions, as well as the limitation of the representation of the physical process in weather 

forecasting. As a result, a set of possible future states of the atmosphere is provided. This 

uncertainty can be then propagated through flood forecasting system to produce an 

ensemble prediction of flow as shown in Figure 2. By reviewing published literature and based 

on their results, the authors demonstrated that using the precipitation ensembles in flood 

prediction can increase the capability of issuing the successful flood warnings. Moreover, the 

ensemble predictions help to add additional useful information to the deterministic forecast 

which is the best estimation of the future event. 

 

Figure 2: Ensemble hydrographs for a flood event predicted for each ensemble forecast of precipitation (Cloke 

and Pappenberger, 2009) 
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Pappenberger et al. (2005) cascaded the uncertainty of rainfall from medium range weather 

forecasts into flow forecasts using the ensemble prediction system from the European Centre 

of Medium Range Weather Forecasting (ECMWF). The authors also concluded that the errors 

in rainfall forecasts had a strong influence on the forecast flows. 

He et al. (2009) used not only one, but multiple ensemble weather predictions from various 

weather centres to cascade the uncertainty of precipitation forecast through a flow 

forecasting model. The best six sets of model parameters were selected, to account for 

parameter uncertainty, and combined with 216 forecasts members to form 6*216 ensemble 

forecast discharges. The paper shows that forecast precipitation uncertainty dominates and 

propagates through the forecast chain, implying the importance of accounting for this 

precipitation uncertainty in flow forecasting. 

Mascaro et al. (2010) also admitted the important contribution of evaluating the propagation 

of errors associated with ensemble precipitation forecasts into the ensemble streamflow to 

uncertainty reduction in flow forecasting. In their paper, the authors generated and verified 

three different sets of ensemble streamflow forecasts by using three ensembles of 

precipitation forecasts.  

Concerning uncertainty from input data, in Renard et al. (2010), the authors stated that the 

traditional calibration methods in hydrological modelling assume all observed inputs are error 

free, and therefore there is no input uncertainty which is obviously not realistic. For that 

reason, in their papers, the Bayesian total error analysis (BATEA) framework was used to 

assess the uncertainty of input data. The outcome of their work proves that ignoring input 

uncertainty can significantly degrade the inference of flow prediction, and hence, this source 

of uncertainty should be considered in hydrologic prediction. 

Berthet et al. (2009) focused on investigating the impact of soil moisture initial conditions on 

the performance of flood forecasting models and finding the level of importance of 

accounting for the initial condition uncertainty in flood forecasting. They applied different 

methods of forecast initialization (updating) and compared the prediction errors obtained 

from those tests to find the best approach to deal with the initial condition in a flood 

forecasting model. Their study shows that different methods of initialization have different 

impacts on the forecast outcome and there is an optimum mode for initializing. Because of 

the large and varied data that were used, the authors stated that the results were probably 

not catchment-dependent. It is also suggested in the paper that the same results achieved for 

the model studied could be found for many other forecasting models. 

Many studies on hydrological simulation and prediction quantify parameter uncertainty using 

the Generalized Likelihood Uncertainty Estimator (GLUE) proposed by Beven and Binley 

(1992) (see Pappenberger et al. (2004), Pappenberger et al. (2005), Larsbo and Jarvis (2005), 

Xiong and O’Connor (2008), Jin et al. (2010), etc.). The main idea of the GLUE method is 

rejecting the concept of an optimum model and parameter set, and assuming that prior to 

input of data into a model, all model structures and parameter sets have an equal likelihood 

of being acceptable. By using a number of parameter sets or model structure, series of equally 
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likely simulations can be obtained. After the data for a particular case being considered, the 

model structures or parameter sets can be attributed as non-behavioural or behavioural 

depending on the likelihood threshold that is defined by the user. Confidence intervals can be 

defined for the flow simulations or forecasts using the cumulative distribution function of 

discharge weighted by the likelihood value. Larsbo and Jarvis (2005) recommended GLUE a 

suitable method of parameter uncertainty estimation for prediction. Pappenberger et al. 

(2004) did a study in the Meuse river basin in the Netherlands and Belgium using the GLUE 

method. A large number of 6632 runs were performed but none of the simulations was found 

as behavioural. It is concluded in the paper that "uncertainty analysis should be compulsory 

for every model exercise even when the changes in the modelling domain are considered as 

controllable or minor". 

Not exactly on forecasting, Carpenter and Georgakakos (2004) studied the impacts of 

parametric uncertainty on ensemble streamflow simulations. Ensemble flow simulations were 

obtained by introducing perturbations in model parameters through random sampling from 

prescribed probability distributions within a Monte Carlo simulation framework. The results 

show a significant reduction in simulation uncertainty when considering the discharge 

ensembles from a number of perturbed parameters. 

Uhlenbrook et al. (1999) estimated the prediction uncertainty of a rainfall-runoff model 

caused by limitations in the identification of model parameters and structure. Different 

parameter sets were randomly generated with a Monte Carlo procedure to account for the 

parameter uncertainty and several variants of the conceptual rainfall-runoff HBV model were 

considered. The outcome of their study on parameter and model structure uncertainty comes 

to a conclusion that uncertainties of the model structure and the model parameters, and their 

impacts on model predictions have to be considered when applying a conceptual hydrological 

model. Also concerning the model structure uncertainty, Butt et al. (2009) did their research 

on a physically based forecasting model. The authors also came to a conclusion that model 

structural uncertainty should be considered in assessing model uncertainties and the use of a 

combination of several model structures can be a means of improving hydrological 

simulations. 

Mc Milan et al. (2010) investigated the errors in discharge measurements, used to calibrate a 

rainfall runoff model, that caused by the rating curve uncertainty. By looking at the errors in 

individual gauging station and rating curve fits, the authors concluded that considering the 

uncertainty in discharge data resulted in significant improvement in flow prediction. 

Considering the rainfall forecast uncertainty and the discharge observation uncertainty but 

more focusing on the discharge observation errors, Pappenberger et al. (2009), by using the 

observations for verifying the forecasts, recognized the effect of uncertainty in observations. 

The results show the flatten histogram and the reduced number of outliers in the 

hydrographs due to the effect of observation uncertainty. The authors recommended that 

this uncertainty coming from observation should be taken into account when evaluating the 

forecast skill. 
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In summary, quantifying different uncertainty sources is acknowledged in the literature that 

may improve the forecast reliability. However, it can also be seen that, normally, the studies 

focused on one or two uncertainty sources; and the entire flow forecasting model domain, as 

shown in Figure 1, is not often studied in the literature. 

1.2.2 Propagation of uncertainties in flow forecasting 

The assessment of uncertainty in a model output requires the propagation of different 

sources of uncertainty through the modelling system. Different approaches to propagate the 

uncertainties through a flood forecasting system can be found in the literature.  

Hostache et al. (2011) proposed a stochastic method to assess the uncertainty in hydro-

meteorological forecasting systems. The focus of the paper is to evaluate the total uncertainty 

propagated into flood forecasts through a conceptual hydrologic model. But the authors 

recognized the difficulty in isolating the errors that stem from the individual model 

components. Therefore, to evaluate the predictive uncertainty of the forecasting system, 

instead of computing the uncertainties generated by individual model components, their 

approach focused on the analysis of the statistical properties of the discharge forecast errors. 

The results of this approach were the confidence limits computed for various lead times of 

prediction. These confidence limits were then compared with observations of the river 

discharge. The drawback of this approach is that it cannot differentiate between each 

individual uncertainty source that arises from each component of the forecasting system. In 

addition, when comparing the outcome confidence limits of the forecasts with the 

observations, the observed discharges were assumed to be error free, which might lead to 

errors in the interpretation of the results. 

The Bayesian approach may overcome those limitations by directly addressing both input and 

output errors in hydrological modelling through the distribution model of the errors of each 

source. Kavetski et al. (2006) applied the BATEA methodology to two North American 

catchments in which the precipitation errors showed considerable effects on the forecast 

hydrographs and the calibrated parameters. The authors concluded that this was a promising 

approach to deal with uncertainty in hydrological modelling. However, the authors also 

recognized the shortcoming of the proposed approach, since the error models are often 

poorly known and it is required further work on the distribution of the input and output 

errors. Besides, it is also computationally challenging and, technically, an expensive method.  

The combination of different uncertainties, each coming from a different component of the 

forecasting system, can be experimentally propagated through the model by multiplying the 

simulations, every time a different source of uncertainty is taken into account. For instance, 

Pappenberger et al. (2005) propagated the uncertainties from forecast precipitation and 

model parameters by taking 52 ensemble precipitation forecasts and 6 different parameter 

sets within the modelling framework, resulting in 52*6 simulations of runoff. This approach 

can explicitly quantify the uncertainties, and makes it possible to assess the impact of each 

uncertainty source and that of the combination of those uncertainties on the model outcome 

in a step-by-step propagation analysis.  
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The entire uncertainty analysis for a system is necessarily done through three steps: 

uncertainty identification, uncertainty quantification and uncertainty propagation 

(Magnusson, 1997). First of all, the sources of uncertainty that might play an important role in 

the study system should be identified, and then those recognized sources need to be 

quantified and propagated through the system. However, as can be seen in the reviewed 

literature above, the whole process of uncertainty analysis is not often done. Normally, the 

studies focused on some specific sources of uncertainty and propagated those uncertainties 

through the system of interest (Mc Milan et al. (2010), Uhlenbrook et al. (1999), Carpenter 

and Georgakakos (2004), Mascaro et al. (2010), etc.). This work can result in the impact of 

some specific sources of uncertainty in hydrological modelling, but the overall uncertainty of 

the model output cannot be seen. Going through the whole process is, therefore, necessary 

to understand the total possible uncertainty that might exist in the model output.  

1.2.3 Evaluation of forecast uncertainty 

The result of propagating the uncertainty through a forecasting model is a set of ensemble 

forecasts of the model output of interest, then the issue comes in how to evaluate those 

forecasts. In WMO (2011), three properties of an accurate probabilistic forecast are defined:  

• Reliability: the agreement between forecast probability of an event and the mean 

observed frequency of that event.  

• Sharpness: the tendency of forecast probabilities of an event occurring being near 0 

or 1. Forecast system that are capable of predicting high probability are said to have 

sharpness and vice versa. 

• Resolution: the ability of the forecast to resolve the set of sample events into subsets 

with characteristically different outcomes. 

To assess these properties, over a long series of pairs of "probabilistic forecasts-observation", 

several statistical measures have been proposed in the literature, such as Brier (Skill) Score 

and the Ranked Probability (Skill) Score, as well as the reliability diagram and the rank 

histogram.  

All of those probabilistic measures deal with the probability of forecast and observed 

frequency but Brier score considers the whole domain of probability; it is calculated for a 

specific threshold of exceedance by summing all of the square difference between the 

forecast probabilities and observed frequencies. Reliability Diagram looks also at the 

distribution of the probability while considering the event with different bins of probability. In 

a reliability diagram, the forecast probability and observed frequency are plotted as a pair for 

each probability bin; the assessment is based on the distance of the pair points to the 

diagonal which represents the perfection of forecast. This will be explained in more detailed 

later. Ranked Probability (Skill) Score also categorizes the probability to cover all possible 

outcomes, but it is more sensitive to the distance as the further distance between 

observation and forecast will be punished more. The rank histogram is used to check if the 

future state of the predictant is consistent with the distribution of the ensemble. 



Uncertainty in flood forecasting   13 

Evaluation measures have been applied in flood forecasting by several authors, see, for 

instance, Renner et al. (2009), Thirel et al. (2010), Olsson and Lindstrom (2008), etc. Renner et 

al. (2009) employed these verification tools in their papers. The results show that different 

forecast ensembles can be compared and improvements in the forecasting systems can be 

identified and measured with the help of skill scores and the reliability diagram. In addition, 

the verification information also provides useful information of the forecasts as it gives an 

expectation of uncertainty existed. This information can be used effectively in establishing the 

confidence in a forecast.  

1.3 Problem definition 

From the previous sections, it can be clearly seen that flood forecasting always contains 

uncertainties which can originate from many different sources. It is of importance to quantify 

those uncertainties as a forecast should be issued in company with its uncertainty. Accounting 

for the uncertainty in flood forecasting can help to improve the quality of the forecasts. 

However, since the uncertainty in flow forecasts comes from various sources, it is necessary 

to know which sources of uncertainty play a crucial role in the forecasting system and which 

do not. By doing this, information can be obtained about which sources of uncertainty should 

be primarily propagated to the forecast output, since accounting for all kinds of uncertainty 

might not be feasible and, if uncertainty is wrongly quantified, might lead to an 

overestimation of the total predictive uncertainty of the output.  

The major challenges in uncertainty quantification in flood forecasting can be summarized as 

following: 

- The entire uncertainty analysis process in flood forecasting, including uncertainty 

identification, quantification and propagation needs to be done. 

- The uncertainties should be properly propagated into the forecast output to improve 

the forecast reliability. 

- The impact of different uncertainty sources needs to be evaluated. 

- Methods to assess different sources of uncertainty and proper evaluation measures 

to assess if the uncertainty quantification is correctly described the total predictive 

uncertainty need to be considered. 

1.4 Objective and research questions 

The objectives of this research are to identify the sources of uncertainty which may play a 

significant role in flood forecasting; to quantify and propagate the main sources of 

uncertainty identified through a flow forecasting system; to evaluate, individually and 

together, the impact of uncertainty quantification on the forecast outcome. 

Based on the results of uncertainty quantification evaluation, this research will suggest the 

main sources of uncertainty that should be propagated into flood forecasts to improve 

forecast quality. 
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The objectives are presented in terms of four research questions: 

1. Which sources of uncertainty significantly affect flood forecasts? 

2. How to quantify the important uncertainty sources that affect flood forecasts? 

3. How to efficiently propagate those uncertainties through a forecasting model? 

4. What is the impact of different sources of uncertainty on the quality of flood 

forecasts?  

Three catchments in France, namely Allier (code number K2330810), Ardèche (V5064010), 

and Arc (Y4122020), are chosen as study areas; details about the study areas are given in 

Section 2.1. The GRPE forecasting system (Ramos et al., 2008) is used to forecast river 

discharges. It is an adaptation of the hourly GRP rainfall-runoff model (Tangara, 2005; Berthet 

et al., 2009) to daily ensemble flow forecasting. The GRP model is a lumped hydrological 

model developed at Cemagref, France, which is used to forecast river flows in real time on 

several catchments in France. 

1.5 Report outline 

In the second chapter of this report, the study materials used in this research are introduced, 

including study areas, data and the forecasting system. The methods for uncertainty 

identification, quantification, propagation and evaluation are presented in chapter 3. The 

results on uncertainty identification from the literature review are shown after the 

description of uncertainty identification method. The results of uncertainty propagation and 

evaluation are shown and discussed in chapter 4.  Finally, chapter 5 gives the conclusion and 

recommendation of the research. 

 



Uncertainty in flood forecasting   15 

2 Study materials  

In this chapter, the study areas and their observed hydro-meteorological data are presented. 

Then the hydrological forecasting system used in this research is described.  

2.1 Study areas 

Three catchments in France, Allier (K2330810, 2269 km
2
), Ardèche (V5064010, 2240 km

2
), Arc 

(Y4122020, 728 km
2
) are selected for this study. Figure 3 shows the location of three study 

catchments in France. These catchments are selected because they have available data 

necessary for uncertainty quantification performed in this study, such as spatially averaged 

precipitation and ensemble discharges from rating curve are available in these areas. Besides, 

these catchments are part of a wider study on uncertainty quantification and propagation 

conducted at Cemagref. Some characteristics of the catchments are summarized in Table 1. 

Two catchments Allier and Ardèche, which are medium sized catchments with area of more 

than 2000 km
2
, are located in the mountainous area while Arc, the small catchment with only 

728 km
2
, is in a lower area.  

 

Figure 3: Location of the three study catchments with indication of their codes and surface areas 
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Table 1: Study areas and data availability 

 

2.2 Observed precipitation and discharge data 

The observed precipitation is used as input for the GRP model in the calibration period. In the 

forecast period, observed precipitation is used to simulate the discharge until the day of 

issuing the forecast. Observed discharges are used to calibrate and validate the model, as well 

as update the state of the model at each time step during the forecast period. Observed 

precipitation data come from the meteorological analysis system of Météo-France (SAFRAN) 

and observed streamflow data come from the French database Banque HYDRO. The data 

used in this research is daily data.  

The observation period of precipitation is from 1/8/1958 to 31/7/2009 (about 51 years). 

During this period, availability of discharge data varies with catchments, as shown in Table 1; 

catchments Allier and Ardèche have long series of discharge while catchment Arc has only 

about 14 years. With GRP calculation algorithm, when no data of discharge are found, the 

model still simulates in the days with no data but the objective functions are calculated 

without those days. Hence, it will not affect too much the calibration and validation if the 

number of missing values is small and scattered in the whole period. For catchment Arc, the 

data are still available for about 14 years so it is still acceptable for calibrating and validating 

the model. Besides, it would be also interesting to look at catchment Arc because it is a small 

catchment (728 km
2
) compared with the other two with quite similar size (2269 km

2
 and 2240 

km
2
). 
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2.3 Forecasting system and GRP model 

2.3.1 Forecasting system 

A forecasting system contains many different components as shown in Figure 1. Forecasting 

ensemble river discharge with a hydrological model requires defining a particular model 

structure, with its parameters, input data and, usually, an updating procedure to start the 

forecasts from initial conditions as close as possible to observed conditions.  This composes a 

forecasting model.  

To implement a hydrological forecasting model, it is thus necessary to provide the input 

meteorological data (precipitation, temperature, etc.) for flow simulation and weather 

forecast (precipitation, temperature, etc.) to predict the river flow. The initial state of the 

system needs also to be defined so that the forecast can start from a certain, properly defined 

point. This initial state can be defined without a specific updating routine based only on the 

simulated discharge at the end of the previous time step, which already takes into account 

observed meteorological conditions. However, as the model flow output contains errors due 

to the limited representation of the real system, the simulated discharges are also subject to 

some errors, which might be exacerbated in time during the continuous simulation of the 

hydrological model. Therefore, in order to avoid such errors, other kinds of observed data, for 

example observed discharges can be used to update the forecasting model and bring its 

output closer to real time conditions before issuing a forecast. It should be kept in mind, 

however, that the observed discharges are not error free, as observation is still far from being 

perfect due to the instrumental errors and the difficulties of capturing the natural space-time 

variability of stream flows. As the model represents the real system through a set of 

parameters that characterizes that system, the parameters need to be defined before using 

the model to forecast. In order to define the model parameters, the model is calibrated using 

a long period of historic data (called calibration period); after calibration, the model can be 

used for forecasting. Calibration and forecasting period need to be independent.  

Finally, after issuing a forecast, the output of the model, the forecast discharge, should be 

compared with a reference value to evaluate the forecast performance. This reference 

discharge can be the observed discharge. Here again, as the observed discharge is also subject 

to measurement errors, using it as reference might lead to a wrong interpretation of forecast 

outcome.  

2.3.2 GRP model structure and parameters 

The hydrological model used in this research is the GRP model, integrated in the GRPE 

forecasting system to forecast discharges from an ensemble of forecast precipitation 

scenarios at each forecast time step. Weeink (2010) and Berthet et al. (2009) provided a 

detailed description of the model structure. Here, a summarized description is presented. 

More detailed information about the model can be found in the above papers. 

The GRP model is a daily lumped hydrological forecasting model developed in Cemagref, 

France (Figure 4). 
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Model inputs are the areal rainfall P, either 

observed or forecast for stream flow 

simulating and forecasting respectively; and 

the potential evapo-transpiration PE. In 

practice, the climatological value for the 

potential evapo-transpiration is used (for 

example, the same seasonally variable evapo-

transpiration, identically repeated each year), 

as previous studies have shown that, for the 

family of GR models, there were no 

systematic improvements in the rainfall-

runoff model efficiencies when using 

temporally varying evapo-transpiration (Oudin 

et al., 2005).  

 

Figure 4: Model structure of the GRP hydrological forecasting 

model (Berthet et al., 2009) 

The GRP model consists of a production function and a routing function as shown in Figure 4. 

The model describes the hydrologic process from rainfall to runoff as a sequence of processes 

in one time step. The time step used in this study is daily time step. 

The GRP model consists of three calibrated parameters: the volume adjustment factor which 

controls the volume of effective rainfall X1; the level of the routing store X2 and the base time 

of the unit hydrograph X3. 

Besides, a number of fixed parameter is defined for the forecasting model running at daily 

time steps:  

• Production reservoir capacity: A=350mm 

• Percolation function coefficient: B=2.25 

• Unit hydrograph exponent: α=2.5 

• Outflow routing reservoir exponent: β=2.0 

2.3.3 Calibration, validation and forecast in the GRPE forecasting system 

The GRP parameters are calibrated using the historic data of discharge. The calibration and 

validation are done automatically. Optimization searches for the global optimum of a given 

objective functions. Four performance criteria are automatically computed by the calibration-

validation routine: 

Root Mean Square Error: 

ˆ

2

Q - Qt+Lt+Ltt
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      [1]
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Persistence index: 
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Nash-Sutcliffe: 
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Transformation of Persistence Index: 

PI(L)
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PI(L)
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    [4]

  

where L is the lead time, Qt and Qt+L are the observed discharges at time step t and t+L 

respectively; Q  is the average of observed discharges; while  Q̂
t+L t

 is the forecast issued at 

time step t for time step t+L; n is the number of time steps. 

The model uses all observed data previously to the start of forecast period to calibrate its 

parameters. The optimization searches to maximize the PI values. When forecasting, the 

model simulates stream flow until the day of issuing the forecast, and then forecast the flows 

for the L days after depending on the length of lead times. 
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3 Methods 

In this chapter, literature is reviewed to identify the possible uncertainty sources that might 

propagate into the forecasting system of interest; as well as to determine which sources play 

a crucial role in this system. Based on that, methods for quantifying each of those “important” 

sources of uncertainty is described together with the corresponding data that are used. After 

that the method for experimental uncertainty propagation is introduced. At the end, the 

evaluation measures for assessing the uncertainty quantification are described. 

3.1 Identifying uncertainty sources 

3.1.1 Initial identification of uncertainty sources 

A large number of researches on uncertainty of hydrological modelling or flow forecasting can 

be found in the literature, for example, Uhlenbrook et al. (1999), Carpenter and Georgakakos 

(2004), Mc Milan et al. (2010), Kuczera et al. (2010), etc. Therefore, it is useful to make use of 

the existing knowledge to study possible sources of uncertainty in a system. Besides, there 

are also different methods for doing this work; for instance, one might use the expert opinion 

method proposed by Warmink et al. (2010). Whatever method is applied to identify the 

sources of uncertainty, literature study is definitely an inevitable step. Here this method is 

used for identifying the uncertainty sources that play a role in hydrological forecasting in 

general and GRPE flow forecasting system in particular. 

In the hydrological modelling context, Walker et al. (2003) categorized five uncertainty 

sources (or "location" as the authors used in their papers) which are context, model, inputs, 

model parameter, model outcome uncertainty. The model outcome uncertainty is the result 

of propagating the other uncertainty sources through the model; so basically there are four 

sources that might cause the uncertainty in hydrological modelling. 

Context is an identification of the boundaries of the system to be modelled, and thus the 

portions of the real world that are inside the system, the portions that are outside, and the 

completeness of its representation. Because it is related to the limitation of the model by 

which the real world cannot be fully described, here the context is classified in the uncertainty 

source arose from the model.  

In addition, the model uncertainty has two other categories, model structure uncertainty and 

model technical uncertainty. The model technical uncertainty is generated by the software or 

hardware errors. In case of GRP model, this is a lump, conceptual model with a simple code 

which is written in FORTRAN language; therefore, the model is expected to be not subject to 

the model technical uncertainty. The model structure uncertainty arises from a lack of 

sufficient understanding of the system, including the behaviour of the system and the 

interrelationships among its elements. Model structure uncertainty also involves the 

mathematical algorithm, equations and assumptions of the model. In GRP model structure, 

the uncertainty can come from the representation of rainfall-runoff process using the 

production and routing reservoirs, or the definition of a threshold level according to that the 
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amount of evapo-transpiration is decided, or the hydrological routing process which is 

described by the unit hydrograph.  

The input data uncertainty is divided by Walker et al. (2003) into uncertainty about the 

external driving force and uncertainty about the system data. The external driving force that 

produces changes within the hydrological process is the meteorological force; in the case of 

GRP forecasting model, it is the input precipitation data used for the flow simulation mode of 

the system. The uncertainty about the system data including land use map, data on water-

related infrastructure, which is often the result of the lack of knowledge on the system’s 

properties, is not applicable to the GRP model, so it is not considered in this research. Finally, 

it should be noted that in their paper, the authors considered the uncertainty in hydrological 

modelling, not forecasting; in a hydrological forecasting system, there is another uncertainty 

which can be also classified as uncertainty about the input data. This is the uncertainty from 

the forecast driving force or the forecast precipitation which is used for flow forecasting in the 

GRPE system.  

Concerning the model parameter uncertainty, there are four different types of parameters 

suggested by Walker et al. (2003), divided into two sub-categories: non-calibrated parameters 

and calibrated parameters. Non-calibrated parameters include: (1) Exact parameters 

(universal constants); (2) Fixed parameters (well defined parameters like gravity acceleration 

g); and (3) Prior chosen parameters (which are parameters that may be difficult to identify by 

calibration and are chosen to be fixed to a certain value that is considered invariant). In the 

GRP model, as mentioned in Section 2.3.2, there are four main parameters whose values are 

fixed. The uncertainty of non-calibrated parameters can come from the fact that these 

parameters are chosen and fixed at some values. The calibrated parameters are unknown 

with previous experience and need to be determined by minimizing the difference between 

model outcomes and measured data of the same period and location. Here these are the 

three calibrated parameters of GRP. The choice of these parameters when forecasting river 

flow can affect the forecast outcome and cause uncertainties.   

In Walker et al. (2003), the uncertainty coming from the initialization of the model is not 

mentioned. However, this source of uncertainty was investigated by other authors (for 

example, Berthet et al. (2009)). For the GRP model, at each forecast day, the state of the 

system is updated with the observed discharge at the end of the previous time step. However, 

this choice of initial condition might also lead to uncertainties in the discharge forecasts as the 

observed discharge might contain errors and might not be a good start for the simulation at 

the forecast time step. Another uncertainty source which is also not mentioned in Walker et 

al. (2003) but was studied in the literature is uncertainty of the observed discharge (See Mc 

Milan et al. (2010)). As the outcome of the forecasting model is compared with the observed 

discharges, which is an uncertain reference, this action might cause a misinterpretation of the 

results if the uncertainties are not considered. 

The uncertainty in hydrological forecasting is the accumulated uncertainty of the above 

uncertainties. All sources of uncertainty in hydrological forecasting are summarized Figure 5 

below: 
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Figure 5: Different uncertainty sources that can propagate into hydrological forecasting 

In the context of GRPE forecasting system, the uncertainty sources are shown in Figure 6. 

 

Figure 6: Identification of uncertainty sources for GRPE forecasting system 
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3.1.2 Determination of uncertainty source importance 

As discussed above, there are different sources of uncertainty in hydrological modelling and 

forecasting; and the literature shows that those uncertainties do not have the same influence 

on the outcome flows; some might have very large influence and others might have negligible 

impact. For example, the uncertainty about the non-calibrated parameters is not mentioned 

in the literature as an important source of uncertainty that should be considered in 

uncertainty propagation. In this step, previous researches are considered to determine the 

most important uncertainty sources to set the focus for uncertainty quantification and 

propagation in the next steps. 

Among all of those uncertainties, meteorological input uncertainty is usually assumed to be 

the largest source of uncertainty in the prediction of floods, at least for lead times of 2-3 days 

(Rossa et al., 2010). He et al. (2009) also showed that forecast precipitation uncertainties 

dominate and propagate through the cascade chain. The input uncertainty is significant 

because of the high spatial and temporal variability of precipitation (Kavetski et al., 2006). 

Hence, attention should be paid on this sort of uncertainty when assessing the flood forecast 

uncertainty. 

The initial moisture conditions at the beginning of a rainfall event have a major influence on a 

catchment’s hydrological response and therefore have a crucial impact on flood forecasting. 

Berthet et al. (2009) analyzed the influence of initialization on flood forecasting for 178 

catchments in France. They found that different methods of initialization could result in very 

large differences in the flood forecasts. A persistence index was used to evaluate the 

discharge forecasts; and the result of their research shows that at the 1-hour lead time, the 

persistence differences for different (arbitrary) initial values are greater than 0.03 (which is a 

significant difference) on more than 75% of the catchments; for the 48-h lead time, this 

difference is greater than 0.14 for more than 90% of the catchments. Schaake et al. (2006) 

also emphasized that one of the most important source of hydrological model uncertainty is 

the uncertainty in initial conditions. 

Beside the uncertainty caused by the selection of initial condition, the model structure and 

parameterization uncertainties are also significantly pronounced in flow forecasting. A study 

done by Butt et al. (2009) shows that the sensitivity of streamflow simulations to variations in 

acceptable model structure was at least as large as uncertainties arising from parameter and 

observation uncertainty. The authors stated that model performance was strongly dependent 

on model structure. 

Hughes et al. (2010) also reported on relatively large uncertainties of the hydrological model 

they used related to parameter values even when the input data uncertainty was not taken 

into account. Authors suggested that the forecast uncertainty will be probably larger when 

the input uncertainty is considered.  

The examples in their research suggest that there are differences in the degree of parameter 

value uncertainty for sub-basins that have different physiographic, climate and runoff 

response characteristics. 
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Uhlenbrook et al. (1999) studied the prediction uncertainty of conceptual rainfall-runoff 

models caused by problems in identifying model parameters and structure. The authors also 

reported the importance of accounting for model structure and parameter uncertainty when 

evaluating the forecasting uncertainty. They noted that the difficult identifiability of the 

model structure caused uncertainties in the flow predictions but they were slightly smaller 

than the implications caused by the parameter uncertainty. However, perhaps this conclusion 

comes from the rather similar HBV model variants tested in this study. The variations of 

simulation results would probably increase for predictions with totally different conceptual 

rainfall-runoff models. 

Mc Milan et al. (2010) studied the errors in discharge measurements used to calibrate a 

rainfall runoff model, caused by the rating curve uncertainty. The authors recognized that 

serious considerations of uncertainties in discharge data can significantly improve the 

prediction ability of the model. This implies the importance of accounting for observed 

discharge data uncertainty in flow forecasting. 

In summary, there are some uncertainty sources, which are found important in flow 

simulating and forecasting in the literature, namely uncertainty about the input data (external 

driving forces, forecasting driving force), initial conditions, model parameters, and model 

structure.  

To be more specific to the case of the GRPE forecasting system used in this study, hereafter, 

the uncertainty of external driving forces is referred to as input precipitation uncertainty; and 

the uncertainty of forecast driving force is referred to as forecast precipitation uncertainty. 

These important uncertainty sources are listed in Table 2. 

Table 2: Main sources of uncertainty in flood forecasting  

Sources of uncertainty Importance References 

Input data uncertainty 

Uncertainty about input precipitation High Rossa et al. (2010) 

Uncertainty about the forecast 

precipitation 

High He et al. (2009) 

Uncertainty about the system data Low  

Model uncertainty 

Context Low  

Model structure uncertainty High Butt et al. (2009) 

Uhlenbrook et al. (1999) Model technical uncertainty High  

Model parameter 

Uncertainty about non-calibrated 

parameters 

Low  

Uncertainty about calibrated 

parameters 

high Butt et al. (2009) 

Hughes et al. (2010) Initial conditions Uncertainty about the current state of 

the system 

high Berthet et al. (2009) 

Observed discharge Uncertainty from the rating curve High  Mc Milan et al. (2010) 
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3.2 Quantifying the impact of individual uncertainty on flood forecast 

In this research, there are five main sources of uncertainty are investigated, namely (1) input 

precipitation uncertainty, (2) forecast precipitation uncertainty, (3) initial condition 

uncertainty, (4) calibration period uncertainty, (5) parameterization uncertainty. The  

uncertainty about the model structure is not considered here due to time constrain as it 

would require using several other model structures, but could be another source of 

uncertainty to be considered for future research. The materials those are used to account for 

the uncertainties are described below; the individual uncertainty tests are explained at the 

end of this section. 

3.2.1 Input precipitation uncertainty 

The observed rainfall data that are often used for catchment studies are often not areal 

rainfall because rainfall cannot be quantitatively measured in space with sufficient precision 

for catchment modelling. Usually, rainfall is only observed at some stations (point rainfall), 

located either inside or outside the study catchment. In order to simulate rainfall-runoff 

process in the whole basin area, it is necessary to spatially interpolate point data. There are 

many methods used for interpolating and averaging rainfall, as, for example, the Thiessen 

polygon method, the arithmetic mean method, the isohyetal method (Shaw, 1994). It is a fact 

that none of these methods can properly produce an areal rainfall; and the uncertainty from 

the methods combined with uncertainties from the instruments used to measure 

precipitation, leads to errors in observed rainfall data used in hydrological modelling.  

In this research, to account for the uncertainty of observed rainfall, precisely the uncertainty 

of transforming point rainfall to areal rainfall (errors from rain gauge instruments are 

neglected), the areal rainfall generator developed at Cemagref is used. This generator is based 

on the geo-statistical Turning-Bands-Method (TBM) for the simulation of random field and has 

been applied for characterisation of rainfall intensities (Ramos, et al., 2006). The version used 

in this research comes from recent developments made at Cemagref (Lepioufle, 2009). It first 

applies the conditional simulation method to hourly rainfall observed data and then 

aggregates the different simulated fields to daily time steps. Conditional simulation is a geo-

statistical method that generates multiple statistical realizations of the spatial rainfall field 

over a specific area, while preserving the information measured by the individual rain gauges. 

Spatial and temporal structures are also preserved in the simulations. The rainfall generator is 

built from the analysis of variograms and the evolution of spatial structure with time. Besides, 

rainfall fields are generated according to different successive rain types, defined by using a 

Kohonen algorithm and statistical properties of non-zero precipitation and total coverage 

area. 

For this research, the rainfall generator is set up for one of the study catchments, catchment 

Ardèche. We then ran the simulator for the period from 2000 to 2008. Ten realisations 

(members) are generated at each hourly time step. Figure 7 Illustrates 4 generated fields of 

spatially distributed rainfall over catchment Ardèche for the day 12/01/2004 at 13:00.  
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Figure 7: Four out of ten simulations of spatially distributed rainfall over catchment Ardèche on 12/01/2004 at 

13:00. Rain gauges are presented by squares. Each realisation preserves the observed data at the rain gauges 

 

Figure 8: Ten simulated areal precipitation values for catchment Ardèche from 07/06/2006 to 06/08/2006 (blue 

lines). Observed precipitation given by the SAFRAN Météo-France data analysis system is also indicated (black 

dots). 
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From the geo-statistical conditional simulation, every simulation is a possible realization of 

the rainfall over the catchment. Because the hydrological model applied in this research is a 

lumped model running at daily time steps, the distributed hourly rainfall fields were 

aggregated in space (average precipitation over the catchment area) and in time at daily time 

steps. As a result, 10 values of areal rainfall are available at each day of the forecast period. 

They represent observed rainfall uncertainty at the catchment scale, as illustrated on Figure 8, 

10 series of spatial averaged rainfall are plotted in a period of 2 months together with the 

observed rainfall data from SAFRAN. These members of spatially averaged rainfall are used as 

input rainfall for the GRP model to assess the impact of input data (observed precipitation) 

uncertainty. 

3.2.2 Forecast precipitation uncertainty 

The weather observation is no way perfect or complete because of the chaotic atmosphere 

system which causes the difficulties in predicting. In addition, because of the limitation in 

numerical computer modelling, the weather system is inevitably an approximation of the 

exact solutions of the equations describing the system. Therefore, every weather forecast 

contains, to some extent, uncertainty. This uncertainty is unfortunately not constant but 

varies from day to day, depending on the stability of the atmospheric condition at the start of 

the forecast. The major uncertainty of weather forecasts comes from the estimation of the 

initial state of the atmosphere and from unavoidable simplifications in the representation of 

the complex nature in weather numerical models (European Centre for Medium-Range 

Weather Forecasts, 2011). For that reason, deterministic forecasts, which produce only one 

forecast based on the best estimate of the future event, are no longer suitable for many 

applications in practice, as uncertainty is not attached to the forecasts. 

In order to deal with the problem of the weather forecast uncertainty, Ensemble Prediction 

Systems (EPS) were developed by several meteorological forecast centres. It is a kind of 

probabilistic forecast that represents the uncertainty in both initial conditions of the 

atmosphere and the numerical model used. Instead of using only one best estimate of the 

initial condition, slightly different states of the atmosphere, which are close but not identical 

to the best estimate, are used. Additionally, each forecast is based on a model (or on a 

different parameterization of a model), which is close but not identical, to the best estimate 

model equations. The result is not only one, but a number of forecasts spreading around the 

“control member”, which is based on the best estimate of initial state. This technique 

provides an estimate of the uncertainty associated with predictions from a given set of initial 

conditions compatible with observation errors. If the atmosphere is in a predictable state, the 

spread will remain small; if the atmosphere is less predictable, the spread will be larger. In a 

reliable ensemble prediction system, reality will fall somewhere in the predicted range. This 

means that users get information on the actual predictability of the atmosphere, for example, 

whether a particular forecast can be expected to be certain or less certain. In addition, they 

also get information on the range within which they can expect reality to fall.  

In this research, two EPS products are used, one from the European Centre for Medium-

Range Weather Forecasts (ECMWF) and the other from the forecast ensemble system 
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developed at Météo-France (PEARP). An example of an ECMWF EPS forecast over France is 

given in Figure 9. 

 

Figure 9: Maps of 24 (out of 51) members of EPS forecasts from ECMWF in France on 24 May 2008 at lead time 

of 4 days 

ECMWF EPS data are archived forecasts and consist of one control member and 50 perturbed 

members, making a total of 51 forecasts at each day of the forecast period. The system 

focuses on medium-range forecasts (from 3 days onwards). Data was provided at a spatial 

resolution of 0.5° x 0.5° latitude-longitude (equivalent to spatial grid of approximately 50 km 

in France) and at variable time step, up to a lead time of 14 days. For this study, areal forecast 

precipitation was available for each catchment at daily time steps for the period from 

11/03/2005 to 30/09/2008. 

The Météo-France PEARP is focused on short-term forecast (less than 3-4 days of lead time) 

(Nicolau, 2002), and its application to hydrology has been recently reported in the literature 

(Thirel et al., 2008; Randrianasolo et al., 2010). Data for this study is available at spatial grid of 

8 x 8 km over France and 3-hourly time steps. The number of members is limited to 11 

members including one control member, and the maximum lead time is two days. For this 
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study, areal forecast precipitation data are available for each catchment at daily time steps 

for the period from 11/03/2005 to 31/07/2009. 

Because of its higher resolution, PEARP is used for the 1- and 2- day forecast lead times, while 

ECMWF EPS is used for lead times from 3 to 9 days. The predictions from ECMWF EPS for 

longer lead times are not used because after 9 days the resolution reduces, as well as the skill 

of the forecasts. 

3.2.3 Initial condition uncertainty 

The discharge data that are often used in hydrologic studies are not direct observed flows but 

they are usually retrieved from the rating curve – a relation curve between discharge and 

water level. Normally, the rating curve is constructed with a series of historic measured river 

flows and water levels. After that, water levels are measured continuously and, based on the 

value on the rating curve, discharge values are estimated. The values of discharge are 

regularly checked with the measurement but not for every time. Details about discharge 

measurement and rating curve construction can be reached at Shaw (1994).  

Discharge data are subject to three kinds of errors: errors from discharge measurement, 

errors from rating curve fitting, and errors from water level measurement.  

The errors in the discharge measurements can come from the operational condition during 

gauging or from insufficient number of verticals, from insufficient number of point velocity 

measurements per vertical or from the flow variation during the measurement period, etc. 

The rating curve fitting error is caused by the imperfection of the relationship curve, even if 

the true water stage and discharge were known. Water levels are usually assumed to be error 

free, although errors associated to the measurements device can exist. Therefore, uncertainty 

always exists when the rating curve is used to estimate the flow values. 

In this research, initial condition uncertainty is assessed through the rating curve uncertainty, 

which is estimated for each catchment using a Bayesian approach (Renard et al., 2011). In the 

first step, the uncertainty in each individual gauging is quantified. It depends on the gauging 

method (e.g. velocity-area method, tracer dilution, ADCP, surface velocity measurements, 

etc.) and the operational characteristics of the gauging (e.g. spatial sampling of velocity and 

depth throughout the cross-section, unsteadiness of the flow, etc.). A set of standard 

deviations representing the measurement uncertainty affecting each gauge is withdrawn 

after this step. The output is illustrated on Figure 10. 
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Figure 10: Example of an uncertainty analysis for one particular gauging (Renard et al., 2011) 

The hydraulic configuration of the gauging cross sectional profile is then analysed to select a 

mathematical expression of the rating curve and specify priors for the rating curve 

parameters. The hydraulic configuration at a gauging station can be controlled by the section 

regime at low flow or channel regime at high flow. 

Rating curve parameters are then estimated using a Bayesian approach. The prior information 

on the rating curve parameters is combined with the information brought by gauging data to 

perform the inference of the rating curve parameters. The outcome of this analysis is a rating 

curve (See Figure 11, solid black line) and its prediction intervals (dashed lines); the bars 

around gauging points represent measurement uncertainties which are calculated for each 

gauge. 
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Figure 11: Example of estimated rating curve for catchment Ardèche, along with 90% prediction limits (Renard et 

al., 2011) 

 

Figure 12: Ensemble discharges from rating curve for catchment Allier from 12/05/2005 to 30/04/2005. 

Observed discharges are also indicated in black dots 
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For this research, an ensemble of discharge values is built from the rating curve analysis for 

each day of the forecast period. For a given discharge, the corresponding stage is determined 

on the rating curve and then several random realizations are simulated from the predictive 

distribution represented by the gray interval. Here, 10 values of discharge are retrieved from 

each rating curve to form the ensemble on a daily basis, as shown in Figure 12.  

These 10 members of ensemble discharges obtained from the rating curve are used to update 

the forecasting model, instead of updating it with only one value of observed discharge like it 

is done by default. By doing so, the impact of initial condition uncertainty on flood forecasting 

can be quantified.  

3.2.4 Parameter uncertainty 

In this research, parameter uncertainty is quantified using two alternative procedures: (a) the 

selection of different calibration periods for the forecasting model, and (b) the 

parameterization of the model using GLUE method.  

a. Calibration period uncertainty 

Concerning the calibration period, the uncertainty might appear due to the limited data for 

calibration or from the choice of calibration period which could fall into a mainly dry or wet 

period and lead to different optimized parameter values.   

The GRP model is usually calibrated with a 

long series of data, which is here available 

from 1958 to 2005. In this research, to 

quantify the uncertainty, originating from 

the choice of the calibration period, this 

long period was split into different periods 

of five years. This is done in two 

catchments instead of all three due to the 

lack of enough observed discharge data. In 

total from 1958 to 2005, there are 9 

periods of five years and the whole 

calibration period of 1958 to 2005 is also 

used as the 10
th

 period to have the best 

estimation of parameters. The ten periods 

are shown in Table 3. It should be noted 

that normally for forecasting practice, the 

whole period of data is utilized for 

calibration to get the best possible 

parameters. Therefore, here the periods of 

data mentioned below are used all for 

calibration. 

Table 3: Ten calibration periods for calibration 

period uncertainty quantification 

No. of 

parameter 

sets 

Calibration period 

(dd/mm/yyyy) 

1 01/01/1959 to 31/12/1963 

2 01/01/1964 to 31/12/1968 

3 01/01/1969 to 31/12/1973  

4 01/01/1974 to 31/12/1978 

5 01/01/1979 to 31/12/1983 

6 01/01/1984 to 31/12/1988 

7 01/01/1989 to 31/12/1993 

8 01/01/1994 to 31/12/1998 

9 01/01/1999 to 31/12/2003 

10 01/08/1958 to 10/03/2005 
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Figure 13 shows the values of the three parameters of GRP model, calibrated for 10 periods of 

five years, along with NASH values computed over those periods. The result does not show 

any clear trend (increase or decrease of the parameters with time). The performance of the 

model is quite stable during time; except for the period 1964-1938 for catchment Allier, for 

which the values are far departed from the rest. In general, there is no clear trend that the 

parameters are changed significantly during the time because of the change in land use or 

other human intervention. For that reason, it is assumed here that the difference in the 

choice of calibration periods here is only subject to the difference in natural variation of 

hydrological process; and therefore, it is reasonable to use those 10 sets of parameters to 

forecast discharges. 

 

Figure 13: Changes in GRP model parameters and NASH values in 10 calibration periods for catchment Allier 

(K2330810, left) and Ardèche (V5064010, right) 
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b. Parameterization uncertainty 

Parameterization uncertainty comes from the fact that different parameter sets can represent 

equally the behaviour of the modelled system. In this research, for the parameterization 

uncertainty, the Generalized Likelihood Uncertainty Estimator (GLUE) proposed by Beven and 

Binley (1992) is used. GLUE is performed by first identifying the parameters which most affect 

the output; in the case of GRP model, those are the three calibrated parameters. Then, a high 

number of parameter sets is generated based on the prior knowledge about the distribution 

of parameters; however, since this distribution is not often known, the uniform distribution is 

used instead. Since the three parameters of the conceptual GRP model do not have a physical 

interpretation; one could not say which ranges of values the parameters would fall in. For 

instance, the level of the routing reservoir can, theoretically, be from 0 to infinite. To obtain 

prior information about the ranges of the parameters of the GRP model, the model is first 

calibrated for 3070 catchments in France (see Figure 14). These catchments spread all over 

the country in different geographical and climate conditions with different quality and length 

of measured data. Thus, the ranges of parameters obtained are expected to be large enough 

to cover the possible ranges.  

 

Figure 14: Map of 3070 catchments in France used for the definition of the GRP parameter ranges for the 

application of the GLUE method to quantify parameterization uncertainty 
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The scatter plots and histograms of the three parameters of the model are presented in 

Figure 15. The result shows the interdependence between ROUT and CORR which is 

reasonable because one is the level of routing reservoir and the other is the volume 

adjustment factor of the flow from production reservoir to routing reservoir and there might 

be a relation between those two. The relation between ROUT and TB are not clear. The 

histograms of all three parameters show that, the majority falls in the low value part of the 

parameter domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Scatter plots of GRP model parameters calibrated for 3070 catchments in France. Diagonal: 

Histograms of parameter distribution 

The spatial distributions of the three parameters and the NASH values for the 3070 

catchments are shown in Figure 16. No clear trend of the spatial distribution of parameters is 

observed. NASH values in the north (low area) tend to have very good result (>90%); but in 

the south (higher area) tends to have only good (>80%). The reason for that might be because 

the snow module of the model is not used here then the performance for the high elevation is 

not as good as the low area.  
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Figure 16: Distribution of GRP model parameters and NASH values in 3070 catchments in France 
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From the parameters calibrated for 3070 catchments, the possible ranges of parameters are 

defined and shown in Table 4. These ranges of parameters are much larger than those of the 

three study catchments; the values of parameters for the study catchments are located in the 

low value part of the parameter domains. Therefore it can be assumed that those ranges are 

sufficiently large for the catchments of interest. 

Table 4: Ranges of parameter values in GRP model estimated from the calibration for 3070 catchments in France 

Parameter Minimum value Maximum value Ranges in 3 study 

catchments 

 

ROUT 0.22 21807.29 30 - 250 [mm] 

CORR 0.02 27.85 0.59 - 1.6 [] 

TB 0.5 20 2.3 - 3.2 [days] 

From the ranges of parameters obtained, a uniform distribution is chosen for all parameters 

and 125.000 combinations of parameters are randomly taken from those distribution. The 

uniform distribution is taken here because the real distribution of parameters is unknown; 

this was also recommended by Beven and Binley (1992) and was actually implemented in 

Larsbo and Jarvis (2005). 

These parameter sets are used to run the GRP model for the 3 catchments. The control 

member of forecast precipitation and lead times up to 2 days are considered (Detail 

explanation in Section 3.2.5). The resulted NASH values for all 125.000 runs are made 

visualized in Figure 17. Among the 125.000 parameter sets, a large number gives very low 

NASH values. Few parameter sets result in up to 90% of NASH. The performance of the model 

in catchment Arc seems to be the worst as highest NASH barely goes up to 70%. This is 

understandable because this catchment has a shortest period of available data (about 14 

years compared with 51 years of the other catchments). 
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Figure 17: Result of NASH values when running 125000 sets of GRP model parameters for 3 study catchments 

(Lead time = 1 day) 

The threshold to differentiate behavioural and non-behavioural parameters is often chosen 

subjectively to retain a proper number of simulations that can cover the observed discharges. 

Here at first the Nash-Sutcliffe threshold is chosen equal to 60% which results in the number 

of behavioural parameter sets shown in Table 5.  

Table 5: Number of behavioural parameter sets with threshold of NASH =60% for three study catchments at lead 

times of 1 and 2 days 

Catchment name Number of behavioral runs (/125.000 runs) 

Lead time = 1 day Lead time = 2 day 

Allier 32231 633 

Ardèche 1645 97 

Arc 31 3 

Catchment Arc probably due to short data series has only 31 and 3 behavioural parameter 

sets for 1 and 2-day lead time, respectively. The GLUE approach therefore is only applied for 

catchments Allier and Ardèche. However, the number of behavioural parameter sets for 1 day 

lead time is too large for these catchments. A quick calculation shows that in order to run the 

experiments of this research for two catchments, it would take five days and 19GB of memory 

space of the computer. This is only for the parameterization uncertainty; if it is combined with 

other sources of uncertainty for example forecast precipitation uncertainty (with 11 to 51 
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members of forecast rainfall), and initial condition uncertainty (with 10 members of initial 

condition), it would take an enormous amount of time and space to store the results. On the 

other hand, the number of behavioural parameter sets for 2-day lead time is not too large, 

and, if we look at the performance of the model for lead time of 1 day, obtained by running 

the model with behavioural parameter sets for 2-day lead time (See Figure 18), the likelihoods 

locate in the high value part of the domain.   

  

Figure 18: Likelihood values for lead time of 1 day with behavioural parameters set for lead time of 2 days (RED); 

and for lead time of 1 day with behavioural parameters set for lead time of 1 day (BLACK): Catchment Allier 

(left); Catchment Ardèche (right)  

 
 

Figure 19: Parameter distributions for lead time of 1 day with behavioural parameters set for lead time of 2 days 

(RED); and for lead time of 1 day with behavioural parameters set for lead time of 1 day (BLACK): Catchment 

Allier (left); Catchment Ardèche (right) 



Uncertainty in flood forecasting   40 

Besides, looking at the values of the three parameters, the behavioural parameters for 2-day 

lead time (in red color) locate entirely in the domain of behavioural parameters for 1-day lead 

time (in black color) (Figure 19). 

It seems then acceptable to use the parameters that highly perform for lead time of 2 days to 

forecast also for lead time of 1 day.  

To better assess the effect on model performance when the model is optimized for a given 

lead time and applied for other lead times, the performance of the model with parameters 

optimized for each specific lead time, from 1 to 10 days, for all three catchments, and the 

performance at those lead times with parameters optimized for lead time of 2 days are 

evaluated. Figure 20 shows the results obtained when considering the four performance 

criteria presented in Section 2.3.3. It can be seen that values of all four objective functions do 

not change too much. Therefore, it is reasonable to use the behavioural parameters for 2-day 

lead time to forecast for other lead times; and in this research the behavioural parameters for 

2-day lead time are used to forecast for all lead times and for all tests later on.  
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Figure 20: Performance of GRP model for lead times from 1 

to 10 days with parameters calibrated for the 

corresponding lead time (dotted lines), or for 2 day-lead 

time (solid lines) 
 

Also on Figure 19, it can be seen that ROUT and CORR parameters are clearly correlated as the 

scatter plots of those two parameters do not expand over the whole domain; the reverse 

pattern is seen for ROUT and TB. In catchment Allier, the scatter plot of CORR and TB presents 
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a strange behaviour when values of TB tend to increase at the end of the domain, which could 

be an implication that after TB=20 days, there would be larger values of TB. However, this can 

be the result of a large number of parameter sets (32231) in which many give high likelihood 

values but the parameters are not physically realistic. In addition, a large number of 

parameter sets were implemented (125.000 sets) cover the large ranges of parameters can 

ensure that the result of behavioural parameters are reasonable. Moreover,  shows that the 

typical parameter values for the study catchments are in the low domain of the parameter 

ranges. Therefore, the strange behaviour of TB values will not affect the result. 

The likelihood weighted uncertainty bounds can be calculated using a standard procedure. 

First, the calculated behavioural likelihoods are rescaled to produce a cumulative sum of 1.0. 

A cumulative distribution function (CDF) of simulated discharges is then constructed using the 

rescaled weights.  

For a given certainty level, here is chosen as 0.05, two quantiles of discharge are obtained by 

interpolating from the constructed CDF. They correspond, respectively, to the probability of 

0.05 and 0.95. These two quantiles form the lower and upper prediction limit, respectively 

(Xiong and O’Connor, 2008). These limits form the 90% confidence bounds, meaning that 90% 

of the prediction is expected to fall in these bounds.  

3.2.5 Individual uncertainty quantification tests 

In order to assess the impact of the individual uncertainty sources, the corresponding 

components of the forecast system (See Figure 1) are changed to account for the considered 

uncertainty sources. The forecast driving force in all of these individual tests is the control 

forecast member of the ensemble forecast precipitations; recall that control member is the 

best estimation of the future precipitation (See Section 3.2.2). Since lead times up to 9 days 

are considered, the ensemble forecast precipitations from PEARP is used till lead time of 2 

days, those from ECMWF is used for lead time from 3 days to 9 days. Five individual 

uncertainty assessment tests are shown in Figure 22 (from test 2 to test 6). In order to 

compare the individual impacts of these five sources of uncertainty, a reference test without 

any uncertainty is created in which the control forecast is used as forecast driving force and 

other components of the GRPE forecasting system is observed values (See Figure 22, Test 1). 

3.3 Propagating uncertainty through the forecast system 

Propagating the uncertainty through the forecast system helps to bring more information to 

the forecast, and therefore, may improve the forecast, making it more reliable. Looking at the 

forecasting process, if we consider the future being full of uncertainty where everything might 

happen, then, in this “naive” situation, the uncertainty in our forecast is 100% (Figure 21). 

But, if we consider additional information, the climatological data, which is the average of 

what happened in the past, then this uncertainty reduces. Then, if we consider a forecasting 

model to issue a forecast, then, when the forecast is performed, uncertainty is reduced 

considerably, as forecast is launched with the best and most updated knowledge on the 

future event. If the observation is assumed to be free of error, then, after observing the 

event, there is no uncertainty (future becomes certain). Otherwise, in the last case, if 
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observations are not considered error free, there will be only the uncertainty of observation 

remaining.  

From Figure 21, it can be seen that, the distance between forecast and observation, in term of 

remaining uncertainty, can still be large, according to the uncertainties that are not taken into 

account in the forecast. Propagating the uncertainties through the forecasting model can give 

information about the impact of those uncertainties on the forecast. If knowledge about the 

uncertainty is added in the forecast, it may reduce the forecast uncertainty and bring the 

forecast closer to the observation. In practice, however, since there are many different 

sources of uncertainty exist, it might happen that not all of them have a significant effect on 

flood forecasting. Hence, the implementation of an experimental uncertainty propagation, in 

which, different combinations of uncertainty sources are investigated, can be useful 

framework for the analysis of forecast uncertainty.  

 

Figure 21: Remaining uncertainty of the forecast (adapted from Weijs et al., 2010) 

In this research, a number of tests are performed to investigate the impact of uncertainty 

quantification from different sources on the quality of flood forecast. Table 6 gives an 

overview of all the tests performed. The data used for each test and the catchment to which 

the specific test is implemented are shown (More detail description of the tests is given in the 

Appendix). Because the availability of the data in the study catchments is not identical, not all 

of the tests are done for all study catchments. For example in Table 6, test 1, which employs 

the forecast precipitation from Meteo France and ECMWF, is done in all three catchments 

while test 10, using the spatially averaged precipitation to account for input precipitation 

uncertainty, is implemented only in catchment Ardèche. 

Depending on the uncertainty test, the corresponding model components are modified. 

Those tests are illustrated on Figure 22. For example, one can see on this figure that in test 1 

only the uncertainty of forecast precipitation is considered, hence all “basic” model 

components except the forecast precipitation are used, the input precipitation and initial 

condition in this case are the observed data, the parameters are calibrated using all of the 
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data, the forecast precipitation from Meteo France (PEARP) is applied for lead times of 1 and 

2 days and that from ECMWF is applied for lead times of 3 to 9 days. 

Table 6: Uncertainty quantification and propagation tests implemented in this research 

K: Catchment Allier 

V: Catchment Ardèche 

Y: Catchment Arc 

Test Uncertainty accounted 

for in the forecasts 

Data used 

Forecast 

precipitation 

Ensemble Q 

from rating 

curve 

Parameter 

sets from 

calibration 

periods 

Parameter 

sets from 

GLUE method 

Spatially 

averaged 

precipitation 

K V Y K V Y K V Y K V Y K V Y 

1 Control forecast                

2 Forecast precipitation                

3 Initial condition                

4 Calibration period                

5 Parameterization                

6 Input precipitation                

7 Forecast precipitation 

+Initial condition  

               

8 Forecast precipitation 

+Calibration period 

               

9 Forecast precipitation 

+Parameterization  

               

10 Forecast precipitation     

+ Initial condition                 

+ Calibration period  

  

               

11 Forecast precipitation     

+ Initial condition 

+Parameterization 

               

For each test, the reference discharges which are used for evaluation (comparison with the 

forecast) are the ten members of ensemble discharges from the rating curve analysis. These 

data are available for all three catchments in the same period of forecast (from 10/03/2005 to 

31/07/2009). By doing so, we can avoid the error of discharge measurement if the observed 

discharge is used. 
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Figure 22: Illustration of changing GRP model components for uncertainty quantification and propagation tests 
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3.4 Evaluating the forecast outputs 

It is necessary to find proper evaluation measures to assess the impact of uncertainty sources 

on flood forecast. In order to evaluate these impacts, these measures should be able to 

compare with the forecast with the reference ensemble discharge. The evaluation measures 

should be adapted to evaluate ensemble predictions and should consider the probability of 

forecast and its distribution. Based on those criteria, two probabilistic measures, reliability 

diagram and Brier score, are chosen to assess the quality of the forecasts produced by each 

test. In addition, the evaluation of confidence intervals is chosen to visualize and quantify the 

impact of uncertainty. 

3.4.1 Reliability diagram  

The reliability diagram is a probabilistic evaluation tool which compares the frequency of a 

reference with the probability of the forecast. Based on the analysis of the reliability diagram, 

one could conclude about the goodness of the forecast probabilities. A detail description of 

the reliability diagram is provided in Olsson and Lindstrom (2008). 

The approach: 

- Choose the event to consider (Q > Qthreshold), here, for each catchment, the discharge 

thresholds are chosen with the probability of 50%, 70%, 80%, 90%, 95%, 99. These 

threshold discharges with relevant to those probabilities are shown in Table 7; 

- Calculate the forecast probability for each time step (forecast day) as the number of 

ensemble forecasts exceeding a given Qthreshold divided by the total number of 

ensemble forecasts in that  time step; 

- Divide the forecasts into bins of probability categories; here, five bins (categories) are 

chosen 0-20%, 20%-40%, 40%-60%, 60%-80%, 80%-100%;  

- Calculate the reference frequency: for each day, the reference frequency is either 1, if 

the reference discharge exceeds the threshold, or 0, if not.  

- Plot the forecast probability and reference frequency on the x and y axis, each point 

of the graph representing for a category of probability. 

Table 7: Threshold discharges for the 3 study catchments 

Catchment 

name 

Q thresholds [mm] 

50% 70% 80% 90% 95% 99% 

Allier 0.5920 0.9627 1.3442 1.8784 2.4097 4.2505 

Ardèche 0.9655 1.8127 2.5272 4.2221 7.3328 19.8952 

Arc 0.1230 0.1900 0.3188 0.6218 0.9272 2.8607 

 



Uncertainty in flood forecasting   46 

Reference discharges in flood 

forecasting are usually chosen as 

observed values (measured discharges 

or discharges obtained from measured 

water levels and a rating curve) and 

proxy-observed values (simulated 

discharges using observed precipitation 

to drive the simulation model). An 

example of a reliability diagram is 

illustrated on Figure 23. The diagonal 

represents the perfect match between 

the forecast probability and the 

observed frequency. The closer the 

diagram is to the diagonal, the more 

similar the forecast probability is to the 

observed frequency.  

 

Figure 23: Example of reliability diagram where references 

are simulated (HBVpf) and observed (OBS) discharges (Olsson 

and Lindstrom, 2008) 

Because the forecast is always uncertain, when adding the uncertainty from each test, it is 

expected that the forecast flow will be closer to the observed, with the members spread 

correctly around it. Hence, it is expected that the reliability diagram would be closer to the 

diagonal. The distances between the reliability diagrams and the diagonal indicate the relative 

importance of different uncertainties.  

However, observed discharge is subject to the uncertainty of measure and of the rating curve, 

using an error-free reference might lead to incorrect comparison. Therefore, here the 

ensemble discharges retrieved from the rating curve are used as reference for all tests. 

Moreover, since in this research different tests will be implemented to evaluate different 

sources of uncertainty, the use of this reference is fixed for all tests.  
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Concerning the forecast probability, 

normally, in many studies using 

reliability diagram, authors often plot 

the forecast probability at the center 

of each bin (See Renner et al. (2009); 

Olsson and Lindstrom (2008)). 

However, that way of plotting would 

lead to an unwanted deviation from 

the diagonal like an example on Figure 

24. Brocker et al. (2007) showed that it 

would increase the reliability of the 

reliability diagram if the forecast 

probability of one bin is calculated as 

the average probability of all forecasts 

that fall within that bin. This approach 

is be used here; for each probability 

category, the average forecast 

probability is then computed by taking 

the average of the values (1 or 0) over 

the days belonging to the probability 

category 

 

Figure 24: Plotting versus the bin centres would have caused 

substantial deviations from the diagonal (circle) (Brocker et al., 

2007) 

3.4.2 Brier Score  

The Brier score (BS) is a measure that is often used to evaluate the quality of probabilistic 

forecasts. It evaluates the mean square difference between the forecast probability and the 

observed frequency. Franz and Houge (2011) recommended using this tool for evaluating the 

uncertainty in forecasting. The BS was proposed by Brier (1950): 
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        [5]

 

In which: t is time step; N is number of time steps; f is the forecast probability; o is the 

observed frequency; R is the number of possible classes in which the event can fall, for 

example: Rain / No rain (for rain) or Cold / Normal / Warm (for temperature). Here R is used 

as the number of bins to aggregate all of the forecast probability for all bins. 

However, another version of BS which is more popular in application today is applied in this 

research (adapted from Thirel et al., 2010): 
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The Brier score can be decomposed into 3 additive components: Uncertainty, Reliability and 

Resolution (Murphy, 1973):  
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BS = REL − RES + UNC          [7] 
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Where: N is the number of time steps; K the number of probability bins. 
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is the observed climatological base rate for the event to occur 

nk is the number of forecasts with the probability category k  

k
o   is the observed frequency of the occurrence of events in bin k, given forecasts of 

probability 
k

f .  

Uncertainty 

The uncertainty term measures the 

inherent uncertainty in the event; this 

component is only dependent on the 

observed data not on the forecast. It 

should be noted that the “uncertainty” 

here has a different meaning with the 

uncertainty that is studied in this 

research. For binary events, it is at a 

maximum when the event occurs 50% 

of the time and the uncertainty is zero if 

the event always occurs (see ). This 

uncertainty component of the BS is the 

average of events that are observed in 

the past, and forms the climatological 

based forecast (See Section 3.3) 

 

 

Figure 25: Illustration of the Brier score (B) and its three 

components: Uncertainty (U), Reliability (L), Resolution (S) 

Reliability 

The reliability term measures how close the forecast probabilities are to the true probabilities, 

given that forecast. It should be emphasized here that the reliability is defined in the contrary 

direction compared to English language. If the reliability is 0, the forecast is perfectly reliable. 

For example, if we group all forecast instances where 80% chance of rain was forecast, we get 

a perfect reliability only if it rained 4 out of 5 times after such a forecast was issued. 
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Resolution 

The resolution term measures how much the conditional probabilities given the different 

forecasts differ from the climatic average. The higher this term is the better. In the worst 

case, when the climatic probability is always forecast, the resolution is zero. In the best case, 

when the conditional probabilities are zero and one, the resolution is equal to the 

uncertainty. 

An example of the Brier score and its three components is given in Figure 25. 

In order to evaluate the uncertainty, forecast flow should be compared with a reference flow; 

hereby, for all of the tests, the ensemble discharge retrieved from the rating curve is used as 

reference to avoid the uncertainty of observed discharge. 

3.4.3 Confidence intervals 

Confidence intervals are presented by bounds with a certain confidence level. They are a 

visualization measure which can help to evaluate the relative position between the forecast 

and the observed flow. If correctly evaluated, a predictive confidence interval should 

correspond to the proportion of observation falling within the forecast limits given by the 

confidence intervals. For example, on Figure 26, the 95% confidence intervals of the forecasts 

are shown , it means that 95% of the time, the observed flow is expected to fall between this 

interval. 

 

Figure 26: Example of the 95% confidence intervals of monthly runoff due to parameter uncertainty calculated 

by GLUE method (Jin et al., 2010) 
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4 Results and discussions 

4.1 Individual impact of the uncertainty sources 

The individual impacts of the uncertainty sources are quantified by accounting for that 

uncertainty in the corresponding component of the GRPE forecasting system. The control 

member of the ensemble prediction of precipitation is used as the forecast driving force. 

There are five uncertainty sources are taken into consideration which are forecast 

precipitation, initial condition, calibration period, parameterization, and input precipitation 

(Test 2 to 6). Due to the different availability of data in three study catchments, not all of the 

tests are implemented for all three catchments as explained in Table 6. In order to assess the 

relative impacts of the uncertainty sources on forecast discharge, the tests are compared with 

Test 1 which no uncertainty is taken into account. The evaluation tool used to assess these 

individual uncertainty sources here is the total Brier Scores (BS) aggregated for all threshold 

discharges; results are calculated for 9 lead times.  The results are shown in Figure 27 to 

Figure 30, each diagram is the total BS calculated based on the forecast discharges and 

ensemble discharges from rating curve (See 3.4.2) when no uncertainty (Control forecast) or 

an individual uncertainty source is taken into account. The control forecasts which do not 

account for any uncertainty are shown in the first bar of the diagrams, when accounting for 

the individual uncertainty sources, it is expected that the forecasts would be more reliable, 

and therefore the total BS would be smaller. 

In overall, for three catchments, the results show that forecast precipitation has a biggest 

impact on forecast discharge as the total BS of this test is the smallest. The impact of forecast 

precipitation is more pronounced at longer lead times due to the large influence of initial 

condition at small lead times (1 or 2 days). Initial condition uncertainty only and strongly 

affects the forecasts at small lead times (Figure 30); after that, it does not have impact on the 

predict forecast, as the total BS does not change compared with the Control forecast test. 

Depending on the catchment (Allier or Ardèche), the uncertainty due to the calibration period 

is larger or smaller than the uncertainty due to the parameterization. The impact of these 

uncertainties is also stronger for higher lead times. Uncertainty of input precipitation is only 

quantified for catchment Ardèche due to the data availability but does not show impact on 

the forecast output (Figure 30). The total BS does not change significantly when accounting or 

not accounting for this uncertainty while other uncertainty sources show the impacts on the 

forecasts. 

In conclusion, the intial condition uncertainty shows large impact at small lead times up to 2 

days, after that forecast precipitation has most significant impact on forecast discharge. The 

relative impacts of uncertainty due to calibration period and parameterization depend on the 

catchment. Finally, accounting for the input precipitation uncertainty does not change the 

forecast reliability, therefore, this source of uncertainty is not taken into account when 

propagating different sources of uncertainty through the forecasting system. 
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Figure 27: Total Brier Scores of the individual uncertainty tests for catchment Allier with lead times up to 9 days. 

Test with no uncertainty taken into account (Control forecast) and four sources of uncertainty are shown. 

 

Figure 28: Total Brier Scores of the individual uncertainty tests for catchment Ardèche with lead times up to 9 

days. Test with no uncertainty taken into account (Control forecast) and four sources of uncertainty are shown.  
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Figure 29: Total Brier Scores of the individual uncertainty tests for catchment Arc with lead times up to 9 days. 

Test with no uncertainty taken into account (Control forecast) and two sources of uncertainty are shown.   

 

Figure 30: Total Brier Scores of the individual uncertainty tests for catchment Ardèche with lead times of 1 and 2 

days. Test with no uncertainty taken into account (Control forecast) and five sources of uncertainty including the 

uncertainty from input precipitation are shown. 

4.2 Combined impacts of the uncertainty sources 

In overall, for all 3 catchments, for all tests, higher lead times result in lower quality of flood 

forecast showing through the increase of BS and its reliability component while the resolution 

decreases with lead times. However, the scores change quickly till lead time of 5 days and 

after that till 9 day lead time, it does not change too much (can be seen in Figure 31 and 
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Figure 38 in this Section). It means that the quality of forecast starts very good for small lead 

time and get worse by lead times but reach a sill after 5 days ahead; after that forecast quality 

stays the same. It should be noted that the BS tends to get better with higher flow (when 

threshold frequency increases). It is understandable because for higher flow thresholds, there 

is less non-zero probability of exceeding this threshold for both forecast and reference 

discharge so that the score of match between the forecast and reference is better. 

4.2.1 Uncertainty of forecast precipitation and initial condition  

The availability of data allows the uncertainty of forecast precipitation and initial condition 

can be quantified for all three study catchments up to lead time of 9 days. The uncertainty of 

forecast precipitation is quantified (test 2), using the ensemble forecast PEARP from Meteo 

France for lead times of 1 and 2 days, and the ensemble forecast from ECMWF for lead times 

from 3 to 9 days (See Section 3.2b). The forecast precipitation uncertainty is then combined 

with initial condition uncertainty in test 7, where the members of forecast precipitation (11 or 

51 depending on the type of ensemble forecast used) combined with 10 members of 

discharges from the rating curve make 110 or 510 members of forecast discharge 

respectively. These members of forecast discharge are then evaluated against the references 

which are the ensemble discharges from the rating curve. 

The Uncertainty component of BS is dependent on the climatological base, therefore, is does 

not change for all lead times, for all tests as the reference discharge used here is always the 

ensemble discharge retrieved from rating curve. Because this component does not tell any 

information about the forecast, it will not be shown here in all figures. There is a general 

increasing trend in BS with lead times; therefore the results are shown at some lead times not 

at all 9 lead times here. 

Figure 31 shows the BS and its reliability and resolution components for catchment Ardèche 

from lead time of 1, 3, 5, 7 and 9 days; two results are shown where the uncertainty of 

forecast precipitation is accounted individually and together with initial condition uncertainty. 

It is seen that there is a difference between the BS values obtained between two tests for all 

three study catchments. After adding the 10 ensemble initial conditions to flood forecasting 

system, the BS becomes smaller than considering only ensemble forecast precipitation; 

visually it can be seen on Figure 31 that red line (forecast precipitation and initial condition) is 

always lower than black line (forecast precipitation).  
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Figure 31: Brier scores at lead times 1, 3, 5, 7 and 9 day(s) when accounting for forecast precipitation uncertainty 

(black lines), forecast precipitation and initial condition uncertainty (red line) for catchment Ardèche  
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It shows that the quality of flow forecast is improved when accounting for both uncertainty 

sources than for only forecast precipitation uncertainty since the BS is reduced. Another point 

worth to comment is that the difference of BS values for the two sources of uncertainty tends 

to decrease with lead times. This means that relative difference brought by accounting for the 

uncertainty of forecast precipitation and initial condition is dependent on lead time; when 

lead time increases the difference between the two tests becomes insignificant. 

The decrease in forecast performance with lead times that can be observed on the BS values 

is also acknowledged in the literature. He et al. (2009) studied the uncertainties with lead 

times ranged from 1 to 9 days; and the results from 7 weather forecast centres in Australia, 

Europe, UK, Canada, USA, China, Japan all show the clear decrease of skill scores when 

increasing lead times. 

Although similar behaviour is found in all three study catchments, the significance is different. 

For catchment Allier and Arc, the difference between those two tests is not significant; 

example is given in Figure 32 while the red line (forecast precipitation + initial condition 

uncertainty) does not depart too much from the black one (only forecast precipitation 

uncertainty) even at small lead time (2 days).  

 

 

Figure 32: Brier scores at lead time of 2 days for catchment Allier and Arc 
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It seems that for catchment Ardèche, the uncertainty of initial condition shows the strongest 

effect among the three study catchments. It can be explained by looking at Figure 33 where 

the standard deviation of ensemble initial discharges around its mean values is shown for all 3 

catchments; for catchment Ardèche, the initial discharge are largely varied with very large 

standard deviation. That leads to the larger difference when accounting for the uncertainty of 

initial condition for this catchment. Recall the flow characteristic of the catchments in , 

catchment Allier and Ardèche have almost the same surface area (2269 and 2240 km
2
 

respectively) but Ardèche has annual mean discharge twice of that of Allier. The higher values 

of discharge and probably of water level cause the larger uncertainty of the rating curve. For 

Arc, this is a small catchment compared with the other two (only 728 km
2
), this catchment 

must respond very fast with and strongly be influenced by the external forcing, which is 

precipitation, so that the system is not sensitive to initial condition like for big catchments.  

 

Figure 33: Standard deviation of ensemble discharges from rating curve for three study catchments: Allier 

(K2330101), Ardèche (V5064010), Arc (Y4122020) 

The results agree with previous researches. In Rossa et al. (2010), the authors stated that the 

relevance of uncertainty in the precipitation field used as input into a hydrological model 

depends strongly on the size of the catchment. The larger the catchment, the stronger it acts 

to effectively filter the variations and uncertainties in the precipitation input. It might be the 

reason why in the small catchment like Arc, the impact of forecast precipitation uncertainty is 

more significantly pronounced than for big catchment like Ardèche.  

The results of reliability diagram show the same trend, accounting for initial condition 

uncertainty together with forecast precipitation uncertainty makes the forecasts more 
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reliable than accounting for only forecast precipitation uncertainty. On Figure 34, the 

reliability diagrams at lead times 1, 3, 5, 7 and 9 days for catchment Ardèche are shown, the 

forecast probabilities accounting for forecast precipitation individually and together with 

initial condition are plotted against the reference discharge frequency. It can be seen that the 

reliability diagram taking into account the two uncertainty sources approaches very close to 

the diagonal; and the largest effect is also observed in catchment Ardèche. The difference 

between the two tests is getting smaller as the lead time increases due to the broader 

ensemble forecast at high lead times. As can be seen on Figure 35, where an example of the 

flow forecasts taking into account the forecast precipitation uncertainty at lead times of 1, 4 

and 9 days are shown, the range of the flow forecast becomes larger with higher lead times. 

In addition, the effect of initial condition is also degraded with time, so for high lead times, 

the uncertainty of initial condition does not affect significantly the forecasts making the 

difference between the two tests insignificant. 

There is no obvious trend with flow thresholds that can be detected from the reliability 

diagram. 

 

Figure 34: Reliability diagram for catchment Ardèche at lead time from 1 to 9 days exceeding Q80%  
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Figure 35: The upper and lower limits of forecast discharges changing with forecast precipitation at different 

lead times 

In summary, taking into account the uncertainty of forecast precipitation together with initial 

condition makes the forecasts more reliable. The difference in impacts between the two tests 

decreases with lead times because of the larger uncertainty of forecast precipitation and the 

decrease in impact of initial condition at higher lead times. The trend of these uncertainties 

with threshold discharges is not obvious. 

4.2.2 Uncertainty of model parameter 

a.   Uncertainty of parameterization and forecast precipitation 

In Section 4 – Individual impact of uncertainty sources, when quantifying the uncertainty of 

parameterization only, the control member of ensemble forecast precipitation was used. In 

this section, in order to quantify the uncertainty of forecast precipitation and 

parameterization together, ensemble forecast of precipitation from PEARP and ECMWF is 

used. Applying the behavioural likelihood as defined in Section 3.2.4 (Nash values larger than 

60%); it results in 633 behavioural parameter sets for catchment Allier and 97 for Ardèche.  

With these numbers, it is only possible, due to computational time and memory constrains, to 

run with 11 forecast precipitation members from PEARP (633*11 and 97*11 simulations). 

However, with 51 members from ECMWF (633*51 and 97*51 simulations), it would be 

difficult, especially when these two uncertainties are propagated together with initial 

condition uncertainty (633*51*10 and 97*51*10 simulations). For that reason, the number of 

behavioural parameter sets need to be reduced. 
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One possible choice would be taking a higher threshold of likelihood value (for example NASH 

over 70% instead of 60%) to limit the number of simulations. However, look at Figure 36, the 

numbers of behavioural runs with NASH values over 70% is very small for both catchments: 40 

for Allier and 18 for Ardèche. On the other hand, taking a different threshold of likelihood 

value would create differences with the previous results, and it would not be fair to compare 

all the tests. In the literature, reducing the behavioural parameter sets to limit the number of 

simulations has been done, for example in Larsbo and Jarvis (2005), 235 parameter sets were 

randomly selected from 30000 simulations when the number of behavioural simulations was 

over 235. In this research, therefore, for catchment Allier, 100 parameter sets are taken 

randomly from the distribution of 633 parameter sets' performance in Figure 36 (left). Since 

the number of behavioural simulations for catchment Ardèche is not too large (97 parameter 

sets), it is kept the same. 

 

 
 

Figure 36: Histogram of NASH values for catchment Allier (left) and Ardèche (right) – performance of the model 

with 633 and 97 behavioural parameter sets respectively 

These randomly selected parameter sets are used for forecasting with 51 members of the 

ECMWF ensemble precipitation prediction system. The numbers of behavioural parameter 

sets are kept the same (633 for catchment Allier) when forecasting with PEARP as this system 

consists of only 11 ensemble members of forecast precipitation. 

Figure 37 shows the 90% confidence intervals for catchment Ardèche when uncertainty of 

parameterization is taken into consideration only or together with uncertainty of forecast 

precipitation. The results show that the confidence intervals become larger when adding the 

uncertainty of forecast precipitation together with that of parameterization. 
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With only the uncertainty of parameterization 

 

With the uncertainty of parameterization and forecast 

precipitation 

Figure 37: 90% forecast confidence intervals for catchment Ardèche: a large flood event from 21/10/2008 to 

20/11/2008 (Lead time = 1 day) 

Table 8: The number of observed discharge falling in 90% confidence intervals of forecast when adding 

uncertainty of parameterization and forecast precipitation 

Lead 

time 

(days) 

Number of runs 

(number of 

parameter sets 

x number of 

forecast 

precipitation) 

% Q observed 

fall within 

90% forecast 

confidence 

intervals 

% Q observed 

exceeding 

Q90% fall 

within 90% 

forecast 

confidence 

intervals 

Number of 

runs (number 

of parameter 

sets x number 

of forecast 

precipitation) 

% Q observed 

fall within 

90% forecast 

confidence 

intervals 

% Q observed 

exceeding 

Q90% fall 

within 90% 

forecast 

confidence 

intervals 

 Allier Ardèche 

1 6963 (633x11) 82.0 100 1067 (97x11) 67.9 77.0 

2 6963 (633x11) 60.0 82.0 1067 (97x11) 73.1 79.5 

3 5100(100x51) 55.2 73.6 4947 (97*51) 77.2 75.5 

4 5100(100x51) 55.2 77.8 4947 (97*51) 83.0 67.0 

5 5100(100x51) 55.6 84.7 4947 (97*51) 84.0 62.3 

6 5100(100x51) 55.3 83.3 4947 (97*51) 84.1 60.4 

7 5100(100x51) 56.0 83.3 4947 (97*51) 84.0 57.5 

8 5100(100x51) 54.1 88.7 4947 (97*51) 84.1 58.5 

9 5100(100x51) 54.4 85.7 4947 (97*51) 84.6 57.5 
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The percentage of observed discharge falling in the 90% confidence intervals of forecast and 

the percentage of observed discharge exceeding Q90% falling in the intervals is shown in 

Table 8. It can be seen that the percentage is large at lead times of 1 and 2 days; but it is 

getting smaller at higher lead times for catchment Allier. This is probably due to the reduction 

of simulations that affects the outcome; when reducing the number of behavioural parameter 

sets from 633 to 100, the upper and lower limits of the forecast might be also affected. From 

this, it can be seen that the GLUE method is very much dependant on the parameter sets that 

are used. 

b.    Uncertainty of calibration period and forecast precipitation 

The impact of calibration period uncertainty is quantified by taking different calibration 

periods within the period that calibration data is available. Due to the lack of data in one 

catchment, this is only done for two catchments Allier and Ardèche. 

In overall, the resulted BS shows same trend for all study catchments when accounting for the 

uncertainty of calibration period, forecast precipitation and initial condition; the forecast 

quality is getting lower when lead time increases (BS increases, see Figure 38). On Figure 38, 

the BS and its components for catchment Allier when accounting for forecast precipitation 

uncertainty (Test 2), forecast precipitation and initial condition uncertainty (Test 7), forecast 

precipitation and calibration period uncertainty (Test 8) are shown at lead times of 1, 3, 5, 7 

and 9 day(s). It can be seen that accounting for the uncertainty of forecast precipitation and 

calibration period results in the most reliable forecasts among those three tests. The 

significance of the difference among three tests becomes larger with lead times, showing that 

at higher lead times, accounting for calibration period uncertainty can largely improve the 

forecasts. 

For catchment Ardèche, the impact of calibration period uncertainty on the forecast is not as 

large as for catchment Allier, implying the site independence of the impact of uncertainty. 
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Figure 38: Brier scores at lead times 1 day, 3, 5, 7 and 9 days for catchment Allier 
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4.2.3 Accounting for all sources of uncertainty 

After quantifying the impact of individual uncertainties on flood forecasting, the input 

precipitation is found to have almost no effect. The forecast precipitation, initial condition, 

parameterization and calibration period uncertainty shows significant impacts. Therefore, 

those uncertainties are propagated through the forecasting model for two catchments Allier 

and Ardèche. 

Propagating the uncertainty of calibration period and parameterization together through the 

model might lead to an over estimation of uncertainty. Therefore, the uncertainty 

propagation is done with two different combinations of uncertainty sources: (1) forecast 

precipitation, initial condition, parameterization, and (2) forecast precipitation, initial 

condition, calibration period uncertainty. By doing this way, the impact of calibration period 

and parameterization uncertainty can be compared. 

However, the result of parameterization uncertainty from GLUE method appears in the shape 

of confidence intervals which are drawn from a large number of ensemble discharge while the 

result from other uncertainties are considered with the reliability diagram and BS. It would be 

difficult to compare those uncertainties. On the other hand, the multiplication propagation 

would combine 51 members of ECMWF precipitation forecast, 10 members of initial 

conditions and 100 members of parameter sets, it would make 51000 simulations and would 

cost enormous amount of time to work on that. Therefore, for propagating the uncertainty of 

parameterization, 10 parameter sets are chosen randomly from the distribution of 

behavioural likelihood for both two catchments so that it is possible to compare to 

combinations of uncertainties with the reliability diagram and BS. 

Figure 39 shows the BS values for both two catchments at lead time of 7 days. The 

uncertainty sources taken into account are forecast precipitation + initial condition, forecast 

precipitation + calibration period, forecast precipitation + initial condition + calibration period, 

forecast precipitation + initial condition + parameterization. The results show difference 

behaviour for two catchments. Combination 2 (forecast precipitation, initial condition, 

calibration period uncertainty) has larger impact on the forecast probability in catchment 

Allier, when propagating these uncertainties through the forecast, BS becomes the smallest. 

Combination 1 (forecast precipitation, initial condition, parameterization) does not show 

good impact for catchment Allier; taking into account these uncertainties makes the forecast 

quality becomes even worse than accounting for only 2 uncertainties (forecast precipitation, 

initial condition). 

Meanwhile, for catchment Ardèche, a reversed trend is observed, propagating combination 1 

through the forecast improves the forecast quality while combination 2 is not as good. 
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Figure 39: Brier score for catchment Allier (left) and Ardèche (right) at lead time of 7 days 

The same trend can be seen on reliability diagrams. For catchment Allier (Figure 40), when 

accounting for uncertainties from forecast precipitation, initial condition and calibration 

period, the points come closest to the diagonal which means forecast probability comes 

closest to observed frequency. Most of the forecasts are over-estimated as the points are 

located under the diagonal to the side of the forecast probability. 
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Figure 40: Reliability diagram for catchment Allier at lead time of 5 days exceeding Q70% 

For catchment Ardèche, the impact of accounting for uncertainties from forecast 

precipitation, initial condition and parameterization is significantly the largest. As seen on 

Figure 41, when accounting for those uncertainties, the points (black) almost stay on the 

diagonal. The results are not the same for all lead times and all threshold discharge but same 

trend is always observed. 

 

Figure 41: Reliability diagram for catchment Ardèche at lead time of 3 days exceeding Q80% 

The bad performance of the forecast in catchment Allier when uncertainties from forecast 

precipitation, initial condition and parameterization are propagated into the forecast might 

come from the limitation of the parameter sets. 

4.3 Discussions 

The method used in this research, consisting of experimentally propagating different 

uncertainty sources through a flood forecasting system by multiplying the individual sources, 

shows some advantages comparatively to other methods reported in the literature (for 
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example, the stochastic method proposed by Hostache et al. (2011) which quantifies the total 

predictive uncertainty without isolating individual sources of uncertainty, or the Bayesian 

approach proposed by Kavetski et al. (2006) which relies on the error models of the 

uncertainty source of interest, which is barely known). With the method used in this research, 

the individual uncertainty sources are well isolated and the user can choose which 

uncertainty sources to be propagated through the system. Additionally, if one method of 

uncertainty quantification fails to capture the uncertainties in the source been considered, 

the user can easily replace it by another method and test once more its propagation through 

the system. For example, the results of this research show that the input precipitation 

uncertainty does not have any impact on discharge forecast outcome. It might not be because 

of the small uncertainty of input precipitation but because of the method that is used to 

quantify this source of uncertainty cannot appropriately capture the uncertainties. With the 

flexible multiplying propagation method used here, one might change the method of input 

precipitation and the same process can be done. 

The GLUE approach used to assess the uncertainty of parameterization has the advantage of 

being able to consider the interdependence among the model parameters. However, this 

method is time-consuming and requires high amounts of computational memory. The 

alternative solution of applying a limited number of simulations has been reported in the 

literature, but, in this research, it resulted in a decrease of the forecast performance when 

the number of runs was reduced. This may be the reason why, in one study catchment, the 

impact of GLUE parameterization was smaller than that of the parameter uncertainty 

evaluated with different calibration periods. However, it is just an assumption and further 

investigation needs to be done to confirm this finding.  

The probabilistic evaluation tools used in this research, the Brier Score and the reliability 

diagram, showed high capability to assess the forecast outputs and proved to be useful tools 

to compare the different steps taken in uncertainty quantification and propagation. These 

tools are able to assess most of the desirable flow forecast properties (reliability and 

resolution). However, attention must be paid to the fact that the results are dependent on 

the number of forecasts exceeding each threshold considered in the computation of these 

statistical measures or falling in each probability bin considered in the evaluation of the 

reliability diagram. The scope of the data used should be large enough to have proper results. 

Moreover, the interpretation of the outcomes is sometimes not straight forward; for 

example, the results of Brier Score and reliability diagram show that the forecasts are more 

reliable with high flow which should not be the case and is the consequences of the small 

probability of exceeding the high flows of reference as well as forecast discharge.  

Finally, the approach that is applied here for a specific forecasting system on some study 

areas but it can be also applied for other systems and areas. This approach is not limited in 

only the field of forecasting, it can be used also to quantify the uncertainty affecting other 

systems, such as hydrologic simulation. In that case, the components of the system are still 

the same except the absence of forecast precipitation. 
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5 Conclusions and recommendations 

Uncertainties will always exist and are unavoidable in flood forecasting. Accounting for 

uncertainties can considerably improve the quality of the forecasts. Because the flood 

forecasting system is a complex system, many sources of uncertainty, which come from 

different components of the system, can propagate through the system and affect the quality 

of its forecasts. Quantifying all sources of uncertainty might be a fastidious task and 

unnecessary as some of the uncertainty sources may have almost negligible impacts on the 

forecast output. Furthermore, if uncertainties are not correctly quantified and propagated 

through the system, it might lead to an over estimation of the total forecast uncertainty. In 

this research, the main sources of uncertainty that may affect flow forecasts are studied.  

The objectives of this research are to identify the sources of uncertainty which may play a 

significant role in flood forecasting; to quantify and propagate the main sources of 

uncertainty identified through a flow forecasting system; to evaluate, individually and 

together, the impact of uncertainty quantification on the forecast outcome.  

Based on the results of uncertainty quantification and evaluation, this research aims at 

indicating the main sources uncertainty that should be propagated into flood forecasts to 

improve forecast quality in the study catchments. 

The objectives are presented in terms of four research questions: 

1. Which sources of uncertainty significantly affect flood forecasts? 

2. How to quantify the important uncertainty sources that affect flood forecasts? 

3. How to efficiently propagate those uncertainties through a forecasting model? 

4. What is the impact of different sources of uncertainty on the quality of flood 

forecasts?  

For flood forecasting, it is clear that the uncertainty needs to be quantified. By doing so, the 

impacts of different sources of uncertainty can be assessed. The uncertainty sources that 

have significant impacts on the forecasts need to be properly propagated into the forecast 

output. By propagating different sources of uncertainty into the forecasts, more information 

about the forecasts is added to the output, making it more reliable and, therefore, improving 

the quality of the forecasts. Distinguishing each source of uncertainty that stems from the 

individual components of a forecasting model is a challenge in flow forecasting uncertainty 

quantification. This research proposed an experimental approach to assess each individual 

source of uncertainty and combine them by their propagation through the forecasting 

system. Propagation is done with the multiplication of the individual uncertainty sources. In 

addition, probabilistic evaluation measures (Brier Scores and reliability diagrams) are 

investigated to assess the correctness of the total predictive uncertainty quantification.       
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5.1 Conclusions 

The uncertainty coming from the spatially averaged precipitation which is used as input 

precipitation for the GRPE forecasting system has very small impact on the forecasts, 

compared with other sources of uncertainty such as initial condition uncertainty and 

parameter uncertainty. When taking this source of uncertainty into account, the change in 

the outcome is almost unnoticeable. Because of the insignificant impact of this source of 

uncertainty, at least when quantified with the method used in this research, it can be 

neglected when propagating the uncertainties through the forecasting chain.  

The ensemble prediction systems of ECMWF and Météo-France, with 51 and 11 members of 

precipitation, respectively, were used to account for forecast precipitation uncertainty. Ten 

members of discharge ensembles, retrieved from the analysis of uncertainties from rating 

curves, were used to quantify the uncertainty of hydrologic initial conditions. They were also 

used as a reference to compare against the forecast outputs. The uncertainty of model 

parameters is considered in terms of uncertainty about the calibration period and uncertainty 

about the parameterization. On the one hand, the long period of available data was divided 

into 10 periods and the resulted parameter sets were used to quantify the uncertainty coming 

from the calibration period. On the other hand, the parameterization uncertainty was 

quantified using the GLUE approach, with a large number of simulations leading to the 

assessment of confidence intervals of the forecasts.  

With the above described methods applied to data from three study catchments in France, it 

was found that the uncertainty of forecast precipitation, initial condition (discharge data) and 

parameters have a significant impact on the quality of the flood forecasts. These sources of 

uncertainty need to be considered when issuing a forecast in order to improve the quality of 

the predictions. 

In general, the forecast precipitation uncertainty shows the largest impact on the flood 

forecasts, especially for high lead times; the initial condition uncertainty has strong effect at 

small lead times up to 2 days.  

The relative significance of the parameter uncertainty evaluated using different calibration 

periods or the GLUE parameterization varies from catchment to catchment: the results show 

that, in one catchment, parameter uncertainty based on different calibration periods shows 

more significant influence on the quality of flood forecasts, while, in another catchment, it is 

the parameterization uncertainty that proved to have a larger impact. This shows that there 

may be a site dependence of the impacts of different uncertainty sources on flood 

forecasting.  
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5.2 Recommendations 

This research recommends taking into account the uncertainty of forecast precipitation, initial 

condition and model parameter in flood forecasting to improve the reliability of the forecasts. 

The uncertainty of model parameters can be considered through different angles and by 

different approaches. In this research, the quantification of parameter uncertainty using 

different lengths of the calibration period was considered and proved to be a simple method 

that results in a large impact on the forecast outputs. Therefore, it is recommended to use 

such an approach for this source of uncertainty, especially if the computational capability 

available does not allow applying more sophisticated methods like the GLUE method for 

parameterization uncertainty. 

The conclusions above are drawn based on the data used in this research, the study 

catchments selected, as well as on the forecasting system and the uncertainty quantification 

methods that were chosen. When quantifying the total predictive uncertainty in flood 

forecasting for other cases, the results might be different. However, since the results of this 

research are consistent with what has been reported in the literature, it is quite probably 

that, for other cases, similar results might be achieved. The more or less significant impact of 

uncertainty propagation in flood forecasting showed to be site dependent: different 

responses of flow forecasts were observed among the study catchments. More case studies 

would be necessary for a larger assessment of the impacts and to investigate if there is a 

general spatial trend. 

In the scope of this research, uncertainty from model structure was not considered due to the 

time constrain. However, this is recognized as one of the main sources of uncertainty that 

may impact flow forecasts. This source of uncertainty should be considered in future 

research. This could be done, for instance, by applying the methods that are used here to 

different hydrologic forecasting model structures to quantify the impact of model structure 

uncertainty on the quality of the flood forecasts. 

Concerning the evaluation measures used for assessing the uncertainty quantification, there 

is no single perfect evaluation tool for a multi dimensioned domain like ensemble forecast. It 

is necessary to use different tools to have a more comprehensive look into the uncertainties 

affecting flood forecasts and to better understand their impact on the quality of the forecast 

outcome. 
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Appendix  

Detail description of the uncertainty quantification and propagation tests 

Test 

No. 

Uncertainty  

accounted in flood 

forecast 

Catchment 

applied Test code 

No. of 

members of 

Q forecast 

Lead 

time 

(days) 

Data used 

Precipitation 

Initial 

condition Model parameters Forecast Simulation 

1 Control forecast (CF) 

 (No uncertainty is 

taken into account) 

Allier  

Ardèche 

Arc 

CT 1 1 to 2 CF of PEARP POBS QOBS Calibrated and 

validated in 1958-2005 
3 to 9 CF of ECMWF 

2 Forecast precipitation Allier  

Ardèche 

Arc 

AR 11 1 to 2 PEARP                                                                                     POBS QOBS Calibrated and 

validated in 1958-2005 
EU 51 3 to 9 ECMWF 

3 Initial condition Allier  

Ardèche  

Arc 

QI 10 1 to 2 CF of PEARP POBS QI Calibrated and 

validated in 1958-2005 3 to 9 CF of ECMWF 

4 Calibration period Allier 

Ardèche 

PR 10 1 to 2 CF of PEARP POBS QOBS Calibrated parameters 

for different periods 

from 1958 to 2005 (10 

periods in total) 

3 to 9 CF of ECMWF 

5 Parameterization Allier 

 

GL 633 1 to 2 CF of PEARP POBS QOBS Behavioural 

parameters from 

125000 runs Ardèche 97 3 to 9 CF of ECMWF 

6 Input precipitation Ardèche PI 10 1 to 2 CF of PEARP PI QOBS Calibrated and 

validated in 1958-2005 

7 Forecast precipitation  

+ Initial condition 

Allier 

Ardèche  

Arc 

AR_QI 11*10 1 to 2 PEARP                                                                                     POBS QI Calibrated and 

validated in 1958-2005 
EU_QI 51*10 3 to 9 ECMWF 

8 Forecast precipitation  

+ Calibration period 

Allier  

Ardèche 

AR_PR 11*10 1 to 2 PEARP                                                                                     POBS QOBS Calibrated parameters 

for different periods 

from 1958 to 2005 (10 

periods in total) 
EU_PR 51*10 3 to 9 ECMWF 

9 Forecast precipitation  

+ Parameterization 

Allier 

Ardèche 

AR_GL 11*633 1 to 2 PEARP                                                                                     POBS QOBS Behavioural 

parameters from 

125000 runs 11*97 

EU_GL 51*100 3 to 9 ECMWF POBS QOBS 100 parameter sets 

selected randomly 

from 633 behavioural 

sets 

51*97 Behavioural 

parameters from 

125,000 runs 

10 Forecast precipitation  

+ Initial condition  

+ Calibration period 

Allier 

Ardèche 

AR_QI_PR 11*10*10 1 to 2 PEARP                                                                                     POBS QI Calibrated parameters 

for different periods 

from 1958 to 2005 (10 

periods in total) 
EU_QI_PR 51*10*10 3 to 9 ECMWF 

11 Forecast precipitation 

+Initial condition  

+ Parameterization  

Allier 

Ardèche 

AR_QI_GL 11*10*10 1 to 2 PEARP                                                                                     POBS QI 10 sets of parameters 

chosen randomly from 

the distribution of 

behavioural runs 

EU_QI_GL 51*10*10 3 to 9 ECMWF 

* Explanation of the notation: 

No. Code Type of data Catchment Period of data Number of members 

1 POBS Observed precipitation 

Allier  

Ardèche  

Arc 

 

11/03/2005 to 

31/07/2009 1 

2 PEARP                                                                                     

Ensemble forecast precipitation 

from Meteo France                                                                                        

11/03/2005 to 

31/07/2009 11 

3 ECMWF 

Ensemble forecast precipitation 

from European Centre for 

Medium-Range Weather 

Forecasts (ECMWF)                                                                          

11/03/2005 to 

31/07/2009 51 

4 QI 

Ensemble discharges estimated 

from rating curve 

11/03/2005 to 

31/07/2009 10 

5 QOBS Observed discharge 

depending on 

catchments 1 

6 PI Spatially averaged precipitation Ardèche  2000 to 2008 10 


