
University of Twente

EEMCS / Electrical Engineering
Control Engineering

 Design of a hard real-time, multi-threaded
and CSP-capable execution framework

 Robert Wilterdink

MSc report

 Supervisors:

prof.dr.ir. S. Stramigioli

dr.ir. J.F. Broenink

ir. E. Molenkamp

ir. M.A. Groothuis
ir. M.M. Bezemer

 June 2011

Report nr. 009CE2011

Control Engineering

EE-Math-CS

University of Twente

P.O.Box 217

7500 AE Enschede

The Netherlands

iii

Summary

Nowadays, embedded systems are designed for multiple and more demanding tasks, whereas
previously they had a single use case and were less demanding. One can think of automated
robot vacuum cleaners in the past versus complete household robots presently. This progress is
possible due to improved hardware architectures, with multiple parallel cores/processors, and
increased resources for embedded systems. The formal language Communicating Sequential
Processes (CSP) is designed to aid development of such parallel computing software.

In the past, the CTC++ framework was developed to implement CSP models on embedded sys-
tems. This framework was designed for single core/processor architectures and its design now
is outdated.

To design a new framework, which can also fully utilize future embedded architectures, state of
the art frameworks and libraries were investigated. They are analyzed on their software archi-
tecture, platform independence, timing and real-time capabilities, and scalability and extensi-
bility. A comparison on these subjects is included as well.

The LUNA framework described in this report is a hard real-time, multi-threaded, multi-
platform, CSP capable and a component based framework. Many of its components can be
enabled/disabled separately to achieve high scalability.

For the first framework implementation the hard real-time QNX operating system (OS) is cho-
sen, since it includes CSP similar rendezvous channels. But, as it turned out, QNX’ rendezvous
channels are not usable for some of the rather advanced CSP rendezvous communication op-
erations.

Additionally, a distinctive implemented feature is the real-time logger. It can be used to transfer
log messages, (a)periodic (control) signals and CSP execution traces to a development PC for
further processing, without destroying the real-time constraints.

To analyze LUNA’s performance a simple robotic setup is implemented. The results show that
the new CSP design is more efficient and faster than the CT library.

From the foregoing, it can be concluded that LUNA is suitable to develop real-time control
applications, with or without CSP, for a multitude of hardware architectures and OSs. The main
recommendations are to implement LUNA for other real-time OSs as well and to implement
a graphical modelling tool, such as gCSP, to generate LUNA code from complex models for
robotics applications. Besides this, the visualisation of CSP traces recorded with the RTLogger
should be improved, as the data mining for these is still a lot of work. Perhaps, other setups in
the lab should also be implemented with LUNA to verify its performance extensively.

Control Engineering RJW Wilterdink

iv Design of a hard real-time, multi-threaded and CSP-capable execution framework

Samenvatting

Tegenwoordig worden embedded systemen ontworpen voor zowel meerdere als veeleisendere
taken. Vroeger hadden deze echter een enkele toepassing en waren ze minder veeleisend. Men
kan denken aan geautomatiseerde robotstofzuigers in het verleden versus volledig geautoma-
tiseerde huishoudrobots op dit moment. Deze vooruitgang is mogelijk gemaakt door verbe-
terde hardware-architecturen met meerdere parallele cores/processors en meer rekencapaci-
teit voor embedded systemen. De formele taal Communicating Sequential Processes (CSP) is
ontworpen met als doel het vereenvoudigen van het ontwikkelen van dergelijke paralelle soft-
ware structuren.

In het verleden is het CTC++ framework ontwikkeld om CSP modellen te implementeren op
embedded systemen. Dit framework is echter ontworpen voor enkelvoudige core/processor
architecturen. Het ontwerp is nu achterhaald.

Om tot een nieuw framework te komen, dat ook volledig benut kan worden op toekomstige
embedded architecturen, zijn moderne frameworks en bibliotheken onderzocht. Ze zijn gea-
nalyseerd op hun software architecture, platform onafhankelijkheid, timing en real-time eigen-
schappen en tot slot schaalbaarheid en mogelijkheid tot uitbreiding. Het verslag bevat tevens
een uitgebreide vergelijking van deze onderwerpen.

Het LUNA framework zoals beschreven in dit rapport is een hard real-time, multi-threaded,
multi-platform, CSP-capabel en component-gebaseerd framework. Een groot deel van de com-
ponenten kan apart in- en uitgeschakeld worden waarmee een hoge schaalbaarheid wordt be-
reikt.

Voor een eerste framework implementatie is het hard real-time QNX besturingssyteem geko-
zen, omdat deze CSP-vergelijkbare rendezvous communicatie kanalen biedt. Uiteindelijk ble-
ken deze QNX rendezvous kanalen alsnog niet geschikt voor de redelijk geavanceerde CSP ren-
dezvous communicatie.

Een interessante extra feature is de real-time logger. Deze kan log berichten, (a)periodieke
(regelaar) signalen en de CSP executie volgorde doorsturen naar een ontwikkel PC voor verdere
analyse zonder dat het real-time gedrag wordt beïnvloed.

Om de LUNA prestaties te kunnen analyseren is een eenvoudige robot setup geïmplementeerd.
De verkregen resultaten tonen aan dat het nieuwe CSP ontwerp efficiënter en sneller is dan de
CT-bibliotheek.

Uit het voorgaande wordt geconcludeerd dat LUNA geschikt is voor het implementeren
van real-time control applicaties, met of zonder CSP en voor een groot aantal hardware-
architecturen en besturingssystemen. De belangrijkste aanbevelingen voor LUNA zijn het im-
plementeren van meer real-time besturingssystemen, maar ook het bieden van ondersteuning
in een grafische modelleringstool zoals gCSP. Dit laatste heeft als doel de LUNA code te kunnen
genereren van complexe software modellen voor robotica applicaties. Daarnaast moet de vi-
sualisatie van CSP executies worden verbeterd, omdat het verwerken van de CSP executies nog
veel werk kost. Om de prestaties van LUNA onomstotelijk vast te stellen zouden eventueel ook
andere opstellingen in het lab kunnen worden geïmplementeerd.

RJW Wilterdink University of Twente

v

Preface
This thesis marks the end of my Computer Science and Electrical Engineering studies at the
University of Twente. The choice for the additional Electrical Engineering master originates
from my interest in mechatronics and robotics. The combination of both hopefully gives me
an extra challenge.

Looking back, the experiences gained during both studies, among others my internship in Eng-
land, and extracurricular activities made me the person who I am today. The extracurricular
activity I have perceived as most educational and enjoyable, was being part of the Arashi board
2007-2008 (sports association). Over all, it was a pleasant period of my life in which a lot of
good memories were made.

I would like to thank my graduation committee dr.ir. Jan Broenink, ir. Bert Molenkamp, ir.
Marcel Groothuis and ir. Maarten Bezemer for their support on this assignment. Special thanks
go out to my daily supervisor, Maarten Bezemer, for the many interesting discussions we had
on the development of the software framework and my thesis. Writing a paper together and
presenting the framework on the CPA 2011 conference was a nice bonus for me.

Thanks also go to Raymond, Youri and the other students for their tips, discussions and the
good times during this project. I have enjoyed this very much and it has helped me to accom-
plish this thesis.

Most of all, I want to thank my parents and my girlfriend, Alette Beusink, for giving me the
opportunity to do two studies and providing me with the their support and (extreme) patience
during my study.

Robert Wilterdink

Hengelo, June 2011

Control Engineering RJW Wilterdink

vii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Goals and approach of the project . 2

1.3 Evaluation objectives . 3

1.4 Thesis outline . 3

2 Background 5

2.1 Frameworks versus libraries . 5

2.2 Hardware . 5

2.3 Operating Systems . 6

2.4 Real-time . 9

2.5 QNX . 9

2.6 Software testing . 10

2.7 Design methodology . 10

3 Analysis 15

3.1 Domain analysis . 15

3.2 Requirements . 15

3.3 Conclusions . 18

4 Framework and library research 19

4.1 Introduction . 19

4.2 Approach . 21

4.3 Orocos . 21

4.4 RoboFrame . 27

4.5 CT library . 30

4.6 Boost . 33

4.7 POCO . 35

4.8 Conclusions . 37

5 Design & implementation 41

5.1 Architecture and approach . 41

5.2 Detailed designs of components . 47

5.3 Other components . 74

5.4 CSP component . 77

5.5 Conclusions . 79

6 Evaluation 81

Control Engineering RJW Wilterdink

viii Design of a hard real-time, multi-threaded and CSP-capable execution framework

6.1 Qualitative evaluation . 81

6.2 Quantitative evaluation . 86

7 Conclusions & recommendations 87

7.1 Conclusions . 87

7.2 Recommendations . 88

A Appendix - Domain analysis 91

A.1 Jiwy . 91

A.2 Production Cell . 92

A.3 Humanoid Head . 94

A.4 TUlip . 95

B Appendix - C++ language exceptions 97

C Appendix - Atomic component 99

D Appendix - Timers and counters 100

D.1 Time Stamp Counter . 100

E Appendix - Threading use cases 102

F Appendix - CSP Threading use case 104

G Appendix - QNX AnyIO driver 106

H Appendix - RTLogger examples 107

H.1 Recording RTLogger information . 107

H.2 Visualizing CSP traces . 108

H.3 Visualizing (control) signals with 20-sim . 112

I Appendix - LUNA CPA 2011 conference paper 115

Bibliography 135

RJW Wilterdink University of Twente

1

1 Introduction

1.1 Context

Nowadays embedded systems are designed for multiple and more demanding tasks, whereas
previously they usually had a single use case and were less demanding. One can think of au-
tomated robot vacuum cleaners in the past versus complete household robots presently. So,
an embedded system is a complete device which not only contains electronics and mechani-
cal parts, but also a (special-purpose) computer, which organizes the various tasks and execute
their functions to control the hardware in a safe and efficient manner. These increased require-
ments obviously result in more complex control software, as the software is responsible for the
‘smart’ behavior of the device.

The Control Engineering (CE) group at the University of Twente deals with the realisation of
complex (embedded) control structures for mechatronic setups. These mechatronic setups
currently range from humanoid robots to miniature production plants to autonomous pipe
inspection robots. On a software level these setups require, amongst others, hard real-time
computing constraints, multiple parallel processes and sophisticated design patterns which
facilitate safe and easy software development.

A proven approach, to coordinate several computational entities running at the same time (i.e.
a concurrent system), is the process algebra Communicating Sequential Processes (CSP) devel-
oped by Hoare (1985) and Roscoe et al. (1997). CSP theory can also be used to prove correctness,
deadlock freeness and lifelock freeness of a model.

In the past a graphical modelling tool, called gCSP (Jovanovic et al., 2004), has been developed
at the CE group to aid modelling of concurrent systems with CSP. This tool is able to generate
code from a model which can be executed on a PC or on a (real-time) hardware target. The gen-
erated code makes use of the Communicating Threads (CTC++) library (Hilderink et al., 1997;
Orlic and Broenink, 2004), which provides a framework for the CSP language. During develop-
ment one can also monitor the application in gCSP through an animation facility (Steen, van
der et al., 2008). The complete overview is shown in Figure 1.1.

gCSP
model

Code
generation

CT library

Executable+

Animation

gCSP Tool

Figure 1.1: Overview of the gCSP and CT framework

The current CT library is a product of many years of research and development, but unfortu-
nately the library has become outdated:

• The CT library was designed with single CPU/core embedded architectures in mind.
Whereas nowadays embedded systems with multiple CPUs and cores are almost com-
mon practice. Unfortunately, the current CT library design cannot make (optimal) use
of these new architectures, which is a pity since CSP was designed especially for this use
case.

Control Engineering RJW Wilterdink

2 Design of a hard real-time, multi-threaded and CSP-capable execution framework

• The scheduler and all processes run in the same software thread. The Operating System
(OS) does not cooperate with these internal processes. The CT library therefore intends
to deliver any external events like timer interrupts to the appropriate process. The cur-
rent scheduler cannot guarantee when this event is handled. This sometimes results in
inconsistent and inadequate timing behavior.

• The years of ongoing development did not benefit the software quality and obfuscated
the original design.

For modern frameworks it is advantageous to employ an OS, because common functionality,
such as parallel processing and network facilities, is already available and therefore will con-
siderably shorten development time. The use of an OS has become a viable choice, because
computing resources have increased a lot since the development of the CT library. Unfortu-
nately, not all OS’ are hard real-time capable, but for example QNX (QNX Software Systems,
2011) is. In addition QNX offers rendezvous communication channels which are similar to CSP
rendezvous channels.

1.2 Goals and approach of the project

The goal of this project is to design a new hard real-time, multi-threaded and CSP-capable
execution framework. Furthermore, the framework should be platform independent.

The QNX operating system offers rendezvous communication channels by default and, there-
fore, seems to offer a good base for CSP implementations, which will hopefully lighten the task
at hand. As a result, the main research question to be answered in this thesis: Is QNX a valid
choice to implement CSP based communicating threads? The idea to use QNX is not new (Veld-
huijzen, 2009). The difference is that a complete resigned is considered and not only a reimple-
mentation, which limited the design choices considerably. Furthermore, a non real-time CSP
framework (C++CSP2, 2009) is also investigated.

In the future the framework should be usable on different platforms to make it wider appli-
cable. Multiple framework projects have solved this problem in different manners, without a
clear solution yet. Therefore a subgoal of this thesis is to determine how a platform indepen-
dent framework should be designed. This will be accomplished by analyzing state of the art
frameworks on their software architecture, platform independence, timing and real-time ca-
pabilities, and scalability and extensibility. The gained knowledge is then applied for the new
framework design.

The current implementation of the CT library has a tight integration with the CSP execution
engine, so it is not possible to use the library without being forced to use CSP as well. This is
an obstacle to use the library from a generic robotics point of view and might result in ignoring
the CT library altogether. Furthermore, a loose coupling between CSP processes and the rest of
the framework will probably enable more research opportunities. Thus, the second subgoal of
this thesis is to investigate whether the CSP language implementation and framework can be
loosely coupled. The results from investigating the CT library and the non real-time C++CSP2
framework are used for this part of the design as well.

The approach of the project is then as follows. First, the requirements for the new framework
are determined. Then, state of the art libraries are investigated to gain insight in framework de-
sign in general. Since the design should be platform independent, the implementation should
balance QNX specific benefits and generic OS concepts. The CSP execution engine then ex-
tends these to achieve platform independence. Furthermore, the CSP execution engine should
be designed such that it is only loosely coupled to the rest of the framework. At the end, a real
robotic setup is implemented with the new framework to determine its usability, efficiency,
performance and future improvements.

RJW Wilterdink University of Twente

CHAPTER 1. INTRODUCTION 3

The main question to be answered in this thesis:
Is QNX a valid choice to implement CSP based communicating threads?

Minor questions:
a How should a platform independent framework be designed?
b How can the CSP execution engine be designed, such that the CSP implementation is

loosely coupled to the rest of the framework?

1.3 Evaluation objectives

The project can be qualitatively evaluated with the research questions posed in the previous
section.

The quantitative evaluation will be performed with a real robotic setup with two degrees of
freedom. Using this setup hard real-time properties can be empirically proven and the new
framework can be compared with the CT library, which also has been used with this setup in the
past. The CSP community’s (standard) Commstime test is used to compare the performance
also with a non real-time CSP library.

1.4 Thesis outline

Chapter 2 presents background information, such as OS concepts, an introduction to the QNX
OS and the CE group’s embedded software design methodology. Chapter 3 then presents the
requirements for LUNA. Chapter 4 gives the framework and library research results and the
recommendations deduced from these. Next, the complete design and implementation of
LUNA is discussed. Chapter 6 evaluates the LUNA design by reviewing its requirements and
discussing performance tests. Furthermore, it concludes on the research questions mentioned
in this chapter. The last chapter concludes to LUNA’s overall design and the attained goals, and
gives recommendations for future work. Furthermore, the paper (Bezemer et al., 2011b), on the
combination of the LUNA framework and CSP, is included in Appendix I.

Control Engineering RJW Wilterdink

5

2 Background

This chapter provides background information. Section 2.1 explains the difference between
frameworks and libraries. Next, the considered hardware architectures in this thesis are dis-
cussed. Section 2.3 explains general Operating System (OS) concepts. Then hard, soft and non
real-time are explained in Section 2.4. Following, the hard real-time QNX OS will be shortly
introduced. Section 2.6 presents common testing methods and levels in software engineering.
Last, Section 2.7 discusses the design methodology used in the CE group.

2.1 Frameworks versus libraries

A library is essentially a set of reusable functions, usually organized in classes. Each function
invocation performs some work and then returns control to the client. A library, therefore, is a
set of components to develop an application with.

A framework embodies a reusable abstract design, which should be extended on specific
points. The framework’s code then calls this code at these points, to achieve the intended
framework behavior. A framework therefore is a set of components and design patterns, which
specify the behavior of an application.

2.2 Hardware

The CE group currently has multiple custom setups and demonstrators, which are controlled
by a few different standard hardware architectures. For this thesis, these hardware architectures
can be divided in two groups:

1. x86/PowerPC/ARM architectures, with enough resources to run a real-time OS
These architectures in combination with enough resources (such as memory) are able to
run general purpose OSs as well as real-time OSs. The x86 and PowerPC architectures are
also employed in consumer computers. The ARM architecture is mostly used in embed-
ded setups or handhelds.

The OS capable hardware requirement facilitates framework design, since a lot of required
functionality is already being taken care of by the OS. For example multi-threading and
common user input/output facilities. Furthermore, functionality non-essential to most
applications, such as debugging support, will also be present. Both will shorten develop-
ment time considerably.

2. Other architectures, such as FPGAs
This category comprises of all hardware architectures not capable of running a general
purpose OS nor real-time OS, such as FPGAs and AVR micro controllers. These are mostly
used for small setups or for dedicated functions of a setup, like PWM signal generation.

The PC/104-stack mentioned in Chapter 6 is an example of a small x86 form-factor embedded
computer with additionally various I/O boards. One of the I/O boards comprises a FPGA to
implement multiple encoder counters and PWM signal generators.

Although in this thesis explicitly an OS and OS capable hardware are used, the ideas discussed
are in principle not limited to any architecture or OS.

Control Engineering RJW Wilterdink

6 Design of a hard real-time, multi-threaded and CSP-capable execution framework

2.3 Operating Systems

An Operating System (OS) is a collection of software, consisting of programs and data, that runs
on computers, manages computer hardware resources, and provides common services for ex-
ecution of various application software. The OS acts as an intermediate between application
programs and the computer hardware, although the application code is usually executed di-
rectly by the hardware and will frequently call the OS for support or be interrupted by it. The
latter, for instance, can be the case when multiple programs time-share a CPU.

2.3.1 Organization

Modern OSs use a kernel-based architecture. A kernel has facilities to receive resource requests
and grant access to resources such as allocating space for a new file or creating a new process.
So, the kernel is the gate-keeper to the computer’s resources. Applications use system calls to
interface with a kernel.

Except for single purpose OSs, all modern OSs are both multitasking and multi-user. Since
computers are limited by the number of cores/CPUs available, the OS must perform a trick to
actually perform more than one (or a few) tasks at a time. The kernel uses time sharing for
each available core/CPU at a high speed, such that it appears that the computer is multitasking
for multiple users. Because the system is sharing resources a gate-keeper is needed for two
primary reasons; Facilitating time sharing and to make sure users do not violate other users’
resources.

Time sharing is accomplished by context switching, which consists of the following steps:
1. Save the current processes context: registers and program execution (counter).
2. Load another process’ context and perform its operations from the point it was inter-

rupted.
3. After the allotted time is over1, repeat from beginning.

The kernel also has three other resource management tasks, besides time sharing a core/CPU:

• Servicing requests from applications
When any application requires resources, it must access the resource via the kernel indi-
rectly. The kernel processes the request and returns the result. For example, on a memory
allocation request the kernel allocates the memory to the process and makes sure that the
allocated memory is not in use.

• Servicing system interrupts
Computer systems have a set of hardware and software interrupts. An interrupt interrupts
the current process because of a condition. An interrupt can be for instance a timer event,
i.e. after a pre-specified time has elapsed, the OS is notified of this.

• Managing system resources
Kernels also performs internal management, that is not directly related to services. The
kernel has to keep track of what resources it has provided to applications and may collect
information about other aspects of the system as well.

The OS has a variety of protection methods to prevent unauthorized access to system resources.
The strongest protection is achieved in corporation with a CPU that has different privilege lev-
els. Modern CPUs have at least two privilege levels: kernel level and user level.

If properly designed, only the OS kernel code is allowed to execute in an unrestricted mode
(kernel level) on the processor. Everything else runs in a restricted mode (user level) and must
use a system call to have the kernel perform any operation that could potentially damage or
compromise the system on its behalf. This makes it impossible for untrusted programs to alter

1or when a higher priority process has become ready, as will be discussed later.

RJW Wilterdink University of Twente

CHAPTER 2. BACKGROUND 7

or damage the system. Mode protection may extend to resources beyond the CPU hardware
itself, for example protecting process memory boundaries.

So, a system call changes the execution mode from user level to kernel level and back when
done. As a side effect other operations might also take place, such as memory swapping. Thus,
the disadvantage of multiple privilege levels is a (slight) performance drop.

Multiple types of kernels exist: nano-, micro- and monolithic kernels. The exact type of kernel
does not matter for this thesis, since the OS Application Programmers Interface (API) hides this
anyway.

2.3.2 Processes and threads

An application, in general, is instantiated by the OS as a process. Processes have their own
memory space, which boundaries are guarded by the CPU. Furthermore, OS resources are often
assigned to the whole process.

In OS terms, the process is a thread container. A thread is an execution entity, which is sched-
uled by a scheduling algorithm onto the CPU. Threads share, with other threads belonging to
the same process, their application code, data and other OSs resources, such as open files and
signals. Support for threads may be provided at either the user level (user threads) or by the
kernel (OS threads).

OS threads, also called kernel threads, are supported directly by the OS. The kernel provides
support for the OS to create, schedule and manage threads in kernel space.

User threads are supported above the kernel level and are implemented by a thread library
at the user level. The library is responsible for creating, scheduling and management of the
threads, without support from the kernel. A user thread is executed by an OS thread and at
most one user thread can run simultaneously in one OS thread. Most likely, the OS is unaware
of the presence of user threads and as a consequence does not support user thread preemption.

User threads are generally faster to create and manage than kernel threads, since no system
calls are necessary. However, preemption (rescheduling) of user threads is only possible on
explicit request. So, if a blocking system call is performed on a user thread, the system call
stalls the underlying OS thread and thereby all user threads in the container. When a blocking
system call is performed on an OS thread, the kernel is able to preempt the thread and schedule
another thread for execution.

2.3.3 Multi-threading models

The different multi-threading models, that are possible for a combination of OS and user
threads, are depicted in Figure 2.1. The one-to-one threading model discards the user thread-
ing advantages, since for every user thread a ‘heavy weight’ OS thread is needed.

OS

user level

kernel level

one-to-one many-to-onemany-to-many

user thread

OS threadOS OS OS OS OS OS

Figure 2.1: Multi-threading models (Silberschatz et al., 2004)

Control Engineering RJW Wilterdink

8 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The many-to-many model can be used to prevent the ‘one system call can block all’ problem,
but there are three potential problems:

• If more OS threads are used than cores/CPUs are available, expensive OS thread context
switches are needed to run all user threads.

• Since the OS thread priorities take precedence over user thread priorities for scheduling
(as will be explained later), a priority inversion problem might be created in the previ-
ous case as well. Because, a high priority’s user thread running time is dependent on
the underlying OS thread priority and its allotted time slot. This might result in non-
deterministic timing.

• (Repeatedly) moving user threads over different cores/CPUs will result in non-
deterministic CPU cache updates. This problem is very technical and its explanation
is considered out of scope for this thesis.

The first two problems can probably be prevented with an elaborate coordination mechanism.
However, this will cost computational resources and thereby discard the user thread advan-
tages.

The many-to-one threading model can take full advantage of the lightweight user threads, but
there are also drawbacks:

• Since only one OS thread is used to run the user threads, it will suffer from the ‘one system
call can block all’ problem, as was experienced with the CT library. However, the problem
can be prevented by using other solutions, such as assigning buddy threads for the OS
function calls.

• The single OS thread cannot take advantage of multi core/CPU architectures. Nonethe-
less, multiple many-to-one user thread containers can take advantage of these architec-
tures. To take full advantage, the user threads must be able to communicate and work
together.

The many-to-one threading model is further discussed in Section 5.2.11.

2.3.4 Scheduling

The scheduling of OS threads is done by the OS scheduler. This scheduler determines the order
of the ready processes on their thread priority level. Most OSs will also preempt lower priority
OS threads in favour of any higher priority OS thread becoming ready. Most OSs contain prior-
ity inheritance algorithms to prevent priority inversion, in which a higher priority thread must
wait for a lower priority thread to finish.

The scheduling of user threads must be done by the implementing thread library. Since in the
OS there is no information on user threads, the user threads will get their running time when
the underlying OS thread runs. Since preemption is not available for user threads, execution
times should be kept short, otherwise a form of priority inversion will be created.

Most OSs contain multiple scheduling algorithms: First In First Out (FIFO) and Round-Robin
(RR) are commonly available. The FIFO scheduler runs from the highest priority queue the
longest waiting thread first. The RR algorithm assigns time slices to each thread in equal por-
tions and in circular order.

2.3.5 Other OS features

Other OS features used in this thesis are:
• Synchronisation primitives

To protect concurrently accessed data from becoming corrupt. The data access must be
limited with, for instance, mutual exclusion objects. Furthermore, rendezvous channels
can be used to safely synchronise program execution on data exchange points.

RJW Wilterdink University of Twente

CHAPTER 2. BACKGROUND 9

• Timers
Parts of programs, for example control loops, need to be executed periodically. A timer
can be used to accomplish this.

• Sockets
Communication between two or more hosts via an ethernet link can be achieved with
this.

A comprehensive explanation on OS concepts can be found in Silberschatz et al. (2004).

2.3.6 POSIX

The Portable Operating System Interface (POSIX) standard (IEEE Std 1003.1, 2004) defines a
standard OS interface, functions and environment. It is being jointly developed by the IEEE
and The Open Group.

An OS can be POSIX compliant, POSIX conformant or certified POSIX conformant. POSIX com-
pliance means that it provides partial POSIX support, which functions and specifications it sup-
ports should be indicated in the documentation. Conformance means that the entire POSIX.1
standard is supported and certified means that it is accredited by an independent certification
authority. Code which uses POSIX function calls can be compiled and run on any OS which is
POSIX conformant, resulting in the same behavior.

2.4 Real-time

When controlling robotic setups, real-time is an important property. There are two levels of
real-time: hard real-time and soft real-time. According to Kopetz (Kopetz, 1997): “If a result has
utility even after the deadline has passed, the deadline is classified as soft (. . .) If a catastrophe
could result if a deadline is missed, the deadline is called hard”. For non real-time, deadlines
do not apply at all.

The basic requirements according to Silberschatz et al. (2004) and Cooling (2000) for a real-time
OS are:

• Preemptive, priority-based scheduling
• Preemptive kernel
• Fixed upper bound on latency (preferably deterministic timing)
• Task structuring of programs
• Parallelism (concurrency) of operations

Using a real-time OS does not automatically make the executed code real-time, see Sec-
tion 5.1.5.

Some OSs provide different thread types for hard and non real-time, for instance the combina-
tion of Linux and RTAI (DIAPM, 2011).

The difference between soft and hard real-time is achieved by using different thread priority
levels. Therefore, when hard real-time is discussed, soft real-time is also implicitly meant.

2.5 QNX

QNX is a commercial Unix-like hard real-time OS (QNX Software Systems, 2011) and is certified
POSIX conformant. The OS is centered around a micro-kernel architecture. The idea is that
most of the OS is running in multiple (small) tasks, known as servers, with only a small kernel
containing essential functionality. So, any functionality not required, is simply not started. The
QNX micro-kernel is fully preemptable and designed for hard real-time applications. The OS
provides only one thread type, which is usable for hard and non real-time.

Control Engineering RJW Wilterdink

10 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The benefit of QNX, for this thesis, is that it provides rendezvous communication channels by
default. As was already pointed out in the introduction, these might be handy for the imple-
mentation of a CSP execution engine, since these are similar to the CSP rendezvous message
passing paradigm.

The OS can be run on, among others, x86, ARM and PowerPC architectures and has multi
core/CPU support. Due to the hard real-time design, the micro-kernel system architecture and
the resulting small memory foot print, QNX is suitable for embedded control systems.

Additionally, QNX provides useful development features. Such as an Eclipse based IDE, an
instrumented kernel (i.e. containing debugging symbols), remote debugging facilities and ap-
plication profiling functionality.

A more detailed description on the QNX OS can be found on the website QNX Software Systems
(2011). The first work performed with the QNX OS, within our group, is described in Molanus
(2008).

2.6 Software testing

For framework development, a short description of commonly used testing methods and levels
in software engineering is given next. A more detailed explanation can be found in Lethbridge
and Laganiere (2001).

Testing methods
Testing methods in general can be classified as black-, grey- or white-box tests. For black-
box testing, test cases are build around specifications and requirements to verify the (external)
functionality of a component or function.

White-box testing is a method to verify internal structures or workings of a component, as op-
posed to its functionality. For white-box testing an internal perspective of the component, as
well as programming skills, are required to design test cases.

Grey-box testing is a combination of the white- and black-box testing methods, but the verifi-
cation is done at the black-box level.

Testing levels
Test levels can divided in unit, integration and system testing.

Unit tests, test the functionality of a specific component or its functions. This type of test is
usually written by developers as they work on code to ensure that the specific building block is
working as expected. Unit testing alone cannot verify the overall functionality of a framework,
but rather is used to assure that the building blocks work correctly independent of each other.

Integration tests verify the interfaces between components for the benefit of a cooperative soft-
ware design. The tests works iteratively, progressively larger groups of tested software compo-
nents are integrated and tested until the software works as a system.

System testing tests a completely integrated system to verify that it meets its requirements.

2.7 Design methodology

At the CE group, embedded control software is developed using the design trajectory as defined
in Broenink et al. (2007), Broenink et al. (2010b) and Bezemer et al. (2011a), see Figure 2.2. The
dashed box shows the steps in the design trajectory where this project applies to.

The design trajectory promotes iteratively development, whereby each step should be verified
by a simulation or a validation on the setup. When a step reaches the desired outcome, the fol-
lowing step can be undertaken. Of course, sometimes it is necessary to (partially) redo previous
steps if it becomes clear that a step cannot reach the desired outcome.

RJW Wilterdink University of Twente

CHAPTER 2. BACKGROUND 11

Control Law
Design

Embedded
Control Software
Implementation

Realization

Physical
System

Modelling

Software
Architecture

Design Verification
by

Simulation

Validation
and

Testing

Verification
by

Simulation

Verification
by formal

checks

Verification
by

Simulation

Figure 2.2: CE design methodology (Broenink et al., 2010b)

Short description of the design steps:
• Software Architecture Design

A software architecture is created to add high-level behavior to the embedded system.
• Physical System Modelling

The interesting dynamic behavior of the system is modelled.
• Control Law Design

For the dynamic model, loop controllers can be designed.
• Embedded Control System Implementation

The controllers are implemented using (software) algorithms and are combined with soft-
ware architecture.

• Realization
The complete collection of algorithms are converted into an executable to be run on a
computing system.

The development route Software Architecture Design and the route Physical System Modelling
and Control Law Design can be performed in parallel. All steps are clarified in the following
sections.

2.7.1 Physical System Modelling and Control Law Design development route

For instance, bond graphs can be used to model a dynamic system and a simulator can be used
to analyze the resulting system behavior.

20-sim (Controllab Products, 2011) is a graphical modeling and simulation tool for, among oth-
ers, bond graphs. Using its Control Toolbox the controllers for the system can be designed and
verified in its simulator.

2.7.2 Software Architecture Design development route

The software architecture defines how the different algorithms of the embedded system should
work together, i.e. which processes run concurrently and when data exchange is required be-
tween processes. However, the development of complex concurrent software tends to become
tedious and error-prone. Communicating Sequential Processes (CSP) can ease such a task, as
explained next.

Control Engineering RJW Wilterdink

12 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The CSP algebra, introduced by Hoare (1985) and Roscoe et al. (1997), can be used to reason
about concurrent processes and patterns of communication between these processes. The al-
gebra is based on a few simple constructs, such as denoting sequential or parallel execution
of processes, and the rendezvous message passing paradigm. When two processes try to com-
municate the first arriving processes, at this synchronization primitive, will be stalled until the
second is also ready for communication. Thereafter, both processes can freely continue. A
good introduction to Add "CSP" to dictionary can be found in Nissanke (1997).

As was already stated in the introduction, the graphical modeling tool gCSP (Jovanovic et al.,
2004) can, for instance, be used to ease the development of CSP models. Note, this tool is an
interpretation of the CSP algebra. During development the application can be monitored in
gCSP through an animation facility (Steen, van der, 2008). Furthermore, the gCSP tool can
generate code for the Failures-Divergence Refinement tool (Formal Systems (Europe) Limited,
2008) to formally check a design on deadlocks and lifelocks. Without such tools, the developing
of complex concurrent software tends to become tedious and error-prone.

2.7.3 Embedded Control Software Implementation step

Along both development routes a design is made in a (graphical) modelling tool. These de-
signs need to converted into code, such that the software architecture and controllers can be
combined.

The 20-sim Code Generation Toolbox can be used to generate software algorithms of the con-
trol laws.

The gCSP tool can generate code for the CTC++ library (Orlic and Broenink, 2004). The combi-
nation of the CT library and gCSP is depicted in Figure 1.1. However, as was already stated in
the introduction, the library cannot make use of multi-core/CPU architectures and its design
is outdated. Therefore, the framework designed in this thesis will replace the CT library in the
future.

Veldhuijzen (2009) reimplemented the CT library for the QNX OS. The main difference with
the original library is that OS threads are used instead of user threads for CSP processes, and
thereby multi core/CPU architectures are supported. Unfortunately, the approach to only use
OS threads makes the CSP model execution slow (see Appendix I) and the implementation is
not complete (apart from the basic processes).

Plant
Simulator

(e.g. 20-sim)

Embedded
Control
System

Actuator signals

S
o
f
t
w
a
r
e

Virtual
Clock

Sensor signals

Figure 2.3: Co-simulation test bench

RJW Wilterdink University of Twente

CHAPTER 2. BACKGROUND 13

The combination of the software architecture and controllers can, for instance, be tested using
co-simulation. Figure 2.3 schematically depicts such a test bench. The embedded control sys-
tem hardware runs the combined software design, but generated actuator signals are routed to
an off-target physical system simulator (e.g. 20-sim) instead of the actuators. The calculated
physical states are send back to the embedded control software as sensory input. So, the test
bench is created purely in software and the embedded control system does not use the actual
physical system nor its actuator/sensor hardware. The virtual clock synchronizes the embed-
ded control system and simulator execution, since simulating a complex physical system might
take more time than running the application in hard real-time on its dedicated hardware.

2.7.4 Realization step

In the realization step, the generated software architecture and controller code is compiled into
an executable for the target embedded system. This executable can then control the physical
system. The complete system can be tested and validated by manipulating its inputs and veri-
fying the generated output behavior or signals.

2.7.5 Embedded control software layers

Additionally for the Software architecture design step in the design trajectory, a generic design
pattern has been developed at the CE group, see Figure 2.4.

Embedded software I/O hardware Process
Soft

real-time
Hard

real-time
Non

real-time

M
ea

s.
&

A
ct

. Actuators

Sensors

Power
amplifierD/A

A/D
Filtering/
ScalingS

af
et

y
la

ye
r

Physical system

Lo
op

 c
on

tro
l

S
eq

ue
nc

e
co

nt
ro

l

U
se

ri
nt

er
fa

ce

S
up

er
vi

so
ry

co
nt

ro
l&

In
te

ra
ct

io
n

Figure 2.4: Software architecture for embedded systems (Broenink et al., 2010a)

Each layer supports a type of real-time, varying from non real-time to hard real-time. The fol-
lowing paragraphs discuss the common distribution for these.

The Loop control is the part of the application responsible for controlling the physical system
and it is realised in hard real-time. If the loop controller fails to meet its deadlines for what-
ever reason, the system is considered unsafe and catastrophic accidents might happen with
the physical system or its surroundings due to moving parts.

In the Sequence control the correct trajectory generator(s) and controller implementations are
chosen based on the required action. The trajectory generator calculates the set-points for the
Loop control to follow. Generally, this part of the application is more complex and requires
more time to run its tasks than the Loop control. If a deadline is missed this is not immediately
catastrophic, but some applications, like a wafer stage, might require hard real-time for this
layer as well to guarantee smooth operation.

The Supervisory control & interaction contains algorithms which, for example, handle input
events, map the environment, plan future tasks of the physical system or communicate with
other systems. These might require soft or non real-time, depending on the application.

The User interface is non real-time, but some form of responsiveness to inputs is desirable.

Control Engineering RJW Wilterdink

14 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The Measurement & Actuation interfaces with the hardware (directly). This usually means for-
warding the signal values to and from the appropriate hardware registers.

The Safety layer is used throughout the application to prevent unwanted control signal values.

To conclude, the new framework should support such a layered design implicitly.

RJW Wilterdink University of Twente

15

3 Analysis

Before one can start to design a new system an analysis should be conducted to identify the
expected problems, requirements and use cases. The purpose is to bring the final design and
the expectations of the future customers as close together as possible. First a domain analysis
will be performed and hereafter the requirements can be deduced from this. Although a use
case analysis might be interesting, it is considered out of scope for this project.

The rest of this thesis will be based on the outcome of this chapter.

3.1 Domain analysis

The domain analysis is conducted to select the general field of business for the new frame-
work and to get a better understanding of the challenges commonly present in the domain.
Therefore, a domain analysis can improve the development time, system integration and an-
ticipation of future extensions. Furthermore, it can help select implementation priorities.

The domain analysis for the new framework has been performed with four corner applica-
tions selected from our laboratory. These are distinct set-ups commonly found in embedded
(robotic) control research. The corner applications are:

• Jiwy - A small embedded control teaching aid.
• Production cell - An embedded distributed control application.
• Humanoid head - A control application focused on human-machine interaction.
• TUlip - A complex humanoid walking robot.

These corner applications combined represent the total set of applications which are supposed
to be realisable with the new framework. Note, all corner applications have already been re-
alised and that the selected implementations all required an underlying operating system. It is
also believed that these setups will resemble, at least, the near future embedded control soft-
ware requirements. The results can be found in Appendix A.

An analysis into competing software has also been performed (Chapter 4), however with a
slightly different approach than one might expect from a domain analysis. This analysis in-
tends to identify other frameworks strong points and weaknesses, and concludes with remarks
for the new design.

3.2 Requirements

The purpose of the requirements analysis is to define all functional and non-functional re-
quirements the new framework should fulfill. Using the results from the domain analysis, the
requirements can be deduced.

In the domain analysis both threads/processes and layers are used, but in fact layers can be
seen, from an OS point of view, as a group of threads. Unless explicitly denoted, both can be
used interchangeably.

Furthermore, it was timely recognized that not all requirements can be fulfilled within one the-
sis project, therefore the requirements marked with a † are not further considered. Besides,
these requirements are not deemed critical to the framework’s first working implementation.

Control Engineering RJW Wilterdink

16 Design of a hard real-time, multi-threaded and CSP-capable execution framework

3.2.1 Functional requirements

3.2.1.1 Platform independence

The framework should ultimately support different hardware platforms and operating systems.
For the first implementation the QNX OS on a x86 architecture was chosen. But, in the future
also other target OSs (like RTAI and Xenomai) should be supported. If the chosen target OS
supports them, different hardware architectures should be supported (like a PowerPC or ARM)
as well. Furthermore, an OS-less version of the framework should in principle be possible in
the future. Next to the mentioned target OSs, a few development OSs (like Windows and Linux)
should be supported as well to facilitate development. So, the framework should be designed as
platform independent as possible to enable future OSs and architectures.

3.2.1.2 Real-time constraints

The four corner applications all require hard real-time constraints for, at least parts of, their
application. Because of the limited available computing resource in the more advanced setups,
it is necessary to specify a mixture of hard/soft/non real-time constraint threads in order to fulfill
the timing requirements.

3.2.1.3 Thread support

To take advantage of multi-core/CPU target systems, OS thread support is required. But, this
should not cripple single core/CPU embedded systems.

3.2.1.4 Priorities

It is sometimes required to subdivide a real-time constraint level into multiple smaller priority
levels. Such that optimal timing results can be achieved.

3.2.1.5 Periodicity

Certain parts of robotic applications are required to exert periodic behavior. In one application
multiple frequencies with each multiple threads may be present. Furthermore, the component
implementing the periodicity should adhere the priorities and real-time constraints assigned
to the thread.

3.2.1.6 Communication

A common approach in software design is to divide and conquer, which requires parts of a
design to communicate with each other to exchange data or active one another. All four cor-
ner applications are designed following this principle. Thus, the threads in an application will
need to communicate with each other, with other applications on the same embedded computer
or even on different hosts. Furthermore, the communication should conform to the real-time
constraints and priorities assigned to the communicating threads.

3.2.1.7 Synchronization

Resources might be accessed concurrently. To ensure proper and safe operation the threads
and processes should be able to synchronize access to any software resource, which in turn can
be used to protect hardware resources.

3.2.1.8 (Link) drivers to/from hardware

Robotics inadherently need to interact with the environment, therefore (link) drivers for sensors
and actuators should be included where possible.

RJW Wilterdink University of Twente

CHAPTER 3. ANALYSIS 17

3.2.1.9 External code and/or library integration

The new framework should not reinvent the wheel and therefore provide mechanisms to in-
clude external code and libraries. For example, one can think of the ROS (ROS, 2011) framework
or the GSL (2011) library for performing advanced matrix calculations.

3.2.1.10 CSP execution support

For CSP models to run on the new framework CSP execution support should be added. Prefer-
ably, with the same functionality as the current CT library offers.

3.2.1.11 Safety layer

To prevent hazardous situations for the setup and environment a safety layer should be present
in all robotic applications. This layer mostly provides limits on actuator output signals, takes
action on endstop events and is sometimes used to identify broken sensors.

3.2.1.12 Debugging facilities

Although applications and frameworks are preferred to work out-of-the-box, it is a good idea
to supply (standard) debugging facilities. These should also be used to generate bug reports for
the framework developers, so that problems can be solved efficiently. Furthermore, it would be
nice to have a debugging utility which does not influence the real-time constraints nor timing.

3.2.1.13 Self testing

The complete framework will most likely contain hundreds of classes and interfaces, whereby
some only are available on specific platforms. Additionally, the framework might be used on
platforms the developers even did not think of. Therefore it is wise to supply a standard self-
test, which can be run on the intended platform to see if all required features are operational.
This will also increase the confidence users have in the framework.

3.2.1.14 Reusable component specification and interconnection †

Parts of a robotic application might be reused in other parts of the application. In order to
achieve this it would be beneficial if the framework could support a generic manner to perform:

• Parameter configuration - dynamically loading and replacing of settings for a compo-
nent.

• Component interaction specification - stipulates how (repeated) components fit to-
gether in an application.

• Flexible connections - communication vectors might vary in size depending on physical
properties they represent, and some components might be able to provide generic oper-
ations on these.

It is realized that the above definitions are very short, but they only serve to point out identified
future work or, perhaps, these should be supported by a graphical tool.

3.2.1.15 Stepwise implementation support †

The divide and conquer approach in software design also applies well to implementing and
testing the application (see Figure 2.2).

The proper working of the software architecture design can, for instance, be empirically verified
by animating execution (of a special implementation version) in a graphical modelling tool.
The software architecture implementation support provided by the new framework should
be augmented with an animation framework and missing algorithms need to be replaced with
mock-up algorithms.

The Embedded control software implementation step can, for instance, be tested with a co-
simulation test bench (Section 2.7.3). The application is then tested using a simulation of the

Control Engineering RJW Wilterdink

18 Design of a hard real-time, multi-threaded and CSP-capable execution framework

physical robot, preventing possibly damaging the physical robot or the environment during
application development.

In order to support co-simulated testing of complex physical systems, it should be possible to
seamlessly exchange the real-time clock with a virtual clock, because the simulator will most
likely not be able to keep up with the real-time constraints of the application itself. Generally
it takes time before a simulator has calculated the next physical state, while the application is
designed to handle all computations for the real physical plant in a relatively short time. The
virtual clock will take care that the application will only progress whenever new simulation
data was received. Furthermore, the actuator output generated by the application should be
(re)routed to the simulator to update the simulated dynamic behavior and then the calculated
sensory outputs should be fed back to the application for the next application cycle.

3.2.2 Non-functional requirements

The software design and the employed programming style should reflect the real-time con-
straints. The normal case should be to design and program for hard real-time and if this cannot
be achieved it should be documented.

The software design should be scalable. All kinds of setups should be controlled: From the big
robotic humanoids to small embedded platforms with limited computing resources.

Interfaces should be easy to use correctly and hard to use incorrectly. People using a well-
designed interface almost always use the interface correctly, because that’s the path of least
resistance. Good interfaces anticipate mistakes people might make and make them difficult
(ideally impossible) to commit.

Unify interfaces for components with similar operations as much as possible. For example, a
simple communications protocol and a file writer could employ the same write function to
‘send’ their data to their respective destinations.

The new framework should preferably be faster than the current CT library. Furthermore, it
should give better or likewise timing results. A lesser performance would undermine its future
position as the to-be-used framework for embedded control applications in the laboratory.

Example and test programs should be supplied with the framework, to provide a show case, aid
learning how to use the framework properly and increase confidence in the framework.

The framework interfaces should not be dependent on features which are not commonly avail-
able. For example, Boost (2011) tuple functions are only usable when the framework is com-
piled with Boost. Furthermore, such features might change overtime and render applications
created with the new framework into legacy status.

3.3 Conclusions

The new framework will be able to control the aforementioned four corner applications and
future applications, when the identified functional requirements are implemented. The corner
applications represent the total set of embedded applications which are supposed to be real-
izable with the new framework. Furthermore, a subset of the functional requirements is also
implemented by the current CT library.

Requirements marked with a † are not considered in this thesis, but are highly recommended
for implementation in the future. These will simplify development and enable iterative devel-
opment and testing.

The quality of the new framework is guarded by the non-functional requirements. These spec-
ify common (programming) practices to be employed in the new framework’s design and im-
plementation, and overall requirements for the new framework.

RJW Wilterdink University of Twente

19

4 Framework and library research

The purpose of this chapter is twofold. First, state of the art embedded control libraries and
frameworks will be investigated to determine if one can be found which already implements
the requirements (Chapter 3). Secondly, which valuable lessons can be learned from these
libraries and frameworks?

The introduction will first present all considered state of the art frameworks and libraries very
shortly. Then a pre-selection will be made, which will narrow the investigative space to alluring
frameworks and libraries regarding the purpose of this project. The approach section will then
describe how the detailed research was conducted. Next, the selected frameworks and libraries
will be discussed in detail. The last section will give a comparison between the discussed frame-
works and libraries and concludes regarding the two-fold purposes of this research.

4.1 Introduction

The considered state of the art frameworks and libraries are ROS (2011), C++CSP2 (2009), Oro-
cos (2011) and RoboFrame (2010). ROS is a framework for robot software development, provid-
ing operating system-like functionality on top of a heterogeneous computer cluster. C++CSP2
is a framework for CSP based algorithm execution. Orocos deals with the definition of compo-
nents. RoboFrame is a message oriented middleware, which thus deals with the communica-
tion between modules or layers.

Framework Hard real-time Platform independence
ROS - -
C++CSP2 - -
Orocos + ++
RoboFrame +/- +
CT (CTC++) + +

Table 4.1: Generic framework characteristics

Table 4.1 presents the basic characteristics of the aforementioned frameworks. ++ is the max-
imum achievable score and −− is the lowest achievable score. A framework is hard real-time
when it adheres to real-time programming restrictions (for details see Section 5.1.5). A frame-
work is platform independent when it provides methods to abstract the OS specific system
calls. On the basis of these results a pre-selection will be made.

To be clear, when a framework provides POSIX compliance this does not mean that it will be
hard real-time by definition on a hard real-time OS like QNX. Only if the real-time programming
restrictions are followed it can be hard real-time. Furthermore, if the framework/library does
not explicitly state it is designed for hard real-time nor provides an implementation for at least
one hard real-time OS other than POSIX compliant ones, it is assumed to be soft real-time at
best.

The ROS basic framework is not considered platform independent, although it works on most
Linux/Unix operating systems and partially on Windows, because no special precautions can
be found (in the file hierarchy) to establish platform independence, which one would expect
for easy maintenance at least. The provided platform independence is supplied by the used
Boost library (Boost, 2011). Furthermore, the Linux/Unix OSs do not include hard real-time
additions like RTAI. Therefore, it was decided to not consider ROS any further.

Control Engineering RJW Wilterdink

20 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The C++CSP2 library, which actually is a framework, provides a multi-threaded CSP engine.
Unfortunately, it is not suitable for hard real-time applications controlling setups. Because, it
actively makes use of C++ language exceptions to influence the execution flow, which make an
application in general non deterministic (see Appendix B). Additionally, the framework does
not have any means for platform independence. Therefore the C++CSP2 framework is not con-
sidered any further in this chapter. However, the C++CSP2 library was consulted during the
CSP component development for the new framework.

Orocos is advertised as a hard real-time framework, but as will be shown in section 4.3 the
framework is most likely not able to perform well enough for loop control nor implementing
CSP constructs, due to its considerable software footprint. The framework supports multiple
OSs, with among others RTAI.

The RoboFrame framework is not designed for real-time, but the extension explained in Sec-
tion 4.4 can be used to perform loop control in robotic applications. Furthermore, its separa-
tion in modules and platform independence make it worthwhile to investigate.

As explained before, the CT library is build for hard real-time execution of gCSP generated code.
However, due to its inaccurate timing, it does not get the full ++ score for hard real-time. Al-
though the framework supports multiple OSs (among others RTAI), the tight integration be-
tween CSP and the platform abstraction is not desirable and results in a +.

The table shows that none of the considered frameworks is truly hard real-time (i.e. a ++ in this
column), which is an integral requirement for the new framework. So, together with the fact
that the current CT library is outdated, it can be concluded that the design of a new framework
is a viable choice.

Because no suitable framework is found, one could choose to build a new framework with the
aid of state of the art libraries, such as Boost (2011) or POCO (2011). The Boost C++ libraries are
a collection of free libraries that extend the functionality of C++. It is aimed at a wide range of
C++ users and application domains. POCO also is a collection of open source C++ class libraries
and frameworks, but is targeted at building network and internet based applications that run
on desktop, server and embedded systems.

Library Hard real-time Platform independence
Boost +/- +/-
POCO +/- +

Table 4.2: Generic library characteristics

Table 4.2 presents the basic characteristics of the aforementioned libraries. The scoring system
is the same as for the framework comparison.

Any proposed library should also be C++ language exception free, to achieve the real-time con-
straints. Unfortunately, both libraries actively use them to handle exceptional circumstances.

Furthermore, it is important that the library functions are platform independent, without
this the functions cannot be used directly in the new framework without considerable work.
Nonetheless, the interfaces can still be reimplemented for the new framework. The last re-
mark does not apply to exceptions as these are not a simple implementation issue, but affect
the software design. The platform independence will be discussed in detail later. Both frame-
works have a +/− for hard real-time, because they only support POSIX compliant real-time
OSs, which seems to be more of a coincidence for real-timeness than a design choice.

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 21

4.2 Approach

Most frameworks and libraries supply software manuals for the end user, which is considered
good practice of course. Unfortunately, only Orocos has a manual for developers detailing its
inner workings, which is what we are interested in. All frameworks also have papers published
about them. But, even with all these resources some questions could not directly be answered.
Therefore, to fully understand what makes the considered frameworks so good and what makes
them tick, reverse engineering and code inspections were also performed.

Naturally all frameworks and libraries will have their own applications and boundary condi-
tions. The introduction of each subsection presents these among others. Furthermore each
framework and library will have the following subsections:

• General software architecture - presents the general idea behind the framework/library.
• Platform independence - discusses how platform independence is solved.
• Timing and real-time capabilities - deals with these specific aspects.
• Scalability and extensibility - comments on the scalability and extensibility, with respect

to embedded system usage and building the new framework with it.

The introduction and general software architecture are fact based presentations on the specific
framework/library. The other sections may also contain discussions on the subject at hand.
Furthermore, these subsections roughly fit the requirements specified in Section 3.2.

4.3 Orocos

The Open RObot COntrol Software1 (Orocos) is the most extensive robot and machine control
software currently on the market. The Orocos project supports four C++ libraries: the Real-
Time Toolkit (RTT), the Kinematics and Dynamics Library (KDL), the Bayesian Filtering Library
(BFL) and the Orocos Component Library (OCL). The libraries are open source and can be freely
downloaded, used and distributed (Orocos, 2011).

The Real-Time Toolkit (RTT) is not an application in itself, but provides the infrastructure and
the functionality to build robotic applications in C++. The emphasis is on real-time, on-line in-
teractive and component based applications. Only this library will be discussed in this chapter,
but for completeness the other libraries will be introduced briefly. The Orocos Components Li-
brary provides some ready to use control components. The Orocos Kinematics and Dynamics
Library is a library to calculate kinematic chains during run-time. The Orocos Bayesian Fil-
tering Library (BFL) provides an application independent framework for inference in Dynamic
Bayesian Networks, i.e., recursive information processing and estimation algorithms based on
Bayes’ rule, such as (Extended) Kalman Filters, Particle Filters and more.

Figure 4.1: Orocos framework overview (source: Orocos, 2011)

1Version: 1.10

Control Engineering RJW Wilterdink

22 Design of a hard real-time, multi-threaded and CSP-capable execution framework

4.3.1 Software architecture

The Orocos project focuses on component based applications with fixed interfaces. For the
component specification these interfaces are systematically separated in Computation, Com-
munication, Configuration and Coordination (4C’s). The components are build on top of the
RTT framework (see Figure 4.1), which provides the infrastructure and the means for execution.

Each component is defined as a TaskContext, which defines the environment or ‘context’ in
which an application specific task is executed. The TaskContext interface provides five public
manipulation methods:

• Attributes and properties
The attributes and properties in a TaskContext can be used to get and set configuration
data. Attributes are plain variables which expose C++ class members to the scripting layer,
additionally properties can be stored to and loaded from an XML file. The reading and
writing of properties and attributes is not thread-safe.

• Methods
Methods resemble normal C++ functions, i.e. they are directly executed by the caller, but
they also can be called from a script or over a network connection. Calling methods is, as
in C++, not thread-safe.

• Commands
Commands are asynchronous function calls, with respect to the caller, and they are ex-
ecuted in the receiver’s thread. Furthermore they might be queued and must provide a
boolean value to indicate success or not. Commands are thread safe with respect to other
RTT processors (discussed in the RTT Execution section) running in the receiving compo-
nent.

• Events
Events are designed according the classic publish-subscribe software pattern (Douglass,
2002), i.e. one ore more clients can register their callback functions for a specific event.
When the event is raised, the connected functions are synchronously or asynchronously
called one after the other. Publishing and reacting to an event is thread-safe only in asyn-
chronous callbacks. A task may register its events in its interface in order to be used by
its state machines and other tasks as well. Unfortunately, it cannot be predicted when the
event is executed.

• Data-Flow ports
A stream of data can be send between tasks using a data-flow port. This data can be passed
buffered or unbuffered and a task may be woken up if data arrives or it can use a polling
scheme to check for new data at one of its ports. The data-flow ports are connected using
a modified Acceptor-Connector software pattern (Douglass, 2002), which decouples the
connection and communication roles. The data-flow ports could for example be used to
implement a classic control loop. Reading and writing data is thread-safe.

Furthermore, the TaskContext internals provide a build-in state machine, which can be ex-
tended through various C++ function hooks (e.g. updateHook()). The internal state machine
will be explained in the RTT execution section.

The class TaskContext groups all these interfaces and serves as the basic building block for
components. The TaskContext is schematically shown in Figure 4.2.

Dynamic program flow
An Orocos component (TaskContext) can have a dynamic program flow via:

• Real-time scripts
• User defined state machines
• Distributed computing, with CORBA (2011)

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 23

Figure 4.2: Orocos TaskContext (source: Orocos, 2011)

The real-time scripts and user defined state machines will be discussed in the RTT execution
section. The CORBA package enables Orocos components in separate processes and possibly
distributed over a network connection to communicate with each other. This part of the RTT is
considered out of scope and will not be discussed any further.

RTT Execution
The execution of a TaskContext is performed by the ExecutionEngine (see Figure 4.3). An Exe-

cutionEngine should be added to a Periodic-, Nonperiodic- or plain Activity, which ever is suited
best according to its periodicity requirements. The different Activities map onto different op-
erating system threads and these may hold multiple ExecutionEngines with the same real-time
constraints. The ExecutionEngines contained in a PeriodicActivity are executed exactly once
per period. Furthermore, if an overrun of the PeriodicActivity occurs this is recorded and can
be dealt with accordingly.

Figure 4.3: Orocos execution model (source: Orocos, 2011)

Control Engineering RJW Wilterdink

24 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The commands, events and internal state machine of the TaskContext interface are executed by
the ExecutionEngine using, so called, processors. Furthermore, the real-time scripts and user
defined state machine are also executed by a processor. These five processors are executed in
the order they are explained next:

• Real-time scripts - ProgramProcessor
The Orocos scripting language enables users to write programs and state machines for
controlling the system in a non hard-coded manner. The advantage of scripting therefore
is that it does not need recompilation of the main program and, according to the Orocos
project team, makes the Orocos components easily extensible. The disadvantage is that
it decreases system performance, as scripts needs to be interpreted, and may violate hard
real-time constraints as will be discussed in Section 4.3.3.

The scripting language supports, among others: variables, constants, if-then-else, for-
loops, while-loops, function declarations and interfaces to the other processors. Recur-
sive function invocation is prohibited, since this results in non real-time behavior by def-
inition.

• User defined state machines - StateMachineProcessor
The component designer may add his own state machine to the TaskContext. This state
machine has (conditional) edges and may emit commands to its own or other TaskCon-
texts. A state machine can run in two modes: automatic mode and the reactive (also
‘event’ or ‘request’) mode, which can be switched at run-time. To be clear, this state ma-
chine is not part of the internal state machine which provides function hooks.

The program and state machine scripts share the common syntax and semantics, addi-
tionally the state machine also provides extra functionality to specify states, precondi-
tions for state entry and (conditional) edges. The script parser is strongly typed and if a
run-time error occurs, i.e. if a statement fails, it will bring the TaskContext’ state machine
into the error state.

• Commands - CommandProcessor
The (buffered) commands are sequentially executed by the CommandProcessor.

• Events - EventProcessor
The asynchronous (buffered) events are executed sequentially by the receiving TaskCon-
text’s EventProcessor.

• Internal state machine - by the ExecutionEngine itself via, for instance, updateHook()
For implementing algorithms the TaskContext provides an internal fixed state machine,
which should be extended in C++ function hooks to initialize, configure, start, update,
stop and clean-up a component. The basic state machine without exceptions is shown in
Figure 4.4.

Methods, data-flow ports, properties and attributes are not executed by any processor, because
methods operate in the calling thread directly on a TaskContext’s internals. Data-flow ports
may raise events or call the execution engine to process the newly arrived data. The attributes
and properties can be manipulated from the ProgramProcessor, CommandProcessor, EventPro-
cessor or internal state machine.

All processors perform one step() per ExecutionEngine step, but the number of internal steps
defers per specific processor. For the internal state machine it depends on the actual code in
the TaskContext. The other processors mostly process their complete internal queues (e.g. all
received Commands) during one ExecutionEngine step. But, the number of internal steps the
user state machine might perform can be configured, for example the user state machine might
run until it blocks on a conditional edge or just follow one edge and perform the statements
accompanying the new state.

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 25

Figure 4.4: Orocos internal state machine (source: Orocos, 2011)

The ExecutionEngine processors for a TaskContext are thread safe with respect to each other,
since they are run one after another in one Activity. Furthermore, the sequence of program ac-
tions is serializable, because all ExecutionEngine processors on an Activity run in a predefined
order.

4.3.2 Platform independence

Components interact with the underlying operating system and other components through the
Real-Time Toolkit, see Figure 4.5. The RTT is a platform independent layer that provides inter
component communication, (a)periodic threading, mutexes & semaphores, data streams, time
related operations (e.g. sleep), networking, property management through XML files and some
general operating system calls. Furthermore the RTT specifies an interface for generic data
acquisition and (actuator) drivers.

The platform independent RTT features have a generic interface and implementation. The im-
plementation is composed of functions with a generic function signature, which is the same
for all supported platforms. Macros then include the right OS dependent header, i.e. function
skin, which contains the actual function implementation. The use of macros in general is not
preferable, because one needs to actively keep track of them and problems with macros some-
times are hard to track in sources. For the currently maintained OSs the function skin approach
worked out well, but these functions might not match well when building support for a new OS.

The Orocos RTT is currently maintained for RTAI (Linux) and Xenomai (Linux) real-time oper-
ating systems and the general purpose operating systems plain Linux, Mac OS X and Windows.
Additionally, Orocos provides a device driver abstraction layer.

4.3.3 Timing & real-time capabilities

The Orocos RTT is advertised as a hard real-time framework. This is in principle true, but a pro-
grammer has to manually enforce and verify the real-time constraints of an application build
with the framework. Due to Orocos’ wide variety in manipulation methods, which make the
framework inner working quite complex, the verification will be an elaborate, if not, impossible
task. Thus it is advisable to use dedicated hardware for the control loops, which are fed by the

Control Engineering RJW Wilterdink

26 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Figure 4.5: Orocos software design overview with respect to platform abstraction (source: Orocos, 2011)

framework with setpoints. Therefore, the framework basically is operating at a soft real-time
level, since it does not matter if a setpoint arrives slightly late at the hardware control loop.

In our group we like to design the control loops ourselves and are not using such hardware
control loop solutions. Furthermore, it is impossible to use formal methods to confirm that a
complex application, build using Orocos, is deadlock or livelock free, because of the size and
complexity of the framework (Dijkstra, 1972).

Fortunately, Orocos does provide means to determine, at run-time, if an overrun of a periodic
task occurred and also provides some failsafe mechanisms for it. But, this is a run-time feature
and therefore will not guarantee proper nor safe operation for a robotic application.

Real-time scripts
Real-time scripting, in general, should be looked at sceptically. Because, for a scripting sys-

tem to be real-time it has to adhere to the same conditions as normal code, i.e. it should have
deterministic timing. But, the commonly accepted method for parsing scripts is to incur mul-
tiple layers of abstraction which have to be passed through before, for example a statement is
accepted. Note that different types of statements possibly have different layers of abstraction.
Furthermore, certain commands in a script might want to allocate memory, which in most sys-
tems is not a deterministic operation.

The solution to these described problems, applied in Orocos, is to parse the script during non
real-time operation into an internal format. This intermediate format should prevent non-
deterministic timing during run-time by, for instance, allocating the required memory on be-
forehand. Furthermore, some optimizations may be identified and stored in the intermediate
format. So, when the interpreter (which is either the ProgramProcessor for the real-time script
or the StatemachineProcessor for the real-time state machine descriptions) receives the in-
termediate format it should be real-time. That is, if the command, method, et cetera it calls
satisfies real-time constraints.

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 27

4.3.4 Scalability & extensibility

Orocos components can be used in both embedded or general purpose systems, depending on
the application design. The placement of multiple components and the specification of their
interconnections on a specific target is called component deployment in Orocos.

Three distribution levels of component deployment can be realized in Orocos:
• Not distributed

In case the application will not use distributed components and a very small footprint (<
1 MB RAM) is required, the TaskCore should be used. The TaskCore is a base class of the
previously explained TaskContext class, and provides the manipulation methods in a hard
coded non-dynamic manner (i.e. no scripts and user defined state machines).

• Embedded distributed
In case the application requires a small footprint and distributed components the
TaskContext in combination with the distribution library, which does the network trans-
lation, can be used. The TaskContext, in this manner, can only handle a predefined set of
build-in data types and requires modification if other data types should be supported.

• Fully distributed
If the application footprint is of no concern and components should be distributed com-
pletely transparently, the TaskContext in combination with a remoting library, for network
translation, can be used. The Orocos developers are working on a CORBA implementa-
tion for this, which can pick up user defined types without requiring modifications.

The components designed with the embedded and fully distributed deployment interfaces can
be dynamically configured from an XML file.

Unfortunately the three distribution levels require different implementations because of their
interfaces. A component, developed for one distribution level, therefore cannot be used on an-
other without modification. Lootsma (2008) has also pointed out that the Orocos RTT frame-
work can be quite resource consuming. This is, actually, not a surprise if one takes into account
the large number of manipulation methods and execution flow solutions.

Due to its size the Orocos framework is not suitable to implement CSP constructs on a low level,
but it would be possible to build a standard Orocos TaskContext for running or interfacing with
a complete CSP model.

4.4 RoboFrame

RoboFrame2 is a modular software framework for lightweight autonomous robots, created by
the Technical University of Darmstadt. RoboFrame started as a master thesis project of Petters
and Thomas (2005). It addresses the needs of heterogeneous teams of autonomous lightweight
robots and it is used for example in the robot soccer competitions.

The framework has been designed to facilitate reuse of its architecture in many different sets of
boundary conditions. Each new application should extend RoboFrame at predefined extension
points, more precisely by means of extending (abstract) base classes. RoboFrame consists of
two parts: RoboApp is the base for any high level software running on the robot, while RoboGui
is the base for a graphical user interface. The latter will not be discussed any further as this is
not the target of this research.

Additionally, the RoboFrame framework by default provides data logging, debugging and con-
figuration file interpretation services. The framework can also be extended with a finite state
machine engine called XABSL (Risler and Stryk, von, 2008).

2The investigated package does not specify a version.

Control Engineering RJW Wilterdink

28 Design of a hard real-time, multi-threaded and CSP-capable execution framework

4.4.1 Software architecture

RoboFrame focuses on partitioning functional parts in loosely coupled modules by providing
flexible and reliable communication mechanisms for data exchange between modules, which
are based on messages (ring buffers) or shared memory (black boards).

The ring-buffers implement one-to-one or one-to-many location independent communica-
tion between modules. The modules themselves specify the demanded and provided type of
data and are therefore not dependent on each other. The data exchange mechanism is part of
the architecture and predefined. However, the data types should be specified in the form of
classes, which will be serialized into a byte stream and later deserialized at the destination.

Via a blackboard an asynchronous many-to-many channel can be created. The data to be ex-
changed is placed in shared memory, which is more suitable if large data structures are mod-
ified incrementally (for example map processing tasks). Unfortunately this form of communi-
cation will most of the time, besides the communication primitives, need some form of cus-
tom arbitration (e.g. read and/or write locks) in contrast to message passing. Additionally, the
blackboards are limited to their particular RoboFrame instance.

Figure 4.6: Example instantiation of the RoboFrame framework with router (Petters and Thomas, 2005)

The router is at the heart of the architecture by managing the data exchange and execution
order. Figure 4.6 shows an example implementation. Modules have been assigned to threads,
which can hold multiple modules. These modules can be executed periodically, with a delay
or when data was received. Multiple modules inside one thread will be executed sequentially,
except when a receive trigger is used.

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 29

4.4.2 Platform independence

Figure 4.7: RoboFrame hardware abstraction layer (Petters and Thomas, 2005)

RoboApp has a platform abstraction layer which encapsulates all platform specific calls made
to the operating system, see Figure 4.7. Currently a variety of operating systems are supported,
like Linux, FreeBSD and Windows 2000/XP/CE 5, but unfortunately no hard real-time OS.

The platform independence has been achieved by applying the proxy design pattern, whereby
the platform independent object is just a front. Function calls made to the platform indepen-
dent object are redirected towards a separate platform specific implementation object. Thus
incurring another function call as overhead.

The sources for the different platforms are clearly separated, which is nice from a design and
maintenance point of view. However, macros are needed to join the platform specific imple-
mentation with the platform independent proxy-object.

4.4.3 Timing & real-time capabilities

As reported earlier, the framework itself does not provide any means of real-time support. The
recommended approach for creating real-time behavior is using a hard real-time operating
system (e.g. RTAI) and adding an additional hard real-time thread outside the RoboApp in
the operating system. The RoboApp and hard real-time thread can then communicate via, for
example, shared memory (see Figure 4.8). The hard real-time thread would then be suitable
to implement control loops for hardware actuation and the RoboApp can handle the rest of
the robotic application in soft real-time. This approach has been successfully implemented
(Lootsma, 2008) in TUlip, the University of Twente’s soccer robot.

Another solution would be to implement the platform specific objects for a hard real-time OS.
But, the provided dynamic communication channels are not usable, because Run-Time Type
Information (RTTI) is required for this (which is not deterministic). Furthermore, multiple
modules on one thread are not advisable anymore, because a blocking system call will stall
all modules of the particular thread.

4.4.4 Scalability & extensibility

The described router structure, with ring buffers and blackboards, enables the robot program-
mer to create a modular application. This approach, to split the application in multiple loosely
coupled functional parts, provides a straight forward design pattern and is easy to compre-
hend. However, besides this and the platform independence to implement it, the framework
does not offer any other functionality.

RoboApp has been designed to run with low overhead to allow deployment on systems with
low computational capacity. This is certainly a desirable feature, especially if one intends to
extend the framework.

Control Engineering RJW Wilterdink

30 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Figure 4.8: Example RoboFrame application with hard real-time support (based on: Petters and
Thomas, 2005)

The framework can be used to implement CSP, but not on a low level. The blocking processes
will require an own module, which will be very resource consuming. So, as in Orocos’ case, an
interface with a complete CSP model implementation will only be feasible.

4.5 CT library

The Communicating Threads3 (CT) library was developed to bring the Occam constructs, and
inherently the CSP constructs, to other platforms than transputers. It was first developed in
the Java programming language by Hilderink et al. (1999) and therefore was not real-time at all.
Hereafter, versions in C and C++ were created. Later the Java and C versions were abandoned
in favor of the C++ version. The library has been restructured a couple of times. The current
software version is still, more or less, based on the design by Orlic and Broenink (2004).

To aid the development process of complex concurrent systems a graphical modelling tool,
called gCSP (Jovanović et al., 2004), was developed. An animation framework (Steen, van der
et al., 2008) was later added to monitor gCSP applications and facilitate debugging. However,
both are considered not of interest to this research and will not be discussed any further.

Because the author and the CE group are most familiar with the CT library and because the
CT library matches best with the new frameworks requirements, it will be inspected in greater
detail than the other frameworks. This might sometimes seem unfair, but it is done to get an
‘improved CT library’ in the end. Furthermore, this section will also highlight a few peculiarities
where the motivation given in Chapter 1 is based on.

3Version: CTC++ / RestructuredCT

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 31

4.5.1 Software architecture

The current CT library has been designed to execute CSP constructions in hard real-time. Al-
though its commonly used name is ‘CT library’, it is actually a framework as the function call
direction in the software is from the CT framework to extension points (Constructs).

The initial requirements for the design included complete platform independence, meaning
that it should be able to run by itself on MS-DOS and DSP processors without an OS. Addi-
tionally, at that time computing resources were very limited and mostly single core/CPU ar-
chitectures. Therefore it was chosen to run the main CSP model always in one OS thread.
Consequently, the CT library now cannot make optimal use of newer multiple core/CPU ar-
chitectures.

Scheduler
activateProcesses(Parallel*)
activateProcesses(PriParallel*)

Dispatcher

activateProcesses(Parallel*)
activateProcesses(PriParallel*)
Instance()

ProcessProcessThread

1

1
1

10..1

1

Parallel

Construct

void run()
void execute()

Sequential

= Instance() association

Figure 4.9: Partial UML diagram of the CT library

The requirement for complete platform independence also inspired the use of a kernel based
design. The CT kernel is responsible for scheduling and dispatching CSP processes. The sched-
uler contains a prioritized FIFO scheduler and is non preemptive. Unfortunately, the CT sched-
uler is made completely aware of CSP, which is shown in Figure 4.9. Whenever a Parallel CSP
process is run it will call the activateProcesses(this), which will forward the function call to the
Scheduler. The Scheduler must then either known how to place the Parallel’s CSP processes on
its PriorityQueue (which is not shown) or how to run them immediately. The rest of the Sched-
uler interface, which is not shown, is targeted at CSP process activations. Thus, it is not easy to
use the CT library for anything else than CSP.

In the Construct interface the main run method has been split. The execute() function con-
tains code to manage the framework itself and the run() function should be overloaded with a
particular implementation, for example the Sequential semantics. The advantage is that any
particular CSP process can immediately call another CSP process’ run() function or request it
to be scheduled as a separate thread. This reduces the number of context switches between
CSP processes to only the ones between parallel processes.

Unfortunately, the design is now considered outdated because of a number of reasons:
1. As already was mentioned, the design cannot easily be changed to take advantage of multi

core/CPU architectures.
2. The design contains some strange constructions from a software engineering point of

view. These are probably accidentally created as a consequence of its many year con-
struction period and non-existing documentation. A few will be pointed out using a par-
tial UML diagram of the CT library, which is shown in Figure 4.9. A strange association
relationship can be seen between the Process and Construct, which is actually not nec-
essary. The dashed arrows indicate Singleton function calls, which are overkill because

Control Engineering RJW Wilterdink

32 Design of a hard real-time, multi-threaded and CSP-capable execution framework

One2OneChannel

write(object, size)
read(object, size)

bInputGuard: bool
bOutputGuard:bool
guard: Guard*

Any2OneChannel

write(object, size)
read(object, size)

One2AnyChannel

write(object, size)
read(object, size)

Any2AnyChannel

write(object, size)
read(object, size)

Figure 4.10: Class hierarchy of channels, source: Orlic and Broenink (2004)

the parent Process also contains an association relationship with the Dispatcher. A minor
point and just an example, the design is considered wasteful since only Parallel constructs
use a ProcessThread, but every Process has the association relationship and therefore an
extra data field in their object data.

3. The channel design (shown in Figure 4.10) is undesirable since a, so called, ‘dreaded
diamond’ class structure is created. The One2OneChannel class appears twice in the
Any2AnyChannel, which can lead to ambiguities and therefore special and wasteful pre-
cautions have to be taken.

Summing all reasons given above, which is not a complete list, it was concluded that a new
design is appropriate. Nonetheless, lessons can be learned from its advantages and ‘mistakes’,
and these will be taken into account implicitly for the new design.

4.5.2 Platform independence

The CT library currently supports Linux, RTAI, Xenomai and Windows. In theory DOS and
ADSP are also supported, but these have not been used lately and are therefore not further
considered.

CTCPP

Li
n
k-

d
ri

v
e
rs

Application

Platform
CT library

Figure 4.11: Top-level view of the CT library

The CT library is divided on the top-level into three categories on which an application can be
build, see Figure 4.11. The Platform contains platform specific implementations, such as for
threads and locking. The CTCPP holds the CSP language implementation and is highly inte-
grated with the platform abstraction and the other way around. The CSP Link-drivers are par-
tially build on top of the platform abstraction and partially interface with the underlying hard-

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 33

ware directly. The CTCPP uses these Link-drivers to interface with external hardware, such as
sensors and actuators. The CTCPP, Platform and Link-drivers all are placed in separate folders,
but are still highly dependent on each other.

The framework defines a few generic interfaces and classes for platform abstraction, but these
seem to be designed for CSP-based applications only. Macros are used to select the correct
platform (abstraction) headerfiles and the framework developer specifies the correct sources
in the build system for compilation.

4.5.3 Timing & real-time capabilities

The library does not supply methods to specify real-time constraints for (sub-parts of) a de-
sign. So, one cannot choose nor mix hard real-time and non real-time threads themselves.
Prioritized alternative and parallel CSP processes can be used to specify priorities in a CSP de-
sign.

CSP algebra has no notion of timing. However, the library has time support added by writing
to external linkdrivers which use an OS timer. These timer interrupts and other external events
have to be delivered to the appropriate CSP process. But, due to the single OS thread design,
the scheduler cannot guarantee when this event is handled. Regrettably, this sometimes results
in inadequate timing behavior.

The other way around, the library has explicit means to let hard real-time CSP constructs inter-
face with a few pre-identified non real-time OS functions.

The gCSP modelling tool has the ability to generate CSP algebra from a model and this can
be verified against deadlocks and live-locks by formal model checkers, for instance the Failure
Divergences Refinement (FDR) (Formal Systems (Europe) Limited, 2008) tool.

4.5.4 Scalability & extensibility

One of the main requirements for the library was complete platform independence, which also
included embedded architectures unable to run an OS. Resultingly, the library size was kept
small and therefore is considered to scale well.

The CT library was specifically designed to enable the execution of CSP constructs. In its cur-
rent form, other use cases than executing CSP models are virtually impossible.

4.6 Boost

Boost4 is a free peer-reviewed portable set of C++ libraries (Boost, 2011). The libraries are in-
tended to work well with the C++ standard library. Furthermore, they are intended to be widely
useful and usable across a broad spectrum of applications. According to its website, its license
encourages both commercial and non-commercial use.

The aim of the project is to establish ‘existing practice’ and provide reference implementations
so that Boost libraries are suitable for eventual standardization. Ten Boost libraries are already
included in the C++ Standards Committee’s Library Technical Report (TR1) and will be in the
new C++0x Standard, now being finalized. Additional Boost libraries are proposed for TR2.

4.6.1 Software architecture

The Boost eco-system contains over 100 tightly integrated C++ libraries, with among others
functionality for threading, locking and math operations. Some of these are suitable for hard
real-time applications as they adhere to the hard real-time programming restrictions (for de-
tails see Section 5.1.5).

4Version: 1.44

Control Engineering RJW Wilterdink

34 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The libraries intended for extension, such as the iterators library, use template meta program-
ming (TMP) concepts. The use of templates in general can be thought of as compile-time
execution, because the requested functionality will be hard coded into the executable by the
compiler. The advantage of using templates therefore is great compile time flexibility while
maintaining execution speed. Most common uses of templates are to change the class policy
or to specify the input/output types for the resulting template class(es). The consequence of
using TMP is that its functionality must be implement in the headers. This manifests in the
whole Boost library as most functional code is in header files. The downside is that program-
ming faults only become visible when its specific part of code is used, since only then the code
in the headers is compiled, which could make the library more error prone. To prevent these
and other errors, the Boost distribution includes a test suite. Strangely, the current version of
the test reports some errors, but the community users suggest that this is not a problem.

As stated before, the aim of Boost is to establish ‘existing practice’. This includes prototyping
new language extensions, such as lambda functions and expressions for the new C++0x stan-
dard. To test their use cases they, of course, have to be implemented. Unfortunately macros
were used. As already explained, macros are difficult to maintain, but there is not a better alter-
native for this specific problem yet. Nevertheless, experimental functions should not be part of
any framework intended to be production quality at some point.

For libraries to be included into Boost, they first are subjected to a peer reviewing system. The
Boost community will be asked to give feedback (on use cases, et cetera) and suggest improve-
ments. After several successful review rounds the library is added to the Boost distribution.

4.6.2 Platform independence

Boost consists of multiple libraries which themselves have separate folders for specific plat-
forms and compilers. Their main headers use macro redirections toward the real headers in
the sub folders, which contain the actual functionality. Boost.Build, a text-based system for de-
veloping, testing and installing software, will take care that the right macros are set and source
files are compiled (if present), to achieve platform independence.

4.6.3 Timing & real-time capabilities

As stated before, some libraries are usable for hard real-time applications. It is not feasible to
investigate them all. Therefore only the threading library will be discussed in this section, as
this is one of the main features for the new framework. The other libraries should be inspected
manually, when they seem of interest, to determine if they adhere to the real-time program-
ming restrictions (Section 5.1.5).

Boost.Thread (as it is called in Boost) enables the use of multiple threads of execution with
shared data in portable C++ code. It provides classes and functions for managing the threads
themselves, along with other functions to synchronize data between the threads or providing
separate copies of data specific to individual threads. Only POSIX and Windows threads are
supported at the moment. The POSIX skin in Xenomai/RTAI can be used to achieve hard real-
time other than with POSIX compatible real-time OSs. However, the application can then only
run in hard real-time. So, requirement 3.2.1.2 cannot be satisfied with Boost.

4.6.4 Scalability & extensibility

The Boost libraries seem scalable and easy to extend, but code inspections have shown that the
libraries are tightly integrated. For example, the Date&Time library, among others, depends
on the Serialization library which is dependent on the Preprocessor library and others. This
means that one cannot pull-out a specific library to use in the new framework. Though, due to
the library mainly consisting of headers, the headers and functions not used will not incur any
overhead.

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 35

The Boost libraries do not provide any means to interface with hardware nor implement any
safety features.

Boost does not contain a rendezvous communication library. But semaphores are included,
which can be used to implement rendezvous communication for CSP. Furthermore, the thread
library provides support for parallel CSP constructs in either hard or non real-time.

4.7 POCO

POCO5 is a collection of C++ class libraries (POCO, 2011), similar in concept to the Java Class
Library or the .NET Framework. Its focus is on the development of network-centric, portable
applications in C++. The libraries integrate well with the C++ Standard Library and fill many of
the functional gaps left open by it, according to its authors (POCO, 2010). Furthermore, POCO
is open source, licensed under the Boost software license, and thus also completely free for
both commercial and non-commercial use.

4.7.1 Software architecture

POCO is aimed at building network and internet based applications which is also reflected in
the partitioning of the components, see Figure 4.12. The heart of the libraries is the Foundation
layer. It provides numerous platform independent classes for cross-platform programming.

Other libraries, providing higher-level functions, are build upon the Foundation library. These
libraries include, among others, various network protocols, servers (like HTTP), XML parsers
& writers and configuration file processors. These other libraries are not in the scope of this
research and therefore not further considered.

Figure 4.12: POCO software layers, source: POCO (2011)

4.7.2 Platform independence

The Foundation library is a thin platform abstraction layer, that encapsulates OS functionality
in objects. These objects consist of two parts joined by inheritance. The derived class specifies
the platform independent interface and the base class provides the platform specific imple-
mentation for this. Thus, an inverted inheritance relation is created, which violates general
programming concepts. The OS specific implementations contain a suffix in their file name to
denote the intended platform. The correct files are selected and included by macros, and this
principle is also used for source files.

5Version: 1.3.6

Control Engineering RJW Wilterdink

36 Design of a hard real-time, multi-threaded and CSP-capable execution framework

POCO has a wide range of supported OSs: Microsoft Windows, Linux, Mac OS X, Embedded
Linux (uClibc, glibc), iOS, Windows Embedded CE and QNX. Additionally, the library can be
patched to support the HP-UX, Solaris and AIX OSs. Without considering the patches OSs can
be divided into two categories: POSIX compliant and Windows environments.

4.7.3 Timing & real-time capabilities

Code inspections have shown that the Foundation library is a thin layer around OS functional-
ity and therefore considered real-time capable. The other libraries should be inspected sepa-
rately, but most of them are intended for non real-time purposes.

The Foundation library contains threading support, including the specification of several pri-
ority levels and timers. Besides Windows Embedded CE and the POSIX conformant QNX OS,
no other real-time OSs are mentioned. As explained before (Section 4.6.3), the POSIX skin in
Xenomai/RTAI can also be used to achieve hard real-time. Although, then requirement 3.2.1.2
cannot be satisfied with POCO as well.

4.7.4 Scalability & extensibility

The POCO project favors simplicity over complexity, by which is meant ‘as simple as possible,
but not simpler’. So, POCO is considered less configurable as Boost, but this also has its ad-
vantages. The POCO libraries seem much less intertwined than the Boost libraries. Due to
the lower configurability demand and thereby non templated classes, far more functionality is
placed in source files and these are immediately checked by the compiler for simple program-
ming mistakes. Furthermore, the POCO classes are considered easy to comprehend and are
therefore easier to extend.

The libraries do not provide any means to interface with hardware nor implement any safety
features.

POCO’s build system can be used to selectively use only those libraries needed for a particu-
lar application. There is no need to always embed the overhead of the entire package in the
application unless it is really needed.

POCO does not contain rendezvous communication, but semaphores are included. Therefore,
the same applies to POCO as for Boost with respect to CSP.

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 37

4.8 Conclusions

This section combines the results of the framework and library investigations in the form of a
comparison. Also, some potential features for the new framework will be highlighted.

4.8.1 Frameworks

Table 4.3 shows the comparison between the frameworks. The scoring system is the same as in
the introduction of this chapter, reasons for the individual scoring will be explained next.

Feature Orocos RoboFrame CT
Platform independence ++ + +
Hard real-time + +/- +
Scalability and extensibility +/- + -
Usability with respect to embedded systems +/- +/- -
Usability with respect to CSP - - ++

Table 4.3: Frameworks compared in characteristics

All three frameworks use some form of platform abstraction and build classes on top of it. As
mentioned before, only Orocos has specific implementations for other than POSIX compliant
real-time OSs, which is more difficult to represent platform independently.

None of the frameworks satisfies requirement 3.2.1.2, which states that it should be possible to
specify a mixture of hard/soft/non real-time constraint threads. Additionally, RoboFrame must
be extended to provide hard real-time features at all.

The scalability and extensibility of Orocos is doubtful, because it already has multiple extension
points. To clarify, this is an advantage because extension points are clear and predefined, but on
the other hand a disadvantage because one is also limited by them. Furthermore, it is dubious if
it will scale well for big projects as there is no formal verification method available. RoboFrame,
on the other hand, only has one lightweight design pattern to offer. The advantage is one can
extend the framework in all kinds of ways, but at the same time not much support is given
by the framework. Because the framework is so small the ‘not a formal verification method
available’ does not apply here, because one can still venture to any particular tool. The CT
library is not extensible at all, because it has been designed for CSP only. But, there is tooling
available to formally verify models created for it. Considering, the CT library can only use one
thread it does not scale well on a software level.

The usability of Orocos for embedded systems is considered doubtful, although it has differ-
ent deployment methods which should be suitable for embedded system, because one can
argue that in this form it is not Orocos anymore (i.e. its advantages are discarded). Since, the
RoboFrame framework is considered lightweight but does not offer functionality to interface
with hardware, its use for embedded system is considered questionable. For the CT library an
embedded and an OS-less embedded version exist, but the status of the latter is unknown. Fur-
thermore, as it cannot make us of multi-core/CPU architectures, its usability is poor for modern
embedded architectures.

The usability for CSP of Orocos and RoboFrame is considered less probable, because only com-
plete (sub)models can be efficiently interfaced with their respective components/modules.
The CT library, on the other hand, was build for a single purpose: CSP.

Thus, considering both Table 4.3 and the requirements from Chapter 3, it can be concluded
that designing a new framework is a viable choice.

Control Engineering RJW Wilterdink

38 Design of a hard real-time, multi-threaded and CSP-capable execution framework

4.8.2 Libraries

Table 4.4 shows the comparison between the libraries. Again, the scoring system is the same as
in the introduction of this chapter, but the reasons for the individual scoring will be explained
next.

Feature Boost POCO
Platform independence + +
Hard real-time +/- +/-
Scalability & extensibility + ++
Usability with respect to embedded systems +/- +/-
Usability with respect to CSP +/- +/-

Table 4.4: Libraries compared in characteristics

Both, Boost and POCO, provide platform independence via a small abstraction layer and only
support POSIX compliant and Windows OSs, therefore their platform independence is a +.

Neither Boost nor POCO is designed for hard real-time, but some libraries may be usable in this
context.

The scalability and extensibility of Boost is considered positive, due to its smart use of TMP.
However, it is also experienced that excessive use of TMP makes the code harder to under-
stand. POCO also uses TMP, but to a lesser extend. Furthermore, the POCO libraries seem less
intertwined and dependent on each other. This is also favorable if one tries to determine if a
library adheres to real-time constraints.

The usability of Boost with respect to embedded systems is doubtful, because of the coherence
of the separate libraries. This makes it difficult to understand what is really going on and li-
braries cannot be removed in Boost without breaking the implementation. POCO’s design is
focused more on separate libraries, though all are dependent on the platform abstraction layer.
Libraries can be disabled in the POCO build system. Neither provides any means to interface
with hardware, so their usefulness for embedded systems is doubtful.

The Boost and POCO libraries both do not offer rendezvous communication by default. But,
this can be implemented manually by using other features from the respective libraries.

Thus, the POCO and Boost libraries cannot directly be used for the new framework. Primar-
ily, because they both use C++ language exceptions, which is not allowed for hard real-time
software. Nonetheless, they can serve as good examples for the design.

4.8.3 Concluding remarks with respect to the new design

Separating the new framework in functional components or modules, as is proposed by
RoboFrame and Orocos, is a good design choice. In this manner the component name can
specify what it does and the functionality can be easily grouped by it. Furthermore, compo-
nents can be reusable if properly designed.

Component inter-dependencies should preferably be vertical in a layered approach to prevent
circular dependencies and intertwined code. Another disadvantage of circular dependencies
is that components cannot be changed anymore without a great deal of maintenance to other
components as well. So, in Figure 4.13, CSP may dependent on Threading but not on State
Machine. A desired feature for the build system is to make inter-dependencies explicit and
detect incorrect use of them.

RJW Wilterdink University of Twente

CHAPTER 4. FRAMEWORK AND LIBRARY RESEARCH 39

others
(timers, timing,

sockets, ...)
Threading Mutexes

Semaphores

CSP

OS abstraction

Utilities
(debuging, data
containers, ...)

State Machine others

Networking
(TCP/IP, ...)

Inspection others

Hardware
Interfacing

Device
drivers

Architecture
abstraction

D
e
p

e
n
d

s
o
n

M
o
re

 f
u

n
ct

io
n

a
lit

y

Figure 4.13: Example: Layered component approach

A platform abstraction layer can be designed with negligible overhead, as was reported for in-
stance for POCO. Besides, object encapsulation in platform independent objects looks promis-
ing, because all investigated frameworks and libraries used this approach more or less.

Four different programming styles can identified for designing platform independent classes:
• Function skins - Orocos

Abstract function names (not equal to OS function names) make this approach platform
independent. The abstract function names are implemented for each platform.

• Generic class + file overloading - Boost / CT library6

A generic class/interface is defined, whereby macros or its build system are used to select
the appropriate implementation file.

• Inverted inheritance - Poco
The derived class specifies a more generic interface than the base class. So, the base class
provides the platform specific implementation.

• Proxy design patterns - RoboFrame
Function calls to the platform independent object are redirected towards a platform de-
pendent implementation object.

The last two methods are not advisable, because the inverted inheritance violates general pro-
gramming concepts and proxy-objects incur overhead.

Clear interfaces should be designed for platform independent classes, where platform depen-
dent classes must conform to. Otherwise, implementations might drift apart.

The new framework should not contain any C++ language exceptions and therefore Boost and
POCO cannot be used. Furthermore, some C++ Standard Library (STL) use exceptions as well
and other C++ language implementation might not be guaranteed to be deterministic, so one
must be careful in using either of them.

From the past framework and library discussions it can be concluded that, generally speak-
ing, perfect frameworks or libraries do not exist, because at some point trade-offs have to be
made. These trade-offs might have to do with, for example, limited development time or fea-
tures versus limited space. So, the requirements from Chapter 3 should be targeted specifically,
trade-offs should be listed and the framework should be marketed accordingly.

6The other frameworks use this as well, but less explicit.

Control Engineering RJW Wilterdink

41

5 Design & implementation

The new framework is called LUNA, which stands for ‘LUNA is a Universal Networking Archi-
tecture’. This chapter discusses its design and implementation. First, the general architecture of
the framework and approach which led to the new design is explained. Next, the components
which are interesting from a design point of view are discussed in detail. The other compo-
nents section explains the remaining components, whose designs are considered straightfor-
ward. Last, a conclusion is given discussing the overall design.

5.1 Architecture and approach

The LUNA framework requirements (Section 3.2.1) stipulate a number of functions the frame-
work should fulfill as well as supporting multiple target platforms. Some requirements are
fairly simple to implement as most operating systems already provide this functionality. Oth-
ers might be complex. Therefore, the design is based on the divide and conquer principle,
meaning to divide the framework in smaller functional components and basing more complex
components on top of the simpler ones. This way a complex and demanding framework can
be systematically build from the ground on up.

The advantage of this approach is that functional units can be identified, which have a clear
purpose and themselves provide the platform independence. Since not all applications will
require the same functionality, the components can be enabled/disabled depending on the
intended application.

5.1.1 Component based design

The functional components can basically be divided into three categories, see Figure 5.1: core,
high-level and execution engine components. The grey components are not yet implemented
in LUNA.

others
(timers, timing,

sockets, ...)
Threading Mutexes

Semaphores

CSP

OS abstraction

Utilities
(debuging, data
containers, ...)

State Machine

Core
Components

Execution Engine
Components others

Networking
(TCP/IP, ...)

InspectionHigh-level
Components others

Hardware
Interfacing

Device
drivers

Architecture
abstraction

1

2

3

Figure 5.1: LUNA software layers

The Core Components (1) level contains basic components, mostly consisting of platform sup-
porting components, providing a generic interface for the platform specific features. OS ab-
straction components are available to support the target operating system (OS), like threading,
mutexes, timers and timing. The architecture abstraction components provide support for fea-
tures specific to an architecture (or hardware platform), like the support for (digital) input and
output (I/O) possibilities. Other components can make use of these core components to make
use of platform specific features without knowledge of the actual chosen platform. Another
group of core components are the Utility components, implementing features like debugging,
generic interfaces and data containers.

Control Engineering RJW Wilterdink

42 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The next level contains the High-level Components (2). These are platform independent by
implementing functionality using the core components. An example is the Networking com-
ponent, providing networking functionality and protocols. This typically uses a socket compo-
nent as platform-dependent glue and build (high-level) protocols upon these sockets.

The Execution Engine Components (3) implement (complex) execution engines, which are
used to determine the flow of the application. For example a CSP component provides con-
structs to have a CSP-based execution flow. The CSP component typically uses the core com-
ponents for threading, mutexes and so on and it uses high-level components like networking
to implement networked rendezvous channels.

5.1.2 Generic OS abstraction

Some OS functions may be available on multiple OSs. The POSIX standards, already men-
tioned in Chapter 2, are the most well known. The considered POSIX standard (IEEE Std 1003.1,
2004) consists of the previously separate POSIX.1 (core), POSIX.1b (real-time extensions) and
POSIX.1c (threads) standards and the amendments 1d (additional real-time extensions), 1g
(protocol independent interfaces), 1j (advanced real-time extensions) and 1q (tracing). These
standards only specify interfaces and semantics, not how they should be implemented. Other
standards apply mostly to a subset of OSs, like for Unix systems the Unix98 mark (Open Group,
The, 1998).

Table 5.1 lists the POSIX implementation for the intended target and development OSs. Un-
fortunately, both RTAI and Xenomai do not state which version they are exactly compliant to.
The QNX OS is certified conformant (which is a stronger condition than compliance) to the
PSE52 Realtime Profile standard (IEEE Std 1003.13-2003), which is even more elaborate and
demanding than the compared POSIX.1 + amendments standards.

Operating System Hard real-time POSIX.1 +b +c (IEEE Std 1003.1, 2004)
Linux No Fully compliant
Xenomai Yes Partially compliant, via POSIX skin
RTAI Yes Partially compliant, via a special header file
QNX Yes Fully certified conformant
Windows No Only through Cygwin (2011) and others.
Mac OSX No Fully compliant

Table 5.1: Platform abstraction for the target and development OSs

Looking at Table 5.1 one can conclude that the new framework should use the POSIX standard,
because then the required OSs will be automatically supported. This is for a large part true, but
for the combination of Linux and RTAI or Xenomai this is non straightforward. Linux provides
non real-time and RTAI or Xenomai will be responsible for hard real-time execution. Thus a
method to specify hard real-time and non real-time threads will be required.

RTAI and Xenomai both advertise their hard real-time functionality via two interfaces. The
first is a POSIX layer of which functions will overlap with the Linux POSIX API. This actually
is desired to enable easy application development. One can then build and test a program
on a development PC and later transfer it almost without changes to the target. The function
overlap is then resolved by linking the application to the right implementation. Secondly, both
also specify additional functions for use in hard real-time. The idea behind these functions is
that these are faster if applied only in hard real-time mode due to their specialization.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 43

Thus, the new framework should probably make use of the POSIX functionality for its first im-
plementation as this the standard is generally accepted and therefore will partially enable a
lot of OSs. Nonetheless, an abstraction layer around the POSIX functions in the form of a
(lightweight) object is preferable to ensure that in the future other OSs and non-POSIX con-
forming functionality can be supported as well.

5.1.3 Platform independence and the build system

The divide and conquer approach has the following properties regarding the framework devel-
opment:

• Components can be identified and designed as functional units, so that each component
has a clear set of use cases and interfaces.

• Due to the specification in functional units, components can possibly be enabled/dis-
abled individually. This is advantageous for example when a particular component is not
available or implemented for a platform.

• The platform independence can be handled in layers. The core components will interface
with the particular OS and hardware directly, and the other layers will access the platform
through the abstraction layer. The advantage is that high-level and execution engine com-
ponents can be based on the core components without considering the particular OS.

• Investigation of the multiple OSs in the previous section has shown that a lot of OS func-
tions can be grouped in functional components and that these will probably not overlap
with other components. Thus, functional units can be designed such that their platform
abstraction is self contained.

• The divide and conquer approach results in unidirectional acyclic component depen-
dencies. If a bidirectional relationship is required the components should be taken to-
gether, as they complement each other and can be considered one. For cyclic dependen-
cies spanning multiple components the division in functional components has failed and
should be reconsidered.

The build system used for LUNA is a modified version of OpenWrt (OpenWrt, 2011; Fainelli,
2008). The regular OpenWrt contains, among others, the following required functionalities:

• Separate package specification.
• Directed acyclic dependency specification in packages and automatically enforcing these.
• Import functionality for external software, like libraries and tools.
• Generalized menu structure for making settings and selecting packages.
• Multiple architecture support

Bezemer renamed packages into components and added, among others, the following required
functionalities:

• Operating system dependency specification and thereby importing the correct compo-
nent sources.

• Specification of component tests.
• Automated test execution depending on the selected components.
• Support for the QNX compiler.
• Documentation generation of the selected components
• Default processing operations for library components, which results in minimal Makefiles

Using the build systems editor (‘make menuconfig’ under Linux-like systems) an application
developer can select components and set the intended target OS and other settings, for exam-
ple if debugging output should be enabled. The values of these selections are also available as
macros for use in the headers and sources if more demanding implementations are required
than the use case explained below. Due to the dependency specification, not completely im-

Control Engineering RJW Wilterdink

44 Design of a hard real-time, multi-threaded and CSP-capable execution framework

plemented components and their descendants are automatically not shown in the build system
menu. This will aid the application developer when selecting a platform and perhaps encour-
age to contribute to the project as it is clear what has to be done to enable functionality.

The rest of the build system capabilities are best explained with an example component’s folder
structure, see Figure 5.2. The components directory houses all LUNA components. In each
component a ‘Makefile’ is used to define the complete component: headers, sources, depen-
dencies, et cetera. Optionally a ‘Config.in’ can be provided to extend the build system menu
for the component. The example component comp1 provides a generic header, which will be
used in most cases as will be explained later. Its platform directory can contain multiple OS
specific header and source files. The files that matches the OS settings best are chosen for the
application. The posix folder is used whenever no specific OS files are given, as the OS is POSIX
compatible. The build system collecting the correct header and source files can be seen as
overloading and is well suited to manage platform independence.

LUNA

components

bin

comp1
files

platform
posix

Function.cpp
qnx

Function.cpp
Function.h

tests
FunctionTest.cpp

Function.h
Makefile

docs

tools
target

Config.in

...

...

...

build_dir

(generic header)

(1)

(2)

(3)

Figure 5.2: LUNA build system folders

For example, an application intended to run on the QNX will make the build system search
for the files in the order: 1, 2 and 3 in Figure 5.2. Thereby, it will use the Function.h file in the
qnx platform directory instead of the generic header. For POSIX compatible OSs (minus QNX)
it only looks in folders 2 and 3. And for non-POSIX OSes only the generic header is found in
folder 3.

Every component can have its own unit tests, specified in the tests folder. Whether a test was
successful or not is specified by its return code, 0 means success and all others failure. The unit
tests can be executed automatically or only be compiled. The latter is chosen automatically
whenever the target OS is not the current OS type. Unit tests have a time limit by default, if the
test takes too long a deadlock is presumed and the test is canceled (and has failed by definition).

The selected components and tests are compiled separately from the original files in the
build dir. One of the reasons is to prevent the programmer from accidentally deleting sources
files while cleaning the source folder. External software can be downloaded from websites or

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 45

repositories to be included with LUNA. The bin directory contains any specifically build tests,
the compiled LUNA framework and its collection of headers.

The build system currently uses Doxygen to generate documentation from header and source
files. The docs folder can be used to extend this documentation with extra files (without any
accompanying components).

To conclude, the build systems implements the functional requirement of external code and/or
library integration (Section 3.2.1.9) and enables the functional requirement of self testing (Sec-
tion 3.2.1.13). Most importantly, by properly using the build system the required platform in-
dependence (Section 3.2.1.1) can be achieved.

5.1.4 Identified framework components

The identified functional components are listed in Table 5.2. The core, high-level and execution
engine columns show the component layer classification (Section 5.1.1).

Component C
o

re

H
ig

h
-l

ev
el

E
xe

cu
ti

o
n

en
gi

n
e

Purpose Documentation

AnyIO + Mesa Anything IO link drivers Sec 5.3.7 and
App G

Atomic + Atomic (integer) operations App C
Barrier + Barrier synchronisation primitive Sec 5.3.1
Clock + Time specification and wall clock Sec 5.3.2
Communication + Rendezvous communication Sec 5.2.4
CSP + CSP execution support Sec 5.4
Debug + Debugging support Sec 5.2.2
Device-manager + Device interface manager Sec 5.3.6
Emergency-manager + Emergency handling functionality Sec 5.2.9
Interfaces + Generic interfaces, e.g. to handle

errors.
Sec 5.2.1

LockSync + Synchronisation primitives Sec 5.2.3
RTLogger + Embedded real-time logging facility Sec 5.2.12 and

App H
Scheduler + Interface to the (OS) scheduler Sec 5.2.8
Socket + TCP/UDP communication primi-

tives
App 5.3.3

SystemInfo + System-specific information
database

Sec 5.2.7

Threading + Thread support Sec 5.2.10
ThreadPool + Pooled threads Sec 5.3.4
Timer + Interface to the (OS) timer Sec 5.2.6
Timing + Time measuring facilities App 5.3.5
UThreading + User thread support Sec 5.2.11
Utility + Generic utilities Sec 5.2.5

Table 5.2: Component specification

Control Engineering RJW Wilterdink

46 Design of a hard real-time, multi-threaded and CSP-capable execution framework

5.1.5 Real-time programming

In Chapter 2 the concept of hard, soft and non real-time was explained. This section addresses
how to program for hard real-time. Basically, for soft real-time the constraints given next do
not apply anymore, if the resulting delays are acceptable. And for non real-time these do not
apply at all, the results keep their value.

This text applies to the normal/full C++ standard (ISO/IEC 14882:2003), not the embedded ver-
sion. The embedded C++ standard omits, in my opinion, the two most appreciated advantages
over regular C: Templates, multiple inheritance and virtual inheritance.

The only criterion for hard real-time programming is that it must always result in deterministic
timing. This cannot be empirically proven, because for 99.99% of the function invocations the
code might return within a split second and other times it might for example stall indefinitely.

The following list, although probably not complete, is a guide for real-time programming:
• The use of a hard real-time OS does not magically make any code hard real-time.
• Particular code should preferably have O(1) or O(n) time complexity. Though, the latter

should not be applied without careful consideration as the time increases linearly. Other
time complexities should not be used or only when the operation is performed repeatedly
with the same parameters and an equivalent data set. Thus, other time complexities as
O(1), which are not inherently evident, should be documented and perhaps marked.

• Dynamic memory allocation tends to be non-deterministic. The time taken to allocate
memory may not be predictable and the memory pool may become fragmented, result-
ing in unexpected allocation failures. The solution can be to pre-allocate all necessary
memory before entering hard real-time or use TLSF: A dynamic memory allocator specif-
ically designed to meet real-time requirements (Masmano et al., 2004).

• Thread/process synchronisation points (including rendezvous communication), should
be designed with care. Concurrent processes will eventually need to work together or
with the environment. In these cases, special precautions should be taken into account
to prevent data corruption. A possible solution is to use synchronisation primitives, like a
mutex or rendezvous communication, which guarantee exclusive access. However, these
come at a price, because the thread will sometimes have to wait until another process
finishes its exclusive action. In these cases one should prove that the overall solution
is deadlock and lifelock free. An alternative could be to use lock-free implementations
(Section 5.2.5.1) where possible.

• If a combination of a non real-time and hard real-time OS is chosen, the non real-time
OS operations should be handled with care as they suffer from the same behavior as syn-
chronisation, i.e. the OS might stall them. A standard solution it to assign a non real-time
buddy thread, which reports the outcome via a real-time safe communication primitive
when the action finished.

• C++ language exceptions should not be used, as explained in Appendix B. For this reason
most C++ Standard Library (STL) implementations cannot be used.

• To extend on the previous point: Do not use C++ language facets which require dynamic
run-time support, such as Run-Time Type Information (RTTI).

• Virtual functions and multiple inheritance are typically implemented efficiently (Meyers,
2010) and are suitable for hard real-time.

• Templates specify classes that will be created during compile time, thereafter they are
statically available just as normal classes. Templates are therefore also suitable in hard
real-time programming.

• Printing (debug) information to the screen can break real-time constraints for hard real-
time applications, since it is quite slow on most OSs.

The new framework is designed according these guidelines and thereby satisfies the corre-
sponding non-functional requirement of hard real-time programming constraints.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 47

5.2 Detailed designs of components

This section discusses the components that are interesting from a design point of view. Sec-
tion 5.3 contains the rest, which may still be integral to the framework overall design.

The general format for the detailed design sections is as follows: The introduction provides a
reference to the requirements the component implements and describes the components fea-
tures. Whenever interesting alternatives are considered, these will be given and discussed. The
design section explains how the requirements and features have been achieved. As last, some
implementation details are given, which mostly is a discussion on platform independence.

The order of the selected components is not alphabetically, but arranged to facilitate reading
this thesis (see Table 5.3). Components required to understand other ones are presented first.
Table 5.2 lists all components. The table shows their purpose and their absolute location in this
thesis.

Detailed designs of components Other components

Interfaces Barrier
Debug Clock
LockSync Socket
Communication ThreadPool
Utility Timing
Timer Device-manager
SystemInfo AnyIO
Scheduler
Emergency-manager 5.4 CSP component
Threading
UThreading Appendix
RTLogger Atomic

Table 5.3: Order of appearance (top-down, left-right)

5.2.1 Interfaces

This component contains generically usable interfaces. Currently, it contains an interface for
error code specification and an interface to prevent unwanted object copying.

The framework, the OS or both may at some point encounter a fault. Because the framework
provides an abstraction layer for the OS, the system error codes are passed through LUNA.

5.2.1.1 Alternatives

For the error code specification, two alternatives can be thought of. Actually three, but C++
language Exceptions cannot be used to handle faults as is discussed in Appendix B.

The framework can provide a true abstraction layer and redefine the OS error codes in an error
abstraction layer. In this case one has to document and match all error codes of all used OSs,
which is a lot of work. Furthermore, the exact meaning of an error code might be dependent
on the function returning it. Implementing this will be a lot of work.

Control Engineering RJW Wilterdink

48 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The alternative is to return the OS error codes exactly as they are received and supplement
the error code range with the framework’s error codes. In this case the application developer
must consult the OS or framework documentation in case an error is encountered. For this to
work, OS and LUNA error codes must not overlap in the case that functions are nested, other-
wise their origin might become unclear. The advantage is that the framework is always up to
date. A minor disadvantage is that for all OSs the highest error code must be determined and
maintained, to prevent error code overlapping.

5.2.1.2 Design

Error codes
The LUNA framework specifies additional error codes for function returns. The LunaError in-
terface contains the OS’ upper bound on error codes and defines its own error codes in the
form of macros from this point on up. By looking at the range in which an error code falls the
application developer can determine which documentation to consult.

Uncopyable
The Uncopyable interface is a dedicated interface to prevent copying of instantiated objects.
The Uncopyable interface contains a private copy constructor and assignment operator which
are not implemented, as explained in Meyers (2005a). Once a class definition inherits this inter-
face its objects cannot be copied anymore as the compiler will give an error. This interface has
for instance successfully been applied in Mutex objects (Section 5.2.3), which should remain
unique.

5.2.1.3 Implementation

For the error codes the highest OS error code is determined manually. The POSIX standard also
defines error return codes for functions, but its maximum depends on the implemented POSIX
amendments.

The Uncopyable interface purely uses the C++ language and is therefore platform independent.

5.2.2 Debug

The Debug component provides the implementation for the debugging facilities requirement
(Section 3.2.1.12). Debugging can be enabled/disabled for the whole framework in the build
system. If debugging is disabled its statements do not add any overhead anymore. In combi-
nation with the RTLogger component (Section 5.2.12) the debug information can be rerouted
to an off-target visualisation tool.

5.2.2.1 Alternatives

Standard C++ has two methods for printing information to any output: stdio or iostreams. The
first originates from the C language and requires calling (special) output functions. The sec-
ond uses I/O streams to route the information to the correct output. An example is given in
Listing 5.1 where both should print ‘Printing number 10.’ to the screen.� �
/ / s t d i o :
p r i n t f (" Printing number %d . \ n" , 10) ;

/ / iostreams :
cout << " Printing number " << 10 << " . " << endl ;� �

Listing 5.1: stdio versus iostreams sample

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 49

The requirements state that the debugging facilities should not result in overhead if disabled.
The stdio functions can easily get wrapped in macros. If debugging is disabled and thereby the
macros, the code is eliminated by the standard pre-processor before it enters the compiler. For
the iostreams this will be difficult, perhaps one can reroute the iostream to some kind of sink.
Unfortunately, this does not remove the overhead incurred by evaluating the code on the right
hand side of cout in the example. So, the stdio alternative is chosen for debugging and logging
in LUNA.

5.2.2.2 Design

The component design is split into C++ functions and a few macros. The former adds func-
tionality to the standard stdio functions. The macros enable/disable the outputting of debug
information based on a build system setting.

Three logging functions have been implemented: log(), log local() and log if(). The first two
take a log level, formatted output string and the arguments to the string as parameters. The
formatted output string and its arguments work similar to the well known printf() function.
Multiple log levels have been defined for fine grained logging. The log if() additionally takes a
Boolean expression and depending on a successful outcome log() the rest of the parameters.
The log local() guarantees that any logged information will remain on the target, whereas the
others might be rerouted to an off-target visualisation tool.

Macros with the same name in capital letters as the already presented functions are available.
These will only call their lower capital letter equivalents if debugging is enabled during devel-
opment. Otherwise they are transformed, by the pre-processor, into an empty line. So, when
running the final version absolutely no overhead is incurred.

5.2.2.3 Implementation

The component is implemented with standard C++ functions and macros and therefore plat-
form independent. Only for real-time operating systems the printing to the screen can possibly
be real-time, but at least on QNX this is quite slow. An alternative, in this case, is to use the RT-
Logger component to transfer any log messages to an off-target visualisation tool. In this way
the real-time constraints on the target are fulfilled if a little overhead is allowed.

5.2.3 LockSync

This component specifies interfaces for the synchronization functional requirement (Sec-
tion 3.2.1.7) and implements them for OS threads. Table 5.4 shows the POSIX synchroniza-
tion methods implemented in LUNA. To facilitate locking, an automatic locking and unlocking
object for Mutexes and Semaphores is added.

POSIX functionality LUNA class
Mutual exclusion Mutex
Condition variables Condition
(Un)named semaphores Semaphore

Table 5.4: POSIX synchronization functionality and its LUNA classes

5.2.3.1 Design

The UML class diagram in Figure 5.3 shows the component design. Parts of their POSIX func-
tion names are used for the object manipulation functions, for example pthread mutex lock()
has become Mutex::lock().

Control Engineering RJW Wilterdink

50 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Mutex Condition

AutoLock
template<class LockT>

ILockable
<interface>

Uncopyable
<interface>

Semaphore

Interfaces

Figure 5.3: LUNA LockSync component UML diagram

A so called Resource Acquisition Is Initialisation (RAII) object manages the automatic locking
and unlocking of Mutexes and Semaphores based on the scope. The example code given in
Listing 5.2 is used to explain this technique.� �
Mutex m;
{

AutoLock<Mutex> a l (&m) ; / / RAII o b j e c t
/ / Do things while holding the lock .

}� �
Listing 5.2: C++ RAII example code

The created AutoLock RAII object immediately requests the lock. The resulting behavior is that
of a Mutex in this case. When the program has performed its actions and leaves the scope in
which the AutoLock was created, the destructor of the RAII object will automatically unlock the
Mutex. So, one does not have to deal with locking and unlocking of a Mutex anymore, which
prevents possible deadlock situations due to forgotten locks.

To save computational resources the AutoLock class uses, so called traits, which are a program-
ming technique in C++ to make information about types available during compilation. They
are implemented using templates and template specializations. Together with overloading,
traits classes make it possible to perform compile-time if-else tests on types. Basically, one has
to specialize a structure, lock traits in this case, which details the locking procedure for the spe-
cific class. The way traits are implemented enables the compiler to highly optimize the class
(AutoLock) using the traits, because everything required is known at compile time. But, the
traits parameter (Mutex in Listing 5.2) must be ‘hard’ coded and thereby the technique has a
limited usability. The complete technique is well explained in Meyers (2005b).

5.2.3.2 Implementation

The implementation is completely done in POSIX.1 functions and should therefore be platform
independent for most cases.

The hard real-time versions of the functions in RTAI and Xenomai were not considered, be-
cause these would require two different Mutex types: only hard and hard/soft real-time. This
would hinder easy development with LUNA as an unusual concept is introduced which is not
supported by other real-time OSs.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 51

5.2.4 Communication

This component specifies interfaces for the communication functional requirement (see Sec-
tion 3.2.1.6) and implements them for rendezvous communication between OS threads and
processes.

5.2.4.1 Design

The UML class diagram for the design is shown in Figure 5.4 and is explained next. A commu-
nication channel always has an input and an output side. As, channel ends might be separated
(networked or by a memory barrier), two interfaces have been developed, one for either side.
The IChannelIn interface specifies input written to the channel and the IChannelOut interface
specifies output read from the channel. The IChannel interface combines both interfaces and
the Uncopyable interface into a full channel specification.

The RendezvousChannel specifies bidirectional inter thread rendezvous communication in the
same OS process. The IPC in IPCRendezvousChannel stands for Inter Process Communication
(IPC) and this interfaces specifies what the name already suggests: inter-process rendezvous
communication and is unidirectional. The inter-host communication has not been defined
yet, as this is considered out of scope for this project. Nonetheless, the IChannelIn and IChan-
nelOut interfaces are considered generic enough to specify this case as well.

A SharedRawMemory class was designed to enable the exchange of data in shared memory, as
is used for the ‘blackboard’ communication in RoboFrame (Section 4.4). This class supports
bidirectional communication by definition.

Note, the design does not contain the ‘dreaded diamond’ structure sometimes found in com-
munication channel designs (Section 4.5.1).

RendezvousChannel IPCRendezvousChannel

SharedRawMemory

IChannelOut
<interface>

int read(void* buffer, buffersize_t size)

IChannelIn
<interface>

int write(void* buffer, buffersize_t size)

Uncopyable
<interface>

IChannel
<interface>

Interfaces

Figure 5.4: LUNA Communication component UML diagram

Control Engineering RJW Wilterdink

52 Design of a hard real-time, multi-threaded and CSP-capable execution framework

5.2.4.2 Implementation

The QNX OS provides any-to-any rendezvous communication between threads and processes,
which also adheres the thread priority levels and, if pre-allocated, is real-time. The implemen-
tations for the RendezvousChannel and IPCRendezvousChannel were therefore pretty straight
forward. The reports of Molanus (2008) and Veldhuijzen (2009) mention inter-host commu-
nication through Qnet, which extends rendezvous communication over an ethernet link, and
this seems a viable choice for implementing this in the future.

The other OSs could provide rendezvous communication through POSIX message queues, al-
though during timing tests these were quite slow compared to the rendezvous communication
on QNX. So, it is believed that the interfaces can be implemented fairly easy for the other OSs.

The SharedRawMemory class is implemented with POSIX.1 functionality and therefore consid-
erably platform independent.

5.2.5 Utility

The Utility component on itself does not implement any requirements, but provides the generic
data containers and design patterns listed in Table 5.5.

Name Purpose
Set Generic set
Queue First In First Out (FIFO) queue
TreeNode Generic tree structure
LinkedList Daisy chain of ListItems
(Plain)LockFreeQueue Lock-free FIFO queue
Singleton Design pattern for unique globally ac-

cessible objects
GenericFactory Abstract factory design pattern

Table 5.5: Utilities generic data containers and design patterns

5.2.5.1 Design

The UML class diagram for the Utility classes is shown in Figure 5.5, but it only shows per
class a few of the available manipulation methods. For all data containers, applies that the
container capacity only changes on explicit request by the application programmer, thereby
possibly unwanted dynamic memory allocations are prevented. The API documentation fur-
thermore specifies the (real-time) properties of classes and functions not discussed below. The
template parameter T in the diagram indicates that the data container can hold any type of
data, which can be pointers, values or objects.

An overview of the data container characteristics is shown in Table 5.6. Thread safe means that
multiple threads can concurrently manipulate the data container without corrupting its data.
For generic add, remove and search operations the performance is listed in big-O notation
(Baase and Gelder, van, 2000). For some the Worst Case Execution Time (WCET) or Average
Case Execution Time (ACET) is specified. If the execution time is not indicated, it exerts the in-
dicated performance constantly. A question mark denotes that the execution time is unknown.
The external data container column specifies if the structures, to hold the data, are inside the
main class or not. The advantage of external data containers is that items can be transferred
(real-time) between data containers of the same type.

An alternative for all data containers would have been to use the STL data containers, but these
are not designed for real-time usage (see Section 5.1.5).

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 53

Queue
template<typename T>
bool push(T item)

bool pop(T* item)

Singleton
template<class T>

T* Instance()

Set
template<typename T>
bool add(T item)

bool remove(T item)

GenericFactory
template<class AbstractProduct,
 typename IdentifierType,
 typename ProductCreator>
bool register(const IdentifierType& id,
 ProductCreator creator)
bool unregister(const IdentifierType& id)

AbstractProduct* createObject(
 const IdentifierType& id)

TreeNode
template<typename T>

void append_child(TreeNode<T>* x)

void prepend_child(TreeNode<T>* x)

LinkedList
template<class ListItemT>

int add(ListItemT* ins)

int remove(ListItemT* rem)

ListItem

T* getNext()

T* setNext(T* item)

template<typename T>

PlainLockFreeQueue
template<typename T>

void push(QueueItemContainer* ins)

QueueItemContainer* pop()

LockFreeQueue

bool push(T* item)

bool pop(T** item)

template<typename T>

QueueItemContainer

1

2

1 1

*

*

2

1 1

Figure 5.5: LUNA Utility component UML diagram

Data container T
h

re
ad

sa
fe

Add Remove Search E
xt

er
n

al
d

at
a

co
n

ta
in

er
s

Summary
Set N O(1) O(n) WCET O(n) WCET N Unordered

with duplicates
Queue N O(1) O(1) - N FIFO
TreeNode N O(1) O(n) WCET O(n) WCET Y Unordered
LinkedList N O(n) WCET O(n) WCET O(n) WCET Y Ordered
PlainLockFreeQueue Y O(1) ACET

O(?) WCET
O(1) ACET
O(?) WCET

- Y FIFO, without
locks

LockFreeQueue Y O(1) ACET
O(?) WCET

O(1) ACET
O(?) WCET

- N FIFO, without
locks

Table 5.6: Data container characteristics

Control Engineering RJW Wilterdink

54 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Set
This data container models an unordered Set which may contain duplicate items. A applica-
tion is able to prevent duplicate items by using the contains() function before adding an item.
Adding items is done in constant time (i.e. O(1)), but removing items may take linear time (i.e.
O(n)) depending on the number of items contained in the set. Items in the set can be accessed
directly for easy manipulation, but are not guaranteed to remain in the same internal place.

Queue
The Queue class is a First In First Out (FIFO) design. Adding and removing items is done in
constant time.

TreeNode
Multiple TreeNodes can be put together to form a tree, see the example in Figure 5.6. The virtual
root of the tree has 3 children of which the second child has 2 children. Any TreeNode can
function as a virtual root, but there is always only one true root node in a tree. All TreeNodes
also have a link with their parent, except for a true root node which does not have a parent.
To traverse the tree horizontally a sibling iterator can be used. For repeated vertical traversal a
depth first iterator is supplied. The design and implementation are taken from Peeters (2009).
It was chosen to prune and modify the code, because the original code used C++ language
Exceptions (Appendix B) and has a lot of undocumented extras.

TreeNode

TreeNode TreeNode TreeNode

TreeNode TreeNode

first child last child

next sibling

previous sibling

D
e
p
t
h

Virtual root (= true root)

parent
only

parent

TreeNode

Figure 5.6: LUNA Tree design

Additionally, a non-member function has been added to collect all TreeNode instances from a
virtual root into a Set. The classes requiring a tree structure can for instance extend the TreeN-
ode, see the CSPConstruct in Section 5.4.

LinkedList
The LinkedList is an ordered unidirectional daisy-chain of ListItems. Classes requiring such a
structure should extend the ListItem and implement a compare function to achieve the appro-
priate ordering.

PlainLockFreeQueue
The PlainLockFreeQueue provides a lock-free FIFO queue. As the name suggests, the lock-free

queue is distinguished from the previously discussed Queue by the fact that it is accessed with-
out locking. Multiple papers have been published on this subject. Michael and Scott (1996)
designed the first practical queue based on a singly linked list. Tsigas and Zhang (2001) im-
plemented its queue using a finite array. They further state that the linked list implementation
suffers from a memory management problem in the sense that nodes cannot be freed because

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 55

someone might still be using them. This not true, because the enqueue/dequeue semantics
together with the dummy head will prevent this problem. Furthermore, an array-based imple-
mentation is impractical because memory array sizes cannot be adjusted dynamically. Shann
et al. (2000) also used an array based queue, but to lower the memory requirements. Unfortu-
nately, they thereby made their algorithm less robust, in the sense that the algorithm must be
configured for the number of parallel readers/writers beforehand to guarantee correctness.

Michael and Scott (1996) also performed extensive performance tests, which showed that their
implementation in general is faster than lock-based algorithms. Performance tests in (Shann
et al., 2000) indicate that it is even faster compared to the latter. As mentioned before, this
comes at a price, since it made the algorithm less robust. So, the current PlainLockFreeQueue
design is based on Michael and Scott (1996) algorithm.

The discussion on lock-free shared data objects that will follow is generally applicable for any
lock-free algorithm, but some points might be made targeted specifically at the current design.

The advantages of lock-free shared data objects are:
• Dead-locks cannot occur, because no locks are used.
• No priority inversion, because threads do not need to wait on locks.
• Less overhead than lock-based algorithms in a low concurrent environment, because less

bookkeeping is needed. No list of blocked threads must be maintained nor any priority
inversion has to be identified and solved.

• Potentially a higher degree of concurrency is possible, without resorting to methods like
multiple locking levels within the data container to enable partial concurrent access.

• Often faster than lock-based algorithms in highly concurrent environments, which has
been shown in the performance tests of Michael and Scott (1996).

• Can be employed in any design, even without knowledge of the data access sequences.

Unfortunately, employing lock-free algorithms also has its downsides for real-time applica-
tions. Its biggest advantage, using no locks, becomes its weakness. For this to become clear,
the general operation of lock-free algorithms has be explained first.

Due to not using any mutual exclusion mechanisms (which would result in some kind of lock
afterall) all threads can always concurrently access the internal data structures of the shared
object. Furthermore, all possible permutations of the algorithm execution are possible, since
no thread is being stopped at any point. So, there is no possibility to discover how far any thread
has progressed and changed which data. For an algorithm to prevent the internal data struc-
ture from becoming corrupt, it must somehow incapacitate any other concurrent updates to
the same data which have not been committed yet and might now be based on old data. These
threads should start over and try again to commit their data before an other thread has changed
something again, until they succeed. Or they must somehow be able to fix the apparent prob-
lem. Thus, it can be concluded that any lock-free algorithm at some point is non-deterministic.

In Section 5.1.5, it was stated that hard real-time threads must have code that results in de-
terministic timing. In Anderson et al. (1997) the non-determinism for periodic, hard real-
time tasks that share lock-free objects on a uniprocessor was investigated. The authors con-
cluded for this particular case the lock-free objects are likely to perform better than lock-based
schemes, if the worst-case cost of a lock-free retry loop is at most half the worst-case cost of
a lock-based access. Of course, this conclusion cannot directly be applied to multi core/CPU
systems as well.

This paragraph will try to make it plausible that similar results are to be expected for multi-
core/CPU applications which spend less than a certain percentage of their time on manipu-
lating the shared data object. The lock-free algorithms in this setting will of course still have
considerably less overhead, so redoing parts of the algorithm will not immediately result in low
performance nor measurable non-determinism. Assuming that the percentage is low enough,

Control Engineering RJW Wilterdink

56 Design of a hard real-time, multi-threaded and CSP-capable execution framework

the concurrent access to the shared object is also low. So, the chance that parts of the algo-
rithm will need multiple (re)tries is also very low. Besides, in the current implementation, for
all contending threads one thread always succeeds and finish its update, so progress is guar-
anteed. Therefore, in the described setting, it is expected that the non-determinism will be
unmeasurable and thereby allowing its use in real-time threads.

In contrast to lock-free algorithm, lock-based algorithms are only considered deterministic if it
more or less can be predicted when possible blocking situations occur. In some complex situa-
tions a lock-free implementation might be indispensable, since it can be employed without any
knowledge of the access patterns. For example, the scheduler in the UThreading component
(Section 5.2.11) is manipulated from different threads with different settings. A user thread
may, for example, unblock another user thread and at the same time the PeriodicTimer OS
thread (Section 5.2.6) might unblock a user thread in the same scheduler. Since the scheduler
updates cross thread boundaries, thread types, and possibly different real-time constraints, it
is better to use a lock-free algorithm to guarantee progress for all threads and achieve the real-
time constraints.

The PlainLockFreeQueue is based on a linked list and purposely does not manage its list items
(called QueueItemContainer) other than when they are enlisted in the queue. Resultingly, the
QueueItemContainer can be transferred freely between multiple PlainLockFreeQueues. This
turned out to be useful for user thread priority scheduling with a queue for each priority level;
thread priorities can be changed in real-time.

Unfortunately, we discovered a problem with the Michael and Scott algorithm. The proposed
algorithm contains a fault which, during very heavy concurrency, will result in loss of the queue
internal structure. At the moment it is still being investigated how to resolve this error. How-
ever, since the concurrency is quite low in the evaluation setup (Chapter 6), the PlainLockFree-
Queue is already used successfully.

LockFreeQueue
The LockFreeQueue manages its own QueueItemContainers by using two PlainLockFreeQueues,
one to hold the empty containers and one for the actual queue.

GenericFactory
The factory design pattern in general handles polymorphic creation of objects. In some cases
the creation of a specific object should be based on dynamic information and/or the specific
object type should not be programmed statically into the code. For example, the type of mu-
tual exclusion lock required for an object might depend on which kind of thread the object is
executed on. This information might be present at compile time, but for flexibility reasons one
might not want to specify this deep down in the objects code. So, an object factory can be used
to create the proper lock object.

The GenericFactory design pattern implemented in LUNA is based on Alexandrescu (2001a).
First, all factories need to be registered and then objects can be created with it at run-time by
specifying an identifier. The factory should only be used during initialization, since a memory
allocation is required to create the object.

Singleton
A singleton is a globally unique variable/object. Thus, a Singleton should be used when mod-
elling objects that conceptually have a unique instance in the application, such as a system
clock. Although the Singleton concept is simple, its implementation issues are complicated as
described in Alexandrescu (2001b). The current implementation is also based on this text.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 57

5.2.5.2 Implementation

Except for the PlainLockFreeQueue, all classes are build on top of the common C++ language.
So, platform dependence is not an issue for these. The PlainLockFreeQueue uses a single and
double size Compare And Swap (CAS) instruction available on most x86 systems. Other plat-
forms might have different instructions for this particular functionality, but these can most
likely be used to form a CAS equivalent instruction.

All classes were designed with real-time usage in mind. Nonetheless, creating or resizing any
of the data containers requires memory allocation and should therefore be done at a suitable
time (for example at start up).

5.2.6 Timer

This component specifies interfaces for a one-shot and periodic timer. The latter enables the
periodicity functional requirement (Section 3.2.1.5). Furthermore, a timer manager has been
added to efficiently manage the periodic timers and save OS resources. The timer implemen-
tations needs to interface with the OS to establish their functionality.

5.2.6.1 Design

The requirements state that an application might request a timer frequency multiple times. For
instance, for the Production Cell six independent OS threads might be used all with the same
periodicity. The solution could be to also request six timers with the same frequency from the
OS. Or request one timer from the OS and handle the subsequent timer activations inside the
framework. The latter is the solution to the following potential problems:

• The OS and hardware have a limited number of timers available.
• The OS will try to activate the thread when the timers fire, possibly resulting in multiple

‘useless’ interrupts shortly after each other.
• On some OSs the absolute time, when a periodic timer is requested, determines when the

timer will fire in the future. This might create non-determinism for multiple timers in an
application. Because application startup is commonly allowed to have non-deterministic
operations and thereby the absolute timer request times changes every application invo-
cation.

Both use cases are available within LUNA, but the latter is in most cases a smarter choice.

The UML class diagram of the Timer component is shown in Figure 5.7 and is explained next.
The TimerManager can be used to manage multiple timers with one OS timer. But a Periodic-
Timer may as well be created without the TimerManager in order to receive multiple OS timers.
Unfortunately the inherited PlainOSThread then is overhead. The TimerManager is a Singleton
to make it everywhere available with minimum ease.

To manage multiple timers, the PeriodicTimer requires its own thread to wait on the OS timer
event. Furthermore, this thread requires the highest priority (the framework’s internal CRITI-
CAL, see Section 5.2.8), so that it can immediately resume when a timer event is received and
service its list of AbstractTimerHandlers. The timerCallback() function of the AbstractTimer-
Handlers are called, which in turn either execute a callback function immediately (running in
the PeriodicTimer’s thread) for the CallbackTimerHandler or unblock a periodic thread for the
PeriodicThreadTimerHandler. So, the CallbackTimerHandler code must be kept short or an
overrun of all timers will occur.

The PeriodicTimer services the AbstractTimerHandlers based on a prioritized list (LinkedList),
such that a deterministic order of activations is created. AbstractTimerHandlers can be added
and removed in hard real-time as long as they are pre-created.

Control Engineering RJW Wilterdink

58 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Singleton PlainOSThread

PeriodicTimer

LinkedList

ListItem

AbstractTimerHandler
<abstract>

int timerCallback()<abstract>
void timerSignalDisarm()<abstract>
void timerSignalOverrun()
int getOverrun()
void resetOverrun()

int arm()
int disarm()

CallbackTimerHandlerPeriodicThreadTimerHandler

*

1

*

TimerManager
PeriodicTimer* getOrCreateTimer()

OneShotTimer

ThreadingUtility Utility

int waitForTimer(period_t relative_time)
int disarm()

Figure 5.7: LUNA Timer component UML diagram

Both, the PeriodicTimer and AbstractTimerHandlers record if an overrun occurred. This func-
tionality might be useful to determine if real-time code is obeying its timing specification and
to take action otherwise. The first is notified by the OS that an overrun occurred. The Ab-
stractTimerHandler notices an overrun when the handler reaches its blocking function (e.g. the
waitForNextPeriod() in PeriodicThreadTimerHandler) after the PeriodicTimer has fired multi-
ple times. The AbstractTimerHandler can be extend to change the latter behavior to notify the
handler of this fact earlier.

The OneShotTimer provides a one time use only OS timer. Using a LinkedList with Abstract-
TimerHandlers is (probably) overkill for this timer in most cases.

5.2.6.2 Implementation

Appendix D gives a comparison between timers and counters commonly available on PC hard-
ware architectures. The POSIX.1 real-time standard specifies interfaces for clock and timer
functionality for the OS software. By inspecting the target and development OSs it was deter-
mined that most OSs use this standard for interfacing with at least one of the compared timers
and counters. Furthermore, the POSIX standard also specifies how one can retrieve the OS
timer and clock accuracy. So, for now it is probably best to use the POSIX.1 interfaces as these
are relatively platform independent and if in the future higher resolution timers are required
these can still be implemented and overloaded by the build system.

For timers it is worth noting that two possible problems might occur:
1. The OS might use a periodic timer itself to update its internal time and bases any timer

requests on this. So, the internal time is not continuous as in the real world and may lag
behind. When requesting a timer, one-shot in particular, the OS takes the current internal
time plus one update period, adds the requested delay and sets any hardware timer to
this value. The extra period must be added, because it is not accepted that a timer fires
too early. Therefore it is not possible to get a timer with a higher accuracy than the OS
internal clock update rate, although some other OSs might update the internal counter
first. For periodic timers this inaccuracy only applies to the first timer event, thereafter
the timer fires periodically at the specified constant rate. The whole process is visualized
in Figure 5.8.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 59

0 10 20 30 40 50

0 10 20 30 40 50

= OS internal clock update
one shot timer
request for
5 ms delay = timer fire event

actual delay

periodic timer
request with
5 ms period

only first period
= equivalent requests
 seen from the OS

time (ms)

time (ms)

Figure 5.8: OS timer accuracy problem

By the way, QNX and most other OSs uses the same periodic timer for updating the in-
ternal clock and periodically rescheduling their processes and threads. Using the default
QNX OS settings a one-shot timer with an accuracy between 1 and 2 ms can be achieved
(see Section 5.2.8).

2. A timer quantization error might occur. The counters and timers in Appendix D all have a
high-speed (MHz range) clock, produced by the circuitry in the PC. This high-speed clock
must then be divided by a hardware counter to reduce the clock rate to the kHz or hun-
dreds of Hz range (which the OS can handle). Resultingly, not all requested frequencies
and delays can be matched well. Except from effectively getting a different frequency an-
other phenomenon occurs due to this. Every so often the timer might not fire, because its
counters appears not to have been incremented enough. This phenomenon is explained
in detail in Charest and Stecher (2011) and its existence is shown in the results section of
the CSP paper (5.4.1). The effect can be minimalized by matching the requested frequency
with the hardware clock divisor, which is also shown in the mentioned section.

The QNX implementation for the PeriodicTimer and OneShotTimer uses POSIX.1 functionality
to create the requested OS timer, but thereafter the implementation is QNX specific. This func-
tionality is based on the general QNX philosophy of a nano kernel with multiple little servers.
When the requested timer fires an event (pulse) it is sent over the supplied rendezvous channel,
which the timer thread (client) can catch at any time it wishes by performing the read from the
channel. The PeriodicTimer thread then handles the rest as explained. So, for other OSs the
implementation still needs to be created.

5.2.7 SystemInfo

The SystemInfo component provides a system-specific information database. There is no re-
quirement directly linked to this component, but during the design of the framework it was
realized that system-specific information is required by multiple components.

Control Engineering RJW Wilterdink

60 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The SystemInfo component currently retrieves the following information from the system:
• The number of CPUs.
• The number of cores per CPU.
• The frequency of each CPU in MHz.
• The number of ticks per second.
• The number of ticks for the measurement correction per time measurement.

For the last two items; computers measure time in discrete intervals (denoted as ticks), as is
explained in the Timing component (Section 5.3.5). Since measuring the time also costs time,
it is needed to correct for this.

Additionally, the component provides a platform abstraction to retrieve the current number of
elapsed ticks. This is currently being used by the Timing and RTLogger components (respec-
tively Sections 5.3.5 and 5.2.12).

5.2.7.1 Design

The UML class diagram of the SystemInfo component is shown in Figure 5.9. The SystemInfo
class is a Singleton (see Section 5.2.5). Furthermore, in the current Singleton design the class in-
stance will be created only once, which is a nice feature because accessing the OS and process-
ing its system information is generally non-deterministic. So, the gathered system information
is cached in the SystemInfo Singleton and can be safely accessed from any real-time thread.

CPU
uint8_t Id
double FrequencyInMHz
uint8_t NumberOfCores
int32_t TicksPerSecond
int32_t TicksMeasurementCorrection

Utility

Singleton

SystemInfo
int getNumberOfCPUs()
CPU* getCPUInfo(int number)

1..*

getTicks
<file>

ticks getTicks()

Figure 5.9: LUNA SystemInfo component UML diagram

5.2.7.2 Implementation

The retrieval and processing of system information from the OS is highly platform dependent.
For example, Linux provides the /proc/cpu file to store CPU information and QNX uses a global
system variable (SYSPAGE ENTRY) to store the same information.

The getTicks() function is dependent on the available counters and possibly on the OS drivers as
well. Appendix D lists timers and counters commonly available on PC hardware architectures.
The Time Stamp Counter (TSC) has been chosen for the current implementation, because it is
a high-resolution counter and available on most PC hardware architectures, and it only incurs
low-overhead for accessing the ticks counter.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 61

5.2.8 Scheduler

This component specifies a generic scheduler interface for threads and thereby extends the
thread support requirement (Section 3.2.1.3). The OS scheduler is responsible for ordering the
ready OS threads into a real-time feasible run order. Unfortunately the OS scheduler, in all
investigated OSs, cannot be manipulated directly other than changing the scheduling policy.

The component provides a generic scheduler interface and implements this for OS threads.
Furthermore, it provides platform indepedent priority levels for both real-time and non real-
time threads.

5.2.8.1 Design

The UML diagram for the Scheduler component is shown in Figure 5.10. The IScheduler is
the basic interface for all schedulers. The shown OSScheduler’s functions are the only possible
manipulation methods for the OS scheduler.

The OSSchedulerPriorities header file provides a platform independent priority abstraction.
Both hard and non real-time threads have ten freely usable priority levels, which are more than
enough for the corner applications. There is also another hard real-time priority level, denoted
CRITICAL, which is for the framework internal use. A real-time OS will always preempt any
running threads with a lower priority in favor of the higher priority thread becoming ready.

Uncopyable
<interface>

Singleton

OSSchedulerPriorities
<file>

enum REALTIME_PRIORITIES

enum NON_REALTIME_PRIORITIES

enum THREAD_PRIORITY_LIMITS

OSScheduler

int setOSScheduler(OSScheduler_policy os_sched)

OSScheduler_policy getSchedulerPolicy()

IScheduler
<interface>

int getMinPriority()

int getMaxPriority()

Interfaces

Utility

Figure 5.10: LUNA Scheduler component design

5.2.8.2 Implementation

The OSScheduler uses POSIX.1 functions and should therefore be platform independent for
POSIX compliant OSs. The QNX OS supports round-robin, FIFO and sporadic scheduling poli-
cies.

The scheduler priorities unfortunately have to be determined manually for each OS. It is worth
noting that on QNX the highest available priority, for non root processes, is 63. Root processes
can have a maximum priority of 251. Most system processes and applications started with
default settings run with priority 10 and are scheduled according the RR scheduler policy.

The default scheduling period for the scheduling algorithms is 1 ms for CPUs with ≥ 40 MHz
and 10 ms for slower systems. This frequency can easily be changed with the QNX ClockPeriod()
function. Experimenting with this function has shown that for a 600 MHz CPU a frequency of
1 kHz can be achieved, but the system then spends roughly 11% of its computing power on
scheduling alone.

Control Engineering RJW Wilterdink

62 Design of a hard real-time, multi-threaded and CSP-capable execution framework

5.2.9 Emergency-manager

The safety layer requirement (Section 3.2.1.11) states that hazardous situations for the setup
and environment should be prevented. A true one size fits all safety layer is probably not pos-
sible due to the diversity of setups which might be implemented with LUNA. So, multiple com-
ponents and link-drivers can implement their own safety functions. To coordinate emergency
signaling among these components and provide common safety practices and implementa-
tions the Emergency-manager component has been designed. This component partially im-
plements the safety layer requirement while preventing dependencies.

Additionally, the Emergency-manager provides a way to handle exceptional circumstances.
Note that it was already determined that C++ language exceptions cannot be used for this (see
Appendix B). Exceptional circumstances are for instance a memory allocation or device driver
failure, which can be non recoverable and therefore the application should shutdown. When
such a situation occurs, the Emergency-manager should be used.

5.2.9.1 Design

The EmergencyManager is designed to coordinate an emergency shutdown among multiple
components and the application. Classes requiring a safe shutdown should register a callback
function, which will be called on an emergency shutdown in the order they were registered.
These callback functions should contain functionality to prevent or resolve a harmful situation
by for example setting the actuators to a neutral output value.

The design of this component is shown in Figure 5.11. A Singleton is required to make the
EmergencyManager globally available and unique. A LockFreeQueue is used to manage a FIFO
list of emergency shutdown functions. A lock-free implementation is used, because multiple
threads can simultaneously identify and issue an emergency. By using this implementation the
threads can work together safely and the EmergencyManager never suffers from a dead-lock.

The thread calling the emergencyShutdown() receives the highest priority (i.e. CRITICAL) to
perform the shutdown immediately and without being interrupted.

LockFreeQueueSingleton

EmergencyManager
void emergencyShutdown();
void registerEmergencyHandler(void (*function)(void*), void* data)
void deregisterEmergencyHandler(void (*function)(void*), void* data)

Utility

1

OSSchedulerPriorities
<file>

RTOSThread_platform
<file>

Threading

Figure 5.11: LUNA Emergency-manager component design

The current implementation does not identify emergencies itself yet. For instance, when the
user presses ctrl+c most operating systems kill the application automatically. If the application
designer did not anticipate this the last outputted actuator value might keep a motor running
even though there is no control-loop running anymore. If the programmer did not handle such
a case himself, the EmergencyManager should call the emergency shutdown functions.

Furthermore, the Emergency-manager should provide some good practices and their imple-
mentations. For instance, a simple algorithm to identify blocked actuators could be supplied.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 63

Based on the combination of actuator output and collocated sensor input values it could be
determined if an actuator is blocked. Furthermore, these functions could also be placed in a
CSP library.

5.2.9.2 Implementation

The component is fully build on top of the Threading and Utility components and is therefore
platform independent. The component is classified as a core component, because it provides
basic and indispensable safety features for robotic applications.

5.2.10 Threading

The Threading component specifies the interfaces for the thread support requirement (Sec-
tion 3.2.1.3). Since, priorities are a thread property, the priorities requirement 3.2.1.4 is also
satisfied in this component. Additionally, it was recognized that threads might need periodic
behavior (Section 3.2.1.5). The component implements these requirements platform indepen-
dently for OS threads.

First, the requirements are worked out in detail to clarify the problems and features that this
component is required to solve and implement respectively.

• Periodicity - Threads may be periodic.
• Real-time and non real-time threads - Provide a solution to specify both thread types with

the same API. Some OSs provide different system calls for each type.
• Generic thread interface - Generic thread functionality should be identified and a unified

interface should be designed for this. Applications using this unified interface can then
manipulate the own running thread indifferent of its backing implementation.

• Generic runnable object interface - A generic interface for runnable objects, i.e. objects
that can be executed by a thread, should be designed.

• Thread configuration - Threads should be configurable at creation for: priority, period,
processor mask and stack size. The processor mask specifies the cores/processors a
thread may be executed on. The available stack size should be configurable per thread.

• Temporarily stop threads - Provide a solution to temporarily stop a thread, thread type in-
dependently. For example, rendezvous communication is required to stall a thread while
waiting for the other side to become ready.

• Priorities - Threads should adhere the set priorities.

5.2.10.1 Design

The UML class diagram for the Threading component design is shown in Figure 5.15.

Periodicity
As stated in the requirements, threads may require periodic execution. But, this functionality
is not specified in the POSIX.1 standard as a thread property. Furthermore, none of the OSs
supports the creation of a periodic thread. Still, it would be beneficial to have such function-
ality standard available in a class. The Timer component (Section 5.2.6) has a timer interface
with the OS which is usable to implement this. Since the PeriodicTimer requires a thread, a
plain thread should be supported as well (to prevent a circular dependency). The plain thread
can then also be used by classes that do not have a use case for periodic behavior nor other
advanced features, such as the pooled threads in the ThreadPool component (Section 5.3.4).

Real-time and non real-time threads
The method of choosing the thread type, real-time or non real-time should be straightforward.
One OSs might also use different implementations for both (as is the case for the combination
of RTAI and Linux) it was chosen to separate the thread types in separate classes. The investi-
gated frameworks and libraries in Chapter 4 do not make a difference between the thread types
in terms of specification and mostly specify one thread type for the whole application.

Control Engineering RJW Wilterdink

64 Design of a hard real-time, multi-threaded and CSP-capable execution framework

IThread

PlainOSThread
template<class RTImpl>

BasicOSThread
template<class RTImpl>

<interface>

PeriodicTimer
WorkerThread

Application Runnables
CSP

Not available Optionally periodic
Settings

Periodicity

Used by

Real-time Non/Hard (set with RTImpl) Non/Hard (set with RTImpl)

void runFunc(IThread*) RunnableExecution spec
Execution FSM preRun/run/postRunrunFunc();

UThreadContainer

Thread_attr struct Thread_attr struct

Figure 5.12: LUNA Threading approach and overview

Combining periodicity and real-time and non real-time threads
When the proposals from the last two paragraphs are combined naively, four classes would
need to be designed and maintained. This is considered labour intensive and error prone,
whilst function implementations are generally the same. Therefore it was chosen to create a
plain and (a)periodic thread class. Both take their (non) real-time implementation as a tem-
plate parameter (see Figure 5.13), which is a policy based design and similar to Aspect Oriented
Programming (ASP) techniques. The periodicity for a periodic thread is supplied as a parame-
ter at creation. The overhead by combining the periodic and non-periodic thread functionality
is negligible, for non-periodic threads. The complete idea and overview of the class properties
is shown in Figure 5.12.

Generic thread interface
Functionality commonly found in all thread types and on all OSs has been grouped in the
IThread interface. All (OS) thread implementations must at least fulfill this interface.

Thread configuration
The PlainOSThread and BasicOSThread both can be configured at creation with the
Thread attr structure, which takes priority, period, processor mask and stack size settings.
But, the PlainOSThread ignores the period setting.

start()
{
 setPreCreateAttributes(...)
 createThread(...)
 setPostCreateAttributes(...)
}

BasicOSThread
function
composition

<RTImpl>:
(non) real-time
OS specific
implementations
of the functions
('aspects')

BasicOSThread
template<class RTImpl>

Figure 5.13: LUNA BasicOSThread policy based (RTImpl) design

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 65

Generic runnable object interface
A generic Runnable interface has been designed for executable objects. The interface specifies
three functions (preRun(), run() and postRun()) which can be overloaded by virtual inheritance
and are executed by the BasicOSThread, as explained in the next section. Only the run() func-
tion is mandatory.

The getIThread() function can be used to access the IThread interface for the Runnable’s OS
thread. An alternative would have been to use Thread Local Storage (TLS), to retrieve the thread
local IThread interface. It is expected that deeply embedded targets do not support this func-
tion. Since this is not an easy function to emulate it was chosen to use the Runnable interface
to hold the association with its IThread.

Combining the generic runnable object interface and the BasicOSThread
The combination of the Runnable and BasicOSThread class also supports an advanced con-
struction and destruction procedure which is best explained by the Finite State Machine (FSM)
in Figure 5.14. This functionality is also explained in the LUNA paper (Section 5.4.1), but more
specifically for CSP. The BasicOSThread thread is started by calling its start() function. This will
setup an OS thread with the given Thread attr settings. While the new thread is being setup
the starting thread is blocked, namely until the preRun() function has finished. Then the run()
function is executed. After the run() has finished and it is a periodic thread, it will wait for
the next periodic activation after which the run() is executed again. If it is an aperiodic thread
or the thread has been requested to stop, the postRun() function is executed. The OS thread
will seize to exist after the postRun() has finished, but the OS thread object remains until it is
deleted. The BasicOSThread may thereafter be restarted by calling the start() function again.

Thread.start()

preRun

run

postRun

start

stop

WFNP

p
a
r
a
l
l
e
l

unblock

create

periodic?

stop?

WFNP = Wait for next period
italic = Polymorphic Runnable functions

= Thread synchronization

Figure 5.14: LUNA BasicOSThread FSM

The advantage of the preRun() function is that its function body is guaranteed to be fully exe-
cuted before the starting thread can continue. Shared objects created in the preRun() function,
which are necessary for the proper operation of the application, are guaranteed to have been
fully instantiated, before the starting thread can ‘run of’ to perform other actions (and possibly
use the shared object). Furthermore, this keeps the necessary housekeeping functions sepa-

Control Engineering RJW Wilterdink

66 Design of a hard real-time, multi-threaded and CSP-capable execution framework

rate from the Runnable’s run() implementation, which is nice from a design point of view. The
postRun() function can be used the other way around in order to destruct the created objects.

For convenience reasons a hard real-time OS thread (RTOSThread) and a non real-time OS
thread (OSThread) class have been added to the component. These classes already have the
right template parameters for the BasicOSThread regarding the target OS and its real-time con-
straints. The BasisOSThread only uses a PeriodicThreadTimerHandler when the thread has
been created with a period in the Thread attr structure.

Uncopyable

IThread

PlainOSThread
template<class RTImpl>

BasicOSThread
template<class RTImpl>

<interface>

<interface>

Runnable
<abstract>

void preRun()
void* run()<abstract>
void postRun()
IThread* getIThread()

Utility

RTOSThread OSThread

10..1

isPeriodic()
period_t getPeriod()

int getThreadType()
ThreadState getThreadState()
priority_t getPriority()
int setPriority(priority_t p)
int yield()
int join(void** retv)
int start()
void stop()
IScheduler* getScheduler()
bool shouldStop()

PeriodicThreadTimerHandler
int waitForNextPeriod()

0..1

non real-time OS
implementation

real-time OS
implementation

Figure 5.15: LUNA Threading UML class diagram

Temporarily stop threads
For threads and different thread types to collaborate it is necessary to have a generic interface
which stops a thread temporarily and thread type independently. The IThreadBlocker is de-
signed for this purpose. Separate implementations are required for each thread type, which
might group a set of functions to efficiently achieve this.

The UML class diagram for the IThreadBlocker design is shown in Figure 5.16. An ILockable
can be passed as an argument to the waitOnEvent or signalEvent function and will unlock it
at the last possible moment, just before blocking the own thread or unblocking another thread
respectively. This functionality is important if a critical section has been locked as a part of the
algorithm. It then has to be freed at the last possible moment, because it may unblock a higher
priority thread which might then preempt the own thread. See for an example the blockCon-
text and unblockContext functions for the reader and writer CSP processes in the LUNA paper
(section 5.4.1).

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 67

IThreadBlocker
<interface>

int waitOnEvent(IThread* this, ILockable* l)
int signalEvent(ILockable* l)

0..1

IThread
<interface>

GenericFactory
template<...>

Singleton

ThreadBlockerFactory

OSThreadBlocker RTOSThreadBlockerUThreadBlocker

Utility

UThreading

Figure 5.16: LUNA UML class diagram for the IThreadBlocker extension

Priorities
The OS threads on a real-time OS are scheduled according their priorities. This also means that
a lower priority thread is immediately preempted when a higher priority thread becomes ready
to run.

Factories
A ThreadBlockFactory and thread factory have been added for convenience reasons. The
ThreadBlockerFactory can be used well in the discussed Runnable::preRun() function to cre-
ate the appropriate thread blocker based on the thread type (see the IThread::getThreadType()
function).

The thread factory does not use the GenericFactory design pattern, because the choice be-
tween thread types is not considered a run-time decision in a hard real-time context. Thus,
the thread factory is established with function overloading, for instance the factory function
createThread(Set<Runnable*> input, Set<RTOSThread> output) creates RTOSThreads for the
Runnables in the input set. A different thread factory can be selected on the basis of the in-
put and output Set template parameters.

5.2.10.2 Use cases

Since the previously discussed functionality might be a bit abstract two examples are given in
Appendix E. The first shows the specification of a periodic real-time OS thread and an aperiodic
non real-time OS thread. Note, this is functionality not commonly found in other frameworks
and libraries. The second example shows the implementation of a Runnable in combination
with the creation of an IThreadBlocker by its ThreadBlockerFactory.

5.2.10.3 Implementation

The majority of the Threading component has been designed with POSIX.1 thread functionality
in mind, because all target and development OSs have at least some form of implementation
for this. But, optimized implementations are still possible for other OSs (e.g. RTAI). This will
even be quite simple, since only the platform abstraction functions need to reimplemented
(like createThread()). For more advanced implementations the OSThread and RTOSThread can
be fully reimplemented, via the build system’s file overloading feature. For the QNX OS, since
it is fully POSIX.1 real-time conformant, the PThreadImplementation class (POSIX.1 thread im-
plementation) is taken for both thread types as backing implementation.

Control Engineering RJW Wilterdink

68 Design of a hard real-time, multi-threaded and CSP-capable execution framework

The PeriodicThreadTimerHandler class provides the timer interface, which is not specified in
the POSIX.1 standard. For this class the same reasoning can be applied; optimized implemen-
tations are possible. Note that the use case given in Appendix E only uses the generic interfaces
and no platform dependent includes are necessary anywhere.

PeriodicTimer

PlainOSThread BasicOSThread

Timer component

The 'Threading component' in most of the thesis

Simplethreading Threading

= dependency

Figure 5.17: LUNA Threading and Timer dependency visualisation

Due to BasicOSThread being dependent on the Timer component and the PeriodicTimer being
dependent on the PlainOSThread (see Figure 5.17), the Threading component in reality is split
into two components: simplethreading and threading. The simplethreading contains the ‘in-
ternal’ PlainOSThread and the Threading components contains the (a)periodic OSThread and
RTOSThread classes. So, application developers should use the Threading component.

5.2.11 UThreading

The UThreading component extends the thread support requirement (Section 3.2.1.3) and im-
plements the IThread interface discussed in Section 5.2.10 for user threading support. The user
threads also satisfy the priorities requirement (Section 3.2.1.4).

As explained in Chapter 2 multiple user threading models exist: one-to-one, many-to-one and
many-to-many models. This component implements the IThread for user level threads (further
abbreviated to: UThreads) in a many-to-one threading model, whereby multiple UThreads run
in one OS thread.

UThreads are basically lightweight threads, without OS privileges. Modern OSs do not have any
means to cooperate with UThreads and additionally have no clue about the UThreads running
in parallel. So, the OS cannot preempt a UThread. This has the unwanted side effect that when
a OS function call blocks in one of the UThreads the complete set of UThreads is blocked from
executing. Furthermore, time sharing an OS thread is also not possible, because preemptions
of UThreads can only happen on a voluntary basis, by for example calling the yield() function.
Consequently, the code to be run on a UThread should be kept short in order to achieve the
timing requirements. However, the non-preemptability can sometimes also be used to an ad-
vantages, as will be discussed in the design section.

The implementation section provides a small comparison between different UThread imple-
mentation methods and POSIX threads. A simple switching test, in which two threads during
their turn yield, is used to determine its potential performance. It is shown that UThreads can
potentially switch 7 times faster than OS threads on a uniprocessor Linux machine. But, over-
head costs for UThread scheduling are not included in this measurement. Note, when threads
with longer run-times are used, the ratio switching costs/thread running time becomes better
and may even become negligible. So, the UThreads are favorable in case of light multi-threaded
work.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 69

The LUNA framework is certainly not the first to support UThreads, the CT library employed
a user space threading model, the Kent C++CSP2 library provides a many-to-one threading
model and the Mordor library (Mozy, 2011) provides a many-to-many threading model. The
LUNA many-to-one threading model is therefore largely based on a combination of these im-
plementations.

5.2.11.1 Design

The UML class diagram of the component shown is in Figure 5.18. To keep the diagram clear a
few classes have been left out, which will be pointed out if necessary.

Runnable interface
The UThreading component implements a many-to-one threading model, whereby a set of
Runnables is executed on a single OS thread. The UThreadContainer must therefore imple-
ment the Runnable interface to able to be executed on any OS thread type.

IThread interface
The UThreads should be able to execute any Runnable object. Therefore, the UThreading com-
ponent must re-implement the IThread interface. On the other hand, UThreads should be
as lightweight as possible, otherwise they loose their competitive advantage. Since only one
UThread can run simultaneously on one OS thread the IThread interface may as well be imple-
mented by their set container (UThreadContainer) to lower the overhead.

The Runnable::getIThread() function returns a pointer to the UThreadContainer instance.
Since only one UThread is running simultaneously the UThreadContainer always know which
UThread called its function.

UThreadContainer
int createUThreads(int n, Thread_attr attr)
int startRunnable(Runnable* runnable)
void reschedule()
UThread* getContext()

IScheduler
<interface>

UScheduler
<interface>

UThread* getNextToExecute()<abstract>
void contextYielded(UThread* c)<abstract>
void contextBlocked(UThread* c)<abstract>
bool contextUnblocked(UThread* c)<abstract>

PrioritizedUScheduler

LinkedList
template<class ListItemT>

PlainLockFreeQueue
template<typename T>

UThread

1

1

1..*

*

1..*

Runnable
<abstract>

IThread
<interface>

Runnable
<abstract>

0..1

0..1

Figure 5.18: LUNA UThreading UML class diagram

UThread instantiation
UThreads can be created with the createUThreads() function, which saves the UThreads on a
Queue (which is not shown, it only has an association with the UThreads directly). All of these
UThreads will have received their own stack on which their thread will run in the future. With
the startRunnable() function a Runnable can be assigned to a created UThread.

Control Engineering RJW Wilterdink

70 Design of a hard real-time, multi-threaded and CSP-capable execution framework

UThread scheduler and priorities
The user threading mechanism and the management of the ready and blocked queue have
been split. The UthreadContainer is responsible for physically switching thread contexts. An
UScheduler is in control of the ready and blocked queue. Whenever a UThread preempts or is
finished, the UThreadContainer asks the UScheduler for a new UThread and reschedules.

Two implementations currently exist for the UScheduler interface: a prioritized and a simple
equal priority scheduler. The latter is included for performance reasons and not shown in the
diagram. The PrioritizedUScheduler maintains a prioritized ready (and blocked) queue. The
idea is shown in Figure 5.19. The LinkedList maintains a FIFO PlainLockFreeQueue per prior-
ity (the mandatory ListItem is not shown in the class diagram). Whenever a new UThread is
requested by the UThreadContainer it descends the LinkedList from the high priority to the
low priority until a ready UThread is found. If no UThread is ready the PrioritizedUScheduler
blocks on a Semaphore (not shown in the class diagram) until a UThread becomes ready. Prior-
ities levels (i.e. the ListItems) are currently not actively maintained by the UThreadContainer,
meaning once added they stay throughout the application lifetime. The reason behind this is
that currently no lock-free linked list implementation is available and otherwise some form of
mutual exclusion must be applied, which is considered expensive and undesirable.

100

90

12

LinkedList
template<class ListItemT>

U1U2

U3

U4 U5 U6 U7

FIFO ready queues

= next to be executed
U= UThread

priority level

Figure 5.19: LUNA PrioritizedUScheduler

The PlainLockFreeQueue has been chosen for the FIFO queue for its fast performance in a con-
current setting. Furthermore, other threads (OS or UThread) may now place an UThread on
the ready queue when required and without interfering with the UThreadContainer execution.

UThreadBlocker
The IThreadBlocker discussed in the Threading component (Section 5.2.10) is also imple-
mented for the UThreads. Whenever a UThread must be blocked, for instance when waiting
on the other side of the rendezvous channel, the UThreadBlocker can be used to preempt the
own UThread and place it on the blocked queue. Actually, there is no need for a blocked queue,
since the UThreadBlocker can hold the reference to the UThread. This enables rendezvous
communication between UThreads and OS threads (see Section 5.4), since these will have to
interact at some point.

Rendezvous communication
As already explained, UThreads cannot handle blocking system calls without stalling all the
UThreads in a UThreadContainer. Unfortunately, the QNX rendezvous channels are also suf-
fering from the problem. So, for the CSP execution engine a new and highly efficient UThread
capable rendezvous communication channel, abbreviated to LUNA-U further on, has been de-
signed and implemented (see Section 5.4). Although, this rendezvous channel has not yet been
ported to the UThreads in general.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 71

60

50

40

10

5

4

3

60 50

= Thread ready to run

priority OS thread

10

= Thread blocked

...

x
x

= UThread priority
= OS thread priority

priority
UThread

Figure 5.20: Mixture of OS threads and UThreads priorities

Combined OS threads and UThreads priority problem
The OS threads and UThreads are separately scheduled according their priority by the OS
scheduler and the PrioritizedUScheduler respectively. The combination of OS threads and
UThreads with different priorities might be problematic, since the OS does not know about
the UThreads and does not respect the UThread priorities.

The OS threads are scheduled only according to their priorities and once the UThreadContainer
is running it can arrange the scheduling of its own UThreads. Thus, this creates a form of pri-
ority inversion as can be seen in the example shown in Figure 5.20. The problem in this case is
that the UThread with priority 50 is only allowed to run after the complete set of UThreads on
the left OS thread (with a higher priority) have finished.

The simplest solution is to use only as much OS threads as the target platform has cor es ∗
C PUs. In this way all OS threads can always run and so can their UThreads. Nonetheless, also
for this solution the UThreads need to be properly distributed over the OS threads, otherwise
an OS thread might starve. More solutions are possible, but these are considered future work.

Synchronization and locking
The IBarrier interface discussed in Section 5.3.1 is also implemented for the UThreading com-
ponent. The two-level barrier design of Brown (2007) is used for this and the idea is visualized in
Figure 5.21. Basically UThreads requiring synchronization, first synchronize locally (LocalBar-
rier) and once all local UThreads have synchronized the synchronization is taken to OS thread
level (GlobalBarrier). In the case that only local synchronization is required, the LocalBarrier
does not need a GlobalBarrier and can skip this synchronization step. Regular OS threads can
participate on a global level with the same algorithm and synchronize directly on the OS thread
level.

Using the knowledge that UThreads can only be preempted on a voluntary basis in the OS
thread, a smart design can be employed. Since, an object shared between UThreads on the
same OS thread does not need any concurrency protection. Therefore the overhead costs for
an UThreads implementation will be even lower than with a similar OS thread implementation.
Of course, the whole set of UThreads may still be preempted when the OS thread it is running
on, is forcefully preempted by the OS.

Control Engineering RJW Wilterdink

72 Design of a hard real-time, multi-threaded and CSP-capable execution framework

GlobalBarrier

LocalBarrier OS
thread
onlyU1 U2 U3

= OS thread
= UThread
= Synchronization

U

direct synchronizationtwo-level synchronization

Figure 5.21: LUNA two-level barrier (based on Brown (2007))

5.2.11.2 Implementation

The component implementation is very platform dependent. For a UThread to run semi-
concurrently to other UThreads three requirements should be met. First, it must have its own
stack to run on, which should be ‘saved’ when the thread is preempted. Second, the pre-
emption mechanism must save the current core/CPU registers and restore the registers of the
thread that is activated. Last, some means to start a Runnable on the thread and cleanup the
thread when finished are also necessary.

Creating a stack per UThread is easy; just allocate a fixed sized chunk of memory and divide
this between the UThreads.

For implementing the second requirement multiple methods are available. (Jones, 2003) con-
tains an extensive list of example implementations for Linux. The simple context switch perfor-
mance test mentioned before and their availability on QNX determines which implementation
is the best choice. The example implementations will not be explained as these are already
well documented on the internet. The assembler implementation is just one of many possible
assembler implementations. Table 5.7 lists the results of the comparison.

Method Mean context switch time (µs) Available on QNX
ucontext 6.99 No
assembler 0.99 Yes
setjmp/longjmp 1.68 Yes
POSIX threads 7.06 Yes

Table 5.7: Context switch speeds for different UThread implementations (Jones, 2003) on a 600MHz
PC/104 running Linux (kernel 2.6.23.17)

The assembler implementation is the fastest. But, assembly code is notoriously difficult to de-
velop and maintain, and it is by definition not portable. Therefore it was chosen to use the
setjmp/longjmp implementation for switching between threads. The setjmp/longjmp func-
tions save and reload the registers to and from a buffer respectively. Most OSs provide setjmp/-
longjmp function implementations.

To get the Runnable to execute using its new stack (requirement 3) the stack pointer must be
replaced. This is considered difficult, platform dependent and technical, and therefore the pro-
cedure is explained in the LUNA source code. However, this method cannot be used for Linux,
since the stack pointer is obfuscated for security reasons there. So, the UThreading component
interface is platform independent, but its implementation is not.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 73

5.2.12 Real-Time Logger

The RTLogger provides an (a)periodic signal logger and extends the debugging facilities re-
quirement, for which it makes the log output messages available off target. This is advanta-
geous since logging to the screen or disk on a real-time OS is not always possible or limited and
slow.

The RTLogger can be used on a mixture of non and hard real-time threads without breaking the
real-time constraints. The application only pays for placing the logging information into a large
buffer. The RTLogger thread then takes care of transferring the data whenever computational
resources are unused. The buffer can be placed in ring-buffer mode, overwriting the old log
values, or overflow mode, when the data cannot be transferred in time. The buffer size can be
adjusted.

The 20-sim 4C package by Controllab Products (2011) also provides a real-time logger, but it
is only capable of periodically logging signals. Whereas the RTLogger described here, can also
aperiodically log any kind of information.

The RTLogger receiver (server) waits for a RTLogger to connect. Once connected, the received
signal data is stored in a file and any log messages are printed to the screen. Optionally, 20-sim
can be used to visualize the control signals during run-time. Since, the RTLogger server is not
part of LUNA, but is build with it, it is discussed in Appendix H.

Furthermore, the RTLogger has been used to gather trace data of CSP processes and to deter-
mine the performance of Jiwy CSP models, see Chapter 6. However, correct CSP traces can only
be generated with the number of OS threads less or equal to the number of cores/CPUs, since
the OS may preempt an OS thread in the middle of a CSP process execution otherwise. The
Matlab script to post process and visualize the trace data are presented in Appendix H.

5.2.12.1 Design

The UML class diagram is shown in Figure 5.22. The application and RTLogger thread are sep-
arated by a double PlainLockFreeQueue (Section 5.2.5.1). Any thread performing a log action
(signal or output message) will first need to get an empty buffer from the ‘empty’ queue. If no
empty buffers are left and the RTLogger is not set to ring-buffer mode, the log function will just
return and thereby lose the signal value or log message. When an empty buffer was successfully
acquired it is filled with the channel id, log data and current timestamp, and then placed in the
appropriate transfer queue.

Runnable
<abstract>

Singleton

PlainLockFreeQueue

Utility

RTLogger
template<typename T>
rtlogger_id registerLogger(const char* name)
template<typename T>
void rtlog(id i, ticks timestamp, T data, ...)

RemoteLogger
int start()
void stop()

44

0..1

Utility

Threading

Figure 5.22: LUNA RTLogger UML class diagram

Control Engineering RJW Wilterdink

74 Design of a hard real-time, multi-threaded and CSP-capable execution framework

For the logging of signal data, the thread must first register the signal name and data type (T in
the diagram). This information is then transferred to the visualisation tool, such that this infor-
mation does not need to be transferred on each log action. The rtlog() function then performs
the actions described in the previous paragraph.

The logging of output messages is handled automatically by the framework and does not re-
quire registering a channel.

The RemoteLogger uses a low priority non real-time thread for transferring the data to the vi-
sualisation tool. The low priority ensures that threads performing a function pertinent to the
application will always have preference over logging. The RemoteLogger and its receiver com-
municate through the Socket component (Section 5.3.3).

Since signals are mostly fixed size data (e.g. integers) and log messages are variable sized data,
it was chosen to maintain four buffers (two empty and two transfer queues). By default, much
more buffers are available for signals than log messages, because signals mostly have a higher
update rate and log messages are larger in size.

5.2.12.2 Implementation

The RTLogger component is build on top of the Threading and Socket component. The signal
data types and the network packages are architecture dependent. Unfortunately, the visualisa-
tion tool does not have means to determine the correct format of both yet. So, currently only
RTLoggers and visualisation tools having the same architecture work (e.g. both 32 bit systems).

5.3 Other components

The following components were also designed for this thesis project, but are less interesting
from a design point of view and are therefore explained in less detail. The order of appearance
of these components is shown in Table 5.3.

5.3.1 Barrier

The Barrier provides thread and process synchronisation primitives and thereby is an extension
to the synchronization requirement in Section 3.2.1.7. A number of threads/processes can reg-
ister a barrier object and then synchronize their program execution on it. Arriving threads will
wait until all threads have arrived at the barrier, at that point all threads are jointly released.
Although it is specified in POSIX amendment POSIX.1j it is found commonly available on all
OSs.

The Barrier component provides a unified interface, called IBarrier, for OS and UThread barri-
ers. Furthermore, it implements this interface for the OS threads.

5.3.2 Clock

The Clock component provides means to specify the date and time and time durations, and
contains a wall clock interface with the OS.

The DateTime class consists of a time struct, available on all Unix based OSs, and a frac-
tional seconds part. The fractional seconds are dependent on the requested resolution
(System resolution, a framework setting) and the used accuracy in determining the date and
time itself, which is platform dependent.

The TimeDuration class resolution depends on the same framework setting as the DateTime
class. Furthermore, a number of mathematical operations have been defined for this class,
such as adding and subtracting time durations, to increase usability. This representation class
is used in the Timing component for returning the results of time measurements.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 75

The WallClock retrieves the current system time from the OS and therefore should be handled
with care.

5.3.3 Socket

The Socket component provides a network socket abstraction from the OS, which perhaps in
the future can be used to extend the communication requirement (Section 3.2.1.6) to inter-host
communication.

Sockets can be specified to be either TCP or UDP and IPv4 or IPv6. Socket creation, setup and
communication are of course not real-time. The send and receive functions of the socket can
both be blocking and non-blocking depending on the used parameters.

5.3.4 ThreadPool

The ThreadPool component extends the thread support requirements (Section 3.2.1.3) and
manages a pool of PlainOSThreads (Section 5.2.10). The threads in the pool can for example be
used as buddy processes in hard real-time code.

In its current form the workers (pooled threads) take a WorkItem structure as a work specifica-
tion. The WorkItem contains either a Runnable or function with the following signature: void*
(*func)(IThread*, void*). In the latter case, the IThread pointer is supplied by the ThreadPool
as being the IThread the WorkItem is run on. Furthermore, a pointer to any data structure can
be supplied and is fed by the ThreadPool as the second argument. Optionally, when the worker
finishes it can execute a callback function.

This component is build on top of the Threading component.

5.3.5 Timing

The Timing component provides functionality to measure the computation performance of
other components and classes. The TimeMeasurement class is responsible for this and return
the measurement in the form of a TimeDuration object (see Section 5.3.2). A TimeMeasurement
instance should be created for each required measurement.

Computers measure time generally with counters that increase on discrete intervals. A counter
increase is commonly called a tick. Furthermore, these ticks are generally not in a SI unit for
performance reasons.

The TimeMeasurement object retrieves the current tick counter value at the start of the mea-
surement. When the measurement has finished (or an elapsed time is required) the object
retrieves the new counter value. Subtracting the counter values gives the elapsed time in ticks.
Because reading the tick counter takes time, the TimeMeasurement also corrects for the time
measurement itself.

The TimeMeasurement class is build on top of the SystemInfo component (Section 5.2.7) and
uses its platform abstraction. The SystemInfo component function getTicks() retrieves the cur-
rent ticks counter value and furthermore contains the measurement time correction and a con-
version factor to convert ticks into seconds.

5.3.6 Device-manager

The Device-manager component extends the link drivers requirement (Section 3.2.1.8).

The UML diagram for this component is shown in Figure 5.23. The main class acts as a resource
counting object manager and registry. Multiple threads can share the same device driver with-
out needing to create multiple objects for it nor destroying the device driver accidentally before
all threads are finished using it. Furthermore, device driver initialization only has to occur once,

Control Engineering RJW Wilterdink

76 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Singleton

Device

ListItem

LinkedList

DeviceManager
Device* claimDevice(const char* devicename)
void registerNewDevice(Device* dev)
void releaseDevice(Device* dev)

*

1
Utility

Figure 5.23: LUNA Device-manager component UML diagram

preferably at a safe non real-time initialization point. So, threads can look-up a Device in the
registry when needed, then claim the device and lastly release it when they are done with it.

The Device interface contains only basic functionality. In the future it should be extended to
enforce more good practices, for example automatic thread safety.

5.3.7 AnyIO

The AnyIO component contains CSP link drivers for the Mesa electronics Anything IO FPGA
board (Mesa electronics, 2011). LUNA does not yet contain link drivers for all hardware avail-
able in the lab. However, this proves that link drivers in general can be included and therefore
satisfies the link driver requirement (Section 3.2.1.8) for CSP.

The CT library already contained link drivers for CSP to interface with the encoders, actuators
and digital IO on the FPGA. Therefore, these have been ported to the new LUNA CSP interfaces.
But, the Linux driver, which was used for setting up the FPGA board, had to be modified for
QNX (see Appendix G).

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 77

5.4 CSP component

This component implements the CSP execution support requirement (see Section 3.2.1.10).
The paper (Bezemer et al., 2011b), partly written by the thesis author, serves as the basis for de-
scribing the design and implementation of the CSP component. A reading guide to the paper is
given in Section 5.4.1 and the paper can be found in Appendix I. The standard implementation
subsection is skipped, because the CSP component is only build on lower level components
and thereby platform independent.

Section 5.4.2 extends the paper on some selected points, as not everything could be included
into the paper.

5.4.1 CPA paper reading guide

Since this reports intends to describe the whole LUNA framework in detail and not just the
combination of LUNA and CSP, some sections will contain information already presented in
previous sections. The reading guide to the LUNA paper in Appendix I is given in Table 5.8. The
reader is advised to read the italic printed sections now, as these present the CSP component’s
design.

Introduction
Context The context of LUNA is also discussed in Section 1.
Existing Solutions Chapter 4 discussed these in more detail.

1. LUNA architecture
Intro Section 5.1.1 also presented the LUNA component archi-

tecture.
1.1 Threading Implementation The threading mechanisms in LUNA are discussed in de-

tail in Sections 5.2.10 and 5.2.11. The two paragraphs be-
tween “For the CSP functionality . . . of the CSProcess” de-
scribe what this means for CSP.

1.2 LUNA CSP Describes how CSP is executed conceptually.
1.3 Channels Explains how the LUNA rendezvous channels are imple-

mented.
1.4 Alternative Discusses the Alternative CSP process and guarded chan-

nel implementation.
2. Results

Intro Presents the test setup.
2.1 Context-switch Speed Discusses a pure context switch speed test.
2.2 Commstime Benchmark Referred to from Section 6.2.1.
2.3 Real Robotic Setup Referred to from Section 6.2.2.

3. Conclusions
Chapter 6 concludes to LUNA’s usability, performance
and requirements.

Table 5.8: Reading guide to Appendix I

5.4.2 Extensions to the paper

This section describes CSP details worth mentioning, but which did not make it into the paper.
Table 5.9 provides an overview of all gCSP constructs and their current implementation status
in LUNA. The interfaces have been updated with respect to the CT library and therefore these
constructs will not work with the gCSP tool yet.

Control Engineering RJW Wilterdink

78 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Item Implemented LUNA class name
Process y CSProcess
Reader y Reader
Writer y Writer

Construct Implemented LUNA class name
Process y CSProcess
Sequential y Sequential
Repetition y Recursion
Par y Parallel
PriPar y PriParallel
Alt y Alternative
PriAlt y PriAlternative
Input-guard y GuardedWriter
Output-guard y GuardedReader
SKIP-guard y AltElseOption
Watchdog n -
Exception n -

Channels Implemented LUNA class name
Channel y UnbufferedChannel or

Any2AnyRendezvousChannel
(OS only)

TimerChannel y PeriodicTimerChannel
BufferedChannel y BufferedChannel
ExternalChannel n -

Table 5.9: Available gCSP constructs in LUNA

5.4.2.1 Priorities

First of all, priorities are only mentioned twice in the paper, whilst it is fully implemented for
CSP. Note, the CSP component is currently the only implemented execution engine and the
implemented LUNA-U rendezvous channel for UThreads and OS threads is only available in
the CSP component. Therefore it was chosen to discuss the combination of priorities and CSP
processes and the effect that it has on rendezvous communication and threads in this section.
Most of the discussion can be transferred to the UThreading component (Section 5.2.11) once
the LUNA-U rendezvous channel has been adjusted for the general use case.

Threads
The priority of CSP processes is also set to their OS thread or UThread, such that these are
scheduled accordingly (see Sections 5.2.10 and 5.2.11). The possible UThreadContainer’s OS
thread priority problem is discussed in the UThreading component.

To set the priorities of the whole CSP compositional tree at once, the application developer sets
the top level CSP process priority. Each parent CSP TreeNode will then set its children’s priori-
ties. For the PriAlt and PriPar processes, which are based on their non prioritized versions, this
means that the priority of the first child is equal to parent (PriAlt/PriPar) priority and that the
priority of the rest of the children decreases towards the last child.

To fully support CSP semantics the priorities should also be adhered during rendezvous com-
munication.

RJW Wilterdink University of Twente

CHAPTER 5. DESIGN & IMPLEMENTATION 79

Rendezvous communication
Table 5.10 gives an overview of the properties of the two rendezvous communication methods
currently implemented. Most of these properties have already been explained in the paper
and previous sections, but are presented here again for completeness. The QNX characteristics
probably hold as well for the alternate implementations suggested for the other real-time OSs
in the Communication component’s section (5.2.4). Although only any-to-any communication
is mentioned, this includes one-to-one communication and other well known combinations.

Property QNX rendezvous
channels

LUNA-U rendezvous
channels

Communication between OS threads y y
Communication between OS threads
and UThreads

n y

Any-to-any communication y y
Guarded channels (for the Alt CSP
process)

n y

Priority scheduling y y
Priority inheritance algorithm y n
Buffered communication n y

Table 5.10: QNX versus LUNA-U rendezvous channels

The paper describes the implemented LUNA-U rendezvous channels in great detail (although it
does not use this abbreviation explicitly). But a few details have been left out. Figure 8 in the pa-
per does not show that IReader also implements the ListItem abstract class (Section 5.2.5). And
in Figure 7 the LinkedList, which manages the prioritized waiting list for these IReader/IWriter
processes, is not shown for either side of the any-to-any channel. So, the (un)buffered channel
implements a prioritized any-to-any hard real-time capable (guarded) rendezvous channel.

5.4.2.2 CSP traces and timing verification

The RTLogger described in Section 5.2.12 can be used to generate traces of the CSP execution
and verify timing. The build system has a menu setting to enable one or both. Once a trace
or timing log has been obtained the Matlab scripts presented in Appendix H can be used to
analyze them. These are also used in the next chapter for validating the real robotic setup.

5.4.2.3 Example code for CSP deployment

The paper already describes how CSP processes can be spread over OS threads, but to show the
full potential of LUNA an example has been included in Appendix F.

5.5 Conclusions

The approach to divide the LUNA functionality in separate components, with clear purposes
and interfaces, has lead to a design in which components are loosely coupled. The resulting
components and their dependencies are clear and can be logically explained.

Grouping the components into layers gives additional meaning to their implementation. The
core components layer, provides generic interfaces for platform specific features. Since roughly
70 % of the used OS functions are in the POSIX standard and this is well supported by the target
and development OSs, using the POSIX standard as a basis was a good choice. The build system
enables the framework developer to specify different files if non conforming functionality is
required. No peculiar design patterns nor includes are necessary for this. The architecture

Control Engineering RJW Wilterdink

80 Design of a hard real-time, multi-threaded and CSP-capable execution framework

abstraction needed in the layer is limited to a few components and well documented, and also
managed by the build system.

Other components can make use of the core component’s interfaces to employ platform spe-
cific features without knowledge of the actual chosen platform. In this way a separation of con-
cerns is achieved, for example, the CSP execution engine only depends on generic interfaces
(like IThread) and therefore is able to run on any platform.

All functional requirements mentioned in the analysis chapter (3.2) have been met. To be spe-
cific, the framework is designed for hard real-time, with only a few well documented non real-
time functions. The requirements each component fulfills are given at the beginning of each
component’s subsection. The next chapter reflects on the requirements in detail.

The addition of UThreads has had a considerable impact on the design of the other compo-
nents. When inspecting their code it can be seen that the overhead inflicted by this is kept to a
minimum:

• Only a few extra IThread pointers are necessary for some generic interfaces, to provide
references to a particular UThread.

• The factory methods take care that the right OS thread or UThread implementation is
chosen at initialization. Thus, no run-time overhead is incurred due to the introduction
of multiple thread types.

• UThreads have great potential for small highly parallel threads, as is proven in the next
chapter.

Finally, the LUNA framework has a complete new design. Unlike the CT and C++CSP2 library,
the CSP implementation can be used multi-thread, hard real-time and with priorities. Further-
more, the separation of concerns between CSP and the Threading component enables new
research as the design can be extended easily with new ideas (see Chapter 7).

RJW Wilterdink University of Twente

81

6 Evaluation

This chapter gives a qualitative and quantitative evaluation on the LUNA framework design.

6.1 Qualitative evaluation

The quality of LUNA is reviewed by looking at the intended functional and non-functional re-
quirements from Chapter 3.

6.1.1 Functional requirements

All functional requirements, given in Section 3.2, have been met. Nonetheless, each require-
ment is discussed in detail.

6.1.1.1 Platform independence

The LUNA framework has been divided into three component layers (see Figure 5.1). The plat-
form abstraction ‘core’ layer takes care that any component build onto these components is
platform independent. The platform independence is managed by the build system which,
based on its configuration, selects the appropriate implementations for the target OS and ar-
chitecture for each component separately. So, the other two layers are platform independent.

Most component designs are based on the POSIX.1 standard, because most of these functions
are commonly available on the selected target and development OSs. The QNX OS, which was
chosen for the first target OS implementation, is certified POSIX conformant. Only the Timer,
UThreading and Utility components (respectively Sections 5.2.6, 5.2.11 and 5.2.5) required a
(partially) QNX specific implementation. Although it is not mandatory, some generic imple-
mentations should be revised for RTAI and Xenomai to take full advantage of their OS.

Concluding, LUNA’s first implementation is fairly platform independent due to its build system
and using functions in the POSIX.1 standard.

6.1.1.2 Real-time constraints

LUNA is designed for hard real-time, with a few documented non real-time functions (e.g. for
setup). Threads can have hard, soft and non real-time constraints, as explained next.

6.1.1.3 Thread support

The Threading component (Section 5.2.10) provides a generic thread interface and implements
this for OS threads. Two OS thread classes were designed to clearly differentiate between hard
and non real-time OS threads. On hard real-time OSs, like QNX, the real-time threads can be
divided in hard and soft real-time by properly distributing the thread priorities.

The UThreading component (Section 5.2.11) provides a many-to-one hybrid threading model,
whereby a set of user threads is run on one OS thread. User threads are lightweigth threads, can
have priorities and are ideal for small parallel tasks. The disadvantage is that a blocking system
call on a user thread blocks also all other user threads running on the same OS thread.

6.1.1.4 Priorities

Priorities can be assigned individually to OS and user threads. On real-time OSs higher priority
OS threads preempt lower priority OS threads and the highest priority OS thread is run first.

User thread priorities are local to the user thread set and the OS thread they are run on. The OS
decides which OS thread to run without considering the unknown user threads. User threads
are not preempted by the OS, but are scheduled locally on their priority as well.

Control Engineering RJW Wilterdink

82 Design of a hard real-time, multi-threaded and CSP-capable execution framework

6.1.1.5 Periodicity

Timers can be used to periodically execute non and hard real-time threads or implement de-
lays. For periodic timers a timer manager has been introduced. The manager can save scarce
OS resources, by combining multiple OS timers into one OS timer and multiple internal timers.
Additionally, its design enables application developers to specify in which order the timer
events should be handled, in contrast to multiple OS timers.

6.1.1.6 Communication

The Communication component (Section 5.2.4) provides rendezvous communication for OS
threads and processes. Real-time OSs schedule access to the rendezvous channel based on the
thread priority, such that higher priority waiting threads are given preference when trying to
acquire the communication channel.

The OS thread rendezvous communication is not suitable for user threads, since it uses a block-
ing system call. For CSP an any-to-any user and OS thread rendezvous channel was designed,
but it has not yet been ported to the general use case. This channel also schedules access based
on thread priorities.

6.1.1.7 Synchronization

The LockSync component (Section 5.2.3) provides synchronization primitives for OS threads.
The Barrier component (Section 5.3.1) specifies a barrier interface and implements this for OS
threads.

User threads do not require mutual exclusion primitives, as provided by the LockSync compo-
nent, if a smart design is employed. For thread execution synchronization, the barrier interface
is implemented in the UThreading component (Section 5.2.11) as a two-level barrier (Brown,
2007). First user threads are synchronized locally in their user thread set and then on a global
level. OS threads can also participate in the same algorithm and synchronize directly on the OS
thread level.

6.1.1.8 (Link) drivers

The Device-manager component (Section 5.3.6) can be used to maintain a globally unique and
accessible device driver instantiation per physical device and arrange shutdown of the device
when all threads are finished with it. The AnyIO component link-drivers use this and thereby
shows that LUNA is capable of interfacing with hardware.

6.1.1.9 External code and/or library integration

The build system (Section 5.1.3) enables the integration of external software blocks.

6.1.1.10 CSP execution support

The CSP language interpretation followed by the CT library (Orlic and Broenink, 2004) has been
fully implemented in LUNA, except watchdog processes, external channels and exceptions.

CSP processes can run on any LUNA thread type and a mixture of CSP processes running on
different thread types can work together. Because, the CSP language implementation is not
tightly integrated with the other LUNA components.

Since the QNX rendezvous implementation does not provide guarded channels (for the Alter-
native process) nor can communicate with user threads, the LUNA-U rendezvous channel is
implemented to achieve this.

At the moment, the CSP execution engine is the only implemented execution engine. But, due
to the component based approach other execution engines (like state machines) are also pos-
sible.

RJW Wilterdink University of Twente

CHAPTER 6. EVALUATION 83

6.1.1.11 Safety layer

LUNA provides a solution for inter-component safety management in the form of an emer-
gency manager (Section 5.2.9). This component will, when signaled of an emergency, call all
the registered safety functions to properly shutdown the application/device. This should, for
example, prevent the device from harming itself or its environment.

In the future, this component should be extended to ‘catch’ standard software failures, which
the application developer did not anticipate, and provide standard safety blocks, such as
blocked actuator detection algorithms.

The Anyio component also registers its device link-drivers with the emergency manager. This
shows that LUNA is capable of interfacing with hardware and with added safety, compared to
the other CSP libraries.

6.1.1.12 Debugging facilities

The standard available Debug component (Section 5.2.2) provides debugging, logging and trac-
ing functions for other components and application development. The debugging functions
can be enabled on request and when disabled they do not incur any overhead.

The real-time logger (Section 5.2.12) can send, among others, debug and trace information
over a (local) network to a development PC, in order to perform run-time analysis or to store
it for off-line analysis. The RTLogger can also be used to (a)periodically log integer or floating
point signals. The use of the RTLogger does not break real-time constraints, but does cost some
computation time to place the information in the appropriate buffers.

6.1.1.13 Self testing

The build system (Section 5.1.3) enables the self testing requirement and is discussed in Sec-
tion 6.1.6.

6.1.2 Non-functional requirements

The LUNA framework is designed according to the hard real-time programming rules stated in
Section 5.1.5. Non real-time functions have been documented in the LUNA API.

The design methodology to divide LUNA in multiple loosely coupled components makes it a
scalable framework for any kind of OS capable architecture. Components not required can be
disabled. Additionally, the abstraction in functional objects only adds a small overhead com-
pared to using the bare OS functions.

The interfaces designed for the LUNA components have been designed according to the (com-
prehensive) POSIX.1 standard and by investigating other frameworks. Therefore, the inter-
faces are closely related to knowledge most application and framework developers already have
about software engineering. Additionally, the framework components ease application devel-
opment by implementing tedious setup and other routines in default behavior.

Threads have a unified interface for hard real-time, non real-time and user threads. Fur-
thermore, the LockSync, Communication and Barrier components (respectively sections 5.2.3,
5.2.4 and 5.3.1) provide generic interfaces for various tasks.

LUNA has been carefully designed by investigating failures and shortcomings that are present
in the CT library and by following the latest programming techniques. Section 6.2 shows that
the new framework is also better than the current CT library from a quantitative point of view.

The LUNA framework has been tested with unit and integration tests, see Section 6.1.6.

Last, the new framework completely stands on its own, i.e. it is not dependent on any other
library/framework nor uses any strange features not commonly supported by compilers.

Control Engineering RJW Wilterdink

84 Design of a hard real-time, multi-threaded and CSP-capable execution framework

6.1.3 Main research question: Is QNX a valid choice to implement CSP based communicat-
ing threads?

The QNX OS is hard real-time, certified POSIX.1 conformant, runs on multiple architectures
(such as x86 and ARM) and provides an extensive development tool chain, which all are impor-
tant for the LUNA framework in general.

The provided rendezvous communication channels are partially suitable for the CSP imple-
mentation, since these support unbuffered, any-to-any and CSP similar rendezvous commu-
nication for OS threads. However, the following disadvantages are recognized:

• Channel guards, required for the Alternative CSP construct, are not supported.
• Buffered communication is not supported. This form of communication is one of the

possible solutions to prevent priority inversion by design, as opposed to the on-line and
dynamic problem solving implemented by a priority inheritance algorithm.

• The QNX rendezvous channel cannot be used on user threads, but these are necessary in
the current setting to achieve fast CSP implementations.

Thus, the choice for QNX as a first implementation is not obvious anymore, since its rendezvous
communication channels are not usable except in certain settings.

6.1.4 Minor question a: How should a platform independent framework be designed?

From the investigated frameworks and libraries it can be learned that a framework should be
separated in functional components, such that:

• A component’s name clearly specifies its purpose.
• Components can be build on top of each other. Low level components provide platform

abstraction and higher-level components can use this functionality platform indepen-
dently.

• In the OS abstraction case, OS functionality belonging to each other can be grouped. This
facilitates implementing the framework for multiple OSs.

• The framework becomes scalable, because components can be enabled/disabled on de-
mand.

Clear interfaces should be designed for platform independent classes, where platform depen-
dent classes must conform to.

Function skins (Section 4.8.3) can be used if OSs use different function names for similar be-
havior. A single function may also point to multiple functions, to form a kind of policy. Thus,
the function skins approach promotes code reuse.

All investigated frameworks and libraries use file overloading to some extend, i.e. to select the
appropriate OS specific implementation file. In the LUNA build system, the file overloading
concept is extended. The file overloading mechanism matches each file separately based on
the current platform configuration, whereby more specific matches get preference over generic
implementations. So, the build system selects the highly optimized implementation for a tar-
get when available, and otherwise uses the generic implementation. This is achieved without
macros in source nor header files, keeping the design clear for the developers.

For the OS abstraction components, clear definitions and groups can be deduced from the
POSIX.1 standard.

So, for LUNA, the build system together with the POSIX.1 standard and smart programming
techniques make it an efficient platform independent framework.

RJW Wilterdink University of Twente

CHAPTER 6. EVALUATION 85

6.1.5 Minor question b: How can the CSP execution engine be designed, such that the CSP
implementation is loosely coupled to the rest of the framework?

The CSP component is build on top of high-level and core components. These components
provide platform independent functionality via generic interfaces, which are used by the CSP
component. The following paragraphs try to make clear how this separation of concerns be-
tween CSP and the components it is build on has been achieved. The complete implementa-
tion has been discussed in detail in Section 5.4.

CSP processes implement the Runnable interface, such that they can be run on any thread
type asynchronously. The CSP construct functions are run synchronously, i.e. directly by the
invoking thread.

In the hard real-time LUNA setting the CSP processes and constructs are created beforehand
and then wait for activation. The waiting action is implemented by IThreadBlocker, which can
be used to block its own thread and thereafter any other type of thread can unblock the thread
again. Thus, CSP processes and constructs can be activated by any parent or sibling CSP pro-
cess or construct indifferent of their thread type.

The LUNA-U rendezvous channel also uses the IThreadBlocker. The CSP process arriving first
at the rendezvous channel, blocks itself on its IThreadBlocker. When the other side of the
channel arrives, it performs the data transfer and unblocks the earlier arrived process’ IThread-
Blocker. So, the particular thread types are not important for this mechanism as well.

The CSP component is loosely based on the Threading component, because all CSP constructs
and processes use only the IThreadBlocker concept to influence each others execution. The
other components used for the CSP implementation only provide a direct service, for instance
exclusive access to the rendezvous channel’s internal data structures.

6.1.6 Testing

LUNA is a component framework, its build system (Section 5.1.3) provides the ability to specify
per component multiple tests. Particular components and their tests can be enabled/disabled
on demand. In this sense the build system provides the ability to specify unit tests. Addition-
ally, components can contain integration tests. To facilitate this, test component dependencies
can be specified separately from the normal component dependencies inside a component
definition.

The build system does not discriminate between black-, grey- or white-box test methods. The
file overloading of the build system also works for tests, though slightly different. It is especially
handy for white-box testing, since component implementations might differ per platform.

Currently, all components contain at least one black-box unit test to check basic functionality
and some complex components have multiple grey-box unit tests to verify important details.
The exact tests can be found in each components’ test directory and are therefore not listed
here.

An integration test has been performed with the Jiwy setup, discussed in Section 6.2.2. This
extensively tested the CSP component and indirectly tested Communication, CSP, LockSync,
Threading, Timer, UThreading and Utility components. But, this test is not reproducible with-
out a similar setup.

In the future more software only tests should be added such that the LUNA framework can
easily be checked on defects, perhaps even on unofficially supported platforms.

Control Engineering RJW Wilterdink

86 Design of a hard real-time, multi-threaded and CSP-capable execution framework

6.2 Quantitative evaluation

This section gives quantitative results obtained by running tests on an actual setup. The setup’s
embedded computer is described in the introduction of Section ‘2. Results’ of the LUNA paper
in Appendix I.

6.2.1 CommsTime test results

The CommsTime test is used by the OCCAM community to measure the context switch and
communication time between CSP processes. The test is explained and a performance com-
parison between LUNA, the CT libraries and C++CSP2 is given in Section ‘2.2 Commstime
Benchmark’ of the LUNA paper in Appendix I.

To summarize, Table 2 in Appendix I compares optimized Commstime implementations and
shows that LUNA is at least twice as fast as the other three frameworks. Table 3 in Appendix I
compares Commstime implementations from simple code generation and shows that LUNA is
again at least twice as fast as the other frameworks.

6.2.2 Jiwy demo

The Jiwy setup (discussed in Appendix A) is used to test LUNA in a practical setting, control-
ling a real setup. The test is described in Section ‘2.3 Real Robotic Setup’ of the LUNA paper
(Section 5.4.1) and gives the performance evaluation, comparing LUNA with the CT library.

To summarize, Table 4 in Appendix I shows that LUNA is suitable for embedded hard real-time
applications. Furthermore, it shows that LUNA can handle non optimized frequencies better
than the CT library.

The CSP implementation has been successfully verified with the RTLogger, which has an option
to record CSP process execution while the CSP model is running and controlling a real setup.
Appendix H describes how such a verification can be performed.

RJW Wilterdink University of Twente

87

7 Conclusions & recommendations

7.1 Conclusions

The goal of this assignment was to design a new state of the art framework for platform inde-
pendent embedded control application development, whereby CSP-based execution support
should be available for optional use.

The new framework satisfies all functional and non-functional requirements, as shown in
Chapter 6. A few distinctive implemented features, compared to other frameworks, are high-
lighted. The framework is designed for hard real-time. Multi-threading enables new embedded
architectures with multiple cores/CPUs. The platform independence layer provides support for
multi-platform development and thereby the framework should be able to run on all setups in
our laboratory in the future. The optional CSP-based execution support makes that the frame-
work is also usable in non Add "CSP" to dictionary related contexts.

Reflecting on the initial assumptions, the choice for QNX is not that obvious anymore, since
the provided rendezvous channels are only usable between OS threads for non guarded and
unbuffered communication. Nonetheless, QNX provides a good platform to build a real-time
framework, there is enough support from the OS to keep implementation tasks maintainable.

Platform independence is achieved by the combination of a new build system, analysis and de-
sign. The build system provides OS, architecture and component configuration options. Based
on these settings advanced file overloading mechanisms are applied to select the right imple-
mentation. The use of macros is kept to a minimum with this approach, preventing messy code
constructions.

Analysis of state of the art frameworks and libraries has shown that clear interfaces, file over-
loading and function skins are preferable. LUNA uses these features as well. However, the
LUNA build system file overloading is more advanced.

Furthermore, analysis of target and development OSs has shown that the POSIX.1 OS standard
is available on most platforms by default and thereby a lot of common functionality is sup-
ported on all of them. Therefore, it is believed that implementing the other target OSs is not
too much work.

Combining both the build system and analysis into the design, resulted in platform indepen-
dence and code reuse where possible.

The framework implements standard OS threads and a many-to-one user threading model.
The user threads are ideal for small highly parallel tasks which do not require frequent interac-
tion with the OS. The OS threads make that multi-core/CPU architectures can be fully exploited
now.

The CSP-based execution support uses generic concepts provided by high-level and core layer
components, and thereby is loosely coupled to these. The core layer makes the CSP component
also platform independent. Other execution engines, for instance a state machine execution
engine, can also be implemented like this.

CSP processes can have priorities assigned, which are administered to threads and are uphold
during rendezvous communication. The CSP processes in a model can be deployed on a mix-
ture of OS threads and user threads, and still work together. The supplied factories and helper
functions make that the application developer can easily distribute these processes differently,
without changing its codes.

Control Engineering RJW Wilterdink

88 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Besides standard debugging and tracing support, a real-time logger is available. This real-time
logger can be used to (a)periodically send control signals or debug and trace information over a
(local) network to a development PC, in order to have run-time analysis or to store it for off-line
analysis.

The real-time logger does not influence the executing application noticeable as it is designed
for mixed real-time constraints. It has predefined buffers to store the debug information and
only when there is idle CPU time available, it sends the buffered content over the network free-
ing up the buffer for new data. Though, data may be lost, when the logger is not able to transfer
the buffers rapidly enough and a buffer overflow occurs.

Especially logging the activation of processes is interesting, as this could provide valuable tim-
ing information, like the cycle time of a control loop or the jitter during execution. So it is
possible to influence the application with external events and directly see the results of such
actions. It is also possible to follow the execution of the application by monitoring the states
(running, ready, blocked, finished) of the processes. This information could also be fed back to
a graphical modelling tool, in order to show these states in the designed model of the applica-
tion.

The quantitative evaluation for a simple robotic setup (Section 6.2) shows that the new CSP
design is more efficient and faster than the CT library.

7.2 Recommendations

To prove that the component designs are truly platform independent, not just theoretically,
implement other target and development OSs as well. Furthermore, an OS-less architecture,
like a NXP mbed, is also interesting.

To properly specify and handle expected faults, CSP exceptions and channel poisoning should
be implemented. The CSP implementation is complete for the normal execution flow of CSP
models.

The LUNA-U rendezvous channels, specifically designed for CSP, should be ported to the gen-
eral user thread use case. Because, these are currently the only implemented user thread capa-
ble rendezvous channels.

More (corner) applications should be (re)developed with LUNA to check LUNA’s performance
and usability for a wider application range. Since only one corner application was used in this
thesis to determine LUNA’s efficiency and performance.

Create or modify a (graphical) modelling tool to implement LUNA code generation. Building
the application for the simple robotic setup took some time. There are only about 51 processes
to control this setup. Of course this could be less, but it already takes too much time to develop
controller applications like this by hand, so code generation for LUNA is required. Further-
more, code generation is also required in order to attract users to start using LUNA, also for
educational purposes.

Enhance the Matlab scripts discussed in Appendix H for better visualization. Tracing a CSP
model execution with the real-time logger is useful to determine if it works correctly and where
the model perhaps went wrong. But, (periodically) running embedded control applications
generate a lot of data very quickly. To create better insight, the Matlab scripts should be ex-
tended, for instance to show only differing CSP execution traces.

Extend the framework’s emergency manager to identify non-anticipated emergencies (e.g.
ctrl+c), by the application developer, and deal with them accordingly. Furthermore, provide
some good practices and their implementations. For instance, an algorithm to detect blocked
actuators.

RJW Wilterdink University of Twente

CHAPTER 7. CONCLUSIONS & RECOMMENDATIONS 89

Implement a solution to handle blocking system calls from real-time user threads, since these
cannot handle system calls themselves. For the combination of CSP and user threads this was
not a problem, since CSP processes running on different thread types can work together. When-
ever a CSP process requires a system call, it is simply placed on a OS thread itself and no buddy
process is required. For other OSs, for instance RTAI with Linux, this might be problematic,
since non real-time Linux threads are not equal to real-time RTAI threads. Furthermore, the
problem is only solved for CSP. So, for user threads in general, a new solution should be im-
plemented. For example, by letting a buddy thread, from the thread pool, perform the system
call.

Control Engineering RJW Wilterdink

91

A Appendix - Domain analysis

The domain analysis has been performed with four corner applications, selected from our lab-
oratory. First, each setup will be described in short to give the reader a broad idea of its purpose.
Then the characteristics will be presented, with the interesting features highlighted. Note, this
text is not intended to give a full description nor present the software solution of these setups,
for this the reader is encouraged to consult the various references in the respective descriptions.

The results of the domain analysis are used in Chapter 3 to determine the requirements and
anticipated problems of the new framework.

The discussed Jiwy setup next is used during software development and for evaluation pur-
poses (Chapter 6) and as a first demonstrator for LUNA.

A.1 Jiwy

Jiwy is a mechatronic setup for holding a camera. The construction contains two joints that al-
low the camera to rotate on a horizontal axis and a vertical axis. The maximum swing is limited
by mechanical end stops. These prevent full swings so that the wires cannot be twisted or dam-
aged. Each joint is equipped with one DC motor and one incremental encoder. The mechani-
cal setup is connected to a PC-104 embedded PC with an Anything I/O card (Appendix G), see
Figure A.1. In the standard configuration, before LUNA, the stack has the Linux OS with RTAI
installed. This setup has had multiple realisations over the years, among others, an ADSP and
gCSP model implementation were used. The latter will be discussed for the domain analysis,
but the design process itself is not part of the discussion.

Figure A.1: Jiwy gCSP model

The gCSP model is shown in Figure A.2. Three main processes and multiple smaller read-
er/writer processes are shown. The Pan and Tilt processes generate the control signals for the
separate degrees of freedom of the platform. The external readers and writers (in blue) inter-
face with the environment, i.e. these are the device driver interfaces. The SanityCheck process
checks the generated control values from the Tilt and Pan processes before passing them to
the motor device drivers. The SanityCheck is therefore considered to be the safety layer of the
setup. The required periodic repetition of all processes and setup calibration are not shown.

Control Engineering RJW Wilterdink

92 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Figure A.2: Jiwy gCSP model

A.1.1 Characteristics

The system software has been designed in a CSP model with multiple concurrent processes
and rendezvous communication. The execution flow is dynamically determined and managed
by a CSP scheduler, which will take care that only (sub)processes with all their (execution and
communication) dependencies fulfilled will be executed.

The implementation requires hard real-time constraints for the PID controllers inside the Pan
and Tilt processes (hence the RTAI operating system). These controllers were designed with
20-sim and its, so called, 4C extension is used to generate C++ code for the controller imple-
mentation. This externally generated code has been plugged, without modification, into the
model. The strict periodic timing required for the controllers is implemented by a periodic
timer channel which synchronizes the (untimed) CSP model to a real-time clock by influenc-
ing the execution flow in the model.

To prevent harmful behavior a safety layer has been added. Furthermore link/device drivers
have been developed which are suitable for hard real-time processes. The strict separation
between readers and writers in gCSP models might introduce problems when device drivers
are instantiated more than once.

A.2 Production Cell

The production cell setup designed by Berg, van den (2006) is a mock-up of an industrial pro-
duction line system (in this case a plastics moulding machine). This particular production cell
setup is a circular system that consists of 6 production cells that operate simultaneously and
semi-independently, see Figure A.3(a). Each of these cells, called Production Cell Units (PCUs),
executes a single action in the production process. Furthermore, the intermittent product
transfer between PCUs may be organized decentralized, i.e. in the PCUs themselves. Hence,
this particular setup is appropriate to investigate the specific implementation needs for dis-
tributed control using a framework.

RJW Wilterdink University of Twente

APPENDIX A. APPENDIX - DOMAIN ANALYSIS 93

Figure A.3: Production cell setup overview (a) and top-level design (b)

In the master thesis of Zuijlen, van (2008) a general design for a distributed control structure
is proposed, which will be discussed for the purpose of this domain analysis. Although the
particular implementation is for a FPGA-based solution it is believed to be generally applicable
for distributed control.

The top level design is shown in Figure A.3(b). This design is based on the preferred operating
direction: feeder belt > feeder > molder-door > extractor > extraction belt > rotation robot >
feeder belt. During normal communication and when a failure occurs the PCUs only need to
communicate with their direct neighbors. The former mostly signals succeeding PCUs that
its operation finished and therefore they should expect an input to their PCU. For the latter
for instance, when the feeder is stuck the molder-door should be opened and the feeder belt
should be halted in order to prevent cascading failures. The top level design thus couples the
PCUs together and specifies their communication interfaces.

In order for the distributed PCUs to operate independently, a single PCU should maintain its
own operating state, implement a stand alone controller and perform some checks to deter-
mine its operating health and prevent hazardous conditions. The proposed generic model for
all PCUs is shown in Figure A.4, which also includes a user interface and low-level hardware
interfaces.

A.2.1 Characteristics

This particular implementation of the production cell employs a distributed control structure
with a fixed repeated (software) pattern. The distributed PCUs should be able to run in differ-
ent threads, operating system processes or on another embedded platform. This means that
a flexible connector pattern is required, with preferably one communication interface to en-
able seamless integration. Furthermore, some sort of remote link driver is required for spatial
distributed PCUs.

The PCU design has a controller, command and safety block. A highly reactive implementa-
tion of the PCU requires multiple threads with different real-time constraints for one PCU.
The controller will require hard real-time periodic behavior and therefore the safety block as
well. But, the command block might only require soft real-time behavior and furthermore the
user interface might even be non real-time. The soft and non real-time blocks should be able
to communicate with the hard real-time blocks without breaking its constraints.

The controller implementation might be different for each PCU, where for some only the
parameters differ and for others the complete implementation. Furthermore, the PCU might
switch the controller implementation during runtime.

Control Engineering RJW Wilterdink

94 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Figure A.4: Production Cell - Generic PCU design (Groothuis et al. (2008))

The complete communication (inter PCU, sensor inputs and actuator outputs) is routed
through the safety block. The number of elements and the type of the communication vec-
tor might be different per controller, because for example the state vector is different per me-
chanical system controlled by a PCU. Furthermore, the safety block internally keeps a record of
its own and neighbouring PCU states. For more sophisticated designs a state machine might
be required.

For the production cell management an user interface is present which sends its commands
to the command block, e.g. to start the production line. The production cell also requires low-
level hardware interfaces.

A.3 Humanoid Head

The humanoid head (Visser (2008), Reilink (2008) and Bennik (2008)) consists of a neck with
four degrees of freedom and two eyes (a stereo pair system) with one common and one inde-
pendent degree of freedom. The mechanical design of the humanoid head is shown in Fig-
ure A.5(a). The intention of the project was to allow the head to focus on and follow a target,
showing human like behavior.

A.3.1 Characteristics

The humanoid head consists of a separate vision processing and motion control algorithm.
The vision processing is implemented on a non real-time PC and the motion control on a hard
real-time embedded platform. The algorithms communicate through a link driver with non-
blocking I/O, which therefore does not break the real-time constraints of the motion control
algorithm.

The following text only discusses the proposed new software architecture.

The software implementation employs a layered structure. Top-down, see Figure A.5(b), these
require different task frequencies, 60 Hz for the motion control algorithm and 1kHz for the PID
loops, and real-time constraints. The layered structure uses a fixed software pattern, which
facilitates development and enables multiple different behavioral implementations for com-
ponents.

RJW Wilterdink University of Twente

APPENDIX A. APPENDIX - DOMAIN ANALYSIS 95

Figure A.5: Humanoid head - mechanical overview (a) and software design (b)

The motion control algorithm performs a considerate number of matrix operations to deter-
mine the set-points for the PID controllers. These matrix operations are implemented by an
external library, the GNU Scientific Library.

The PID controller implementations are the same for all actuators, but differ in the parame-
ters. The PID outputs flow through a separate safety layer (the software HW interface), which
should prevent hazardous operation of the hardware interface. This hardware interface con-
sists of a FPGA based PC/104+ Anything I/O card.

The embedded platform software will be implemented using a stepwise implementation and
testing strategy. First only the motion control algorithm will be implemented whereby simu-
lated target positions and low-level signals will be used to test the system. The actuator and
sensor values will need to be re-routed to the simulation environment, which simulates the
physical effects of the actuators and writes the resulting virtual sensors values back to the em-
bedded platform. Because the simulations steps probably will be slow a virtual real-time clock
will be needed, which only progresses time when simulation values are received.

A.4 TUlip

The TUlip soccer robot is a project of three technical universities in the Netherlands (3TU) to
compete in the Robocup robot soccer tournament RoboCup (2011). The robot is teen size in
height and has 14 actuated and 2 passive degrees of freedom. Each leg has 6 degrees of freedom,
which allow the robot to move in a human like way. The mechanical configuration is designed
for dynamical walking, i.e., it is unstable and should continuously have stabilizing control.

TUlip should be able to walk dynamically and kick the ball while maintaining its balance, pro-
cess human-like sensor information, make tactical decisions and communicate among others.
The information about the environment is acquired by sensors, such as:

• Pressure sensors in both feet
• Acceleration sensors
• Vision system

All functions are performed autonomously on the embedded platform in the robot, a PC/104
stack. The software design discussed in this domain analysis has been created by Lootsma
(2008).

Control Engineering RJW Wilterdink

96 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Figure A.6: TUlip - robot (a) and software design (b)

A.4.1 Characteristics

The TUlip software implementation has been split in multiple loosely coupled modules, see
Figure A.6(b). These modules are distributed over multiple layers, with different real-time
constraints. The real-time constraints range from non to hard real-time. Furthermore, the
modules exchange data between each other, which might include inter real-time communi-
cation due to modules being in different layers.

The World modelling module, among others, requires a lot of matrix manipulations, which
are provided by an external library. The Joint controller module manages the controllers for
the joints. These controllers have a unified interface, which might have different implemen-
tations or parameters, and furthermore the module supports online replacement of the con-
trollers depending on the requested behavior. All actuator signals pass through the safety
module for inspection, because it is the last in line to prevent the robot from damaging itself or
the environment.

The robot communicates through a link driver with the non real-time human-machine inter-
face running on an external computer. This interface can also show some preselected internal
variable contents, e.g. the current world model.

The TUlip software has been tested on a Model-In-the-Loop (MIL) set-up. In order to perform
these tests the software had to communicate with the simulation environment of 20-sim, i.e.
reroute its sensor and actuator signals. The simulation steps were time consuming and there-
fore the TUlip software also required a virtual real-time clock to perform these tests.

RJW Wilterdink University of Twente

97

B Appendix - C++ language exceptions

Exceptions are part of the C++ language definition and provide a way to react to exceptional
circumstances (like run-time errors) in a program by transferring control to special functions,
called handlers. For non real-time applications this method is generally accepted and widely
used. On the other hand, for real-time applications the run-time exception implementation
might pose some problems and this will be investigated in detail next.� �
using namespace std ;
class Object ;

int main () {
try
{

Object a ;
throw 20;
Object b ;

}
catch (int e)
{

/ / handle exception
}
return 0 ;

}� �
Listing B.1: C++ exception sample code

To illustrate the following discussion an example code is given in Listing B.1. When an excep-
tion is detected or thrown inside a try-block, the program execution is redirected to the excep-
tion handler, i.e. catch-block, that matches and handles the exception. So, when thr ow 20 is
executed the program will jump to the catch(i nt e) line to handle the generated exception.
Multiple catch-blocks might be specified for a single try-block and try-catch blocks may be
nested. Thus, an exception might traverse from a deeply nested code to the main exception
handler. Or, when no exception handler has been specified it will not be caught at all, resulting
in a run-time exception which will halt the entire program.

Besides redirecting execution flow, when an exception is detected, the C++ run-time must also
cleanup any local variables that were created and pushed onto the program stack. Because
exceptions might occur anywhere during program execution the C++ language run-time must
somehow keep a list of created local variables. Very specifically, the run-time must perform the
correct number of stack unwounds. So, when thr ow 20 is executed the run-time must only
clean object a, otherwise another exception might be created in the form of a null-pointer for
object b.

A side effect, due to exception (handling) semantics, is that the exception must first be resolved
before the thread/program may continue. So, when exception handlers take a long time to re-
solve the exception at hand the rest of the thread/program cannot continue. Whenever there is
a dependency between threads this might result in catastrophic consequences as the complete
program may be stalled.

Control Engineering RJW Wilterdink

98 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Unfortunately, the C++ standard does not specify how exceptions should be implemented nor
a lower bound for performance. Different compiler vendors can therefore choose to imple-
ment it differently, which might cause C++ code compiled with different compilers to behave
differently (Meyers, 2005a).

Discussion
The need for a mechanism to handle exceptional cases is clear. However, C++ language ex-
ceptions do not seem the proper solution. First, exceptional handling is not deterministic in
time, because exceptions can be caught and emitted anywhere in the program and must then
traverse to a handler somewhere up in the source tree. Additionally, clean up has to be done,
depending on the state of the program, which again is not deterministic. Secondly, because
exceptions might traverse outside the control/sequence loop as a handler is sought, they are
considered unsafe if not handled properly. Last, the nature of exception handling might break
real-time constraints due to handling the exception before any other code can progress.

An alternative is to program by specification. The documentation of the functions specifies
what meaning the return values have. So, return values can be used to indicate if (and what
kind of) a failure occurred. This also has its downsides. First, code specification is an elaborate
task and faults might be made. Secondly, the executable size will grow due to its increased code
size. To clarify, the paths the computer should take through the code have been programmed
explicitly and therefore must be included into the compiled program. Whereas for exceptions
this was handled dynamically by the C++ run-time engine. But, the biggest advantage over C++
exceptions is that they can be programmed deterministically.

Thus for real-time applications, which require deterministic timing, the use of C++ language
exceptions is not a good idea and the new framework will therefore only use programming by
specification. Perhaps, one would consider supporting both C++ exceptions and the latter as
an option. But from a practical perspective this is not possible without using macros and other
tricks extensively and therefore not further considered.

RJW Wilterdink University of Twente

99

C Appendix - Atomic component

The Atomic framework component currently provides only an atomic integer, with a few differ-
ent set and test operations. The atomicity discussed in this text is targeted at a multi-threaded
and multi-core environment.

The implementation of an atomic type has three major (intertwined) restrictions:
A Ordered atomics - The order of atomic writes (and reads) will in most cases define the

semantics of the program, but the compiler (and processor) cannot easily deduce this
from the code.

B Semantic-free variables for "unusual" memory semantics - Although variables may be
of a certain type, they need not act like them. Furthermore, their value might be updated
from an arbitrary position in the code (e.g. due to an interrupt the main()-method variable
error might be set), therefore the processor architecture should take care that values are
not cached (at least not such that multiple versions exist in the system).

C Unoptimizable variables and (not) optimization - In ordinary code reads (and some-
times writes) may be moved due to optimization. Due to A) and B) the program might
loose its semantics because of this, therefore this should be prohibited. For example, in
a while(condition) reading a ’condition’ variable, might be moved out of the loop and re-
placed by a while(true) for optimization.

For a complete explanation, see Sutter (2009).

Thus, compiler and architecture support is needed to guarantee the above restrictions. Cur-
rently, the C++0x specification is being finalized, but no compilers fully support the proposed
atomic<T> template yet.

A few alternatives can be thought of:
1. Volatile inline assembly instruction insertion - with the proper settings it can achieve

atomicity.
2. GCC intrinsics - actually the same as the above option, but platform independent is ar-

ranged by the compiler.
3. Locks - using OS locks the atomic updates of variables can be guaranteed. Though, under

water the OS uses similar instructions as mentioned above.
So, except for the lock based alternative, it is impossible to implement an atomic variable that
is larger than the maximum instruction data size. For instance, on a 32-bit platform atmost a
64-bit variable can be created. Therefore, it was chosen to only implement an atomic integer
for LUNA.

For the current Atomi cInt all three alternatives have been implemented and tested:
1. Uses the same asm code as other projects (e.g. OROCOS and openpa).
2. Translated the assembly code (from 1) into similar GCC intrinsics. The GCC intrinsics as-

sembler is not the same as the original assembly, but using an object dump it was proved
to be a correct implementation.

3. OSMutex based locked version of the assembly code, which is much slower than the other
alternatives.

Control Engineering RJW Wilterdink

100 Design of a hard real-time, multi-threaded and CSP-capable execution framework

D Appendix - Timers and counters

Table D.1 provides an overview of currently available timers and counters on most PC architec-
tures.

D.1 Time Stamp Counter

Since the Time Stamp Counter (TSC) is applied in Section 5.3.5 a few technical side notes on
the use of the TSC are appropriate.

The TSC is a 64-bit register which counts the number of processor clock ticks since reset. Since
it uses the processor clock rate directly it is an excellent high-resolution and low-overhead way
of measuring computation time. However, it potentially has issues, which will be discussed
next.

The assembler instruction RDT SC reads the TSC. With the advent of multi-core/hyper-
threaded CPUs, systems with multiple CPUs, ‘hibernating’ operating systems and frequency
scaling, the TSC cannot be relied on to provide accurate results without special considerations.
Firstly, the counters of multiple CPU cores might not be synchronised correctly. Secondly, the
CPU speed may change due to power-saving measures taken by the OS or BIOS. Recent pro-
cessors (P4+) fix this by using a constant rate TSC. Thirdly, starting with the Pentium Pro, Intel
processors have supported out-of-order execution. Instructions are not necessarily performed
in the order they appear in the executable. These reasons can cause RDTSC instruction to be
executed earlier or later than expected, producing a misleading cycle count.

These problems can be solved by executing a serializing instruction, such as CPUID. The seri-
alizing instruction will force every preceding instruction to complete before allowing the pro-
gram to continue. Newer hardware architectures (Core i7+) include the RDTSCP instruction,
which is a serializing variant of the RDTSC instruction.

RJW Wilterdink University of Twente

APPENDIX D. APPENDIX - TIMERS AND COUNTERS 101

N
am

e
Fe

at
u

re
s

Su
p

p
o

rt
ed

ar
ch

it
ec

-
tu

re
s

Fr
eq

u
en

cy
C

o
u

n
te

r
b

it
w

id
th

O
p

er
at

in
g

ch
ar

ac
te

ri
st

ic
s

P
ro

gr
am

m
ab

le
In

te
rv

al
T

im
er

(P
IT

)
-

82
53

/8
25

4
T

im
er

s
an

d
co

u
n

te
r

IB
M

P
C

co
m

p
at

ib
le

s,
b

u
tm

ay
b

e
in

te
gr

at
ed

w
it

h
A

P
IC

.

1.
19

31
82

M
H

z
16

b
it

s
3

T
im

er
s;

ti
m

er
0

(I
R

Q
0)

is
ty

p
ic

al
ly

ru
n

n
in

g
o

n
18

H
z

R
ea

lT
im

e
C

lo
ck

(R
T

C
)

T
im

er
o

n
ly

IB
M

P
C

co
m

p
at

ib
le

s
O

p
er

at
in

g
fr

e-
q

u
en

ci
es

b
et

w
ee

n
2

-
81

92
H

z
(p

ow
er

o
f2

)

-
U

p
d

at
e/

p
er

io
d

ic
/a

la
rm

fu
n

ct
io

n
al

it
y

(o
n

IR
Q

8)

H
ig

h
P

re
ci

si
o

n
E

ve
n

t
T

im
er

(H
P

E
T

)
T

im
er

s
an

d
co

u
n

te
r

In
co

rp
o

ra
te

d
in

P
C

ch
ip

se
ts

si
n

ce
ci

rc
a

20
05

10
M

H
z+

64
b

it
s

3x
64

b
it

s
+

29
x

32
b

it
s

co
m

-
p

ar
at

o
rs

p
er

H
P

E
T

ch
ip

(L
o

ca
l)

A
d

va
n

ce
d

P
ro

-
gr

am
m

ab
le

In
te

rr
u

p
t

C
o

n
-

tr
o

lle
rs

(A
P

IC
)

Pe
r

C
P

U
ti

m
er

P
en

ti
u

m
P

ro
+

O
p

er
at

in
g

fr
e-

q
u

en
ci

es
b

et
w

ee
n

1
H

z
-

sy
st

em
b

u
s

fr
eq

u
en

cy

-
22

4
in

te
rr

u
p

tv
ec

to
rs

T
im

e
St

am
p

C
o

u
n

te
r

(T
SC

)
C

o
u

n
te

r
o

n
ly

P
en

ti
u

m
+

C
o

u
n

ti
n

g
o

n
th

e
p

ro
ce

ss
o

r
fr

e-
q

u
en

cy

64
b

it
s

Se
e

Se
ct

io
n

D
.1

.

Ta
b

le
D

.1
:T

im
er

s
an

d
co

u
n

te
rs

co
m

m
o

n
ly

av
ai

la
b

le
o

n
m

u
st

P
C

ar
ch

it
ec

tu
re

s

Control Engineering RJW Wilterdink

102 Design of a hard real-time, multi-threaded and CSP-capable execution framework

E Appendix - Threading use cases

The example given in Listing E.1 shows the specification of a periodic real-time OS thread and
an aperiodic non real-time OS thread. Note how easy both thread types can be used next to
each other in LUNA. Listing E.2 provides an example for the implementation of a Runnable with
an IThreadBlocker. If no thread blocker can be created the emergency-manager component
will shut down the application before any harm can be done.� �
#include "OSThread . h"
#include "RTOSThread . h"

using namespace LUNA: : Threading ;

void main(void)
{

/ / Create the Runnable
Runnable* rt_example = new Example1 () ;

/ / Take the RT OSThread default a t t r i b u t e s
Thread_attr r t _ a t t r = RTOSThread_defaults ;

/ / Set a 1 millisecond period f o r 1 kHz
r t _ a t t r . period . seconds = 0 ;
r t _ a t t r . period . nanoseconds = 1000000;

/ / I n s t a n t i a t e the periodic RTOSThread
IThread * rt_thread = new RTOSThread(rt_example , r t _ a t t r) ;

/ / Create the Runnable
Runnable* nrt_example = new Example1 () ;

/ / I n s t a n t i a t e the OSThread
IThread * nrt_thread = new OSThread (nrt_example) ; / / Will take the

default OSThread a t t r i b u t e s

/ / S t a r t both threads
rt_thread−>s t a r t () ;
nrt_thread−>s t a r t () ;
/ / Both threads w i l l run now.

/ / Wait f o r both threads to f i n i s h .
rt_thread−>join (NULL) ;
nrt_thread−>join (NULL) ;

}� �
Listing E.1: Specification of a periodic real-time OS thread and an aperiodic non real-time OS thread

RJW Wilterdink University of Twente

APPENDIX E. APPENDIX - THREADING USE CASES 103

� �
#include "Runnable . h"
#include " IThreadBlocker . h"
#include " ThreadBlockerFactory . h"
#include "EmergencyManager . h"

using namespace LUNA: : Threading ;
using namespace LUNA;

class Example1 : public Runnable
{

public :
Example1 ()
{

/ / The backing thread type i s s t i l l unknown, so the IThreadBlocker
cannot be instantiated here .

}

/ / Inherited from Runnable
void preRun ()
{

/ / Create the IThreadBlocker belonging to the current thread type .
m_activate = ThreadBlockerFactory : : Instance ()−>CreateObject (this−>

getThreadType ()) ;

/ / I f i t could not be created => emergency shutdown !
i f (m_activate == NULL)
{

log (LOG_ERROR, " ThreadBlocker factory f a i l e d . \ n") ;
EmergencyManager : : Instance ()−>emergencyShutdown () ;

}
}

/ / Mandatory inherited function from Runnable
void * run ()
{

/ / Do example things .
}

/ / Inherited from Runnable
void postRun ()
{

/ / Cleanup the created IThreadBlocker
delete m_activate ;

}

private :
IThreadBlocker * m_activate ;

} ;� �
Listing E.2: Runnable implementation with an IThreadBlocker

Control Engineering RJW Wilterdink

104 Design of a hard real-time, multi-threaded and CSP-capable execution framework

F Appendix - CSP Threading use case

This example shows that CSP processes can easily be distributed over different thread types.
The compositional CSP tree belonging to the sample code is shown in Figure F.1.

Figure F.1: Example gCSP compositional tree for LUNA deployment

The hypothetical target has two cores available and therefore it is desirable to run Process1 and
Process2 fully in parallel. The code to achieve this is shown in Listing F.1. A few improvements
can still be made, for instance, it would be beneficial to be able to search for a specific CSP
process by name in the full (Model) tree. Currently a pointer is required (e.g. process1 in the
sample code) to collect the UThread set.

RJW Wilterdink University of Twente

APPENDIX F. APPENDIX - CSP THREADING USE CASE 105

� �
#include "Model . h"

void main(void)
{

/ / Create the Model
. . .
CSPConstruct * process1 = new Process1 (. . .) ;
CSPConstruct * process2 = new Process2 (. . .) ;
Model* model = new Model(new P a r a l l e l (p1 , p2 , NULL)) ;

/ / print the CSP t r e e f o r inspection
printCSPTree (thread1) ;

/ / C o l l e c t a l l CSP constructs and f i l t e r f o r the true CSP
processes , s ince only these need threads

Set <CSProcess*> f u l l 1 = f i l terCSProcesses (col lectValues (
TreeNode<CSPConstruct * > : : d e p t h _ f i r s t _ i t e r a t o r (model))) ;

/ / C o l l e c t a l l CSP proc esse s f o r the f i r s t thread
Set <CSProcess*> thread1 = f i l terCSProcesses (col lectValues (

TreeNode<CSPConstruct * > : : d e p t h _ f i r s t _ i t e r a t o r (process1))) ;

/ / Create the s e t of UThreads f o r the second thread
Set <CSProcess*> thread2 = f u l l 1 − thread1 ;

/ / Create both UThreadContainers
UThreadContainer * thread_container1 ;
createThreads(&thread1 , &thread_container1) ;
UThreadContainer * thread_container2 ;
createThreads(&thread2 , &thread_container2) ;

/ / Put both containers into a s e t
Set <LUNA: : Runnable*> os_runn (2 , thread_container1 ,

thread_container2) ;

/ / Create the OSThread o b j e c t s
Set <OSThread*> os_threads (2) ;
createThreads(&os_runn , &os_threads) ;

/ / S t a r t the threads
startThreads (&os_threads) ;

/ / Wait f o r the threads to f inish , which in t h i s case w i l l be
never .

joinThreads(&os_threads) ;
}� �

Listing F.1: LUNA deployment belonging to Figure F.1

Control Engineering RJW Wilterdink

106 Design of a hard real-time, multi-threaded and CSP-capable execution framework

G Appendix - QNX AnyIO driver

The Mesa electronics Anything I/O card (Mesa electronics, 2011) is build around a FPGA. The
FPGA can be programmed for different purposes giving it a true Anything I/O nature. There are
three different versions of the card all being used at the Control engineering laboratory, namely
the Anything I/O 4I65, 4I68 and 5I20.

The current Anything I/O board driver has been developed in stages by various students:
Groothuis (2004); Buit (2005); Molanus (2007). In Molanus (2008) the first QNX driver was writ-
ten, unfortunately he did not implement this as a standalone driver.

During this thesis project the driver was rebuild by reusing certain parts of the first QNX driver,
the Linux driver and following the QNX philosophy. The QNX resource managers (QNX, 2010),
commonly known as drivers, do not require any special arrangements with the kernel and
therefore the Linux driver must be changed accordingly. The resulting code has been merged
with existing AnyIO code in the CE svn repository.

The standalone driver can now program the FPGA, erase it and read/write the FPGA register-
s/memory via direct or memory mapped IO.

RJW Wilterdink University of Twente

107

H Appendix - RTLogger examples

Section 5.2.12 describes the RTLogger component design in LUNA. Section H.1 explains how
to record information with this component. Visualizing CSP trace information is discussed in
Section H.2 and visualization signals with 20-sim is shown in Section H.3.

H.1 Recording RTLogger information

The RTLogger component is enabled via make menuconfig (Debug->RTLogger). In the config-
uration the fixed and variable buffer sizes, transfer ratio variable/fixed buffer and the optional
ring buffer behavior can be adjusted. These options and the available computing resources de-
termine if and when data is transferred. This should be kept in mind for the 20-sim visualiza-
tion especially, since the transfer may lag behind or show nothing at all if computing resources
are scarce.

Note, the RTLogger and recorder are designed as a proof of concept.

H.1.1 Application side

The script in Listing H.1 can be used to start and stop the RTLogger in a (real-time) application.� �
#include "RTLogger . h"

/ / F i r s t argument i s hostname , Second i s the port
int main(int argc , char * argv [])
{

using namespace LUNA: : Logger ;

bool using_remote_logging = f a l s e ;

/ / I f the argument count i s incorrect , abort .
i f (argc ! = 3 && argc ! = 1)
{

log (LOG_ERROR, " Please use %s <hostname> <port >\n" , argv [0]) ;
return 0 ;

}
else
{

/ / I f a hostname + port i s s p e c i f i e d => s t a r t the remote logger .
i f (argc == 3)
{

l o g _ l o c a l (LUNA: : LOG_INFO, "Using RTLogger . \ n") ;
using_remote_logging = true ;
i f (!STARTREMOTELOGGER(argv [1] , ato i (argv [2]) , f a l s e))
{

l o g _ l o c a l (LUNA: : LOG_ERROR, "Could not s t a r t the remote logger . \ n"
) ;

e x i t (EXIT_FAILURE) ;
}

}
/ / Sink the data , without t r a n s f e r r i n g or showing i t .
else
{

Control Engineering RJW Wilterdink

108 Design of a hard real-time, multi-threaded and CSP-capable execution framework

l o g _ l o c a l (LUNA: : LOG_INFO, "No address + port specif ied , using l o c a l
logger . \ n") ;

}
}

/ / Do things

i f (using_remote_logging)
{

STOPREMOTELOGGER() ;
}

}� �
Listing H.1: RTLogger start and shutdown example code

H.1.2 Recorder side

The recorder is a console application and it will show any incoming log messages on the con-
sole. Signal values are saved in a trace file with CSV format.

Type the following command on the console in Linux to start the recorder:
RTLOGGER Server <TRACE CSV FILE> <TRACE LOG FILE> <PORT>

H.2 Visualizing CSP traces

The RTLogger component (Section 5.2.12) has an option to record CSP process execution while
the CSP model is controlling a real setup, generating a so called trace. However, correct traces
are only generated for CSP models realized with less or equal OS threads than cores/CPUs (Sec-
tion 5.2.12).

The CSP constructs (Seq, Par, PriPar and Rec) emit an event when they are activating other CSP
processes, blocked and when they are done. The CSP processes (CSProcess, Reader, Writer, Alt
and PriAlt) emit an event when they are activated, running, blocked and done. In all of the
above cases the done event is only emitted when all of its children have finished.

H.2.1 Recording

To record CSP trace information, the respective build system option (Execution Engines->CSP-
>CSP forensics) must be enabled. Events will now be transferred to the recorder, whenever
computing resources are available.

H.2.2 Visualizing

The visualization of trace data is done with Matlab and a few custom scripts. These scripts, used
to post process the CSP trace, can be found in the RTLogger component directory in LUNA.
Unfortunately, correct visualization is currently only possible for single core systems with one
OS thread and multiple UThreads. This section first explains the trace figures in general and
then shows how such figures can be created with the scripts.

The Jiwy setup, presented in Appendix A.1, is used as a test and validation setup in this report.
The complete Jiwy CSP model contains 51 processes and its visualization is much to large to
show here. Therefore, the figures in this section only visualize the Pan sub-model of the Jiwy
CSP model. The CSP compositional relationships for the Pan sub-model are shown in Fig-
ure H.1. Note, the process names are also used in the other figures.

RJW Wilterdink University of Twente

APPENDIX H. APPENDIX - RTLOGGER EXAMPLES 109

Figure H.1: Jiwy gCSP Pan submodel

Activate event

Idle time (removed)
Done event

Activating other processes

Blocked
Running

Figure H.2: CSP tracing legend

Figure H.3 shows for one CSP model iteration the UThread context switches and the Timer-
Writer process. The legend for the trace figures is shown in Figure H.2. The TimerWriter takes
care of stalling the complete CSP model until the next period starts, since it is designed to oper-
ate at 100 Hz. It can be seen that the computation of the complete Jiwy model takes just under
1 ms, which is longer than stated in the LUNA paper (Section 5.4.1). But, the computation time
in this case includes generating the CSP events and placing (logging) these in the RTLogger
buffers.

Figure H.3: One period of the Jiwy CSP model, showing context switches and the TimerWriter CSP trace.

Visualizing the complete period of a Jiwy CSP model cycle makes it hard to read. So, the idle
time is filtered out and the same period is shown in Figure H.4. Now, single context switches
and the TimeWriter running time can be identified. Only the blue events indicate a context
switch, the smaller red bars are an artifact of using the same visualization as for CSP traces.

Figure H.5 shows the Pan sub-model trace. Constructs (Pan, ParPanIn and ParPanOut) are
activated and during this activation activate at least one other CSP process or construct de-
pending on its CSP semantics. For instance, the ParPanIn activates the PosPanIn and JoyPanIn
processes. Processes are only activated, i.e. placed on the ready queue, and then the scheduler
decides when it is actually run. Note, the gap between PanScaling activation and actually run-
ning is due to other CSP processes, which are not shown, being run first. When a process or
construct is done it emits a done event.

Control Engineering RJW Wilterdink

110 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Figure H.4: The same period as shown in Figure H.3, but now with idle time filtering.

The procedure to create such figures from a trace CSV file is explained next. For most steps also
example Matlab commands are given. When these are executed on the CSP visualization.csv
file (accompanying this report) they create exactly the same figures as mentioned before.

1. Start Matlab
2. Open the generated CSV file and remove the lines until the number of columns becomes

steady. These may change during running-time, due to dynamically declaring them, but
Matlab’s import feature cannot handle this.

3. Import the CSV file into Matlab’s workspace with: File->Import data.
Name the variable for instance trace.

4. Open the LOG file belonging to this CSV file and copy the “names = { . . . }” line to Matlab.
These are the column names.

5. Remove all non-CSP signals, i.e. the columns, except the time.
For example: trace = trace(:,[1:14,17:45]); names = names([1:13, 16:44]);.

6. Select the interesting part of the CSP trace, i.e. the rows. If the trace is not downsized, the
scripts will take a very long time to process and the visualization will get confusing.
For example: trace2 = trace(2000:3000, :).

7. Optionally, check the integrity of the CSP trace with the csp integrity script. This verifies
that only one process is running at the same time.
For example: csp integrity(trace2, names).

8. Optionally, remove idle time from the plots with the csp remove idle time script. The
script will output a filtered trace and the indexes of idle times.
For example: [trace3, idle] = csp filter idle(trace2, 5), whereby the second argument is the
minimum idle time in ms.

9. Select the interesting CSP processes, i.e. columns, and put them in the correct order for
printing. For example: print = [15,3,4,24:27,5,28,29];.

10. Plot the CSP trace with the csp plot script.
For example: csp plot(trace3(148:300,:), print, names).

RJW Wilterdink University of Twente

APPENDIX H. APPENDIX - RTLOGGER EXAMPLES 111

Figure H.5: Pan trace 1

Control Engineering RJW Wilterdink

112 Design of a hard real-time, multi-threaded and CSP-capable execution framework

H.3 Visualizing (control) signals with 20-sim

The RTLogger also has an option to log integer or floating point signals aperiodically and show
these through the 20-sim experiment viewer. A logging statement does not influence real-time
constraint levels, but adds some computation time.

The 20-sim to RTLogger recorder interface is developed for 20-sim running on Linux and is
considered a proof of concept.

H.3.1 Recording

The RTLogger application should be set to ring-buffer behavior and only contain a small buffer,
otherwise old data might be transferred on occasion when computing resources were tem-
porarily insufficient.

Example code for the application is shown in Listing H.2.� �
/ / When the RTLogger i s disabled in the menuconfig , the RTLOG* macros

have no e f f e c t anymore . Note , the code does not need any adaption to
remain valid .

#include "RTLogger . h"

class MyClass : public Runnable {
public :

void preRun ()
{

/ / Signal types need to be pre−r e g i s t e r e d , so that type information
i s known .

RTLOGGER_REGISTER(r t _ s i g n a l , RTLOG_INT32, " Signal Name") ;
}

void * run ()
{

/ / Logs the current Var value .
RTLOG(r t _ s i g n a l , Var) ;

}

private :
int Var ;
RTLOGGER_ID(r t _ s i g n a l) ; / / The r t _ s i g n a l i s the channel id .

}� �
Listing H.2: RTLogger start and shutdown example code

H.3.2 Visualizing

An example run of the RTLogger and 20-sim visualization for the Pan sub-model in Figure H.1 is
shown in Figure H.6. The figure shows the pan controller error, joystick input, position encoder
input and the calculated PWM setpoint.

Between 3 and 8 seconds the joystick was moved in a sine-like motion. The ‘Joystick Pan In’
signal shows that the Jiwy setup almost immediately tries to follow this motion, but fails to
exactly follow it since the output control signal is limited for safety reasons.

RJW Wilterdink University of Twente

APPENDIX H. APPENDIX - RTLOGGER EXAMPLES 113

Between 14 and 18 seconds it was tried to keep Jiwy on a stable position other than the ori-
gin. But, the joystick created a lot of noise (see the ‘Joystick Pan In’ signal) and the controller
followed this reference input, such that the setup was shaking a little bit. So, the 20-sim visual-
ization is quite useful to determine the cause of some problems while manipulating the robotic
setup.

The following steps need to be performed to create a similar plot:
1. Start the RTLogger recorder (see Section H.1)
2. Start 20-sim
3. Open the Logger.emx experiment
4. Click on the simulator and press start
5. Add signal names by hand in the 20-sim experiment, since these cannot be imported into

20-sim automatically.

Control Engineering RJW Wilterdink

114 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Fi
gu

re
H

.6
:2

0-
Si

m
Pa

n
co

n
tr

o
ls

ig
n

al
s

RJW Wilterdink University of Twente

115

I Appendix - LUNA CPA 2011 conference paper

Control Engineering RJW Wilterdink

Communicating Process Architectures 2011
P.H. Welch et al. (Eds.)
IOS Press, 2011
c© 2011 The authors and IOS Press. All rights reserved.

1

LUNA: Hard Real-Time, Multi-Threaded,
CSP-Capable Execution Framework

M. M. BEZEMER, R. J. W. WILTERDINK and J. F. BROENINK

Control Engineering, Faculty EEMCS, University of Twente,
P.O. Box 217 7500 AE Enschede, The Netherlands.

{M.M.Bezemer , J.F.Broenink} @utwente.nl

Abstract. Modern embedded systems have multiple cores available. The CTC++ li-
brary is not able to make use of these cores, so a new framework is required to control
the robotic setups in our lab. This paper first looks into the available frameworks and
compares them to the requirements for controlling the setups. It is concluded that none
of the available frameworks meet the requirements, so a new framework is developed,
called LUNA.

The LUNA architecture is component based, resulting in a modular structure. The
core components take care of the platform related issues. For each supported platform
these components have a different implementation, effectively providing a platform
abstraction layer. High-level components take care of platform-independent tasks, us-
ing the core components. And the execution engine components implement the algo-
rithms taking care of the execution flow, like a CSP implementation. Next, the pa-
per describes some interesting architectural challenges encountered during the LUNA
development and their solutions.

The paper concludes with a comparison between LUNA, C++CSP2 and CTC++.
It shows that LUNA is more efficient than CTC++ and C++CSP2 with respect to
switching between threads. Also running a benchmark using CSP constructs shows
that LUNA is more efficient compared to the other two. Furthermore, LUNA is also
capable of controlling actual robotic setups with good timing properties.

Keywords. csp, framework architecture, hard real-time, performance comparison,
rendez-vous communication, scheduling, threading

Introduction

Context

Nowadays, many embedded systems have multiple cores at their disposal. In order to be able
to run more challenging (control) algorithms, embedded control software should be able to
make use of these extra cores. Developing complex concurrent software tends to become
tedious and error-prone. CSP [1] can ease such a task. Especially in combination with a
graphical modeling tool [2], designing such complex system becomes easier and the tool
could help in reusing earlier developed models. CTC++ [3] is a CSP based library, providing
a hard real-time execution framework for CSP based applications.

When controlling robotic setups, real-time is an important property. There are two levels
of real-time: hard real-time and soft real-time. According to Kopetz [4]: “If a result has utility
even after the deadline has passed, the deadline is classified as soft (. . .) If a catastrophe could
result if a deadline is missed, the deadline is called hard”.

Figure 1 shows the layered design, used in our Control Engineering group, for embedded
software applications connected to actual hardware. Each layer supports a type of real-time,

2 M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework

Embedded software I/O hardware Process
Soft

real-time
Hard

real-time
Non

real-time

M
ea

s.
&

A
ct

. Actuators

Sensors

Power
amplifierD/A

A/D
Filtering/
ScalingS

af
et

y
la

ye
r

Physical system

Lo
op

 c
on

tro
l

S
eq

ue
nc

e
co

nt
ro

l

U
se

ri
nt

er
fa

ce

S
up

er
vi

so
ry

co
nt

ro
l&

In
te

ra
ct

io
n

Figure 1. Software architecture for embedded systems [5].

varying from non real-time to hard real-time. The ‘Loop control’ is the part of the application
responsible for controlling the physical system and it is realised in a hard real-time layer.
The hard real-time layer has strict timing properties, guaranteeing that given deadlines are
always met. If this for whatever reason fails, the system is considered unsafe and catastrophic
accidents might happen with the physical system or its surroundings due to moving parts.
The soft real-time layer tries to meet its deadlines, without giving any hard guarantees. If
the design is correct nothing serious should happen in case such a deadline is not met. This
layer can be used for those parts of the application which are more complex and require more
time to run its tasks, like algorithms which map the environment, plan future tasks of the
physical system or communicate with other systems. The non real-time layer does not try to
meet any deadlines, but provides means for long running tasks or for an user interface. The
left-over resources of the system are used for these tasks, without giving any guarantees of
the availability of them.

Robotic and mechatronic setups like the ones in our lab require a hard real-time layer,
since it is undesirable for the actual setups to go haywire. The use of Model Driven Devel-
opment (MDD) tools makes developing for complex setups a less complex and more main-
tainable task [6]. For the multi-core or multi-CPU embedded platforms, we would like to
make use of these extra resources. Unfortunately, the CTC++ library, as it is, is not suitable
for these platforms, as it can only use one core or CPU. This paper evaluates possibilities to
overcome this problem.

The requirements for a suitable framework that can be used for robotic and mechatronic
setups are:

• Hard real-time. This incorporates that the resulting application needs to be determin-
istic, so it is possible to guarantee that deadlines are always met. The framework
should provide a layered approach for such hard real-time systems (see Figure 1).

• Multi-platform. The setups have different kind of hardware platforms to run on, like
PowerPC, ARM or x86 processors. Also different operating systems should be sup-
ported by the framework.

• Thread support. In order to take advantage of multi-core or multi-CPU capable target
systems.

• Scalability. All kind of setups should be controlled: From the big robotic humanoids
in our lab to small embedded platforms with limited computer resources.

• CSP execution engine. Although, it should not force the use of CSP constructs when
the developer does not want it, as this might result in not using the framework at all.

• Development time. The framework should decrease the development time for complex
concurrent software.

• Debugging and tracing. Provide good debugging and tracing functionality, so devel-
oped applications using the framework can be debugged easily and during develop-
ment unexpected behaviour of the framework can be detected and corrected. Real-
time logging functionalities could preserve the debug output for later inspection.

M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 3

The CTC++ library meets most requirements, however as mentioned before, it does not
have thread support for multi-core target systems. It also has a tight integration with the CSP
execution engine, so it is not possible to use the library without being forced to use CSP as
well. This is an obstacle to use the library from a generic robotics point of view and results
in ignoring the CTC++ library altogether, as is experienced in our lab. A future framework
should prevent this tight integration. By adding a good MDD tool to the toolchain, the robotic
oriented people can gradually get used to CSP.

It might seem logical to perform a major update to CTC++. But unfortunately the ar-
chitecture and structure of the library became outdated over the years, making it virtually
impossible to make such major changes to it. So other solutions need to be found to solve our
needs.

Existing Solutions

This section describes other frameworks, which could replace the CTC++ library. For each
framework the list with requirements is discussed to get an idea of the usability of the frame-
work.

A good candidate is the C++CSP2 library [7] as it already has a multi-threaded CSP
engine available. Unfortunately it is not suitable for hard real-time applications controlling
setups. It actively makes use of exceptions to influence the execution flow, which makes a
application non deterministic. Exceptions are checked at run-time, by the C++ run-time en-
gine. Because the C++ run-time engine has no notion of custom context switches, exceptions
are considered unsafe for usage in hard real-time setups. Also as exceptions cannot be imple-
mented in a deterministic manner, as they might destroy the timing guarantees of the applica-
tion. Exceptions in normal control flow also do not provide priorities which could be set for
processes or groups of processes. This is essential to have hard, soft and non real-time layers
in a design in order to meet the scheduled deadlines of control loops. And last, it makes use
of features which are not commonly available on embedded systems. On such systems it is
common practice to use the microcontroller C library (uClibc) [8], in which only commonly
used functionality of the regular C library is included. Most notably, one of the functionalities
which is not commonly included in uClibc is Thread Local Storage, but is used by C++CSP2.

Since Java is not hard real-time, for example due to the garbage collector, we did not look
into the Java based libraries, like JCSP [9]. Although, there is a new Java virtual machine,
called JamaicaVM [10], which claims to be hard real-time and supporting multi-core targets.
Nonetheless, JCSP was designed without hard real-time constraints in mind and it is highly
improbable that it is hard real-time suitable.

Besides these specific CSP frameworks, there are also non-CSP-based frameworks,
which might be used to add a CSP layer to. OROCOS [11] and ROS [12] are two of these
frameworks and both claim to be real-time. But both will not be able to run hard real-time
1KHz control loops on embedded targets which are low on resources. Their claim about being
real-time is probably true when using dedicated hardware for the control loops, which are fed
by the framework with ‘setpoints’. Basically, the framework is operating at a soft real-time
level, since it does not matter if a setpoint arrives slightly late at the hardware control loop.
In our group we like to design the control loops ourselves and are not using such hardware
control loop solutions. Furthermore, it is impossible to use formal methods to confirm that a
complex application, using one of these frameworks, is deadlock or livelock free, because of
the size and complexity of these frameworks [13].

Based on the research performed on these frameworks, we have decided to start over
and implement a completely new framework. Available libraries, especially the CTC++ and
C++CSP2 libraries, are helpful for certain constructs, ideas and solutions. The new frame-
work can reuse these useful and sophisticated parts, to prevent redundant work and knowl-

4 M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework

edge being thrown away. After implementing the mentioned requirements, it should be able
to keep up with our future expansion ideas.

Outline

The next section describes the general idea behind the new framework, threading, the CSP
approach, channels and alternative functionality. Section 2 compares the framework with the
other related CSP frameworks mentioned earlier, for some timing tests and when actually
controlling real setups. In the next section, the conclusions about the new framework are
presented. And the last section discusses future work and possibilities.

1. LUNA Architecture

The new framework is called LUNA, which stands for ‘LUNA is a Universal Networking
Architecture’. A (new) graphical design and code generation tool, like gCSP [14], is also
planned, tailored to be compatible with the LUNA. This MDD tool will be called Twente
Embedded Real-time Robotic Application (TERRA). It is going to take care of model opti-
misations and by result generating more efficient code, in order to reduce the complexity and
needs of optimisations in LUNA itself.

others
(timers, timing,

sockets, ...)
Threading Mutexes

Semaphores

CSP

OS abstraction

Utilities
(debuging, data
containers, ...)

State Machine

Core
Components

Execution Engine
Components others

Networking
(TCP/IP, ...)

InspectionHigh-level
Components others

Hardware
Interfacing

Device
drivers

Architecture
abstraction

1

2

3

Figure 2. Overview of the LUNA architecture.

LUNA is a component based framework that supports multiple target platforms, cur-
rently planned are QNX, RTAI and Xenomai. To make development more straightforward,
Linux and Windows will also be supported as additional platforms. Figure 2 shows the
overview of the LUNA components and the levels they are on. The gray components are not
implemented yet, but are planned for future releases.

The Core Components (1) level contains basic components, mostly consisting of plat-
form supporting components, providing a generic interface for the platform specific features.
OS abstraction components are available to support the target operating system (OS), like
threading, mutexes, timers and timing. The architecture abstraction components provide sup-
port for features specific to an architecture (or hardware platform), like the support for (digi-
tal) input and output (I/O) possibilities. Other components can make use of these core compo-
nents to make use of platform specific features without knowledge of the actual chosen plat-
form. Another group of core components are the utility components, implementing features
like debugging, generic interfaces and data containers.

The next level contains the High-level Components (2). These are platform independent
by implementing functionality using the core components. An example is the Networking
component, providing networking functionality and protocols. This typically uses a socket
component as platform-dependent glue and build (high-level) protocols upon these sockets.

M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 5

The Execution Engine Components (3) implement (complex) execution engines, which
are used to determine the flow of the application. For example a CSP component provides
constructs to have a CSP-based execution flow. The CSP component typically uses the core
components for threading, mutexes and so on and it uses high-level components like net-
working to implement networked rendez-vous channels.

Components can be enabled or disabled in the framework depending on the type of
application one would like to develop, so unused features can be turned off in order to save
resources. Since building LUNA is complex due to the component based approach and the
variety of supported platforms, a dedicated build system is provided. It is heavily based on
the OpenWrt buildroot [15,16].

The initially supported platform is QNX [17], which is a real-time micro-kernel OS.
QNX natively supports hard real-time and rendez-vous communication. This seemed ideal
to start with, relieving the development load for an initial version of LUNA. As QNX is
POSIX compliant, a QNX implementation of LUNA would result in supporting other POSIX
compliant operating systems as well. Or, at least it would support parts of the OS which are
compatible, as not many operating systems are fully POSIX compliant.

1.1. Threading Implementation

LUNA supports OS threads (also called kernel threads) and User threads to be able to make
optimal use of multi-core environments. OS threads are resource-heavy, but are able to run
on different cores and User threads are light on resources, but must run in a OS thread and are
thus running on the same core as the OS thread. A big advantage of using OS threads is the
preemptive capabilities of these threads: Their execution can be forcefully paused anywhere
during its execution, for example due to a higher priority thread becoming ready. User threads
can only be paused at specified moments, if such a moment is not reached, for example due
to complex algorithm calculations, other User threads on the same OS thread will not get
activated. Combining resource-heavy OS threads and non preemptive capable User threads
results in a hybrid solution. This allows for constructing groups of threads which can be
preempted but are not too resource-heavy.

As the term already implies, the OS threads are provided and maintained by the OS. For
example, the QNX implementation uses the POSIX thread implementation provided by QNX
and for Windows LUNA would use the Windows Threads. Therefore, the behaviour of an OS
thread might not be the exactly the same for each platform.

The User threads are implemented and managed by LUNA, using the same principles
as [7,18], except the LUNA User threads are not run-time portable to other OS threads. There
is no need for it and this will break hard real-time constraints.

Figure 3 shows the LUNA threading architecture. Two of the components levels of Fig-
ure 2 are visible, showing the separation of the threading implementation and the CSP im-
plementation.

UThreadContainer (UTC) and OSThread are two of the available thread types, both im-
plementing the IThread interface. This IThread interface requires a Runnable, which acts as
a container to hold the actual code which will be executed on the thread. The CSP function-
ality, described in more detail in the next section, makes use of the Runnable to provide the
code for the actual CSP implementation.

To make the earlier mentioned hybrid solution work, each OS thread needs its own
scheduler to schedule the User threads. This scheduling mechanism is divided into two ob-
jects:

1. the UTC which handles the actual context switching in order to activate or stop a User
thread.

6 M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework

IThreadBlockerIThread

UThread
Container

UScheduler

1 1
Runnable

CSProcess
1

*

UThreadOSThread 1 1

1

0

1 0..1

CSP functionality

User thread

1

1

OS
Scheduler

1

1

OS thread

Scheduling
mechanism

Execution Engine
Components

Core Components1

3
CSPConstruct

Sequential Parallel Recursion

Figure 3. UML diagram of threads and their related parts.

2. the UScheduler which contains the ready and blocked queue and decides which User
thread is the next to become active.

The UTC also contains a list with UThreads, which are the objects containing the ‘context’
of a User thread: the stack, its size and other related information. Besides this context relation
data, it also contains a relation with the Runnable which should be executed on the User
thread.

For the CSP functionality a ‘separation of concerns’ approach is taken for the CSP pro-
cesses and the threads they run on. The CSP processes are indifferent whether the underly-
ing thread is an OS thread or a User thread, which is a major advantage when running on
multi-core targets. This approach can be taken a step further in a distributed CSP environment
where processes are activated on different nodes. This will also facilitate deployment, seen
from a supervisory control node. Due to this separation, it is also possible to easily implement
other execution models.

The figure shows that the Sequential, Parallel and Recursion processes are not inheriting
from CSProcess but from CSPConstruct. The CSPConstruct interface defines the activate,
done and exit functions and CSProcess defines the actual run functionality and context block-
ing mechanisms. Letting the processes inherit from CSPConstruct is an optimisation: This
way they do not require context-switches because their functionality is placed in the activate
and done functions, which is executed in the context of its parent respectively child threads.
The Alternative implementation still is a CSProcess, because it might need to wait on one
of its guards to become ready and therefore needs the context blocking functionality of the
CSProcess.

The UTC implements the Runnable interface so that it can be executed on an OS thread.
When the UTC threading mechanism starts, it switches to the first User thread as a kickstart
for the whole process. When the User thread is finished, yields or is explicitly blocked, the
UTC code switches to the next User thread which is ready for execution. Due to this archi-
tectural decision, the scheduling mechanism is not running on a separate thread, but makes
use of the original thread, in between the execution of two User threads.

During tests, the number of threads was increased to 10,000 without any problems. All
threads got created initially and they performed their task: increase a number and print it.
After executing its task, each thread was properly shutdown.

M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 7

1.2. LUNA CSP

Since LUNA is component based, it is possible to add another layer on top of the threading
support. Such a layer is the support layer for a CSP-based execution engine. It is completely
separated from the threading model, so it will run on any platform that has threading support
within LUNA.

Each CSP process is mapped on a thread. Because of the separation of CSP and the
threading model, the CSP processes are indifferent whether the underlying thread is an OS
thread or a User thread, which is a major advantage when running on multi-core targets. This
will also facilitate code generation, since code generation needs to be able to decide how to
map the CSP processes on the available cores in an efficient way without being limited by
thread types.

Figure 4 shows the execution flow of three CSProcess components, being part of this
greater application:

P = Q || R || S

Q = T; U

Process P is a parallel process and has some child processes, of which process Q is one.
Process Q is a sequential process and also has some child processes. Process T is one of these
child processes and it does not have any child processes of its own.

wait for
all children

parent
done

post run

pre run activate
all children

child done

Do things/ run body

wait for
next iteration

[activate]

[exit]

P (Parallel)

Q (Sequential)

T (Process)

wait for
child

parent
done

post run

pre run activate
child

child done

Do things/ run body

choose
next child

has
more children

to activate

[false]

[true]
[activate]

[exit]

wait for
next iteration

do
something

doneparent
done

post run

[activate]

[exit]

pre run Do things/ run body

wait for
next iteration

from parent to parent

Figure 4. Flow diagram showing the conceptual execution flow of a CSProcess.

First, the pre run of all processes is executed, this can be used to initialize the process
just before running the actual semantics of the CSProcess. Next the processes are waiting in
wait for next iteration until they are allowed to start their run body. After all processes have

8 M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework

executed their pre run the application itself is really started, so the pre run does not have to
be deterministic yet. The post run of each process is executed, when the process is shutdown,
normally when the application itself is shutdown. It gives the processes a chance to clean up
the things they initialized in their pre run.

In this example, P will start when it is activated by its parent. Due to the parallel nature of
the process, all children are activated at once and next the process will wait until all children
are done before signalling the parent that the process is finished. Process Q is only one of
the processes that is activated by P. Q will activate only its first child process and waits for
it until it is finished, because Q is a sequential process. If there are more children available,
the next one is activated and so on. T is just a simple code blob which needs to be executed.
So at some point it is activated by Q, it executes its code and sends signal back to Q that it is
finished. Same goes for Q, when all its child processes are finished, it sends back a signal to
P, telling it is finished.

Due to this behaviour, the CSP constructs are implemented decentralised by the CSPro-
cesses, instead of implemented by a central scheduler. This results in a simple generic
scheduling mechanism, without any knowledge of the CSP constructs. Unlike CTC++, which
has a scheduler implemented that has knowledge of all CSP constructs in order to implement
them and run the processes in the correct order.

R

*

S

T

U

UThread-
Container1

- Runnable
- list with UThreads

OSThread1

UThread-
Container2 OSThread2

OSThread3UTC3

2

3

4

5

R

S U

T

Repetition

UThread

CSP-
Construct1

(Q)

(P)

P Q

Figure 5. Steps from a model to a LUNA based mapping on OS threads.

Since the CSP processes are indifferent to the type of thread they run on and how they
are grouped on OS threads, LUNA needs to provide a mechanism to actually attach these
processes to threads. When looking at a gCSP model (left-most part of the figure), a compo-
sitional hierarchy can be identified in the form of a tree (middle part of the figure). The MDD
tool has to map the processes onto a mix of OS and User threads using the compositional
information and generate code. Because of the ‘separation of concerns’ code generation is
straightforward as the interoperation of OS and User threads is handled by LUNA. Figure 5
shows the required steps to map the model to OS threads.

First, the model needs to be converted to a model tree (number 1 in the figure). This
model-tree contains the compositional relations between all processes. Second, the user (or
the modeling tool) needs to group processes (2) which are put on the same OS thread, for
example criteria for grouping could be processes which heavily rely on communication or
try to balance the execution load. Each process is mapped to a UThread object (3). Except
for the compositional processes mentioned in the previous section, they are mapped onto
CSPConstructs. Next, each group of of UThreads is put in an UThreadContainer (UTC) (4).

Finally, each UTC is mapped to an OS thread (5), so the groups of processes can ac-
tually run in parallel and have preemption capabilities. It is clear that making good groups
of processes will influence the efficiency of the application, so using an automated tool is
recommended [19].

M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 9

1.3. Channels

One of the initial reasons for supporting QNX was the availability of native rendez-vous com-
munication support between QNX threads. This indeed made it easy to implement channels
for the OS threads, but unfortunately it was not for the User threads. Main problem is that
two User threads which want to communicate may be placed on the same OS thread. If one
User thread wants to communicate over a rendez-vous channel and the other side is not ready,
the QNX channel blocks the thread. But QNX does not know about the LUNA implemented
scheduler and its User threads, so it blocks the OS thread instead. The other User thread
which is required for the communication now never becomes ready and a deadlock occurs.
So unfortunately, for communication between User threads on the same OS thread the QNX
rendez-vous channels are not usable and the choice to initially support QNX became less
strong.

Figure 6 shows the 2 possible channel types. Channel 1 is a channel between two OS
threads. The QNX rendez-vous mechanism can be used for this channel. Channel 2a and 2b
are communication channels between two User threads; it does not matter whether the User
threads are on the same OS thread or not. For this type of channel the QNX rendez-vous
mechanisms cannot be used as explained earlier, as it could block the OS thread and therefore
prevent execution of other User threads on that OS thread. An exception could be made for

OS Thread

User
Thread

User
Thread

OS Thread

User
Thread

User
Thread

2b

2a

OS
Thread

OS
Thread

1

Figure 6. Overview of the different channel situations.

OS threads with one User thread, but such situations are undesired since it is more efficient
to directly run code on the OS thread without the User thread in between. Guarded channels
are also not supported by QNX, so for this type of channels a custom implementation is also
required.

UnbufferedChannel

ILockableAny2In Out2Any

ChannelOutChannelIn

Figure 7. Diagram showing the channel architecture.

Figure 7 shows the architecture of the channel implementation. A channel is constructed
modularly: The buffer, Any2In and Out2Any types can be exchanged with other compatible
types. The figure shows an unbuffered any-to-any channel, but a buffered any-to-one is also
possible, along with all kinds of other combinations.

10 M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework

write () {

ILockable.lock()

if (isReaderReady ()) {

IReader reader = findReadyReaderOrBuffer ()

transfer(writer , reader)

reader.unblockContext ()

ILockable.unlock ()

} else {

setWriterReady(writer)

ready_list.add(writer)

writer.blockContext(ILockable)

}

}

Listing 1. Pseudocode showing the channel behaviour for a write action.

Listing 1 shows the pseudocode for writing on a channel. The ILockable interface is used
to gain exclusive access to the channel, in order to make it ‘thread safe’. Basically, there
are two options: Either there is a reader (or buffer) ready to communicate or not. If the
reader is already waiting, the data transfer is performed and the reader is unblocked so it
can be scheduled again by its scheduler when possible. In the situation that the reader is not
available, the writer needs to be added to the ready list of the channel, so the channel knows
about the writers which are ready for communication. This list is ordered on process priority.
And, the writer needs to be blocked until a reader is present. The same goes for reading a
channel, but exactly the other way around.

The findReadyReaderOrBuffer() method checks if there is buffered data available, oth-
erwise it calls a findReadyReader() method to search for a reader which is ready. The is-
ReaderReady() and findReadyReader() methods are implemented by the Out2Any block or
by a similar block that is used. So depending on the input type of the channel, the imple-
mentation is quite simple when there is only one reader allowed on the channel or more
complex when multiple readers are allowed. The transfer() method is implemented by the
(Un)bufferedChannel and therefore is able to read from a buffer or from an actual reader
depending on the channel type.

LUNA supports communication between two User threads on the same OS thread by a
custom developed rendez-vous mechanism. When a thread tries to communicate over a chan-
nel and the other side is not ready, it gets blocked using the IThreadBlocker (see Figure 3). By
using the IThreadBlocker interface, the thread type does not matter since the implementation
of this interface is dependent on the thread type. For User threads, the scheduler puts the cur-
rent thread on the blocked queue and activates a context-switch to another User thread which
is ready. This way the OS thread is still running and the User thread is blocked till the chan-
nel becomes ready and the scheduler activates it. And for OS threads, it uses a semaphore to
completely block the OS thread until the channel is ready.

As mentioned in the start of this section, there are different implementations of chan-
nels: the QNX implementation used for communication between OS threads and the LUNA
implementation for communication between User threads and/or OS threads. It would be
cumbersome for a developer to have to remember to choose between these types, especially
when the User threads are not yet mapped to their final OS threads. So a channel factory is
implemented in LUNA. When all CSP processes are mapped on their threads, this factory
can be used to determine what types of channels are required. Having the information of the
type of threads to map the CSP processes on is sufficient to determine the required channel
implementation. At run-time, before the threads are activated, the factory needs be invoked to
select a correct implementation for each channel. If a developer (or code generation) moves

M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 11

a CSP process to another OS thread, the factory will adapt accordingly, using the correct
channel implementation for the new situation.

1.4. Alternative

The Alternative architecture is shown in Figure 8. It is a CSProcess itself, but it also has a list
of other CSProcesses which implement the IGuard interface. Alternative uses the list when
it is activated and will try to find a process which meets its IGuard conditions. Currently,
the only guarded processes that are available are the GuardedWriter and GuardedReader
processes. But others might be added, as long as they implement the IGuard interface.

CSProcess IGuard

Alternative

IReader

IWriter

GuardedReader

ChannelIn

Out2Any

UnbufferedChannel

0

0..11

1

GuardedReaderAny2AnyChannel

Figure 8. Diagram showing the relations for the Alternative architecture.

In the case of channel communication, it first checks if a reader or writer is guaranteed to
perform channel communication without blocking and makes sure this guarantee stays intact.
Next, it performs the communication itself. The Alternative implements a sophisticated pro-
tocol in order to make sure the communication is guaranteed, even though different threads
are part of the communication or some of the processes on the channel might be not guarded.

First in Figure 9 a situation is shown, where a guarded reader gains access on a channel,
but blocks when it should actually read the contents, as another reader came in-between.
Some of the objects in Figure 8 are grouped by the dashed boxes, they are shown in Figure 9
as a single object to keep things simple.

Alternative Reader GuardedReader Any2AnyChannel

isReady()

true

isReady()
true

activate()

read()

read()

setWriterReady()
1

2

3

4 blocked!

Writer

Figure 9. Sequence diagram showing a situation were a guarded reader blocks.

Assume we have an any-to-any channel, which has a writer waiting to communicate
(1 in the figure). The Alternative is activated (2) and checks if the GuardedReader is ready.
The GuardedReader is only ready if there is a writer or buffer waiting to communicate, so it
checks with the channel. When the GuardedReader indeed is ready, it gets activated so it can
be scheduled by the scheduler to actually perform the communication.

12 M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework

Unfortunately before the communication takes place, another Reader is activated and
wants to communicate on the channel as well (3), since there is a writer present the com-
munication takes place. Later, the GuardedReader is activated (4), but the writer is not avail-
able anymore and the GuardedReader is blocked, even though it gained access to the channel
through the Alternative.

To prevent such behaviour a more sophisticated method is used, shown in Figure 10. This
example describes a situation where both channel ends are guarded to be able to describe the
protocol completely. Whether this situation is used in real applications or not is out of scope.

Again the writer registers at the channel, telling that it is ready to write data (1). There
is no reader available yet, so the write is put in the ready list and gets a false as result. Next,
Alternate2 continues to look for a process which can be activated, but this is not interesting
for the current situation.

Alternative1 Reader GuardedReader Any2AnyChannel GuardedWriter Alternative2

blocked!

isReady()isReady()

if reader_ready = false
 ready_list.add(gw); false

isReady() isReady()

truetrue
if ready_list.has_items
 channel.lock();

confirm() confirm()
reconfirm()

reconfirm()

true

transfer()truetrue

activate()

1

2

lock();

Figure 10. Sequence diagram showing the correct situation.

Alternate1 checks whether the GuardedReader is ready or not, when it becomes active
(2). Since the ready list has items on it, the channel is ready for communication. To prevent
that other readers are interfering with our protocol, the channel gets locked. If Reader wants
to read from the channel it gets blocked due to the lock. This is in contrast with the previous
example, where the GuardedReader got wrongly blocked.

When the isReady() request returns positive, the Alternative1 checks whether another,
previously isReady() requested, guard has not been reconfirmed. If this is not the case, it will
lock() the Alternative for exclusive reconfirm request, preventing other guards taking over the
current communication.

Before the actual transfer, Alternative1 needs to check whether the GuardedWriter is
still ready to write. It might be possible that Alternate2 found another process to activate and
the GuardedWriter is not ready anymore. Using the confirm() method, Alternative1 asks the
channel for this and the channel forwards the question at Alternate2 via GuardedWriter with
the reconfirm() method. Assuming that the GuardedWriter is still ready, the channel directly
performs the transfer of data. This is not necessary, but is more efficient as the channel
becomes available for other communications earlier.

In the end, Alternative1 revokes the isReady() requests of its other guarded processes,
since a process was chosen, and it activates GuardedReader. For this example situation it is
unnecessary, since the transfer is completed already, but for other (non reader/writer) pro-
cesses it is required to run the guarded process code. Also, the GuardedReader might be used
to activate a chain of other processes.

M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 13

The described alternative sequence of Figure 10 has been tested for some basic use cases.
Although it is not formally proven, it is believed that this implementation will satisfy the CSP
requirements of the alternative construction.

2. Results

This section shows some of the results of the tests performed on/with the LUNA framework.
The tests compare LUNA with other CSP frameworks, to see how the LUNA implementation
performs.

PC/104 FPGA board

USB Net VGA

x86
CPU FPGAP

C
I

P
C

I

di
gi

ta
l I

/O

Figure 11. Overview of the used test setup.

All tests in this section are performed on a embedded PC/104 platform with 600 MHz
x86 CPU as shown in Figure 11. It is equipped with an FPGA based digital I/O board to
connect it with actual hardware when required for the test. While implementing and testing
LUNA, QNX seemed to be slower than Linux. To keep the test results comparable, all pre-
sented tests are executed under QNX (version 6.4.1) and compiled with with the correspond-
ing qcc (version 4.3.3) with the same flags (optimisation flag: -O2) enabled.

2.1. Context-switch Speed

After the threading model was implemented, a context-switch speed test was performed to
get an idea of the efficiency of the LUNA architecture and implementation. To measure this
speed, an application was developed consisting of two threads switching 10,000 times. The
execution times were measured and the average switching time was calculated to get a more
precise context-switching time. Table 1 shows these times.

Table 1. Context-switch speeds for different platforms.

Platform OS thread (µs) User thread(µs)
CTC++ ‘original’ - 4.275
C++CSP2 3.224 3.960
CTC++ QNX 3.213 -
LUNA QNX 3.226 1.569

The CTC++ ‘original’ row shows the test results of the original CTC++ library compiled
for QNX. It is not a complete QNX implementation, but only the required parts for the test
are made available. In order to be able to compile the CTC++ library for QNX, some things
needed to change:

• The setjmp/ longjmp implementation used when switching to another User thread.
The Stack Pointer (SP) was changed to use the correct field for QNX.

• Linux does not save the signal mask by default when executing setjmp and
longjmp. QNX does, which slows down the context switches considerable. There-

fore, the ‘ ’ versions of setjmp and longjmp are used for the QNX conversion.
• The compiler and its flags in order to use the QNX variants.
• The inclusions of the default Linux headers are replaced with their QNX counterparts.

14 M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework

• Some platform-dependent code did not compile and is not required to be able to run
the tests, so it was removed.

To use the C++CSP2 library with QNX, the same changes were made as for CTC++ li-
brary except the SP modification, as it was not required for C++CSP2. As mentioned the
setjmp/ longjmp are used for the quick conversion to QNX, although the library already

used longjmp, but not setjmp. This might indicate that the author knew of this difference
and intended different behaviour. The QNX implementation for the C++CSP2 library is also
not complete, only the required parts are tested, all other parts are not tested for compatibil-
ity. For the test a custom application was created as the provided C++CSP2 test suite did not
contain a pure context switching test.

CTC++ QNX [20] is an initial attempt to recreate the CTC++ library for QNX. It was
not completely finished, but all parts needed for the commstime benchmark are available.

LUNA QNX is the new LUNA framework compiled with the QNX platform support
enabled. For other platforms the results will be different, but the same goes for the other
libraries as well.

The OS thread column shows the time it takes to switch between two OS threads. The
User thread column shows the time it takes to switch between two User threads placed on
the same OS thread.

For LUNA it is clear that the OS thread context-switches are slower than the User thread
switches, which is expected and the reason for the availability of User threads. All 3 OS
thread implementations almost directly invoke the OS scheduler and therefore have roughly
the same context-switch times.

A surprising result is found for C++CSP2: The OS thread context-switch time is similar
with the User thread time. The User threads are switched by the custom scheduler, which
seems to contain a lot overhead, probably for the CSP implementation. Expected behaviour
is found in the next test, when CSP constructs are executed. In this test the custom scheduler
gets invoked for the OS threads as well, resulting in an increase of OS context switch time.
In this situation the User threads become much faster than the OS threads as well.

The context-switch time for the LUNA User threads is much lower compared to the
others. The LUNA scheduler has a simple design and implementation, as the actual CSP
constructs are in the CSProcess objects themselves. This approach pays off when purely
looking at context-switch speeds. The next section performs a test that actually runs CSP
constructs, showing whether it also pays off for such a situation as well.

2.2. Commstime Benchmark

To get an better idea of the scheduling overhead, the commstime benchmark is implemented,
as shown in Figure 12. This test passes a token along a circular chain of processes. The Prefix
process starts the sequence by passing the token to Delta, which again passes it on to the
Prefix via the Successor process. The Delta process also signals the TimeAnalysis process,
so it is able to measure the time it took to pass the token around. The difference between this
benchmark and the context-switch speed test, is that in this situation a scheduler is required
to activate the correct CSP process depending on the position of the token.

Table 2 shows the cycle times for each library for the commstime benchmark. The
commstime tests are taken from the respective examples and assumed to be optimal for their
CSP implementation. LUNA QNX has two values: the first is for the LUNA channel imple-
mentation and the second value for the QNX channel implementation. It is remarkable that
the QNX channels are slower than the LUNA channels. This is probably due to the fact the
QNX channels are always any-to-any and the used LUNA channels one-to-one. The amount
of context-switches of OS threads is unknown, since the actual thread switching is handled

M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 15

Prefix Delta

Successor

TimeAnalysis
Repetition

Figure 12. Model of the commstime benchmark.

by the OS scheduler having preemption capabilities and there is no interface to retrieve this
data.

Table 2. Overhead of the schedulers implemented by the libraries for their supported thread types.

Thread
Platform type Cycle time (µs) # Context-switches # Threads
CTC++ ‘original’ User 40.76 5 4
C++CSP2 OS 44.59 - 4

User 18.60 4 4
CTC++ QNX OS 57.06 - 4
LUNA QNX OS 28.02 / 34.03 - 4

User 9.34 4 4

Normally, the library is used with modeling tools in combination with code generation.
This would result in a different implementation of the commstime benchmark. In general, the
readers and the writers become separate processes, instead of integrated within the Prefix,
Delta, Successor and TimeAnalysis processes. For example, in this situation the Successor
is implemented using a sequential process containing a reader, an increment and a writer
process.

Table 3 shows the results when gCSP in combination with code generation is used to
design the commstime benchmark application. gCSP code generation is only available for
CTC++, so for LUNA the CTC++ code is rewritten manually as if it would have been gener-
ated.

Table 3. Commstime results when using MDD tools to create the test.

Thread
Platform type Cycle time (µs) # Context-switches # Threads
CTC++ ‘original’ User 88.89 10 6
C++CSP2 OS 12554.95 - +15

User 12896.22 19 +15
CTC++ QNX OS 219.71 - 6
LUNA QNX OS 93.23 / 99.62 - 10

User 29.87 14 10

The implementation of the C++CSP2 test was somewhat different compared to the other
implementations. Since C++CSP2 threads are destroyed when one cycle is done, they need
to be recreated for each cycle. The processes added to sequential process, for example in
the Successor, cannot contain a loop, since this would prevent the execution of the second
and the third process because those processes need to wait on preceding processes. Due to
this limitation, the C+CSP2 implementation needs to recreate 15 threads each cycle, hence
the +15 in the table. The construction and destruction of these threads generates a lot of
overhead, resulting in the high cycle times around 12.5ms. It was not possible to prevent
this behaviour when using the ‘code generated’ code, due to differences in the design ideas
behind the libraries.

16 M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework

The table also shows that the close result of the CTC++ ‘original’ and the CTC++ QNX
libraries were accidental. Now the difference is bigger, which is expected since the CTC++
QNX library uses OS threads which have much more overhead compared to the User threads.
For the first results, the optimized channels of the QNX variant probably resulted in the small
difference between the two.

The benchmark results of LUNA are much better compared to the CTC++ library. Fur-
thermore the LUNA results are better than the C++CSP2 results when looking at Table2. This
is due to the efficient context-switches, as described in the previous section. When compen-
sating for the required context-switch times, the results for C++CSP2 and LUNA are similar.

When comparing both tables, it is clear that using MDD tools with code generation re-
sults in slower code. For simple applications it is advisable to manually create the code, es-
pecially for low-resource embedded systems. When creating a complex application to con-
trol a large setup, like a humanoid robot, it saves a lot of development time to make use
of the MMD tools. For this ‘code generated’ results, the LUNA framework has good cycle
times, which is encouraging since the planning of TERRA, the new MDD tool, which will
feature code generation for LUNA. It is advisable for such an MDD tool to invest effort into
optimizing code generation to get good performance on the target system.

2.3. Real Robotic Setup

Next, an implementation for a real robotic setup was developed with LUNA, to see whether
it is usable in a practical way. To keep things easy for a first experiment, a simple pan-tilt
setup is used, with 2 motors and 2 encoders. These 2 degrees of freedom can be controlled
using a joystick. The control algorithm of this setup requires about 50 context switches to
completely run one cycle.

The CTC++ library already has an implementation for this setup available and a similar
implementation was made for LUNA to keep the comparison fair. Real-time logging func-
tionality was added in order to be able to measure timing information and to compare LUNA
with the CTC++ library.

Table 4 shows the timing results of LUNA and the CTC++ implementation. The experi-
ments have been performed with 100Hz and 1kHz sample frequencies, so each control loop
cycle should be respectively 10ms and 1ms long. As the measurements were performed for
about 60 seconds, the 100Hz measurements resulted in about 6,000 samples and the 1 kHz
resulted in about 60,000 samples. The processing time is found by subtracting the idle time
from the cycle time. The idle time is calculated by measuring the time between the point
where the control code is finished and the point where the timer fires an event for the next
cycle.

Table 4. Timing results of the robotic implementation.

Frequency Cycle time (ms) Standard Processing
Platform (Hz) Mean Min Max deviation (µs) time (µs)
CTC++ ‘original’ 100 11.00 10.90 11.11 14.8 199.0

1000 1.18 0.91 2.10 386.5 174.5
1000.15 1.00 0.91 1.10 20.7 172.5

LUNA QNX User threads 100 10.00 9.93 11.00 39.6 111.6
1000 1.00 0.80 2.01 35.8 89.3

1000.15 1.00 0.79 1.21 33.2 87.3
LUNA QNX OS threads 100 10.00 9.97 11.00 39.1 214.3

1000 1.00 0.96 2.00 14.4 185.6
1000.15 1.00 0.95 1.05 8.3 190.8

M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 17

The results show that LUNA performs well within hard real-time boundaries. The mean
values are a good match compared to the used frequencies and a low standard deviation value
shows that the amount of missed deadlines is negligible.

Due to periodically missed clock ticks, the maximum cycle time of the 1kHz measure-
ments is twice the sample time. This phenomenon can be explained by the mismatch between
the requested timer interval and the PC/104’s hardware timer [21]. The timer can not fire
exactly every 1ms, but instead it fires every 0.999847ms and for every 6535 instances the
timer will not fire. In the 100Hz case this will not be noticed, because the cycle time is large
enough and these kind of errors are relatively small.

When looking at the CTC++ ‘original’ implementation, it is seen that the 100Hz results
are good as well, although the mean cycle time, shows that the obtained frequency is 90.9Hz
instead of 100Hz. Same goes for the 1kHz measurement where a 847.5Hz frequency was
obtained instead. From this it can be concluded that CTC++ has problems to closely provide
the requested frequencies. For a frequency of 1kHz the standard deviation becomes very
large as well.

A third frequency was also measured, 1000.15Hz, which is an exact match with the
available frequency of the setup. This solves the very large standard deviation and the incor-
rect mean cycle times for the CTC++ library. It should be noted that this frequency is setup
dependent and therefore needs to be measured for each setup separately, in order to gain these
good results.

The frequency of 1000.15Hz indeed solves the maximum cycle times of LUNA being
two periods long. For setups which needs to be extremely accurate this is important, as it can
make the difference between an industrial robot moving smoothly or scratching your car. The
other values are not much different, showing that LUNA is more robust for all frequencies
than the CTC++ library and frequency tuning is not required to get reasonable hard real-time
properties.

It is also noticeable that the processing times for the LUNA User threads are lower com-
pared to the CTC++ processing times. Suggesting that the overhead is much lower and that
more resources are available for the controlling code. Even the LUNA OS threads processing
times are comparable with the CTC++ User thread processing times.

3. Conclusions

Good results are obtained using LUNA, it has fast context-switches and the commstime
benchmark is faster than the C++CSP2 and CTC++ implementations.

These benchmark results are good but the main requirement, the real-time behaviour of
the library, is much more important when controlling robotic setups. The simple robotic setup
indeed performed as expected; it reacts smoothly on the joystick commands. The maximum
and minimum cycle time values are close to the (requested) mean cycle time and the standard
deviation values are low, showing that the hard real-time properties of LUNA are good as
well.

The choice for QNX is not that obvious anymore when the provided rendez-vous chan-
nels are only usable between OS threads. Nonetheless, QNX provides a good platform to
build a real-time framework, there is enough support from the OS to keep implementation
tasks maintainable.

All requirements mentioned in the introduction are met. The first three of them are ob-
vious: LUNA is a hard real-time, multi-platform, multi-threaded framework.

Scalability is also met, even though LUNA was not yet tested with a big (robotic) setup,
early scalability tests showed that having 10,000 processes poses no problem.

The CSP execution engine is the only implemented execution engine at the moment. But

18 M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework

the requirement to not be dependent on it is met, as it is possible to turn it off and use the User
and OS threads in a non CSP related way. Using the provided interface it is also possible to
add other execution engines like a state machine execution engine.

Developing applications using LUNA is straightforward, for example one does not need
to keep the type of threads and channels in mind while designing the control application. It
is possible to just create the CSP processes, connect them with channels and let the LUNA
factories decide on the actual implementation types.

And finally, Debugging and Tracing is also not a problem, it is possible to enable the
debugging component if required. This component contains means for debugging and tracing
the other components as well as the application is being developed. It is also possible to send
the debug and trace information over a (local) network to a development PC, in order to have
run-time analysis or to store it for off-line analysis.

The required logger does not influence the executing application noticeable as it is a real-
time logger. It has predefined buffers to store the debug information and only when there is
idle CPU time available, it sends the buffered content over the network freeing up the buffer
for new data.

Especially logging the activation of processes is interesting, as this could provide valu-
able timing information, like the cycle time of a control loop or the jitter during execution.
So it is possible to influence the application with external events and directly see the results
of such actions. It is also possible to following the execution of the application by monitoring
the states (running, ready, blocked, finished) of the processes. This information could also
be fed back to the MDD tool, in order to show these states in the designed model of the
application.

For future work an implementation for Linux (and Windows) would be convenient. It is
much faster to try out new implementation on the development PC than on a target. Of course
this requires more work, hence the choice to support QNX first, but it certainly pays off by
reducing development time. The flexibility to easily move processes between the groups of
OS and User threads reduces development time even more, as the developer does not required
to change his code when moving processes.

Building the simple robotic setup took some time. There are only about 51 processes
to control this setup. Of course this could be less, but it takes too much time to develop
controller applications by hand, so code generation for LUNA is required. In order to attract
users to start using LUNA, also for educational purposes, code generation is also required.
So, soon after LUNA evolves into an initial/stable version, TERRA needs to be build as well,
to gain these advantages to properly use LUNA.

When TERRA and code generation are available, algorithms to optimize the model for
a specified target with known resources can be implemented. Before code generation, these
algorithms [19] can schedule the processes automatically in an optimal manner for the avail-
able resources. These scheduling algorithms are also interesting for performing timing anal-
ysis of the model, in order to estimate whether the model will be able to run real-time with
the available resources.

To see whether LUNA is capable of controlling setups larger than the example setup, it
is planned to control the Production Cell [22] with it. It is already partially implemented, but
the work is not completely finished yet.

Performing similar tests, as done in Section 2.3, really shows the advantages of using
LUNA. Another planned test with the Production Cell is to control it with Arduinos [23].
The Production Cell has 6 separate production cell units (PCUs), each PCU is almost a sep-
arate part of the setup. Using one Arduino for each PCU seems like a nice experiment for
distributed usage of LUNA. This would require support for a new platform within LUNA,
which does not use operating system related functionalities.

M.M. Bezemer et al. / LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 19

References

[1] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.
[2] D.S. Jovanović, B. Orlic, G.K. Liet, and J.F. Broenink. gCSP: a graphical tool for designing CSP systems.

In I. East, Jeremy Martin, P.H. Welch, David Duce, and Mark Green, editors, Communicating Process
Architectures 2004, volume 62, pages 233–252, Amsterdam, September 2004. IOS press.

[3] B. Orlic and J.F. Broenink. Redesign of the C++ Communicating Threads library for embedded con-
trol systems. In F. Karelse, editor, 5th PROGRESS Symposium on Embedded Systems, pages 141–156,
Nieuwegein, NL, 2004. STW.

[4] H. Kopetz. Real-Time Systems - Design Principles for Distributed Embedded Applications. Kluwer Aca-
demic Publishers, 1997.

[5] J.F. Broenink, Y. Ni, and M.A. Groothuis. On model-driven design of robot software using co-simulation.
In E. Menegatti, editor, SIMPAR, Workshop on Simulation Technologies in the Robot Development Pro-
cess, November 2010.

[6] M.A. Groothuis, R.M.W. Frijns, J.P.M. Voeten, and J.F. Broenink. Concurrent design of embedded control
software. In T. Margaria, J. Padberg, G. Taentzer, T. Levendovszky, L. Lengyel, G. Karsai, and C. Harde-
bolle, editors, Proceedings of the 3rd International Workshop on Multi-Paradigm Modeling (MPM2009),
volume 21 of Electronic Communications of the EASST journal. EASST, ECEASST, October 2009.

[7] N.C.C. Brown. C++CSP2: A Many-to-Many Threading Model for Multicore Architectures. In A.A.
McEwan, W. Ifill, and P.H. Welch, editors, Communicating Process Architectures 2007, pages 183–205,
July 2007.

[8] uClibc website, 2011. http://www.uclibc.org/.
[9] P.H. Welch, N.C.C. Brown, J. Moores, K. Chalmers, and B. Sputh. Integrating and Extending JCSP.

In A.A. McEwan, W. Ifill, and P.H. Welch, editors, Communicating Process Architectures 2007, pages
349–369, July 2007.

[10] JamaicaVM website, 2011. http://www.aicas.com/jamaica.html.
[11] OROCOS website, 2011. http://www.orocos.org/.
[12] ROS website, 2011. http://www.ros.org/.
[13] E.W. Dijkstra. Notes on structured programming. In O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, editors,

Structured programming, chapter 1, pages 1–82. Academic Press Ltd., London, UK, 1972.
[14] D.S. Jovanović. Designing dependable process-oriented software, a CSP approach. PhD thesis, University

of Twente, Enschede, The Netherlands, 2006.
[15] OpenWRT website, 2011. http://www.openwrt.org/.
[16] F. Fainelli. The OpenWrt embedded development framework. Free and Open source Software Developers’

European Meeting (FOSDEM), January 2008.
[17] QNX website, 2011. http://www.qnx.com.
[18] Mordor website, 2011. http://code.mozy.com/projects/mordor/.
[19] M.M. Bezemer, M.A. Groothuis, and J.F. Broenink. Analysing gcsp models using runtime and model

analysis algorithms. In P.H. Welch, H.W. Roebbers, J.F. Broenink, F.R.M. Barnes, C.G. Ritson, A.T.
Sampson, D. Stiles, and B. Vinter, editors, Communicating Process Architectures 2009, volume 67, pages
67–88, November 2009.

[20] B. Veldhuijzen. Redesign of the CSP execution engine. MSc thesis 036CE2008, Control Engineering,
University of Twente, February 2009.

[21] M. Charest and B. Stecher. Tick-tock - Understanding the Neutrino micro kernel’s concept of time, Part
II, April 2011. http://www.qnx.com/developers/articles/article_826_2.html.

[22] M.A. Groothuis and J.F. Broenink. HW/SW Design Space Exploration on the Production Cell Setup. In
P.H. Welch, H.W. Roebbers, J.F. Broenink, and F.R.M. Barnes, editors, Communicating Process Archi-
tectures 2009, Eindhoven, The Netherlands, volume 67 of Concurrent Systems Engineering Series, pages
387–402, Amsterdam, November 2009. IOS Press.

[23] Arduino website, 2011. http://www.arduino.cc/.

135

Bibliography
Alexandrescu, A. (2001a), Modern C++ design: generic programming and design patterns ap-

plied, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, chapter 8, ISBN 0-
201-70431-5.

Alexandrescu, A. (2001b), Modern C++ design: generic programming and design patterns ap-
plied, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, chapter 6, ISBN 0-
201-70431-5.

Anderson, J. H., S. Ramamurthy and K. Jeffay (1997), Real-time computing with lock-free shared
objects, ACM Transactions on Computer Systems, vol. 15, pp. 28–37.

Baase, S. and A. Gelder, van (2000), Computer Algorithms - Introduction to Design & Analysis,
Addison-Wesley, 3 edition.

Bennik, J. (2008), Mechatronic design of a humanoid head and neck, Msc Thesis 019CE2008,
Control Laboratory, University of Twente.

Berg, van den, L. (2006), Design of a Production Cell Setup, Msc Thesis 016CE2006, Control
Laboratory, University of Twente.

Bezemer, M., M. Groothuis and J. F. Broenink (2011a), Way of Working for Embedded Con-
trol Software using Model-Driven Development Techniques, in ICRA Workshop on Software
Development and Integration in Robotics (SDIR VI), Eds. D. Brugali, C. Schlegel and J. F.
Broenink, IEEE, IEEE, pp. 1 – 6.

Bezemer, M., R. Wilterdink and J. F. Broenink (2011b), LUNA: Hard Real-Time, Multi-Threaded,
CSP-Capable Execution Framework, in Communicating Process Architectures 2011, Limmer-
ick, volume 68 of Concurrent System Engineering Series, Ed. P. Welch, IOS Press BV, Amster-
dam, volume 68 of Concurrent System Engineering Series.

Boost (2011), Free peer-reviewed portable C++ source libraries.
http://www.boost.org/

Broenink, J., Y. Ni and M. Groothuis (2010a), On Model-driven Design of Robot Software using
Co-simulation, in SIMPAR, Workshop on Simulation Technologies in the Robot Development
Process, Ed. E. Menegatti, ISBN 978-3-00-032863.

Broenink, J. F., M. Groothuis, P. Visser and M. Bezemer (2010b), Model-Driven Robot-Software
Design Using Template-Based Target Descriptions, in ICRA 2010 workshop on Innovative
Robot Control Architectures for Demanding (Research) Applications, Eds. D. Kubus,
K. Nilsson and R. Johansson, IEEE, IEEE, pp. 73 – 77.

Broenink, J. F., M. A. Groothuis, P. M. Visser and B. Orlic (2007), A Model-Driven Approach to
Embedded Control System Implementation, in 2007 Western Multiconference on Computer
Simulation, SCS, San Diego, CA.

Brown, N. (2007), C++CSP2: A Many-to-Many Threading Model for Multicore Architectures, in
Communicating Process Architectures 2007, Eds. A. McEwan, W. Ifill and P. Welch, pp.
183–205, ISBN 978-1586037673.

Buit, E. (2005), PC104 stack mechatronic control platform, MSc thesis 009CE2005, Control
Engineering, University of Twente.

C++CSP2 (2009), Easy Concurrency for C++.
http://www.cs.kent.ac.uk/projects/ofa/c++csp/

Charest, M. and B. Stecher (2011), Tick-tock - Understanding the Neutrino micro kernel’s
concept of time, Part II,
http://www.qnx.com/developers/articles/article_826_2.html.

Control Engineering RJW Wilterdink

http://www.boost.org/
http://www.cs.kent.ac.uk/projects/ofa/c++csp/
http://www.qnx.com/developers/articles/article_826_2.html

136 Design of a hard real-time, multi-threaded and CSP-capable execution framework

Controllab Products (2011), 20-sim - Graphical modeling and simulation tool.
http://www.20-sim.com/

Cooling, J. (2000), Software Engineering for Real-Time Systems, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, ISBN 0201596202.

CORBA (2011), Common Object Request Broker Architecture.
http://www.omg.org/spec/CORBA/3.1/

Cygwin (2011), Cygwin - ports of the popular GNU development tools for Microsoft Windows.
http://www.cygwin.com/

DIAPM (2011), RealTime Application Interface for Linux.
http://www.rtai.org

Dijkstra, E. (1972), Notes on structured programming, in Structured programming, Eds.
O. Dahl, E. Dijkstra and C. Hoare, Academic Press Ltd., London, UK, chapter 1, pp. 1–82,
ISBN 0-12-200550-3.

Douglass, B. P. (2002), Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, ISBN
0201699567.

Fainelli, F. (2008), The OpenWrt embedded development framework, Free and Open source
Software Developers’ European Meeting (FOSDEM).
http://downloads.openwrt.org/people/florian/fosdem/openwrt_cfp_
fosdem2008.pdf

Formal Systems (Europe) Limited (2008), FDR2.
http://www.fsel.com/software.html

Groothuis, M. (2004), Distributed HIL simulation for BodeRC, MSc thesis 020CE2004, Control
Engineering, University of Twente.

Groothuis, M. A., J. J. Zuijlen, van and J. F. Broenink (2008), FPGA based Control of a
Production Cell System, in Communicating process architectures 2008 : WoTUG-31, volume
66 of Concurrent Systems Engineering Series, IOS Press, Amsterdam, volume 66 of
Concurrent Systems Engineering Series, pp. 135–148, dOI (not active):
10.3233/978-1-58603-907-3-135.

GSL (2011), GNU Scientific Library.
http://www.gnu.org/software/gsl/

Hilderink, G., J. Broenink and A. Bakkers (1997), Communicating Java Threads, in Parallel
Programming and Java, Proceedings of WoTUG 20, volume 50, IOS Press, Netherlands,
University of Twente, Netherlands, volume 50, pp. 48–76.

Hilderink, G., J. Broenink and A. Bakkers (1999), Communicating Threads for Java, in
Architectures, Languages and Techniques, Ed. B. Cook.

Hoare, C. A. R. (1985), Communicating Sequential Processes, Prentice Hall International.

IEEE Std 1003.1 (2004), IEEE Standard for Information Technology - Portable Operating
System Interface (POSIX). Base Definitions, IEEE Std 1003.1, 2004 Edition. The Open Group
Technical Standard Base Specifications, Issue 6. Includes IEEE Std 1003.1-2001, IEEE Std
1003.1-2001/Cor 1-2002 and IEEE Std 1003.1-2001/Cor 2-2004. Base,
doi:10.1109/IEEESTD.2004.94570.

Jones, E. (2003), Implementing a Thread Library on Linux,
http://www.evanjones.ca/software/threading.html.

Jovanović, D., B. Orlic, G. Liet and J. Broenink (2004), gCSP: A Graphical Tool for Designing CSP
Systems, in Communicating Process Architectures 2004, volume 62, Eds. I. East, J. Martin,
P. Welch, D. Duce and M. Green, IOS press, Amsterdam, volume 62, pp. 233–252, ISBN
1-58603-458-8, ISSN 1383-7575.

RJW Wilterdink University of Twente

http://www.20-sim.com/
http://www.omg.org/spec/CORBA/3.1/
http://www.cygwin.com/
http://www.rtai.org
http://downloads.openwrt.org/people/florian/fosdem/openwrt_cfp_fosdem2008.pdf
http://downloads.openwrt.org/people/florian/fosdem/openwrt_cfp_fosdem2008.pdf
http://www.fsel.com/software.html
http://www.gnu.org/software/gsl/
http://www.evanjones.ca/software/threading.html

Bibliography 137

Jovanovic, D. S., B. Orlic, G. K. Liet and J. F. Broenink (2004), Graphical Tool for Designing CSP
Systems, in Communicating Process Architectures 2004, pp. 233–252, ISBN 1-58603-458-8.

Kopetz, H. (1997), Real-Time Systems - Design Principles for Distributed Embedded
Applications, Kluwer Academic Publishers, ISBN 0-7923-9894-7.

Lethbridge, T. and R. Laganiere (2001), Object-Oriented Software Engineering: Practical
Software Development using UML and Java, McGraw-Hill, Inc., New York, NY, USA, 1
edition, ISBN 0077097610.

Lootsma, M. (2008), Design of the global software structure and controller framework for the
3TU soccer robot, Msc Thesis 014CE2008, Control Laboratory, University of Twente.

Masmano, M., I. Ripoll, A. Crespo and J. Real (2004), TLSF: A New Dynamic Memory Allocator
for Real-Time Systems, in Proceedings of the 16th Euromicro Conference on Real-Time
Systems, IEEE Computer Society, Washington, DC, USA, pp. 79–86, ISBN 0-7695-2176-2,
doi:10.1109/ECRTS.2004.35.

Mesa electronics (2011), Mesa Anything I/O FPGA cards,
http://www.mesanet.com/fpgacardinfo.html.

Meyers, S. (2005a), Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd
Edition), Addison-Wesley Professional, ISBN 0321334876.

Meyers, S. (2005b), Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd
Edition), Addison-Wesley Professional, chapter 47, ISBN 0321334876.

Meyers, S. (2010), Effective C++ in an Embedded Environment, volume 1, Artima Press.
http://www.aristeia.com/c++-in-embedded.html

Michael, M. M. and M. L. Scott (1996), Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms, in Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, ACM, New York, NY, USA, PODC ’96, pp. 267–275, ISBN
0-89791-800-2.

Molanus, J. (2007), Redesign of the Linux driver for the Mesa Anything I/O cards, Pre-doctoral
023CE2007, Control Engineering, University of Twente.

Molanus, J. (2008), Feasibility analysis of QNX Neutrino for CSP based Embedded Control
Systems, MSc thesis 032CE2008, Control Engineering, University of Twente.

Mozy (2011), Mordor website, http://code.mozy.com/projects/mordor/.

Nissanke, N. (1997), Realtime systems, Prentice Hall series in computer science, Prentice Hall,
ISBN 978-0-13-651274-5.

Open Group, The (1998), Unix98 mark - the mark for systems conforming to version 2 of the
Single UNIX Specification integrates the industry’s Open Systems standards.
http://www.unix.org/unix98.html

OpenWrt (2011), OpenWrt buildroot - a GNU/Linux distribution for embedded devices,
http://www.openwrt.org/.

Orlic, B. and J. Broenink (2004), Redesign of the C++ Communicating Threads Library for
Embedded Control Systems, in 5th PROGRESS Symposium on Embedded Systems, Ed.
F. Karelse, STW, Nieuwegein, NL, pp. 141–156.

Orocos (2011), Open Robot Control Software.
http://www.orocos.org/

Peeters, K. (2009), tree.hh: an STL-like C++ tree class, website.

Petters, S. and D. Thomas (2005), RoboFrame - Softwareframework for mobile autonomous
robotic systems, Master’s thesis, Technical University Darmstadt.

POCO (2010), The POCO C++ Libraries overview v1.3.
http://pocoproject.org/documentation/PoCoOverview.pdf/

Control Engineering RJW Wilterdink

http://www.mesanet.com/fpgacardinfo.html
http://www.aristeia.com/c++-in-embedded.html
http://code.mozy.com/projects/mordor/
http://www.unix.org/unix98.html
http://www.openwrt.org/
http://www.orocos.org/
http://pocoproject.org/documentation/PoCoOverview.pdf/

138 Design of a hard real-time, multi-threaded and CSP-capable execution framework

POCO (2011), POCO C++ libraries.
http://www.pocoproject.org/

QNX (2010), Writing a Resource Manager, http:
//www.qssl.com/developers/docs/6.3.2/neutrino/prog/resmgr.html.

QNX Software Systems (2011), The QNX hard real-time operating system.
http://www.qnx.com

Reilink, R. (2008), Realtime Stereo Vision Processing for a Humanoid, Msc Thesis 030CE2008,
Control Laboratory, University of Twente.

Risler, M. and O. Stryk, von (2008), Formal Behavior Specification of Multi-Robot Systems
Using Hierarchical State Machines in XABSL, in AAMAS08-Workshop on Formal Models and
Methods for Multi-Robot Systems, Estoril, Portugal.

RoboCup (2011), robot soccer competition.
http://www.robocup.org

RoboFrame (2010), A software framework tailored for heterogeneous teams of autonomous
mobile robots.
http://www.roboframe.info

ROS (2011), Robotic Operating System.
http://www.ros.org

Roscoe, A. W., C. A. R. Hoare and R. Bird (1997), The Theory and Practice of Concurrency,
Prentice Hall PTR, Upper Saddle River, NJ, USA, ISBN 0136744095.

Shann, C.-H., T.-L. Huang and C. Chen (2000), A Practical Nonblocking Queue Algorithm
Using Compare-and-Swap, in Proceedings of the Seventh International Conference on
Parallel and Distributed Systems, IEEE Computer Society, Washington, DC, USA, ICPADS
’00, pp. 470–, ISBN 0-7695-0568-6.

Silberschatz, A., P. B. Galvin and G. Gagne (2004), Operating System Concepts, John Wiley &
Sons, ISBN 0471694665.

Steen, van der, H. (2008), Design of animation and debug facilities for gCSP, MSc thesis
036CE2008, Control Engineering, University of Twente.

Steen, van der, H., M. Groothuis and J. Broenink (2008), Designing Animation Facilities for
gCSP, in Communicating Process Architectures 2008 : WoTUG-31, Concurrent Systems
Engineering Series, p. 447, dOI (not active): 10.3233/978-1-58603-907-3-447.

Sutter, H. (2009), Volatile vs volatile.
http://www.drdobbs.com/high-performance-computing/212701484

Tsigas, P. and Y. Zhang (2001), A Simple, Fast and Scalable Non-Blocking Concurrent FIFO
Queue for Shared Memory Multiprocessor Systems, in in Proceedings of the 13th ACM
Symposium on Parallel Algorithms and Architectures, ACM, pp. 134–143.

Veldhuijzen, B. (2009), Redesign of the CSP execution engine, MSc thesis 036CE2008, Control
Engineering, University of Twente.

Visser, L. (2008), Motion control of a humanoid head, Msc Thesis 016CE2008, Control
Laboratory, University of Twente.

Zuijlen, van, J. (2008), FPGA-based control of the production cell using Handel-C, Technical
Report 008CE2008, Control Laboratory, University of Twente.

RJW Wilterdink University of Twente

http://www.pocoproject.org/
http://www.qssl.com/developers/docs/6.3.2/neutrino/prog/resmgr.html
http://www.qssl.com/developers/docs/6.3.2/neutrino/prog/resmgr.html
http://www.qnx.com
http://www.robocup.org
http://www.roboframe.info
http://www.ros.org
http://www.drdobbs.com/high-performance-computing/212701484

	Summary
	Samenvatting
	Preface
	Contents
	1 Introduction
	1.1 Context
	1.2 Goals and approach of the project
	1.3 Evaluation objectives
	1.4 Thesis outline

	2 Background
	2.1 Frameworks versus libraries
	2.2 Hardware
	2.3 Operating Systems
	2.4 Real-time
	2.5 QNX
	2.6 Software testing
	2.7 Design methodology

	3 Analysis
	3.1 Domain analysis
	3.2 Requirements
	3.3 Conclusions

	4 Framework and library research
	4.1 Introduction
	4.2 Approach
	4.3 Orocos
	4.4 RoboFrame
	4.5 CT library
	4.6 Boost
	4.7 POCO
	4.8 Conclusions

	5 Design & implementation
	5.1 Architecture and approach
	5.2 Detailed designs of components
	5.3 Other components
	5.4 CSP component
	5.5 Conclusions

	6 Evaluation
	6.1 Qualitative evaluation
	6.2 Quantitative evaluation

	7 Conclusions & recommendations
	7.1 Conclusions
	7.2 Recommendations

	A Appendix - Domain analysis
	A.1 Jiwy
	A.2 Production Cell
	A.3 Humanoid Head
	A.4 TUlip

	B Appendix - C++ language exceptions
	C Appendix - Atomic component
	D Appendix - Timers and counters
	D.1 Time Stamp Counter

	E Appendix - Threading use cases
	F Appendix - CSP Threading use case
	G Appendix - QNX AnyIO driver
	H Appendix - RTLogger examples
	H.1 Recording RTLogger information
	H.2 Visualizing CSP traces
	H.3 Visualizing (control) signals with 20-sim

	I Appendix - LUNA CPA 2011 conference paper
	Bibliography

