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Summary 

The River Rhine has periods of low flows during the year. Low flows may cause difficulties for 

water demand. Insight in low flows could help to understand the discharge behavior and 

reduce damage. The main objective of this study is to forecast the discharge at Lobith 14 days 

ahead during low flow conditions using an Artificial Neural Network (ANN) model. In this study 

a correlation analysis is carried out, and ANN models are developed and applied to simulate 

the sub-basin discharges and the Rhine discharge at Lobith. 

The Rhine basin upstream of Lobith is divers and therefore, it is sub-divided into seven sub-

basins. The sub-basins are East Alpine, West Alpine, Middle Rhine, Neckar, Main, Mosel and 

Lower Rhine. For all sub-basins an overlapping period of 16 years of daily data series is 

available. These data series include information about the discharge, precipitation, 

evapotranspiration, groundwater storage, snow depths and lake levels. 

The correlation analysis is performed to determine the linear relation between the discharge 

at the outlet of each sub-basin during low flows and a single low flow indicator. The outcomes 

of the correlation analysis and forecasted rainfall have been used to define the input for the 

ANN per sub-basin to simulate low flows. Finally, low flows at Lobith are simulated using an 

ANN model and the simulated discharges of five sub-basins. 

The results of the correlation analysis show good correlations for the Alpine sub-basins (East 

Alpine: 0.98 and West Alpine: 0.81), but relatively low correlations for the rainfed sub-basins 

(Neckar: 0.67, Main: 0.57 and Mosel: 0.68). The correlations for the Middle and Lower Rhine 

are unreliable, because of poor discharge data. The simulated low flows per sub-basin resulted 

in good Nash-Sutcliffe Efficiencies (NSE) for the Alpine sub-basins and the Mosel for the test 

phase (East Alpine: 0.96, West Alpine: 0.83 and Mosel: 0.77). The Neckar and the Main have a 

NSE of just 0.48 and 0.23. The independent test phase of the ANN for Lobith shows a low 

performance, namely a NSE of 0.32. The results for the training and the validation period are 

much better with a NSE for Lobith of 0.75 and 0.73 respectively. 

The results should be interpreted taking into account that perfect weather forecasts for rainfall 

have been used to train the ANNs. And discharges of the sub-basins Middle Rhine and Lower 

Rhine have been neglected. Discrepancy of rainfall in the Middle Rhine and Lower Rhine sub-

basins in perspective to the other rainfed sub-basins will cause a rise of the actual discharge at 

Lobith. However this will not be seen in the simulation at Lobith, because of these basins will 

be left out of the input. 

The performance at Lobith is poor. However the correlations and simulated discharges for the 

Alpine basins are very good and during low flows 70 percent of the flow at Lobith originates 

from the Alps. This indicates the potential of using ANN models for forecasting low flows with 

a lead time of 14 days. Future work should focus on improving and refining the input data and 

ANN modeling in order to improve the low flow forecasts at Lobith.  
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1 Introduction 
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1.1 Background 

A human consists of two thirds of water and it is dependent of fresh water. So the majority of 

the world’s population lives nearby rivers and lakes to fulfill the fresh water need. The people 

live mostly in cities which lay along waterways (Moyle and Leidy, 1992). Around 60 million 

people live in the Rhine basin (Huisman et al., 2000). 

Because of the large amount of inhabitants of the River Rhine basin, the dependence on the 

river is high and will cause claims on its water. The River Rhine is used for multiple purposes 

(Tielrooij, 2000) like navigation, cooling water for industry, irrigation water for agriculture, 

defense against salinization, support nature, residing, recreation, and as a source for drinking 

water for the Netherlands (Heezik, 2008). 

Low flows have consequences for the users. A period of low flows causes water shortages for 

the agriculture, so the harvest is lower and the income of the agriculture decreases. The lower 

discharges have also a negative effect for navigation and for the cooling water supply (Rutten 

et al., 2008). During low flows the navigation depth is no longer guaranteed, so vessels could 

no longer carry full load. The costs per unit for the shipment will increase. The power 

companies use river water for cooling purposes. During the summer this cooling function is 

harder, because of two reasons. First the amount of river water is low during the summer. 

Secondly the temperature of the river water is higher. Because of a restriction in the maximum 

temperature of river water, the cooling capacity is limited (Rutten et al., 2008). 

The discharge of the Rhine is also crucial for the Dutch fresh water supply. River water is used 

for drinking water. The IJsselmeer is an important fresh water basin in the northern part of the 

Netherlands.  The basin is filled by the IJssel River, which is a downstream branch of the Rhine. 

During droughts the water of the IJsselmeer could be used for the supply of the surrounding 

areas. 

Another problem that is affected by low flows is the salt intrusion in vertical and in horizontal 

direction. The salty groundwater layer lays only a few meters under the surface level near the 

coast. In periods of droughts the fresh water pressure from above decreases, so the 

environment could be affected by the salty groundwater. The other way salt intrusion is a 

problem are the transitions between fresh and brackish surface water. For example, the sluices 

of IJmuiden require an amount of fresh water to protect the inland water quality. Also the 

river mouth requires a huge amount of fresh water to protect the environmental quality and 

sometimes also the fresh water supply in the coastal regions (Oude Essink, 2001). 

For a lot of these harmed sectors it would be useful to have a better understanding of the low 

flows. An early estimation of the low flow could help the management. If the estimation of the 

low flows has a good quality, the sectors could act on a possible low flow in time (Rutten et al., 

2008). 

In the Netherlands the river flows could be steered well (Schielen et al., 2007). When during 

low flow periods rainfall events occur in the Alps and Germany, there will be a raise of the 

discharge (Landelijke Commissie Waterverdeling, 2011). This quantity of water could be 

allocated in the Netherlands. Insight in the quantity and the timing is than of major 

importance. A lead time of 14 days provides time to discuss the water allocation.  

Low flow forecasts are important for many users. For navigation short-term forecasts about a 

week or two weeks ahead are required. For industries, recreation, and other users long-term 

indications of low flows would be useful (De Bruin and Passchier, 2006). 
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Hydrological rainfall-runoff models could help to understand low flows behavior of a river. 

There are three types of models, which could be categorized as conceptual, physically based 

and data-driven models (Evans and Schreider, 2002). Each category includes many models and 

each model could be adapted to a study area. For example HBV and TOPMODEL are 

conceptual models (Seibert, 1999). The HBV model has been applied to the Rhine River basin 

for a schematization with 134 sub-basins. This system includes a hydraulic model (SOBEK) for 

the routing of the simulated discharges to Lobith (Van de Langemheen et al., 2002). Te Linde 

used FEWS RHINE for low flow modeling. The outcomes were poor, even for forecasts with a 

short lead time. Examples of data driven models are the Artificial Neural Network model (ANN) 

and Model Trees (Solomatine and Dulal, 2010). An example of a physically based discharge 

model within GIS is the LISFLOOD model (De Roo et al., 2001). A disadvantage of this model 

type is the amount of data and computer capacity (De Roo et al., 2001). 

 

The model which will be used should fulfill two major criteria. First it should forecast the 

discharge properly and secondly it has to include low flow indicators. The second function 

helps to understand the discharge behavior better. The main objective is to find a proper 

hydrological forecast model which has good performances during low flows. The reason why 

low flows appear and when they appear are of the same importance. Hydrologists would like 

to understand what is happening (De Vos and Rientjes, 2008). 

There are already signals why low flows appear. Rijkswaterstaat usually issues drought 

warnings for the Netherlands in the spring and summer. They use indicators such as the 

amount of Alpine snow and the storage in the Alpine lakes. Rijkswaterstaat connect these low 

flow indicators to a Lobith discharge (Landelijke Commissie Waterverdeling, 2011). Also a 

connection is created between the behavior of low flows and indicators. 

For this purpose the low flow correlation is a good method to detect a connection between 

indicator and the sub-basin discharge (Demirel et al., 2011). By analyzing the correlation using 

different lag and temporal resolution it is possible to create a low flow parameter (Demirel et 

al., 2011). These parameters are comparable as the parameters mentioned by Rijkswaterstaat, 

but the parameters of this study could differ in temporal and spatial resolution. 

The appropriate lag and temporal resolution of the indicators will depend on the basin 

characteristics and lead time. The use of a specific lag and a temporal resolution for the 

indicators cause that many indicators do not fit in most models any longer. The appropriate lag 

and temporal resolution will differ for each indicator. So it is hard to combine these indicators 

into one model. Therefore the number of appropriate models decrease. To deal with the 

variability of indicators an Artificial Neural Network model (ANN model) is a good option. 

ANN models can learn to ignore irrelevant inputs (Southall et al., 1995). A strong point of ANNs 

is that they could deal with input data without knowing exactly of what is happening (Southall 

et al., 1995). A huge disadvantage of ANNs is that they are hard to interpret. An ANN is a black 

box model where the interactions inside the model have no physical meaning or interpretation 

(Benitez et al., 1997). So possibly it is good to interpolate, but is hard to extrapolate results. 

Therefore it is important that the ANN generates good outcomes. 

The added value of this study is that low flow indicators are combined in an ANN model to 

forecast low flows at Lobith. The development of a 14 days ahead forecast model could give 

insight in the longer lead time with also using an ANN model. If the modeling process is 
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understood, the ANN approach could be improved further. So this study is a setup for future 

research, so a new study could start at a higher level. 
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1.2 Research objective and central questions 

The main objective is to forecast the discharge at Lobith 14 days ahead during low flow 

conditions with an Artificial Neural Network model. 

 

As discussed before it is hard to choose a model in advance. However the use of low flow 

indicators and the performances of model types in the past help to make a decision. ANN is a 

promising modeling technique and it can include the identified indicators. 

The model will be run without the seasonal weather forecasts or other forecasted data for 

checking the low flow performances. The time was limiting this implementation. Perfect 

forecasted data will be used instead of real forecasted data. The comparison between 

modeled and measured discharge will only be carried out during during low flows when the 

discharge at Lobith is below a threshold. This is because a model could not be accurate for all 

objective functions (Madsen, 2000). Therefore a threshold will be implemented, which defines 

low flows and will be used in the objective functions. This threshold helps the model to train 

an objective function for low flows effectively (Madsen, 2000). 

 

The forecasted discharge could be very uncertain, caused by many aspects. Two main reasons 

for a difference between the observed and simulated low flows can be: 

• Measurement errors – At Lobith and at other gauging stations the discharge is measured 

over a long period of time. These measurements have an unknown uncertainty range. For 

this study these uncertainties will be assumed negligible. 

• Stationarity – The sub-basins and the river change in time. The historic discharge data series 

have a length of more than over a one hundred year. Other data series are longer than a 

few decades. For this study the overlapping data between 1989 and 2006 will be used.Even 

in this time the river and the sub-basins might have changed, but these changes will be 

neglected in the models, so this study assumes  a stationary situation. 

 

This study includes the following steps. First the indicators will be determined. With this 

information the ANN model could be set-up and the model training and validation could start. 

The final part is to draw conclusions and reflect on the study. The research questions are listed 

below. 

• Question 1 - What are the indicators for low flows at Lobith and have to be part of the ANN 

model? 

• Question 2 - What performance can be achieved in estimating low flows at the five sub-

basin outlets and at Lobith using ANN? 
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1.3 Research approach and outline 

This study consists of three steps which lead to the forecasted low flows at Lobith. The first 

step is the correlation analysis. The analysis is about the relation between low flow indicators 

and the discharges of the sub-basins during low flows. The results of the correlation analysis 

are part of answering research question 1. The second step includes the ANN modeling for the 

sub-basins. The inputs of the models are based on the results of the correlation analysis and 

the outputs of the models are the sub-basin discharges. These modeled sub-basin discharges 

are the input for the ANN model for the discharge at Lobith. These ANN models and resulting 

performances will help to answer research questions 2 and 3. 

 

Chapter 2 is about the Rhine basin upstream of Lobith and the available data. The Rhine basin 

is diverse and needs to be divided into smaller sub-basins. Chapter 3 includes the model 

framework. The implementation of the correlation analysis and the ANN models will be 

discussed stepwise. Chapter 4 contains the results of the three modeling steps. The chapter 

starts with the appropriate input for the ANN models as a result of the correlation analysis. 

Then the forecasted discharges for the five sub-basins and the forecasted discharge at Lobith 

will be described. Chapter 5 is about the discussion of the consequences of the model choices 

and the results. Chapter 6 combines the findings of the study into conclusions and 

recommendations. 
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2 Study area and data 
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2.1 Study area 

The River Rhine enters the Netherlands at Lobith. The Rhine River discharge at the Dutch-

German border originates from upstream areas in Switzerland, Liechtenstein, small parts of 

Italy and Austria, France, Luxembourg, Germany, and a small part of Belgium (Grabs et al., 

1997). In this section the upstream basin will be split into seven sub-basins, because the area is 

too divers to aggregate all processes into one major basin (Demirel et al., 2011). 

Figure 1 shows the sub-division of the Rhine basin. The river Rhine originates in the Alps. 

During the late summer the discharge at Lobith consist of 70 percent of Alpine water (Grabs et 

al., 1997). The Alpine regions have major stores, for example large lakes, snows packages and 

glaciers (Grabs et al., 1997). The division in the Alps is based on the location of the major Lake 

Constance (or: Bodensee) (Demirel et al., 2011). This lake has a large buffer function (Grabs et 

al., 1997). The upstream part has been named East Alpine. The rest of the Alpine area is West 

Alpine (Demirel et al., 2011). The river Aare covers the largest area of West Alpine. 

The non-Alpine region has been split into five regions (Middle Rhine, Neckar, Main, Mosel and 

Lower Rhine). The Middle Rhine and the Lower Rhine are combinations of smaller sub-basins 

and have a discharge inlet. The Neckar, Main and Mosel are sub-basins without an inlet. All 

five sub-basins are rainfall-dominated sub-basins. The sub-division of the Rhine basin upstream 

of Lobith has been taken from Demirel et al. (2011). 

  

Figure 1 - Sub-divisions of the Rhine River basin upstream of Lobith 

  



 

  - 9 - 

2.2 Data collection and availability 

For the 32 indicators in the seven sub-basins there is an overlap of 16 years of data. These 32 

indicators are specified in Table 1. The two Alpine sub-basins have 6 indicators and the 5 

rainfed sub-basins have 4 indicators. Together it is 32. Table 1 shows the sources of the data. 

Table 2 contains the start date and the end date of the data availability of each indicator. In 

this table the time period used for the study becomes visible with the dark blue color. 

Table 1 - Data resources 

  

 

Table 2 - Data availability 

  

  

Data Index
Spatial 

resolution

Number of stations 

or sub-basins
Period

Temporal 

resolution
Source

Discharge Q Point 172 1974-2008 Daily GRDC-Koblenz

Precipitation P
Sub-

basins
134 1951-2006 Daily BfG-Koblenz

Evatranspiration ET
Sub-

basins
134 1950-2006 Daily BfG-Koblenz

Groundwater 

levels
G Point 1402 1986-2009

Weekly, 

monthly

German states 

and BAFU.ch

Snow S Point 40 1978-2008
Daily, 

monthly
SLF.ch

Lake levels L Point 11 1978-2008 Daily BAFU.ch

Sta rt End

Tota l  length 1900-11-01 2009-10-07

Overlapping length 1990-06-28 2006-12-31 ##

##

Basin Indicator Start End

Ba si n 1 Q 1957-01-01 2008-12-31

Ea st Al pine P 1951-01-01 2006-12-31

E 1950-11-01 2006-12-31

G 1989-01-02 2009-07-20

S 1978-12-23 2009-03-31

L 1978-01-01 2008-12-31

Ba si n 2 Q 1935-01-01 2008-12-31

Wes t Alpine P 1951-01-01 2006-12-31

E 1950-11-01 2006-12-31

G 1989-01-02 2009-07-01

S 1978-12-23 2009-03-31

L 1978-01-01 2008-12-31

Ba si n 3 Q 1963-11-01 2008-12-31

Mi ddle  Rhine P 1951-01-01 2006-12-31

E 1950-11-01 2006-12-31

G 1980-01-07 2009-04-27

Ba si n 4 Q 1950-11-01 2008-12-31

Neckar P 1951-01-01 2006-12-31

E 1950-11-01 2006-12-31

G 1990-06-28 2009-04-21

Ba si n 5 Q 1963-11-01 2008-12-31

Ma in P 1951-01-01 2006-12-31

E 1950-11-01 2006-12-31

G 1974-06-15 2009-02-15

Ba si n 6 Q 1900-11-01 2008-12-31

Mos el P 1951-01-01 2006-12-31

E 1950-11-01 2006-12-31

G 1978-02-08 2009-10-07

Ba si n 7 Q 1930-11-01 2008-12-31

Lower Rhine P 1951-01-01 2006-12-31

E 1950-11-01 2006-12-31

G 1974-08-05 2009-02-23

Lobi th Q 1901-01-01 2009-06-18

= No da ta  a va i la bl e

= Da ta  overlap

=Data ava i l able

Plot of the data overlap
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3 Methods 
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3.1 Modeling framework and modeling objectives 

The low flows at Lobith using ANN could not be modeled into one single step. The Rhine basin 

is too divers and this requires a division into sub-basins (section 2.1). The basin is well gauged 

and a long daily record is available (section 2.2). A correlation analysis is a good method to 

determine low flow indicators (Demirel et al., 2011). An ANN model could deal well with 

irregular input and has a good performance (chapter 1). This study has a three step approach 

to model low flows at Lobith (Figure 2). 

  

Figure 2 - The schematization of the modeling 

 

Modeling objective for the correlation analysis (step 1) 

First the number of input data will be reduced by using the results of the correlation analysis 

(section 3.2), because a large number of inputs will lead to a insufficient training and the 

training will not converged to the optimum (Dawson and Wilby, 2001). The modeling objective 

is to analyze the linear relation between sub-basin indicators and sub-basin flows based on low 

flows at Lobith. The linear relation is a good method to select appropriate data for the 

simulation of low flows (Demirel et al., 2011). The discharges at the sub-basin outlet will be 

linked to a low flow travel time to Lobith. If a low flow day has been measured at Lobith, this 

day corresponds to the sub-basin discharge a specific days before. These sub-basin discharge 

has been used in the low flow analysis. 

Modeling objective for the sub-basins (step 2) 

The modeling objective is to simulate the discharge at the outlet of sub-basin based on low 

flows at Lobith using an ANN model and using relevant input from the correlation analysis. The 

output of the correlation is the input for the first ANN which describes the sub-basin flows 

(section 3.3). 

Modeling objective for Lobith (step 3) 

The modeling objective is to simulate the low flows at Lobith using an ANN model and using 

simulated discharges from the sub-basin modeling (section 3.3). 

 

 

 

Basin 

division 

Section 2.1 

Data 

availability 

Section 2.2 

Model 

choice 

Section 1.1 

Step 1: 

Correlation 

analysis 

Section 3.2 

Step 2: 

ANN sub-basin 

modeling 

Section 3.3 

Step 3: 

ANN Lobith 

modeling 

Section 3.3 
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3.2 Correlation analysis 

ANN models need as little input as possible to minimize the calculation time (Dawson and 

Wilby, 2001). The input information should be reduced. A correlation analysis is a relative 

simple way to analyze relations between inputs and outputs. And to reduce the number of 

inputs to the ANN (Demirel et al., 2011). The combined inputs have a hydrological meaning 

(Demirel et al., 2011). The correlation between an indicator and the sub-basin outflow will be 

determined as follows: 

 

 � =
∑������	
���
��
�	
��

�∑������	
��� ∑�
��
�	
���    (1) 

 

In this formula is Qi the sub-basin discharge for each time step; Qmean is the average of the sub-

basin discharges; Ii is the indicator value for each time step; and Imean is the average indicator 

value. 

In the correlation analysis is a set of combinations for the lag and temporal resolution will be 

tested. The lag time holds information on the response time of the basin including 

concentration time and travel time whereas the temporal resolution holds information on the 

scale of the water volume entering or leaving the system (Demirel et al., 2011). The lag and 

temporal resolution summarizes the indicator data to one input for each time step. The plot of 

Figure 3 shows the conceptual working of the lag and temporal resolution. 

 

  

Figure 3 - Explanation of the support and lag time 

 

This correlation analysis is about the linear dependency between a sub-basin low flow 

indicator and the produced discharge of a sub-basin. The selection of a low flow day in s sub-

basin depends on the measured discharge at Lobith. When the flow is below the low flow 

threshold at Lobith (LFT), the day counts as a low flow day. The LFT is the discharge which has 

been exceeded in 75 percent of the time. The discharge of a sub-basin needs time to travel 

towards Lobith. In reality the travel time of a discharge wave between the sub-basin outlet and 

Lobith is not fixed, but in this study the travel time from the sub-basin outlets to Lobith are 

fixed parameters, because ANN for Lobith requires a continuous daily input. During low flows 

the West Alpine discharge needs around 7 days to reach Lobith after it has passed the West 

Alpine outlet at Untersiggenthal. This daily rounded travel time is based on an average velocity 

of 1 m/s. For the East Alpine discharge the travel time is also around 7 days. For the Neckar 

this is 5 days, for the Main this is around 4 days and for the Mosel around 3 days. So this 

Lead time basin 

Travel time basin 

outlet to Lobith 

Discharge data basin 

t=0 t=14 
time (d) 

Indicator data basin Averaging 

Lag time 

Discharge data Lobith 

Temporal resolution 
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means the lead time needed for a sub-basin is the forecast time of 14 days at Lobith minus the 

travel time to a sub-basin outlet. 

 

Table 3 - Low flow travel times and the lead time inside the sub-basins  

 

 

The sub-basin lead times could be found in table Table 3. The conceptual approach for the 

correlation analysis is shown in Figure 4. The correlation analysis between the flow at the sub-

basin outlet and a indicator start with three daily data series (indicator, daily discharge record 

at Lobith and the sub-basin discharge). In this study the overlapping data between 1989 and 

2006 will be used. For this period a low flow threshold will be determined. This is the discharge 

which will be exceeded in 75 percent of the time (Q75 Lobith). The three days discharge below 

this threshold will be marked as low flow days at Lobith. This flow is a composition of the 

discharge of the sub-basins. The low flow days at Lobith, corrected with the travel time, 

determine the low flow days at the basin outlet. The three days discharge at the sub-basin 

outlet is ready for the correlation study. The daily indicator data has for every combination of 

the lag and temporal resolution. For each combination the correlation could be calculated. This 

will result in a table with correlation and could be visualized as a plot. 

  

  

Figure 4 - The approach to calculate the correlation 

 

Basin Outlet Rheinkilometer

Distance to 

Lobith* Travel time** Lead time***

[-] [-] [km] [km] [days] [days]

Basin 1 - East Alpine Neuhausen 49 813 9 5

Basin 2 - West Alpine Untersiggenthal 102 760 9 5

Basin 4 - Neckar Rockenau 428 434 5 9

Basin 5 - Main Frankfurt Osthafen 497 365 4 10

Basin 6 - Mosel Cochem 592 270 3 11

**  The forecast time inside a basin based on the 14 days ahead discharge at Lobith minus the travel 

* Lobith is located 862 kilometer downstream of Lake Constanz (= Rheinkilometer 0).

**The travel time is the rounded time in days that the discharge needs during low flows to travel 

between the basin outlet and Lobith based on an average speed of 1 m/s.

The used travel times were determined by the distance on the road. These distances 

underestimates the actual distances for the Alpine basins with 2 days.
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3.3 Implementation of ANN models for Rhine sub-basins 

The first set of artificial neural network models are the models for the sub-basin discharges. 

The basin discharge has been linked with the low flow days at Lobith. The schematization of 

the ANN model (Figure 5) contains the topics inside this section. 

 

  

Figure 5 - Artificial Neural Network approach 

 

Input 

The amount of input neurons has been reduced based on the correlation analysis. Each low 

flow indicator is one input. This means that the input data vary from four to six input neurons. 

Nevertheless, this information is too limited, so the short time rainfall is also part of the input. 

Each day has its own input neuron. The input data set is split into three time periods, a 

training, validation and testing set. this will be into a training, a validation and a testing set. 

The distribution in data length between the parts are respectively 0.5, 0.3 and 0.2, based on 

Srinivasulu et al. (Srinivasulu and Jain, 2006). The validation period is not a totally independent 

set. The testing phase is the only independent period. 

Network 

The network of an ANN model has the ability to transform input data to one output. For a 

physically related problem as the discharge of an area three layers are enough (Shamseldin, 

1997). In the figure below (Figure 6) these three layers are visible. The input layer has neurons 

for each input. The output layer is one single output, the produced discharge in a basin. In 

between is one hidden layer. The number of neurons has influence on the interaction in the 

model. When the number of neurons increase, then the number of parameters will increase as 

well. In this study the ANN model will be trained for 1 to 5 neurons in the hidden layer. The 

output neuron in a network has a number of incoming lines with information. For example 

end-node N2.1 information originates from each input and it has a bias. The blue lines 

represent these connections. Each line has a weight factor. And the inputs for the end-node 

N3.1 are rescaled. For layer 1 to layer 2 the inputs are rescaled with the tansig formula. And for 

layer 2 to layer 3 the inputs (neurons 2.i) are rescaled with the purelin formula. 
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Figure 6 - ANN network with 3 layers 

Calibration objective functions 

In this study four objective functions will be used. The mean squared error (MSE) is the 

objective function for the training and a standard function inside MATLAB  for ANN training. 

Other used functions are the correlation (C), mean absolute error (MAE) and the Nash-Sutcliffe 

Efficiency (NSE). The correlation function is a good way to check the improvement of the ANN 

results compared to the correlation analysis. The NSE value is a typical hydrological objective 

function. The MAE is an extra objective function to check the performances. The four objective 

functions are given in equations 1-4. 
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In these objective functions is Qi the measured discharge during low flows; Mi is the simulated 

discharge; n is the number of measurements; Qmean is the mean of the measured low flows. 

 

The aim of the model is to minimize the error, which depends on the modeled discharge and 

the observed discharge. For the Middle-Rhine and the Lower-Rhine no proper discharge data 

exist, because both basins have discharge inlets. Because of that it is not possible to obtain 

reliable basin discharges and so the ANN training becomes unreliable as well. The West Alpine 

area has also an inlet of the East Alpine. But by using the discharge data series of the Aare, the 

inlet is no longer a problem. The Aare covers a large area of the West Alpine (71 percent). So 

the modeled discharge of the West Alpine sub-basin would be an underestimation of the real 
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produced discharge. But the timing and the behavior of the basin will probably be simulated 

well, so it has almost no negative influence for the discharge simulation at Lobith. 

Termination 

In the ANN model there is a looping. Each loop the model adapts parameters to optimize the 

performance of the model. Nevertheless, the model would not reach the minimum error by 

running it infinitely. The model could be trapped in a local minimum (Krishna et al., 2011). 

Termination rules prevent the model for unnecessary long runs and will protect the calculation 

capacity (Mokhtarzade and Valadan Zoej, 2007, Paulo Davim et al., 2008). If only one rule has 

been fulfilled, than the training stops. However, if not one termination rule has been 

accomplished, the training will continue and have a new loop. The used termination rules are 

listed below: 

• Maximum number of epochs/loops – The maximum number of epochs is also not an 

important termination parameter. Just like the maximum calculation time the number of 

epochs is set to a number which is not limiting the training. For this training this is 100 

epochs. 

• Maximum calculation time – If the calculation takes too long, the training will be 

terminated. The calculation time is not an important termination parameter. Therefore it is 

set to a high value, so the calculation time is not the limiting factor. The maximum 

calculation time is set at 200 seconds. 

• Satisfying performance – If the value of the objective function become below the satisfying 

performance, the training will be terminated. The satisfying performance is not an 

important parameters. Therefore it is set to a low value, so the satisfying performance is 

not the limiting factor. The satisfying performance is set to 0.0001. 

• The minimum improvement of the objective function – The training stops when the 

improvement is too little. This means that the error will be compared with the loop before. 

When the improvement is little, this means that the solution is around a (global) optimum. 

If the improvement of the objective function is below 0.0001, then the training will be 

terminated. 

• The adaption of the weights (mu) – The weights of the network will be corrected each loop. 

The mu is a factor for the size of the corrections. For this property the default values for the 

minimum and maximum have been copied. 

• Maximum number of validation deteriorations – During the training the error will be 

reduced for the training set. To check if the improvement has a global behavior, the 

objective function will be tested on the validation data. The maximum number of validation 

deteriorations terminates the training when there is no validation improvement. The 

maximum number of validation deteriorations is set to 1. So, if the weights and biases  are 

adapted to improve the training set, the improve will be checked for the validation set. If 

there is no improvement for the validation set, the training will be terminated immediately. 

Number of runs 

The number of initializations per basin is 5000. The network will only be varied for the number 

of neurons in the hidden layer. The network will be initialized and trained for 1 to 5 neurons in 

the hidden layer for each number of neurons in the hidden layer the model will be initialized a 

thousand times. This high number of initializations and trainings have been used to increase 

the chance to find the global optimum. 



 

  - 18 - 

ANN training  

The number of inputs and the network properties define the network. However the 

connections have no initial weights. To start the training, the weights should have a value. In 

the initialization all the weights get values and afterwards the training could start. 

The weights in the network generate a modeled discharge based on the input. These modeled 

discharge differ from the measured discharge. The objective function values the error. In the 

terminate phase the results of the loop will be tested. If there is no reason for termination, the 

weights in the network will be adapted and the process starts all over again, except the 

initialization, this has been replaced by the adapting the weights in the network. 

Implementation of the ANN model for Lobith 

The ANN model of low flows at Lobith is almost similar to the model of the individual basins. 

The only parts that differs is the input information. The modeled discharges for five sub-basins 

are the input instead of the low flow indicators and the short time precipitation. The output 

node is the low flow at Lobith. The schematization is shown in Figure 7. The training of the 

model is based on the same settings as for the ANN for the sub-basins. 

 

`   

Figure 7 - Modeling setup 
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4 Results 
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4.1 Appropriate inputs for the ANN models 

The function of the correlation analysis is to detect the optimum lag and temporal resolution 

for low flow indicators and to find proper input for the ANN models. Grids with the correlation 

value are the main result. These grids will be formed by the temporal resolution (horizontal 

axis), the lag (vertical axis) and the correlation value (contour lines). Figure 8 shows an 

example of a grid plot. Each point in the grid corresponds with a temporal resolution on the 

horizontal axis and with a lag time on the vertical axis. The value in a point is the correlation. 

All grid plots of each indicator are presented in Appendix 2. Table 4 contains the maximum 

correlation per basin indicator and corresponding lags en temporal resolutions. The results of 

Table 4 have been visualized in Appendix 1. 

 

  

Figure 8 - Correlation plot for the low flows of the East Alpine sub-basin and the historic discharge 

 

The Alpine basins have good correlations. For the East Alpine the discharge and the lake level 

have correlations higher than 0.95. These indicators will probably explain well the basin 

discharge behavior. Moreover 70 percent of the low flows originates from the Alpine sub-

basins (Grabs et al., 1997). So if the Alpine sub-basins correlate well, the forecasted discharge 

at Lobith could be high as well. 

The other 30 percent of the Lobith low flows originates from the other five rainfall-dominated 

basins. These correlations are not so strong as the Alpine indicators. The highest relation is for 

low flows and evatranspiration and is 0.68.  All other relations are less strong. 

Nevertheless there are interesting parts in the correlation plots of the precipitation. The 

precipitation has no high correlations for short precipitation in the past. However in the period 

between the present and the moment the water is released at the sub-basin outlet (lead time) 

there is a relation. For the Neckar there is a relation between discharge and the rainfall six 

days before. The lead time for the Neckar is 9 days, so this relation is not visible in the 

correlation plot of Figure 21 in Appendix 2. The interesting lag and temporal resolution in the 
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precipitation plot is an addition to the ANN input. The short time precipitation contains no 

global information about low flows, but it has a strong influence. 

 

Table 4 - Lag and temporal resolution for the maximum correlations 

 

 

 

The results could not be implemented directly into the ANN. The results of the Middle Rhine 

and the Lower Rhine are not proper, because the generated discharge record is not reliable. 

Therefore those basins are not included in the model. For the other basin indicators some lag 

and temporal resolution have been decreased to have a more physical relationship (Table 4). 

The lag and temporal resolution for the West Alpine sub-basin are 210 and 224 days. This high 

values does not represent the snowfall in winter. However the combination a lag time of 112 

days and a temporal resolution of also 112 day has almost the same correlation and it has a 

Basin Basin Indicator Indicator Cor Lag time Support Lag time Support

Number Name Number Name - Days Days Day Days

1 EA 1 Q 0,98 0 1 0 1

1 EA 2 P 0,69 0 56 0 56

1 EA 3 E -0,73 112 168 → 0 21

1 EA 4 G -0,38 210 140 210 140

1 EA 5 S 0,63 112 112 112 112

1 EA 6 L 0,96 0 1 0 1

2 WA 1 Q 0,81 0 1 0 1

2 WA 2 P 0,53 0 21 0 21

2 WA 3 E -0,75 98 168 → 0 21

2 WA 4 G 0,58 0 1 0 1

2 WA 5 S -0,63 210 224 → 112 112

2 WA 6 L 0,72 0 1 0 1

3 MR 1 Q 0,51 0 21 X

3 MR 2 P 0,36 0 196 X

3 MR 3 E -0,54 0 56 X

3 MR 4 G 0,45 0 1 X

4 Neckar 1 Q 0,67 0 21 0 21

4 Neckar 2 P 0,28 98 168 98 168

4 Neckar 3 E -0,60 3 140 3 140

4 Neckar 4 G 0,38 0 1 0 1

5 Main 1 Q 0,57 0 1 0 1

5 Main 2 P 0,38 196 308 → 0 56

5 Main 3 E -0,48 0 168 0 168

5 Main 4 G 0,46 0 1 0 1

6 Mosel 1 Q 0,63 0 21 0 21

6 Mosel 2 P 0,35 14 168 14 168

6 Mosel 3 E 0,68 182 56 → 0 56

6 Mosel 4 G 0,59 0 1 0 1

7 LR 1 Q 0,29 0 14 X

7 LR 2 P 0,18 0 14 X

7 LR 3 E 0,18 14 336 X

7 LR 4 G 0,20 0 1 X

Correlation analysis results Input ANN

No proper target

No proper target

No proper target

No proper target

No proper target

No proper target

No proper target

No proper target
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more logical physical relations. Also the evatranspiration will be corrected. After these 

corrections the data are ready for the ANN model. 
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4.2 Forecasted discharges for five sub-basins 

The results of the sub-basin modeling are discussed in this section. Figure 9 shows the 

discharge for the year 2005 based on the lowest MSE of the test phase. The plot of the year 

2005 gives a good insight in the performances of the ANN model for that particular basin. 

Table 5 summarize the basin performances by means of the four objective functions. 

  

Figure 9 - Simulated discharges and scatter plots of the sub-basins in 2005 (test period) 
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Table 5 - The performances of the ANNs per sub-basin and per objective function 

  

 

The modeled low flows of the two Alpine basins fits very well with the observed discharges. 

The forecasted discharge follows the shape of the measured discharge. The observations of 

the Alpine regions coincide with the simulated low flows. The NSE for East Alpine is 0.96 and 

for West Alpine 0.83 in the test phase. 

The other three basins show more mixed performances. The Main River has the lowest Nash-

Sutcliffe Efficiency (NSE) of 0.23. The Neckar River has a NSE of 0.48. The best modeled rainfall-

dominated river is the Mosel River. The NSE is 0.77. The Middle Rhine and the Lower Rhine are 

excluded of the sub-basin low flows. So only the Mosel sub-basin of the rainfed area is well 

functioning. For the other four sub-basin the simulated discharges are poor. 

The forecasted precipitation is important for the sub-basins, because without the short time 

rainfall the ANN model produces very poor results. The simulated discharge is a horizontal line 

in time or a discharge curve with only a few regimes. The low flow indicators do not include 

information on fast discharge changes. The addition of forecasted rainfall helps ANN to train to 

much better results. However the ANN model uses the perfect rainfall, so this causes an 

overestimation of the actual performance of the model. 

 

 

 

Basin 1 Basin 2 Basin 4 Basin 5 Basin 6

EA WA Neckar Main Mosel

C Training 0.99 0.96 0.87 0.85 0.90

Validation 0.98 0.85 0.87 0.68 0.93

Test 0.99 0.93 0.70 0.51 0.89

MSE Training 151 1374 169 445 590

Validation 316 2948 157 300 423

Test 250 2508 240 490 843 *

NS Training 0.98 0.92 0.76 0.57 0.81

Validation 0.96 0.72 0.61 0.26 0.83

Test 0.96 0.83 0.48 0.23 0.77

MAE Training 9.4 27.0 9.5 13.8 17.1

Validation 11.9 42.0 9.7 14.3 15.5

Test 12.5 37.4 11.6 16.9 20.1

* Best ANN run selected for the minimum value of the MSE in the test phase
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4.3 Forecasted discharge at Lobith 

The results of the forecasted discharge at Lobith are given in Table 6. The modeled low flows 

at Lobith are poor. The training and the validation period has a good performance. The 

correlation values are respectively 0.87 and 0.86 and the NSE values are 0.75 and 0.72. 

However the results for test phase shows only a NSE performance of 0.32 and a correlation of 

0.71. The graphs are presented in Figure 10. 

 

  

Figure 10 - Simulated discharges and scatter plots at Lobith 
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The model error for the sub-basin flows is part of the input of the ANN for Lobith. The ANN for 

Lobith does not take the error into account, but the Lobith model trains the sub-basin outputs 

as perfect input. This is a benefit when there is a systematic error in the sub-basin output. If 

the sub-basin output has a random error, the performances of the test phase could be much 

lower. 

Another approach for Lobith could affect the performance in the test phase. The measured 

discharges could replace the simulated discharge in the Artificial Neural Network model. The 

training performances increase dramatically. The training correlation is above 0.95, the 

validation is 0.90 and the correlation in the test period is 0.87. The network is a product of the 

training. A simulation causes the modeled discharge at Lobith by using these network 

properties and the modeled discharges per basin. This approach of training with measured 

discharges and replace these by simulated sub-basin discharges  leads to lower training and 

validation performances, but the test phase generates better results. 

The human intervention the river could also affect the discharge measurements. Part of the 

discharge could be used for irrigation (Grabs et al., 1997). Also discharges could be influenced 

by weirs (Grabs et al., 1997). 

  

 Table 6 – The performance of the ANN at Lobith 

  

 

 

 

 

Lobith

C Training 0.87

Validation 0.86

Test 0.71

MSE Training 5441

Validation 9079

Test 13839 *

NS Training 0.75

Validation 0.72

Test 0.32

MAE Training 59.2

Validation 75.1

Test 87.4

* Best ANN run selected for the minimum value of the MSE in the test phase
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5 Discussion 
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Perfect weather forecast 

The performances of the ANN models are higher than the actual 14 days ahead low flow 

forecasts could be. The forecasted rainfall during validation and the test period is perfectly 

forecasted, because they are measurements and not forecasts. The real forecasted rainfall 

with uncertainty will cause a lower performance.  

The future precipitation has a perfect quality. The forecasted rainfall for the time period up to 

14 days ahead are also measurements. The rainfall forecasts are less precise. It is not possible 

to foresee where heavy rainfall events will appear multiple days ahead. 

The European Centre for the Medium-range Weather Forecasts (ECMWF) has already data 

available for the daily precipitation. The data consist a few scenarios how the weather could 

develop. These scenarios are a result of small changes in the initial conditions. 

Neglect sub-basins 

The input of the ANN for Lobith is the modeled discharge of five of the seven modeled sub-

basins. The discharges of the Middle Rhine and the Lower Rhine are not taken into account 

since the net outflow per basin is unclear. Both basins have inlets and that creates poor net 

discharge records per basin. But the timing between the inlet and the outlet depends on the 

discharge level, so the time lag between those points is not constant. There could be also some 

storage inside a sub-basin. The outcomes of the correlation analysis for the Lower Rhine are 

very poor. The outcomes for the Middle Rhine are better, but unreliable. 

The quality of an ANN model is that it can deal with missing information (Ishibuchi et al., 

1995). Similar basins cover the missing areas. For the Middle Rhine and the Lower Rhine this 

means that the Main, the Neckar and the Mosel are representative. All rivers have more or less 

the same spatial characteristics. The timing towards Lobith is in the same order of magnitude. 

Only there is no travel time between the Lower Rhine outlet and Lobith. 

The future precipitation is a strong indicator for the low flows 14 days ahead. The precipitation 

showers are intensive and have local impact. When there are intensive rainfall showers in the 

Middle Rhine and the Lower Rhine and not in the other rainfall-dominated rivers, there is no 

reaction of the modeled discharge at Lobith. The modeled discharge at Lobith depends not on 

the processes in those two sub-basins. An option is to extend the input data for the ANN 

model for Lobith with processes of the Lower Rhine and the Middle Rhine. This could improve 

the quality of the ANN. This possibility has not been investigated, because of the jump 

between training and simulation. The training could be improved, however the simulation with 

10 days ahead precipitation forecasts has a large uncertainty. This will probably result in a 

better training, but not in a better simulation. 

During low flows the Alpine discharge of the Rhine River is about 70 percent of the flow at 

Lobith (Grabs et al., 1997). The contribution of the sub-basins the Middle Rhine and the Lower 

Rhine is only a part of the remaining 30 percent. The uncertainty in the future rainfall is large. 

The replacement of these sub-basins with same characteristics seems justified.  
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6 Conclusions and recommendations 
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6.1 Conclusions 

In this section the research questions will be answered. The first question is about the low flow 

indicators and appropriate ANN input. The other is about the low flow modeling of the 

discharges. 

Low flow indicators 

However there are strong low flow indicators. These low flow indicators have a strong relation 

with the basin discharge based on low flows at Lobith. The Alpine sub-basins have the 

strongest correlations between the historic discharge and the flow, and between the level of 

Lake Constance and the flow. The discharge, the snow package and the lakes are the best 

indicators for West Alpine. The indicators for the rainfall-dominated basins are less strong. The 

perfect forecasted precipitation shows a strong relation between the precipitation and the 

basin discharge. 

The Middle Rhine and the Lower Rhine have discharge inlets. Therefore the produced 

discharge of a basin is difficult to calculate, because of the travel time and dispersion affect the 

produced discharge. Therefore the indicators of these sub-basins are unreliable, so results of 

the indicator analysis could not be implemented in the ANN model.  

Modeled low flows 

The ANNs for the Alpine sub-basins has shown good results. The low flow indicators and the 

perfect future precipitation are the ANN input. The network transfers the input data to reliable 

output. The Nash-Sutcliffe Efficiency of the modeled discharge for the Alpine basins is 0.96 for 

the East Alpine basin and 0.83 for the West Alpine basin in the test phase. This is because of 

the large amount of available water inside the basins (Grabs et al., 1997). The Neckar, the 

Main and the Mosel basin have weaker performances than the Alpine basins. The Nash-

Sutcliffe Efficiencies for these sub-basins are 0.48, 0.23 and 0.77. The Mosel is the only good 

performing non-Alpine sub-basin. The reason for this fact remains unclear. 

The modeled discharge at Lobith is poor. Although 70 percent originates from the Alpine sub-

basins and those sub-basins have good performances, the modeling performances at Lobith 

are poor. 

Discharge at Lobith 

The low flows at Lobith are difficult to forecast. The results demonstrate a poor performance 

with ANN. The Nash-Sutcliffe efficiency for the three days discharge 14 days ahead is only 0.32 

for the test phase. 
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6.2 Recommendations 

In chapter 5 the limitations of the performance of ANN, together with the simulation of the 

network with real discharge data and the routing have been discussed. In this chapter there 

will be suggestions to improve these aspects. This suggestions could increase the 

performances of the ANNs and the functionality of the low flow forecasts. 

The settings of the ANN network influence the outcome (Langella et al., 2010). The number of 

parameters to investigate are large and most are not investigated. It is therefore not clear 

what the best ANN settings are. 

Improve performance ANN 

ANN is a promising method (Srinivasulu and Jain, 2006). However, its optimization is difficult, 

because of the irregular solution space (Alp and Kerem Cigizoglu, 2007). The focus of this study 

is not on optimizations, but rather on the global implementation of ANNs for low flow 

forecasting in the Rhine basin. The ANN performances are relatively low and there is 

improvement possible. The results require progress to become functional. There are several 

issues inside the network which could lead to better results. Points to consider are: 

• Input data 

The ANN input data has major influence on the training. The lack of information could lead to a 

bad training. This became clear for the rainfed sub-basins. The modeled discharge did not 

react on changes of parameters, because a crucial input process was missing. The forecasted 

rainfall was implemented, but without considering the efficient lags and temporal resolutions. 

• Objective function 

The MSE error is the default objective function inside MATLAB. Other error function are not 

developed. So a MATLAB user is obligated to use MSE or program a new objective function 

itself. The adaptation to a new objective function causes also that the adaptation for the 

network weights should be considered. Another objective function could be successful. 

• Rescaling data 

ANN performance could increase by rescaling measured data (Dawson and Wilby, 2001). 

Measured data could be transformed with any function. After the ANN training the modeled 

discharge is still rescaled. The real modeled discharge could be calculated to reverse the 

rescaling. 

• Transfer functions 

The used transfer functions are also default functions. The changes towards other functions 

could have impact on the performance (Dawson and Wilby, 2001). 

 

Simulate network with real weather forecasts 

The next step for this study is to implement actual forecasted data. The performance of the 

modeled discharges is probably overestimated. The training of the ANN models is with perfect 

forecasted rainfall. However the rainfall is not perfectly forecasted. The rainfall forecast has an 

uncertainty range, which could be added in the simulation by multiple simulations. The 

ECMWF generates multiple rainfall scenarios for the coming period. These different rainfall 

scenarios of the ECMWF could be used for the input of the ANN simulation, which lead to a 

multiple discharge output. These discharges create a discharge range. 
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Appendix 1 - Correlation analysis and the ANN model setup in one figure 

  

Figure 11 - The correlation results and the method for ANN in one figure 
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Appendix 2 - Correlation plots 

Sub-basin 1 (East Alpine) 

 

Figure 12 - Correlation plots of sub-basin 1 (East Alpine) 
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Sub-basin 2 (West Alpine) 

 

Figure 13 - Correlation plots of sub-basin 2 (West Alpine) 
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Sub-basin 3 (Middle Rhine) 

 

Figure 14 - Correlation plots of sub-basin 3 (Middle Rhine) 

Sub-basin 4 (Neckar) 

 

Figure 15 - Correlation plots of sub-basin 4 (Neckar) 
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Sub-basin 5 (Main) 

 

Figure 16 - Correlation plot of sub-basin 5 (Main) 

Sub-basin 6 (Mosel) 

 

Figure 17 - Correlation plots of sub-basin 6 (Mosel) 
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Sub-basin 7 (Lower Rhine) 

 

Figure 18 - Correlation plots of sub-basin 7 (Lower Rhine) 
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Appendix 3 - Results for the sub-basins using ANN 

 

• (a) is the scatter plot for the training, validation and test phase 

• (b) is the plot for the discharge in five years showing the simulated low flow (bold points) 

versus the measured discharge during the year (green line). 
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   (a) 

   (b) 

Figure 19 - Plots sub-basin 1 (East Alpine) 
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   (a) 

   (b) 

Figure 20 - Plots sub-basin 2 (West Alpine) 
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   (a) 

   (b) 

Figure 21 - Plots sub-basin 4 (Neckar) 
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   (a) 

   (b) 

Figure 22 - Plots sub-basin 5 (Main) 
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   (a) 

   (b) 

Figure 23 - Plots sub-basin 6 (Mosel) 
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Appendix 4 - Results for Lobith using ANN 

  (a) 

  (b) 

Figure 24 - Plots for Lobith 


