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Abstract 
 

Traffic models are used to predict traffic flows and travel times on a road network. Due to the ever 

increasing level of congestion at highways and urban areas, the need for better results from those 

models also increases. On the other hand, these predictions should be available in a reasonable time 

such that the right action to avoid congestion can be taken quickly. Because of computation time 

issues, often static models instead of dynamic models are used. 

For realistic predictions a traffic model should be able to take capacity constraints into account, 

something that traditional static traffic assignment models cannot do directly. Besides that, queuing 

and spillback phenomena should also be taken care of. In this thesis, an overview is given of the 

static models and concepts in literature that in some way or another do account for capacity 

limitations and/or spillback effects. It is explained that all of these models still have drawbacks, and 

therefore a new static traffic assignment model is introduced.  

This new model is basically obtained in two successive steps. First the static variant of the dynamic 

network loading model LTM (Link Transmission Model) by Yperman (2007) is derived by assuming 

stationary traffic demand. After that, the STAQ (Static Traffic Assignment with Queuing) model is 

created by assuming instantaneous traffic flow propagation. 

In this model queues are constructed according to kinematic wave theory using the fundamental 

diagram, which gives the model a mathematical basis. Also spillback effects are accounted for. 

Therefore, the model is in theory superior to other static traffic assignment models, but empirical 

tests are needed to provide hard evidence. STAQ is currently in development at Goudappel Coffeng 

B.V. 
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1. Introduction 
 

Traffic models are widely used as a tool to assist in making decisions in mobility and infrastructure 

planning. These tools can help in analyzing congestion issues, and can predict the consequences of 

certain measurements, like adding an extra lane, building a new road, raising the maximum allowed 

speed or applying road pricing. 

A classical traffic model to predict traffic flows is known as the four step model. The four steps are 

trip generation, trip distribution, modal split and assignment. In this model the network is divided in 

zones, between which people can travel. The first step is the trip generation. Based on data about 

the population and economic activity like employment, shopping space, educational and recreational 

facilities at a zone, the total number of trips generated at each zone and the number of trips 

attracted by each zone is estimated. At the next step, these trips are distributed over space, resulting 

in a OD-matrix (origin-destination matrix). An OD-matrix contains the number of trips from each 

origin to each destination (zone). The third step is called modal split, in which the trips are allocated 

to different modes of transport, for instance car, public transport, or bike. In the last step, the 

assignment of the trips to the network links is done. Basically this means that for each OD-pair, the 

number of trips is distributed over a number of routes (or paths) which consists of a number of links 

in sequence. This gives the number of vehicles that want to travel over each link, i.e. the demand for 

each link. 

Traffic models can be either static or dynamic. Within dynamic models, the traffic demand (OD-

matrix) can change through time, while within a static model it is assumed that the traffic demand is 

constant through time. 

In this thesis, the focus will be on the 

assignment phase of the process of a 

static traffic model. As the mode of 

transport, only car is considered. It is 

assumed that an OD-matrix is available. 

The assignment phase of the traffic 

model consists of two components (see 

Figure 1). The first component is the 

route choice model, in which routes are 

selected and the traffic demand is 

assigned to these routes. The second 

component is the network loading 

model, which takes the assigned route 

flow as input and describes the way in 

which the traffic is propagated through 

the network. The network loading model 

yields the link flows which can be used 

to determine the route travel times.  
 

Figure 1. Schematic overview of the traffic assignment model. 
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1.1. Motivation of research 
 

With the ever increasing level of congestion it becomes more and more important that the traffic 

model predictions are as accurate as possible, but on the other hand the computation time should be 

as low as possible such that these predictions can be achieved very fast. Dynamic models can 

produce realistic predictions with consistent congestion formation and delays, but in general take 

much more time to compute than static models. On the other hand, current static models can 

compute a result very fast, but these models usually cannot handle congestion effects correctly as 

these effects are time dependent in nature. Therefore, there is need for a quasi-dynamic model, that 

produces realistic travel times but is still computational attractive. 

 

1.2. Research questions 
 

In this thesis it will be investigated whether a traffic assignment model can be formulated that can 

produce realistic travel times in a static or quasi-dynamic context and can generate these results in a 

reasonable time. To accomplish this objective, the following research questions are formulated. At 

first in the existing literature will be searched for a model that complies with the demands 

mentioned before: 

 

1. Are there static traffic assignment models in the literature that can deal with congestion and 

can compute realistic travel times? 

 

If such a model cannot be found, the goal is to specify such a model: 

 

2. Can a model be specified that propagates traffic correctly through the network and 

computes more realistic travel times than current static models, and can still compute them 

in a reasonable time? 
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1.3. Overview of the thesis 
 

In Figure 2 a schematic overview of the thesis is given. In the next chapter, the first research question 

is answered. A summary is given of the different static traffic assignment models that can deal with 

capacity constraints. The different approaches are discussed and the choice to derive a new model 

from the dynamic Link Transmission Model (LTM) by Yperman (2007) is motivated.  

In chapter 3, the working of the LTM by Yperman is presented. It is explained how the LTM is used as 

the basis of the new model. After that the quasi-dynamic variant of the LTM with stationary traffic 

demand is derived. 

The subject of the fourth chapter is STAQ: Static Traffic Assignment with Queuing, the newly 

developed model at Goudappel Coffeng B.V. The model uses elements from the LTM by Yperman, 

with some additional assumptions. The most important additional assumption is that of 

instantaneous travel flow propagation. The derivation of STAQ from the LTM with stationary demand 

is showed and an algorithm is presented which can solve the STAQ model efficiently. 

Finally some conclusions and recommendations for further work are given in the last chapter. 

 

 
 

Figure 2. Research approach and structure of the thesis. 
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(1) 

2. Traffic assignment models with capacity constraints: A summary 
 

In this chapter an overview is given of different traffic models that somehow can deal with capacity 

constraints. All the models considered here provide a method to predict the traffic flow on the links, 

given a network and an OD-matrix with traffic demand. From this information the travel times can be 

determined. 

The traffic demand needs to be assigned to the links in the network in a certain way. To obtain 

realistic results, the capacities of the links in the network and the congestion that it can cause must 

be taken into account. In this overview different approaches are discussed that are proposed in the 

literature. In the first part, the traditional approach is explained, that does not take the capacity 

constraints into account. After that, the traditional approach extended with capacity constraints is 

discussed, with a number of different solution techniques. Then some other, more realistic ideas are 

presented. Finally the advantages and disadvantages of the models are discussed and it is explained 

what qualities the new model should have. 

 

2.1. Traditional static traffic assignment 
 

Wardrop’s first principle (Wardrop 1952) states that at an equilibrium situation the travel times of all 

routes between each OD-pair actually used are the same, and there are no unused routes with a 

lower travel time. This means that no user can lower his travel time by switching individually to 

another route. To find an equilibrium solution in a network, the problem can be described in a 

mathematical way (Beckmann e.a. 1956). 

Consider a network       given by a set of nodes (or vertices)   and a set of links (or edges)  . The 

set   consists of the origin-destination (OD) pairs            , with a demand     ,     

for each OD-pair. Furthermore,    is the set of directed         routes (or paths) for OD-pair   with 

      . The objective is to find a traffic flow through the network, that satisfies the demand 

     for each OD-pair, by assigning a certain amount of nonnegative flow    to each link  . More 

formally, find an     
  satisfying: 

      

    

      

where      consists of the path flows    for each path    , and the incidence matrices 

        and        are defined as follows:  
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(2) 

The set of feasible flows    consists of all traffic flows     
  (with a corresponding  ) such that (1) 

is satisfied for demand     
 . 

For each link is usually defined a link cost function or travel time function        (separable) or more 

general       (non-separable cost function). In the separable case, the link cost is only dependent of 

the flow on the link itself. Usually it is assumed that the link cost functions are continuous and 

monotonically non-decreasing in the link flows. So, more flow means higher link costs. The function 

named after the United States Bureau of Public Roads (BPR function) is frequently used as a cost 

function:  

              
  

 

  
   

where     is the free flow travel time on link  ,    is the capacity of link   in vehicles per time unit and 

  and   are adjustable parameters (US Bureau of Public Roads 1964). 

 

A common assumption is that the path costs are additive: 

                          

A given feasible traffic flow        is called a Wardrop Equilibrium flow if the following holds: 

  
        

       
                 

Or, equivalently: 

  
        

              
             

So, when a given feasible flow assigns a positive flow on a certain path, the costs on that path cannot 

be greater than the costs on any other path for the corresponding OD-pair. In other words, if a 

cheaper alternative exists for a certain path, that path will have zero flow assigned: 

    
       

     
                  

If the cost functions are separable, the equilibrium solution can be found by solving the following 

Beckmann User Equilibrium optimization problem (Beckmann e.a. 1956). This formulation is in 

general not possible if the cost functions are not separable. 

   
 

              
  

    
 

subject to (1) 

Because the set    is compact (closed and bounded), the (continuous) objective function will reach 

its minimum, so the existence of a solution is guaranteed. If all cost functions are continuous and 

non-decreasing, this optimization problem is convex and then it can be showed that a solution 

      is a Wardrop Equilibrium if and only if    solves the program (2). If the cost functions are 

also strictly increasing, then the link flow solution is unique (Smith 1979). However, the problem is 
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not (strictly) convex in the path flows, so there may be more than one path flow pattern that 

generates the unique link flow solution. (Yang & Huang 2005) 

 

The necessary and sufficient first order optimality conditions (Karush Kuhn Tucker conditions) for an 

optimal path flow vector    are as follows (Yang & Huang 2005): 

  
      

                     

    
                     

         

         

      

Here      is the vector of Lagrange multipliers for the demand constraints corresponding to the 

OD pairs. It follows that for all          

    
               

    

and  

    
               

    

This corresponds to the definition of a Wardrop Equilibrium.    can be interpreted as the 

equilibrium (minimal) path cost for OD pair  . 

 

When the cost functions are non-separable, in general the problem cannot be written in the 

Beckmann formulation. However, it can be formulated as a Variational Inequality Problem (VIP): 

             

                                 

where         is the vector of link costs for each link for link flows  . 

If the link cost functions only depend on the flow on the link itself (separable cost functions), the VIP 

is equivalent to the Beckmann minimization problem. 

 

The standard Beckmann model can be solved for instance with a Frank-Wolfe type algorithm. This 

method converts the problem into a series of shortest path subproblems which can be solved 

relatively easy. Most solution methods exploit the Cartesian product structure of the feasible 

solution set. The idea is as follows: 

1. (Start) Perform an all-or-nothing assignment to obtain link flows based on the current link 

travel times. All-or-nothing assignment means that each OD-pair only uses the shortest route 

for all its demand. 
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(3) 

2. (Iteration) Find a feasible search direction by finding the shortest paths. 

 

3. Find the optimal step size (line search) in this direction. 

 

4. Update the link flows. 

 

5. If the convergence criterion is not met, continue at step 2.  

 

2.2. Traditional static traffic assignment with capacity constraints 
 

The classical Beckmann model as described in the previous section does not take link capacities 

explicitly into account and therefore can produce unrealistic flows. Assigning more flow to a link than 

its capacity is penalized by the monotonically non-decreasing travel time function, but it is not 

forbidden. Numerous ideas and suggestions have been given in the literature to deal with link 

capacities. One can use travel time functions with vertical asymptotes at the capacity. However, this 

method is not favorable because it can produce unrealistically high travel times when flow 

approaches capacity and can give numerical problems (Larsson & Patriksson 1995). Therefore in this 

overview the focus is on models that have explicit link capacity constraints. 

By adding simple capacity constraints to the Beckmann optimization problem, the capacitated (or 

extended) Beckmann User Equilibrium optimization problem is obtained. (Larsson & Patriksson 1995, 

Nie e.a. 2004) 

   
 

              
  

    
 

subject to (1) and 

              

The necessary and sufficient first order optimality conditions (Karush Kuhn Tucker conditions) for an 

optimal path flow vector    are as follows (Yang & Huang 2005): 

  
       

                     

     
                     

         

        

     

  
              

     
               



9 
 

    

Here  

     
          

                    

are called the generalized path costs, and  

      
        

              

are the generalized link costs. The vector      is the vector of Lagrange multipliers for the 

demand constraints corresponding with the OD pairs, which can be interpreted as the vector of 

equilibrium generalized path travel times. Similar to the standard Beckmann model, it holds for all 

         that 

     
          if   

    

and  

     
          if   

    

Furthermore,      is the vector of Lagrange multipliers for the capacity constraints of each link.   

can be seen as the equilibrium queuing delay time, an additional time penalty that users traveling on 

this link are willing to wait for continuously using this link (Yang & Huang 2005). This delay time can 

only be positive when the link flow equals the link capacity. While there is a unique solution for the 

vector of equilibrium generalized path travel times  , the vector of delay times   is in general not 

unique. Therefore, not too much importance should be given to these delay times (Nie e.a. 2004). 

The capacitated Beckmann optimization problem is not capable to handle spillback, since there are 

no physical queues created. Spillback (or blocking back) is the phenomenon that a queue will 

continue on the preceding links when it reaches the link end. Within the capacitated Beckmann 

problem, only a time penalty is given to the links that are ‘congested’, i.e. to the links that have an 

assigned traffic flow that is equal to the capacity. 

 

When applying the Frank Wolfe method to the capacitated Beckmann problem, the direction search 

subproblem changes to a multi-commodity flow problem with inequality constraints instead of a 

shortest path problem. This is much harder to solve (Larsson & Patriksson 1995). Therefore, different 

solution methods have been proposed in the literature. Most methods convert the capacitated 

problem into a series of uncapacitated problems, such that efficient methods for the Beckmann 

problem can be applied. Some methods apply an interior penalty function to penalize the usage of a 

congested link. Other methods use an augmented Lagrangean approach combined with an exterior 

penalty function. The interior penalty function adds the penalty directly to the Beckmann objective 

function instead of indirectly using augmented Lagrange multipliers. Another possibility is applying a 

dynamic penalty function. In the following sections different solution techniques are discussed. 
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2.2.1. Interior penalty function approach 

 

The interior penalty function (IPF) approach tries to approximate the capacity constrained traffic 

assignment problem by adding a penalty term to the objective function of the “unconstrained” 

problem. By imposing an asymptotic penalty term when the link flow approaches the link capacity, it 

is prevented that an infeasible solution is achieved. An initial feasible solution is necessary for this 

approach. Within optimization theory, this approach is known as the barrier method (see e.g. Faigle 

e.a. 2002). The optimization problem becomes: 

 
   
    

                    

   

 
 

 

Here     is the penalty parameter,        is a penalty function that is continuous on        for all 

    and 

          when        

In principle, the problem can now be solved as a standard Beckmann program. The sequence of 

solutions will converge to the optimal solution of (3) as    . 

 

Examples of penalty functions in the IPF approach: 

 

        
 

    
  

  

 

 Nie e.a. (2004)  

 
           

     
  

  Prashker & Toledo (2004)  

Note that the penalty functions of Nie e.a. and Prashker & Toledo are in fact identical: 

 
        

 

    
  

  

 

             
  

                                      

     
       

  
  

  

Nie e.a. (2004) solve the subproblems with a gradient projection algorithm that updates the path 

flows in each iteration and searches in a direction orthogonal to the previous direction. Prashker & 

Toledo (2004) provide a similar implementation of the interior penalty function approach. They use a 

path based adaptation of the gradient projection algorithm to solve the subproblems.  

 

  



11 
 

2.2.2. Augmented Lagrangean dual with exterior penalty function approach 

 

In this approach, also an extra term is added to the objective function. By imposing a penalty term 

when the flow of a link is greater than the link capacity, the method forces the sequence of solutions 

into the feasible area. An initial feasible solution is not necessary. The optimization problem 

becomes, similar to the interior penalty function approach: 

 
   
    

                    

   

 
 

(4) 

where        is a penalty function, with          for all      and          if and only if 

     , and        is continuous on   . Now the penalty subproblem is an uncapacitated traffic 

assignment problem again. Let the solution of (4) for penalty parameter   be     . It can be showed 

that (under certain assumptions)                for all    , and              , where    is 

the optimal solution of the capacitated Beckmann problem (3) (Larsson & Patriksson 1995). So, the 

sequence of solutions will converge to the optimal solution of (3) as    . An example of a penalty 

function is:  

       
 

 
                   

Because of the condition     the problem becomes ill-conditioned. This is inherent in the penalty 

approach. To avoid this, a Lagrangean term is added to the objective function, creating an 

augmented Lagrangean function (for the penalty function above): (Larsson & Patriksson 1995) 

 
   
    

              
 

  
                        

  

   

 
 

(5) 

Let        be the solution of the subproblem (5) with penalty parameter   and vector   of 

Lagrangean dual variables for the capacity constraints. It can be showed that for     large enough:  

there exists an optimal Lagrange multiplier    such that                         
   

            , and                         . 

Compare (part of) the KKT conditions of the capacitated Beckmann problem (3) 

 
                 

   

          
 

and the augmented Lagrangean (5): 

 
        

 

  
                        

  

   

            

 

 

with         is a vector with elements                            for each    . It 

follows that the sequence of Lagrange multipliers should be updated as follows: 
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It follows that if       then the condition      is no longer needed for convergence, so the 

problem is no longer ill conditioned. 

 

2.2.3. Dynamic penalty function approach 

 

In the method of Shahpar e.a. (2008), the capacity constraints are taken into consideration by 

implicitly adding a penalty function to the link travel time functions, which they call a dynamic 

penalty function. They let a penalty term  

         
      

   
 

 

 

play the role of the Lagrangean multipliers for the capacity constraints in the KKT conditions (based 

on Larsson & Patriksson (1999)). Here         is the  th side constraint and          is a interior 

penalty function. For general side constraints the generalized path costs now become: 

                     
      

   
 

 

 

   

               

The simple capacity constraints       are reformulated as       
  

  
   for all    .  

For details see Shahpar e.a. (2008). They tested their algorithm on some small and medium sized 

networks for the simple capacity side constraints. Their experiments achieved a solution for the link 

capacity constrained problem faster than the interior penalty function method or the augmented 

Lagrangean method. 

 

2.2.4. Conclusion 

 

All the above described solution techniques can solve the capacitated Beckmann optimization 

problem. Though the capacitated Beckmann problem has a nice mathematical formulation, in 

general it cannot give realistic results, since queuing and spillback effects are not taken into account. 

It is known from practice that congestion on a link can have consequences for traffic flow on 

upstream links. Besides that, the travel time functions used by these models are difficult to 

determine and need  time for calibration. Therefore, in the next section other approaches that avoid 

the use of these functions are discussed. 

 

2.3. More realistic static traffic assignment 
 

In the following, models that do not directly use travel time functions are examined. First the stable 

dynamics model by Nesterov & De Palma is described. After that a number of flow propagation 

models (simulation models) are discussed. In these type of models, no route choice is modeled. It is 

assumed that a certain route flow assignment is given, and this traffic flow is propagated through the 

network in a certain way, taking congestion effects into account. 
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2.3.1. Stable equilibrium model 

 

Nesterov & De Palma (e.g. 2000, 2003) introduce a theory of static equilibria in congested networks, 

the stable equilibrium model. They observe that if the flow on a link is small, then either little traffic 

is using it (low travel time), or the link is heavily congested (high travel time). They state that the 

assumption that the travel time is an increasing function of the flow as is done within the extended 

Beckmann formulation is artificial. Nesterov & De Palma use the fundamental relation between the 

flow rate (intensity), travel time and the loading (density) on a link: flow = speed x density (see also 

section 3.2 about the fundamental diagram).  

They obtain stable equilibrium solutions only by imposing lower bounds on the travel time (the free 

flow travel time) and upper bounds on the flow (the link capacity). They assume that if the flow on a 

link is strictly smaller than the capacity, then there is no congestion and the equilibrium travel time 

on this link is equal to the minimal (free flow) travel time. If the link flow is equal to the capacity, 

then the equilibrium travel time is greater or equal then the minimal travel time. In this case there is 

congestion on the link. In fact this could be defined as a travel time function as follows: 

       
                
                    

  

 

Here     is the free flow travel time on link   and      .  

A Nesterov Equilibrium solution         satisfies the following conditions:      and   
      

  , 

and    is a Wardrop Equilibrium with respect to   . Kern & Still (2009) show that the idea of Nesterov 

& De Palma can be seen as a special case of a generalized Wardrop Equilibrium, and that it can be 

extended to the non-separable case.  

The model of Nesterov & de Palma is not capable of handling spillback. They propose to add an extra 

condition such that the length of the queue on a link cannot exceed the link length by stating that 

                 , where    is the link length and   the average length occupied by a vehicle. 

However, in the rest of their papers they do not use this condition; they just assume that spillback 

never occurs, so it is unclear what the effect is of this condition in the model. 

Chudak e.a. (2007) compare the Nesterov & De Palma model with the (extended) Beckmann model 

on some small networks. However, it is not clear which of the models better predicts the real traffic 

flow. Real data from traffic counters is needed to be able to draw hard conclusions.. 

 

2.3.2. Flow propagation models 

 

In this section some flow propagation models are described. Four models are considered: the model 

by Bifulco and Crisalli (1998), the model by Bundschuh e.a. (2006), QBLOK by 4Cast (2009) and the 

Link Transmission Model by Yperman (2007).  

Bifulco and Crisalli (1998) present a model for a stochastic user equilibrium assignment problem. At 

first they describe a flow propagation model which takes link capacities explicitly into account. Next 

they describe how their model can be used within a traffic assignment model to find an equilibrium 

flow. The flow propagation model cannot handle spillback. They simply assume that the queue length 

on a link cannot grow bigger than the length of the link, thus assuming that spillback never occurs. 
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They assume that for a certain OD-pair, each path has a certain probability to be taken by a user, 

depending on the path cost vector of that OD-pair. In their model, they determine iteratively which 

quantity of users on a link can proceed to the next link on their path, by checking the link capacities. 

This results in a new link flow pattern that is used in the next iteration. The algorithm stops when a 

stable link flow solution is established, which is close enough to the previous iteration. More 

precisely they state: 

      

Where the      -element of        indicates the percentage of the flow on path   that is 

allowed to reach link  , taking capacity constraints into account. The      -element of        

indicates the probability of choosing path   for OD pair  .      is the demand vector. By 

iteratively updating the link flow vector and the   matrix, the flow vector will converge to the final 

solution. 

Bundschuh e.a. (2006) propose a flow propagation method to determine congestion in a static 

assignment model. They call their model quasi-dynamic, since it does account for capacity limitations 

and spillback phenomena, but requires less computation time than a dynamic model. They assume a 

time period for which the static situation is valid. The method consists of two phases. In the first 

phase the traffic is propagated through the network, taking into account the link capacities. In the 

second phase the delay times are calculated. 

The flow propagation is done in fractions. Dividing the flow in fractions reduces the influence of the 

order in which the routes and OD pairs are handled. The flow is propagated over the consecutive 

links of a route until the capacity of a certain link is reached. The extra flow on that link that cannot 

continue will be stored in the queue. Each link has a queue capacity, the maximal queue length in 

number of vehicles. If this amount is reached, and still more flow is propagated over this link, the 

surplus (i.e. spillback) is moved back to the preceding link(s) along the route. 

In the second phase, the delay times are computed by determining the time it takes to empty the 

queues on the links in the network after the first phase while no extra flow is added. This is also done 

in steps by dividing the bottleneck link capacity into fractions. 

In their model, Bundschuh e.a. introduce a permeability factor. This rule allows traffic to pass a 

queue that has spilt back, if the traffic follows a route that does not go through the link that caused 

the queue. This can happen for instance in the presence of separate turning lanes. The factor 

determines the fraction of traffic volume that is able to pass the queue. 

It is not clear how Bundschuh e.a. determine the queue capacity. They assume that a vehicle always 

requires the same space within a congested link. However, it is known from the fundamental 

diagram (see section 3.2) that this is not true: the density (in vehicles/km) of a congested link is 

dependent of the flow (vehicles/hour). If the link is congested and there is only a little flow then the 

density is very high, but if there is only a little congestion and the flow is close to the link capacity, 

then the density is much lower. Surely Bundschuh e.a. take either the value of the critical density 

(density at capacity flow) or the jam density (fully congested, zero flow), or some value in between, 

but in general the queue length will not be accurate. 

There is a tradeoff between the accuracy of the model and the computation time. Using more 

(smaller) fractions in the propagation phase and more fractions of capacity in the delay phase will 

increase the accuracy, but also increases the computation time. The algorithm of Bundschuh e.a. is 

implemented in the transport planning software package VISUM and is used in practice. 
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QBLOK (4Cast, 2009) is a traffic assignment algorithm that is used in practice in the Netherlands. 

Based on the capacity, travel demand and route choice behavior, the model assigns the traffic to the 

network. Route choice behavior is based on the first Wardrop principle. The model does account for 

congestion and spillback phenomena. The model does have some drawbacks. It can produce 

unrealistic travel times and strange route choices. The model uses a heuristic approach to reach an 

equilibrium situation by setting a predefined number of iterations and mixing the resulting link flows 

from different iterations according a certain distribution. It is not a mathematical model, but merely 

an algorithm that tries to find a satisfying result. 

The Link Transmission Model (LTM) by Yperman (2007) is a dynamic network loading model designed 

for the dynamic traffic assignment problem. It describes the traffic propagation through a network in 

a realistic way (consistent with kinematic wave theory) and determines the link flows, densities and 

travel times. It does account for link capacities and spillback phenomena. The route flows from an 

existing route choice model are the input for the link transmission model. The model is built for the 

dynamic traffic assignment problem, but it is useful as a starting point for a static model. 

 

2.4. Discussion 
 

The attention for capacitated static traffic assignment that do account for queuing and spillback 

effects is scarce in the literature. In the table below, the different mathematical models that have 

been discussed in this chapter are categorized.  

 

Mathematical Model Solution Method Implementation 

Extended Beckmann User 
Equilibrium (with link capacity 
constraints) 

Augmented Lagrangean dual 
with exterior penalty function 

Larsson & Patriksson 1995 

Nie e.a. 2004 

Interior penalty function Nie e.a. 2004 

Prashker & Toledo 2004  

Dynamic penalty function Shahpar e.a. 2008 

Stable Dynamics n/a Nesterov & De Palma 
2000&2003 

Flow propagation model Propagate demand iteratively 
through the network 

Bifulco & Crisalli 1998 

Bundschuh e.a. 2006 

Yperman 2007 (dynamic) 

4Cast 2009 

Table 1. Overview of different mathematical models that can deal with capacity constraints 

 

Most papers about the side constrained or capacity constrained traffic assignment problem (Larsson 

& Patriksson 1995, Nie e.a. 2004, Prashker & Toledo 2004, Yang & Huang 2005, Shahpar e.a. 2008) 



16 
 

follow the traditional approach and combine the route choice model and the determination of the 

link flows in the extended Beckmann optimization problem. The advantage of the (extended) 

Beckmann formulation is that it has a nice mathematical form, which can be solved using different 

solution techniques. However, those methods do not model the formation of queues and spillback 

(or blocking back) effects are not taken into account. It merely adds a time penalty for using a link 

that is filled to the capacity. However, since it is known from practice that congestion on a link can 

have consequences for the traffic flow on preceding links, these effects must be accounted for. 

Another disadvantage of the extended Beckmann formulation is that when a link does not have 

enough capacity, the travel time of that link will increase, instead of the travel time of the link(s) 

before that link. Besides that, most of these models apply travel time functions, which are in practice 

hard to determine and in general require time to calibrate to resemble acquired traffic counts. 

 

There are some papers that try to obtain more realistic results. The Stable Dynamics model by 

Nesterov & De Palma uses only upper and lower bounds on the link flow and travel time respectively 

and utilizes the fundamental diagram to find a stable equilibrium. They propose adding an extra 

condition to deal with spillback. Unfortunately, in the rest of their work they do not use this 

condition; they just assume that spillback never occurs, so the effect of this condition in the model is 

unclear.  

Bifulco & Crisalli (1998), Bundschuh e.a. (2006) and Yperman (2007) describe a flow propagation 

model (which contains no route choice model), taking a path flow vector coming from an existing 

route choice model as input. Bifulco & Crisalli describe a method to iteratively propagate the flow 

through the network by computing the fraction that is able to continue on the path given the link 

capacities. However, their model cannot handle spillback. 

Bundschuh’s model is a practical model that does account for spillback, but there are some 

drawbacks: they start building the queue in the bottleneck link instead of before the link. Besides 

that, they imply that the queue capacity of a link is constant. However, the queue capacity depends 

on the density of the queue. 

QBlok does account for queuing and blocking back phenomena. However, this method is merely an 

algorithm using heuristics and if-then structures, and can result in strange route choices and 

unrealistic travel times. Since it is not a mathematical model, nothing can be said beforehand about 

the results either. 

The dynamic Link Transmission Model (LTM) by Yperman (2007) does account for spillback effects, 

and describes the propagation of traffic flow through the network according to kinematic wave 

theory. Since the model is based on kinematic wave theory, it has a mathematical basis. Kinematic 

wave theory is considered as good method to model first order traffic flows. 

 

In the figure on page 17, differences between some of the models are shown in a small hypothetical 

network. It gives an idea of the differences of the standard Beckmann model, the extended 

Beckmann model, the model Bifulco & Crisalli, the model of Bundschuh e.a. and QBlok. Furthermore 

it is shown how an ideal model should work. 

Depicted is a simple network with seven links in series, with different capacities that are indicated by 

the width of the link. A traffic demand flow is sent through the network and it is shown what the link 

flows (widths of the colored parts) and travel times (color of the parts) will be in the different 

models. 
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If this is the only route on this network, the extended Beckmann model shall not have a feasible 

solution, because in some links there is not enough capacity. Therefore, it is assumed that there is an 

alternative route with unlimited capacity starting from the origin (upstream end of the first link) and 

ending at the destination (downstream end of the last link), with a very high travel time. In this way, 

this alternative route will only be chosen when there is no other option. 

 

 

Figure 3. Comparison of traffic flows and speeds between different static models. 

 

In the standard Beckmann model, where capacities are not taken into account, all link flows are 

equal to the input flow and are overestimated, and the travel times will be higher in the saturated 

links. In the extended Beckmann model, because of the low capacity of the sixth link, the flow on the 

whole route will be low and underestimated. The rest of the flow will be assigned to the alternative 

route. The travel time of the bottleneck link will be higher than in the other links. The third part of 

the figure shows the idea of the model Bifulco & Crisalli. The traffic flow pattern here is more 

realistic, but the queues are built inside the bottleneck links and spillback cannot occur. The fourth 

part shows the model by Bundschuh e.a. and the model QBLOK. Queues will appear inside the 

bottlenecks, and possibly spillback occurs. Both models work differently, but yield comparable 

results. It should be mentioned that unlike Bundschuh’s model, QBLOK is merely a heuristic and not a 

complete model. 

In the lowest part of the figure, a better way to model the congestion is shown. Queues are formed 

before the bottleneck and can possibly spill back to preceding links. The queue lengths are more 

accurate than in the model by Bundschuh e.a. Because the congestion modeling of this idea is similar 

to the method and the results of the dynamic Link Transmission Model, in the rest of this thesis a 

model that corresponds to this idea is formulated based on the LTM. 
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2.5. Conclusion 
 

In this chapter different models and approaches from the literature were discussed and compared. 

The models are compared on the realism of the determination of the travel times and the 

mathematical or theoretical fundament the models are based on. The realism of the travel times is 

divided into four criteria (see Table 2). 

 

Mathematical model 

Realistic determination of travel times 
Theoretical 
fundament Physical 

queuing 
Queue 
location 

Fundamental 
diagram 

Spillback 

Extended Beckmann - - - - + 

Stable Dynamics - - + - + 

Flow propagation models:   

- Bifulco & Crisalli - - - - + 

- Bundschuh + - - + + 

- QBlok + - - + - 

- Link Transmission Model + + + + + 

Table 2. Summary of the comparison of the different approaches in literature on a number of criteria. 

 

The Link Transmission Model is the best choice based on the criteria used. The LTM provides physical 

queuing and builds the queues before the bottleneck links and not inside them. It uses the complete 

fundamental diagram and spillback effects are accounted for. Since it is based on kinematic wave 

theory, it has a mathematical basis. However, since it is a dynamic model its higher computation time 

is a drawback. Therefore, it is chosen to derive the static variant of the Link Transmission Model in 

this thesis. 
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3. Link Transmission Model 
 

The Link Transmission Model by Yperman (2007) is a dynamic network loading model that is used for 

the dynamic traffic assignment. The model realistically describes traffic propagation on a network. In 

this chapter the working of the Link Transmission Model (LTM) is described. In the first section the 

basic idea is explained. In the sections thereafter, the theory about the fundamental diagram, 

kinematic wave theory and shock wave theory is described shortly, to support further explanation of 

the model. 

In the seventh section, an event-based, quasi-dynamic variant of the LTM is derived. It is called quasi-

dynamic because it is assumed that the route flows are stationary, i.e. constant over time. Through 

this assumption, the model becomes less complex and far less calculations are needed. This adjusted, 

stationary Link Transmission Model is used as a step towards the Static Traffic Assignment with 

Queuing (STAQ) model, which will be the subject of chapter 4. In the last section an algorithm for the 

stationary LTM is presented. 

 

3.1. Introduction to the LTM by Yperman 
 

The original LTM is a dynamic network loading model. It is a simulation model that describes how the 

traffic propagates through the network over time in a realistic manner, consistent with the 

fundamental diagram and kinematic wave theory (see the next sections). It takes as input the time 

dependent route flows obtained by some existing route choice model. The LTM is the second 

component of a Dynamic Traffic Assignment model as illustrated in Figure 1 on page 1. 

The LTM determines link volumes (i.e. number of vehicles) and travel times given the route flows. A 

route flow is loaded onto the network in the origin node and after some time leaves the network 

through its destination node. 

The LTM counts the cumulative number of vehicles that have passed the beginning and the end of 

each link at time  . The number of vehicles that have passed location   at time   is       . Location 

   is the start of a link and location    is the end of the link, where   is the link length. So, the 

cumulative number of vehicles that have entered a link (cumulative inflow) at time   is        . 

Similarly,         represents the cumulative number of vehicles that have left a link (cumulative 

outflow) at time  . By cumulative number of vehicles is meant the total number of vehicles since the 

start at time    . To simplify notation,              is used for the cumulative inflow and 

             for the cumulative outflow. It is assumed that there is no overtaking on a link (First 

In First Out behavior).  

 

The cumulative in- and outflow can be visualized as in Figure 4. The difference between the time a 

vehicle entered and the time it left a link is the link travel time of that vehicle. The difference 

between in- and outflow is the number of vehicles on a link at a certain moment in time. So, if 

         , then there are no vehicles on this link. Note that           always holds, since a 

vehicle has to enter a link before it can exit that link. 
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Figure 4. Example of cumulative in- and outflow curves of a link over time. 

 

The LTM is a time based algorithm. For each time step (of fixed size), it determines for each link 

which amount of vehicles in that time step moves on to the next link, and adds this amount to the 

respective cumulative in- and outflows. To do this, the LTM uses the concept of sending, receiving 

and transition flows. The LTM can be divided into two parts: the link model and the node model. 

In the node model it is determined which part of the traffic that wants to go towards a certain link is 

actually allowed to go to that link, based on the available capacities of the links connected to that 

node. In the link model, the traffic is propagated over a link in such a way that it is consistent with 

kinematic wave theory. A brief introduction to kinematic wave theory is given in section 3.3. Within 

kinematic wave theory, it is assumed that the fundamental relation between traffic flow (intensity), 

speed and density holds. This relation is described in a fundamental diagram. The fundamental 

diagram is the subject of the next section. 

 

3.2. Fundamental diagram 
 

A fundamental diagram describes the relation between the three important entities within traffic 

flow theory:  

  traffic flow rate, intensity of the traffic (vehicles/hour) 

  the density (German: konzentration) of the traffic (vehicles/km) 

   the speed (velocity) of the traffic (km/hour) 

 

The relation        is known as the fundamental equation of traffic flow. This equation is based 

on the assumption that on average, drivers will drive the same under the same average conditions: at 

a certain speed  , they remain the same distance headway with respect to the next vehicle on the 

road. Each link can have a different fundamental diagram, but the diagram remains the same over 

time. 

Three different diagrams can be visualized, all displaying the same information, but in a different 

form: 
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Speed – density:        

Speed – intensity:        

Intensity – density:        

 

The diagram showing the intensity – density relation is the most convenient for this thesis. In 

literature, different forms for the fundamental diagram have been proposed. One of the simplest 

forms is the diagram proposed by Newell (1993) and by Daganzo (1994) (Figure 5a). The intensity – 

density graph consists of two straight lines. From this graph, the speed   at a certain density   can be 

found, by determining the slope of the line from the origin to the point on the graph at that density 

(i.e.         ). The part of the diagram that lies to the left of the critical density    (increasing 

part of the diagram) is the uncongested part, in this part the traffic can flow with the free flow speed 

 . At the critical density, the flow rate is equal to the capacity of the link, indicated by  . When the 

road traffic becomes more dense than   , both the flow that can go through the link and the speed 

of the flow decreases, until it reaches the jam density  . At that point, no flow is possible, so the 

speed is zero. Note that the diagram is determined by only three parameters: the free flow speed  , 

the capacity  , and the jam density  . The slope   for the congested wave speed follows from these 

parameters by             . 

 

 
a 

 
b 

Figure 5. Two examples of a fundamental diagram: (a) Newells diagram and (b) Smulders’ diagram. 
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Smulders (1990) introduced an similar form of this diagram, but he introduced a parabolic curve at 

the uncongested part (Figure 5b). This is a slightly more realistic way to model the speed in an 

uncongested link, because when the road becomes denser, speed will decrease: at the capacity flow, 

the speed is strictly less than the free flow speed (      ). 

Like in Yperman (2007), Newells diagram (Figure 5a) is used in this thesis, because the diagram has 

some nice mathematical properties. Only two possible kinematic wave speeds exist (see section 3.5): 

the free flow speed   for uncongested conditions (slope of first straigth line) and   for congested 

conditions (slope of second straight line). 

 

3.3. Kinematic wave theory 
 

The function        for the cumulative vehicle numbers at location   and time   is in general 

discontinuous, since the number of vehicles is discrete. Therefore it is assumed that a smooth 

approximation of the cumulative number of vehicles is available such that the function is twice 

differentiable. The approximation should coincide with the original function at the positions where a 

vehicle enters or exits the link, i.e. the ‘steps’ in the function. In this way the partial derivatives of 

       can be determined. The partial derivative with respect to   can be interpreted as the 

instantaneous flow (in vehicles per time unit) at point      : 

        

  
        

 
 

 

The partial derivative with respect to   can be interpreted as the density (in vehicles per kilometer) 

at point      : 

        

  
         

 
 

 

The density has a negative sign because for increasing  ,        is decreasing. It is assumed that our 

smooth approximation of        has continuous second partial derivatives, so the identity 

         

    
 
        

    
 

 
 

 

yields 

        

  
 
       

  
   

 
(6) 

 

This equation is known as the conservation law. It ensures that changes in the rates of the flow and 

density over time and space cannot cause vehicles to appear or disappear. 

In kinematic wave theory, it is assumed that traffic behaves as described by a fundamental diagram 

and that the flow can be taken as a function of the density. This means that        can be replaced 

with           in equation (6): 



23 
 

        

  
 
          

  
 
       

  
 
          

  

       

  
   

 
(7) 

 

Now the conservation law is formulated with only one independent variable, the density  . In the 

following,    is used to represent the value of the derivative of  ,              . Since a 

fundamental diagram with two linear segments is used (Figure 5a), only two different values for    

can occur: the free flow wave speed   and the congested wave speed  . As long as    is constant, 

solutions of the partial differential equation (7) are of the form: 

                    
 

Indeed, 

        

  
                          

       

  
                

 
 

 

imply 

        

  
    

       

  
                                   

 
 

 

This means that in the     plane the density is constant on straight lines with slope   . These lines 

are called characteristics or waves. All along such a characteristic line, the traffic state conditions are 

the same. A traffic state can be seen as a certain combination of the traffic flow and density. So, a 

traffic state moves along such a wave through the     plane. At one position in the     plane (a 

certain combination of place and time) there can be only one traffic state. When two different traffic 

states intersect with each other, a shock wave appears. 

 

3.4. Shock waves 
 

When there is a change in traffic conditions, such as a change in the inflow or outflow caused by a 

decrease in capacity, an imaginary boundary is established in the     plane. This boundary 

indicates a change from one traffic state to another. Such boundaries are called shock waves. Shock 

waves can move with or against the direction of the traffic, depending on the change in traffic states. 

This is explained with an example. In Figure 6 a link with a shock wave is shown, next to its associated 

fundamental diagram. There is a change from traffic state 1 (density   , flow   ) to traffic state 2 

(density   , flow   ), which causes a queue to grow in the link. The shock wave indicates the start of 

the queue. When the shock wave reaches the upstream end of the link (  ), the queue shall spill 

back to the preceding links.  
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Figure 6. Example of a backward shock wave, with its associated fundamental diagram. 

 

The height of the colored parts indicate the intensity of the flow. The green part indicates free flow 

conditions (traffic state 1) and the red part indicates congested conditions (traffic state 2), the speed 

of the traffic will be lower there. Suppose the change of traffic states is initiated at time    at location 

  . The shock wave reaches location    a certain time later, say at time   . The difference in number 

of vehicles on the link between the moment that the shock wave is initiated and the moment it 

reaches the other link end can be found by: 

                        
 

Alternatively, this number can be found through the change in flow rates: 

                        
 

Since             and the shock wave travels the distance    in time   , the speed   of the 

shock wave is found as follows: 

   
  

  
 
     
     

  (8) 

 

This speed is also found by determining the slope of the line between the two points on the 

fundamental diagram (see Figure 6). In this example   is negative, because the shock wave travels 

against the direction of the traffic. 

In Figure 7, a     plane is displayed of a link  .   
  is the upstream link end,   

   is the downstream 

link end, where    is the length of link  . At time    the outflow rate (at   
  ) decreases from    to 

  , caused by a capacity reduction. The lines with slope    are traffic waves within free flow 

conditions. Along these waves, the intensity or flow rate is    and the density is   . For such a wave, 

it takes       to reach the end of the link if it does not intersect with another state. The lines with 

slope    are traffic waves within congested conditions. Along these waves the intensity is    and the 

density is   , and it takes        to reach the beginning of the link if it does not intersect with 

another state. The red line with slope   indicates the intersection of the two different traffic states, 

and shows the movement of the shock wave through time and space. It takes             time 

for the shock wave to reach the beginning of the link. The diagram also shows some vehicle 

trajectories. In the free flow part, these trajectories coincide with the traffic waves, because the 

vehicles travel with wave speed   . If a vehicle reaches the shock wave, it transfers to the congested 

area and continues to travel with speed    (see also the fundamental diagram of Figure 6). 
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Figure 7. Example of a     plane with a shock wave as in Figure 6. 

 

Note that it is assumed that a transition from one traffic state to another does not take time, which 

implies that vehicles do not accelerate or decelerate. Vehicles make a jump in their driving speed. 

This assumption simplifies the model greatly, and since the purpose is to model the first order traffic 

flow and not single vehicles, it is accepted. 

There can be many shock waves on the links in a network. Each time a shock wave reaches a link end, 

it results in new shock waves in the other links connected to this node. By keeping track of all the 

shock waves in the network, the situation of the traffic flows and densities on the links in the 

network after a certain time period, for instance one hour, can be calculated. 

The Link Transmission Model does model the traffic flows according to the shock waves in the 

network. However, by using Newell’s simplified theory of kinematic waves (see next section), the 

LTM only needs to keep track of the cumulative number of vehicles that have entered and left each 

link, and explicitly keeping track of all the shock waves is no longer needed. 

 

3.5. Newell’s simplified theory of kinematic waves 
 

As explained before, when using a triangular shaped fundamental diagram, a traffic state can travel 

through a link with just two possible wave speeds. A traffic state within free flow conditions travels 

from the upstream boundary (beginning) of link   to the downstream boundary (end) of the link with 

free flow speed   . A congested traffic state travels from the downstream boundary of link   to the 

upstream boundary with speed    (   is negative, so it travels against the direction of traffic). See 

also the     plane of Figure 7. 

A free flow traffic state traveling from the upstream link end following a free flow traffic wave 

reaches the end of the link       time units later, if it does not intersect with another state. Because 

vehicle trajectories coincide with traffic waves within free flow conditions, the change in cumulative 

vehicle numbers is zero: 

 
    

         
     

  
  
             

  
  
    

 
 

      is defined as the cumulative number of vehicles that have entered link   at time   (cumulative 

inflow), and       is defined as the cumulative number of vehicles that have left link   at time   
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(cumulative outflow). So, when the link is in free flow conditions (when the density is smaller than 

the critical density, i.e. no congestion), the cumulative number of vehicles that have left the link is 

equal to the cumulative number of vehicles that have entered the link       time units earlier: 

 
           

  
  
  

 
(9) 

In Figure 10 the graph of the cumulative vehicle numbers within free flow conditions is shown, with 

inflow rate   . 
 

 

Figure 8. Cumulative vehicle numbers within free flow conditions. 

 

A congested traffic state traveling from the downstream link end following a congested traffic wave 

reaches the beginning of the link        time units later, if it does not intersect with another state. 

With Green’s Theorem (1828) it can be shown that the change in cumulative vehicle numbers is 

    , where    is the jam density of link   (see also Yperman (2007)). Here   is a straight line in the 

    plane between the points    
     and    

     
  

  
  along which   and   are constant; both 

points represent the same congested traffic state      . 
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The last step is found using the fundamental diagram (see Figure 5a):              holds for a 

congested traffic state      , which yields          . So, within congested conditions, the 

cumulative number of vehicles that entered the link at time   is equal to the cumulative number of 

vehicles that have left the link        time units earlier plus     : 

 
           

  
  
       

 
(10) 

Suppose that as in Figure 7, there is a traffic flow rate of    on a link. At time    the outflow capacity 

of the link is reduced to   . This will result in congestion on the link, because the current traffic flow 

rate in the link is      . Therefore, from time    the graph of the cumulative outflow will have 

slope   , and from time          the cumulative inflow will also have slope   , with      more 

vehicles (see Figure 9).  

 

 

Figure 9. Cumulative vehicle numbers within congested conditions. 

 

This results in a double valued solution for the cumulative inflow and outflow, by Figure 8 and Figure 

9. The unique solution is achieved by taking the lower envelop of this double valued solution (see 

Figure 10). Note that in the unique solution the inflow rate changes at time    from    to   , just as 

found in Figure 7. This solution is found without explicitly calculating the shock wave. This approach 

works even with multiple shock waves on a link. 

 

The following lemma shows that the approach above yields the same outcome as calculating the 

shock wave arrival time explicitly as was done in section 3.4. It shows that the time    found in Figure 

7 is the same as the    in Figure 10. 
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Figure 10. The lower envelop of the double valued solution of Figure 8 and Figure 9. 

 

Lemma 

Consider a link with traffic state         on the whole link. At time    the outflow rate changes to 

     , with corresponding (congested) density   . Calculating the arrival time of the shock wave 

explicitly through the shock wave speed yields the same result as calculating it via Newell’s simplified 

theory of kinematic waves. 

Proof 

1. Explicit shock wave arrival time. Following equation (8), the shock wave travels with speed 

  
     

     
, so it reaches the upstream link end       time units after    (  is negative): 

      
  
 

 

2. Newell’s simplified theory of kinematic waves. The arrival time    of the shock wave can be 

calculated following the approach derived from Newell’s simplified theory of kinematic waves. The 

change in the inflow rate is caused by the arrival of the shock wave at the upstream link end. So,    

equals the time at which the graph of the cumulative inflow from Figure 10 changes direction, i.e. the 

time that the graph of the cumulative inflow from Figure 8 crosses the graph of the cumulative inflow 

from Figure 9: 

                            

The cumulative inflow at time    of Figure 8 is simply      . The cumulative inflow at time    of 

Figure 9 is determined in three parts. Until    the cumulative outflow is              , then a step 

of      is taken towards the cumulative inflow. Then there is another                 time of 

inflow rate   . This yields: 
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Since       and          it follows that: 

                                  
  
  

   

Furthermore, since from the fundamental diagram it is known that               , it follows 

that  
  

  
             , so: 

                                              

                         

         
     
     

 

Since                  , this is the same result as above.                                                                

 

Kinematic wave theory is described in more detail by e.g. Daganzo (1997) and Newell (1993). 

 

3.6. Formulation of the Link Transmission Model 
 

Yperman uses equations (9) and (10) in his formulation of sending and receiving flows. In the 

following, the Link Transmission Model (LTM) by Yperman (2007) is described. 

Input for the LTM: 

- Network       including for each link    : 

o       link capacity (vehicles/hour) 

o       link length (km) 

o       jam density, density at which flow is no longer possible (vehicles/km) 

o        forward (free flow) wave speed (km/hour)  

o       backward (congested) wave speed (km/hour) 

 

- The fundamental diagram of link  , determined by the parameters   ,    and    (see Figure 

5a).    follows from these parameters by                  . 

 

-  : Set of used routes (or paths) 

 

-        : Path flow rates for each path     at time  , the traffic flow per hour assigned to 

that path (vehicles/hour). Since LTM is a dynamic model, path flows can change over time. 

      is the rate at which vehicles enter the network at the upstream link end of the first link 

of path   at time  . Path flows are assumed to be given, achieved by some route choice 

model. 

 



30 
 

-   , the fixed time step in the algorithm.    should be smaller than the smallest link travel 

time. This requirement is known as the Courant-Friedrichs-Lewy (CFL) condition: 

   
  
  
            

 

To indicate that two links are connected to each other, or more precisely that the downstream end 

of link   is connected to the same node as the upstream end of link  , the notation     is used. 

Variables for the LTM: 

      The cumulative number of vehicles that have entered link   at time  . 

      The cumulative number of vehicles that have left link   at time  . 

      The sending flow of link   at time   (maximum number of vehicles that could 

leave the downstream end of this link during         , if this link end were 

connected to a traffic reservoir with an infinite capacity). 

       The directional sending flow from link   to link   at time  , the part of       

that wants to go to link  . It is assumed that    . 

      The receiving flow of link   at time   (maximum number of vehicles that 

could enter the upstream end of this link during         , if a traffic 

reservoir with an infinite traffic demand were connected to this link end). 

       The transition flow of link   to link   at time   (number of vehicles that are 

actually transferred from link   to link   during         ). It is assumed that 

   . 

 

The LTM basically consists of two parts, the link model and the node model. In the link model the 

traffic is propagated through the links of the network by determining the sending and receiving flows 

of each link. The sending and receiving flows indicate the amount of vehicles that are willing to exit 

and able to enter a certain link, respectively. In the node model, the transition flows are determined. 

The sending flow of link   at time   is the maximum amount of vehicles that could leave the 

downstream end of this link during         , if there are no capacity constraints downstream this 

link. This means there are free flow conditions in the link. The upper bound for the sending flow is 

the difference in cumulative outflows at time   and     , where          can be obtained using 

equation (9) on page 26: 

 
                             

  
  
        

 
(11) 

The sending flow is also constrained by the capacity of the link: 

             
 (12) 
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So, the sending flow is the maximum flow taking into account equations (11) and (12): 

                   
  
  
               

 
(13) 

 

The receiving flow of link   at time   is the maximum amount of vehicles that could enter the 

upstream end of this link during         , if there is infinite traffic willing to enter this link. This 

means that the inflow is only constrained by the downstream link end, in case of congestion. The 

upper bound for the receiving flow is the difference in cumulative inflows at time   and     , 

where          can be obtained using equation (10) on page 27: 

 
                             

  
  
             

 
(14) 

 

The receiving flow is also constrained by the capacity of the link: 

             
 (15) 

 

So, the receiving flow is the maximum flow taking into account equations (14) and (15): 

 
                  

  
  
                    

 
(16) 

 

In the node model, the transition flows are determined. The transition flows indicate which part of 

the sending and receiving flows can actually be sent and received, given the situation at that node. 

 

          
     

     

 
      

              

    

               

 

  

 

(17) 

 

In this node model, the outflow of all incoming links of a node will be reduced if there is a capacity 

problem at that node. The total flow that want to flow to a outgoing link   is the sum of the 

directional sending flows       . However, at most there can flow as much as the receiving flow 

      to this link. The link with the smallest ratio between the receiving flow and the sum of the 

directional sending flows determines the factor of the sending flows is allowed to go to the next link 

at this node. 

So, it is assumed that at a junction with a capacity problem, the outflow of all incoming links is 

reduced. Consider an intersection as Figure 11, a node with three incoming links ( ,  ,  ) and two 

outgoing links ( ,  ). The directional sending flows for a certain time   are shown in Table 3. All links 

have a capacity of 2000 vehicles per hour, and at this time   all receiving flows are equal to the 

capacity.  
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    d e 

a 900 0 

b 600 1200 

c 0 1200 

Figure 11. Example of a node with a capacity problem. Table 3. Directional sending flows for the junction of Figure 11. 

 

Because there is a flow of 2400 vehicles per hour that wants to go to link  , there is a capacity 

problem. Following the node model, the transition flows are determined by taking the directional 

sending flows and multiplying this with the smallest ratio at this node, which is 2000/2400. So, the 

transition flows are as follows:      750,      500,          1000. Note that even the 

outflow from link   to link   is decreased, while there is no flow from   to  . However, in this node 

model it is assumed that when an intersection is congested, all traffic streams are influenced with the 

same factor. 

 

This node model is chosen for its simplicity, as the formulation is very straightforward. In the paper 

by Tampère e.a. (2011) this node model is criticized. They show with a numerical example that the 

total flow over the node with respect to the sending flows is not always maximized. Furthermore, the 

invariance principle may be violated, which means that a situation can arise in which a queue 

alternatively grows and dissolves while the boundary conditions (i.e. inflows of the incoming links, 

outflows of the outgoing links) are constant. The impact of this flaw is not clear and further research 

on this subject is needed.  

A different node model formulation could be implemented in the link transmission model as long as 

it is applicable to a general intersection, it uses sending- and receiving flows, and the conservation of 

vehicles and the conversation of turn fractions is guaranteed. Obviously, the flows also need to be 

non-negative and the demand and supply constraints must be satisfied. The conservation of turn 

fractions means that the fraction of the sending flow to a certain link is equal to the fraction of the 

actual flow to that link: 

 
     

   
  

          

     
    

          
    

(18) 

 

If there is FIFO (first in first out) behavior on the link this requirement is automatically satisfied. 

 

The following sets are used in the algorithm: 

   is the set of incoming links into node  , i.e. all links that have node   as the downstream link end. 

   is the set of outgoing links from node  , i.e. all links that have node   as the upstream link end. 

For example, for the node in Figure 11, this means that            and         . 
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The algorithm of the original LTM is as follows. For details, see Yperman (2007). 

 

For each time interval   : 

For each node  : 

1. For each      determine the sending flow       using (13), and for each      determine 

the receiving flow       using (16). 

 

2. Determine the transition flows        from link   to link   using (17) for all     ,     . 

 

3. Update cumulative vehicle numbers: 

 
                      

    

        

    

 
                      

    

        

 

3.7. The stationary Link Transmission Model using flow rates 
 

In the rest of this thesis, it is assumed that the traffic demand is stationary, as in a static traffic 

assignment model. In this way it is possible to derive the static variant of the LTM. This means that 

during the whole studied time period the Origin-Destination (OD) demand matrix remains the same, 

so there is a constant inflow rate onto the first link of each path. This is a static approximation or 

average of the dynamic demand during a certain time period. In Figure 12 an example of the dynamic 

demand on a link during the morning peak hours is shown. The stationary approximation will be 

somewhere between the top and the bottom of the peak. The best way to choose the approximation 

is not within the scope of this thesis; it is assumed that the stationary demand is given. 

 

 

Figure 12. Example of the dynamic demand during morning peak hours, and a stationary approximation. 
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Because the OD demand is constant, also the assigned path flows achieved from the route choice 

model are constant. So, the inflow rate (or intensity) of each first link of all routes is constant. 

However, because of congestion and spillback effects, this is not true for all links in general. In the 

following, the sending and receiving flows will be defined in vehicles per hour, at a certain time, 

instead of a number of vehicles in a certain time interval. Thus, they become sending and receiving 

flow rates, and also in- and outflow rates. The sending- and receiving flow rates of a node can only 

change when an (implicit) shock wave reaches this node, for instance when a queue has filled the 

whole link and is about to spill back. These moments when there is a change in traffic states at a 

node are called events. 

 

The formulas from the original Link Transmission Model are derived for the stationary case. The 

event times can be calculated, without iterating for each time step. The time that the next sending or 

receiving flow rate changes can be determined immediately, instead of calculating the sending and 

receiving flows for each time step   . In Figure 13 an example of the cumulative in- and outflows is 

given. The slope of the cumulative in- and outflows correspond to the in- and outflow rate 

respectively. The changes in the slope correspond to the event times. It is assumed that these 

changes do not take time. 

 

 

Figure 13. Example of cumulative in- and outflow curves of a link over time. 

 

Again the link travel time of a vehicle can be derived by the difference between the time that the 

vehicle entered and the time that it left the link. The difference between in- and outflow is the 

number of vehicles on a link at a certain moment in time. 

Largely the same notation and set of variables as in the original LTM is used. The differences are that 

   is no longer used, that    is not time dependent, and that the sending, receiving and transition 

flows are in vehicles per hour instead of number of vehicles per   . The model is performed for a 

predefined period, for instance one hour, and from the cumulative in- and outflows at the end of 

that period the travel times can be derived. 
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Input for the stationary LTM: 

- Network       including for each link    : 

o       link capacity (vehicles/hour) 

o       link length (km) 

o       jam density, density at which flow is no longer possible (vehicles/km) 

o        forward (free flow) wave speed (km/hour)  

o       backward (congested) wave speed (km/hour) 

 

- The fundamental diagram of link  , determined by the parameters   ,    and    (see Figure 

5a).    follows from these parameters by                  . 

 

-  : Set of used routes (or paths) 

 

-     : Path flow rates for each path    , the traffic flow per hour assigned to that path 

(vehicles/hour).    is the rate at which vehicles enter the network at the upstream link end of 

the first link of path  . Path flow rates are assumed to be given, achieved by some route 

choice model. 

 

Variables for the stationary LTM: 

      The cumulative number of vehicles that have entered link   at time  . 

      The cumulative number of vehicles that have left link   at time  . 

      The inflow rate of link   at time   (vehicles/hour). 

      The outflow rate of link   at time   (vehicles/hour). 

      The sending flow rate of link   at time   (maximum outflow rate at time  , if 

the downstream end of this link were connected to a traffic reservoir with an 

infinite capacity; in vehicles/hour). 

       The directional sending flow rate from link   to link   at time  , the part of 

      that wants to go to link   (vehicles/hour). It is assumed that       

      The receiving flow rate of link   at time   (maximum inflow rate at time  , if a 

traffic reservoir with an infinite traffic demand were connected to the 

upstream end of this link; in vehicles/hour). 

       The transition flow rate of link   to link   at time   (highest actual possible 

flow rate between link   to link   at time  ; in vehicles/hour). It is assumed 

that    . 
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In the following, the fundamental rule of calculus is used to take the derivatives of the cumulative 

number of vehicles       and       to achieve the respective in- and outflow rates (in vehicles per 

hour) at time  . Using equation (9) on page 26, the relation of the in- and outflow rates in free flow 

conditions is obtained: 

 
        

       
    

  
  
        

  
  
  

 
(19) 

 

Similarly, using equation (10) on page 27 yields the relation within congested conditions: 

 
        

       
    

  
  
       

  
  
  

 
(20) 

 

The sending flow       in the original LTM is the maximum number of vehicles that can leave the link 

in a time period         , where    is fixed. Dividing this number by    yields the average sending 

flow rate in this time period. Then letting     , the sending flow rate at time   is obtained. 

 

         
    

     

  
    

    

            
  
  
              

  
 

 
 

 

If                            when     , then the link is not in free flow condition at 

time  . It means that                      and 

 
   
    

     

  
    

    

     

  
     

 
 

 

If                            when     , then the link is in free flow condition at time 

 . It means that                      and 

 

   
    

     

  
    

    

        
  
  
       

  
 

 
        

  
  
       

  
  
 

  
      

  
  
  

 

 

 

Similarly, the receiving flow rate is obtained by dividing the receiving flow by    and letting     : 

 

         
    

     

  
    

    

            
  
  
                   

  
 

 
 

 

If                                 when      then the link is not in congested 

condition at time  . It means that                           and 
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If                                 when      then the link is in congested 

condition at time  . It means that                           and 

 

   
    

     

  
    

    

        
  
  
            

  

    
    

        
  
  
       

  
  
 

  
      

  
  
  

 

 

 

Summarizing: 

       

 
 
 

 
      

  
  
              

  
  
         

                                 
  
  
         

   (21) 

    

       

 
 
 

 
      

  
  
              

  
  
              

                                 
  
  
              

   (22) 

 

The derivation above can also intuitively be found. If the downstream end of the link is not congested 

(equation (9) holds:                  ), the highest possible outflow rate       is equal to the 

outflow rate       which is in that case equal to             (see (19)). A higher outflow rate is 

not possible, since there are only       vehicles per hour (driving at free flow speed) available to flow 

out. If there is congestion at the end of the link, the sending flow rate equals the capacity. This can 

be explained as follows. If there is congestion at the end of the link, vehicles drive slower and closer 

to each other than in free flow conditions. Would the capacity constraints at the downstream link 

end be neglected, then vehicles could drive out of the link faster, as fast as free flow speed, meaning 

a flow rate equal to the link capacity. This would correspond to a transition at the fundamental 

diagram (Figure 5a) from somewhere at the congested part to the top of the diagram.  

If the upstream end of the link is congested (equation (10) holds:                       ), 

the highest possible inflow rate       is equal to the inflow rate       which is in that case equal to 

            (see (20)). Vehicles cannot enter the link at a higher rate, because there is a queue.  If 

there is no congestion, the highest possible inflow rate equals the capacity. 

 

The same node model as in the original LTM is used (equation (17)), but sending, receiving and 

transition flow rates are used instead of sending, receiving and transition flows. 

           
     

     

 
      

              

    

               

 

        ;     (23) 
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     (24) 

    

 
              

     
    

 
     (25) 

 

To determine the directional sending flow rates       , the turn fractions are used. The turn fraction 

     between consecutive links   and   is the fraction of traffic at link   that wants to travel towards 

link  . The sum of turn fractions from a link equals one, since no traffic is lost. In this thesis, it is 

assumed that the turn fractions remain constant during the calculations.  

 
        

    
     

    
    
   

  
      ;     (26) 

 

The assumption that the turn fractions are constant during the whole simulation period can cause 

incorrect directional sending flows and therefore also incorrect transition flows. For instance, 

consider two paths that go via link  , but have a different link before and after link   on the path. If 

the distance that the flow has to cover before reaching link   is large for the first path and small for 

the second, there will be a period that only flow from the second path is on the link, and the sending 

flow would consist only of flow going to the next link of the second path. So, the turn fraction to the 

next link on the second path should be 1, and not the constant value determined by the total path 

flows via equation (26). 

However, it is complex to keep track of the turn fractions at any time. It is not always clear which 

fractions of traffic wants to go each next link. Therefore, it is chosen to fix the turn fractions. More 

research should be done to investigate the influence of fixed turn fractions, and how variable turn 

fractions could be implemented. 

The model also needs to keep track of the cumulative in- and outflows for each  :       and      .  

               

 

 

      (27) 

    

               

 

 

      (28) 

 

The equations for the link model ((21)-(22) and (27)-(28)) combined with those for the node model 

((23)-(25)) together form the complete model. These equations have to hold for all  . In the next 

section, an algorithm for the model is given to obtain the solution. 
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3.8. Algorithm for the stationary Link Transmission Model 
 

Before the algorithm for the stationary link transmission model is described, first two important 

components of the algorithm are discussed: the determination of the initial situation, and the finding 

of the next event. The first component is only used once, at initialization. The second component is 

used multiple times during the algorithm. 

 

3.8.1. Initialization 

 

To achieve the initial values of the variables,     is filled in into equations (21) and (22). It is 

assumed here that the cumulative in- and outflows and also the in- and outflow rates at a time     

are zero. Then the sending flow is equal to zero for all links, since                    , so 

                   . This makes sense since within the LTM at     the network is empty 

and vehicles start to flow from the upstream end of the first link on each path. It will take some time 

(      time units) until the first vehicle reaches the downstream end of the first link, such that the 

sending flow is greater than zero. 

The receiving flow at     is always equal to the capacity, since                        

          . So,         . 

The inflow rate of the first link on each path   at     is equal to the assigned flow    of that path. 

All other inflow and outflow rates are zero, since no vehicles are on the network yet. Summarizing: 

               
    

                

    

 
         

    
                  

 
     (29) 

    
               
 

Equation (29) determines the inflow rate of a link by summing the path flows of all the paths that 

have that link as the first link of the path. 

 

3.8.2. Finding the next event 

 

To propagate the flows through the network, an event-based approach is used. Between two events 

all sending and receiving flow rates and all in- and outflow rates are constant because of the 

stationary demand. This means the function of the cumulative in- and outflow is piecewise linear, 

and the in- and outflow rates are piecewise constant. Therefore only the next event on the network 

is relevant; the first moment that there is a change somewhere in the network in the sending or 

receiving flow rate. Suppose now is time  . The first oncoming change in the sending flow rate on a 

link   corresponds to the first moment after   that equation (9) on page 26 is true for link  . So the 

purpose is to find a candidate event time    
  

   such that: 
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 (30) 

 

Here the    in   
  

 stands for forward, since the change in the sending flow rate is caused by an 

(implicit) forward shock wave in this link that has reached the downstream link end. 

The inflow rate       and the outflow rate       are constant as long the event has not happened, 

so: 

                         
    
                         
 

Now equation (30) can be rewritten as follows: 

 
               

  
                   

  
 
  
  

    
 

 

 
                 

  
                       

  
  

 
 

 

 

So, the candidate event time for the downstream end of link   is: 

 

  
  

   
                   

  
  

           
 

 
(31) 

 

Similarly, the first oncoming change in the receiving flow rate corresponds to the first moment after   

that equation (10) on page 27 is true. A candidate event time   
     must be found such that: 

 
     

         
   

  
  
       

 
(32) 

 

Here the    in   
   stands for backward, since the change in the receiving flow rate is caused by an 

(implicit) backward shock wave in this link that has reached the upstream link end. Equation (32) can 

be rewritten as follows: 

 
               

                     
   

  
  

         
 

 

 
                 

                         
  
  

      
 

 

 

So, the candidate event time for the upstream link end is: 

 

  
     

                   
  
  

     

           
 

 
(33) 
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It is possible that for a certain link, at a certain time there is no valid candidate event time. When the 

in- and outflow rates are equal, the situation is stable and there are no shock waves on the link. The 

equations (31) and (33) will not yield a result because of the division by zero. But it is also possible 

that a calculated candidate event time is not greater than  . Then the candidate is rejected. The 

minimum over all remaining candidate event times in the network is the next event time: 

       
   

   
  
   

     (34) 

 

In the algorithm all flow rates and cumulative number of vehicles are updated to time   . The 

algorithm is presented in the next subsection. 

 

3.8.3. Algorithm 

 

A simple algorithm as the following can be used to compute the flow propagation for the stationary  

link transmission model. In the first step, the initial values  are set, according to section 3.8.1. In step 

2 the time and location of the event that will happen next is determined (see section 3.8.2). If this 

event time is after        , then the algorithm stops, else step 3 is performed. In step 3 the 

variables are updated to the event time. For each link the cumulative in- and outflows are updated, 

and depending on whether the event happened at a downstream or upstream link end, also the 

sending or receiving flow rate is changed at that location. In step 4 the transition flow rates and the 

in- and outflow rates are updated by the node model. Then the current time is updated and the 

algorithm goes back to step 2. 

 

1. (Initialize) Set the initial values.  

    

          

        is the length of the period for which the algorithm determines the flow rates on the 

links in the network in hours, for example 1 hour. 

 

For all links     set the initial values following section 3.8.1: 
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2. (Find next event) Determine the next event time   on the network using equation (31), (33) 

and (34) in section 3.8.2. Assume the event happens on link  , at node  . 

 

If          , go to step 6. 

 

 

3. (Update) Calculate the cumulative flows at   for all links    . Since the in- and outflow 

rates are constant between two events a linear increase can be done:  

                        

                        

 

Furthermore, the sending and receiving flow rates are updated. At the link end where the 

event happened the sending or receiving flow rate is changed, at other link ends there is no 

change. 

 

If the event happened at the downstream link end, i.e.      : 

                  

using equation (21). This inflow rate is available since between two events inflow 

rates are constant. 

                             

Where      is the turn fraction, the fraction of the traffic on link   that is going to link 

 , which is assumed to be constant during the whole period (see also the end of 

section 3.7). 

 

If the event happened at the upstream link end, i.e.      : 

                  

using equation (22). Like the inflow rate, the outflow rate is also constant between 

events. 

 

At all other link ends the sending and receiving flow rates remain unchanged: 
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4. (Node model) Update the transition flows and in- and outflows at node   where the event 

happened using the node model formulation. 

           
     

    

 

 
       

              
    

               

 

 
 

         

          
 

 
              

     
    

 

          

 

 
              

     
    

 
          

 

 

 

5.     and go to step 2. 

 

 

6. (Final situation) Determine the final values of the cumulative in- and outflows. 

 

                                    

                                    

 

Note: The above algorithm for the stationary Link Transmission Model could be implemented more 

efficiently. For example, only at the link end where the event happened there will be changes in the 

in- and outflow rates. At all the other locations there is no need for an update, since the flow rates 

remain the same. Also, the calculation of the travel times are not stated explicitly. Travel times can 

be derived from the piecewise linear functions of the cumulative in- and outflow. However, since the 

purpose of the stationary LTM is only to be an intermediate step between the original LTM and our 

Static Traffic Assignment with Queuing (STAQ) algorithm, the improvements are performed within 

the STAQ algorithm, which will be discussed in the next chapter. There also the travel time 

calculations are discussed. 
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3.9. Conclusion 
 

In this chapter, the Link Transmission Model by Yperman (2007) is described. Furthermore, the 

theory about the fundamental diagram and kinematic waves and shock waves is presented shortly. It 

is shown in a lemma that calculating the shock wave arrival time explicitly yields the same result as 

with Newell’s simplified theory of kinematic waves. This means that it is no longer needed to 

explicitly keep track of all the shock waves in the network. After that, the stationary variant of the 

LTM is derived, by assuming stationary traffic demand. Using an event based approach, less 

computations are needed. A simple algorithm is presented to solve the stationary link transmission 

model.  
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4. STAQ – Static Traffic Assignment with Queuing 
 

In this chapter the Static Traffic Assignment with Queuing (STAQ) model is presented, the model 

currently under development at Goudappel Coffeng B.V. STAQ is a quasi-dynamic traffic assignment 

model, that propagates traffic flow through the network in a realistic way, consistent with kinematic 

wave theory. It is also able to handle spillback. The model is based on the stationary Link 

Transmission Model (LTM) from section 3.7 which itself is based on the LTM by Yperman (2007). 

 

4.1. Introduction 
 

The STAQ model is based on the stationary Link Transmission Model that was presented in section 

3.7. However, some assumptions are made that are different from the stationary LTM. The main 

difference is the initial situation. Within the LTM it is assumed that the network is empty at the 

beginning      , and that at that time the assigned path flows starts to flow, starting at the first 

link of each path. However, in the STAQ model, it is assumed that there is already a traffic flow rate 

everywhere on each link of every path on the network. This assumption is called instantaneous travel 

flow propagation, which means that travelling over a link does not take time. A vehicle reaches the 

other end of a link at once. In other words, the vehicles are on every link at the same time. 

 

The reason that this assumption is used is that a lot of events can be skipped by assuming that there 

is already a traffic flow present everywhere on each link of a path. For example, consider a very small 

network with three consecutive links and one path. The stationary LTM will propagate the first 

vehicle at time     from the start of link 1. It will take       time units to reach the end of link 1, 

so the next event is at time      . Two other events will occur when the first vehicle reaches the end 

of link 2, and later the end of link 3. Basically what these three events do is ‘fill the network’. In a 

general network, with many OD pairs, links and paths, this amount of events can be very large. All 

these events needs to be handled by the algorithm. All these events can be skipped by filling the 

network in an initialization phase. 

Another important reason is that in a real life situation, the network will seldom be empty, especially 

not during peak hours, which are the most interesting hours to analyze since then the most 

congestion occurs. Therefore, STAQ starts with an already filled network. Obviously, since STAQ 

starts with a different initial situation, the results will differ from the stationary LTM. 

 

In the initialization phase or    phase, this initial situation is determined. It is ensured that whenever 

the link capacity is lower than the total path flow rate that wants to go over that link, the link 

capacity is distributed over the paths proportionally to its flow, by reducing the outflow rates of 

these paths with an equal factor. So, at much path flow as possible is sent over the paths, as long as 

this does not violate any capacity constraints. No queues are built up yet. 

At the queuing phase or    phase, the vehicles start to flow through the network, and queues start to 

build up when the outflow rate is smaller than the inflow rate. After a certain period, for instance 

one hour, the final situation is determined and the travel times can be derived from the cumulative 

in- and outflows. 
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Similar to the LTM, it is assumed that the following input data is available: 

- Network       including for each link    : 

o       link capacity (vehicles/hour) 

o       link length (km) 

o       jam density, density at which flow is no longer possible (vehicles/km) 

o        forward (free flow) wave speed (km/hour)  

o       backward (congested) wave speed (km/hour) 

 

- The fundamental diagram of link  , determined by the parameters        and    (see figure 

Figure 5a).    follows from these parameters by                  . 

 

-  : Set of used routes (or paths) 

 

-     : Path flow rates for each path    , the traffic flow per hour assigned to that path 

(vehicles/hour). It is assumed that the traffic demand is stationary, and so also the path flow 

rates are stationary. Path flow rates are assumed to be given, achieved by some route choice 

model. 

 

The rest of this chapter is structured as follows. In section 4.2 the initialization phase is described. 

The formulation of this phase is presented and an algorithm to solve this phase is given. Section 4.3 is 

about the queuing phase of STAQ. At first it is showed how a quick approximation of the delay can be  

determined by assuming that spillback does not occur. After that the STAQ model with spillback 

effects is described, and an efficient algorithm is given. In section 4.4 the determination and meaning 

of the travel times is discussed. 

 

4.2.    phase  
 

In the    phase, or initialization phase, the initial situation of the network is determined. In this phase 

the amount of traffic that can flow in each link is determined, taking into account the link capacities, 

but no queues are formed yet. This phase is also called the ‘squeezing phase’, since as much of the 

assigned path flows as possible is squeezed from each origin towards its destination. If a link has 

insufficient capacity for the sum of the path flows going through that link, the outflow rates are 

lowered proportionally. Furthermore, the flow rates of the downstream links from a bottleneck are 

adjusted if necessary. 

 

The idea of the    phase is illustrated with the following example. Consider the network of Figure 14, 

with all links having a capacity of 2000 vehicles per hour. The path flow rate on route     is 1500 

and on     it is 1000. Link   can only handle 2000 vehicles per hour, so the outflow rate of link   

and   is lowered with factor 2000/2500 = 4/5. Then the outflow rate of link   is 1200 and of link   is 

800. Note that only the outflow rate of the incoming links is reduced, in the rest of link there is still 

the original path flow rate present. The in- and outflow rates of link   are reduced to 2000. 
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Figure 14. Small network with a merge intersection. 

 

In the    phase, queues will start to build up at the end of links   and  , against the direction of the 

flow, since the outflow rate is smaller than the inflow rate. 

 

4.2.1. Formulation of the    phase 

 

The variables used in the    phase are derived from the stationary LTM, however, the variables are 

not dependent of  , since time is not a factor in the    phase. 

 

   The sending flow rate (in vehicles/hour) of link   (maximal possible outflow 

rate of this link when there are no restrictions downstream). 

    The directional sending flow rate (in vehicles/hour) from link   to link  , the 

part of    that wants to go to link  . It is assumed that link   is connected to 

 :    , and: 

 
       

    
   

 
      

    The transition flow rate (in vehicles/hour) of link   to link   (actual possible 

flow rate between   and  ). It is assumed that    . 

   The actual inflow rate (in vehicles/hour) of link  . 

    The actual inflow rate (in vehicles/hour) of link   belonging to path  , with 

 
       

    
   

 
      

   The actual outflow rate (in vehicles/hour) of link  . 

     The actual outflow rate (in vehicles/hour) of link   belonging to path  , with 
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The idea is to set the inflow rate on each first link of a path equal to the assigned flow rate of that 

path   , and then to force the other flow rates into the unique solution by setting constraints on the 

nodes and links. It is assumed that the first links of each path have enough capacity to deal with the 

assigned flow rate. 

 

The    problem is described by the following system of equations with unknown variables    ,    , 

    and    , that has to be solved: 

      
                                          

                                                    
  
    ;    ; 
    ;        and      

(35) 

    

 
        

       
   

 
      ;     (36) 

    

        
     

    

 
   

           

    

                 ;     (37) 

    

      

                                    

    
   
   

                                   
  

    ;    ; 
   ;       and     

(38) 

 

If link   is the first link on path  , the path inflow rate     is equal to the path flow. Otherwise it is 

equal to the path outflow rate of the previous link on path   (equation (35)). 

The directional sending flow rate     from link   to link   is equal to the sum of the path inflow rates 

of link   that go to link  . This is the flow rate that actually enters link   and wants to continue to link 

  (equation (36)). 

Equation (37) states that the transition flow rate     from link   to link   is equal to directional 

sending flow rate multiplied by the factor of the largest capacity problem at this node, if any. 

Finally, equation (38) ensures that if link   is the last link on path  , the path outflow rate     is equal 

to the path inflow rate of that link. Otherwise it is multiplied by the ratio between the transition flow 

rate and the directional sending flow rate, which is equal to the ratio of the largest capacity problem 

at this node, if any. 

 

Note that the receiving flow rates are not used in the formulation, since the receiving flow rates are 

equal to the link capacities in the    phase. Therefore the receiving flow rates have no influence on 

the transition flows, and are replaced by the link capacities. 

 

The sending and transition flow rates can also be eliminated from the formulation by replacing 

equation (36), (37) and (38) by equation (39) through substitution: 
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    ;    ; 
   ;       
and     

(39) 

 

It is assumed that all outflow rates of the incoming links of the node before a bottleneck link are 

reduced proportionally to the respective inflow rates of those links. In other words, all outflow rates 

from the incoming links are multiplied with the same factor, which equals the factor of the largest 

capacity problem at the node (the capacity of a link divided by the sum of the directional sending 

flows to that link). This factor is contained in equation (37). This means that flows not going through 

the bottleneck link are also reduced. Moreover, even links that do not have flow going to a 

bottleneck link are reduced. This is basically the same node model as is used in the (stationary) LTM 

in chapter 3. It is possible to use an different node model, then the determination of the transition 

flows should be changed (equation (37)). See also the discussion about node models at the end of 

section 3.6 on page 32. 

 

The system of equations (35)-(38) is in general hard to solve, since there can exist circular 

dependencies between the equations. For simple networks, the equations can be easily filled in, but 

for general networks, an algorithm is presented in the next section. The model results in the in- and 

outflow rates of the    phase. Queues are not yet considered, it is just the starting situation for the 

next phase. 

 

4.2.2. Algorithm for the    ‘squeezing’ phase of STAQ 

 

Next follows the algorithm for the    phase. The goal is to find a solution of equations (35)-(38). The 

algorithm loads the path flow in fractions on the network. Each time the fraction is taken as high as 

possible, such that no link gets more flow than capacity when this fraction of the flow is added. A link 

that has a link flow equal to its capacity after the addition of this fraction is no longer considered in 

the algorithm, because no extra flow can go through that bottleneck link. 

 

Variables: 

  The set of ‘problem links’; links that have less capacity than needed. 

  The set of ‘problem nodes’; nodes that have a problem link as outgoing link. 

  The set of all paths that go via a problem node. 

   The set of active problem links, subset of  . 

   The fraction of the total path flow that is added in iteration  . 

   
  The inflow of link   from path   after iteration  . 

  
  The inflow of link   after iteration  . 

  
  The remaining flow that wants to go through link   after iteration  . 

  The iteration counter. 
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Algorithm: 

 

1. (Initialize) 

 

In the initialization phase, all variables are given their initial values. For the paths that do not go via 

any problem nodes, the whole path flow is loaded on the network (equations (41)-(42)). Other paths 

are not yet considered. The first fraction (43) is determined by the smallest ratio between link 

capacity (  ) and demand (equation (40)). 

   
     

       

      (40) 

    

        
  
 

  
      

    

                     

    

                                

    

    
   

             

                  
               (41) 

    

   
      

 

       

      (42) 

    

       
   

 
  

  
    (43) 

    

       

    

 

2.  (Assign increment) 

 

Step 2 is the iteration step. In iteration  , the fraction    of the path flow is added to the links 

(equation (44)-(45)). After that, the set    is updated.    contains all links with link flow equal to the 

capacity since this iteration. For each of these links, equation (47) removes from all paths that go via 

the upstream node of this link, all the links after this problem node from these paths. For example, if 

path   consists of link  - - - - , and link   is an element of   , then after this iteration, path   

consists of link  - - . But also the paths that do not go through link   but do go via the upstream 

node of link   are shortened. These adjustments are made to ensure that no more flow originating 

from these paths is added to these links in upcoming iterations, because the paths are blocked at 

that certain node, so no more flow can go through. 

Then the fraction for the next iteration is set (50), based on the flow/capacity ratios of the updated 

set of problem links  . This procedure ensures that no flow will be added to links that already 

reached their capacity.  
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           (44) 

    

   
      

 

   

      (45) 

    

          
  
 

  
     (46) 

    

 Remove links   until destination from path   
              

                   
(47) 

    

         (48) 

    

   
     

       

      (49) 

    

      

 
  
 

  
 
     

 

   

                       

   
   

 
     

 

  
 

               

   (50) 

    

         

 

 

3. (Stopping criterium) 

 

If the sum of all added fractions equals one, no more flow needs to be added and the algorithm 

jumps out of the loop. 

 

       
   

   

                                         

 

 

 

 

4. (Final step) 

 

The final values are set. This step results in the in- and outflow rates of all the links in the network, 

such that no link has a higher flow rate than the capacity. These in- and outflow rates are used as the 

input for the    phase. 
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 Reset all paths to the original state (i.e. undo all removals from equation (47))  

    

        
                

    

        
       

       

    

      
                                  

                       
                

    

        
       

       

 

It is not proven here that the algorithm always yields a solution that solves the formulation of the    

phase (equations (35)-(38)). However, it is assumed that this is the case, based on numerical tests on 

small and larger networks. 

 

4.3.    phase 
 

In the    phase the traffic flow is propagated through the network for a certain period of time, for 

instance one hour. This period is called the simulation period. In this phase the actual queuing takes 

place. Therefore this phase is also called the queuing phase. The in- and outflows from the    phase 

are used as input for the    phase. Before the    phase of the STAQ model is described, it is showed 

how results could be obtained quickly by ignoring spillback effects. 

 

4.3.1.    phase of STAQ without spillback 

If it is assumed that spillback does not occur, then queues do not continue on preceding links when 

they arrive at a link end. On a link there will appear a shock wave at     when the    inflow rate is 

greater than the    outflow rate, because there is a change in traffic states. This shock wave will have 

the following speed (see equation (8) on page 24):  

  
     
     

 

Here    is the density at the end of the link, which can be taken from the congested part of the 

fundamental diagram at outflow rate    (more precisely,            ). Furthermore,    is the 

density at the beginning of the link, which equals      , because the traffic is flowing in at free flow 

speed. The shock wave speed is equal to the speed that the queue is growing, since the shock wave 

indicates where the congestion begins. The queue length can be found by multiplying the (negative 

of the) shock wave speed   with the length of the simulation period:           . 

 

The amount of delay given a certain queue length can be calculated as follows. The speed the 

vehicles drive in the queue is       km per hour, so the time it takes to drive through the queue is 
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                 hour. In the part of the link with no queue, vehicles drive with free flow 

speed. This takes                    hour. The total delay at this link at the end of the studied 

period is the sum of the free flow part and the congested part, minus the free flow travel time of the 

whole link: 

                  
  
  

 
              

  
 
  
  

 

            
  
  

 
  
  

 
         

  
 
  
  

 

            
 

  
 
  
  
  

 

Note that this formulation is independent of the link length, which is logical since the delay is the 

extra time it takes to travel through the queue. But because it is assumed that spillback does not 

occur, queues can grow larger than the link length. Therefore the queues should not be interpreted 

as horizontal queues, but as a vertical queue at the downstream link end. The resulting delays can be 

used as a fast and easy first approximation of the amount of delay that will occur in the network 

given certain in- and outflows from the    phase. 

 

4.3.2.    phase of STAQ with spillback 

 

For a more realistic result the model needs to account for spillback. The following formulation is 

used, which is similar to the formulation of the stationary Link Transmission Model from section 3.7. 

The same derivation is used to achieve the formulations for the sending and receiving flow rates, and 

the same node model is used. 

 

If the downstream end of a link is not congested (equation (9) holds:                  ), the 

highest possible outflow rate       is equal to the outflow rate       which is in that case equal to 

            (see (19)). If there is congestion at the end of the link, the sending flow rate equals 

the capacity. So, for all   the following equation holds: 

       

 
 
 

 
      

  
  
              

  
  
         

                                 
  
  
         

   (51) 

 

If the upstream end of the link is congested (equation (10) holds:                       ), 

the highest possible inflow rate       is equal to the inflow rate       which is in that case equal to 

     
  

  
  (see (20)). If there is no congestion, the highest possible inflow rate equals the capacity. 

So, for all   the following equation holds: 
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The directional sending flow rates        are determined through the turn fractions. Turn fraction 

     is the fraction of traffic in link   that wants to go to link  . It is assumed that the turn fractions 

remain constant during the complete    phase. The turn fractions are based on the incoming flows 

from the    phase. 

 

     

 

     
    

    
    

    
           ;      

 

As in the stationary LTM, the assumption of constant turn fractions can cause incorrect directional 

sending flows. However, the influence of this flaw will be lower as within the stationary LTM, 

because of the assumption of instantaneous travel flow propagation. The    phase starts from a 

network with a traffic flow rate on each link, based on the total path flow that wants to go over that 

link, independent of the length of the path preceding that link.  

The sending and receiving flow rates together form the link model. The following equations, that 

must hold for all  , form the node model: 

           
     

     

 
      

              

    

               

 

        ;     (52) 

    

 
              

     
    

 
      

    

 
              

     
    

 
      

    

               
      ;    ; 
      and     

 

 

This is the same node model as in the stationary LTM. For a discussion of this node model see the 

end of section 3.6 on page 32. 

The above equations for the link and node model are the same as the equations for the stationary 

Link Transmission Model. The difference between both models is the situation it starts from. The 

stationary LTM starts from an empty network, and only at the first link of each path traffic flow is 

entering the network. Within STAQ, it is assumed that there is instantaneous travel flow propagation, 

such that everywhere on the link is a flow rate. The    phase is used to find the initial in- and 
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outflows. However, the formulation of the LTM is based on the relation between the cumulative 

number of vehicles that have entered and have left a link. Because the in- and outflows of the links 

are set through the result of the    phase instead of starting with an empty network, these 

formulations cannot be used directly. 

It is assumed that at the start there is a traffic flow rate equal to the inflow rate everywhere on the 

link, in free flow conditions. This could be seen as a number of vehicles that already have entered the 

link at     equal to the inflow rate times the free flow travel time: 

         
  
  

 

In this way, the relation between the number of vehicles that entered the link and number of 

vehicles that left the link is consistent again, and the formulations from the stationary Link 

Transmission Model can be used. 

 

4.3.3. Algorithm for STAQ    phase 

 

Now the algorithm for the    phase is presented. The following variables are used: 

    The sending flow rate of link  . 

     The directional sending flow rate of link   to link  . 

    The receiving flow rate of link  . 

       
  Array with the times of the events that happened at the node at the 

upstream end of link  . 

       
  Array with the times of the events that happened at the node at the 

downstream end of link  . 

    Array with the inflow rate of link  , at the times that an event happened at 

the node at the upstream end of link  . An inflow rate is valid until the next 

event time, a next event implies a new inflow rate. 

    Array with the outflow rate of link  , at the times that an event happened at 

the node at the downstream end of link  . An outflow rate is valid until the 

next event time, a next event implies a new outflow rate. 

   Array with the cumulative number of vehicles that have entered link  , at the 

times that an event happened at the node at the upstream end of link  . 

   Array with the cumulative number of vehicles that have left link  , at the 

times that an event happened at the node at the downstream end of link  . 

  
  

 The time of the first oncoming event at the downstream end of link   

provided that no other events happen on this link. 
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   The time of the first oncoming event at the upstream end of link   provided 

that no other events happen on this link. 

Furthermore the following sets and array operations are used: 

    The set of incoming links into node  , i.e. all links that are connected to node 

  with the downstream link end. 

    The set of outgoing links from node  , i.e. all links that are connected to node 

  with the upstream link end. 

         Addresses the     element in the array     ,        . 

            Adds a new element at the end of the array      and addresses that 

element 

             Returns the size of the array     . 

                Returns the index of the value     in the array     . If      does 

not contain    , it returns the index of the greatest value smaller 

than    . 

 

The determination of the next event times is slightly different than in section 3.8.2. The event times 

at the downstream link end are different than the event times at the upstream end of a link, because 

only at the link end the event happens an event time is added to the array. Therefore the current 

time   cannot be used (except for the first event times). For the next event at the downstream link 

end   
  

 needs to be found such that      
  
       

  
         holds. So: 

                   
  

        
       

                    
  

 
  
  

        
        

  
  
                  

                 
  
  

                
              

                
       

 

  
  

 

 
                               

                  

                                      
               

  
  

 

                
 

 

Similarly, for the next event at the upstream link end   
   must be found such that      

    

     
               holds. So: 
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The algorithm consists of an initialization step, where all variables are set to their initial values. Then 

follows the iteration loop. In each iteration, the next event time on the network is found. In an 

iteration, the next event time is processed, all necessary values are updated. If the next event time is 

greater than the end time of the simulation period, the algorithm jumps out of the loop to the 

finalization step. In that step the travel times are calculated. 

 

1. (Initialize) 

The initial in- and outflow rate are taken from the    phase. The sending flow rate is equal to 

the inflow rate, since it is assumed that this rate is present everywhere on the link. The 

receiving flow rate is initially equal to the link capacity. The candidate event times and the 

arrays for the event times and the cumulative in- and outflows are initialized.     means 

that there is no next event time available at this time. 

    

          

For all links    :  

      
      

      
      

     
     

                    ;     
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2. (Find first event)  

For each link  , determine the first event time at the beginning and the end of that link using 

equation (31) and (33). These values are candidate event times, they are the next event 

provided that no other events happen at that link. If the in- and outflow rate are equal, there 

will be no queue growing at    , so there are no candidate event times available for that 

link. If a candidate event time is smaller than zero the value is not valid, so it is rejected.  

if               then   
     

  
     

else  

  
  

 
                  

  
  

            
 

if   
  

    then   
  

     

  
   

                  
  
  

     

            
 

if   
      then   

       

 

 

3. (Start of the loop - Find time and location of next event) 

The time of the next event on the network is the smallest value of all available candidate 

event times. If this time is greater than the predefined length of the simulation period, the 

algorithm jumps out of the loop. 

         
  
   
     

If (          or       ) go to step 7. 

The event happens at link  , node  . 
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4. (Update sending and receiving flow rates) 

At the link end of   that is connected to  , where the event happens, the sending or 

receiving flow rate is updated. 

If         (event at the downstream link end of  ) 

Update the sending flow to the value of the inflow rate       time units ago, since 

the new outflow rate at the moment of the event is equal to the inflow rate       

time units ago by equation (19). 

                  
    

  
  
   

                    

If         (event at the upstream link end of  ) 

Update the receiving flow to the value of the outflow rate        time units ago, 

since the new inflow rate at the moment of the event is equal to the outflow rate 

       time units ago by equation (20). 

                  
    

  
  

   

 

 

5. (Node model) 

Determine the transition flows at node  , following equation (52). 

        
     

    

 
   

           

    

           
     ,     ;  
    

 

 

 

6. (Update) 

For all the incoming links of  , the cumulative outflow, event array, outflow rate and the next 

event times are updated if the outflow rate is no longer equal to the sum of the transition 

rates from this link. 

For all     : 

if                     

    
  then 
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if                   then   
     

  
     

else  

  
  

 

 
                               

                    

                                         
               

  
  

 

                
 

if   
  

    then   
  

     

  
   

 
                               

                    

                      
               

  
  

      
 

                
 

if   
      then   

       

For all the outgoing links of  , the cumulative inflow, event array, inflow rate and the next 

event times are updated if the inflow rate is no longer equal to the sum of the transition 

rates to this link. 

For all     : 

if                     
    

  then 

                                    
        

       
           

             
     
    

 

if                   then   
     

  
     

else  

  
  

 

 
                               

                    

                                         
               

  
  

 

                
 

if   
  

    then   
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if   
      then   

       

The time is updated to the event time and the loop starts over at step 3. 

    

go to step 3. 

 

 

7.  (Final step) 

The next event on the network is after the end time of the simulation period, so this event is 

not considered. The cumulative inflows are updated to their final values at        , by a 

linear increase. Then it is calculated at which moment the cumulative outflow has reached 

the level of the cumulative inflow, based on the last outflow rate. This moment will be after 

        in general. 

 

For all links    : 
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4.4. Travel times 
 

After the simulation period is over, the link travel times are calculated. The link travel times are 

derived from the cumulative in- and outflows. In Figure 15 an example of a graph of the cumulative 

in- and outflows is shown. This graph is based on the arrays of the cumulative in- and outflows. 

Between two consecutive points a straight line is drawn, since the in- and outflow rates are constant 

between two events. To calculate the average link travel time, the difference between the areas 

below      and      is calculated, and this is divided by the total number of vehicles that entered 

(and left) this link in         time units. 

 

 

Figure 15. Derivation of the link travel time. 

 

In this example,    is the time of the last event at the downstream link end,    is the time of the last 

event at the upstream link end.    is the time that the last vehicle exits the link, i.e.   
  

 in step 7 of 

the algorithm of the previous section. 

The graph of the cumulative inflow starts at            vehicles, to compensate for the vehicles 

already present in the link (see the end of section 4.3.2). However, this amount is not included in the 

calculations for the average link travel time. The first vehicle that enters the link at    , and exits 

the link at    is the first vehicle that is in the calculations. So, the graphs of the cumulative in- and 

outflow can be shifted       vehicle units down, and the part below zero is disregarded. The time 

axis now lies at the dotted horizontal line at     . Then the average travel time in this hour is 

calculated by dividing the difference between the areas below      and      by            . 

 

For all links    : 

The moment the first vehicle exits link   (  ) is in general not an event, this moment is determined as 

follows: 

                    , this is the index of the largest event smaller than    (this can be 

at time    , if no events happened before   ). 
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                                          , so 

   
               

        
                

 

Then the areas under the cumulative flows are calculated, by dividing the area in             
     

parts and summing the area of each of those parts: 

     
       

            

 

  

   

        
            

        

 
 

 
                

 
            

    

   
           

             
       

The area below the dotted line in Figure 15 is subtracted by the last term. The area under the graph 

of the cumulative outflow is calculated in a similar way: 

     
       

            

 

  

         
                

 

 
                    

   

        
            

        

 
 

 
                

 
            

    

         
            

              
           

The average link travel time is determined as follows: 

   
     

       
 

            
 

The average path travel time can be found by summing the link travel times of that path, where it is 

assumed that the path costs are additive. 

      
    
   

           

As was shown in the traffic assignment procedure in Figure 1 on page 1, the path travel times are 

tested by some predefined convergence criteria, to check whether the result is acceptable. If not, the 

path travel times are used as input for the next iteration of the route choice model, to distribute the 

OD demand over the different paths in a better way, finally resulting in lower travel times.  

 

  



64 
 

In this thesis it is always assumed that the (stationary) route flows are given. The stationary route 

flows are obtained by some route choice model, based on the stationary origin-destination (OD) 

demand matrix. The stationary OD demand is derived from the dynamic OD demand. However, this 

derivation is not a trivial task. The way the average travel times of STAQ have to be interpreted 

depends on the interpretation of the stationary OD demand that was used. 

A possible way to choose the stationary OD matrix is by taking the average demand from the 

dynamic matrix for each OD pair individually for a certain period. Suppose this period is one hour 

during the morning rush hours. The resulting stationary route flows from the route choice model can 

then be seen as the average traffic demand during that hour. Performing STAQ for an hour on these 

route flows will result in average travel times for each link during that hour in the morning rush 

hours. So, the average delay that a vehicle, that is travelling somewhere within that hour, will 

experience on a certain path is equal to the average path travel time from STAQ for this path minus 

the free flow path travel time. 

This approach only works when in the studied period the average traffic demand does give capacity 

problems. If this is not the case, performing STAQ will result in free flow travel times while in the 

dynamic case, there may be congestion. So, STAQ is particularly useful during very congested 

periods. 

The results from the stationary Link Transmission Model can be used to approximate the average 

path travel times if the network is empty at the beginning of the period that is modeled. This is 

because within the stationary LTM it is assumed that the network is empty at the beginning of the 

simulation period. The period should then be chosen at the beginning of the rush hours, because 

then there is not much traffic on the network yet.  

The stationary demand can also be chosen based on the maximum dynamic demand in a certain 

period. However, the results from STAQ will then be overestimated, since then it is assumed that this 

maximum demand is present during the whole period instead only at a certain moment in time. 

It is important to notice that the results of both the stationary LTM as the STAQ model should be 

interpreted as average travel times over all vehicles in a certain time period. The resulting travel time 

should not be interpreted as the travel time of a single vehicle. The results should only be used for 

traffic flows of vehicles on a macroscopic level of detail. 
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5. Conclusions and recommendations 
 

In this thesis, an overview was given of the different static traffic assignment models that can deal 

with congestion phenomena and possibly spillback effects that are found in the literature.  

The first research question: 

 

1. Are there static traffic assignment models in the literature that can deal with congestion and 

can compute realistic travel times? 

 

The different approaches and methods from literature were discussed and compared. None of the 

discussed static models in the literature can both deal with congestion and compute realistic travel 

times. The need for a model that handles congestion in a realistic way and is able to model spillback 

effects led to the second research question of this thesis: 

 

2. Can a model be specified that propagates traffic correctly through the network and 

computes more realistic travel times than current static models, and can still compute them 

in a reasonable time? 

 

To answer the second research question, it was proposed to take the Link Transmission Model by 

Yperman (2007) as a starting point. The LTM is a dynamic network loading model. First the working 

of the LTM was explained, supported by the necessary theory about kinematic waves. Next, the static 

variant of the LTM was derived. Traffic flows are assumed stationary, and therefore constant in time. 

The stationary flows can be seen as the average traffic flow during a certain period. Through this 

assumption, it is no longer necessary to calculate the cumulative number of vehicles for every small 

time step. Through an event based approach, it is possible to do this in much larger steps, such that 

far less computations are needed. It was proven with a lemma that the event times that are 

calculated with the stationary LTM are equal to the arrival times of the shock waves if they are 

calculated explicitly.  

 

From the stationary Link Transmission Model the STAQ model was developed. In the STAQ – Static 

Traffic Assignment with Queuing – model it is assumed that the network is initially not empty, but 

there is instantaneous travel flow propagation, which means that there is already a traffic flow rate 

on the network, without any queues. This assumption is made because in reality the network will not 

be empty at the beginning. Besides, it decreases the number of events. The initial situation is 

determined in the    phase, based on the given path flows. In the    phase the path flows are 

squeezed through the network such that there is no traffic flow rate greater than the capacity in any 

link. A system of equations was formulated to find the unique solution. This system of equations is 

hard to solve mathematically, but an algorithm was provided to solve this problem. 

In the second phase of STAQ, the    phase, the traffic flow is propagated through the network and 

queues are created if necessary. Also spillback is taken into account. The flow propagation is 

according to kinematic wave theory, similar to the link transmission model, with an event based 

approach based on the cumulative number of vehicles that have entered and left each link. The 

algorithm results in the link and path flows during the simulation period, and more importantly, the 

average link travel times which can be used in the next iteration of the route choice model. 
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In the STAQ model, traffic flow is propagated over the links in a realistic way that is consisted with 

kinematic and shock wave theory. Congestion is built up and spillback is taken into account. Since 

other static models do not have all these properties, the STAQ model will in theory yield more 

realistic link travel times. However, more research is needed to prove this also empirically. 

The resulting average travel times from STAQ can be seen as the average travel time of a vehicle that 

travels somewhere during the considered period. It is important to keep in mind how the stationary 

traffic demand was chosen from the dynamic demand when interpreting the results. 

 

In this thesis, it was not possible to give each detail the attention it deserves. Therefore, some 

recommendations for possible improvements and further research directions for STAQ are given. 

 

Empirical testing 

The STAQ model is implemented in Matlab and tested on some small networks and one larger 

network. STAQ is theoretically superior to other static traffic assignment models due to the way 

congestion and spillback are modeled. However, to prove this claim more testing is needed on large 

networks to compare the results empirically with other static traffic assignment models. It should be 

investigated whether STAQ generates results that are closest to reality and still has an acceptable 

computation time. 

 

Node model 

The node model that is used in this thesis could be improved. The current model is chosen for its 

simplicity, the outflow rates from all directions are decreased with the same ratio if there is a 

capacity problem at a node. A first step would be to change the model such that incoming links that 

do not have flow going through a bottleneck link are not decreased. 

Tampère e.a. (2011) criticize the node model that is used in this thesis. They show that the total flow 

is not always maximized. Furthermore, the invariance principle is not satisfied. The findings of 

Tampère e.a. come from a dynamic context, so it should be investigated what the impact is of these 

flaws of the model in a static environment, and whether the current model can be adapted to correct 

for this flaws, or that another node model should be implemented. If a new model is needed, the list 

of requirements for a node model by Tampère e.a. should be kept in mind. 

 

   algorithm 

The algorithm that was presented for the    phase solves the    problem, but the algorithm could be 

implemented more efficiently. The current communication between Matlab (in which the prototype 

was implemented) and the transport planning software OmniTrans (which is developed and used at 

Goudappel Coffeng B.V.) is not very efficient. By implementing the algorithm in OmniTrans this is no 

longer an issue.  

Another possible improvement is to introduce a minimal fraction size at an iteration. This can cause 

some loss in precision because some links may receive a little more flow than capacity, but it can 

reduce the computation time significantly. Besides, the influence of this surplus is unclear. More 

research is needed to this tradeoff between precision and speed. 
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Necessity of    phase 

At this moment the    phase takes much more time to compute than the    phase. As proposed in 

the recommendation above, some improvements can be made. However, it is also useful to 

investigate the effect of the assumption of instantaneous travel flow propagation. Maybe the    

phase does not add enough value to make up for the extra computation time. An alternative 

approach would be to introduce a different initialization phase than   , by running the    phase for a 

certain period, starting with an empty network as with the stationary LTM. After this preliminary 

period there is a traffic flow on the network, and the    phase for the studied period can be run. 

 

Variable turn fractions 

As briefly discussed in sections 3.7 and 4.3.2, the assumption of fixed turn fractions can cause 

incorrect transition flows. However, the size of this error is not yet clear. More research is needed to 

investigate whether the error is acceptable. If not, more effort should be made to implement 

variable turn fractions. By keeping track of all    ’s (inflow rate at link   from path  ) it should be 

possible to do so. The directional sending flows can be derived from the incoming flow rates similar 

to the sending flows (see equation (51)). The turn fractions can then be derived from the directional 

sending flow rates, instead of the other way round. 

 

Implementation in route choice cycle 

In this thesis it is assumed that the route flows from an existing route choice model are used as the 

input of the STAQ model. However, it is useful to investigate how the stationary demand should be 

chosen from the dynamic demand over a certain period. 

The results of the STAQ model (link travel times) can then be used in the next iteration of the route 

choice model. More research is needed to investigate how these achieved results should be used in 

the next iteration. 

 

Junction modeling 

Currently, STAQ handles each intersection as an unsignalized junction. However, to be more realistic, 

signalized or give way intersections should be modeled as such. Therefore it should be investigated 

whether existing junction modeling techniques can be implemented into the STAQ model.  

 

Making STAQ more dynamic 

A possible extension of the STAQ model would be to introduce a parameter which sets the amount of 

parts in which the studied period is divided. Each of those periods can have a different set of route 

flows and STAQ is performed individually. This creates a hybrid solution between a fully dynamic and 

a quasi-dynamic model. For instance the morning rush hour could be divided in 6 periods of 10 

minutes instead of one period of one hour. 
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