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1Introduction

This thesis covers some graph-theoretical aspects of constraint solving in
the Smart Synthesis Tools project (SST project). So let’s begin with a small in-
troduction of the project and the problems that will be of interest for this
thesis. A more general overview of the SST project can be found in Ap-
pendix A.

The aim of the SST project is to develop software with the ability to gener-
ate and analyze a number of different designs of a product or a machine.
The constraint solving part of this software involves solving large under-
constrained systems of equations. This problem is analyzed by construct-
ing a bipartite graph associated to the structure of the system of equations.
This will be discussed in Chapter 2.

Different decompositions of the bipartite graph and their use for solving
the system of equations are investigated in Chapter 3. Also, properties of
the decompositions are proved in a new way in terms of maximum match-
ings. In Chapter 4, the Quasi-Newton method and its use for the SST project
will be described, namely to find solutions of the subsystems that are found
using the decompositions.

Besides the decompositions, the bandwidth reduction problem for unsym-
metric matrices is investigated in Chapter 5. A reduction of bandwidth
allows for more efficient storage and calculation when solving big sparse
systems of linear equations using banded algorithms. Also in this case, the
problem will be approached by looking at a bipartite graph corresponding
to a problem instance.

Finally, the conclusions of this thesis will be summarized in Chapter 6 to-
gether with recommendations for further research.
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2Structure of systems of equations

2.1 Introduction

Let us call the the software that is being developed for the SST project the
SST framework. One important goal of the SST framework is to generate a
number of (different) designs of a product or machine given a model which
contains certain properties and constraints. Such a model consists of param-
eters and rules. Actually, in the SST framework, the parameters and rules
are ordered within a tree to provide different abstraction levels, but this is
outside the scope of this thesis.

The parameters of the model describe the properties of the final design, such
as width, height, location of certain components, material, etc. A specific
assignment of values to the parameters correspond to a unique design. To
be able to analyze them, all parameters in this thesis will be real variables.

The rules of the model describe the constraints for the final design, such as a
minimal and maximal width, a specific distance between two components,
a direct relation between parameters, etc. In a feasible design, all rules must
be satisfied. For the sake of analysis, all rules in this thesis will be (nonlin-
ear) equations. They will be implemented as nonlinear functions of the
parameters that should evaluate to zero for a valid design/solution. Re-
quirements of the SST project dictate that the functions have a “black box”
property, i.e. no analytical information about the functions is available. The
only information that is available to the SST framework is which parame-
ters are explicitly present in a rule and the evaluation of a rule-function
given the values of its dependent parameters.

Because more than one design should be feasible for a specific model, the
model is in fact an underdetermined system of nonlinear equations. This
chapter will give the most important definitions used in this thesis in Sec-
tion 2.2. An introduction on the structural analysis that will be useful for
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Structure of systems of equations

50 cos(x2 + x3)− x5 = 0

(x1 + x2)(x1 + x2)− x4 − x6 = 0

sin(x6 − 20) = 0

x2
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3 x7 − x8 = 0

x7x8 − 10 = 0
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Figure 2.1: An example of a system of equations with it’s associated bipar-
tite graph

Chapter 3 can be found in Section 2.3 and Section 2.4 will give an introduc-
tion into the generation of a feasible design using an interactive solver.

2.2 Notation and definitions

2.2.1 Problem instance

We are working with a problem instance that can be defined as follows. Let
h : Rn → Rp. Then h(x) = 0 represents a system of p (nonlinear) equations.
Because of the nature of the smart synthesis problems this system will most
likely be under-constrained, i.e. p < n. Let

hl(x) = 0, l ∈ L = {1, . . . , p}

be the equations of this system. p is the number of equations and x is the
vector of variables xi with i ∈ I = {1, . . . , n} where n is the number of
variables.

We can construct a bipartite graph associated to this system. Let G = (V, E)
be this bipartite graph with vertex set V = L ∪ I and edge set E ⊆ L× I.
L and I are the vertex classes of the bipartite graph. There is an edge e =

(`, i) ∈ E iff h`(x) depends explicitly on xi.

Figure 2.1 shows what an instance of this problem may look like.
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Structure of systems of equations

2.2.2 Definitions

Sets

A set is a unordered collection of distinct objects. An object in a set is called
an element of the set. Let A and B be two sets. The union A ∪ B is the set of
all elements that are an element of either A or B. The intersection A∩ B is the
set of all elements that are an element of both A and B. If A ∩ B = ∅, then
A and B are said to be disjoint. The difference A\B, is the set of all elements
that are an element of A but not of B. Note that not all elements of B have
to be in A. The symmetric difference A4 B is the set (A ∪ B) \ (A ∩ B). In
other words, the symmetric difference is the set of elements that are in A or
in B but not in both. The cardinality |S| of a set S is the number of elements
of S.

Graphs

A simple graph (or just graph) G = (V, E) consists of a set V of vertices and
a set E of edges. An edge is an unordered pair of distinct vertices of V. Two
different vertices v1, v2 ∈ V are called adjacent when there exists an edge
(v1, v2) ∈ E. Two different edges are called adjacent when they share at
least one vertex. A walk is a sequence of consecutive (adjacent) edges. A
path is a walk with distinct edges where every vertex is traversed at most
one time. A tour is a walk in which the first and last vertices are the same. A
cycle is a path in which the first and last vertices are the same. Two vertices
v1 and v2 are connected when there exists a path in which the first vertex
is v1 and the last vertex is v2. A graph G′ = (V ′, E′) where V ′ is a subset
of V and E′ is a subset of E containing only pairs of vertices in V ′ is called
a subgraph of G. For a set of vertices X ⊆ V, we use G [X] to denote the
induced subgraph of G with vertex set X and with edge set E ∩ (X× X). In
words: the edge set of G[X] is the subset of E consisting of those edges with
both ends in X.

A directed graph G = (V, A) consists of an collection V of vertices and a col-
lection A of arcs. An arc is an ordered pair of distinct vertices of V. An arc
(x, y) with x, y ∈ V is directed from x to y. A walk in a directed graph is a
sequence of consecutive arcs following the direction of the arcs. A directed
graph is strongly connected if for for every two vertices v1, v2 ∈ V there exists
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Structure of systems of equations

a walk form v1 to v2 and a walk from v2 and v1. The strongly connected com-
ponents of a directed graph are the maximal strongly connected subgraphs.
For a set of vertices X ⊆ V, we use G [X] to denote the induced subgraph of
G with vertex set X and with arc set A ∩ (X× X).

A bipartite graph G = (V, E) is a graph that has two vertex classes L and I
such that L ∪ I = V and L ∩ I = ∅. A vertex class of G is a vertex set L ⊆ V
with the property that there is no edge (`1, `2) in E with `1, `2 ∈ L.

For ease of notation consider a set operation between a graph G = (V, E)
and an edge set E′ as an operation between E and E′, i.e. G ∩ E′ can be read
as E ∩ E′. Similarly consider a set operation between a graph G = (V, E)
and an vertex set V ′ as an operation between V and V ′. In case of ambiguity
E(G) will be used to denote the edge set E of G and V(G) will be used to
denote the vertex set V of G.

Matchings

Given a bipartite graph G as defined in Section 2.2.1, a matching for G is a
subset M ⊆ E such that every vertex of G is incident to at most one edge
of M. A maximal matching of a bipartite graph G is a matching M that is
not a proper subset of any other matching in G. A maximum matching of
a bipartite graph G is a matching M with the property that there exists no
other matching M′ of G with |M′| > |M|. A matching M covers a vertex
v1 ∈ V when there exists a vertex v2 ∈ V with (v1, v2) ∈ M. A matching
M covers a set of vertices V ′ ⊆ V when M covers all vertices in V ′. A perfect
matching of a bipartite graph G is a matching M with the property that M
covers V. Note that this is only possible when |L| = |I|.

2.3 Consistency concept

To give an idea of consistency consider the following three systems of equa-
tions:

(2.1)
x1 + x2 = 2 x1

x2

5



Structure of systems of equations

(2.2)
x1 + x2 = 2 x1

x2x1 + 2 x2 = 1

(2.3)
x1 + x2 = 2 x1

x2x1 + 2 x2 = 1

x1 + 3 x2 = 4

System (2.1) has an infinite number of solutions. For every value of x1 there
is a value x2 = 2− x1 that makes the equation sound. In this system there
is one equation and there are two variables.

System (2.2) has exactly one solution (x1 = 3, x2 = −1). The system has
two equations and two variables.

System (2.3) has no solution at all. The reason for this is that the first two
equations only allow x1 and x2 to have values 3 and −1 respectively. The
third equation contradicts to this.

Most of the time a system of equations does not have a solution when it
has more equations than variables. Moreover, when a subsystem has more
equations than variables, the whole system has no solution most of the
time. This is a situation we want to avoid. We need a definition.

Definition 2.1. Let G = (V, E), with V = L ∪ I, be a bipartite graph. For
a subset L0 ⊆ L, the neighbor set N(L0) ⊆ I is the set of nodes in I that are
adjacent to at least one node in L0.

Definition 2.2. A system of equations and its corresponding bipartite graph
are called (structurally) consistent when the following holds:

|N(L0)| ≥ |L0| ∀L0 ⊆ L. (2.4)

When a system is consistent, a situation like (2.3) is automatically avoided.
There is another criterium for consistency.

Corollary 2.3. A system of equations is (structurally) consistent iff its associated
bipartite graph contains a (maximum) matching covering L.

Proof. This theorem is a direct consequence of the definition of consistency
and Hall’s theorem, see Hall (1935).
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Structure of systems of equations

h1(x) x1

x2h2(x)

Figure 2.2: Bipartite graph corresponding to the Systems 2.5, 2.6 and 2.7

Note that for a system of equations where the number of equations is the
same as the number of variables, as a consequence of Corollary (2.3), con-
sistency implies that its associated bipartite graph contains a perfect match-
ing.

Let us call a system h of equations h`(x) = 0 (structurally) under-constrained
when its associated bipartite graph has a maximum matching covering all
nodes of L and |L| < |I|, i.e. there are more variables than equations. A
system h of equations h`(x) = 0 is (structurally) over-constrained when its
associated bipartite graph has a maximum matching covering all nodes of
I and |L| > |I|, i.e. there are more equations than variables. A system h
of equations h`(x) = 0 is (structurally) well-constrained when its associated
bipartite graph has a perfect matching. A bipartite graph is called under-,
over- or well-constrained when its associated system is respectively under-,
over- or well-constrained.

2.3.1 Limitations and possibilities

Let’s have a look at the limitations of analyzing a system of equation using
the structure of its associated bipartite graph. As Ait-Aoudia et al. (1993)
pointed out there is no one-to-one relation between a bipartite graph and
the fact whether the corresponding system can be solved. For example the
systems {

x1 + x2 = 2

2 x1 + 2 x2 = 4

}
(2.5)

{
x1 + x2 = 2

2 x1 + 2 x2 = 3

}
(2.6)

{
x1 + x2 = 2

x1 + 2 x2 = 3

}
(2.7)

all have the same corresponding bipartite graph (Figure 2.2). This system
is (structurally) consistent, but System (2.5) has an infinite number of so-
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Structure of systems of equations

lutions, System (2.6) has no solutions at all and System (2.7) has just one
solution. The reason for this is that the Jacobian matrix Jh of Systems (2.5)
and (2.6) is singular.

This simple example shows clearly that it is not possible to say something
about the solution space of a specific system of equations by analyzing its
corresponding bipartite graph (structure).

However, it is possible to say something about the class of systems of equa-
tions that are consistent. This problem has been more thoroughly investi-
gated by Still et al. (2010). Some of the main results of this work will be
summarized in the remainder of this subsection without proof.

Let us consider a system of nonlinear equations h : Rn → Rn with n equa-
tions and n variables and its associated bipartite graph G = (V, E) with
V = L ∪ I. It is well-known that for any solution x̄ of h(x) = 0 the Newton
iteration xk+1 = xk − [Jh(xk)]

−1h(xk) is locally quadratically convergent to
x̄ if the regularity condition holds:

Jh(x̄) is nonsingular . (2.8)

Call h regular when (2.8) holds for all solutions x̄ of h(x̄) = 0 and irregular
otherwise.

Corresponding to the bipartite graph G = (V, E) with V = L ∪ I we define
the function set SG,

SG =
{

h : Rn → Rn, h ∈ C1|hi depends on xj only if (i, j) ∈ E
}

where SG ⊂ C1(Rn, Rn) is endowed with the so-called strong topology as
defined in Jongen et al. (2000).

Theorem 2.4. When G is consistent,

(a) and h ∈ SG is regular, any (sufficiently) small perturbation h̃ ∈ SG of h will
result in a regular function h̃.

(b) and h ∈ SG is irregular, by an arbitrarily small perturbation a regular func-
tion h̃ ∈ SG can be obtained.

When G is not consistent,

(c) h ∈ SG is irregular. Even more, every solution x̄ of h(x̄) = 0 will not satisfy
(2.8).

8



Structure of systems of equations

SST framework

Interactive
solver

Analysis

Partial solver

Figure 2.3: Schematic overview of interaction of the solver

(d) and h ∈ SG, any (sufficiently) small perturbation of h will result in a func-
tion h̃ ∈ SG such that h̃(x̄) = 0 has no solution.

So to be able to solve h with a Newton method, it is important that G is
consistent. Note that Systems (2.5) and (2.6) can be made regular by chang-
ing one of their coefficients by a arbitrarily small value ε 6= 0, resulting
in systems with just one solution. Also note that for nonlinear systems of
equations, consistency does not guarantee the existence of a solution.

2.4 Interactive solver

Parallel to the investigation of the structure of the system of equations, the
application to the interactive solver of the SST project will be discussed.
The interactive solver is a part of the SST framework that generates one fea-
sible design (solution) given a model (system of equations) as input. It will
also be referred to as the solver. One of the requirements of the solver is that
when it generates different feasible solutions, these solutions should be as
different from each other as possible, i.e. they should be a good represen-
tation of the total solution space.

The input of the interactive solver is an (underdetermined) system of equa-
tions and its associated bipartite graph. The user is the decision maker that
controls the interactive solver. In this thesis, the SST framework is the user,
i.e. the solving process will run automatically.

The solver is interactive in the sense that it interacts with two other compo-
nents of the SST framework, an analysis component (which will be covered
in Section 3.3) and a partial solver (see Section 4.2). Figure 2.3 shows a
schematic overview of this interaction.

9



Structure of systems of equations

First the solver receives an input from the SST framework. The solver then
uses the analysis component to determine what options are available. After
that, the solver uses one of these options to assign a value to one or more
parameters (it might need the partial solver for that). The analysis and
assigning will repeat until a (feasible) solution will be found.

10



3Dulmage-Mendelsohn decompo-
sition

There exists a unique decomposition of a bipartite graph that splits the
graph in an under-, over- and well-constrained part. This decomposition
was first described by Dulmage and Mendelsohn (1958, 1959, 1967). Their
decomposition also decomposes the well-constrained part into irreducible
components. Several authors distinguished between the two levels of the
decomposition: just like Pothen (1984) this work will use the term coarse
decomposition for decomposition in an under-, over- and well-constrained
part and fine decomposition for the decomposition of the well-constrained
part. It may be noted that the terminology of this work differs from that of
Dulmage and Mendelsohn (1958, 1959, 1967) and is more similar to Pothen
(1984) and Lovász and Plummer (1986).

The main goal of Subsections 3.1 and 3.2 is to provide a proof of the de-
composition of Dulmage and Mendelsohn in terms of maximum match-
ings. This exact way of proving the Dulmage-Mendelsohn decomposition
is new. However, the proof contains elements of the proofs of Pothen (1984)
and Lovász and Plummer (1986).

3.1 The coarse decomposition

Lovász and Plummer (1986) give the following definition of the coarse de-
composition.

Definition 3.1. The coarse decomposition of a bipartite graph G = (V, E)
with V = L ∪ I (see Section 2.2.1) consists of three disjoint vertex sets V1,
V2, and V3. Let D ⊆ V be the set of all vertices of G for which there exists
at least one maximum matching of G that doesn’t cover that vertex. Let

11



Dulmage-Mendelsohn decomposition

AI

CL CI

50 cos(x2 + x3)− x5 = 0

(x1 + x2)(x1 + x2)− x4 − x6 = 0

sin(x6 − 20) = 0

x2
5 − x6 + x7 = 0

3 x7 − x8 = 0

x7x8 − 10 = 0

(x7 + x9)(x7 − x9) + 10 = 0

x9 − 20 = 0

x2

x1

x3

x4

x5

x6

x7

x8

x9

DL

DIAL

V3

V1

V2

Figure 3.1: The groups V1, V2 and V3

A ⊆ V − D be the set of all vertices outside D that are adjacent to a vertex
in D. And let C = V − D − A be the set of remaining vertices. Now split
the sets according to the bipartition of G, i.e. AL = A∩ L, AI = A∩ I, CL =

C ∩ L, CI = C ∩ I, DL = D ∩ L and DI = D ∩ I. Finally let V1 = CL ∪ CI ,
V2 = DL ∪ AI and V3 = AL ∪ DI (as in Figure 3.1).

The coarse decomposition has some useful properties that will be stated in
the next theorem.

Theorem 3.2. The coarse decomposition satisfies the following conditions.

(a) The decomposition is unique.

(b) The are no connections between CL and DI and there are no connections
between CI and DL.

(c) There are no connections between DL and DI .

(d) The system corresponding to V1 is well-constrained, the system of V2 is over-
constrained and the system of V3 is under-constrained.

To prove Theorem 3.2 more work is needed. See the next subsection.

Proof of Theorem 3.2

The proof is constructive and makes use of an arbitrary maximum match-
ing M of G. It directly leads to an (polynomial-time) algorithm for the

12



Dulmage-Mendelsohn decomposition

50 cos(x2 + x3)− x5 = 0

(x1 + x2)(x1 + x2)− x4 − x6 = 0

sin(x6 − 20) = 0

x2
5 − x6 + x7 = 0

3 x7 − x8 = 0
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(a) The matching M1 consisting of the
thick lines

50 cos(x2 + x3)− x5 = 0

(x1 + x2)(x1 + x2)− x4 − x6 = 0

sin(x6 − 20) = 0

x2
5 − x6 + x7 = 0

3 x7 − x8 = 0

x7x8 − 10 = 0

(x7 + x9)(x7 − x9) + 10 = 0

x9 − 20 = 0
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x7
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(b) The matching M2 consisting of the
thick lines

50 cos(x2 + x3)− x5 = 0

(x1 + x2)(x1 + x2)− x4 − x6 = 0

sin(x6 − 20) = 0

x2
5 − x6 + x7 = 0

3 x7 − x8 = 0

x7x8 − 10 = 0

(x7 + x9)(x7 − x9) + 10 = 0

x9 − 20 = 0

x2

x1

x3

x4

x5

x6

x7

x8

x9

(c) The symmetric difference M14M2

Figure 3.2: An example of a symmetric difference

computation of the coarse decomposition.

For (a) observe that the sets are well-defined thus the decomposition is
unique for a specific bipartite graph. (b) follows directly from Definition 3.1.

We are going to analyze which vertices are in DL and DI . It is obvious
that the vertices in L not covered by M are in DL and the vertices in I not
covered by M are in DI . We need an auxiliary lemma.

Lemma 3.3. The following equivalences hold for vertices in DL and DI .

(a) A vertex uL ∈ L is in DL ⇐⇒ uL is reachable by an M-alternating path
starting from a vertex in L not covered by M. Clearly, this path must have
an even length (zero length is also possible).

(b) A vertex uI ∈ I is in DI ⇐⇒ uI is reachable by an M-alternating path
starting from a vertex in I not covered by M. Clearly, this path must have
an even length (zero length is also possible).

Proof. Only (a) will be proven, the proof of (b) is similar by symmetry.

⇐ The symmetric difference of the M-alternating path and M results in a
maximum matching where uL is not covered, so uL ∈ DL.

13



Dulmage-Mendelsohn decomposition

⇒ Suppose there is a vertex uL ∈ DL that is covered by M. Then there exists
(by definition of D) a maximum matching M′where uL is not covered. Now
take the symmetric difference S of M and M′ (see Figure 3.2 for an example
with uL corresponding to 3 x7 − x8). Because each matching can contribute
maximum 1 degree to a vertex in S the symmetric difference consists only of
cycles and paths. The paths are of even length because both matchings are
maximum (since an odd length path would result in an augmenting path
in either M or M′). Because uL is only covered by M, uL is an end-vertex of
a path P in the symmetric difference S. P is an M-alternating path of even
length so the other end-vertex of path P must be a vertex not covered by
M.

Now (c) can be proven.

Proof of (c). Suppose there is an edge (uL, uI) with uL ∈ DL and uI ∈ DI .
Then by Lemma 3.3 there exists an M-alternating path P1 starting in a ver-
tex in L not covered by M to uL. By symmetry there exists an M-alternating
path P2 starting in a vertex in I not covered by M to uI . If (uL, uI) /∈ M
then combining P1, (uL, uI) and P2 results in an augmenting path for M,
which is a contradiction because M is maximum. Notice that there can’t be
an edge e that is in both P1 and P2 because otherwise it would be possible
to construct an augmenting path for M, which is a contradiction.

So let’s consider the case that (uL, uI) ∈ M. We know there exists an M-
alternating path P starting in a vertex in L not covered by M to uL. The
last edge of the M-alternating path must be in M because the first (starting)
edge of P is not in M and P has even length. This means that (uL, uI)

must the last edge of P, because otherwise (uL, uI) can’t be in M, which is
a contradiction. By the same argument there exists an M-alternating path
P′ starting in a vertex in I not covered by M to uI where the last edge of P′

is (uL, uI). But now combining the M-alternating paths P and P′\ (uL, uI)

results in an augmenting path for M, which is a contradiction because M is
maximum.

Before proving (d) we need two other auxiliary lemmas.

Lemma 3.4. The following equivalences hold for vertices in AI and AL.
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(a) A vertex uI ∈ I is in AI ⇐⇒ uI is reachable by an M-alternating path
starting from a vertex in L not covered by M. Clearly, this path must have
an odd length.

(b) A vertex uL ∈ L is in AL ⇐⇒ uL is reachable by an M-alternating path
starting from a vertex in I not covered by M. Clearly, this path must have
an odd length.

Proof. We’ll only prove (a), the proof of (b) is similar by symmetry.

⇐ Let vL be the vertex before uI in the M-alternating path. By Lemma 3.3
we know that vL is in DL. Obviously uI is adjacent to vL so uI is in A (by (c)
uL cannot be in DI). Because G is bipartite we know uI is in AI .

⇒ Because uI ∈ AI there exists a vertex vL ∈ DL adjacent to uI . By
Lemma 3.3 it is known that there exists an M-alternating path P from a
vertex in L not covered by matching M to vertex vL of even length. If P
goes through uI we are done. So suppose that P does not go through uI .
Note that in this case vL can’t be matched to uI by M because the last edge
of P must be a matching edge. Now P ∪ (vL, uI) is an M-alternating path
of odd length.

Lemma 3.5. For an edge (`, i) ∈ M with i ∈ AI it is always true that ` ∈ DL.
And for an edge (`, i) ∈ M with ` ∈ AL it is always true that i ∈ DI .

Proof. Only the first statement first will be proven, the second statement is
true by symmetry. Lemma 3.4 tells us that there exists an M-alternating
path P starting in a vertex in L not covered by M to i. P has odd length and
its first edge is not in M because the starting vertex of P is not covered by
M. So the last edge of P is also not in M. Combining P with (i, `) would
result in an M-alternating path from a vertex in L not covered by M to ` of
even length. Now by Lemma 3.3 we know that ` ∈ DL.

Finally (d) can be proven.

Proof of (d). Let us begin with the proof of the statement that the system
corresponding to V2 is over-constrained. Because V2 = DL ∪ AI we know
by Lemmas 3.3 and 3.4 that V2 consists of all vertices that are reachable
by an M-alternating path starting from a vertex in L not covered by M.
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Lemma 3.5 implies that when a vertex is in AI , the vertex that is matched
to it by M is in DL. Further, all vertices in AI are covered by M. So M ∩
(DL × AI) is a maximum matching for G [V2] covering AI . DL consists of
all vertices matched to a vertex in AI and all vertices in L not covered by
M. Thus, if V2 6= ∅, then |DL| > |AI |. Consequently G [V2], and thus the
system corresponding to V2, is over-constrained.

By symmetry this also means that the system corresponding to V3 is under-
constrained.

To prove that the system corresponding to V1 is well-constrained consider
matching M. By Theorem (b) and Lemma 3.5 we know that vertices in C
(CL ∪ CI) can only be matched by M to vertices in C. Because every ver-
tex in C is covered by M by definition every vertex in V1 (= C) is matched
to another vertex in V1 by M. This means that M ∩ E (G [V1]) is a maxi-
mum matching for G [V1] and |CL| = |CI | with the result that the system
corresponding to V1 is well-constrained.

3.1.1 Implementation

To construct a coarse decomposition Ait-Aoudia et al. (1993) provided an
efficient algorithm. See Algorithm 3.1.

Algorithm 3.1 An algorithm for the coarse decomposition

Input: A bipartite graph G = (V, E) with V = L ∪ I
Output: Three vertex sets V1, V2 and V3 with V1 ∪V2 ∪V3 = V

1 find a maximum matching M of G
2 directed graph G′ ← (V, ∅)
3 foreach edges (`, i) in G do
4 add arc (`, i) to G′

5 foreach edges (`, i) in M do
6 add arc (i, `) to G′

7 vertex set V2 ← all descendants of sources of G′

8 vertex set V3 ← all ancestors of sinks of G′

9 vertex set V1 ← V −V2 −V3

This algorithm follows directly from Lemmas 3.3 and 3.4. It is easy to see
that when there is a (directed) walk in the directed graph G′ between a
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vertex v1 and a vertex v2 there exists an M-alternating path in G between
v1 and v2.

Lines 2 to 9 run in O(n + m) time where n is the number of vertices and
m is the number of edges in G. The complexity of the whole algorithm is
determined by the complexity of finding a maximum matching in line 1.
This can be done in O(m

√
n) time using the bipartite matching algorithm

of Hopcroft and Karp (1973).

3.2 The fine decomposition

The coarse decomposition results in V1, V2 and V3. These are respectively
the well-, over- and under-constrained parts of the bipartite graph. It is
possible to decompose the well-constrained part V1 (Figure 3.3) into even
smaller parts. These parts will be called the irreducible components. As
explained earlier this decomposition will be called the fine decomposition
and is also due to Dulmage and Mendelsohn (1958, 1959, 1967). The no-
tation will be similar to the notation used by Ait-Aoudia et al. (1993). But
first a definition is needed.

Definition 3.6. A well-constrained bipartite graph G = (V, E) with V =

L∪ I is called irreducible if every edge (`, i) ∈ E is part of at least one perfect
matching of G.

sin(x6 − 20) = 0

x2
5 − x6 + x7 = 0

3 x7 − x8 = 0

x7x8 − 10 = 0

(x7 + x9)(x7 − x9) + 10 = 0

x6

x5

x7

x8

x9

G

Figure 3.3: A valid instance for the fine decomposition

Definition 3.7. The fine decomposition of a well-constrained bipartite graph
G = (V, E) with V = L ∪ I (see Section 2.2.1) consists of q disjoint sub-
graphs H1, . . . , Hq constructed as follows:

Define a graph H given by G with all edges removed that never appear in
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a perfect matching, i.e.

H = (V, {e ∈ E : e is in at least one perfect matching of G}) .

Now let H1, . . . , Hq be the q components of H. Obviously, every component
of H is irreducible. That is why H1, . . . , Hq are also called the irreducible
components.

sin(x6 − 20) = 0

x2
5 − x6 + x7 = 0

3 x7 − x8 = 0

x7x8 − 10 = 0

(x7 + x9)(x7 − x9) + 10 = 0

x6

x5

x7

x8

x9

H

Figure 3.4: Example of H constructed from the instance of Figure 3.3

sin(x6 − 20) = 0

x2
5 − x6 + x7 = 0

3 x7 − x8 = 0

x7x8 − 10 = 0

(x7 + x9)(x7 − x9) + 10 = 0

x6

x5

x7

x8

x9

H1

H2

H3

H4

Figure 3.5: Example of a fine decomposition

An example of H and the decomposition can be found in Figures 3.4 and 3.5
respectively. The fine decomposition has some useful properties that will
be stated in a theorem.

Theorem 3.8. The fine decomposition satisfies the following conditions.

(a) The decomposition is unique.

(b) Every subgraph Hj ∈
{

H1, . . . , Hq
}

is well-constrained.

(c) The subgraphs H1, . . . , Hq can be ordered (and renumbered) in such a way
that for every edge (`, i) with ` ∈ Hj ∩ L, i ∈ Hk ∩ I it holds that j ≥ k.

In words, (c) states that the subsystems corresponding to H1, . . . , Hq can be
ordered in such a way that every equation corresponding to ` ∈ Hj ∩ L
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only contains variables from
{

i : i ∈
(

H1 ∪ · · · ∪ Hj
)
∩ I
}

. A consequence
is that this order is also an order of resolution of the associated subsystems
of H1, . . . , Hq. An ordering of our example system in Figure 3.5 could be
H3, H4, H1, H2.

To prove Theorem 3.8 more work is needed. See the next subsection.

Proof of Theorem 3.8

The proof is constructive and makes use of an arbitrary maximum match-
ing M of G. It directly leads to an (polynomial) algorithm for the computa-
tion of the fine decomposition.

Proof of (a) and (b). For (a) observe that the sets are well-defined thus the
decomposition is unique for a specific bipartite graph.

(b) can be proven by contradiction. We know that G has a perfect matching
M. By definition M is also a perfect matching of H. Suppose now that a
subgraph Hj is not well-constrained. Then Hj doesn’t have a perfect match-
ing. Because Hj is a component of H that would mean that H doesn’t have
a perfect matching, which is a contradiction.

It would be useful to have a way to determine whether two vertices are in
the same subgraph Hj. But first two auxiliary lemmas are needed. In these
lemmas, M is a maximum (perfect) matching of G.

Lemma 3.9. The following statements are true.

(a) For every M-alternating tour T in G there exist(s) m ≥ 1 M-alternating
cycle(s) C1, . . . , Cm in G for which C1 ∪ · · · ∪Cm is connected and for which
it is true that every edge that appears in T also appears in C1 ∪ · · · ∪ Cm.

(b) For an arbitrary set of m ≥ 1 M-alternating cycle(s) C1, . . . , Cm in G for
which C1 ∪ · · · ∪ Cm is connected there exists an M-alternating tour T in
G for which it is true that every edge that appears in C1 ∪ · · · ∪ Cm also
appears in T.

Proof. Let (a) be proven first. An M-alternating tour T for which there is
a vertex v that is walked by n ≥ 2 times in tour T can be split up in two
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M-alternating tours T1 where where v is walked by 1 time and T2 where v
is walked by n− 1 times by the following procedure.

Let T1 be the tour from v following T until v is reached again. Let the rest
of the tour be T2.

It is obvious that both T1 and T2 are M-alternating tours in G and every
vertex in T is in T1 ∪ T2. T1 and T2 can be split up by the same procedure if
they contain vertices that are walked by a multiple number of times. Doing
this over and over again results in the desired cycles C1 ∪ · · · ∪ Cm.

For (b), first sort and renumber C1 ∪ · · · ∪ Cm such that C1 ∪ · · · ∪ Ci is con-
nected to Ci+1 for i = 1, . . . , m− 1. Let T1 = C1. Now proceed iteratively as
follows for i = 1, . . . , m− 1.

Let Ti be an M-alternating tour in G and let vi be a vertex with vi ∈ Ti and
vi ∈ Ci+1. Define Ti+1 as a tour starting in vi, then start the tour by walking
all the way through Ti (starting with an edge in M) and then continue the
tour by walking all the way through Ci+1 (again starting with an edge in
M). It is obvious that Ti+1 is an M-alternating tour in G.

Now Tm is an M-alternating tour in G containing all vertices from C1∪ · · · ∪
Cm.

Lemma 3.10. If there exists an M-alternating cycle C containing two vertices
v1, v2 ∈ V then v1 and v2 are both an element of Hj for a specific j.

Proof. Let M′ be the symmetric difference M4 C. Now M′ is also a perfect
matching. By definition all edges of C = M4M′ are in H (each edge of C
is either in M or M′). Because C is a cycle it is obvious that v1 and v2 are
connected and lie in the same component of H.

Lemma 3.11. Two vertices v1, v2 ∈ V, v1 6= v2 are both an element of Hj for a
specific j ⇐⇒ v1 is matched to v2 by M or there exists an M-alternating tour T
containing both v1 and v2 (where T obviously has even length).

Proof. ⇐ If v1 is matched to v2 by M than obviously v1 and v2 are connected
in H and lie in the same component of H.

So consider the case that there exists an M-alternating tour T containing
both v1 and v2. By Lemma 3.9 we know that there exist m ≥ 1 M-alternating
cycle(s) C1 ∪ · · · ∪ Cm for which every vertex in T is in C1 ∪ · · · ∪ Cm and
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C1 ∪ · · · ∪ Cm is connected. Lemma 3.10 implies that all vertices in an M-
alternating cycle are connected in H. That results in the fact that all vertices
in C1 ∪ · · · ∪ Cm, and thus in T, are connected in H.

⇒ It is known that v1 and v2 are connected in H so there exists a path P
where v1 is the first vertex of P and v2 the last vertex. Let P′ = {e1, . . . , em}
be P with all edges in M removed. Now, for i = 1, . . . , m, let Mi be a
perfect matching containing ei. For all i = 1, . . . , m take the symmetric
difference Si = M4Mi. Because every vertex in Si can only have degree
0 or 2 the symmetric difference consists only of cycles. Let Ci be the cycle
of Si containing ei. Notice that Ci is M-alternating and that the edges in M
adjacent to ei are also in Ci. Because we know that either ei and ei+1 are
connected or there is an edge in M adjacent to ei and ei+1 it follows that Ci

is connected to Ci+1 for all i = 1, . . . , m− 1. By Lemma 3.9 it is known that
there exists an M-alternating tour T containing both v1 and v2.

Now it’s possible to prove condition (c) of Theorem 3.8.

Proof of (c). Suppose an ordering as stated in (c) would not be possible. The
only way to achieve that is to have a “circular” sequence H′1, . . . , H′m, H′m+1 =

H′1 with m > 1 and H′1, . . . , H′m distinct such that there exists at least one
edge

(
ij, `j+1

)
with ij ∈ H′j ∩ I and `j+1 ∈ H′j+1 ∩ L for every j ∈ {1, . . . , m}.

So suppose we have such a sequence. Consider an arbitrary edge
(
ij, `j+1

)
.

We know that
(
ij, `j+1

)
is not matched by M or else ij and `j+1 would be

in the same Hj (by Lemma 3.11), which is a contradiction. Now look at
an edge

(
ij+1, `j+2

)
. By Lemma 3.11 it is known that there exists an M-

alternating tour T between ij+1 and `j+1. That implies there must exist an
M-alternating path Pj+1 between ij+1 and `j+1 in H′j+1 where both the first
and last edge are in M. With this it is possible to construct an M-alternating
tour (i1, `2)∪ P2 ∪ · · · ∪ (im, `m+1)∪ Pm+1. But Lemma 3.11 then tells us that
all vertices ij and `j+1 for j = {1, . . . , m} are in the same component of H,
which is a contradiction.

3.2.1 Implementation

To construct a fine decomposition Ait-Aoudia et al. (1993) provided an ef-
ficient algorithm. See Algorithm 3.2.
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Algorithm 3.2 An algorithm for the fine decomposition

Input: A well-constrained bipartite graph G = (V, E) with V = L ∪ I
Output: q subgraphs H1, . . . , Hq with V(H1) ∪ · · · ∪V(Hq) = V

1 find a maximum matching M of G
2 directed graph G′ ← (V, ∅)
3 foreach edges (`, i) in G do
4 add arc (`, i) to G′

5 foreach edges (`, i) in M do
6 add arc (i, `) to G′

7 directed subgraphs G′1, . . . , G′q ← strongly connected components of G′

8 for j is 1 to q do
9 Hj ← G

[
V(G′j)

]

This algorithm follows directly from Lemma 3.11. Every strongly con-
nected component of G′ corresponds to either a single match (or edge) from
M or an M-alternating tour.

Lines 2 to 6 and lines 8 and 9 run in O(n + m) time where n is the number
of vertices and m is the number of edges in G. Line 7 also runs in O(n +

m) by using Tarjan’s Algorithm, see Tarjan (1972). The complexity of the
whole algorithm is determined by the complexity of finding a maximum
matching in line 1. This can be done in O(m

√
n) time using the bipartite

matching algorithm of Hopcroft and Karp (1973).

Appendix B contains a recursive and a non-recursive version of Tarjan’s
Algorithm. A nice property of using Tarjan’s Algorithm is that the order in
which the strongly connected components are found is an order of resolu-
tion for the subsystems H1, . . . , Hq.

Notice that lines 1 to 6 of Algorithm 3.1 and Algorithm 3.2 are the same. A
consequence is that both algorithms can be merged very efficiently. How-
ever, one must be aware of the fact that the input of the two algorithms
differ. But when running Algorithm 3.2 with V1 from Algorithm 3.1 as in-
put one can use E(V1) ∩M as matching and G′[V1] as directed graph.
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3.3 The analysis component

Now that we have more information about the properties of the Dulmage-
Mendelsohn, let us focus again on the interactive solver.

The interactive solver gives the current system of equations and its asso-
ciated bipartite graph to the analysis component. This component uses the
Dulmage-Mendelsohn decomposition to divide the system into the three
subsystems V1, V2 and V3. V1 is well-constrained, V2 is over-constrained
and V3 is under-constrained.

If the analysis component finds a non-empty V2, it stops and returns this
system to the solver. At least one of the equations in V2 is either redundant
or contradicting and should be disabled by the solver. After that the system
can be fed to the analysis component again.

After this check the analysis component is left with V1 and V3. It tries to
find irreducible components in V1 using the method described in Subsec-
tion 3.2.1. Then the solver determines which of the subsystems associated
to the irreducible components can be solved without solving other subsys-
tems first.

Finally the analysis component provides the solver with two lists: a list of
solvable subsystems of V1 and a list of free parameters in V3 that can be
guessed without creating a non-empty V2 in the resulting system of equa-
tions. By definition, all parameters in V3 have this property. The solver can
either solve a subsystem using the partial solver of Section 4.2 or assign a
(random) value to one of the free parameters. After this action the system
can be analyzed by the analysis component again. Note that both actions
will not introduce a non-empty V2 component when the modified system
of equations will be analyzed again.
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To solve a system of quations as described in Sections 2.4 and 3.3, the in-
teractive solver has to solve (well-constrained) (sub)-systems of nonlinear
equations. In this chapter we shortly describe the Newton method.

The Newton method is the most important algorithmic concept for solving a
system of nonlinear equations

h(x) = 0 (4.1)

where h : Rn → Rn, h ∈ C1(Rn, Rn) is a system of n continuously differen-
tiable (nonlinear) functions of n variables.

The classical Newton iteration for computing a solution x̄ of (4.1) is

xk+1 = xk − Jh(xk)
−1h(xk) (4.2)

where Jh is the n× n Jacobian matrix of h and x0 ∈ Rn is a (random) starting
vector. To find xk+1 we simply have to solve the linear system

Jh(xk)(xk+1 − xk) = −h(xk) (4.2′)

for xk+1 − xk and then calculating xk+1 from xk.

It is well-known that the Newton iteration (4.2) is locally quadratically con-
vergent to a solution x̄ of h(x̄) = 0 if the regularity condition

Jh(x̄) is nonsingular (4.3)

is satisfied, i.e. under the assumption of (4.3) it holds that for any starting
point x0 sufficiently close to x̄, the iterates xk of (4.2) converge to x̄ with a
rate

‖xk+1 − x̄‖ ≤ c ‖xk − x̄‖2 (4.4)

24



Newton methods

where c is a constant (see e.g. Faigle et al. (2002) for a proof).

The Newton method has one major drawback: the computation of the Ja-
cobian Jh is required. This is not possible in the SST framework because the
equations are implemented as “black box” functions. Besides that, every
Newton iteration of (4.2) (or (4.2′)) is at least of computational complexity
O(n3).

It would be better to have a method with the following features:

(a) only the values of h(xk) are required.

(b) the computational complexity of each iteration is smaller than O(n3),
a better computational complexity would be O(n2).

(c) the iterates xk are super-linear convergent, i.e.

‖xk+1 − x̄‖
‖xk − x̄‖ → 0 as k→ ∞.

The so-called quasi-Newton method as described in the following section
possesses these properties.

4.1 The quasi-Newton method

The quasi-Newton method is similar to the Newton method but it uses

xk+1 = xk + αkdk

as update formula, where dk = −B−1
k h(xk), Bk is an approximation of Jh(xk)

and αk is some step size.

To calculate Bk+1 one uses a low rank update Bk+1 = Bk + Ek where Ek is of
low rank (like rank(E) ≤ 2). The iterates Bk+1 satisfy

Bk+1(xk+1 − xk) = h(xk+1)− h(xk) (4.5)

which is called the quasi-Newton condition. This condition can also be writ-
ten as Bk+1sk = yk where

sk = xk+1 − xk

yk = h(xk+1)− h(xk).
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To motivate the quasi-Newton condition (4.5) consider the Taylor expan-
sion around xk+1:

h(xk)− h(xk+1) = Jh(xk+1)(xk − xk+1) + o(‖xk − xk+1‖).

So in (4.5) we obviously assume that Bk+1 is an approximation of Jh(xk+1)

which satisfies the linear approximation

h(xk)− h(xk+1) ≈ Jh(xk+1)(xk − xk+1).

The conceptual quasi-Newton method is described in Algorithm 4.1.

Algorithm 4.1 A conceptual algorithm for the quasi-Newton method

Input: A function h : Rn → Rn, h ∈ C1(Rn, Rn), a point x0 ∈ Rn and a
number of iterations m

Output: A vector xm ∈ Rn

1 B0 ← an approximation of Jh
2 for k is 0 to m− 1 do

// update xk+1

3 dk ← −B−1
k h(xk)

4 xk+1 ← xk + dk
// update approximation of Jacobian

5 Bk+1 ← Bk + Ek // or B−1
k+1 ← B−1

k + Ẽk

To possibly enlarge the region of attraction instead of line 4 of Algorithm 4.1
we can perform a step with line-minimization

αk ← a solution of minα∈R ‖h(xk + αdk)‖2

xk+1 ← xk + αkdk
(4.6)

An update formula of particular interest is due to Broyden (1965). His fa-
mous update formula

Bk+1 = Bk +
(yk − Bksk) sT

k

sT
k sk︸ ︷︷ ︸
Ek

(4.7)
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or equivalently

B−1
k+1 = B−1

k +

(
sk − B−1

k yk

)
sT

k B−1
k

sT
k B−1

k sk︸ ︷︷ ︸
Ẽk

(4.7′)

is known as Broyden’s “good” update formula. As the name suggests he
also proposed an update formula known as Broyden’s “bad” update for-
mula:

Bk+1 = Bk +
(yk − Bksk) yT

k Bk

yT
k Bksk

(4.8)

or equivalently

B−1
k+1 = B−1

k +

(
sk − B−1

k yk

)
yT

k

yT
k yk

. (4.8′)

Broyden (2000) gives the following explanation for the names of the formu-
las: the formula is referred to as “good” due to its better numerical perfor-
mance relative to another formula that I also presented in (1965), which has
become to be known as the “bad Broyden” update. Dennis and Schnabel
(1980) discuss these two updates and their relations to the DFP and BFGS
updates.

4.1.1 Convergence results

The quasi-Newton method with Broyden’s update (4.7), also called Broy-
den’s method, leads to a superlinearly convergent method.

Theorem 4.1 (Convergence result). Let h be a C1-function in a (open) neighbor-
hood of x̄ such that h(x̄) = 0 and Jh(x̄) is nonsingular. Then for Broyden’s method
and the method from Algorithm 4.1 without using (4.6) the following holds.

There exist constants δ, ε > 0 such that for any x0, B0 satisfying

‖x0 − x̄‖ < δ and ‖B0 − Jh(x0)‖ < ε

the iterates xk converge to x̄ superlinearly.

Proof. See Broyden et al. (1973).
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Figure 4.1: Behaviour of convergence of Broyden’s method on System 4.10

Note that in the case where n = 1, the quasi-Newton condition

Bksk−1 = yk−1 or B−1
k =

sk−1

yk−1
=

xk − xk−1

h(xk)− h(xk−1)

yields the so called secant method

xk+1 = xk −
xk − xk−1

h(xk)− h(xk−1)
h(xk). (4.9)

It is also proved by Gay (1979) that when Broyden’s method is applied to
a linear system, it terminates in 2n steps. This is a usefull property for the
solver. When a linear system has to be solved, there is no need to use a
specialized method for linear systems.

Broyden’s method is a “black box” method. As such, it is very hard to give
a prediction of its convergence behaviour. Consider for example the system
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of equations 
−3

2
x1 + x2 = 1

1
4

x2
1 −

1
16

x2
2 = 1

 (4.10)

which has (−2.375,−2.563) and (4.090, 7.134) as solutions. One could cre-
ate a grid of starting points and determine for every starting point to which
solution it converges. This has been done in Figure 4.1. There is no clear
global convergence behaviour, except (according to Theorem 4.1) in a small
neighbourhood of the solutions. An interesting sidenote is that Broyden’s
method converged for all starting points in Figure 4.1 in less then 29 itera-
tions.

4.2 The partial solver

The partial solver is the component of the SST framework that used Broy-
den’s method to solve the (irreducible) subsystems that are returned from
the analysis compontent of Section 3.3. By definition these subsystems are
well-constrained and thus consistent. That also means that with a “high
probability” h is regular, i.e. all solutions x̄ of h(x̄) = 0 satisfy the regu-
larity condition (4.3). So by Theorem 4.1, if solutions x̄ of h(x̄) = 0 exist,
with high probability Broyden’s method will converge to them when the
starting point is close enough to the solution.

If a solution does not exist or the random starting point is too far from a so-
lution, Broyden’s method might not converge. If the iterates have not con-
verged after a specified number of iterations, the partial solver will restart
with another random starting point. After a specified number of restarts
the partial solver will report to the solver that it was not able to solve the
subsystem.

In this situation, probably the best choice for the interactive solver is to
discard the current assignment of parameters, enable all rules again and
start all over. Because the choices for assigned parameters and disabled
rules have consequences for the type of encountered subsystems, it could
be well possible that the interactive solver will be able to solve all encoun-
tered subsystems in the next attempt.

It may be noted that the interactive solver (as described in Sections 2.4, 3.3
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and this section) has been implemented in the SST project. The implemen-
tation has been able to find feasible solutions for a set of test problems.
However, as this implementation is outside the scope of the Final Project,
it will not be further discussed within this thesis.
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A major problem of manipulating large sparse matrices is that a lot of stor-
age space and computing time are needed. One way of dealing with this
is by permuting the rows and columns of the matrix such that it becomes
a band matrix. A band matrix is a sparse matrix whose nonzero elements
are within a certain distance from the main diagonal. When such permu-
tations result in a band matrix of small bandwidth, considerable savings
in both storage space and computing time are possible using banded algo-
rithms, see for example Martin and Wilkinson (1967). A natural question
that arises is what the smallest possible bandwidth for a given matrix is.

A lot of research has been put into reducing the bandwidth of symmetric
matrices. However, unsymmetric matrices didn’t get much attention. In
the SST project unsymmetric matrices are more common, so this problem
is worth investigating.

In Subsections 5.1 and 5.2, the symmetric and unsymmetric bandwidth
minimization problem will be introduced respectively. Subsection 5.3 will
give a short overview of the available literature of both problems. In Sub-
section 5.4 a proof will be presented showing that the unsymmetric band-
width minimization problem is NP-complete. A popular class of algo-
rithms concerning bandwidth reduction, the level set algorithms, will be
treated in Subsection 5.5 and some more traditional heuristics are covered
in Subsection 5.6. A short overview of the software written for this thesis
can be found in Subsection 5.8 and finally, the computational results can be
found in Subsection 5.7.

5.1 Symmetric case

Before the problem can be stated, a few definitions are needed.
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Figure 5.2: Graph representation of Figure 5.1

Given a symmetric matrix A =
[
aij
]
∈ Rn×n, the semi-bandwidth of matrix

A is defined as bs = max
(
|i− j| : aij 6= 0

)
. In the literature different defi-

nitions for the bandwidth of a matrix are used. Usually the bandwidth is
either bs, 2bs or 2bs + 1. In this thesis the bandwidth of a symmetric matrix
is simply defined as b = bs, the semi-bandwidth.

The (symmetric) bandwidth minimization problem (BMP) is defined as follows:
given a symmetric matrix A a permutation of the rows and columns of
A (where both permutations are the same to preserve symmetry) must
be found such that the bandwidth, b, is minimized. In other words, all
nonzero elements of A should be in a band that is as close as possible to the
main diagonal.

In the context of graphs, given a graph G = (V, E), where V is the vertex
set with |V| = n and E is the edge set, the bandwidth minimization prob-
lem is formulated as follows: find a bijective labeling p : V → {1, . . . , n}
that minimizes max {|p(i)− p(j)| : (i, j) ∈ E}, or, equivalently, minimize
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the length of the longest edge when the vertices are ordered on a line with
unit distance between consecutive vertices.

The matrix bandwidth minimization problem and the graph bandwidth
minimization problem are interchangeable using A as the (vertex-vertex)
adjacency matrix of G.

Figure 5.1 shows an instance of the symmetric bandwidth minimization
problem. The nonzero elements of the matrix are shown as dark grey
squares and the elements on the main diagonal are shown as light grey
squares. Figure 5.2 shows the graph representation of the same problem.
The points of the graph are ordered on half a circle instead of on a line to
give a better visualization of the length of an edge.

5.2 Unsymmetric case

The main focus of this thesis will be a generalisation of the bandwidth
minimization problem, namely the unsymmetric bandwidth minimization
problem. In this problem, matrix A is allowed to be unsymmetric. While
such a matrix is allowed to be non-square, the focus will be on square un-
symmetric matrices.

Because of the loss of symmetry another definition for the bandwidth is
needed. Given a matrix A = [a`i] ∈ Rm×n where ` ∈ {1, . . . , m} and i ∈
{1, . . . , n} let us define the lower bandwidth b` as max {`− i : a`i 6= 0, ` > i}
and the upper bandwidth bu as max {i− ` : a`i 6= 0, ` < i}. Different defini-
tions for the bandwidth are possible. Common choices are max (b`, bu),
b` + bu, b` + bu + 1 and b` + bu + min(b`, bu). In this thesis the bandwidth b
of an unsymmetric matrix is simply defined as max (b`, bu). Let us denote
by b(A) the bandwidth of matrix A. Note that for symmetric matrices,
b = max(b`, bu) = bs.

The minimal bandwidth of A is defined by

β(A) = min
πL∈Sm, πI∈Sn

b(
[

aπL(`)πI(i)

]
)

where Sn and Sm are the symmetric groups of permutations of respec-
tively n and m objects. So β(A) denotes the smallest bandwidth that can
be achieved by permuting the rows and columns of A.
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The unsymmetric bandwidth minimization problem (UBMP) is to determine
β(A), given the matrix A.

In the context of graphs, consider a bipartite graph G = (V, E), where
V = L ∪ I is the vertex set and E ⊆ L × I is the edge set. L and I are
the vertex classes of the bipartite graph with |L| = m and |I| = n. The
bipartite graph bandwidth minimization problem is to find a bijective labeling
pL(v) : L→ {1, . . . , m} and a bijective labeling pI(v) : I → {1, . . . , n} that
minimizes max {|pL(`)− pI(i)| : (`, i) ∈ E}, or, equivalently, minimize the
length of the longest edge when the vertices are ordered with unit distance
on two parallel lines, one for each vertex class, where the length l(e) of an
edge e is the Euclidean distance between its two incident vertices projected
on either of the two lines.

The unsymmetric bandwidth minimization problem and the bipartite graph
bandwidth minimization problem are interchangeable: each row ` of ma-
trix A corresponds to a vertex ` ∈ L and each column i of matrix A corre-
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sponds to a vertex i ∈ I; a`i is nonzero iff (`, i) ∈ E.

Figure 5.3 shows an example of the unsymmetric bandwidth minimization
problem. Figure 5.4 shows the graph representation of the same problem.
Again, the vertices of the graph are ordered on a half circle instead of on a
line to give a better visualization of the length of an edge. Furthermore, the
vertex corresponding to row position j is placed at the same coordinates as
the vertex corresponding to column position j. For example 3, 9 means that
both the vertices corresponding to row 3 and column 9 are located at that
coordinate.

Note that the graph representation as used in Figure 5.4 is only usable with
the bandwidth defined as max (b`, bu). When another bandwidth definition
is used, one has to differentiate between edges where the column vertex is
located to the left of the row vertex and edges where the column vertex is
located to the right of the row vertex.

5.3 Literature

Most available literature covers the symmetric bandwidth minimization
problem, which will be referred to as the BMP from now on. Since 1976
this problem is known to be NP-complete, due to Papadimitriou (1976).
Unger (1998) even showed that, for any constant k, it is NP-complete to
find a k-approximation of the BMP, i.e. finding a (polynomial) approxima-
tion algorithm that guarantees that the approximation will have a band-
width smaller than kβ (k times the smallest possible bandwidth) would
yield P=NP.

Nevertheless Corso and Manzini (1999) developed two algorithms to find
an exact solution for the BMP. Because the running time of these algorithms
can be very large for large problem instances, many efforts have been done
to develop heuristic algorithms. These algorithms can be much faster, but
don’t guarantee optimal solutions. That is why they are usually referred to
as bandwidth reduction algorithms.

A popular class of heuristic algorithms for the BMP is the class of level
set algorithms. One of the most used algorithms in this catagory is the re-
verse Cuthill-McKee algorithm (RCM) which is simply the reverse order of
the Cuthill-McKee algorithm by Cuthill and McKee (1969). The idea of the
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level sets in this algorithm led to the development of the GPS algorithm (by
Lewis (1982)), the Sloan algorithm (by Sloan (1989)), the JCL algorithm (by
Luo (1992)) and the more recent WBRA algorithm (by Esposito et al. (1998a)).

More recently, another class of algorithms for the BMP has been investi-
gated: the class of metaheuristics. The first metaheuristic applied to the
BMP was simulated annealing, due to Dueck and Jeffs (1995). A recent im-
provement of this approach has been proposed by Rodriguez-Tello et al.
(2008). Esposito et al. (1998b) and Martí et al. (2001) used tabu search to re-
duce the bandwidth of a symmetric matrix. Piñana et al. (2004) presented
the results of applying a greedy randomized adaptive search pocedure
combined with a path relinking strategy (GRASP-PR). And finally, Pop and
Matei (2011) developed a heuristic based on genetic programming.

As far as we know, little research has been done for the unsymmetric band-
width minimization problem, which will be referred to as the UBMP from
now on. Esposito et al. (1998b) describe an adjustment to Tabu Search and
the WBRA algorithm (a heuristic for the BMP) to incorporate unsymmetric
matrices. Reid and Scott (2006) developed methods to reduce a quantity
called the total bandwidth, which is defined as min(b`, bu) + b` + bu.

5.4 NP-completeness of the UBMP

The BMP is proved to be NP-complete, due to Papadimitriou (1976), by
reducing 3-SAT to a generalized problem where a number of k edges are
restricted by a bandwidth of 2b− 1 instead of b. Another reduction is ap-
plied k times such that in the resulting problem all edges are restricted by a
bandwidth of b′. In this section, the NP-completeness of the UBMP will be
investigated and also proved by reducing 3-SAT to it. Some key concepts
from the original proof will be used. However, a direct reduction from 3-
SAT will be presented without using an intermediate problem.

Because the graph representations of the BMP and the UBMP (see Fig-
ures 5.2 and 5.4) look remarkably similar, it might be tempting to think
that the UBMP generalizes the BMP and therefore is NP-complete. How-
ever, this is not the case. Consider for example Figure 5.5. Because of the
fact that different permutations are possible for the rows and columns of
the UBMP, there is extra freedom to improve the bandwidth.
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For the UBMP to be NP-complete, it has to be in NP. Recall that for a matrix
A = [a`i], β(A) = minπL∈Sm, πI∈Sn max (|πL(`)− πI(i)| : a`i 6= 0).

Definition 5.1. The unsymmetric bandwidth minimization decision problem (UB-
MDP) is the following: given a matrix A ∈ Rm×n and an integer bd > 0, is
β(A) ≤ bd?

Lemma 5.2. The UBMDP is in NP.

Proof. Let the permutation of rows πL and the permutation of columns πI

be the certificate of a “yes” instance. Now the “yes” instance can be verified
by checking |πL(`)− πI(i)| ≤ bd for all {`, i|a`i 6= 0}. This can be done in
O(mn) time.

Corollary 5.3. The UBMP is an NP-optimization problem.

Proof. By Lemma 5.2 the decision problem of the UBMP is in NP.

To show that the UBMP is NP-complete, its NP-hardness must be proved
as well. For this proof, a definition of 3-SAT is necessary. The (exactly) 3-
satisfiability problem (3-SAT) is defined as follows: given n different Boolean
variables x1, . . . , xn and r clauses F1, . . . , Fr each containing exactly 3 dif-
ferent literals f1, f2, f3 ∈ {x1, . . . , xn, x̄1, . . . , x̄n}, does an assignment of
TRUE and FALSE to the variables x1, . . . , xn exist such that all clauses eval-
uate to TRUE?

An instance of 3-SAT with n = 5 and r = 3 could be for example

(x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x3 ∨ x̄4) ∧ (x2 ∨ x4 ∨ x̄5) .

3-SAT is known to be NP-complete by Papadimitriou (1976).
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Figure 5.6: Bipartite graph (H, H′)

Theorem 5.4. The UBMP is NP-hard.

Proof. By reducing 3-SAT to the decision problem UBMDP. Consider an in-
stance S of 3-SAT with n Boolean variables x1, . . . , xn and r clauses F1, . . . , Fr.
An instance U of the UBMDP with bd = n + 4 will be created such that S is
solvable iff U is a “yes” instance.

For a better understanding of the proof, the bipartite graph representation
of the problem will be used. The most important building block of U will
be the bipartite graph (H, H′), as shown in Figure 5.6. (H, H′) can be con-
structed as follows: for each variable xi in S, i = 1, . . . , n, add 2 vertices
vi, v̄i to H and v′i, v̄i

′ to H′. Also add the vertex sets M = {m1, . . . , mh} to
H and M′ =

{
m′1, . . . , m′h

}
to H′ with h = 2 or h = 3. Now connect each vi

and v̄i to all m′ ∈ M′. The vertices vi, v̄i will be referred to as literals.

The rest of the construction of U as given below will force (H, H′) to have
certain properties in a valid solution of U:

(a) The vertices M = {m1, . . . , mh} will be next to each other in the mid-
dle of H and the vertices M′ =

{
m′1, . . . , m′h

}
will be next to each

other in the middle of H′. M will be positioned exactly above M′.

(b) Exactly n literals from {v1, . . . , vn, v̄1, . . . , v̄n} are to the left of M,
call this subset P, and exactly n literals are to the right of M, call this
subset Q.

(c) Not both vi and v̄i are in P, i.e. vi and v̄i are at different sides of M.

(d) The assignment xi = TRUE iff vi ∈ Q is a valid solution of S.
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Clearly the last property will be enough to prove the theorem. To enforce
these properties, two more building blocks are needed. One of them is the
bipartite graph (K, K′) (see Figure 5.7). This is a complete bipartite graph
with K = {k1, . . . , kn+5} and K′ =

{
k′1, . . . , k′n+5

}
. Because there is an edge

between all vertices of K and all vertices of K′, K will be exactly positioned
above K′ in a valid solution of U. Note that a bipartite graph consisting of
one component can only be at one side of (K, K′).

The last building block is the bipartite graph (A, A′) (Figure 5.8). It consists
of just A = {a1, . . . , a4} and A′ = {a′1, . . . , a′4}. The total construction of
U will force A to be exactly positioned above A′ in a valid solution of U.
Also the vertices of A and A′ will be positioned next to each other in a valid
solution.

Now the bipartite graph U can be constructed. Take n copies of (H, H′)
with h = 3 to U and call them (H1, H′1) , . . . , (Hn, H′n) and add r copies of
(H, H′) with h = 2 and call them

(
Hn+1, H′n+1

)
, . . . , (Hn+r, H′n+r). Then

add n + r copies of (A, A′) and 2 copies of (K, K′). Prearrange them in the
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order

(
K1, K′1

)
,
(

H1, H′1
)

,
(

A1, A′1
)

, . . . ,
(

Hn+r, H′n+r
)

,
(

An+r, A′n+r
)

,
(
K2, K′2

)
.

Let us rearrange each bipartite graph (Hi, H′i ) such that (Mi, M′i) is exactly
in the middle of (Hi, H′i ). And within each vertex set H′i replace each vertex
set P′i with Q′i, Q′j with P′j+1 and Q′n+r with P′1, where i = 1, . . . , n + r and
j = 1, . . . , n + r− 1, see Figure 5.9.

As Figure 5.9 suggests, as many edges as possible will be added between K1

and M′1, K′1 and M1, Mi and A′i, M′i and Ai, Aj and M′j+1, A′j and Mj+1, An+r

and K′2, A′n+r and K2, M1 and Q′1, and Mn+r and P′1 under the condition
that an added edge e will have a length l(e) ≤ n + 4 given the current
arrangement.

For each literal v ∈ Pj ∪ Qj, connect with it its corresponding literal v′ ∈
P′j+1 ∪ Q′j+1 and connect v′ with its corresponding literal v′′ ∈ Pj+1 ∪ Qj+1,
as shown in Figure 5.10, where j = 1, . . . , n + r− 1.

Let us consider instance U in its current form. Recall that in a valid solution
of U there is no edge e with a length l(e) > n + 4. Note that every vertex
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not in (K1, K′1) or (K2, K′2) is part of a connected component adjacent to both
(K1, K′1) and (K2, K′2). Hence, in a valid solution of U, (K1, K′1) and (K2, K′2)
must be arranged at the outer ends. Without loss of generality, we can say
that (K1, K′1) will be placed all the way to the left and (K2, K′2) all the way
to the right.

Because of the edges that were added in our construction, see Figure 5.9,
and the fact that (K1, K′1) and (K2, K′2) will be arranged at the outer ends,
the subgraphs

(
M1, M′1

)
,
(

A1, A′1
)

,
(

M2, M′2
)

, . . . ,
(

An+r−1, A′n+r−1
)

,
(

Mn+r, M′n+r
)

will stretch out leaving exactly n points of “free space” around them (this
free space will be occupied by the vertices of Pi, Qi, P′i and Q′i). This
means that each subgraph (Hi, H′i ) in U already has Property (a), with
i = 1, . . . , n + r. The edges that were added in Figure 5.6 restrict each
subgraph (Hi, H′i ) in U to have Property (b) and the property that vertices
that were added in Pi ∪Qi will stay in Pi ∪Qi in a valid solution of U.

Furthermore, the edges added in Figure 5.10 force each partition of literals
from Pi ∪Qi over Pi and Qi to be the same for all subgraphs (Hi, H′i ). Note
that the precise arrangement of literals within Pi and Qi doesn’t have to
be the same for all subgraphs (Hi, H′i ). For i = 1, . . . , n − 1, due to the
choice h = 3, a literal from Hi can move at most 1 position forward in Hi+1.
And for i = n, . . . , n + r − 1, where h = 2, a literal from Hi can move
at most 2 positions forward in Hi+1. This freedom will be necessary to
enforce the last two properties. However, our construction will assure that
the arrangement of literals within P′j+1 will be the same as within Pj+1 and
the arrangement within Q′j+1 the same as within Qj, j = 1, . . . , n + r− 1.

To enforce Property (c), for each i = 1, . . . , n, an edge is added between
literal vi ∈ Pi ∪Qi and a′1 ∈ A′i, and between literal v̄i ∈ Pi ∪Qi and a′1 ∈ A′i
(in every subgraph (Hi, H′i )). An illustration of these edges can be found
in Figure 5.11. In a valid solution of U, the literal {vi, v̄i} ∩ Pi will be po-
sitioned all the way to the right within Pi. When both vi and v̄i would be
in Pi, one of the edges would have a length of at least n + 5 which is not
allowed.

Finally, for Property (d), edges will be added such that each clause of S will
evaluate to TRUE under the assignment as defined in Property (d). To this
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Figure 5.12: Edges added to U, where i = 1, . . . , r

end, add an edge for each literal in clause Fi, i = 1, . . . , r, as follows: if
the literal is a Boolean variable xj, add an edge between vj ∈ Pn+i ∪ Qn+i

and a′1 ∈ A′n+i and if the literal is a negation of a Boolean variable xj, add
an edge between v̄j ∈ Pn+i ∪ Qn+i and a′1 ∈ A′n+i, where j ∈ {1, . . . , n}.
Note that for each subgraph (Hi, H′i ), exactly three edges are being added,
as shown in Figure 5.12.

To see that this construction works, consider for example clause Fj = x1 ∨
x̄2 ∨ x̄3 for a fixed j. The only assignment possible to evaluate this clause
to FALSE is x1 = FALSE, x2 = TRUE and x3 = TRUE. This translates to
a solution of U where v1, v̄2 and v̄3 are in Pi, for all i = 1, . . . , n + r. But
because in (Hn+j, H′n+j) all these vertices are connected to a′1 ∈ A′n+j, one
of these edges must have a length of n + 5 concluding that this solution of
U is not a valid solution.

The construction ensures that a valid solution of U implies a valid solution
of S, by Property (d). Hence it remains to show that for a valid solution
of S, a valid solution of U exists. Lets start with the same arrangement of
vertices within U as at the end of the construction of U. Partition all literals
of Pi ∪ Qi in such a way over Pi and Qi that vi ∈ Qi iff xi = TRUE and not
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both vi and v̄i are in Pi, and move each v ∈ Pi that is connected with a1 ∈ A′i
to the right within Pi, for i = 1, . . . , n + r. Now it is relatively easy to find
an arrangement where all edges e have a length l(e) ≤ n + 4 by arranging
the literals of Pi in such a way that the corresponding literals that were
moved to the right in Pi+1 have a maximum distance of 2n + 8, where i =
1, . . . , n + r − 1. This is always possible because of the freedom that was
decribed when adding the edges of Figure 5.10. Finally arrange the literals
within P′j+1 the same way as within Pj+1 and arrange the literals within
Q′j+1 and Qj+1 the same way as within Q1, where j = 1, . . . , n + r− 1. This
results in a valid solution of U.

What remains to show is that the whole construction can be carried out in
polynomial time. For an instance S of 3-SAT with n Boolean variables and
r clauses an instance U of the UBMP is created with (4n + 12) r + 4n2 +

18n + 20 vertices and (8n + 31) r + 12n2 + 67n + 70 edges. It is clear that
this can be done in polynomial time.

5.4.1 Other bandwidth definitions

Until now only the UBMP with a bandwidth defined as max (b`, bu) was
considered. This section investigates the consequences of using other defi-
nitions for the bandwidth on the NP-hardness of the UBMP, namely b`+ bu,
b`+ bu + 1 and b`+ bu +min(b`, bu). Clearly the UBMP remains in NP with
these definitions of the bandwidth. In what follows, it will be shown that
these definitions do not change the NP-hardness of the UBMP.

First, let us consider the case where the bandwidth is defined as b = b`+ bu.
An instance U2 of the UBMP can be created in the same way as in Theo-
rem 5.4. To differentiate between the lower bandwidth and the upper band-
width, replace all edges with arcs pointing downwards. Without loss of
generality we can say that the lower bandwidth b` is the maximum length
of all arcs pointing left and the upper bandwidth bu is the maximum length
of all arcs pointing right. Naturally we search for an arrangement of the
vertices where b = b` + bu ≤ 2 (n + 4) = 2n + 8. In a valid solution of
U2 where b` ≤ n + 4 and bu ≤ n + 4, we have a solution that would also
be valid for U. This means that all properties described in Theorem 5.4 re-
main true and a valid solution of S can be easily constructed from a valid
solution of U2 and vice versa.
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Figure 5.13: Shifted subgraph (K1, K′1), where c ∈ {1, . . . , n + 4}

However, we also might end up with a solution where b` ≤ n + 4− c and
bu ≤ n + 4 + c, with c ∈ {−n− 4, . . . , n + 4} \ {0}. The only arrangement
for subgraph (K1, K′1) that is possible for such a solution is an arrangement
where all the vertices of K1 and K′1 are next to each other and where the
vertices of K′1 are relatively positioned c positions to the right of the vertices
of K1, as in Figure 5.13. Note that under the current conditions, it is still
impossible for an arc to start from a different side of (K1, K′1) than where
it ends. And because every vertex in U2 not in (K1, K′1) or (K2, K′2) is part
of a connected component adjacent to both (K1, K′1) and (K2, K′2), it follows
that in a valid solution of U2, (K1, K′1) and (K2, K′2) must be arranged at the
outer ends. This implies that b` ≤ n + 4 and bu ≤ n + 4 and we are done.

For the case where the bandwidth is defined as b = b` + bu + 1, note that
this is exactly the same as the previous case when we search for an arrange-
ment of the vertices where b = b` + bu + 1 ≤ 2 (n + 4) + 1 = 2n + 9.

Finally, there is the case where the bandwidth is defined as b = b` + bu +

min(b`, bu), also called the total bandwidth by Reid and Scott (2006). An in-
stance U3 of the UBMP can be created as in Theorem 5.4. Now we would
search for an arrangement of the vertices where b = b` + bu +min(b`, bu) ≤
3 (n + 4) = 3n + 12. The argument used before doesn’t hold in this case be-
cause a solution where b` ≤ 0 and bu ≤ 3n + 12 would also be valid under
this bandwidth definition and then it is possible for an arc to “jump over”
(K1, K′1). Even more, the vertices of K1 and K′1 are not forced to be next to
each other anymore. This means that the construction of Theorem 5.4 is not
valid for this bandwidth definition directly.

Analyzing this bandwidth definition a bit more, one can see that this defi-
nition is actually a trade-off between minimizing b` + bu, which minimizes

44



Bandwidth reduction

the (shifted) bandwidth resulting in savings in both storage space and com-
puting time, and minimizing min(b`, bu), which forces the matrix to be as
triangular as possible resulting in a more efficient Gaussian elimination.
Because the latter minimization is a whole different problem, one could
argue that another approach would be needed to prove its NP-hardness.

However, it is still possible to prove its NP-hardness by forcing the term
min(b`, bu) to be zero. To achieve this, add n + 4 vertices w1, . . . , wn+4

and n + 4 vertices w′1, . . . , w′n+4 to U3 and search for an arrangement of the
vertices where b = b` + bu + min(b`, bu) ≤ 2 (n + 4) = 2n + 8. Because of
the subgraph (K1, K′1) we know that b`+ bu = 2n+ 8 so min(b`, bu) must be
zero. This implies that either b` or bu is equal to 2n + 8. Now it is possible
to show that the problem of U3 is equivalent to the problem of U2. Given a
valid solution of U2, add the vertices w1, . . . , wn+4 and place them all the
way to the left and add the vertices w′1, . . . , w′n+4 and place them all the
way to the right to get a valid solution of U3. Given a valid solution of
U3, remove all vertices w1, . . . , wn+4, w′1, . . . , w′n+4 to get a valid solution
of U2.

5.4.2 Small errors in original proof

While investigating the proof of the NP-completeness of the BMP by Pa-
padimitriou (1976), a few small errors were found that made it more diffi-
cult to comprehend and validate the construction. The most important will
be listed below. All important errors are on the 6th page of the article (page
268 of the journal).

In the third paragraph, an+r + 1 should be replaced with an+r and p− n−
m1 − 1 should be replaced with p− n−m1. In the fourth paragraph, mi =

4 should be mi = 3 for 1 ≤ i ≤ n and mi = 3 should be mi = 2 for
n + 1 ≤ i ≤ n + r. In the fifth paragraph, nodes n should be replaced with
nodes N. And finally, in the sixth paragraph,

{(
vi, vj

)
: |i− j| < p

}
should

be replaced with
{(

vi, vj
)

: |i− j| ≤ p
}

and p− 1 should be replaced with
p.
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5.5 Level set algorithms

Now that the NP-completeness of the UBMP has been proved, some heuris-
tics to reduce the bandwidth of an instance of the UBMP will be inves-
tigated. Since most available literature covers the BMP, first some of the
heuristics that are available for the BMP are considered.

A popular class of algorithms for the BMP is the class of level set algorithms.
They operate on the graph representation of the BMP. For clarity, let us
restate the symmetric graph bandwidth minimization problem: given a
graph G = (V, E), a bijective labeling p : V → {1, . . . , n} should be found
that minimizes max {|p(i)− p(j)| : (i, j) ∈ E}.

The main idea of the level set algorithms is to partition the vertices V
over level sets V1, . . . , Vm such that the cardinality of the level set with
the largest cardinality is as small as possible and adjacent vertices are in
the same or in consecutive level sets. Finally a labeling will be constructed
by labeling all vertices within a level set in order of increasing degree and
giving a larger label to vertices in a higher level set.

5.5.1 Cuthill-McKee algorithm

The first implementation of a level set algorithm was due to Cuthill and Mc-
Kee (1969). The Cuthill-McKee algorithm is basically a breadth first search
(BFS) where the neighbors of a vertex are visited in order of increasing de-
gree. The order of visits determines a labeling that results in a relatively
small bandwidth.

Algorithm 5.1 The Cuthill-McKee algorithm for the BMP

Input: A graph G = (V, E) and a starting vertex v ∈ V
Output: A bijective labeling p : V → {1, . . . , n}

1 level sets {V1, . . . , Vm} ← BFS(G, v) // Algorithm 5.2
2 i← 1
3 for j← 1 to m do
4 foreach vertex v in Vj do // in order of occurrence
5 p(v)← i
6 i← i + 1
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Algorithm 5.2 BFS (breadth first search) algorithm

Input: A graph G = (V, E) and a starting vertex v ∈ V
Output: Level sets {V1, . . . , Vm}

1 i← 1
2 set v as visited
3 level set Vi ← v
4 add v to queue Q
5 while Q is not empty do
6 while Q is not empty do
7 v← first element of Q
8 remove first element of Q
9 if v ∈ Vi+1 then

10 i← i + 1

11 foreach neighbor v′ of v do // in order of increasing degree
12 if v′ has not yet been visited then
13 set v′ as visited
14 add v′ to Vi+1
15 add v′ to Q

16 if V contains unvisited vertices then
17 v′ ← any unvisited vertex of V
18 set v′ as visited
19 Vi+1 ← v′

20 add v to Q

Because the algorithm visits all vertices and edges at most twice, it runs in
O(|V|+ |E|) time. Applying the Cuthill-McKee algorithm to a symmetric
matrix returns an labeling (ordering) as in Figure 5.14. The vertices are
ordered by increasing label. The extended (red) lines in the figure separate
the vertices of different level sets. In this case, the starting vertex is the
vertex corresponding to row/column 4. The choice of the starting vertex
is important for the quality of the resulting ordering. Note that a starting
vertex may not result in a unique labeling because different neighbors of a
vertex may have the same degree.

The Cuthill-McKee algorithm works because the matrix is divided in blocks
defined by the level sets. Because every edge is either between vertices
within the same level set or between vertices in two consecutive level sets,
the only nonzero elements of the matrix will be in the diagonal blocks and
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Figure 5.14: Applying Cuthill-McKee algorithm to a symmetric matrix

in the blocks next to the diagonal blocks. All other blocks will not contain
nonzero elements. As a consequence, it is better for the bandwidth to have
small level sets returned by the BFS.

A natural question is how to apply the Cuthill-McKee algorithm to the
UBMP. The similarity of the graph representations of the BMP and the
UBMP (see Figures 5.2 and 5.4) suggests the following method: given a
graph G = (V, E) with V = L ∪ I corresponding to an instance of the
UBMP, the instance will be made “symmetric”. First add a minimum num-
ber of vertices to V such that |L| = |I|. Let L = {`1, . . . , `n} and I =

{i1, . . . , in}. Now construct a graph G′ = (V ′, E′) such that |V ′| = |L|. Let
V ′ = {v′1, . . . , v′n}. Add an edge

(
v′j, v′k

)
to E′ if and only if

(
`j, ik

)
∈ E or(

`k, ij
)
∈ E for all j, k ∈ {1, . . . , n}. The Cuthill-McKee algorithm can now

be applied to graph G′ and the resulting labeling can be used for both the
row vertices L and column vertices I.

In term of matrices, consider a matrix A = [a`i] where A ∈ Rm×n, ` ∈
{1, . . . , m} and i ∈ {1, . . . , n}. Now add a minimum number of rows or
columns to obtain a square matrix Ã. Then change a minimum number
of “zero elements” of Ã into “nonzero elements” such that the structure of
zero and nonzero elements will be symmetric, for example A′ = Ã + ÃT.
Finally the Cuthill-McKee algorithm can be performed on matrix A′ and
the resulting ordering can be used for both the rows and columns of A in
an obvious way.

In fact, this exact method has been used by both Esposito et al. (1998b)
and Reid and Scott (2006) to apply respectively the RCM and WBRA al-
gorithms to unsymmetric matrices. However, this method has two main

48



Bandwidth reduction

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

(a) Original

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(b) Graph representation

1

2 3

4

5

6

7

8

9

10

1 2

3 45

6

7

8

9 10

(c) Level sets after BFS

10

8

6

2

3

1

4

9

7

5

8 6 9 5 3 10 4 7 1 2

(d) Final permutation

Figure 5.15: Applying Cuthill-McKee algorithm to an unsymmetric matrix

drawbacks. Firstly, because of fill-in more elements of the matrix are con-
sidered as nonzero elements than necessary. This is especially true for
(structurally) highly unsymmetric matrices. Secondly, this method does
not exploit the extra freedom of using two different permutations for the
rows and columns, as shown in Figure 5.5. Note that the first drawback
can be partially overcome by prearranging the rows and columns of the
matrix such that it will be as structurally symmetric as possible.

Another option is to apply the algorithm to the (symmetric) matrix instance
A′ = ÃÃT. This method has also been proposed by Esposito et al. (1998b)
and Reid and Scott (2006), but suffers from the same drawbacks as the pre-
vious method.

A more direct method is preferable. This thesis will concentrate on algo-
rithms focused on the bipartite graph representation of the UBMP. Actually,
Reid and Scott (2006) also proposed this method and applying the Cuthill-
McKee algorithm to the bipartite graph (see Algorithm 5.3) gives rather
good results.

Because the input of the algorithm is a bipartite graph, for each level set
Vj computed by Algorithm 5.3 it holds that either Vj ⊆ L or Vj ⊆ I with
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Algorithm 5.3 The Cuthill-McKee algorithm for the UBMP

Input: A bipartite graph G = (V, E) with V = L ∪ I and
a starting vertex v ∈ V

Output: The bijective labelings pL(v) : L→ {1, . . . , m} and
pI(v) : I → {1, . . . , n}

1 level sets
{

V1, . . . , Vq
}
← BFS(G, v) // Algorithm 5.2

2 labelings {pL, pI} ← Numbering(
{

V1, . . . , Vq
}
) // Algorithm 5.4

Algorithm 5.4 Numbering algorithm for the UBMP

Input: Level sets
{

V1, . . . , Vq
}

Output: The bijective labelings pL(v) : L→ {1, . . . , m} and
pI(v) : I → {1, . . . , n}

1 iL ← 1
2 iI ← 1
3 for j← 1 to q do
4 foreach vertex v in Vj do // in order of occurence
5 if v ∈ L then
6 pL(v)← iL
7 iL ← iL + 1

8 else
9 pI(v)← iI

10 iI ← iI + 1

j = 1, . . . , q. Figure 5.15 clearly illustrates this with an example. Fig-
ure 5.15b shows the bipartite graph representation of the matrix in Fig-
ure 5.15a. The vertices corresponding to the rows and columns are rep-
resented as squares and circles respectively. The level sets obtained from
the breadth first search starting from row vertex 10 can be found in Fig-
ure 5.15c. Each horizontal line of vertices represents a different level set
starting from V1 = {row 10} above. Finally, Figure 5.15d shows the result-
ing permutation of the matrix.

Numerical results of applying this algorithm to a set of test problems can
be found in Section 5.7.
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5.5.2 COBRA algorithm

Applying the Cuthill-McKee algorithm to the bipartite graph representa-
tion of the UBMP has several disadvantages. For example the resulting
ordering is very sensitive to the chosen starting vertex and the level sets
can still be improved. We developed an algorithm to overcome these dis-
advantages, the Chain Ordering Bandwidth Reduction Algorithm (COBRA).

The main improvement is a heuristic that is applied to the level sets ob-
tained from the BFS, the so-called PushUp heuristic. This heuristic has
been previously described by Esposito et al. (1998a) for the BMP. Here we
present a modified version for the UBMP. Let us define a level structure as
a set of level sets. For example, the output of the BFS is a level structure.
Now let the width of a level structure be the cardinality of its largest level
set. As we may hope, a level structure of smaller width usually results in
orderings of smaller bandwidth.

Let q be the number of level sets in a level structure. The PushUp heuristic
for the UBMP tries to move a vertex v ∈ Vj+2 two level sets up in the level
structure to level set Vj, where j ∈ {1, . . . , q− 2}, under two conditions.
Firstly, the maximum cardinality of the two level sets must decrease, i.e.∣∣Vj+2

∣∣− ∣∣Vj
∣∣ > 1. Secondly, the neighbors of v must remain in adjacent level

sets, i.e. v′ /∈ Vj+3 for all (v, v′) ∈ E. The heuristic will keep moving vertices
until no vertex can be moved anymore under the mentioned conditions.

Let d be the maximum degree of the vertices in V. Then the PushUp heuris-
tic runs in O(qd |V|) time. An example of using the PushUp heuristic can
be found in Figure 5.16. Both row vertex 2 and column vertex 3 are pushed
up. The width of the level structure decreases by 1 and in this case, the
bandwidth of the matrix after permuting decreases from 4 to 3.

To overcome the problem of the sensitivity of the starting vertex on the
resulting bandwidth, an inelaborate method has been used. Numerical
experimentation revealed that applying the Cuthill-McKee algorithm with
PushUp heuristic multiple times works rather good when the starting ver-
tices are chosen randomly each time. The smallest obtained bandwidth
rapidly approaches the smallest bandwidth possible using the Cuthill-McKee
algorithm with PushUp heuristic. Therefore, for the COBRA algorithm just
applies the Cuthill-McKee algorithm with PushUp heuristic a fixed num-
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Figure 5.16: Applying the PushUp heuristic

ber of times t and returns the labeling with the best bandwidth, as shown
in Algorithm 5.5. The whole algorithm runs in O(qdt |V|+ t |E|) time.

Numerical results of applying the COBRA algorithm to a set of test prob-
lems can be found in Section 5.7.

5.6 Metaheuristics

Besides level set algorithms, metaheuristics also became popular for the BMP
recently. In this section two metaheuristics will be applied to instances of
the UBMP: hill climbing in Subsection 5.6.1, and simulated annealing in
Subsection 5.6.2.

The class of metaheuristics is a class of general purpose local search algo-
rithms particularly useful for combinatorial optimization problems with a
large set of feasible solutions. They work by iteratively trying to change
a feasible solution s ∈ S of a problem to minimize an evaluation function
f (s) : S → R, where S is the set of all feasible solutions. To find an ad-
justment a neighbor function n(s) : S → Sr is used that generates r different
feasible solutions, the neighbors, that are usually obtained by changing s
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Algorithm 5.5 The COBRA algorithm for the UBMP

Input: A bipartite graph G = (V, E) with V = L ∪ I and
a number of trials t

Output: The bijective labelings pL(v) : L→ {1, . . . , m} and
pI(v) : I → {1, . . . , n}

1 integer b← m + n // The variable holding the smallest bandwidth
2 labelings {pL, pI} // The labeling with the smallest bandwidth
3 for j← 1 to t do
4 vertex v← Random(V) // v is a random vertex
5 level sets

{
V1, . . . , Vq

}
← BFS(G, v) // Algorithm 5.2

6
{

V1, . . . , Vq
}
← PushUp(

{
V1, . . . , Vq

}
) // The PushUp heuristic

7 labelings {p′L, p′I} ← Numbering(
{

V1, . . . , Vq
}
) // Algorithm 5.4

8 if Bandwidth({p′L, p′I}) < b then
9 b← Bandwidth({p′L, p′I})

10 {pL, pI} ← {p′L, p′I}

in some way. In this thesis, the neighbor function will always return one
neighbor, so r = 1.

Given the set of neighbors, the heuristic will pick one of them and accepts
the neighbor given some criteria. If the neighbor is accepted, it will be used
as feasible solution s for the next iteration. The final goal is to minimize
f (s).

Both the neighbor function and the acceptance criteria have a big influence
on the effectiveness of the metaheuristic. Numerical results of the men-
tioned metaheuristics can be found in Section 5.7.

The initial feasible solution that is used in this section is the matrix s =

A = [a`i] ∈ Rm×n where ` ∈ {1, . . . , m} and i ∈ {1, . . . , n}. The set of all
feasible solutions S will be all matrices that can be obtained by permuting
the rows and columns of A. The neighbor function n(s) works by either
swapping two rows or two columns of s. These rows and columns are cho-
sen in a special way. Recall that for the UBMP we consider max (b`, bu)

as the bandwidth definition, i.e. let b(s) = max (|`− i| : a`i 6= 0) be the
current bandwidth of a solution s. Call an element a`i of s critical when
|`− i| = b(s). Let C(s) = {a`i : |`− i| = b(s)} be the set of all critical ele-
ments in s. Now the rows or columns to swap are chosen in such a way that
it always swaps at least one critical element c = a`i and for this critical ele-
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ment it holds that |`− i| ≤ b(s) where ` and i are the indices of c after the
swap. Note that only the critical element c will not increase the bandwidth,
all other swapped nonzero elements may increase the bandwidth.

And finally, the evaluation function used in this section is

f (s) = b(s) +
|C(s)|
m + n

.

The motivation for this evaluation function is that the heuristic tries to min-
imize the bandwidth b(s), but also tries to minimize the number of critical
elements |C(s)| when the bandwidth stays the same. Note that |C(s)| is
always smaller than m + n.

5.6.1 Hill climbing

Probably the simplest metaheuristic is called hill climbing. It only accepts
a neighbor s′ when s′ is better than the current solution s, i.e. f (s′) <

f (s). While the name suggests that it should be used for maximization,
hill climbing can also be used for minimization problems by searching for
a maximal − f (s).

Hill climbing is good at finding a local optimum. A local optimum is a so-
lution for which no improving neighbor exists. However, a local optimum
may still be far from the global optimum sopt, the best solution possible, i.e.
f (sopt) = min( f (s) : s ∈ S).

5.6.2 Simulated annealing

Because hill climbing can easily get stuck in a local optimum, several meta-
heuristics have been developed that are able to escape from local optima.
One of these metaheuristics is simulated annealing. Simulated annealing was
independently described by Kirkpatrick et al. (1983) and by Cerný (1985).

The name of the algorithm comes from the process of annealing in metal-
lurgy and material science. Annealing is used to change several properties
of a material by heating a material and then slowly let it cool down. The
goal of annealing is to decrease the internal energy of the material. It works
because the atoms of the material get diffused because of the heat. Then the

54



Bandwidth reduction

slow cooling of the material lets the atoms find locations such that the in-
ternal energy of the material becomes smaller.

A similar process is used in simulated annealing to decrease the evaluation
function f (s), see Algorithm 5.6. In the algorithm, the function Random()

returns a random value r ∈ [0, 1].

Algorithm 5.6 Simulated annealing

Input: An initial solution s, a number of steps t, the temperatures Tstart
and Tstop and a cooling schedule T(Tstart, Tstop, i, t)

Output: A final solution sbest

1 solution sbest ← s // The best solution
2 for i← 1 to t do
3 neighbor s′ ← n(s)
4 if f (s′) < f (s) then
5 s← s′

6 else
7 temperature T ← T(Tstart, Tstop, i, t)
8 if T 6= 0 and Random() < e( f (s)− f (s′))/T then
9 s← s′

10 if f (s) < f (sbest) then
11 sbest ← s

Different cooling schedules are possible. For this thesis three different cool-
ing schedules are implemented: Tlinear, Tslow and Tfast. Tlinear is just a linear
cooling schedule, Tslow starts slowly in the beginning and cools down faster
and faster and Tfast cools fast in the beginning and slows down at the end.
To achieve these properties, we defined the cooling schedules as

Tlinear(Tstart, Tstop, i, t) = Tstart +
i
t
(
Tstop − Tstart

)
Tslow(Tstart, Tstop, i, t) = Tstart +

(
1− e−5)−1

(
e−5i/t − e−5

) (
Tstop − Tstart

)
Tfast(Tstart, Tstop, i, t) = Tstart +

(
1− e−5)−1

(
e−5+5i/t − e−5

) (
Tstop − Tstart

)
as shown in Figure 5.17.

The probability that a neighbor that is worse than the current solution will
be accepted is e( f (s)− f (s′))/T. Usually Tstop is zero. As f (s)− f (s′) is usually
minus one in our application, we need to find a Tstart such that e−1/Tstart is
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Figure 5.17: Different cooling schedules

big enough to accept a large fraction of worse neighbors in the beginning.
Numerical experimentation revealed that Tstart = 10 is a good value and
e−1/10 ≈ 0.90484.

5.7 Computational results

In this section some numerical results of running the algorithms from Sec-
tions 5.5 and 5.6 on a set of test problems will be presented. Each test prob-
lem consists of a matrix that is either computer generated (they start with
the letter m) or emerged from a real engineering or industrial application.
The latter are available through the University of Florida Sparse Matrix
Collection, see Davis and Hu, and were also used by Reid and Scott (2006).

Table 5.1 shows some of the main characteristics of the matrices. The den-
sity is the number of nonzero elements divided by the total number of el-
ements and the symmetry is the number of off-diagonal nonzero elements
a`i where ai` is also nonzero divided by the total number of off-diagonal
nonzero elements. Matrix m200 is a randomly generated 200×200 matrix
and m200s is the symmetric version of m200 by mirroring its upper triangle
into its lower triangle. Matrix m500b80 has been created by randomly fill-
ing approximately half of the entries of a 500×500 matrix within a distance
of 80 from the main diagonal. After that, the matrix has been randomly
shuffled. Matrix m1000 has also been randomly generated, and m1000s is its
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Name Size Density Symmetry Bandwidth
m200 200×200 0.0133 0.0151 191
m200s 200×200 0.0126 1.0000 191
m500b80 500×500 0.1477 0.1521 499
m1000 1000×1000 0.0099 0.0085 986
m1000s 1000×1000 0.0100 1.0000 984
bayer03 6747×6747 0.0012 0.0031 6746
circuit_3 12127×12127 0.0003 0.7701 12077
extr1 2837×2837 0.0014 0.0042 2836
hydr1 5308×5308 0.0008 0.0041 5307
impcol_d 425×425 0.0074 0.0567 406
jan99jac020sc 6774×6774 0.0008 0.0038 6528
poli_large 15575×15575 0.0001 0.0035 15574
radfr1 1048×1048 0.0121 0.0537 948
rdist1 4134×4134 0.0055 0.0588 3934
sinc15 11532×11532 0.0043 0.0138 10937
Zhao2 33861×33861 0.0001 0.9225 32907

Table 5.1: Characteristics of test matrices

symmetric version. For more details about the other matrices we refer to
Davis and Hu.

Running the metaheuristics on the test problems resulted in the bandwidths
listed in Table 5.2. To take the randomness of the metaheuristics into ac-
count, for each combination of algorithm and matrix, both the average
bandwidth (Bw) and the average required cpu time (Cpu) of 50 runs are
listed. A (recent) computer has been used with an Intel Core i7 870 CPU @
2.93GHz processor and 4.00 GB of RAM. Note that the cpu time is specific
to this computer and implementation and is only listed to give an indica-
tion of the running time.

For both the hill climbing and simulated annealing the same way of de-
termining the number of steps has been used. It was chosen based on nu-
merical experimentation to find a good balance between running time and
effectiveness. The number of steps was equal to 100 000 000 divided by
the number of rows of the matrix. For the simulated annealing, the start-
ing temperature was 10 and the stopping temperature was 0. The first run
of simulated annealing used Tslow as cooling schedule and the second run
used Tfast as cooling schedule.
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Name
Hill climbing Sim. ann. Tslow Sim. ann. Tfast

Bw Cpu Bw Cpu Bw Cpu
m200 52.1 2.023 37.3 2.201 43.3 2.111
m200s 50.3 2.000 33.4 2.191 39.0 2.109
m500b80 205.2 2.541 160.0 2.553 142.8 2.584
m1000 546.2 1.619 536.7 1.648 535.4 1.638
m1000s 547.4 1.619 539.1 1.650 538.2 1.637
bayer03 4191.8 3.540 3795.8 3.642 3798.8 3.635
circuit_3 5654.9 4.749 5429.1 4.932 5431.2 4.940
extr1 1133.6 1.875 942.3 1.955 943.5 1.954
hydr1 2915.1 3.543 2565.2 3.731 2567.2 3.723
impcol_d 92.7 1.934 44.5 2.057 52.6 2.103
jan99jac020sc 2364.2 3.745 2127.0 3.843 2126.4 3.836
poli_large 6240.9 5.335 5310.4 5.464 5315.6 5.460
radfr1 96.0 1.830 56.7 1.894 69.3 1.907
rdist1 1088.7 3.070 800.9 3.164 788.0 3.145
sinc15 5093.2 4.447 5071.9 4.693 5064.5 4.698
Zhao2 30369.9 10.650 29562.1 10.856 29565.7 10.849

Table 5.2: Results of metaheuristics (cpu is in seconds)

On average, the simulated annealing algorithms performed better than hill
climbing for all matrices. For simulated annealing, the cooling schedule
Tslow seems to perform similar to Tfast. However, for matrices with a small
resulting bandwidth, Tslow seems to perform a bit better.

Applying the level set algorithms Cuthill-McKee, COBRA and COBRA
with simulated annealing as post processing step resulted in the band-
widths as shown in Table 5.3. Again, for each combination of algorithm
and matrix both the average bandwidth and the average cpu time of 50
runs on the same computer are listed.

Before running the Cuthill-McKee algorithm, the rows and columns of the
matrix were sorted by increasing number of nonzero elements. A conse-
quence of this preordering is that for each component of the graph repre-
sentation, the algorithm will choose the starting vertex with the smallest
nonzero degree. The COBRA algorithm was run with parameter t = 10,
so ten different starting nodes were tried for each matrix. For the post pro-
cessing with simulated annealing, Tslow was used as cooling schedule.

In general, the Cuthill-McKee algorithm performed better than simulated
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Name
Cuthill-McKee COBRA COBRA + SA

Bw Cpu Bw Cpu Bw Cpu
m200 62.8 0.001 49.1 0.004 34.4 2.163
m200s 50.9 0.001 40.9 0.002 29.9 2.110
m500b80 236.0 0.009 128.0 0.052 82.6 2.584
m1000 677.5 0.009 664.8 0.085 559.0 1.752
m1000s 677.2 0.007 664.6 0.086 559.1 1.751
bayer03 302.0 0.300 219.3 3.472 194.0 6.427
circuit_3 6061.1 0.949 2939.2 13.511 2881.4 17.919
extr1 67.0 0.055 59.6 0.610 50.2 2.994
hydr1 153.8 0.185 109.5 2.171 97.3 4.990
impcol_d 66.6 0.001 45.0 0.017 31.4 1.819
jan99jac020sc 1746.5 0.299 1304.2 4.088 1222.4 6.814
poli_large 6092.6 1.539 3853.3 20.299 2925.4 26.344
radfr1 72.6 0.011 51.5 0.091 29.0 1.746
rdist1 144.2 0.123 116.5 1.316 70.3 3.165
sinc15 4462.5 0.934 3294.5 12.324 3164.0 15.996
Zhao2 820.1 7.236 539.9 83.539 538.8 95.637

Table 5.3: Results of level set algorithms (cpu is in seconds)

annealing for large matrices with a large number of nonzero elements. Oth-
erwise, simulated annealing performed better. However, the running time
of the Cuthill-McKee algorithm was a lot smaller than the running time of
simulated annealing. For most matrices, COBRA resulted in a big improve-
ment over the Cuthill-McKee algorithm at the cost of at least 10 times the
running time (which follows from the parameter t = 10). Especially for
larger matrices, such as Zhao2, it might be better to choose a smaller value
for t.

Finally, the simulated annealing heuristic was most of the time able to im-
prove the bandwidth even more. It may be noted that it reached a band-
width of 83 for m500b80, which is very close to its assumed optimum of
80. The smallest bandwidth of a matrix of Tables 5.2 and 5.3 is typeset in
bold. Clearly, COBRA combined with simulated annealing resulted in the
best bandwidth for most test problems. However, it also had the largest
running time.

While efficiency was kept in mind while implementing the algorithms,
there might be ways to improve the running times of the algorithms. For
instance, the matrix representation of the matrices was used as input. The

59



Bandwidth reduction

metaheuristics acted upon the matrix representation and the level set algo-
rithm first had to convert the matrix to the bipartite graph representation.
Probably some improvement in running time is achievable by using the bi-
partite graph representation as input and by letting the metaheuristics act
on this representation.

5.8 NarrowBand

All methods of this chapter have been implemented in C++ as a library. This
made it possible to quickly write programs to test the various bandwidth
reduction methods. Besides this, a graphical user interface (GUI, see Figure
5.18), called NarrowBand, has been created for this library to interactively
modify matrices and permutations, save and load results, test different
methods and algorithms and validate the results of this thesis.
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(a) NarrowBand after performing COBRA on a 20×20 matrix

(b) NarrowBand after performing simulated annealing on a 152×152 matrix

Figure 5.18: Graphical user interface
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6Conclusions

This thesis covered some graph-theoretical aspects of constraint solving in
the SST project. One important goal of SST framework is to generate a
number of different designs of a product or machine given a model in the
form of a system of equations. The algebraic form of the equations is un-
known, but the structure of the system of equations is known in the form
of a bipartite graph.

The Dulmage-Mendelsohn decomposition was used on the bipartite graph
to split the graph in an under-, over- and well-constrained part. A new
proof of the properties of this decomposition has been presented that de-
scribed the decomposition in terms of maximum matchings. Also, an in-
teractive method has been presented to generate a specific design given
a model using the Dulmage-Mendelsohn decomposition and Broyden’s
method.

Besides considering the generation of designs in the SST project, the band-
width reduction problem for unsymmetric matrices by permuting its rows
and columns has been investigated. A proof has been presented for the
NP-completeness of this problem using the bipartite graph representation
of the problem. Several heuristics have been proposed to reduce the band-
width of an unsymmetric matrix, including the level set algorithms Cuthill-
McKee and COBRA and the metaheuristics hill climbing and simulated an-
nealing.

All the methods to reduce the bandwidth of an unsymmetric matrix have
been implemented in C++, including a graphical user interface. Computa-
tional results revealed that the COBRA algorithm combined with simulated
annealing was the best way to reduce the bandwidth of most matrices con-
sidered in our numerical experiments.
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6.1 Recommendations

Regarding the generation of designs in the SST project, several problems
can be considered for further research. This thesis only investigated the
equations and real variables within the model. Further research can focus
on including inequalities and integer values into the model. That would be
useful for the SST project. It may also be worthwhile to try to find ways
to improve Broyden’s method. Further it might be interesting to see what
is possible within the SST project when the algebraic form of the system of
equations (and the inequalities) of the model is known.

As to the reduction of the bandwidth of an unsymmetric matrix, proba-
bly several improvements are possible to both the level set algorithms and
the metaheuristics in this thesis. Of particular interest would be the conse-
quences of running the metaheuristics on the bipartite graph representation
of the matrix. The possible gain in efficiency can be very useful for practical
applications.
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IOP-IPCR Project 501

This appendix provides an overview of the Smart Synthesis Tools project.
The information given in this appendix is also available on the internet:
http://www.opm.ctw.utwente.nl/research/design_engineering/Project%

20Smart%20Synthesis%20Tools.doc/index.html.

The Smart Synthesis Tools project aims to develop a next generation of
CAD-systems. These new types of synthesis based computer tools help
mechanical engineers to design solutions of higher quality in a significantly
shorter time than is currently done.

It is a joined research effort of the University of Twente (CTW, EWI) and
Delft University (3ME) together with four Dutch industries.

This project is funded by SenterNovem, an agency of the Dutch Ministry of
Economic Affairs, in the framework of the IOP-IPCR program (Innovative
Product Creation and Realization).

A.1 The partners

University of Twente (faculty CTW), contact h.tragter@utwente.nl

Technical University Delft (faculty 3ME), contact t.tomiyama@wbmt.tudelft.nl

University of Twente (faculty EWI), contact g.still@utwente.nl

Océ Technologies, Venlo

PANalytical, Almelo

Philips Domestic Appliances and Personal Care (DAPC), Drachten

Vanderlande Industries, Veghel
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A.2 General

The objective is a further development of synthesis based design tools, of
which several prototypes already have been build in Twente. Synthesis is
seen in this context as the process of creating solutions from a set of (incom-
plete) specifications of the required behavior. The solutions are completely
defined and optimal configured designs.

Experiences with the existing prototypes are very promising. They show
that it is possible to generate optimal solutions for engineering problems,
in significantly shortened time: up to ten times faster than with the current
way of creating designs.

For a designer, the biggest gain can be achieved with the selection of a
good concept. The research focuses on the development and integration of
synthesis tools into a multidisciplinary design support system that can be
applied at this concept level of design.

The tools will not, like a wishing well, invent new products, but they will
assist engineers take the right decisions early in the process. They also will
generate- and evaluate many solutions and help the engineer gain insight
in the solution space.

A.3 Approach

The project encloses four subprograms, each of which is handled by one
PhD student. The four subprograms together create the opening for future
synthesis developments.

Domain Integration (Delft, 2ME): This subprogram will handle the design
of mechatronic systems, which calls for a special kind of integration be-
tween mechanical, electronics, control systems and software design.

Structured design (Twente, CTW): For large problems, it helps to divide the
total problem into smaller functional components to allow for tuned partial
problem solving. Integrated solving on a global level has to be combined
with detailed solving of separated details. An automated sub structuring
of functions and integration of solutions is addressed in this subprogram.
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Experience based synthesis (Twente, CTW): Incorporating existing design
knowledge of experienced designers into synthesis tools will be used to
increase the speed and quality of the solution finding process. This knowl-
edge will be applied to the process of creating solution proposals, the pro-
cess of parameter reduction, interpreting analysis results and to create feed-
back for optimization.

Large solution spaces (Twente, EWI): Efficient interactive ‘navigation’ tech-
niques through high dimensional solution spaces are required in order to
find the best design. The mathematical techniques for this have to be de-
veloped.

A bottom-up approach is used, where for each industrial partner a specific
prototype tool will be developed. This ensures the generation of knowl-
edge that has a broad applicability and that will create knowledge that can
be used to build design tools for a whole range of industrial applications.

A.4 Innovation

The research has important innovations:

• The idea of a synthesis based design tool is itself a unique approach
to the phenomena design support. In a synthesis tool, the designer
can tell what he wants to achieve (by entering incomplete specifica-
tions). In a traditional tool you enter how you want to achieve it (the
solution).

• Finding solutions in large design spaces, and the ability for a designer
to navigate, and gain insight in his options for solutions is an impor-
tant innovation which reaches far outside this project.

• The combination of a controlled generate-and-test algorithm to create
solutions for design problems with a multi domain design system
(horizontal integration) is unique.

A.5 Results

Knowledge will be collected to apply synthesis support for design prob-
lems with a higher complexity than the existing prototypes. The result will

66



Smart Synthesis Tools

be threefold: there will be generic knowledge, a generic toolkit and proto-
type design systems.

The knowledge includes methods for development of synthesis tools, tool
architectures and methods to characterize design problems and solution
spaces.

With a combination of knowledge and generic software bundled in a toolkit,
new industrial applications can be developed for specific areas of design.

Prototype tools will be developed for each of the four industrial partners.
The tools applications are the design of mechatronic systems in a high vol-
ume printer, systems design of röntgen analysis equipment, cooling system
for injection moulds and the design of luggage handling systems. All sup-
port the design process in the conceptual phase. The engineer is provided
insight through the possibility to compare the many different solutions that
are available.
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To find all strongly connected components of a graph one could use Tarjan’s
Algorithm, see (Tarjan, 1972). Algorithm B.1 shows a recursive version of
Tarjan’s Algorithm. Some practical applications require a non-recursive
version of the algorithm, as shown in Algorithm B.2.

Algorithm B.1 Recursive version of Tarjan’s Algorithm

Data: A graph G := (V, E)
Result: Strongly connected components printed out

1 index← 0
2 S← ∅ // S is a stack
3 forall the v in V do
4 if v.index is undefined then
5 tarjan(v)

6 function tarjan(v)
7 v.index← index
8 v.lowlink← index
9 index← index +1

10 S.push(v)
11 forall the (v, v′) in E do
12 if v′.index is undefined then
13 tarjan(v′)
14 v.lowlink← min(v.lowlink, v′.lowlink)
15 else if v′ is in S then
16 v.lowlink← min(v.lowlink, v′.index)

17 if v.lowlink is v.index then
18 print("SCC:")
19 repeat
20 v′ ← S.pop()
21 print(v′)
22 until v′ is v
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Algorithm B.2 Non-recursive version of Tarjan’s Algorithm

Data: A graph G := (V, E)
Result: Strongly connected components printed out

1 index← 0
2 S← ∅ // S is a stack
3 to_visit← ∅ // to_visit is a stack
4 forall the v in V do
5 if v.index is undefined then
6 tarjan(v)

7 function tarjan(v)
8 to_visit.push(v)
9 while to_visit 6= ∅ do

10 v← to_visit.peek()
11 if v.index is undefined then
12 v.index← index
13 v.lowlink← index
14 index← index +1
15 S.push(v)
16 forall the (v, v′) in E do
17 if v′.index is undefined then
18 v′.parent← v
19 to_visit.push(v′)
20 else if v′ is in S then
21 v.lowlink← min(v.lowlink, v′.index)

22 else
23 to_visit.pop()
24 if v.parent is not undefined then
25 v.parent.lowlink = min(v.parent.lowlink, v.lowlink)

26 if (v.lowlink is v.index) and (v is in S) then
27 print("SCC:")
28 repeat
29 v′ ← S.pop()
30 print( v′)
31 until v′ is v
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