MASTER THESIS

THE SITUATED COGNITIVE
ENGINEERING TOOL

Wytse Jan Posthumus

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER
SCIENCE
SOFTWARE ENGINEERING GROUP

EXAMINATION COMMITTEE
Dr. Luis Ferreira Pires
Dr.Ing. Christoph Bockisch
Prof. Dr. Mark Neerincx
Dr. Jurriaan van Diggelen

DOCUMENT NUMBER
EWI/SE - 2011-005

UNIVERSITY OF TWENTE. OCT 2011






The situated Cognitive Engineering Tool

Thesis of a master project in context of the study Computer Science
at the University of Twente. This internship is performed at the
TNO institute at Soesterberg.

Author:
Wytse Jan POSTHUMUS

Study:
Computer Science

Institute:
University of Twente
TNO Soesterberg

University Supervisors:
Dr. Luis Ferreira PIRES
Dr.Ing. Christoph BOCKISCH

TNO Supervisors:
Prof. Dr. Mark NEERINCX
Dr. Jurriaan van DIGGELEN

Date:
October 16, 2011






Abstract

With the increasing complexity of systems, more effort is required of users to control
them. Engineering methods, however, do not always consider the limitations of the
psychological capabilities of users. To address these limitations, an approach to create
systems was developed in the 1980s, namely Cognitive Engineering (CE). The Cognitive
Engineering approach was developed to improve the design of systems that are oriented
at effective human-computer interaction (Hollnagel and Woods, |1983]).

To increase the knowledge base of systems which are designed in a certain domain,
TNO has developed the situated Cognitive Engineering methodology as an extension to
Cognitive Engineering (Neerincx and Lindenberg, [2008).

Currently, the sCE methodology is applied using textual documents. However, this
approach has three main limitations, namely on the areas of collaboration, soundness
and completeness and reusability.

To address the above mentioned limitations, a software tool could be used instead.
Several tools exists, but they do not meet the requirements for usage with the sCE
methodology. This thesis proposes a design for a Cognitive Engineering tool to create
requirements following the situated Cognitive Engineering Methodology.

Knowledge of requirements engineering and the sCE methodology was applied to
develop the situated Cognitive Engineering Tool (sCET) to support the developers of
joint cognitive systems. sCET was developed according to the four phases of the sCE
methodology, namely derive, specify, test and refine.

A first version of SCET has been used to further specify its requirements baseline
and to test its claims, as the methodology prescribes. This has been done by performing
an evaluation on the usage of SCET. The results of the SCET evaluation has been used
to refine the methodology and the tool. From these results, improvements for the sCE
methodology and the tool have been derived.

The results of the evaluation show that sCET addresses the limitations on the areas
of collaboration, soundness and completeness and reusability. However, users may dislike
learning a new tool if the design and usability of the user-interface are not attractive.

Currently, the prototype version of SCET tool is being used in several projects. In
the near future, this version will be used to get more experience in the use of a sCE tool.
This will give the opportunity to create a new version of SCET which incorporates all
the new ideas which have been gathered using the current version of sCET.



Preface

This thesis is written for the master project of Computer Science at the University of
Twente in the Netherlands. The project is carried out at the Perceptual and Cognitive
Systems department of TNO, located at Soesterberg.

The goal of this master project is to design a tool that supports multidisciplinary
project groups in designing complex cognitive systems. This thesis is written under
supervision of Dr. Luis Ferreira Pires, Associate Professor of the Software Engineering
group at the University of Twente.

First, I would like to thank Luis and Christoph Bockisch for supervising on behalf of
the university and Mark Neerincx and Jurriaan van Diggelen for supervising on behalf
of TNO. Their input and great ideas made this project a great success, thanks!

Second, I would like to thank my fellow roommates at TNO, especially Youssef for
encouraging me at moments when I got stuck.

Third, I would like to thank my family and friends for supporting me and to be there
when I needed some distraction from my work.

Finally, thanks to my girlfriend Ellen for supporting me throughout the process of
graduating. Throughout the process of my graduation research, she has been loving and

supportive.
October 16, 2011
Wytse Jan Posthumus

ii



Table of Contents

[Abstractl
[Prefacel
[I'able of Contentsl

[List of Figures|

[List_of Tables|
1 Introduction|
[L1 Motivationl . . . . . . . .
[1.2  Objectives| . . . . . . . .« e
[1.3 Approach| . . . . . . ..
LA Outlind . . .. ... .
2 Background|
2.1 Requirements| . . . . . . . . ... L
2.1.1 Definitionl . . . . . . . . . Lo
[2.1.2 Requirements Characteristics| . . . . . . . . . ... ... ... ...
[2.1.3  Types of Requirements|. . . . . . . . ... ... ... .. ......
I2.l| l []fig: E:l‘!:ig:fil ................................
2.2 Requirements Engineeringl . . . . . . . . .. ... 0oL
221 Definition| . . . . . . . ..
[2.2.2  Requirements Engineering Phases| . . .. ... ... ... .....
[2.2.3  Requirements Engineering Methods| . . . . . ... ... ... ...
[2.2.4  Requirements Engineering Tools| . . . .. ... ... ... .. ...
[2.2.5 Requirements Design Rationale| . . . . . . ... ... .. ... ...

[3 The situated Cognitive Engineering Methodology|

3.1  Cognitive Systems Engineering| . . . . . . . ... ... Lo
3.2 Situated Cognitive Engineeringl . . . . . . . . .. . ...
[3.2.1 Basicprinciples| . . . . . . ... oo
.22 sCE Phases . . . .. ... .. oo

iii

ii

iii

vi

vii



13.2.4 sCE Requirements and Claims| . . . . . .. ... ... .......
3.3 sCE comparison|. . . . . . . . . ..

[4 The situated Cognitive Engineering Tool (sCET)|

41 sCET Motavationl . . . . . . . . .. oo o L
4.2 sCET Design| . . . . . ... o 0

4.2.2  Specityl . . ..o
4.3 sCET Prototypel . . . . . . . .

5.1  Experiment Set-up| . . . . . . ...
5.2  Experiment Results]. . . . . . . . ... .. oo oo

6D ol
6.1 Tools Comparison| . . . . . . . .. .. ...
6.2 sCET Improvements| . . . . . . . ... ... ... ...

621 Guidancel . . . . . . ... L
6.2.2 Reporting| . . . . . . ..
6.2.3  Security| . . . . . . ...

6.2.6 Reusability] . . .. ... ... ... o
6.3 sCET Refinement|. . . . . ... ... .. .. ... ... ... . .......
6.3.1 Refined Requirements| . . . . . ... ... ... ... ........
6.3.2  Added Requirements| . . . . . . . . . ... ... L.

(Bibliography|
[A_sCET Use Cases|

(B sCET Requirements|

[C sCET Workshop Questionnaire

iv

23
23
24
24
25
30
30
30
31

34
34
36
36
37

41
41
45
45
46
46
47
47
47
48
48
50

52
52
53
54

56

59

63

69



[D sCET Questionnaire Results|

|l sCET BBCode Reference

73

74



List of Figures

[2.1 Connections among several types of requirements information (Wiegers,

2003). - . e 9
2.2  Use case diagram example (Windle and Abreol 2003)[. . . . . . . ... .. 10
2.3 Phases of requirements engineering (Wiegers| 2005). . . . . . . ... ... 12
2.4 Using the design rationale to create alternative requirements| . . . . . .. 15
13.1 The relations between artefacts of the sCE methodologyl . . . . . . . . .. 18
(3.2 The situated Cognitive Engineering process (UX = User Experience, HitL |

= Human in the Loop, Sim = Simulation) (Mioch et al.l[2010)] . . . . . . 19
A1 sCET datamodell. . . . . . . . . . . .. 31
4.2  sCET simplified page structure] . . . . . . . ... .. ... ... ...... 32
4.3 sCET requirement screen| . . . . . . . . . . ... ... ... ... 33
4.4 sCET requirement edit screen| . . . . . . . . . ... .. ... 33
[5.1 Mean scores of the questions before (1, 2, 3) and after (39, 29, 37/41) the |

workshop. Note: For the sCE learning questions only participants with |

no experience have been considered.| . . . . . . ... ..o 40
[E.1 sCET BBCode tags (1/2)] . . ... ... ... ... .. .. ... ..... 74
[E.2 sCET BBCode tags (2/2)] . . . . . . . . . 75
[E.3 sCET BBCode short tags| . . . . ... ... ... .. ... ... ...... 75

vi



List of Tables

[2.1 Characteristics of desirable requirements (Davis, [1993))| . . . . . . . . . .. 7
B.1 Usecaseformat|. . . .. ... .. . 20
[3.2  Requirement format| . . . ... ... ... ... Lo 21
EIUOCOI - - oo et e e e e e e e 26
4 ROQT] . . 26
HE37RQIZ. . .. 27
4.4 RQI3|. . o 27
E5RQA. . ... 28

[b.1 Claim 1.2 questionnaire results| . . . . . . . ... .. ... ... ...... 37
b.2  Claim 2.1 questionnaire results] . . . . . . . ... ... .. ... ... 38
b.3  Claim 3.1 questionnaire results| . . . . . . . . .. .. ... ... ...... 38
5.4 Claim 4.1 questionnaire results| . . . . . . . . . .. ... ... ... ..., 38
.5 Claim 4.2 questionnaire results| . . . . . . ... ... ... ... ... ... 38
[5.6 Claim 5.1 questionnaire results| . . . . . . . . . .. .. ... ... ... .. 39
.7 Claim 6.1 questionnaire results| . . . . . . ... ... ... ... .. .... 39
5.8 Claim 8.1 questionnaire results| . . . . . . . ... .. ... ... ...... 39
6.1 Tools Comparison. An empty cell indicates that no functionality of that |

subject 1s present. A ‘-’ indicates that limited tunctionality, ‘+’ indicates |

full functionality and °.” indicates that the functionality is not imple- |

mented 1n the prototypeyet.| . . ... .. ... ... . 44

BA ROO. - o o o oo 49
BB ROl . o o o oo e e 50
B8 RO IO . - o o oo e e 50

vii



o1
51
59
99
60

.Kmu
mwm

60
60

<G

61
61
61
62
63

2HER F
3l3lz)s
JHHE
E S

64
64
64
65

4

65

66
66
66

67
67
67
68

73

ID.1 sCET questionnaire results|

viil



Chapter 1

Introduction

The aim of this chapter is to introduce this work by giving a motivation on why this
research was performed followed, by the main objective and research questions.

This chapter is organised as follows: Section describes the motivation behind this
work, Section describes the main objective and the research questions, Section
describes the approach of this thesis and finally Section presents the outline of this
thesis.

1.1 Motivation

With the increasing complexity of systems, more effort is required of users to control
them. Engineering methods, however, do not always consider the limitations of the
psychological capabilities of users. To address these limitations, an approach to create
systems was developed in the 1980s, namely Cognitive Engineering (CE). The Cognitive
Engineering approach was developed to improve the design of systems that are oriented
at effective human-computer interaction (Hollnagel and Woods, [1983]).

To increase the knowledge base of systems which are designed in a certain domain,
TNO has developed the situated Cognitive Engineering methodology as an extension to
Cognitive Engineering (Neerincx and Lindenberg, 2008).

Situated Cognitive Engineering (sCE) focuses on the situated theory of cognition.
In this approach, relevant human factor knowledge (i.e., theories) is selected by system
designers and tailored to the specific operational demands and envisioned technologies,
which is explicated in the design rationale. This design rationale holds design decisions
for the requirements of the system. It consists of (1) use cases, which are stories about
users undertaking activities, and (2) claims, which are hypothesis with positive and
negative effects of a requirement.

Explicating the design rationale with use cases and claims results in a requirement
baseline which is created from the perspective of the user. Because each requirement is
justified by claims, it becomes apparent why the system would increase human perfor-
mance by fulfilling the requirement.



Currently, the sCE methodology is applied using textual documents. However, this
approach has three main limitations, namely on the areas of collaboration, soundness
and completeness and reusability. Each limitation is discussed below.

Collaboration. Projects which follow CE approaches are often performed by cooper-
ating interdisciplinary groups. For example, in a project where people with a background
in psychology may have to work with people from software engineering. Not all disci-
plines have the same way of thinking and they even may work on different physical
locations. To enable cooperative working, all of these groups must have a common level
of thinking. At the bare minimum level, project members should follow the same vocab-
ulary, otherwise these differences between word definitions may result in less accurate
communication.

Another problem which hinders cooperative working is version management. It is
often hard to ‘keep current’ with changes of documents. Textual documents have to be
exchanged between project members, and because it is not possible to see if users work
on the latest document, they need to be merged which can cause errors.

Soundness and Completeness. Each requirement in a requirements baseline should
be sound and complete. This means that a requirements is valid (sound) and that no
information is missing (complete). A sound and complete requirement can be achieved
when all conditions of the used methodology are met.

A sound and complete requirements baseline makes sure the design specification can
be verified. In the current situation it can become difficult to achieve a sound and
complete design specification, because textual documents do not force users to fill in
data in any specific way.

In order to create a sound and complete requirements baseline, understanding the
methodology used is necessary. Often, some project members may not be familiar with
the used methodology. This can create problems since they probably do not know how
they should apply this methodology.

Reusability. Textual documents give a huge freedom on how the data is represented.
Each project could have its own format for the requirement documents. This creates
inconsistencies when you want to compare and reuse the data in new projects.

Textual documents also have a problem that it is more difficult to keep track of old
documents. Documents from previous projects can become scattered when there is no
standard way for archiving project data.

To address the above mentioned limitations of text documents in the application of
the sCE methodology, we decided to develop a software tool. Several Cognitive Engineer-
ing tools exists, but they do not focus on requirements engineering. Several requirements
engineering tools exist as well, but these tools focus only on requirements development,
and do not consider the human factor knowledge of the Cognitive Engineering method-
ologies.



Because the current existing requirements engineering tools do not meet the re-
quirements of CE projects, a new tool had to be designed. In this tool the knowledge
of requirements engineering and Cognitive Engineering could be combined to create a
more complete Cognitive Engineering requirements tool in which human factor knowl-
edge takes a central place. This thesis proposes the design for a Cognitive Engineering
tool to engineer requirements following the situated Cognitive Engineering Methodology.

1.2 Objectives

The three limitations of using textual documents, as mentioned in Section should
be addressed in our work. Since we can achieve this by means of a tool, therefore the
main objective of this thesis is:

Improve the support of Cognitive Engineering to enable cooperative working in
multidisciplinary research projects, to stimulate soundness and completeness of the
design specification and to support the reuse of earlier work.

To achieve the main objective, we will develop a tool which supports Cognitive En-
gineering projects. During the development, the following four research questions will
be considered:

1. How can a CFE tool enable cooperative working between project members with dif-
ferent background?

The key to a successful project is that project members cooperate with each other.
However, in a multidisciplinary project this may be difficult because each person may
have different definitions for certain words. In this work the aspects which can enable
this cooperation have been studied.

2. How can a CFE tool stimulate users to create a sound and complete design specifi-
cation?

When designing a system it is important that all data is entered correctly and that
no data is missing. In this work the aspects which can stimulate entering sound and
complete data have been studied.

3. How can a CFE tool support the reuse of earlier work?
Reuse of data for old projects can save time when performing new projects. In this
work the aspects which can support the reuse of data have been studied.

4. What are potential disadvantages of using a tool for CE projects?
The effect of using a tool have been studied. From these results the tool has been
evaluated.



1.3 Approach

To answer the research questions three main steps have been taken: a background study
was performed, a tool to support the sSCE methodology has been designed and a proto-
type of this tool has been built.

A background study has been performed to get insight in the history and current state
of requirements engineering. Next, Cognitive Engineering and the situated Cognitive
Engineering methodology, which is developed by TNO, have been studied. Finally, the
key focus points of the sCE methodology was compared to requirements engineering.

The knowledge gathered in the background study have been applied to develop a tool
to support the developers of joint cognitive systems which follows the sCE methodology.
This situated Cognitive Engineering Tool (sCET) has been designed by applying the
situated Cognitive Engineering methodology to the tool. This was done according to
the four phases of the sCE methodology, namely derive, specify, test and refine.

A first version of SCET was used to further specify its requirements baseline and
to test its claims, as the methodology prescribes. This was done by performing an
evaluation on the usage of SCET.

The results of the sCET evaluation have been used to refine the methodology and
the tool. From these results, improvements for the sCE methodology and the tool have
been identified.

1.4 Outline

The remainder of this thesis is organised as follows. Chapter [2| describes the background
of this work by discussing requirements engineering. Chapter [3| describes Cognitive
Engineering and the situated Cognitive Engineering Methodology. Chapter [4] describes
how the tool has been designed. It reports on the first two phases of the sCE design
process, namely the derive and specify phases. Chapter [5| describes how sCET has been
evaluated. The chapter reports on the test phase of the sCE methodology. Chapter [0]
discusses the sCE methodology and the tool give recommendations for the tool. The
chapter reports on the final phase of the sCE methodology, namely the refine phase.
Finally, Chapter [7] gives the conclusions of this work.



Chapter 2

Background

This chapter gives background information about requirements engineering and its re-
lated methods and tools available in the literature. The purpose of this chapter is to
present our insights in the current state-of-the-art in the requirements engineering field.

This chapter is structured as follows: Section defines the concept of requirement
and Section explains requirements engineering.

2.1 Requirements

Requirements play a key role in requirements engineering, hence it is important to un-
derstand the concept of requirement.

2.1.1 Definition

In the literature, there are dozens of definitions for the term requirement. All these
definitions slightly differ from each other. These definitions mostly depend on the area
of expertise from which the definition is given. However, in general, the essence of these
definitions remain the same. For this thesis, the definition of Sommerville and Sawyer
(Sommerville and Sawyer, [1997)) is chosen, because it fits our purpose. The definition is
as follows:

“Requirements are a specification of what should be implemented. They are descriptions
of how the system should behave, or of a system property or attribute. They may be a
constraint on the development process of the system.” (Sommerville and Sawyer, (1997)

According to this definition, requirements describe what a system should do, or some
property it should possess, after implementation, which is, ideally, the result of a project
if that aims at building the system.



2.1.2 Requirements Characteristics

The definition given in the previous section is still quite general. To further refine
the definition, we give some additional characteristics to requirements. Many different
characteristics of requirements are defined in the literature. A list of generally accepted
characteristics has been described by Davis (Davis, [1993). Davis describes ten desirable
characteristics with corresponding explanation, as shown in Table

In this work, the focus has been on the two characteristics which are indicated in
bold font in Table namely verification and traceability. These characteristics were
chosen because they are of importance for the sCE methodology. Both characteristics
are explained in more detail below.

Requirements Verification

Verification was chosen because in essence it implies four other characteristics. For
example, if a requirement is incomplete, inconsistent, infeasible, or ambiguous, the re-
quirement is also unverifiable (Drabick, 1999).

The aim of requirements verification is to determine whether a product properly
implements a requirement. Several methods are proposed in the literature to carry out
verification. Davis names four methods: inspection, demonstration, test, and analysis
(Davis|, 1993)).

In this work, requirements verification plays a key role. If a requirement is not
verifiable, determining whether the requirement was correctly implemented becomes
more of an opinion, since no objective verification is possible.

Requirements Traceability

Traceability of requirements consists of documenting the life-cycle of a requirement. This
means that one should describe how the requirement propagates from the beginning of
the project to the implementation of the system.

The aim of making requirements traceable is to link the business needs and wishes
of stakeholders to each requirement. This enables the designers to create alternative
requirements if some requirements may not be feasible.

Traceability of requirements within design documents can be achieved by uniquely
labelling these requirements (Wiegers, 2003). A minimal approach to achieve traceable
requirements is to define (1) a unique identifier for the requirement, (2) a requirement
description, (3) original motivation, and (4) future design consequences.



Characteristic | Explanation

Unitary A requirement addresses one and only one aspect of

(Cohesive) the system.

Complete A requirement is fully stated in one place with no
missing information.

Consistent A requirement does not contradict any other require-

ment and is fully consistent with all authoritative
external documentation.

Non-Conjugated
(Atomic)

A requirement is atomic, i.e., it does not contain
conjunctions. E.g., “The postal code field must val-
idate American and Canadian postal codes” should
be written as two separate requirements: (1) “The
postal code field must validate American postal
codes” and (2) “The postal code field must validate
Canadian postal codes”.

Traceable

The requirement meets all or part of a business need
as stated by stakeholders and authoritatively docu-
mented.

Current

A requirement is still valid after passage of time,
otherwise it should be removed or replaced.

Feasible

It should be possible to fulfil a requirement within
the constraints of the project.

Unambiguous

A requirement is concisely stated without recourse
to technical jargon, acronyms (unless defined else-
where in the Requirements document), or other eso-
teric verbiage. It expresses objective facts, not sub-
jective opinions. It is subject to one and only one
interpretation. Vague subjects, adjectives, prepo-
sitions, verbs and subjective phrases are avoided.
Negative statements and compound statements are
prohibited.

Mandatory

A requirement represents a stakeholder-defined char-
acteristic the absence of which will result in a de-
ficiency that cannot be ameliorated. An optional
requirement is a contradiction in terms.

Verifiable

The implementation of a requirement can be deter-
mined through one of four possible methods: inspec-
tion, demonstration, test or analysis.

Table 2.1: Characteristics of desirable requirements (Davis, |1993)




2.1.3 Types of Requirements

Various types of requirements exist. Some types focus on the behaviour of a system,
whereas other requirement types focus on how the technical implementation should look
like.

For each situation a specific method for classifying requirements may be appropriate.
Classifying requirements can be useful to identify similar requirements which may focus
on the same area of the system. Classifying requirements also fosters interoperability and
reuse of requirements. Below two generally known classification methods are explained,
namely the method from Kulak (Kulak and Guiney, |2004) and the method from Wiegers
(Wiegers, |2003).

Method 1 - Kulak

The first classification method divides requirements in two types:

1. Functional requirements

Functional requirements can be directly implemented in the software of the system.
They describe functions and features of the system to be implemented. An example
of a functional requirement is: ‘The system shall store the data from users in a
database’.

2. Non-functional requirements

Non-functional requirements, on the other hand, are more ‘hidden’ requirements
which describe qualitative aspects of the system. They are hidden in the sense that,
although they are important, users may not realize their existence because they do
not directly deal with the functionality of a system. A lot of these requirements
can be expressed with -ility words, for example: scalability, accessibility, main-
tainability, testability or reliability. An example of non-functional requirement is:
‘The system should response in 20 seconds.’

This method of classification plays an important role in Software Engineering, be-
cause it separates the implementation requirements from the quality requirements. This
can be useful, because the functional requirements are mostly about functions of the
software, while non-functional requirements can be influenced by external variables as
well (e.g. hardware).

Method 2 - Wiegers

The second method for the classification of requirements divides all requirements in
three levels and two dimensions. Figure illustrates the model from Wiegers for
the relationships between the requirements. This model only covers the requirements
for products, and does not include other requirements such as staffing, scheduling, etc.
because they do not fall within the scope of this work (Wiegers| 2003).



Functional Non functional

T
I
|
1
Business 1
Requirements :
1
|
1

Vision and Scope DOCUMENt = == == == == == == —= = = e = —

User
Requirements Quality
Attributes
External
Interfaces
System Functional
Requirements Requirements

Software Requirements;
Specification

Figure 2.1: Connections among several types of requirements information (Wiegers,

2003))

In Figure the three levels are shown as horizontal rows, namely the business
requirements, user requirements and functional requirements. The columns show the
dimensions, namely functional and non-functional. Each rectangular block represents a
deliverable document, which contains the requirements information represented as ovals.

Business requirements describe the reason why the project is started. They should
include the benefits that justify the execution of the project. They are mostly used to
communicate how the business process should work. These requirements are contained
in a vision and scope document.

User requirements describe the benefits of the product from the view of the user.
They mostly incorporate what the user will be able to do, such as goals or tasks that
the user should be able to perform. User requirements can be visualized by means of
scenarios and use cases (see Section .

Functional requirements describe what the developers is supposed to build. They
are like user requirements in the sense that they describe the ‘what’ of the system.
However, these requirements are described from the system’s point of view. Most of
these requirements contain the word ‘shall’, like ‘the system shall do ...".

Figure illustrates that the lowest level also includes System requirements. These
requirements correspond to the top-level requirements of a product that contains multiple
subsystems. They can be seen as a platform or the context on which the product has to
be built.

2.1.4 Use Cases

A use case is a description of the usage of a system from one or more users’ point of
view (Windle and Abreo| [2003). These users are often denoted as actors, because they
can be either a person, a system or some part of a machine (e.g., a timer).




Each use case describes the interaction between actors and the system. The use
cases are specified using the information from scenarios. Scenarios are stories of actors

undertaking activities, which are often described using storyboards. A use case should
at least contain the following information:

1. Motivation of the use case;
2. State of the system at the start of the use case;
3. State of the system at the end of the use case;

4. Normal sequence of events describing the interaction between the actor and the
system;

5. Any alternative courses to the normal sequence of events;

6. Any system reactions to exceptions the system encounters;

Use case diagrams

Use cases can also be described using figures. One of the most well known techniques for
modelling use cases is the Unified Modelling Language (UML) use case diagrams which
allows designers to graphically represent actors and their use cases.

Project system

review
project

Create \
project
User Project manager

Add
item

Figure 2.2: Use case diagram example (Windle and Abreo, [2003)

Figure shows a simple example of a use case diagram. The sticky man on the
left side represents an actor, in this case a user, who wants to accomplish the use case,

in this case to create a project or to add an item. Multiple actors can be added to a use
case who all interact with a system.

10



2.2 Requirements Engineering

This section explains how requirements can be captured. This is important for this
study, because the main purpose of the situated Cognitive Engineering methodology is
the process of capturing requirements.

2.2.1 Definition

Requirements engineering, or requirements capturing, is the process of acquiring require-
ments. Many different definitions of requirements engineering exist in the literature. For
this work the definition of software requirements engineering from Nuseibeh and East-
erbrook (Nuseibeh and Easterbrook, 2000)) was chosen, because it matches the view of
the situated Cognitive Engineering methodology. The definition is as follows:

“The primary measure of success of a software system is the degree to which it meets
the purpose for which it was intended. Broadly speaking, software systems requirements
engineering (RE) is the process of discovering that purpose, by identifying stakeholders

and their needs, and documenting these in a form that is amenable to analysis,

communication, and subsequent implementation” (Nuseibeh and Easterbrookl, 2000)).

The definition stated above describes RE as a process in which the purpose of the
software system being considered is discovered. This purpose is the description of what
the system should do, and why it should be build, hence the intention of the system.

2.2.2 Requirements Engineering Phases

Requirements engineering can be understood by considering the two main require-
ments engineering phases, namely requirements development and requirements manage-
ment (Wiegers, 2003). While the first phase is about defining requirements, the second
phase is about managing the requirements, and their changes, during implementation.
Although both phases share similar concepts and they often overlap in time, in this
work they are treated as separate phases for simplicity. This study focuses only on the
requirements development phase, because the key point of this study is capturing the
requirements, instead of actually managing them. Therefore requirements management
is out of scope of this study.

The requirements development phase consists of four sub-phases: (1) Elicitation, (2)
Analysis, (3) Specification, and (4) Validation. Figure shows the phases of require-
ments engineering. The lower part shows the four sub-phases of requirements develop-
ment.

The order in which the requirements development phases are executed is of vital
importance to understand and implement the business needs and wishes of the users.

The FElicitation phase focuses on understanding the users and discovering their needs.
An important sub-step within this phase is the discovery of the ‘stakeholders’ related to
the software system. Identifying these stakeholders in an early stage helps construct the
use cases at a later stage.

11



Requirements Engineering

O

Requirements Development Requirements Management

‘ Elicitation l |Analysis| ‘Specification‘ | Validation ‘

L clarify J | L rewrite J
re-evaluate
correct and close gaps

Figure 2.3: Phases of requirements engineering (Wiegers|, 2005)

The Analysis phase has the main goal of clarifying the results of the elicitation phase.
The analysis sub-phase aims to derive more detailed requirements from higher-level
requirements . This sub-phase also aims at creating prototypes, graphical
analysis models and performing tests. Eventually, the analysis sub-phase provides better
understanding of the information gathered during the elicitation sub-phase.

The Specification phase aims at capturing requirements information in such a way
that it facilitates communication with various system stakeholders. Capturing require-
ments information usually means documenting them in text documents, although the
use of graphical models and tables is advisable .

The Validation phase aims at ensuring the correctness of the captured requirements
information, in such a way that these requirements satisfy the customer. In practice,
the validation sub-phase implies the modification and rewriting of the earlier defined re-
quirements. The requirements development process is an ongoing process, thus iteration
between the four sub-phases is required in order to obtain proper requirements.

2.2.3 Requirements Engineering Methods

Several requirements engineering methods have been discussed in the literature. Tsumaki
and Tamai give an overview of four requirement elicitation approaches (Tsumaki and
005).

1. Domain decomposition

The domain decomposition approach consists of decomposing the target domain
in which the system will be used, into sub-domains. Step by step the sub-domains
are decomposed until they are of a manageable size so that they can be translated
into requirements (e.g., Prieto-Diaz||1990).

12



2.

Goal-oriented

The goal-oriented approach focuses on the goals that need to be achieved by a
project, and translates them into requirements. For example, each use case could
be translated into a requirement (e.g., KAOS Lapouchnian|2005]).

. Scenario-based

The scenario-based approach focuses on the creation of scenarios and their inte-
grated set of use cases. This approach is the most relevant for this work, because
the situated Cognitive Engineering method can be placed in that category.

. Brainstorming

The brainstorming approach focuses on the creation of new products in areas where
there is not much experience. It focuses on generating new ideas and creating an
orderly system from chaos (e.g., KJ method [Takeda et al.||1993).

Besides the requirements elicitation methods described above, one could use Agile
development approaches, such as in (Beck et al.,|2001). However, these approaches focus
more on the software development process, which is out of scope for this work.

2.2.4 Requirements Engineering Tools

A requirements design specification can be represented as a textual document, however
this has some limitations when projects become complex and interrelated requirements
change often. Wiegers states the following four important difficulties (Wiegers, [1999):

Difficult to keep a textual document current, especially when requirements change
rapidly.

Difficult to communicate changes to the affected team members.
Difficult to store supplementary information about each requirement.

Difficult to define links between functional requirements and corresponding use
cases, designs, code, tests, and project tasks.

Some tools have been developed specifically to address these problems. Wiegers
states seven reasons why one should use a tool to manage requirements (Wiegers, 1999):

1.

Manage versions and changes. Tools can track the changes which are made in
the requirements specification. Keeping a history of changes makes it possible to
revert to older versions.

. Store requirements attributes. The attributes of a requirement should be

stored and open to view and edit, for every project member. Several pre-defined
attributes can be generated automatically, and custom attributes can be added for
extra information.

13



3. Link requirements to other system artefacts. Defining links between re-
quirements and other artefacts can help gain overview in the design specification.
When a change is proposed, it is possible to trace the impact of the changes on
other requirements.

4. Track Status. When using a tool it is possible to track the current status of the
project. For each requirement status information can be added. This makes it
possible to assert if the project is running on schedule.

5. View requirement subsets. Sorting, filtering and searching through the re-
quirements baseline increases the insight in the requirements specification.

6. Access control. Setting permissions for each user makes sure the right infor-
mation is shared by the right people. Remote access makes cooperation with
geographically separated group members possible.

7. Communicate with stakeholders. Communication among stakeholders is im-
portant when developing a system. With the use of tools it is possible to keep the
stakeholders up-to-date, which should reduce the risk of miscommunication.

Examples of popular requirements management tools are: Borland Caliber-RM (Bor-
land Software Corporation, [2011), IBM’s DOORS (IBM, [2011a), IBM’s Rational Req-
uisitePro (IBM, 2011b) and Sparx Systems Enterprise Architect (Sparx Systems|, 2011)).

2.2.5 Requirements Design Rationale

Requirements engineering answers the questions about ‘what’ the system should do.
With software projects though, answering the ‘why’ question is evenly important because
it opens the option to create alternative requirements when they become infeasible after
verification. Answering the ‘why’ question is formally known as explicitly documenting
the reasons behind decisions made when designing a system or artefact, hence stating
the requirements design rationale. A design rationale should be, in its simplest form:
explicitly listing the decisions made during the design process and the reasons why those
decisions were made, as stated by Jarczyk (Jarczyk et al., [1992).

To create a suitable design rationale, a requirement should at least include the fol-
lowing concepts: the reasons behind a design decision, its justification, alternatives con-
sidered, the trade-offs evaluated, and the argumentation that led to the decision (Lee,
1997).

The important aspect of a design rationale is that it opens the option to create
alternative requirements. Sometimes a requirement becomes infeasible after verification.
The design rationale can then be used to trace the requirement back to its origin. This
origin should contain the reason why the requirement was created, allowing alternative
requirements to be defined.

Figure illustrates the possible process of creating alternative requirements using
design rationale. Multiple requirements could be related to each other, making the

14



Rationale ‘why’

Requirements ‘what’

Figure 2.4: Using the design rationale to create alternative requirements

process more complicated. However, in the simplest case, the four steps in the process
could be as follows:

1. A requirement is captured.
2. Verification shows that the implementation of the requirement is infeasible.
3. The designers trace the requirement back to its design rationale.

4. An alternative requirement is defined.

In this work, the design rationale takes a prominent place, due to the focus on
system design of the situated Cognitive Engineering methodology. During system design,
justification of requirements plays a key role. Requirements which are not properly
justified raise the question whether they should be implemented at all. This reduces the
risk of implementing improper functions.

15



Chapter 3

The situated Cognitive
Engineering Methodology

This chapter describes the situated Cognitive Engineering (sCE) methodology. The
purpose of this chapter is to get insight in the sCE methodology and its relation to other
requirements engineering methods.

The outline of this chapter is as follows: Section introduces the concept of cog-
nitive systems engineering, Section discusses the sCE methodology and Section
compares the sCE methodology with other requirement engineering methods.

3.1 Cognitive Systems Engineering

When machines are introduced, they are mainly created as an extension to the humans
physical functions. They are designed to enhance the humans’ physical skills and to
compensate for their limitations. Because the function of those machines are so closely
related to the activities without them, not much effort normally goes into the design of
the human interface.

However, with the capabilities of machines growing, more and more functionality
comes into these machines making them systems that perform a process, so that the
user moves away from the production floor to the control room. Instead of controlling a
machine, the user has to control and/or monitor a process (Hollnagel and Woods, |1983)).

The machine no longer has simple actions and indicators, but becomes an information
processing system that can perform complex activities and communicate in a seemingly
intelligent way. Designing systems like these requires knowledge of the process of the
mind, because humans have certain psychological limitations. This knowledge of the
process of the mind is also known as human cognition.

To address these changes a new way of engineering was developed in the 1980s to
increase the insight in the cognitive factors of human-machine interaction. Instead of
looking at the physical limits of human performance, cognitive engineering focuses on
the user’s psychological limits.

16



The main idea of cognitive engineering is that a human-machine system needs to be
seen as a cognitive system. A human and a machine working together can be seen as a
single entity that interacts with an external environment. It is not merely a sum of its
parts (human and machine), but a system that includes the psychological sides as well
(Hollnagel and Woods), [1983)). For example, if a machine does not consider the maximal
workload of a user and it becomes too high, then the whole system may fail.

In 2005, an extended method of the cognitive engineering was proposed, namely the
CE+ method. This method adds the technology as an input to achieve a better focus in
the generation of ideas and the reciprocal effects of technology. Human factors are also
made explicit and are integrated in the development process (van Maanen et al., 2005).

In addition to the CE+ method, a method that is situated in the domain of interest
was proposed by (Neerincx and Lindenberg, [2008), namely situated Cognitive Engineer-
ing. This method uses the previously described assessments to establish a common design
knowledge base, and to develop a kind of design guide for cognitive systems. (Neerincx
and Lindenberg], 2008)).

The area of Cognitive Engineering is a very large area of expertise, and incorporates
many disciplines, like psychology, neuroscience, communication and many others. For
this work, we mainly focus on the systems engineering area.

3.2 Situated Cognitive Engineering

This section introduces the situated cognitive engineering (sCE) methodology. First the
basic principles of the methodology are given, then its four phases. Finally its main
entities are described.

3.2.1 Basic principles

The situated cognitive engineering methodology is an extension to the CE+ method.
The sCE methodology has been specifically designed to create cognitive systems that
are situated in a domain.

The sCE methodology can be used to create a sound requirements baseline for joint
cognitive systems for research and development projects, which are often multi-party
projects with distributed teams. Use cases and claims make sure the design rationale is
described properly (Neerincx and Lindenberg, [2008)).

The methodology guides a system designer through three questions, namely what,
when and why. Answering these three questions should give a solid design rationale
for the designed system. These three questions are answered through the three main
artefacts. These questions and their relations are displayed in Figure [3.1

17



Scenario Metrics

Use case Claim

(when) (why)
Contextualizes Justifies

Requirement
(what)

Figure 3.1: The relations between artefacts of the sCE methodology

3.2.2 sCE Phases

The sCE methodology consists of four phases, namely: derive, specify, test and refine.
Figure displays the elements in each of these phases, which are discussed below.

Derive

The derive phase is the starting point of the whole requirements design process. This
phase has as input operational demands, human factors knowledge and the envisioned
technology, which are all used to create the scenarios. These scenarios are used in the
specify phase. Scenarios are stories about actors undertaking activities using technologies
in a certain context. This phase can be compared to the elicitation phase as described

in Section 2.2.2

Specify

The specify phase is about capturing requirements from scenarios. The requirements
are created together with their design rationale (i.e., the use cases and claims). Each
requirement should be justified by claims and each claim should be truthful and exclusive,
otherwise they serve no purpose and should be removed. The core functions can be seen
as modules that group requirements by certain functionality. For example, in a design
project for an aeroplane, you could have a core function that defines the functionality
for the autopilot. This phase can be seen as a combination of both the analysis and
specification phase as described in Section [2.2.2]

Test

The test phase forms, together with the refine phase, an iterative process which tests
the requirements by using review, simulation and human-in-the-loop evaluations. The

18



Operational Human Factors Envisioned

Derive Demands Knowledge Technology
ffffffffff i S s T
Use Cases Claims Core Functions
conte>_<tua|ize l ljustify
organize
Specify Requirementss

,,,,,,,,,,,,,,, _A__ ,,,# ,,,,,,,,,,,*,,,,,,,,,

Prototype  |«--{Simulation

Y Y

Test Review HitL-test Sim-Assess
,,,,,,,,,, i — N —
. Y n UXx \ 4
Refine Comments | |Refine [¢ Sim Results

Figure 3.2: The situated Cognitive Engineering process (UX = User Experience, HitL
= Human in the Loop, Sim = Simulation) (Mioch et al., [2010)

results from the tests are evaluated and used to verify if the requirements meet the
claims. If some requirements do not trigger the desired effect, then they should be
refined and tested again. This phase, together with the refine phase, can be compared
to the walidation phase as described in Section [2.2.2]

Refine

The refine phase is executed after the test phase. The test results and comments from
the test phase are processed to improve the requirements and claims in order to suit the
needs of the stakeholders.

3.2.3 sCE Use Cases

Use cases are one of the artefacts of the SCE methodology. Use cases are derived from
the scenarios which are defined in the derive phase. A scenario can be seen as an instance
of one or more use cases. Use cases should describe the general behaviour requirements
and should have a specific specification format. Each use case should refer to one or
more requirements.

The format of use cases as used in the sCE methodology is defined as shown in

Table B.1]

19



Use case # <<identifier>>

Description: Description of the use case.

Goals: What is achieved by carrying out the use case.

Actors: Main human and/or machine actors.

Pre-Conditions: The state of the system or user just before using the func-
tion.

Post-Conditions: ~ The state of the system or user just after the function was
used.

Trigger: Defines the event that triggers the use case (i.e., time,
alarm).

Requirements: List of requirements that relate to this use case, referred to
by their identifier.

Main Action 1 Step 1.

Sequence: 2 Step 2.

Alternative 1 Step 1.

Action Sequence: 2 Step 2.

Table 3.1: Use case format

3.2.4 sCE Requirements and Claims

Requirements are artefacts that describe desired facts about the system. Each use case
leads to one or more requirements. A requirement is justified by claims, which point
out the usefulness of the requirement. Each claim has its positive and negative effect. If
the negative effects outweigh the positive ones, then the requirement should be removed
(Westera et al., 2010).

Claims play an important role in the sCE methodology. They are hypotheses that
tell something about the goal the requirement needs to achieve. This goal is important
because it points out why it is useful to implement a requirement. Because the sCE
methodology focuses on the design phase, and not on the implementation phase, a lot of
time can be saved if a requirement does not need to be implemented at all. The positive
and negative effects, which are described in the claims, play a key role in deciding whether
to keep a requirement because they determine the usefulness of the requirement.

The format of the requirements, with their claims, as defined by the sCE methodology
is shown in Table 3.2l

20



Requirement # <<identifier>>
Description: Description
Claim Hypothesis (e.g., fast victim finding in areas that are inac-
cessible for humans)
+ Upsides: (e.g., fast navigation time), [measures, such as
time]
- Downsides: (e.g., no attention to areas the robot does
not enter), [measures, such as number of misses]

Use Cases: List of use cases that link to this requirement, referred to by
their identifier.

Table 3.2: Requirement format

3.3 sCE comparison

This section compares the requirements engineering process with the situated Cognitive
Engineering methodology.

The sCE methodology focuses on the design of the requirements baseline, which can
be compared to the requirements development phase of the requirements engineering
phases. The methodology, however, does not treat the requirements management phase,
as the sCE methodology only considers the design of the system, not the implementation.

The sub-phases of the requirements development phase are similar to the phases of
the sCE methodology. The elicitation sub-phase from the requirements development
phase is similar to the derive phase from the sCE methodology. Both phases focus on
discovering the needs of the stakeholders and defining the scope of the project.

Both the analysis and specification sub-phase from the requirements development
phase can be compared to the specify phase from the sCE methodology. They focus on
translating the needs of the stakeholders into requirements. Defining the design rationale
is also important in these phases as it gives an answer to why the system needs to be
built.

The validation sub-phase of the requirements development phase can be compared
to the test and refine phase of the SCE methodology. In these phases the requirements
baseline is tested to assess if the requirements meet the claims. If not, the requirements
need to be refined or removed.

Several different types of requirements engineering methods exist. The sCE method-
ology can be classified as a scenario-based approach because it focuses on requirements
capturing using scenarios and use cases. This enables the requirements capturing process
as a dynamic activity. Requirements are elicited from the domain of interest and can
be identified by stakeholders. Because the activity is dynamic it encourages inspiration
and imagination (Tsumaki and Tamai, [2005]).

An important aspect of the sCE methodology is the assignment of claims to require-
ments. These claims justify why the requirements exist in some specific design. The
positive and negative effects of each requirement make its impact on the system explicit.

21



The positive effects should outweigh the negative effects, otherwise the requirement does
not properly serve its purpose.

Together with the use cases, the claims define the design rationale of the system. By
validating the claims one can make sure each requirement is useful. This makes the sCE
methodology extremely suitable to apply when creating complex systems, because when
the claims justify all the requirements, no unnecessary work is done when the system is
implemented.

The complete design rationale explains why a system should be built in the first place.
When all requirements are validated, The system implementation is justified. However,
if the requirements are not validated, the usefulness of the whole system should be
reconsidered.

22



Chapter 4

The situated Cognitive
Engineering Tool (sCET)

We designed a tool called the situated Cognitive Engineering Tool (sSCET) to support the
process of creating project specifications using Cognitive Engineering. In this chapter
we describe the design and prototype implementation of this tool.

Section [4.1] introduces sCET, Section describes how the tool is designed, and
Section describes how the prototype is implemented.

4.1 sCET Motivation

Currently, in projects which apply the CE methodology, textual documents are used to
capture the design specification. However, this has some limitations as stated by Wiegers
(see Section [2.2.4). We designed a tool to provide a solution to these limitations.

Wiegers (1999) states four limitations of using textual documents. From these limita-
tions, three main core functions have been derived, namely Collaboration, Soundness and
Completeness and Reusability, which are described in Section These core functions
currently cause the most problems when performing a CE project.

To address these limitations a tool needs to be used. Several Cognitive Engineering
tools exists, but they do not focus on requirements development. Several requirements
engineering tools exist as well, but these tools focus only on requirement development,
and do not consider the human factor knowledge of the Cognitive Engineering method-
ologies.

Because the current existing requirements engineering tools do not meet the require-
ments for use with CE projects, a new tool had to be designed. In this tool the knowledge
of requirements engineering and Cognitive Engineering can be combined, resulting in the
Cognitive Engineering requirements tool.

The situated Cognitive Engineering methodology is chosen as method which the tool
has to support. The tool has been designed by applying the sCE methodology to itself.
Hence the design of the tool can be applied to itself.

23



4.2 sCET Design

To design the tool, we followed the sCE methodology. Since the sCE methodology
consists of four phases, the same phases were followed, namely the derive, specify, test
and refine phases. In this section the derive and specify phases are described. The test
and refine phases are reported in Chapters [5] and [0}, respectively.

4.2.1 Derive

In the derive phase, the operational demands, human factor knowledge and envisioned
technology is tailored in a scenario. As an example project for designing sCET, the
Mutual Empowerment project was chosen because it reflects a project in which people
with different disciplines have to cooperate.

Scenario

TNO is a non-profit research organization which aims at developing and applying knowl-
edge. Currently, TNO has about 3500 employees (TNO\ 2010).

TNO is organized by a matrix structure in which projects are performed within
themes. There are in total seven themes, namely:

Healthy Living

Industrial Innovation

Defence, Safety and Security

e Energy

Transport and Mobility
e Built Environment

e Information Society

Besides these themes, TNO has three expertise centres. These centres house the
scientists who perform projects. Each expertise centre consists of several expertise groups
with a total of 67 groups. The expertise centres are:

e Technical Sciences (36 expertise groups)
e Earth, Environmental and Life Sciences (13 expertise groups)

e Behavioural and Societal Sciences (18 expertise groups)

24



One of the projects within TNO is the Mutual Empowerment (ME) project. ME
is a defence, safety and security project which aims at designing a mobile platform for
soldiers in war situations. The goal is to create a system in which a soldier and some
machine can work together to optimise the soldier’s performance in social patrols. Hence,
mutual empowerment means that human and machine make each other more powerful.

ME is a TNO-wide project, which means that multiple expertise groups are par-
ticipating in this project. Each of these expertise groups specialized in a certain area
of knowledge. Eleven groups participate on this project such as, for example, Busi-
ness Information Systems, Human Performance, Perceptual and Cognitive Systems and
Weapon Systems. These groups come from different expertise centres, differ significantly
from each other and are often located in different cities.

All these groups are involved in the project because many aspects need to be taken
in consideration when designing a complex cognitive system where human and machine
have to work together. The system should not only be designed, but also the needs
of the soldiers have to be taken into account. In the end the soldiers have to use the
system and if the system does not conform to their needs they will most likely not use
the system.

Because the members of the different groups have different disciplinary backgrounds,
it is often difficult for them to cooperate. Different disciplines require a different way
of thinking, and combining those is not an easy task. Furthermore, because TNO is
located at multiple locations it is not always possible to meet in a single physical place
when questions arise.

A way to improve communication so that project members know what each member
is doing has become necessary. This should facilitate the alignment of the work of the
groups so that working designs can be delivered in cooperation.

4.2.2 Specify
In the specify phase, the scenario is formalised into use cases, and requirements are
derived from these use cases.

Use cases

Each scenario is formalised in several use cases. These use cases are written in the format
described in Section Table [4.1] describes one use case of sCET. It gives an example
use case from which Requirement 1 has been is derived. All remaining use cases for
sCET are shown in Appendix [A]

25



Use case 1

UC.01

Description:
Goals:

Actors:
Pre-Conditions:
Post-Conditions:

Multiple users work on one requirement

Get better requirements

multiple users

A sCET project is created by a user

The requirement is updated by another user.

Requirements: RQ-1
Main action se- 1 User 1 creates a requirement
quence: 2 User 2 looks at the requirement
3 User 2 makes changes to the requirement
Table 4.1: UC_01
Requirements

Below, the requirements are given in the format described in Section They are
categorised by the three main core functions, namely collaboration, soundness and com-

pleteness and reusability.

Collaboration. Collaboration is the key focus point of sSCET. The goal is to improve

the cooperation between people who work on a project and the stakeholders.

Requirement 1

RQ-1

Description:

Claim 1.1

Claim 1.2

Use Cases:

sCET shall improve collaboration when users work on de-
pendent parts.
Because sCET supports designing requirements in an itera-
tive way, better requirements will be created.
+ More input per requirement is generated, resulting in a
more thought-out requirement.
- More discussions can arise, which takes more time to
develop the system.

Because users can see the work of others, they can make
their work align to each other.
+ Involvement of distributed users in the design process is
increased.
- It can be difficult for the user to determine relevant data.
UC.01, UC.04

Table 4.2: RQ_1

26




Requirement 2

RQ 2

Description:

Claim 2.1

Use Cases:

sCE(T) shall support parallel collaboration on different
parts.
Because sCE(T) is modular, users can work on different
parts at the same time.
+ Users do not have to wait for each other to finish working
on their part.
- A network connection is required to access the tool.

UC.02

Table 4.3: RQ_2

Requirement 3

RQ 3

Description:
Claim 3.1

Claim 3.2

Use Cases:

sCET shall improve communication with outsiders.
Because sCET can export data, outsiders can easily under-
stand the design specification.
+ Less time is needed to explain the design specification.
- If they still do not understand it, more effort is required
for explaining.
Because users can create ontologies, the design specification
will become more understandable for outsiders.
+ If the design specification is more easy to understand it
will prevent miscommunication.
- Creating an ontology takes time.

UC.03, UC.04

Table 4.4: RQ_3

27




Soundness and completeness. The tool should make sure that the design speci-
fication is sound and complete. This means that all the relevant data should be entered
in a correct way. A sound and complete requirements baseline makes the design robust
and understandable.

Requirement 4 RQ 4

Description: sCET shall enforce users to create an complete design spec-
ification.
Claim 4.1 Because sCE(T) has defined its data fields, it discourages

entering irrelevant data.
+ Less irrelevant data results in better understandable de-
sign specifications.
- Sometimes additional information might be hard to en-
ter.
Claim 4.2 Because sCE(T) has defined its data fields, it is possible to
see what data is missing.
+ Missing data can be identified and added easily.
- If some fields are irrelevant for a specific case, they can-
not be removed.

Use Cases: UC_05

Table 4.5: RQ_4

Requirement 5 RQ_5

Description: sCE(T) shall enforce the specification of a verifiable design
specification.
Claim 5.1 Because claims are defined by metrics, claims can be tested

on their validity.
+ If the claims are refuted, they can be refined to be re-
placed by better claims.
- Defining adequate metrics takes time.

Use Cases: UC_06

Table 4.6: RQ.5

28



Requirement 6

RQ 6

Description:
Claim 6.1

Use Cases:

sCET shall facilitate the learning of the sCE methodology.
Because sCET is easy to learn the learning curve of the sCE
methodology is decreased.
+ New user can deliver results more quickly.
- Users could proceed in a disorganized way and not really
learn the methodology.
- Users could dislike learning a new tool.

ucC.07

Reusability. The tool should make data reusable. Making the data reusable avoids
situations of ‘inventing the wheel again’. It makes sure that important data is not lost

Table 4.7: RQ_6

and avoids making the same mistakes twice.

Requirement 7

RQ_7

Description:
Claim 7.1

Use Cases:

sCET shall make the iterative process insightful.
Because users can see the history of requirements better eval-
uation choices will be made.
+ Users do not repeat previously made mistakes.
- Users can lose the overview because of too much infor-
mation.
- Navigation across the design specification can become
more difficult when more information is present.

UC_08

Table 4.8: RQ_7

Requirement 8

RQ-8

Description:
Claim 8.1

Use Cases:

sCET shall make design specifications reusable.
Because requirements from previous projects can be im-
ported, new projects can start more quickly.
+ Importing old requirements results in less work for users.
- Errors which were made previously can persist in related
projects.

UucC.09

Table 4.9: RQS8

29




4.3 sCET Prototype

We built a prototype of the tool to tests its suitability. This tool was developed as a
web-application with web-forms as graphical user interface. This prototype was deployed
on a web server which was accessible through the Internet.

The tool has been built using PHP5 to create dynamic HTML pages with JavaScript
which interact with a MySQL database. The interaction with the database was imple-
mented using an Active Record library.

4.3.1 sCET Data Model

The data structure of sCET is displayed in Figure This data model was derived
from the schematic overview of the relations between the sCE artefacts as shown in
Figure 3.1}

Project is the main object. SCET supports multiple projects simultaneously in the
tool. The Project object makes sure that the data of each project is grouped together.

A project can have several scenarios. Each scenario tells a story about the product
being designed. A scenario can be formalised by specifying a use case. A use case
describes the specific actions that can be taken in terms of action sequences. Action
sequences give a step by step description of how the functionality is used. Each use case
can have several action sequences.

From a use case, one or more requirements can be derived. A requirement describes
specific information about what the system should be able to achieve. Claims give
positive and negative effects of each requirement. Claims should justify the existence of
each requirement.

As the specification process progresses, several requirements may be refined. Each
requirement can be refined into multiple new requirements. The old requirement then
becomes deprecated. Requirements can be grouped into functional modules. A functional
module is a group of requirements with a some common characteristics, for example, a
module with requirements for a user interface. They are the core functions of the product
being designed.

4.3.2 Architecture

The tool is designed as an interface to the database scheme as shown in Figure
This data model was mapped onto several PHP pages, which interface directly with the
database. A simple schematic overview of the pages is shown in Figure

The figure shows that project.php is the centre part of the application. From that
page it is possible to navigate to the artefacts of the design rationale.

The scenario, use case, module and requirement pages contain a list of the artefacts
which are specified in the system and are connected through links. The use case and
requirement pages also contain sequences and claims, respectively.

An example of a page is shown in Figure [£.:3] The figure shows the requirement.php
page with one selected requirement. The data from the requirement corresponds to the

30



Scenario Functional module

*

-Instantiates

* | -Formalizes *1 -Has

*
Use case —Contextualizes Requirement —
" - -Refines

1

1 1| -Justifies

* *

Action Sequence Claim

Figure 4.1: sCET data model

data as shown in Table

4.3.3 Interface

The interface was created using HTML, to define the building blocks of the pages, CSS,
to add visual style information and JavaScript, to make the interface dynamic. The
interface elements are generated by the PHP pages.

A screenshot of the current version of sCET is shown in Figure[4.3] This figure shows
navigation buttons below the sCET logo. From each page the user can navigate to the
project overview, scenarios, use cases, modules, requirements, ontology and tools pages.

The project overview screen shows general information about the particular selected
project. It also lists news messages which can be added by the project manager. The
Scenarios, Use cases, Modules and Requirements are the artefacts from the sCE method-
ology. The Ontology screen shows the page where ontologies can be defined. In the
current version, only a taxonomy is supported, which means that terms can be defined
in a hierarchical way. Creating instances of terms and relations between terms, which
would make it an ontology, is currently not supported. The Tools screen shows options
for exporting sSCET data to INTEX, XML or Microsoft Word’s DOC format.

In Figure the requirement screen is selected. At the left side a list of requirements
is shown. If the user clicks a requirement, the information of that requirement is shown
in the central part of the screen. This information consists of the requirement attributes
according to the format of the sCE methodology. At the top of the central part of the
page there are tabs to navigate to the Document, Discussion, Edit, New and Delete
screens. By default the Document screen is selected, as shown in the figure. The
Discussion tab shows user replies to the document. Each user can add comments to

31



module.php

scenario.php

project.php

usecase.php

e |

Figure 4.2: sCET simplified page structure

requirement.php

claims

a document by adding a reply. The Edit tab shows the page to change the information
of the document, and is described below. The New tab can be selected to create a new
document, and the Delete tab can be selected to delete the current document.

The Edit tab of a document shows the screen in which it is possible to change the
information concerning this document. The input can be inserted through HTML forms.
An example is shown in Figure 4.4] where a part of the edit screen of a requirement is
shown. This figure also shows how the relations between artefacts can be selected. This
is achieved by two boxes where the left box displays, for example, the available modules
which can be selected by clicking the button with the ‘>’ arrow. The module then moves
to the right box, which shows the selected related modules.

The text of the document being manipulated can be formatted by using Bulletin
Board Code (BBCode). With BBCode it is possible to add a tag around some text
to create text-markup. The complete table with all BBCode options can be found in

Appendix [E]

32



£ - & % || @ TNO: Siusted cognitive en..

Logged in 58 logout =
Administration panel

“;ngineering Tool

Project overview | ( Scenarios ) ( Use cases ) [ Modules ) ( Requirements ) ( Ontology ) ( Tools

List of requirements:

RQ 1 Document Discussion Edit New Delete
Raz RQ_1
RQ_3 =
RQ 4 Description:

X SCET shall improve collaboraticn when users work on dependent parts
RQ_5

Type: =

RQ_6 Functional b
RQ_7
RQ B Claim 1.1: Because sCET supperts designing requirements in an iterative way, better

= requirements will be created

y¥h + Mere input per requirement is generated. resulting in a mere thought-out requirement.

- More discussions can arise which takes more time

Claim 1.2: Because users can see the work of others, they can make their werk align to each
other

+ Involvement of distributed users in the design process is increased.

- Itean be difficult for the user to determine relevant data.

Formalizes the modules:
Collaboration

Use cases:
uc_o

Figure 4.3: sCET requirement screen

e ,"@ £~ & % || @ TNO: Stusted cognitive en... u

Involvement of distributed users in the design  +
process is increased.

Positive
It can be difficult for the user to determine -
relevant data.

Negative:

Add claim

Remove last claim

Not related modules: Related modules:
Soundness and completeness __ |Collaboration
Reusability (=)

=) L
Not related use cases: Related use cases

_ [oc_oi
&
<)

Figure 4.4: sCET requirement edit screen

33



Chapter 5

sCET evaluation

This chapter describes how the sCET tool has been evaluated. This evaluation has been
done to check the effectiveness of using our tool to support the sSCE methodology. The
claims described in Section are verified by user experience.

Section[5.I]describes how the evaluation has been performed and Section[5.2|describes
the results of the experiment.

5.1 Experiment Set-up

An experiment has been carried out to verify the effectiveness of sCET. This is done
by deploying a first version of sCET on a server and organising a workshop where users
have the opportunity to learn and use sCET.

‘Workshop

We organised a workshop to test sSCET in two ways, namely with an informal and a
formal evaluation. The formal evaluation consisted of a questionnaire and the infor-
mal evaluation has been performed using the input from discussions. The group that
attended the workshop consisted of members of the Mutual Empowerment project, as
described in Section [I.T]

The course of the workshop was as follows: first the participants filled in the first
part of a questionnaire about their expectations of using SCET. Second, the participants
received a short oral introduction of the SCE methodology. Third, they went to a room
where each participant got their own laptop on which they could work. They had one
hour to define use cases, requirements and claims for their part of the project using
sCET. If the participants had any questions they could ask the supervisors for help.

After the sCET session, participants had to present their results to each other. For
each artefact each participant had created, a short explanation had to be given. During
these presentations, the other participants had the opportunity to ask questions and
discuss the work. After the presentations were given, participants had the opportunity

34



to share their thoughts on the workshop and the use of sSCET in their project group.
Finally, all participants filled in the second part of the questionnaire.

User Questionnaire

A user questionnaire has been filled in by the participants to verify the user experience
with the usage of sSCET. The questionnaire was split into two parts, namely a part that
is filled in at the beginning, and a part that is filled in at the end of the workshop.

The part that is filled in at the beginning of the workshop consists of two parts,
namely questions about general information about the participant, like gender and age,
among others, and questions focusing on the expectations of using sCET. This second
part consists of eight multiple-choice questions and two open questions where partici-
pants can put down any other thoughts before starting with sCET.

The part that filled in at the end of the workshop consisted of seven parts, as de-
scribed below:

1. The situated Cognitive Engineering Methodology. This section focuses on questions
about the sCE methodology, whether the participants like it and think if it is useful
for their work.

2. sCET collaboration. This section focused on questions about whether the partici-
pants think sCET helps improve cooperation between project members.

3. sCET soundness and completeness. This section focused on questions about whether
the users think sCET will helps them achieve a sound and complete design speci-
fication.

4. sCFET reusability. This section focused on questions about whether the user expects
that SCET data can be reused in other projects.

5. sCET (with sCE experience). This section needs to be filled in by users who have
sCE experience. It focused on questions about whether the users think that using
sCET is better than textual documents.

6. sCET (without sCE experience). This section needs to be filled in by users without
sCE experience. This focused on questions about the experience the users had
learning sCET.

7. General remarks. This section focused on open questions where participants can
put down any other thoughts they have about using sCET.

The complete questionnaire can be found in Appendix [C]

35



Logging

The activity on the usage of sSCET was logged using Google Analytics. This application
keeps track of how the users navigate in the tool. A few features that are supported are
visitors count, page view count and average time on site (Google, 2011). The information
from the logging was used to improve the usability of the tool.

Besides the use of Google Analytics, logging information was stored in a local database.
This was done to get additional information on areas which are not supported by Google
Analytics, such as which data was entered by the users of the tool.

To fully take advantage of the logging features, a lot of usage of the tool and in-
formation about this usage is necessary. Because of the small user-base, the results of
the logging features are not addressed in this thesis. However, the features have already
been implemented so that they can be used directly when the usage increases.

5.2 Experiment Results

This section presents the results of the evaluation of sSCET. Two types of evaluation were
done, namely an informal and formal evaluation.

5.2.1 Informal Evaluation

During the workshop we obtained a lot of responses with practical tips on how the tool
should be improved. Besides these practical tips, some ideas were also given on the
general idea of using sCET.

Guidance. The participants mentioned that they required quite some guidance on the
definition of use cases and requirements. Some participants had little or no experience
with the sCE methodology, which made it hard to figure out how to write down the
information. The level of depth in which they had to create requirements was also
difficult to figure out.

Reporting. The participants had many questions about the reporting capabilities of
sCET. They found it very important to be able to export the data to other programs,
to further use it when creating reports. Although all information is accessible through
sCET, it remains important to be able to collect all data in a central document which
can be adjusted and printed out.

Usability. Participants gave a huge importance to usability, in the sense that the
program should not have any quirks which could result in users getting irritated. For
example, if users press the wrong button, data should not be lost.

Security. There were some concerns about the security of sCET. TNO is often
working with sensitive data from the Dutch government and some of these pieces of
information may not be accessed by unauthorized people.

36



Visual design. The visual design of the program is important because bad design
dis-encourages new users from using it. The design should be in such a way that data is
shown in a clear and evident way.

An interesting side result from the workshop came from a project member who joined
the project after it was started. For other members it was not really apparent what this
new member was going to do. At the workshop, he entered some simple requirements
with just a few lines of information. At the presentations of the results he presented his
work. Although he was not certain of his own work, other people started to understand
what he wanted to do in the project. With those few lines he could communicate with
the other project members by showing what he was doing. Hence, he brought the project
members to the same level of thinking as himself.

5.2.2 Formal Evaluation

The questionnaire was filled in by five participants. These participants came from dif-
ferent disciplines and work on different parts of the ME project.

We statistically evaluated the results from the questionnaires with descriptive statis-
tics. The central tendency and dispersion of the data is calculated and shown in Ap-
pendix

Three values are calculated, namely mean, median and range. For each claim, the
results are evaluated. Some claims are difficult to verify, because it requires sCET to be
used for a longer period. Therefore, they have not been included in the evaluation.

Since the questionnaire was only filled in by five participants, and no control group
was used, no statistical significance over the mean values can be measured. Therefore
it is also important to look at the median and range values, which tell something about
how the participants agreed with each other. These values, in addition to the informal
evaluation can still say something about the user experience if all participants agreed
with each other. Below the results of the questionnaire are shown. They are grouped
by the three core functions, namely Collaboration, Soundness and Completeness, and
Reusability.

Collaboration

Claim 1.2 | Because users can see the work of others, they can
make their work align to each other.

17 | mean: 4.4; median: 4; range: 1

18 | mean: 1.8; median: 3; range: 2

Evaluation: | Users think that SCET gets them involved in the work
of others and do not fear that they will be distracted
by the work of other users.

Questions:

Table 5.1: Claim 1.2 questionnaire results

37



Claim 2.1 | Because sCE(T) is modular, users can work on differ-
ent parts at the same time.
Questions: | 19 ‘ mean: 2.0; median: 3; range: 2
Evaluation: | Users do not really fear that using an internet connec-
tion will hinder them in using sCET.

Table 5.2: Claim 2.1 questionnaire results

Claim 3.1 | Because sCET can export data, outsiders can easily
understand the design specification.
Questions: | 20 ‘ mean: 3.5; median: 3.5; range: 3
Evaluation: | Users are not convinced that sCET will help them with
creating reports.

Table 5.3: Claim 3.1 questionnaire results

Soundness and Completeness

Claim 4.1 | Because sCE(T) has defined its data fields, it discour-
ages entering irrelevant data.

Questions: 22 | mean: 3; median: 2; range: 3
23 | mean: 3.2; median: 3; range: 2

Evaluation: | Users are a bit concerned that they cannot enter ev-
erything they want. They want a way to be able to
enter additional information with their requirements.

Table 5.4: Claim 4.1 questionnaire results

Claim 4.2 | Because sCE(T) has defined its data fields, it is pos-
sible to see what data is missing.

Questions: | 24 ‘ mean: 3.6; median: 4; range: 1

Evaluation: | Users sometimes find data fields irrelevant, but maybe
they do not really know what to enter there, or what
is desired in that field.

Table 5.5: Claim 4.2 questionnaire results

38




Claim 5.1 | Because claims are defined by metrics, claims can be
tested on their validity.

Questions: 25 | mean: 3.0; median: 3; range: 2
26 | mean: 3.6; median: 4; range: 1

Evaluation: | Users are not sure they can validate the requirements
and do think that it takes too much time to create
adequate claims.

Table 5.6: Claim 5.1 questionnaire results

Claim 6.1 | Because sCET is easy to learn, the learning curve of
the sCE methodology decreases.
27 | mean: 2.2; median: 2; range: 1

Questions: | 28 | mean: 3.8; median: 3; range: 2
29 | mean: 1.8; median: 1; range: 3

Evaluation: | Users were not convinced that they could deliver quick
results. They had average convincing that they had
learned the sCE methodology. But they did not dislike
to learn a new tool.

Table 5.7: Claim 6.1 questionnaire results
Reusability

Claim 8.1 | Because requirements from previous projects can be
imported, new projects can start more quickly.

Questions: 30 | mean: 1.6; median: 2; range: 1
31 | mean: 2.4; median: 3; range: 2

Evaluation: | Users are not very convinced that they can reuse
project data. Users do not think that they can find
old project results better when using sCET either.

Before and after

Since one part of the questionnaire was answered before the workshop and the other was
answered after the workshop, conclusions can be taken about the expectations and the

Table 5.8: Claim 8.1 questionnaire results

real experience of using sCET.

Figure [5.1] shows the results of the questionnaire. Three main topics were chosen to
be evaluated, namely whether the participants thought that sCET helps learn the sCE
methodology, whether they like to learn a new tool and whether learning sCET is easy.

Before the start of the workshop, the participants of the workshop were convinced
that SCET would help them learn the SCE methodology. After the workshop the average

39




B sCET helps learning sCE

M Like to learn a new tool

m Learning sCET is easy

Before After

Figure 5.1: Mean scores of the questions before (1, 2, 3) and after (39, 29, 37/41) the
workshop. Note: For the sCE learning questions only participants with no experience
have been considered.

score dropped 0.5 points. This may be because users also found sCET harder to learn
(see below).

Before the workshop, the participants thought they would not like to learn the tool.
However, after the workshop the score of users who liked to learn the tool was higher.
This means that using sCET was not as bad as they first thought.

After using sCET, participants found sSCET harder to learn than they thought before
the workshop. This was mainly on the aspect of how they should carry out the sCE
methodology aspects. One reason for this could be that they did not really know the
level of abstraction they needed to follow. Another difficulty was that some participants
did not have in mind what they were going to do in the project. Using sCET forced
them to think about their purpose in the project and to make their goals explicit.

40



Chapter 6

Discussion

The aim of this chapter is to reflect on the design and prototype of sCET and to give
ideas to improve the design and implementation of the tool.

This discussion can be seen as the refine phase of the sCE methodology. First, sCET
is compared to the other tools existing in the literature. Second, the results from the
workshop evaluation, which are described in Chapter [5] are addressed. Third, the input
of the evaluation is translated to refined requirements for sCET.

6.1 Tools Comparison

Several tools exist in the literature. Tools from requirements engineering and cognitive
engineering have been selected to be compared with sCET.

From requirements engineering, the following tools are chosen: Borland CaliberRM (Bor-
land Software Corporation, 2011]), IBM’s Rational DOORS (IBM, [2011a)), IBM’s Ratio-
nal RequisitePro (IBM, [2011b]) and Sparx Systems Enterprise Architect (Sparx Sys-
tems, 2011)). From cognitive engineering, COGENT (Cooper and Fox, [1998) and Mac-
SHAPA (Sanderson et al., 1994) are chosen. The characteristics of each tool are described
below.

Borland CaliberRM is a requirements management tool which focuses on captur-
ing requirements from the users needs and communicating them to project members and
the stakeholders throughout the application life-cycle.

In CaliberRM, requirements are created in a hierarchical way. Requirement details
are accessible through several tabs which contain: detailed information, traceability,
validation, discussions, history, use case data, responsibilities and references. This in-
formation can be accessed through a web interface.

Several integrations with development tools are available, for example with Visual
Studio and Eclipse. With these integrations it is possible to follow the requirement from
the initial phases to the implementation phase. CaliberRM also contains a ‘document
factory’ which allows requirements to be exported to a Microsoft Word template. These
documents can be used for purposes like communicating with stakeholders and archiving.

41



As an extension to CaliberRM, CaliberRDM can be used as a visual and interactive
way to define and manage application requirements. In CaliberRDM it is possible to
visualise the design specification through interactive scenarios and simulations with the
goal to achieve a complete design specification.

IBM’s Rational DOORS is a requirements management tool which focuses on
requirements. The tool has a desktop and web interface, like CaliberRM. The default
view for requirements is a display in a document format. This means that the require-
ments are placed into chapters, sections and sub-sections. The advantage view is that
it immediately looks like a report. The disadvantage of this is that the attributes of
the requirement are accessed through pop-up windows, making a lot of mouse clicks
necessary.

Each requirement can be discussed by adding a discussion topic. Changes to a
requirement are stored in the history of the requirement. Requirements can be linked to
each other by creating traceability links. This can be achieved by dragging and dropping
requirements onto each other.

Requirements can also be dragged into Microsoft Word. This creates a hyper-link
to the requirement on the web interface. In this way it is possible to create a document
and link to each requirement.

Doors also supports integration with Microsoft Visual Studio and several other tools
to create and maintain traceability between requirements in DOORS and Visual Studio.

IBM’s Rational RequisitePro is a document-based approach to requirements
management, in contrast to database-based approaches. To achieve this, a tight inte-
gration with Microsoft Word is in place.

In RequisitePro, a word document can be created with several types: glossary, re-
quirements management plan, stakeholders request, supplementary requirements speci-
fication, use case specification and vision. Newly created document already contains a
title page, a revision history table, a table of contents and several chapters with descrip-
tions of what should be contained in that chapter. The content of these chapters can
then be filled in by the project members.

In Word it is possible to add a requirement by clicking a button, which makes a
dialogue-box appear. In this dialogue-box it is possible to see the revision history, at-
tributes, traceability, hierarchy, and discussions of the requirement. These requirements
also show in a list in the main screen of RequisitePro, where they can be edited.

The integration with Word has several limitations. To enable collaboration, the
documents need to be stored on a shared network disk. Because the data is stored
in a Word document, it is not easy to work on the same document at the same time.
Although there is an interface to edit the requirements, changes do not show in the
Word document until they are edited there. When one is working on the document,
Word only shows the requirement type and description. To show more information, a
pop-up dialogue has to be used.

42



Creating reports, however, is very easy. Since the working document is already a
document, it can be easy modified to be used as a report to the stakeholders.

Sparx Systems Enterprise Architect is a product centered on the Unified Mod-
elling Language (UML), which are visual diagrams to created models of systems. The
tool consists of documents which are divided into several categories, for example, Test-
ing, Maintenance, Database Engineering and Software Engineering, among others. Each
document can contain text boxes and visual diagrams. These visual diagrams can be
created in different forms, from mind mapping models to class diagrams.

Enterprise Architect also supports the creation of requirements, however, this is not
a focus point of the tool. Integration is possible with DOORS, which can be used as the
main requirements editing tool. In this case Enterprise Architect can be used to create
traceability links in the diagrams.

Integration with development tools are also possible, for example, with Visual Studio
and Eclipse. Enterprise Architect can even generate source code from the models, to
facilitate the beginning of a project and generate reports in HTML or Word format.

COGENT (Cognitive Objects within a Graphical EnviroNmenT) is an application
to design models for cognitive processes and systems. It can be used to construct and test
information processing models of cognition. Models are constructed through a graphical
model editor and consist of box and arrow diagrams. Once some models are constructed,
they can be analysed to check their behaviour.

Model are created by dragging and dropping graphical components to the screen. By
clicking on these items it is possible to set the rules and conditions of these components.
This is done by a scripting language where it is possible to define rules in an if-then-else
construct. The history of a model is contained and shown in a diagram, where it is
possible to see the evolution of the model, and allowing different branches to be created.

COGENT is very different from the other tools, because it does not contain any
requirements information. Although the tool is useful, it is not as extensive as the tools
described so far.

MacSHAPA is a cognitive engineering software tool for observational data analysis.
This means that it is used to collect and analyse data about the usage of systems. The
results of this analysis can identify problems or strengths of existing systems and are
useful to test prototype designs.

The testing of these systems is done by analysing video recordings of real-time tasks
performance. All the collected data can then be stored in a spreadsheet, which can be
manipulated through a Prolog-based Query Language.

Although MacSHAPA does not support creating requirements like most requirements
engineering tools, it still can be used for gathering user needs, performing requirement
analysis and producing systems specification. The knowledge gathered through Mac-
SHAPA can then be used to refine the design of the system.

43



e
= =
2% %
S T = 3 <
o 8 A
Az 3 Z 5
. % % 8 = g—-(() —
5 2 = 2 9 % Qg
m g8 = = © & O
Tool name H E 0O O = %
Web interface + - - i
Database-centric + + + - +

— | Document-centric + 4+ +

g Graphical-centric + 4+ -

5 Text-centric + + + -+
Shared repository + 4+ 4+ - +
History + + + 4+ +
Report creation + 4+ 4+ 4+ -

" Requirements + - + + +

g | Use cases -+ - 4+ +

@ | Scenarios - - -4+ o+

£ | Functional modules + - - + +

q§ Claims +

2. | Metrics + o+ -

~ | Traceability + 4+ 4+ + +
Discussions + + + + +
Mind mapping +

20 | Flow charts + +

% Cognitive model + -

= | Use case diagrams +

= Design specification overview | + - - +

—. | Import/generate code

g Test results + + 4+ + 4

~ | Development integration + + +

Table 6.1: Tools Comparison. An empty cell indicates that no functionality of that sub-
ject is present. A ‘-’ indicates that limited functionality, ‘4’ indicates full functionality
and ‘. indicates that the functionality is not implemented in the prototype yet.

44



Table [6.1] shows an overview of the functionality of each tool discussed here. Tool
functionality is divided into the following topics: general, requirement engineering, mod-
elling and implementation aspects.

The tools from the requirements engineering area focus on different topics than the
cognitive engineering tools. RE tools focus on defining the technical architecture of
a product, and the CE tools cover the processes of the human mind when using the
product. Most RE tools come from the software engineering industry and are often
sophisticated products with a lot of functionality. The CE tools are more specialized
on one topic of the CE process. CE tools also seem to be mostly coming from research
institutes, as tools to support theories in contrast with RE tools, which often come from
commercial companies. This is also visible in the prices, as CE tools tempt to be free of
charge, and RE tools may cost up to $2,500.-, as, for example, RequisitePro.

The current version of the sCET prototype focuses on the requirements engineering
topic. To increase the support of CE projects, the requirements of SCET need to be
extended to the CE areas.

6.2 sCET Improvements

The aim of this section is to translate the suggestions given in the workshop into concrete
improvement to future versions of sSCET. Six main improvements have been derived from
the workshop, namely guidance, reporting, security, visual design and usability, validation
and reusability.

6.2.1 Guidance

The participants had some difficulties entering the use cases and requirements. It was
mentioned that it was hard to determine the level of depth and what should be entered
in each input field. Although this was mainly caused by lack of experience of the par-
ticipants with the sCE methodology, the results of the questionnaire also showed that
the participants found sCET more difficult to use than they had expected before the
workshop. To decrease the difficulty of using sCET, the users need to be better guided.

Several adjustments to the prototype can improve how users are guided. First, it
is important that every input field has some examples with possible values that can be
entered. This can be done by adding information buttons next to the text field, which
enable the user to quickly see some example text. One example is the requirement
description input field. The information added to the field can be: ‘The requirement
description field often starts with “The program shall...”’.

Second, sCET can help users add field information by giving concrete suggestions
for the input fields. One could think of the possibility to create terms in the ontology
which inherit from an Actor superclass. In the use cases actor fields, a list of available
actors could be shown. In this way the users can be prompted with possibilities that
can be entered in each input field.

Finally, one can think of a setup assistant (e.g., a wizard) that helps users set up

45



a project. When a new project is created, the wizard would ask questions about the
domain in which the project is situated, which actors are involved, which core functions
are defined, among others. At the end of the wizard, the data is analysed and use cases
and requirements examples can be generated and added to sCET.

6.2.2 Reporting

During the workshop, the participants mentioned that reporting is important. However,
the results of the questionnaire show that participants are not convinced that they can
use sCET to create reports which can be shown to stakeholders. Since the participants
work at TNO, where reporting to the stakeholders is a key factor for the success of
a project, they have to create reports at certain moments. These reports are used to
check if the execution of the project is still justifiable. Therefore, the reports have to be
created in such a way that results are made explicit.

The current version of sCET has several exporting capabilities. It is possible to
export the use cases and requirements to the textual document in IXTEX and Microsoft
Word formats. However, this functionality only compiles all available use cases and
requirements and puts them straight into these documents.

To create usable reports, the wishes of both the sCET users and the stakeholders
needs to be investigated. Interviews with users and stakeholders can generate ideas on
desirable formats for reports. The tool should then be able to create the documents in
these specific formats.

Ultimately, sCET can have an extensive reporting capability which can be applied
by going through a report setup which then generates a report template that only needs
some minor adjustments to create a ready-made report for the stakeholders.

6.2.3 Security

Security is an important aspect when working with sensitive data. The participants
mentioned that they had some concerns about the security of using a web application
to create design specifications. Stakeholders could also have problems with their innova-
tive ideas being accessible through the Internet. TNO sets high standards for security.
However, in a lot of projects, users from different companies have to work together, so
that it is not possible to deny all access to documents from outside the company.

Security needs to be tight, however, awareness of users that sensitive data should
not be entered into sCET is something the tool cannot enforce. Although, sCET needs
to have a decent security to prevent unauthorised access, no 100% security can be guar-
anteed.

Ideally, there would be two versions of SCET: a local version which is not accessible
through the Internet that could be used for high security projects, for example, for the
Ministry of Defence, and a version which would be accessible through the Internet. The
second version could be used for projects where confidentiality is less of an issue. In this
way, the benefits of access through the internet would be preserved, while high security
projects can also benefit from using sCET.

46



6.2.4 Visual Design and Usability

The sCET prototype has a fairly simple interface. Although all functionality to use sSCET
was implemented, the participants indicated that an attractive design of the interface
would motivate users to continue using sSCET. New users would also be compelled to use
sCET. If the design of a tool is attractive, users most likely experience the tool as easy
and fun to use (Sutclifte, 2002]).

Usability, in general, is important. This applies specifically for sCET, because project
leaders can force project members to use sSCET. The level of annoying errors and bugs
need to be kept to a minimum, otherwise they discourage users from using SCET. At the
workshop we had some problems with users pressing the wrong buttons in the browser
which directed them back to the previous page. This sometimes resulted in loss of data,
which made some users quite frustrated. An auto-save function would help in reducing
the risk of losing data when working with sCET.

6.2.5 Validation

The results of the questionnaire show that the participants were not certain about using
sCET to validate claims in a structured way. They also stated that creating adequate
claims takes too much time. However, claims are essential, because they justify the
existence of the requirements. These justification make sure that the stakeholders know
that the project is useful for them. Users somehow need to be stimulated to create the
claims.

The current version of sCET does not support any validating options, therefore
validation of claims must be done manually. To improve the validating capabilities,
sCET should be able to show a list of claims. This list should contain information about
the validation process of each claim. When a requirement or claim is modified, sCET
should tell the user that the validation of the claim is out-of-date. Creating a report of
claims where the validation is not correct should facilitate for checking of the validity of
the requirements.

6.2.6 Reusability

The results of the questionnaire show that the participants were not convinced that
sCET would enable easy access to old project results. The current version of sCET
shows a list of projects to which the users have access. By selecting each project they
can browse through the project’s data. However, this is a time consuming activity.
Currently, there is no search function with which users can search in existing project for
certain keywords. By adding a search function, users could easily retrieve the data they
are looking for. However, to use some search functionality users should know what they
are looking for, but this is not always the case.

The participants also were not very sure about the reuse of older data into new
projects. Currently, there is no support for copying old requirements into new projects.
If users want to reuse data, they have to copy all information manually. A export/import

47



function that allows data (e.g., requirements) to be copied into new projects would save
time on the time-consuming process of starting-up a new project.

To test reusability, SCET should be used for a longer period of time. Once there
is enough old project data available, the reusability of sCET could then be properly
evaluated.

6.3 sCET Refinement

Some ideas described in the previous sections are already in the requirements of sCET,
but need to be implemented differently. Other ideas are not specified in requirements
yet. This section describes the refined and new requirements which correspond to some
ideas mentioned in Section [6.21

First, we describe the requirements that have been refined. Second, we describe the
additional requirements. The complete list of all requirements is shown in Appendix

6.3.1 Refined Requirements

Requirement 3 RQ_3
Description: sCET shall improve communication with outsiders.
Claim 3.1 Because users can create reports with sCET, stakeholders
can easily understand the design specification.
+ Less time is needed to explain the design specification.
+ Stakeholders can identify the progress of the project.
- Time is needed to create reports.

Claim 3.2 Because users can create ontologies, the design specification
will become more understandable for outsiders.
+ If the design specification is easier to understand mis-
communication shall be prevented.
- Creating an ontology takes time.

Use Cases: UC.03, UC_04

Table 6.2: RQ_3

In Requirement 3, the exporting capabilities of SCET is revised. Claim 3.1 now explicitly
describes that sCET should have the possibility to create reports that improve the
communication with other people.

48



Requirement 5

RQ5

Description:

Claim 5.1

Claim 5.2

Use Cases:

sCE(T) shall enforce the specification of verifiable design
specifications.
Because claims are defined by metrics, claims can be tested
for their validity.
+ If the claims are refuted, they can be refined to be re-
placed by better claims.
- Defining adequate metrics takes time.

Because sCET can give an overview of claims and their vali-
dation status, users can easily check which requirements need
validation.
+ Claims can be validated easily.
- Users may be fixated on keeping each claim verified,
while they may still be changed. This can result in un-
necessary work being done.

UC_06

In Requirement 5, a new claim is added. This claim adds the functionality that
SsCET should give an overview of claims and their validation status. This functionality
should give the users the possibility to review the status of their progress in creating the

claims.

Table 6.3: RQ.5

Requirement 6

RQ 6

Description:
Claim 6.1

Use Cases:

sCET shall facilitate the learning of the sCE methodology.
Because sCET guides the users in creating the design speci-
fication, the learning curve decreases.
+ New user can deliver results more quickly.
- Users could proceed in a disorganized way and not really
learn the methodology.
- Users could dislike learning a new tool in general.

ucC.07

In Requirement 6, the claim is changed in the sense that sCET should guide users
when creating a design specification, instead of just being easy to use. This should help

Table 6.4: RQ_6

users to learn how to apply the sCE methodology in sCET.

49




6.3.2 Added Requirements

Requirement 9 RQ-9
Description: sCET shall ensure the security of sensitive data.
Claim 9.1 Because sCET ensures security, no unauthorized users can
access sensitive data.
+ Sensitive data is secured.
- No 100% security can be guaranteed. Therefore, users
need to be aware that security can be compromised.

Use Cases: UC.01, UC.02

Table 6.5: RQ9

Requirement 9 is added, because the participants of the sCET workshop indicated that
sCET should have an adequate security which prevents unauthorised users from accessing
data.

Requirement 10 RQ_10

Description: sCET shall show sCE artefacts in a graphical way.

Claim 10.1 Because sCET shows use cases in the form of use case di-
agrams, it is easy to see the relations between actors and
functions.

+ More insight is given in the use cases
- Users need to learn the notation for use case diagrams
how to use it.
Use Cases:

Table 6.6: RQ_10

Requirement 10 is added, because sCET should be able to display the sCE artefacts
in a way that they are easy to understand. A graphical representation can help to make
the design specification easier to understand.

Requirement 11 RQ_11
Description: sCET shall incorporate test results.
Claim 11.1 Because sCET incorporates test results, design decisions can
be made more easily.
+ Looking at test results facilitates the refinement of re-
quirements.
- Entering test results takes time.

Use Cases:

Table 6.7: RQ_11

50



Requirement 11 is added, because sCET should support the entire duration of sCE
projects. Since the testing phase is an important aspect of the sCE methodology, its
support should be incorporated in sCET.

Requirement 12 RQ_12

Description: sCET shall have integration with development tools such as
Eclipse and Visual Studio.
Claim 12.1 Because sCET has integration with development tools such

as Eclipse and Visual Studio, it is possible to link require-
ments to the actual code.
+ Code can be traced back to its requirements.
- The design and implementation phases fade into one
phase.

Use Cases:

Table 6.8: RQ_12

Requirement 12 is added, because design specification are often tested by means of
creating prototypes. Linking requirements to actual code makes it easier to see which
requirements are implemented and which requirements still need to be incorporated in
the prototype.

Requirement 13 RQ_13

Description: sCET shall support cognitive modelling diagrams.

Claim 13.1 Because sCET supports cognitive modelling diagrams, it is
possible to get a better understanding of the human-machine
interaction.

+ More insight is gained in the human-machine interaction.
- sCET becomes complicated for new users.

Use Cases:

Table 6.9: RQ_13

Requirement 13 is added, because the area of CE is much broader then creating a
requirements document. The other aspects of CE should be incorporated in sCET as
well, because it increases the insight in the human factor knowledge when designing
human-machine interaction systems.

o1



Chapter 7

Conclusion

This chapter gives the final remarks of this thesis. It gives a conclusion to this work and
some recommendations for future work.

Section gives the general conclusion of this work, Section gives recommenda-
tions on how to proceed with the tool and, finally, Section discusses future work.

7.1 General conclusions

Using a tool to create complex cognitive systems has several advantages, such as keeping
documents current, linking artefacts, among others. Currently, there are no tools that
combine the knowledge of Requirements Engineering and Cognitive Engineering to create
design specifications.

In this thesis a design for a Cognitive Engineering tool that follows the situated
Cognitive Engineering methodology is proposed. The goal of our situated Cognitive
Engineering Tool is to address the three limitations of using textual documents, namely
in the areas of collaboration, soundness and completeness and reusability.

After we designed the tool and created a prototype, the tool was evaluated. From
the evaluation, we showed that the tool indeed addresses the limitations. Therefore we
can conclude that the questions formulated in Section have been answered.

Collaboration between project members with different disciplinary backgrounds can
be achieved by using SCET. The workshop showed that capturing requirements and their
claims can help a project member explain to other project members the goals he/she
tries to achieve in the project.

Soundness and completeness of the design specification can also be achieved by using
sCET. This can be done by guiding the users through the creation of the design specifi-
cation. The tool should inform to the users what they need to write down in each input
field and give suggestions with sample statements.

Currently, it is difficult to evaluate how sCET can support the reuse of earlier work,
because the tool has not been used for a sufficiently long period. Still, a couple of
concluding remarks can be made. The tool should support search functionality, which

52



can be used to search through older project data. sCET should also support importing
data from other projects into new projects.

There are some disadvantages of using a tool for CE projects. Some users do not
want to learn a new tool, so it is important that users are attracted to the tools layout,
interface and functionality. The tool could be designed in such a way that it is pleasant
to work with and the tool should not have any quirks that may frustrate the users.

Using a prototype of sCET to evaluate the usage of a tool gave a huge insight
in its effectiveness. The gathered experience can be used to improve the tool in the
future. From the results of the workshop, several recommendations for improvements
were identified.

One of the most important aspects of using a tool is that it forces project members
upfront to think about their goals. Making these goals explicit does not only help
themselves know what they want to achieve, but also helps them communicate with
other project members.

Currently, the prototype version of sSCET tool is being used in several projects.
There are a lot of positive responses about using sCET instead of textual documents.
In the near future, this version will be used to get more experience on the use of a SCE
tool. This experience will be used to express the usefulness of using a sCE tool and
to convince other people in using sSCET. This should enable the development of a new
version of SCET that incorporates all the new ideas gathered during the usage of the
sCET prototype.

This project has pioneered the possibilities of a tool for designing complex human-
machine systems. The possibilities to broaden the scope of the tool are great. Currently
sCET only covers one part of the design process, namely requirements capturing. Future
research is needed to explore these possibilities. In the end, a complete system could be
created which supports all the activities of research projects.

7.2 Recommendations

Based on the findings and conclusions drawn we recommended to keep using the current
version, and only make some minor adjustments in the near future. In this way, it is
possible to extensively document all the wishes from the users and the stakeholders. An
external company can be hired later to create a new version of sSCET which incorporates
all these wishes. The following points should be addressed in a new version:

e Guidance. sCET should help in guiding users through the sCE methodology. A
way to achieve this is by adding a setup guide which guides users to specify use
cases and requirements when a new project is started.

e Reporting. The ability to export data to reports is important for communication
with stakeholders. Wishes of users and stakeholders should be investigated and
applied to the tool.

93



7.3

Security. Security should be adequate in such a way that confidential information
is not compromised. However, users should also be aware that no critical data
should be entered in sCET.

Visual design and usability. An appealing interface layout and functionality will
help in such a way that new users will be compelled to use sCET, and current
users will keep using sCET.

Validation. The validation of requirements should be implemented in a way that
users can create oversights which show the validation progress.

Reusability. The users should be able to reuse older project data in an easy way.
This will reduce the amount of duplicate work.

Future Research

In this thesis, a tool was designed to improve the sCE process. However, the possibilities
of using a tool for creating design specifications are much greater. Based on ideas
that were gathered during the development of sSCET, the following recommendations for
future research are given.

Teamforge integration.

The use of SCET could be integrated with TeamForce, which is used at TNO to
manage source code of projects (CollabNet| 2011)).

Design specification are often tested by means of creating prototypes. Linking
requirements to actual code makes it easier to see which requirements are imple-
mented and which requirements still need to be incorporated in the prototype.
Integrating the design of a product with the implementation could help align both
phases in such a way that information is easily accessible.

Designing using images.

The process of generating ideas is important when designing a new product. Mc-
Crickard has studied ways to improve the process of generating ideas by using
touch tables (McCrickard et all 2011). This could be incorporated in sCET in
such a way that the ideas created with touch tables can be imported into sCET.
This would make it attractive for users to start using SCET, as visual designing is
an easy way to get users interest. It can also be used to get stakeholders involved
into the design process, as no real knowledge of the SCE methodology should be
required to generate the ideas for use cases and requirements by means of visual
design.

54



e Design space visualisations. Work has been done on the visualization of require-
ments, claims and their relations (Westera et al., 2010). Incorporating this into
SsCET can enable the user to see the status of sCE artefacts and which requirements
and claims are affected by change.

By creating overviews using visual representations it makes it easy to see the
current progress of the design specification. Requirements who are not yet linked
to other artefacts, like use cases and claims, can be spotted easily. These overviews
can make sure that the design specification is as complete as possible.

e Use case diagrams. Use cases can be visualised through use case diagrams. These
diagrams allow users to have a graphical overview of the relations between actors
and actions. To be able to incorporate this in SCET, the relation between the use
cases of sSCET and the use case diagrams have to be studied.

95



Bibliography

K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al. Manifesto for agile software
development. The Agile Alliance, pages 2002-04, 2001.

Borland Software Corporation. CaliberRM, 2011. URL http://www.borland.com/us/
products/caliber/.

Inc. CollabNet. Teamforce, 2011. URL http://www.collab.net/products/ctf/\

R. Cooper and J. Fox. Cogent: A visual design environment for cognitive modeling.
Behavior Research Methods, 30(4):553-564, 1998.

Alan M. Davis. Software Requirements: Objects, Functions, and States. Prentice Hall,
2nd edition, 1993. ISBN 013805763X.

Rodger D. Drabick. On-track requirements. Software Testing & Quality Engineering, 1
(3):54-60, 1999.

Google. Analytics, 2011. URL http://www.google.com/analytics/.

E. Hollnagel and D.D. Woods. Cognitive systems engineering: New wine in new bottles.
International Journal of Man-Machine Studies, 18(6):583-600, 1983.

IBM. Rational DOORS, 2011a. URL http://www-01.ibm.com/software/awdtools/
doors/.

IBM. Rational RequisitePro, 2011b. URL http://www-01.ibm.com/software/
awdtools/reqpro/.

A.P.J. Jarczyk, P. Loffler, and FM Shipmann III. Design rationale for software engi-
neering: A survey. In System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii
International Conference on, volume 2, pages 577-586. IEEE, 1992.

D. Kulak and E. Guiney. Use cases: requirements in contert. Addison-Wesley Profes-
sional, 2004.

A. Lapouchnian. Goal-oriented requirements engineering: An overview of the current
research. University of Toronto, 2005.

o6


http://www.borland.com/us/products/caliber/
http://www.borland.com/us/products/caliber/
http://www.collab.net/products/ctf/
http://www.google.com/analytics/
http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/reqpro/
http://www-01.ibm.com/software/awdtools/reqpro/

J. Lee. Design rationale systems: understanding the issues. IEEE FEzpert, 12(3):78-85,
1997.

D.S. McCrickard, S. Wahid, S.M. Branham, and S. Harrison. Achieving both creativity
and rationale: Reuse in design with images and claims. Human Technology, 7(1),
2011.

T. Mioch, M.A. Neerincx, and N. Smets. sce methodology. EU FP7 NIFTi / ICT-247870,
March 2010.

M.A. Neerincx and J. Lindenberg. Situated cognitive engineering for complex task envi-
ronments. In J.M.C. Schraagen, editor, Naturalistic Decision Making and Macrocog-
nition, pages 373—390. Ashgate Publishing Limited, Aldershot, 2008.

B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In Proceedings
of the Conference on the Future of Software Engineering, pages 35-46. ACM, 2000.

R. Prieto-Diaz. Domain analysis: an introduction. ACM SIGSOFT Software Engineering
Notes, 15(2):47-54, 1990.

P. Sanderson, J. Scott, T. Johnston, J. Mainzer, L. Watanabe, and J. James. Macshapa
and the enterprise of exploratory sequential data analysis (esda). International Journal
of Human-Computer Studies, 41(5):633-681, 1994.

Tan Sommerville and Pete Sawyer. Requirements Engineering: A Good Practice Guide.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997. ISBN 0471974447.

Sparx Systems. Enterprise architect, 2011. URL www.sparxsystems.eu/Sparxl

A. Sutcliffe. Assessing the reliability of heuristic evaluation for web site attractiveness
and usability. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual
Hawaii International Conference on, pages 1838-1847. IEEE, 2002.

N. Takeda, A. Shiomi, K. Kawai, and H. Ohiwa. Requirement analysis by the kj editor.
In Requirements Engineering, 1993., Proceedings of IEEE International Symposium
on, pages 98-101. IEEE, 1993.

TNO. Tno jaarverslag 2010, 2010. URL |http://www.rijksoverheid.
nl/bestanden/documenten-en-publicaties/jaarverslagen/2011/06/20/
jaarverslag-2010-tno/jaarverslag-2010-tno.pdf.

T. Tsumaki and T. Tamai. A framework for matching requirements engineering tech-
niques to project characteristics and situation changes. Proceedings of Situational
Requirements Engineering Processes (SREP), Paris, France, 2005.

P.P. van Maanen, J. Lindenberg, and M.A. Neerincx. Integrating human factors and
artificial intelligence in the development of human-machine cooperation. In Proc. of
the 2005 International Conference on Artificial Intelligence (ICAI05). Citeseer, 2005.

o7


www.sparxsystems.eu/Sparx
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/jaarverslagen/2011/06/20/jaarverslag-2010-tno/jaarverslag-2010-tno.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/jaarverslagen/2011/06/20/jaarverslag-2010-tno/jaarverslag-2010-tno.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/jaarverslagen/2011/06/20/jaarverslag-2010-tno/jaarverslag-2010-tno.pdf

M. Westera, J. Boschloo, J. van Diggelen, L.S. Koelewijn, M.A. Neerincx, and N.J.J.M.
Smets. Employing use-cases for piecewise evaluation of requirements and claims. In
Proceedings of the 28th Annual Furopean Conference on Cognitive Ergonomics, pages
279-286. ACM, 2010.

K.E. Wiegers. Automating requirements management. Software Development, 7(7):1-5,
1999.

K.E. Wiegers. Software requirements. Microsoft Press, 2003.

K.E. Wiegers. More about software requirements: Thorny issues and practical advice.

Microsoft Press Redmond, WA, USA, 2005.

D.R. Windle and L.R. Abreo. Software requirements using the unified process: a practical
approach. Prentice Hall PTR, 2003.

o8



Appendix A

sCET Use Cases

Use case 1 UC.01

Description: Different [[scet—users]] work on one requirement
Goals: Get better requirements

Actors: 2x [[scet—user]]

Pre-Conditions:
Post-Conditions:
Requirements:
Main action se-
quence:

A sCET project is created
The requirement is updated by [[scet—user]|] 2.
RQ-1, RQ9

1 User 1 enters a requirement

2 User 2 looks at the requirement

3 User 2 makes changes to the requirement

Table A.1: UC.01

Use case 2 UC_02

Description: Users work on different parts of the design specification at
the same time.

Goals: Parallel cooperation

Actors: 2x [[scet:user]]

Pre-Conditions:
Post-Conditions:
Requirements:
Main action se-
quence:

Defined workload for both users
A design specification
RQ-2, RQ9
1 User 1 logs into sCET.
2 User 2 logs into sCET.
3 User 1 and User 2 both work on their part of the design
specification

Table A.2: UC_02

99




Use case 3 UC.03

Description: Exporting data

Goals: Communicate with stakeholders
Actors: 1x User 1x Stakeholder

Pre-Conditions:
Post-Conditions:
Requirements:
Main action se-
quence:

A design specification which is inserted into sCET.
An up-to-date Stakeholder
RQ-3
1 A user performs an export of the SCET design specifica-
tion
2 The user shows the export to the stakeholder
3 The stakeholder understands the export

Table A.3: UC_03

Use case 4 UC_04

Description: Create ontologies

Goals: Communicate with users
Actors: 2x [[scet—User]]

Pre-Conditions:
Post-Conditions:
Requirements:
Main action se-
quence:

A term which is ambiguous
A term with definition
RQ-1, RQ3
1 User 1 creates a requirement.
2 User 2 looks at the requirement, but does not understand
a term.
3 User 1 adds the term to the ontology.
4 User 2 now understands the requirement.

Table A.4: UC_04

Use case 5 UC-05

Description: Create a complete requirement
Goals: A complete requirement
Actors: [[scet—User]]

Pre-Conditions:
Post-Conditions:
Requirements:
Main action se-
quence:

An incomplete requirement
A complete requirement
RQ_4
1 User looks at a requirement.
2 User spots am empty field.
3 User adds information for that field.

Table A.5: UC_05

60




Use case 6 UC_06

Description: Verifiable design space

Goals: Create a verifiable design space
Actors: User

Pre-Conditions:
Post-Conditions:
Requirements:
Main action se-
quence:

A requirement without metrics
A verified requirement
RQ-5
1 The user looks at a requirement
2 The user sees that there are no metrics defined for the
claims of the requirement
3 The user adds metrics for the requirement
4 The requirement can be verified

Table A.6: UC_06

Use case 7 UcC.07

Description: User learns the sCE methodology
Goals: learn the sCE methodology
Actors: User

Pre-Conditions:
Post-Conditions:
Requirements:
Main action se-
quence:

User without knowledge of the sCE methodology
User with knowledge of the sCE methodology
RQ-6
1 The User knows nothing about the sCE methodology
2 The User uses sCET
3 The User now knows something about the sCE method-

ology

Table A.7: UC_07

Use case 8 UC_08

Description: Iterative process

Goals: Develop the design specification trough an iterative process.
Actors: User

Pre-Conditions:
Post-Conditions:
Trigger:
Requirements:
Main action se-
quence:

An existing requirement
A updated requirement
The requirement becomes outdated
RQ-7
1 A user spots an outdated requirement.
2 The user looks at the previous versions of the require-
ment.
3 The user updates the requirement

Table A.8: UC_08

61




Use case 9 UucC.09

Description: Reuse the project data to reduce duplicate work
Goals: Reuse of project data

Actors: User

Pre-Conditions:
Post-Conditions:
Trigger:
Requirements:
Main action se-
quence:

An existing project
A new project with data
A new project is started
RQ-8
1 A new project is started
2 A user exports data from a previous project
3 The user imports this data into the new project

Table A.9: UC_09

62




Appendix B

sCET Requirements

Collaboration

Requirement 1

RQ1

Description:

Claim 1.1

Claim 1.2

Use Cases:

sCET shall improve collaboration when users work on de-
pendent parts.
Because sCET supports designing requirements in an itera-
tive way, better requirements will be created.
+ More input per requirement is generated, resulting in a
more thought-out requirement.
- More discussions can arise, which takes more time to
develop the system.

Because users can see the work of others, they can make
their work align to each other.
+ Involvement of distributed users in the design process is
increased.
- It can be difficult for the user to determine relevant data.
UcC.01, UC.04

Table B.1: RQ_1

63




Requirement 2

RQ 2

Description:

Claim 2.1

Use Cases:

sCE(T) shall support parallel collaboration on different
parts.
Because sCE(T) is modular, users can work on different
parts at the same time.
+ Users do not have to wait for each other to finish working
on their part.
- A network connection is required to access the tool.

UC.02

Table B.2: RQ_2

Requirement 3

RQ 3

Description:
Claim 3.1

Claim 3.2

Use Cases:

sCET shall improve communication with outsiders.
Because users can create reports with sCET, stakeholders
can easily understand the design specification.

+ Less time is needed to explain the design specification.

+ Stakeholders can identify the progress of the project.

- Time is needed to create reports.

Because users can create ontologies, the design specification
will become more understandable for outsiders.
+ If the design specification is easier to understand mis-
communication shall be prevented.
- Creating an ontology takes time.

UC.03, UC.04

Table B.3: RQ_3

Requirement 9

RQ9

Description:
Claim 9.1

Use Cases:

sCET shall ensure the security of sensitive data.
Because sCET ensures security, no unauthorized users can
access sensitive data.
+ Sensitive data is secured.
- No 100% security can be guaranteed. Therefore, users
need to be aware that security can be compromised.

UC.01, UC.02

Table B.4: RQ_9

64




Soundness and Completeness

Requirement 4 RQ 4

Description: sCET shall enforce users to create an complete design spec-
ification.

Claim 4.1 Because sCE(T) has defined its data fields, it discourages
entering irrelevant data.

+ Less irrelevant data results in better understandable de-
sign specifications.

- Sometimes additional information might be hard to en-
ter.

Claim 4.2 Because sCE(T) has defined its data fields, it is possible to
see what data is missing.

+ Missing data can be identified and added easily.

- If some fields are irrelevant for a specific case, they can-
not be removed.

Use Cases: UC.05

Table B.5: RQ_4

Requirement 5 RQ_5

Description: sCE(T) shall enforce the specification of verifiable design
specifications.

Claim 5.1 Because claims are defined by metrics, claims can be tested
for their validity.

+ If the claims are refuted, they can be refined to be re-
placed by better claims.

- Defining adequate metrics takes time.

Claim 5.2 Because sCET can give an overview of claims and their vali-
dation status, users can easily check which requirements need
validation.

+ Claims can be validated easily.

- Users may be fixated on keeping each claim verified,
while they may still be changed. This can result in un-
necessary work being done.

Use Cases: UC-06

Table B.6: RQ_5

65




Requirement 6 RQ_6
Description: sCET shall facilitate the learning of the sCE methodology.
Claim 6.1 Because sCET guides the users in creating the design speci-
fication, the learning curve decreases.
+ New user can deliver results more quickly.
- Users could proceed in a disorganized way and not really
learn the methodology.
- Users could dislike learning a new tool in general.
Use Cases: uC.07
Table B.7: RQ_6
Reusability
Requirement 7 RQ_7
Description: sCET shall make the iterative process insightful.
Claim 7.1 Because users can see the history of requirements better eval-
uation choices will be made.
+ Users do not repeat previously made mistakes.
- Users can lose the overview because of too much infor-
mation.
- Navigation across the design specification can become
more difficult when more information is present.
Use Cases: UC.08

Table B.8: RQ_7

Requirement 8

RQS

Description:
Claim 8.1

Use Cases:

sCET shall make design specifications reusable.
Because requirements from previous projects can be im-
ported, new projects can start more quickly.
+ Importing old requirements results in less work for users.
- Errors which were made previously can persist in related
projects.

UC._09

Table B.9: RQ_8

66




Requirement 10

RQ_10

Description:
Claim 10.1

Use Cases:

sCET shall show sCE artefacts in a graphical way.
Because sCET shows use cases in the form of use case di-
agrams, it is easy to see the relations between actors and
functions.
+ More insight is given in the use cases
- Users need to learn the notation for use case diagrams
how to use it.

Table B.10: RQ_10

Requirement 11

RQ_11

Description:
Claim 11.1

Use Cases:

sCET shall incorporate test results.
Because sCET incorporates test results, design decisions can
be made more easily.
+ Looking at test results facilitates the refinement of re-
quirements.
- Entering test results takes time.

Table B.11: RQ_11

Requirement 12

RQ_12

Description:

Claim 12.1

Use Cases:

sCET shall have integration with development tools such as
Eclipse and Visual Studio.
Because sCET has integration with development tools such
as Eclipse and Visual Studio, it is possible to link require-
ments to the actual code.

+ Code can be traced back to its requirements.

- The design and implementation phases fade into one

phase.

Table B.12: RQ_12

67




Requirement 13 RQ_13

Description: sCET shall support cognitive modelling diagrams.

Claim 13.1 Because sCET supports cognitive modelling diagrams, it is
possible to get a better understanding of the human-machine
interaction.

+ More insight is gained in the human-machine interaction.
- SCET becomes complicated for new users.

Use Cases:

Table B.13: RQ_13

68




Appendix C

sCET Workshop Questionnaire

General information

Gender: male / female
Age:

Level of education:
Education:

Company:

Company location:
Sector expertise:

Questions before the workshop

Please indicate how much you agree with the following statements, by encircling number
of a scale from 1 (disagree very much) to 5 (agree very much).

1. I think that using sSCET will help me learn the sCE method- 1 2 3 4 5

ology
2. I like it to learn to use sCET 1 2 3 4 5
3. I expect that learning to use sCET will be easy and fast 1 2 3 4 5

4. I think that I can improve communication between project 1 2 3 4 5
members with sCET

5. I think that with using sSCET I can easily create and refine 1 2 3 4 5
good design specifications

6. I think that with SCET I can easily share and maintainmy 1 2 3 4 5§
design specification

7. I have experience in requirement engineering 1 2 3 4 5

8. I have worked with the situated Cognitive Engineering 1 2 3 4 5
methodology before

Please answer the following questions in your own words:

69



9. What do you expect from sCET?

10. Do you have any other remarks?

Questions after the workshop

The situated Cognitive Engineering Methodology

Please indicate how much you agree with the following statements, by encircling number
of a scale from 1 (disagree very much) to 5 (agree very much).

11.
12.
13.

14.

I like the sCE methodology.

I think the sCE methodology is useful for my work.

The sCE methodology helps me in defining a good design
specification.

I think I will use the sCE methodology in future projects.

sCET collaboration

—_ =

\)

w

W

ot

Please indicate how much you agree with the following statements, by encircling number
of a scale from 1 (disagree very much) to 5 (agree very much).

15.
16.

17.
18.
19.

20.

I like the idea that other people can edit my data.

Looking at the input of others helps me with creating my
own.

sCET gets me involved with the work of others.

The data of others distract me from my work.

The need of an internet connection hinders me from working
with sCET.

Exporting the data of sSCET would save me time in creating
reports for other people.

70

—_

—_



sCET soundness and completeness

Please indicate how much you agree with the following statements, by encircling number
of a scale from 1 (disagree very much) to 5 (agree very much).

21. The input fields of SCET help me in knowing what datato 1 2 3 4 5

enter.
22. I dislike it that I cannot enter everything I want. 1 2 3 4 5
23.  The input fields of sCET prevent me from entering irrelevant 1 2 3 4 5
data.

24. I sometimes leave fields empty because they are not relevant. 1 2 3 4 5
25. I think with using sSCET I can validate the claims I have 1 2 3 4 5
defined in a structured way.

26. Defining adequate claims takes too much time. 1 2 3 4 5

27. With sCET I can deliver results quickly. 1 2 3 4 5

28. 1 didn’t really learn the sCE methodology that well when 1 2 3 4 5
using sCET.

29. 1 disliked using a new tool 1 2 3 4 5

sCET reusability

Please indicate how much you agree with the following statements, by encircling number
of a scale from 1 (disagree very much) to 5 (agree very much).

30. I think that I can reuse some of the data in SCET inother 1 2 3 4 5

projects.
31. sCET will help me in finding results of old projects. 1 2 3 4 5
32. I would like to use SCET in the future. 1 2 3 4 5

sCET (with sCE experience)

Please only answer the following questions if you have experience with the SCE method-
ology and indicate how much you agree with the following statements, by encircling
number of a scale from 1 (disagree very much) to 5 (agree very much).

33. Using sCET to apply the sCE methodology is easier than 1 2 3 4 5
using textual documents.

34. With sCET I spend less time doing the same. 1 2 3 4 5

35. I have a better view on what other people are doing than 1 2 3 4 5
before.

36. I think that using sCET will give me better results than 1 2 3 4 5
before.

37. Learning SCET was more difficult than I expected. 1 2 3 4 5

38. Using sCET gave me a better understanding of the sCE 1 2 3 4 5
methodology.

71



sCET (without sCE experience)

Please only answer the following questions if you do not have any experience with the
sCE methodology and indicate how much you agree with the following statements, by
encircling number of a scale from 1 (disagree very much) to 5 (agree very much).

39.

40.

41.

Using sCET gave me a good understanding of the sCE 1 2 3 4 5
methodology.

Learning the sCE methodology was more difficult than I 1 2 3 4 5
expected.

Learning sCET was more difficult than I expected. 1 2 3 4 5

General remarks

Please answer the following questions in your own words:

42. What was your overall experience with sCET?

43. Do you have any suggestions for sCET?

44. Do you have any other remarks?

72



Appendix D

sCET Questionnaire Results

Question Mean Median Range | Question Mean Median Range
1 4.4 4 1123 3.2 3 2
2 2.4 3 2|24 3.6 4 1
3 34 3 2125 3.0 3 2
4 3.2 3 1126 3.6 4 1
) 3.0 3 0|27 2.2 2 1
6 2.6 2 2| 28 2.8 3 2
7 2.8 3 1129 1.8 1 3
8 1.8 2 2130 1.6 2 1
11 3.0 3 0] 31 2.4 3 2
12 3.4 3 1132 3.0 3 0
13 3.4 3 1133 4.0 4 0
14 3.2 3 2| 34 4.0 4 0
15 3.0 3 3135 4.0 4 0
16 4.2 4 1136 4.0 4 0
17 4.4 4 1137 4.0 4 0
18 1.8 3 21|38 5.0 5 0
19 2.0 3 2139 4.0 4 2
20 3.5 3.5 3|40 2.25 2 3
21 2.4 2 1] 41 1.75 2 1
22 3.0 2 3

Table D.1: sCET questionnaire results

73



Appendix E

sCET BBCode Reference

BBCode description Effect
[b]Some Text[/b] Bold Text Some Text
[[1ISome Text[/i] Italic Text Some Text
[u]Some Text[/u] Underline Text Some Text
[cool]Some Text[/cool] Highlighted Text SOME TEXT
[indent]Some Text[/indent] Indent Text Some Text
[lyrics]Some Text[/lyrics] Speech or Lyrics Text Some Text
[smallcaps]Some Text[/smallcaps] Small Caps Decoration| SOME TEXT
[big]Some Text[/big] Bigger Text Some Text
[small]Some Text[/small] Smaller Text Some Text

Monospaced Text
(Teletype Output)

Some Text

[tt}Some Text/tt]

Some [sub]Text[/sub] Subscript Text Some Text
Some [sup]Text[/sup] Superscript Text Some 4
[url]http://www.tno.nl[/ur] Hyperlinks http://www.tno.nl
[url=http://www.tno.nl]TNO website[/url] Hyperlinks TNO website

Figure E.1: sCET BBCode tags (1/2)

74



BBCode description Effect

[img]http://upload.wikimedia.org/wikipedia/commons/ Images
thumb/7/7c/Go-home.svg/100px-Go-home.svg.png[/img] 9
[emaille@mail.com[/email] Email Links e@email.com
[email=e@mail.com]Demo[/email] Email Links Demo
[font=Verdana]Some Verdana Text[/font] Text Font Some Verdana Text
[color=red]Some Red Text[/color] Text Color Some Red Text
[color=#FF0000]Some Red Text[/color] Text Color Some Red Text
<?php
[phplsome php code[/ php] PHP Highlight some php code
7>

[code]some html or similar code[/code] Code Type __sSome html or similar cq
[list}Some = Some
List List = List
Property[/list] = Property
[list=dec]Some_ . . 1. Some
Ordered I('E')S;’Cm"tgl gl:r('jnet:ers) 2. Ordered
Text[/list] 3. Text

Figure E.2: sCET BBCode tags (2/2)

Short tags Description Effect

[bull /] Bull .
[copyright /] Copyright ©
[registered /] Registered ®
[tm /] Trademark il
#TODO To Do #TODO
#TBD To be defined #TBD

Figure E.3: sSCET BBCode short tags

75



	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Approach
	Outline

	Background
	Requirements
	Definition
	Requirements Characteristics
	Types of Requirements
	Use Cases

	Requirements Engineering
	Definition
	Requirements Engineering Phases
	Requirements Engineering Methods
	Requirements Engineering Tools
	Requirements Design Rationale


	The situated Cognitive Engineering Methodology
	Cognitive Systems Engineering
	Situated Cognitive Engineering
	Basic principles
	sCE Phases
	sCE Use Cases
	sCE Requirements and Claims

	sCE comparison

	The situated Cognitive Engineering Tool (sCET)
	sCET Motivation
	sCET Design
	Derive
	Specify

	sCET Prototype
	sCET Data Model
	Architecture
	Interface


	sCET evaluation
	Experiment Set-up
	Experiment Results
	Informal Evaluation
	Formal Evaluation


	Discussion
	Tools Comparison
	sCET Improvements
	Guidance
	Reporting
	Security
	Visual Design and Usability
	Validation
	Reusability

	sCET Refinement
	Refined Requirements
	Added Requirements


	Conclusion
	General conclusions
	Recommendations
	Future Research

	Bibliography
	sCET Use Cases
	sCET Requirements
	sCET Workshop Questionnaire
	sCET Questionnaire Results
	sCET BBCode Reference

