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Abstract 

The current study investigated the development of spatial relations in an artificial neural 

network. Design constraints and requirements for the artificial neural network were 

formulated from literature, in an attempt to make the network psychologically and 

neurobiologically plausible. Egocentric route information was taught to a network using 

back propagation. The network was embodied in a Lego Mindstorms robot. The 

(embodied) network successfully managed to navigate a learned maze. Using principal 

component analysis to investigate the representations the network built, components for 

direction and location were found. They hinted at preparation effects and the basis for an 

emerging allocentric representation. No evidence for the ability to find novel routes was 

found.  
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1. Introduction 

Humans are very capable of finding their way in known and unknown environments. It is 

such a natural activity for most that they do not even pay much attention to the task. They 

just do and when they get lost, asking for directions generally solves the problem. A 

helpful passerby gives a sequence of directions and we are able to form an idea of where 

we are, where our goal is, and how to get there. It has been widely found that humans are 

very flexible in completing various route finding tasks (e.g. Noordzij, Zuidhoek & 

Postma, 2006). To complete such tasks, it is necessary to have some mental 

representation of the spatial information. However, the nature of the representations 

necessary for spatial tasks is still under debate (e.g. Burgess, 2006). This thesis tries to 

model such spatial representations in an artificial system. 

 In this chapter, I first explain why it is useful for psychology to investigate artificial 

systems performing human tasks. In the next chapter, an outline of the field is given, in 

order to show where hiatus are and how they might be filled. The third chapter ends with 

a description of an embodied artificial neural model that can perform a route-finding task. 

 

1.1 Psychology and artificial intelligence 

To understand why psychologists are interested in modeling artificial mental systems it is 

important to consider where psychology came from. Psychology has its roots in ancient 

philosophy and medicine. Hippocrates started describing natural causes of psychological 

conditions, gave clear descriptions of many behavioral problems, and formulated theories 

of temperament and motivation. These theories were very influential in science and 

though science has since moved on, some of Hippocrates‟ ideas are still used in 
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contemporary language (Hothersall, 2004, p.18). Behaviorism (focus on behavior), 

combined with some introspection, were the main psychologists tools for the bulk of the 

psychological history. It provided us with some great theories of mind, but was largely 

limited to behavior and did not reveal much of the inner workings of the brain. 

 Only recently, tools have become available that allow for in vivo measurements of 

electrical or metabolic changes, which are related to brain activity. Neuroscientific tools 

such as electroencephalography (EEG), functional magnetic resonance imaging (fMRI), 

and magnetoencephalography (MEG) enable us to probe the activation patterns of the 

working brain. These techniques generally show what areas of the brain are active during 

some task, but they do not easily show how these active brain areas solve some task or 

produce behavior. Initiatives, such as knife-edge scanning microscopy for imaging and 

reconstruction of three-dimensional anatomical structures, give extremely detailed (sub-

micron resolutions) neuroanatomical maps of neurons, their interconnectiveness, and 

their larger scale structures (Mayerich, Abbott, & McCormick, 2008). These impressive 

neuroscientific feats provide us with a wealth of information on the anatomy of the brain. 

However, to make a translation from physiology to cognition we need more than 

knowledge of the neuroanatomy and theories of behavior. We need a way to investigate 

the mechanisms that generate intelligence and cognition, which is exactly the focus of 

artificial intelligence research. This is where neuroscience, artificial intelligence, and 

psychology meet. We all want to understand the structural (neural) elements that root 

cognition, perception, and other psychological constructs and we all need models to 

accomplish it (van der Velde, 2010).  



9 

 

 Now that it is clear why psychologists are interested in modeling artificial cognition 

systems, it is time to give a, far from complete, overview of the work done so far in this 

multidisciplinary field. I focused on spatial cognition and in particular on the 

representations needed to complete a spatial route-finding task. First, spatial cognition 

was investigated from the psychological and neuroanatomical view. This yielded some 

constraints to which a psychological and neurological plausible artificial route finding 

system should adhere. With such constraints in mind, artificial neural models were 

investigated leading to an artificial neural network that is able to perform a route-finding 

task in a psychological and neurological plausible way. 
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2. Spatial Cognition 

This chapter presents theoretical background on spatial cognition. The goal is to 

formulate a set of design constraints or guidelines for an artificial neural network. 

Psychological and neurobiological literature is discussed, after which some examples 

from artificial intelligence are presented.  

 

2.1 Psychology  

The cognitive mechanisms involved during navigation center on the creation, retrieval, 

and application of spatial representations. The factors involving differences between 

spatial representations were summed up aptly in four factors by Taylor, Brunyé, and 

Taylor: “The nature of […] spatial mental representations may vary as a function of at 

least the following: extent of experience […], nature of experience […], environmental 

scale and complexity […], and individual differences” (p.2, Taylor, Brunyé, & Taylor, 

2008). These factors relate to human cognition. This thesis, however, will describe an 

embodied artificial neural model that can perform a route-finding task. Since the goal is 

to create an artificial system that is rooted in (human) cognition, these human factors will 

have to be taken into account. 

 Human spatial cognition seems to depend on at least two distinct spatial 

representations: egocentric and allocentric representations (Burgess, 2006). Egocentric 

and allocentric spatial representations differ in their frame of reference. In an egocentric 

frame of reference, all objects or locations are represented in relation to the observer. In 

an allocentric frame of reference, however, objects or locations are represented 
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independent of the observer, thus in object-object or location-location relations (e.g. 

Burgess, 2006; Zaehle, Jordan, Wüstenberg, Baudewig, Dechent, & Mast, 2007).  

 Burgess (2006), in an opinion piece, summed up behavioral data, which suggests that 

both representations are products of distinct systems. These two systems can operate 

separately but they can also cooperate. As an example of separation, experiments by 

Waller and Hodgson (2006) showed that the spatial cognitive system is able to switch 

between representations. They showed participants an array of objects briefly, then 

rotated the participant and asked them to point towards an object. An increase in pointing 

error variation occurred after 135° of rotation but not after 90° or less. According to the 

authors, this indicates a switch from one representation to another instead of a slow 

compromise of one representation (Waller & Hodgson, 2006). This seems to indicate that 

both systems can operate separately. However, the systems clearly have to work together. 

For more supporting empirical evidence, please refer to Wang and Spelke (2000) or 

Burgess (2006).  

 Allocentric representations are more suitable for long-term storage, as it is likely that 

the body will have moved between presentation and recall. As imagery and sensory 

perception are egocentric by nature, every time an allocentric representation is created or 

used, a translation has to be made to and from egocentric representations. This also holds 

true when allocentric information is used for action oriented (and thus egocentric) 

representations (Burgess, Becker, King, & O‟Keefe, 2001; Burgess, 2006). All this is of 

importance because this thesis will focus on egocentric representations developed during 

or for a route-finding task. Neuropsychological studies have shown that egocentric 

representations can occur separate from allocentric representations (e.g. Burgess, Becker, 
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King, & O‟Keefe, 2001). This means that an artificial system that can form (only) 

egocentric representations is rooted in (neuro)psychological reality. However, it seems 

important for such an egocentric artificial system to be compatible with an allocentric 

artificial system (more on this in the discussion). 

 Denis and Zimmer (1992) showed spatial mental representations are similar, whether 

they are built up from visual experience or from spatial descriptions. Humans are 

consistently found to be capable of building usable spatial representations from simple 

descriptions that contain some form of spatial information (e.g. Cocude, Mellet, & Denis, 

1999; Noordzij & Postma, 2005; Noordzij, Zuidhoek, & Postma, 2006). The mechanism 

that builds and uses a mental spatial representation appears to be very flexible. For 

example, consider the mental spatial representation that can be built from a route 

description or a survey description. A route description describes the environment in 

egocentric clues, such as „go left at the bakery‟. A survey description gives information 

about the environment in an allocentric manner (e.g. the bakery is to the north of the 

zoo). After learning a route or a survey description, the same tasks (e.g. guessing the 

distance between two points, or verifying first person perspective statements after 

learning a layout) can be completed (e.g. Noordzij, & Postma, 2005). Interestingly they 

later found that blind people perform better at a spatial task after listening to a route 

description compared to a survey description. This was even true when the spatial task 

explicitly favored a survey description (Noordzij, Zuidhoek, & Postma, 2006). Blind 

people rarely use survey descriptions (e.g. a map) and mainly rely on route descriptions 

to get around. At least for spatial information, this implies that the mechanism that builds 
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a spatial mental representation benefits if the spatial description is given in a familiar or 

consistent way. 

 To understand the flexibility of spatial mental representations further, it is important 

to consider the goals under which the representations are formed or used. Without a goal, 

one would be wandering around aimlessly. It might not be possible to not have a goal; 

even if one is wandering around aimlessly, it might be exactly the fulfillment of the goal 

„wandering around aimlessly‟. Also, consider the example given earlier; a mental spatial 

representation built from the description of a route or survey can be used to complete the 

same tasks (Noordzij, & Postma, 2005). During training, the goal might be composing an 

elaborate mental spatial model, for example with the intention to do well on a test. Later 

the spatial knowledge acquired might be used in fulfilling the goal of getting to a location 

as quickly as possible (e.g. Maguire et al., 2000). Goals seem sufficiently important to 

address them explicitly in the embodied artificial neural model, which is discussed later 

in this thesis. 

 Besides selecting a learned route, it is also possible to infer a novel route between 

two visited points. For example, if there are three points (A, B, C) and the routes between 

A-B and B-C are known, it is easy to go from A to C via B. It is also possible to take 

shortcut A-C, thus inferring a novel route (see figure 1). Humans are capable of 

computing such novel routes, however, only when there are landmarks present along the 

routes to guide them (Foo, Warren, Duchon, & Tarr, 2005). The capability of the 

embodied artificial neural model to compute a novel route is discussed later in this thesis. 
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Figure 1: Three destinations (A, B, C). Two learned paths (A-B and B-C) leave one novel 

route to be discovered (A-C). 

 Summarizing, we can already specify some of the requirements the artificial neural 

network should meet. For the artificial neural network to be an approximation of how 

humans build and use spatial mental representations, it must: 

(1) Consist of separate, but closely intertwined, systems for different spatial reference 

frames; 

(2) Benefit from a spatial description given in a familiar or consistent way during 

training; 

(3) Make use of goals in building and using a spatial mental representations; 

(4) Be capable of selecting familiar routes and computing novel routes. 

 

2.2 Neuroscience 

The questions of what brain areas are involved in spatial cognition, and with how many 

neurons, are difficult to answer precisely, yet they are important for an (artificial) model 

of spatial cognition. Involvement of brain areas was found to vary over spatial tasks and 
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the representations required. Zaehle and colleagues (2007) investigated the difference 

between an egocentric and an allocentric frame of reference in an fMRI study. They 

found that the processing of egocentric spatial relations caused activation in the medial 

superior–posterior areas, whereas allocentric spatial coding seemed to require an 

additional involvement of the right parietal cortex, the ventral visual stream and the 

hippocampal formation (Zaehle, Jordan, Wüstenberg, Baudewig, Dechent, & Mast, 

2007). This suggests that in the human spatial cognitive system the egocentric spatial 

coding only requires a subsystem of the entire processing resources needed for an 

allocentric spatial coding task. Note, however, that Zaehle et al. used novel spatial stimuli 

in their experiment. 

 Mellet et al. (2000) compared brain activation in route and survey navigation tasks, 

using pre-learned spatial information, with PET. It seems logical that route navigation 

would have an egocentric frame of reference, while survey navigation would use 

allocentric representations. They found that the tasks shared some brain activation, but 

also caused activation in distinct areas. The right hippocampus was active in both survey 

and route tasks, and therefore might hold the neural equivalent of a dual-perspective 

representation. During a route navigation task, additional activity was found in the 

parahippocampal gyrus. This suggests, this area is used when there are landmarks in the 

environment (Mellet et al., 2000). Similar results were found when imaging the active 

brain areas during mental replay of navigation (Ghaem et al., 1997).  

 Note that this seems opposite to what the Zaehle study found. However, Zaehle used 

novel stimuli while Mellet et al. (2000) and Ghaem et al. (1997) used previously learned 

stimuli. In addition, the tasks differed; Zaehle et al. (2007) used a spatial visual judgment 
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task, while Mellet and colleagues (2000) asked participants to imagine navigating an 

environment. Therefore, the discrepancy might be due to the difference in task or a 

difference between learning and recovering spatial information.  

 Both findings, however, do seem to indicate that there are distinct, albeit closely 

related, systems for different forms of spatial information. In other words, there seems to 

be neuroanatomical evidence that egocentric and allocentric spatial information are 

processed in distinct areas of the brain. This gives some legitimacy to a model that is 

fairly specific for one spatial task (i.e., there might be different models for different 

tasks). However, a spatial model should be versatile and with minor adjustments or 

additions capable of performing different tasks. 

 The structure of the cortex, and that of the bordering hippocampi, is highly regular. 

There are distinct layers of neurons stacked on top of each other. Across these layers are 

small vertical columns spanning the layers. Both layers and columns are strongly intra- 

and interconnected. Further, neurons within a column generally have similar response 

characteristics and it is suggested that they operate as a (functional) group. Finally, 

similar cortical circuits are found all over the cortex (e.g. van der Velde, 2010). This 

pushes us further to try to find simple and versatile mechanisms of cognition that are like 

building blocks. One such neural circuitry building block might not be powerful enough 

to perform anything but the most basic form of cognitive operations, but more blocks 

together might show more complex computing power. 

 The size of brain areas can vary as a result of high (navigational) skill dependency. 

In an often-quoted study by Maguire and colleagues (2000), London taxi drivers were 

found to have bigger posterior hippocampi than controls. Also, the amount of time spend 
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as a taxi driver correlated positively with posterior hippocampal volume. This coincides 

nicely with the idea that this area is responsible for storing spatial information about the 

environment (Maguire et al., 2000). It might also imply that the mechanism responsible 

for building and using spatial mental representations can recruit more neurons if 

necessary, which is of importance to keep our (artificial) mental model rooted in biology. 

 Summarizing we can specify some more requirements an artificial neural network 

should meet. In order for an artificial neural network to maintain a root in biology, it 

should follow these guidelines:  

(5) The model can be (single) task specific; 

(6) The model should have a simple mechanism to produce cognition; 

(7) These mechanisms should be like building blocks; 

(8) It should be possible to change or combine these simple basic building blocks to 

change their function. 

 

2.3 Artificial cognition 

Now that it is clear what the spatial mental model and the artificial neural network should 

be able to do, it is time to review what artificial models are out there and which we might 

use. First, some descriptions of mental models are given and from these models, a spatial 

mental model that can represent route information emerges. 

 Artificial intelligence (AI) and cognitive modeling provide an important opportunity 

for improving our understanding of human cognition. Traditional psychology uses human 

behavior as the main source of data while neuropsychology mainly studies the workings 

of neurons and neuronstructures. However, to understand intelligence and cognition truly, 
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we also need to understand the mechanisms that generate them. To accomplish this we 

can try to model such mechanisms, while of course adhering to the constraints that came 

from psychological and neuroscientific research. Modeling cognition forces us to 

acknowledge factors that might have stayed hidden otherwise. 

 Many AI researchers stem from computer sciences and, therefore, often find 

symbolic, mathematic, and algorithmic solutions to model cognition. Such symbolic 

solutions can be very powerful, see for example the “Walter Simulation” by Ballard and 

Sprague (2006). Their modeled virtual character “Walter” is capable of a lane keeping 

task while avoiding obstacles and collecting collectables. They accomplished this by 

dividing a task into behaviors and each behavior into microbehaviors. Such 

microbehaviors can be accomplished by fairly simple programs. When more of such 

microbehaviors are combined, behavior that is more complex can be accomplished 

(Ballard & Sprague, 2006). Such studies show the success of a modular approach to 

cognition. Also, it gives further credibility to a model that tries to explain just one (or a 

few) aspect of cognition, which is exactly the scope of this thesis. 

 There are many ways to model cognition, for example using symbolic algorithms 

(e.g. Ballard & Sprague, 2006), dynamic systems (e.g. Schöner, 2006, also refer to 

appendix A), or neural networks. The modeling technique used in this thesis is neural 

networking. Neural networking has synonyms such as distributed representations (e.g. 

Elman, 1991), back propagation networks (e.g. Hecht-Nielsen, 1989), connectionism 

(e.g. Bechtel & Abrahamsen, 2001), and parallel distributed processing (e.g. McClelland 

& Rogers, 2003; Rogers & McClelland, 2008). Neural networks can come in many forms 

and shapes. In the next chapter a brief explanation is given of what a (feed forward) 
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neural network is and what it can do (cf. appendix B, Bechtel & Abrahamsen, 2001, and 

Zeidenberg, 1990). Two basic forms will be elaborated on further, the simple recurrent 

network (e.g. Elman, 1991), and the Rumelhart network (e.g. McClelland & Rogers, 

2003); see figure 2 and the next chapter for the distinction.  

  



20 

 

3. Neural network models 

In this chapter, some existing artificial neural network models are discussed. A 

combination of existing models leads to a model that can learn and represent a route.  

 

3.1 Neural networks 

The most basic feed-forward neural network has two distinct layers, made up of input and 

output neurons respectively. Each neuron has a certain activation value, which is loosely 

related to the firing rate of a biological neuron. The neurons in the input layer are 

connected to the neurons in the output layer via synapses. Each synapse or connection 

has a certain weight, which is based on the strength of a biological synapse. The 

activation of each neuron is based on the activations of the neurons that have connections 

to it, and the weight of those connections. Often there is another layer of neurons, a 

hidden layer, between the input and output layer, with which the network can perform 

computations or integrate, extract or retrieve more complex forms of information. The 

activation of a neuron i is updated using the following formula: 

      
 

                                   
 

Where the activation for neuron i (Acti) can be calculated by summing the activation of 

all j neurons that have a connection to i with weight ij minus the resistance to activation 

change by neuron i (ActThresi). This value is put into a logistic function with β as slope 

constant, for a more detailed description refer to appendix B (e.g. Hecht-Nielsen, 1989). 
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Figure 2: A simple recurrent network (A), a Rumelhart network (B), and a Recurrent 

Rumelhart network (C). 

 A network designer can hardwire the way in which the neurons are interconnected 

and the weight of these connections into the network. Most feed-forward neural 

networks, however, employ back propagation as a learning mechanism. Back propagation 

is a method in which the error, the difference between the current output and the desired 

output, of a neural network is reduced by altering the (synaptic) connections between the 

neurons of the network (Hecht-Nielsen, 1989). For a more detailed description of neural 

networking, the math, and learning by back propagation refer to appendix B. 

 Simple recurrent networks (see figure 2 A) have their roots in language studies 

because they can represent a sequence and its serial ordering (e.g. Elman, 1991). During 

training, the activation in the hidden layer of the input of the previous item in the 

sequence is still present. This 'copy of the previous item' is presented as input to the 

network, in combination with the current item in the sequence. This coupling causes the 

network to associate the previous with the current item in a sequence. After training 



22 

 

(using back propagation) the simple recurrent network can 'predict' the next item in the 

sequence (Elman, 1991). This ability might be useful as a building block for route finding 

skills. The simple recurrent network could report the next step, the direction to turn, in a 

route that it knows. However, it cannot discriminate between (overlapping) routes. 

Figure 3: The proposed neural network that can model the spatial route information. The 

network consists of four layers. The number of neurons is displayed for each group. The 

top layer is the input layer where three groups serve as input for the network: the current 

location, the destination, and a copy of the first hidden layer (hidden recurrent). This 

copy of the previous first hidden layer activation (recurrent) and the current location are 

fed into the first hidden layer. The first hidden layer feeds a copy of its activation, via the 

recurrent connections, to the hidden recurrent layer. It also feeds to a second hidden 

layer that combines the goal and the input. In the output layer the (turning) decision 

necessary to reach the destination, will become active. 
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 A Rumelhart network (see figure 2 B) can represent context and as such it might 

discriminate between sequences, grammatical context, or perhaps routes as in our case. 

For example, in a language case the network could learn the difference between 'canary 

can fly' and 'canary has wings'. When the same input is given, 'canary', the network can 

distinguish between outputs „fly‟ or „wings‟ because of the context, either 'can' or 'has' 

(McClelland & Rogers, 2003). However, the Rumelhart network is not capable of 

learning sequential information (such as a route). 

 

3.2 Spatial cognitive neural model for route information 

A recurrent Rumelhart network (see figure 2 C) is a combination of a simple recurrent 

network and a Rumelhart network, combining the ability to represent sequential 

information and context. Therefore, a recurrent Rumelhart network might be able to 

learn, represent, and distinguish between different (overlapping) routes. See figure 3 for 

the network I developed. During the learning of routes, the input is the sequence of 

locations along the route and the corresponding output of directions. The recurrent nature 

of the network builds the temporal order representation of the items. The context is the 

goal (the final location), which is continuously presented to the context neurons (called 

task set in figure 2 C). This results in a network that represents the sequence of directions 

of routes and can distinguish between different routes using the goal or destination of the 

route. After learning, a destination is presented to the network as a goal and the first 

location as the input. The network now generates the direction to get to the next location 

on the route. When this next location is presented as input the network generates the next 

following direction. These steps continue until the goal is reached. Additionally, it is 
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possible to start midway in a learned route, as long as the „start‟ location is in one of the 

learned routes to the goal. Starting midway in a route comes with the additional 

constraint that the direction an embodied network (e.g. robot) is facing is compliant with 

the direction of the route. 

 Now that an artificial spatial (route) neural model is presented (see figure 3), I will 

repeat the requirements stipulated earlier from the psychological and neuroanatomical 

review. The described neural network was embodied and tested against the requirements, 

see chapter 4. The results (chapter 5) are discussed in the discussion, chapter 6. In order 

for the artificial neural network to be a possible approximation of how humans build and 

use spatial mental representations, it must: 

(1) Consist of separate, but closely intertwined, systems for different spatial reference 

frames; 

(2) Benefit from a spatial description given in a familiar or consistent way during 

training; 

(3) Make use of goals in building and using a spatial mental representations; 

(4) Be capable of selecting familiar routes and computing novel routes. 

Moreover, in order for an artificial neural network to maintain a root in biology it should 

follow these guidelines:  

(5) The model can be (single) task specific; 

(6) The model should have a simple mechanism to produce cognition; 

(7) These mechanisms should be like building blocks; 

(8) It should be possible to change or combine these simple basic building blocks to 

change their function. 
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4. Methods 

In this chapter, a description is given of how the neural network was modeled, what it 

learned, and how it learned. Also, it is reported in what way the neural network was 

embodied and what tasks this embodied network performed. Finally, a description is 

given of the methods that were used to test whether the network could perform the task 

and how it could perform the task. The results of these tests can be found in the next 

chapter. The results are discussed in chapter 6. 

 

4.1 Modeling the neural network 

The neural network was modeled using MemBrain Neural Network Simulator, version 

03.06.02.00 (MemBrain, 2010). This program allows users to model, teach, test, and 

export neural networks of arbitrary size and architecture. The neural network model 

described earlier (figure 3) was implemented in the program, see also appendix D. The 

number of neurons in each hidden layer necessary for the model to be successful was not 

known. Informal analysis revealed that each hidden layer needed 11 neurons for the 

network to be taught a number of routes (nine in our case) of limited length (max four 

decisions). The current network consisted of 18 input neurons, three output neurons, 33 

hidden neurons, and 594 connections (including 121 recursive connections). The hidden 

neurons were organized in two hidden layers and one recurrent hidden group in the input 

layer. This hidden recurrent group serves as input to the (feed forward) network, which is 

why it is located in the input layer. However, its activation is hidden, since it is fed by the 

activation from the first hidden layer. Less (hidden) neurons in the network is possible, 

but increases the training time needed before the network reaches an acceptable error 
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level. More on the training of the network later, first the spatial environment that was 

taught will be discussed. 

 

4.2 The spatial environment 

The (embodied) network will navigate a grid-like maze. For this thesis a maze with nine 

intersections or positions was used, however an arbitrary number of positions can be used 

if enough neurons are available in the neural net. Intersection, position, and location are 

used as synonyms throughout this thesis. Each position has a number and positions 

double as destinations. As the (embodied) network traverses through the maze, it makes a 

turning decision at each intersection (even if there is only one possibility). Thus, a route 

(e.g. to P5) consists of a sequence of positions (e.g. P1, P4, P7, P8, P5) with the 

corresponding directions to turn (e.g. straight, straight, right, right).  

 

Figure 4: The maze that was used to train de neural network. It contains nine positions 

(or intersections), the grey areas, named 1 through 9. The start point of each route is the 

X, facing toward position 1. Four blockades are in place, so that each position can only 

be reached via one route. More than one choice in direction is possible at two 

intersections (P1 and P8).  
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Table 1: The routes to the various goals and the corresponding directions at the positions 

during the route (S = straight, R = right, and L = left). Also, the color code for each 

goal/position is shown. 

Goal Route Directions Color code for goal position 

P1 P1 - Yellow, Green, Red 

P2 P1, P2 R Yellow, Red, Green 

P3 P1, P2, P3 R, S Green, Yellow, Red 

P4 P1, P4 S Green, Red, Yellow 

P5 P1, P4, P7, P8, P5 S, S, R, R Red, Yellow, Green 

P6 P1, P2, P3, P6 R, S, L Red, Green, Yellow 

P7 P1, P4, P7 S, S Yellow, Green, Yellow 

P8 P1, P4, P7, P8 S, S, R, S Yellow, Red, Yellow 

P9 P1, P4, P7, P8, P9 S, S, R, S Green, Yellow, Green 

 

 Further, in this particular case each route started at the same position, at the X in 

figure 4. Some “roads” were closed to decrease the complexity of the maze, as fewer 

routes are possible, see figure 4. Also, this ensures that the routes are highly overlapping. 

A route was constructed to each location, see table 1 for all the routes and their 

corresponding directions. 

 

4.3 Training the network 

The routes and directions from table 1 were taught to the network using back 

propagation. Back propagation is a method in which the error, the difference between the 
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current output and the desired output, of a neural network is reduced by altering the 

(synaptic) connections between the neurons of the network (Hecht-Nielsen, 1989). Before 

training starts, the weights of the links in the untrained network are randomized. In 

training, there are two phases for each stimulus, the feed forward and the back 

propagation. The first input of a sequence is presented as input to the network. The 

network feeds this input forward and produces an output, which is likely to be far from 

the desired output. This difference between desired and actual output is designated as the 

error. Next, the contribution to the error is calculated for each neuron in the previous 

layer and the weight of its connection is altered accordingly. This back propagation of 

error is carried out for each layer in the network. When the back propagation is complete, 

the next item in the stimulus set is presented as input and the cycle repeats (cf. appendix 

B, Hecht-Nielsen, 1989). 

 Back propagation is a powerful learning tool. However, presenting the entire set of 

stimuli once is often not enough to get a well-trained network, especially if the stimulus 

set is large. After little training, the network will continue to make errors. It is difficult to 

predict how many training cycles are necessary to get adequate network performance. 

This is solved by setting an error level that the network has to reach. Training continues 

until this level is reached. The time (amount of training cycles) to reach the desired error 

level varies, as the network is randomized before training.  

 

4.4 Embodying 

The (spatial) neural network was embodied in the Lego Mindstorms platform. This 

platform includes a small processing unit, several sensors, and actuators. The robot built 
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with this platform, see figure 5, was named Wobot (Wayfinding Robot). The processing 

power and memory of the platform is limited therefore, it was not feasible to teach the 

neural network using the processor in the robot. This means Wobot cannot drive around 

and learn new things. It was also considered whether a Bluetooth link to a PC could be 

used to exchange real-time sensor data from the robot to the neural network and issue 

real-time motor commands from the network to the robot. Such a real-time link proved 

very troublesome, so a more proof-of-concept approach was taken. Please refer to the 

appendix C for a more detailed description of the Mindstorms platform and its limitations 

(also cf. Toledo, 2006). The neural network was trained on a PC and the trained network 

was uploaded to the robot. Thus, to teach Wobot a new route a new (trained) network has 

to be uploaded. The robot is capable of supplying the network with sensor data and 

computing the output of the network. The network output, in turn, influences Wobot‟s 

motors. This cycle was real-time. The exact procedures of uploading a neural network, 

along with the programming code used to embody the network, can be found in appendix 

C, E, and F. 

 Wobot‟s sensor array consists of three ultrasonic distance sensors for lane keeping 

and one down facing color sensor for recognizing locations. How lane keeping is 

implemented will be discussed later, first the way Wobot recognizes where it is will be 

explained. An efficient way for a robot (or for an animal for that matter) to determine its 

location, is using vision. Unfortunately, the Lego Mindstorms platform does not include a 

camera. It does, however, include a rudimentary color sensor that can recognize a meager 

six colors (barely, as I will explain later). As mentioned earlier, the used maze has nine 

locations that need recognizing, so simply assigning a color to each location would lead 
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to ambiguity as some colors are assigned to more than one location. This was solved by 

using a three-color barcode that identifies a location, see figure 6 and table 1. As you can 

see from figure 6, red looks more like pink, this is intentional and because the color 

sensor detected red more reliable, if the actual color was pink rather than red. A signaling 

color (white) was used as a signal in the software that a route was coming up; this means 

that if the sensor detected the signaling color the robot would start keeping count of what 

colors it saw. When the signaling color was detected again, the color code was finished 

and the code could be looked up. The resulting location was fed to the neural network to 

get a direction. In addition, the signaling color prevents interference from the color of the 

ground, as the ground color might be used in a color code. 

 

Figure 5: The Lego Mindstorms robot, which I dubbed Wobot (for Wayfinding Robot). 

From top to bottom of the picture, the following components can be identified. The white 

box, called the brick, houses the processor and other electronics. To the left and right the 

tracks are visible, both powered by their own motor. Below the brick there are three 

distance sensors visible, pointed forward and slightly to the left and right. At the bottom 

of the image a color sensor is visible, it is facing down. 
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Figure 6: A photograph of one of the intersections (P5) in the real world maze. 

 

Figure 7: The simple neural network that handles lane keeping. The distance sensors 

provide input to the top three neurons. The input neurons feed into a hidden layer of 

some (four) neurons. The hidden layer feeds the two output neurons, which drive their 

respective motor. 

 

4.5 Lane keeping 

Robot lane keeping is done with an embodied simple neural network, see figure 7. This 

network was trained on all possible 'extreme situations' and consequently managed to 

infer all intermediate situations. For example, if the middle distance sensor detects zero 

distance, meaning it bumped into something, both motors should be put in reverse. If the 
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left distance sensor detects decreasing distance, the right motor is slowed down, thus 

turning right. Lane keeping did is switched off during a turn and switched back on when 

the turn is complete. 

 

4.6 Testing the network 

Testing whether the neural network architecture works (after training) can be done 

virtual, by presenting input to the network and check whether the output is as expected. 

Also, it is possible to test analog, embodied, in the real world. Both ways of testing were 

done, albeit an analog test was executed only with one version of the neural network (as a 

proof of concept). The results of the tests are presented in the results chapter. 

 

4.7 Network analysis 

The successful completion of the tests shows whether a neural network has managed to 

build some representation with which it can solve the spatial navigation task. It is more 

interesting, however, to see how the network managed to solve its task. To reiterate the 

point made in the introduction, in order to understand cognition it is necessary to 

understand the mechanisms behind cognition. One way to approach this is to understand 

the way in which an artificial neural network managed to solve a task. The solution to a 

task an artificial neural network found might not at all resemble the way a biologic neural 

network solves the same task. Nonetheless, investigating the artificial neural network can 

give us an idea how a biological system might work. 

 To investigate how the network represents the spatial environment, we can directly 

observe the internal state of the network as it makes decisions. In other words, the 
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activation of the (hidden) neurons can be scrutinized for every (environmentally) possible 

input. This shows how all possible states are represented in the network. However, 

simply looking at the hidden neuron activation patterns might not reveal much, as this 

would be a diagram with as many dimensions as hidden neurons. Therefore, I conducted 

a rotation of the axes of the dimensions, using principal component analysis (PCA). This 

technique can be used to find the axis along which the most variance occurs. This means 

that it can reveal the structure of the data as it is represented in the neural network (see 

also Elman, 1991, & Kutner, Nachtheim, Neter, & Li, 2005). 

 To obtain the data for this analysis, each position in every route was presented to the 

trained network and the activation value of all neurons was exported for each of these 

instances. This dataset, with essentially as many dimensions as neurons, was imported in 

a statistical program (SPSS18). There the covariance matrix is calculated to find the 

principal components and their eigenvalues. The first few, relevant, components are 

investigated further. These most relevant components serve as „viewpoints‟ from which 

the data can be observed in the most informative way. An interpretation is given for the 

relevant components. 
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5. Results 

In this chapter, the results are summed up. The results are discussed in detail in the next 

chapter.  

 

5.1 Virtual results 

For the current spatial neural network, an error level of 1e-7 was reached after about 100 

training cycles. This training provided already adequate network performance. The 

maximum error level for the network in this thesis, however, was set to 1e-10, which 

generally took over 6.000 training cycles to reach. The 1e-10 threshold was chosen as it 

makes errors during testing extremely unlikely. Also, because processing power was not 

an issue. No errors were found, the network performed perfectly accurate on all learned 

routes. 

 

5.2 Analog results 

The spatial neural network performed equally well in the embodied environment. There 

were many instances where the robot provided erroneous data to the network, which led 

to a failure to reach the goal location.  

 The embodiment of the network did not produce insurmountable problems, for the 

programming code refer to appendix E and F. The platform, however, did come with a 

troublesome color sensor. It was very difficult to make it read colors correctly. The 

sensor made many errors, which lead to erroneous data being fed to the neural network 

(see appendix C for a more detailed description of the limitations of the Lego Mindstorms 
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platform). Whenever the color sensor worked appropriately, however, Wobot was 

consistently able to find its way in the maze. 

 

5.3 Network analysis 

The PCA of the spatial neural network revealed 20 components from which four are 

relevant, see figure 8. The four relevant components combined, explain 84,9% of the 

variance. 

 

 

Figure 8: The principal components found and their respective eigenvalues. 

 



36 

 

 The four relevant components were investigated using component plots of the 

factors, figures 9, 10, 11, and 12. In such plots, each factor is noted as a point along the 

component scale. Each factor, or instance, represents a decision point along a route. This 

means that destinations are not shown in the figures, as these require no further action by 

the network. Names of the instances were constructed as follows: the goal location _ the 

name of the position along the route _ the rank in the route and the direction to turn at 

this position (L = left, S = straight, and R = right). This makes it relatively easy to 

interpret what the components encode. 

 Component 1 seems to encode for the decision to go straight versus turning, as all 

straight instances score above 0.6 on the scale, see figure 9. Right and left turns are 

scoring below 0.3. 

 Component 2 is not so easy to interpret. It seems to encode for location 1 versus 

other locations, as all location 1 instances score above 0.6 on the scale, see figure 10. 

However, in combination with other components, for example component 3, it is possible 

to see a clustering of most locations, see figure 10. 

 Component 3 seems to encode for the right turns. All right turn instances are scoring 

above 0.4 on the components‟ scale. However, so does one instance where the decision is 

straight (i.e. Goal9_P8_4S), see figure 10. 

 Component 4 seems to encode for going left, see figure 9. In only one instance 

turning left is required (i.e. Goal6_P3_3L). Interestingly, there seems to be a preparation 

or expectation in the instance that turning left will be required at the next instance (i.e. 

Goal6_P2_2S). In this instance the network is required to go to location 6 (goal6) and is 

at position 2 (P2), which is the second position in the route toward 6. Finally, the network 
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is required to go straight (S) here. The interesting thing is, however, that the instance that 

will follow Goal6_P2_2S will require the network to go left and that the P2 instance 

seems to represent this. The instance is scoring higher on component 4, which encodes 

for a left turn.  

 Finally, two 3D figures are shown, figure 11, and 12. Figure 11 observes all 

components that encode for direction. It shows that a clear representation exists in the 

network, which distinguishes between all directions (left, straight, right). Figure 12 shows 

that there is a representation in the network that distinguishes all locations and their rank 

in a route, effectively showing a representational map. Note here that the rank is not 

something that is explicitly known in the network, it was added in the figure for 

readability. However, as the network gets feedback from the environment, it does not 

need to represent rank. The environment feeds the network with the actual current 

location and it is, for this network at least, irrelevant whether or not this was the expected 

location. 
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Figure 9: Components 1 and 4. Component 1 seems to encode for straight vs. turning; all 

instances and only the instances in which going straight is required are scoring higher 

than 0.6 on the scale (circle Straight). Component 4 seems to encode for going left, the 

only instance in which left is required (circle Left) scores higher than all other instances. 

These two components can make a distinction between all directions: Straight, right, and 

left.  
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 Figure 10: Components 2 and 3. Component 3 seems to encode for turning right (circles 

Right P1, Right P7, and Right P8) and other directions (‘circle’ Straight). Component 2 

seems to hold some location information. This is most promonently visible for position 1 

(which is the first position in every route) as all instances for position 1 score above 0.6 

on component 2 scale (see circles P1 and Right P1). 
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Figure 11: A three-dimensional plot of components 1, 3, and 4. These are the components 

that seem to encode for the turning decisions. Three clear groupings can be observed, 

turning left, going straight, and turning right. 
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Figure 12: A three-dimensional plot of components 2, 3, and 4. In this plot, the various 

choice positions in the maze are circled and labeled. Note that the 'end of the line' 

positions (P5, P6, and P9) are not shown since the network never makes a decision there. 

Additionally, arrows show the rank order in which each position is visited during all 

possible routes. Also, note that the positions with more than one possibility to turn have 

these possibilities represented in different clusters in the state space (see dashed lines in 

P1 and P8).  
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6. Discussion and conclusions 

First, in this chapter the theoretical demands, which became apparent in the introduction 

chapter, are recapitulated to discuss the success of the neural network model. Second, 

some possible improvements to the current neural network model are discussed, and 

some alternative neural networks are proposed. A preliminary analysis of these 

alternative networks is described. Third, the embodied network and the robotic platform 

used are discussed and possible improvements are mentioned. Finally, this chapter 

discusses future directions for spatial artificial neural models and the current model in 

particular. 

 

6.1 Theoretic demands from psychology 

The introduction summed up some demands that a spatial artificial neural network should 

meet to be rooted in psychology. First, these points are repeated, and then the results of 

the current network are viewed in light of these points. For the artificial neural network to 

approximate how humans build and use spatial mental representations, it must: 

(1) Consist of separate, but closely intertwined, systems for different spatial reference 

frames; 

(2) Benefit from a spatial description given in a familiar or consistent way during 

training; 

(3) Make use of goals in building and using a spatial mental representations; 

(4) Be capable of selecting familiar routes and computing novel routes. 

 Now that the neural network model is tested, we can investigate its performance in 

respect to the demands that came from the literature. First, the different spatial reference 
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frames (1). It is difficult to investigate this with the current network, as it does not have 

the capability to understand or express anything allocentric. The network is fed spatial 

information with an egocentric frame of reference (current location) and produces 

egocentric spatial information (turn decisions). The network performs well with this 

egocentric task. Interestingly, the PCA revealed that the network did form a 

representation that seems compatible with the basis of an allocentric representation of the 

maze, see figure 12. Clustering of locations was observed. In itself, this is not enough to 

form an allocentric representation. The crucial difference between an egocentric and an 

allocentric spatial representation is the way in which the relation between the objects is 

represented. The egocentric perspective represents all locations relative to the self, in 

other words, to the current location. The allocentric frame of reference represents a 

spatial environment in object-object relations. In our case, this would be location-location 

relations. To form location-location relations, the network needs to represent locations 

separately. This is accomplished to some extent already, as shown by the clustering of 

locations in figures 10 and 12. However, to form an allocentric representation, it is also 

necessary to form some sort of relation between the locations.  

 The only location relation information the current neural network has, is the direction 

to turn to get from one location to the next. It uses this information to form location-

location relations. In figure 9, an effect is visible that appears to be a preparation effect. 

When the network has the goal to go to location 6, the route is P1, P2, P3, P6. A left turn 

has to be made at location 3. This turn-left representation is clearly visible in figure 9, 

principal component 4. Interestingly, when the goal is location 6, location 2 also scores 

high on the turn-left representation in activation space. Thus, the network represents the 
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relation between the two locations (P2 and P3) and their relative turning decisions. This 

is a consequence of the sensitivity for sequential information of this network, as it has a 

recurrent loop (Elman, 1991). It is possible to interpret this effect as a preparation effect, 

a preparation or expectation to go left shortly. However, it is also possible to interpret this 

as a location-location relation or an emerging allocentric representation.  

 Humans seem to benefit from a consistent frame of reference when learning spatial 

relations (2). As of yet, this is not possible to test with the current neural network, as it 

can only be fed (and thus learn) egocentric relations. Even if there is a hint at different 

frames of reference in the spatial representation, the network cannot express such 

knowledge. Thus, multi-frame of reference information would remain implicit. 

Therefore, whether an artificial neural network would benefit from a consistent frame of 

reference can only be investigated if such a network can understand and express different 

frames of reference. 

 The use of goals in the network (3) was implemented successfully. The network 

consistently reached the goal. In addition, it was tested whether an artificial neural 

network could learn overlapping routes without the aid of goals. This was not possible, 

without the goals, the network was not able to discern between routes. That meant that at 

a choice intersection, the network „chose‟ the direction that occurred most often in the 

learned set. 

 As mentioned earlier, the network was able to select familiar routes. In the current 

experiment, the maze did not allow for the computing of novel routes (4). Each location 

had a route leading to it and all these routes were taught to the network already. However, 

not every route possible in the maze was taught. For example, a more efficient route to 
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location 5 would be P1, P2, P5. Not surprisingly, the network was unable to find such 

alternate routes. It did not have any information to infer that this would be possible. To 

make this possible, the network needs to know that P2 and P5 are adjacent. 

 In an informal follow up experiment, only the routes to each possible „end point‟ 

were taught to the network (the routes to P5, P6, and P9), see figure 4. The network was 

able to get to each of these locations, following the learned route. However, the network 

was not able to reach the locations in between the „end points‟. Therefore, it seems that 

the network had not induced the other locations as possible goals. Concluding, it seems 

unlikely an artificial neural network such as the current network, will be able to compute 

novel routes.  

 Summarizing, of the demands that came from the psychology literature, demands 1 

and 3 were implemented successfully in the current mental model. The neural network 

was devised with egocentric representations in mind. It was fed only egocentric 

information, yet it managed to form a representation that hinted at an emerging 

allocentric representation. In addition, the use of goals was implemented successfully and 

goals were found to be instrumental to distinguish between overlapping routes. Novel 

route finding is not a capability of this network. Finally, the benefit of frame of reference 

consistency was untestable, as the network was not able to express itself in other frames 

of reference than the egocentric frame. 

 

6.2 Theoretic demands from neurophysiology 

This section discusses the specifications that a spatial artificial neural network should 

meet in order to be rooted in neurobiology. First, these points are repeated and then the 
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current network is reviewed in light of these points. In order for the artificial neural 

network to maintain rooted in biology, it should follow these guidelines:  

(5) The model can be (single) task specific; 

(6) The model should have simple mechanisms to produce cognition; 

(7) Such mechanisms should be like building blocks; 

(8) It should be possible to change or combine these simple basic building blocks to 

change their function. 

 First, point (5) is not really a demand; it is more of an allowance. The network was 

able to perform a route navigation task only. A next generation of this artificial neural 

model should have more abilities. For example, it should have the ability to learn and 

express different frames of reference. Many additions to the current network can be 

envisioned, which brings us to the next neurobiological specifications. 

 The current neural network was constructed from several building blocks (7). 

Primary building blocks are the input, output, and hidden layers, which make up many 

neural networks. These building blocks are simple (6) and can be combined in many 

ways (8).  

 The building block „input layer‟ was used twice, once as the input layer in the 

traditional sense, and once as the input for context. This context allowed the network to 

represent goals, which allowed for a correct distinction between overlapping routes. 

Combining two hidden layers in a recurrent manner created sensitivity to the sequential 

nature of routes. In literature, both recurrent networks (e.g. Elman, 1991) and context 

layers (e.g. McClelland & Rogers, 2003) were used individually before. However, to the 
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best of our knowledge, no other integration of a recurrent and a contextual network exists 

at this moment. 

 

6.3 Model improvement 

Clearly, there is room for improvement to the current network model. In this section, 

ideas for improving the current model are discussed. As mentioned earlier, the network 

was not able to infer novel routes. Informal analysis showed this is not possible with the 

current neural network (see discussion of point (4) earlier). This did not come as a 

surprise, because with the data the network had available, even humans would unlikely 

infer novel routes. Foo et al. (2005) found that humans were able to infer novel routes 

only when landmarks were available. Therefore, it seems logical that some form of 

landmark recognition is needed in the artificial mental model, before novel route finding 

can be expected. 

 The current model could only handle a situation in which the starting location was 

known. From this starting position (the X in figure 4), each location taught, was 

reachable. This was also true if the robot started at an intermediate location on the route, 

as long as the direction the robot was facing was as prescribed by the route. If, for 

example, we would put the robot in front of location 3, it would not be able to reach any 

location other than location 6. Moreover, this would only work if the robot was facing in 

the correct direction, between locations 2 and 3 and towards location 3 (see figure 4). 

This is of course a serious limitation and should be improved in a future model.  

 One way to tackle the „starting anywhere‟ problem is the availability of „movement 

history‟ or knowing what the previous location was. The network would have to be 
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explicitly aware of where it was before, in addition to where it is now. In this manner, it 

should be possible to infer the direction of travel. Considering the maze (figure 4), for 

example, if the current location is 3 and the previous location was 2, it can be inferred we 

are traveling „east‟. If such a system is implemented, it is possible to find any goal 

location, provided a route towards the goal was learned. The robot could wander around 

randomly, until it recognizes a piece of the route (or the goal itself). Once the robot is on 

the route to the goal, to reach the goal the route can be followed.  

 Figure 13 shows a preliminary model that might accomplish such a feat. Both current 

and previous locations are presented as input, along with a goal as the context input. To 

implement this idea in an embodied system, additional programming is required (e.g. the 

random driving, turning around when driving into a dead end). In addition, it is not clear 

what response the network should give as long as it does not „recognize‟ a route to its 

goal. As such, the model shown in figure 13 is a stepping-stone towards a model that can 

solve all these problems. 
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Figure 13: A preliminary neural network model that might eventually be able to start 

anywhere in a maze and still get to its specified goal. Both previous and current location 

are presented as input. 

 

6.4 Embodied system 

The embodiment of the neural network did not present insurmountable problems. This 

does not mean there were no problems. The Lego Mindstorms platform is limited, as it is 

a toy. A sophisticated toy, but a toy nonetheless. As described earlier, the color sensor 

was troublesome. It produced many errors, even after precautions were taken to reduce 

errors. The color sensor had to detect a color for at least 100 ms without interruption, 

before the color was confirmed. In addition, the memory of the platformonly 256 
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kilobyte. This means that it is not possible to store and manipulate a large neural network. 

Using the current programming code, a network of 150 neurons and 4000 links is the 

approximate maximum size. Finally, using a real-time Bluetooth link between the robot 

and a PC was not feasible. More information on the platform can be found in appendix C. 

 An additional idea for improving the (embodied) network is error checking. As 

described earlier, the embodied system did not always get to its goal. The cause of such 

failures was attributed to the color sensor, which was instrumental in detecting the current 

location. Therefore, it seems wise to implement error checking. It might be possible to 

use the neural network for this. The network can predict the next location, in addition to 

the direction to turn. Following the turning direction will yield an updated 'current 

location'. The (previous) prediction could be compared to this new current location. If 

they do not match, something has gone wrong. Then, the robot might take action to 

correct the problem, for example backtracking to the previous location or rescanning the 

current location to check if it was a sensor error. In one of the earlier versions of the 

network model, predicting the next location was a feature. It was scrapped because it was 

deemed unnecessary for the task and tests at hand. The network model with the 

prediction of the next location can be seen in figure 14. 
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Figure 14: The neural network model is capable of predicting the next location in a 

route, in addition to the direction to turn in order to get there. 

 

6.5 Practical implications and future directions 

Most researchers are faced with the question „But what is the practical implication?‟ after 

painstakingly elaborating on the theoretical side of their research. Therefore, a discussion 

of possible practical implications for the current network and future improved versions is 

given. First, the obvious practical application is embodying an artificial neural network in 

some robot or device that needs to find its way. As an example, an automated vacuum 

cleaning robot, such as the Roomba, might utilize a way finding neural network to find its 

docking station when it needs to recharge. Alternatively, it could be taught to visit places 
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it did not visit for a long time and use the network to navigate there. Especially in 

combination with the ability to learn new environments on its own, this could be a 

application. 

 Another application lies in combining several artificial neural networks, to create 

machines that can display more elaborate and complex behavior. There is a very wide 

array of artificial neural networks with different functions out there. A route-finding 

network like the current network, combined with a visual recognition network might 

yield a system for, for example, search tasks where route information is vital. In 

particular, after a disaster, it can be useful to have small robots search the rubble of a 

collapsed building for survivors. It might be possible to get the robots to deliver vital 

supplies, such as water, to the survivor, sustaining them while they wait for rescue 

workers to reach them. 

 Combining of artificial neural networks is an interesting field that, in my opinion, 

deserves further research. Especially, when neural networks are combined in a 

hierarchical way. For example, in this thesis, the network received its input, a location, 

from the program. The program read the color sensor and stored all the colors of the color 

code. Then it looked up the code in a library and fed the corresponding location as input 

to the network. It is also possible to let a neural network do this. It seems trivial to use a 

neural network for a task such as looking up a color code, nevertheless, a more complex 

visual system could benefit from the associative powers of a neural network. Such a 

system could first recognize a visual scene and then stimulate the representation of this 

scene in a route-finding network. A similar hierarchic structure can be envisioned for the 

motor system. The embodied system in the current thesis already used a neural network 
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to avoid collisions. This lane-keeping network was completely independent from the 

route-finding network, however.  

 There seems to be sense in thinking that combining more networks might be 

beneficial. Especially in an application with limited sensors such as the Lego Mindstorms 

robot, using all available sensor data seems wise. One network, for example the route 

finding network, might be able to use characteristics from another network, for example 

the characteristics of the lane (e.g. width), to infer more about the environment. This has 

some similarities to the micro behavior approach by Ballard and Sprague (2006). Human 

behavior seems to come from a collection of micro behaviors. Simple neural networks 

can produce such micro behaviors. A neural network consisting of several simple but 

closely interconnected networks might reveal 'larger' (macro) behaviors. In addition, 

combining several neural networks seems to be in accordance with neurobiology as the 

(human) brain consists of many closely interconnected networks. Combinations of 

closely interconnected simple neural networks might reveal interesting and novel 

solutions to a problem or a task.  
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Appendix A: Dynamic field theory 

In this appendix, I discuss another way to model (neural) representations, dynamic fields. 

The discussion given in this appendix is far from complete. It is meant to show that there 

are other mental modeling techniques out there. It is wise to keep an open mind to 

alternative ideas and techniques, even if they are not utilized. 

 Dynamic fields are mathematical representations of the activation distributions such 

as found using brain imaging techniques like EEG or fMRI on the working brain. 

Dynamic field theories have many „synonyms‟ like dynamic systems (e.g. Schöner, 

2006), dynamical hypothesis (e.g. van Gelder, & Port, 1995), neural dynamics (e.g. 

Grossberg, 1980; Lipinski, Sandamirskaya, Schöner, 2009), and population coding (e.g. 

Erlhagen, Bastian, Jancke, Riehle, & Schöner, 1999). Dynamic field modeling is a 

technique that generally does not model individual neurons; it models activation of areas. 

Such activation is explained as a competitive system in which neurons compete for 

activation by local excitation and global inhibition. This local excitation and global 

inhibition makes local peaks grow stronger while inhibiting peaks further away. It then 

becomes a competition between peaks, the peak with the highest (external or initial) 

excitation wins and (completely) inhibits the other peaks, see figure A1. The resulting 

activation peak, for lack of a better word, represents a certain input or answer to a 

computation (Schöner, 2006). Such an activation peak is not that different to a certain 

activation pattern in an artificial neural network.  

 Dynamic fields and neural networks can describe the same thing, so it is not 

surprising that they are similar. The main difference, in my opinion, is that neural 

networks describe the way in which neurons work together in groups to produce certain 
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activations and that the dynamical fields describe the overall distribution of activation. 

Another way of putting it, dynamic fields use an „infinite‟ number of neurons to plot an 

activation pattern, while neural networks use a finite number. 

 

 

Figure A1: Local excitatory interaction helps sustain localized peaks of activation while 

long-range inhibitory interaction prevents diffusion of peaks and stabilizes against 

competing inputs (from Schöner, 2006). 
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Appendix B: Artificial neural networking and back propagation 

The most basic feed-forward neural network has two distinct layers, made up of input and 

output neurons respectively. Each neuron has a certain activation value, which is related 

to the firing rate of a biological neuron. The neurons in the input layer are connected to 

the neurons in the output layer via synapses. Each synapse or connection has a certain 

weight, which is based on the strength of a biological synapse. The activation of each 

neuron is based on the activations of the neurons that have connections to it, and the 

weight of those connections. Often there is another layer of neurons, a hidden layer, 

between the input and output layer, see figure B1. A neural network can perform simple 

computations with an input and output layer. However, with a hidden layer (one or 

more), a network can compute, represent, integrate, extract or retrieve more complex 

forms of information. The activation of a neuron i is updated using the following 

formula: 

      
 

                 
 

With: 

                          

 

           

Where the activation for neuron i (Acti) can be calculated by summing the activation of 

all j neurons (Actj) that have a connection to i with weight ij minus the resistance to 

activation change by neuron i (ActThresi). This value is put into a logistic function with β 

as slope constant (Hecht-Nielsen, 1989). 

 For the example network from figure B1, to calculate the activation of the first 

hidden neuron, neuron C, the complete formula would look like this: 
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Figure B1: A simple feed forward network. Two input neurons in the input layer at the 

top, feed into two hidden neurons in the hidden layer, which feed into the single output 

neuron in the output layer at the bottom.  

      
 

                                               
 

 The way in which the neurons are interconnected and also the weight of these 

connections can be hardwired into the network by a network designer. Most feed-forward 

neural networks, however, employ a learning mechanism. Back propagation is a method 

in which the error, the difference between the current output and the desired output, of a 



63 

 

neural network is reduced by altering the weight of the (synaptic) connections between 

the neurons of the network (Hecht-Nielsen, 1989).  

 Often, learning starts with a randomization of all the weights. This insures that all 

connections have a value, which can be of importance in some programming languages. 

Next, each item in a training set is presented to the network. When the input layer of the 

network is stimulated in accordance with an item, the network calculates the activation of 

each neuron (using the formula described above). This feed forward phase will generate 

an activation for the output neurons that is likely incorrect. Thus, for every output neuron 

(u) there is a difference between desired output activation (du) and actual output 

activation (au). The error of the entire network is calculated as follows: 

      
 

 
        

 

 

 

 When the error of network is found, the relative culprits to the error have to be 

found. In other words, the portion that each neuron contributes to the error has to be 

calculated in order to change the weight of the connection between the two neurons 

involved. The portion of error fed to the output neurons came from the hidden layer (one 

layer up). Therefore, the weight change necessary for all weights has to be calculated: 

      

   
          

and 

   

          
          

thus, 
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where  

                          

 

 

Now the input is traced back to the neuron in the layer above, in this case the hidden 

layer (h). First, calculate the portion of activation this weight contributed: 

          
         

    

So, now finally it is possible to calculate the portion of error this weight contributed: 

      

         
        

          
         

                    

Now change of weight can be calculated using the Hebbian learning rule: 

                      

Where, lrate is the learning rate. Thus, the weight change is calculated:  

                                                 

 

 Weight changes deeper in the network are calculated iteratively. This means that the 

delta for the hidden layer (deltah) nests the delta for the output layer (deltau):  

        
      

          
 

   

         
 

      

   
                         

 

 

For the three-layered network, as displayed in figure B1, the final weight change is 

calculated as follows: 

                          

For more information, refer to Bechtel and Abrahamsen (2001). 
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Appendix C: Guidance 

In this appendix, four guides are included. The programs used to create the neural 

network for this thesis are discussed first. Next, the code is discussed and it is explained 

how to update the current code with another neural net. For example, if a new spatial 

environment is learned. Next, the platform used to embody the neural network is 

discussed. Special focus is on the limitations of the platform. Finally, a building guide is 

included to recreate Wobot, the robot used in this thesis. 

 

Guide to MemBrain 

Modeling an artificial neural network with many neurons is not easy, especially if you 

want to test many different versions of a neural network model. Fortunately, there are off-

the-shelf tools available that can assist in such a task. MemBrain Neural Network 

Simulator, version 03.06.02.00, is such a tool. It allows users to model, teach, test, and 

export neural networks of arbitrary size and architecture (MemBrain, 2011).  

 MemBrain offers sufficient tutorials for novices to become acquainted with the 

program and its capabilities. Therefore, I will not describe how to create or teach a neural 

network. In order to use the trained neural network, it has to be exported. MemBrain can 

export a network in C code. Via the menu bar, code can be generated, see figure C1. 

 

Figure C1: A screenshot of the code-generation menu in MemBrain. 
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Figure C2: A very simple neural network in MemBrain. At the top, an input neuron 

(named 1) with activation 1 is visible. In the middle, the hidden neurons (2 and 3) are 

shown. At the bottom, output neuron (4) is visible. The weights are visible as the numbers 

on the lines between the neurons. The activation of the neurons is visible beneath the 

neuron. 

 The generated code for a very simple network, see figure C2, is located in a file 

named NeuralNetDef.c. Not shown in the figure are the activation thresholds of the 

hidden neurons, which are 0.22 for neuron 2 and 0.33 for neuron 3. The values of interest 

in this file look like this:  

// additional parameters for all hidden neurons 

const SHiddenNeuronParms NEURON_PARMS_HIDDEN[] = 

{ 

 (FLOAT32)0.22, 0, 1, 

 (FLOAT32)0.33, 1, 1 

}; 

 

/// additional parameters for all output neurons 

const SOutputNeuronParms NEURON_PARMS_OUTPUT[] = 

{ 

 (FLOAT32)0, 2, 2 

}; 
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/// parameters for all links 

const SNeuralLinkParms NEURAL_LINK_PARMS[] = 

{ 

 (FLOAT32)0.12, 0, 

 (FLOAT32)0.13, 0, 

 (FLOAT32)0.24, 1, 

 (FLOAT32)0.34, 2 

}; 

 For the NXC compiler to understand this code, some modifications are needed. Refer 

to appendix F for the proper syntax. The parameters for the hidden neurons consist of 

three values; the activation threshold, and two values that are used in looking up the 

weights for the incoming links to this neuron. For example for neuron 2: we know it has 

an activation threshold of 0.22. We can look this up in the array and notice neuron two is 

described in the first line (i.e. 0.22, 0, 1). The first number is the activation threshold. The 

second number is the location of the first link in the array with link information 

(NEURAL_LINK_PARMS). The third number (1) is the amount of input links, and thus 

the amount of lines in the link-array that have to be read. Observing the first line in the 

NEURAL_LINK_PARMS array confirms this is correct. We can observe the correct 

weight (0.12) for the link to neuron 2. In addition, in this line we observe another 

number. This number corresponds to an input neuron. In our case this is 0, as the input 

neuron is the first neuron (and in computer languages it is common to start counting at 0). 

To confirm this, we can look at the second line in the links-array and see that the second 

number is also a 0, which is fortunate because the weight 0.13 corresponds to the other 

link to the input neuron.  

 I am aware that the above does not seem very intuitive, but it is how the neural 

modeling tool MemBrain exports its neural networks (apparently, nothing is easy). It took 
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some effort on my part to comprehend this exported code, but with the above (and 

perhaps some trial-and-error); it should possible for others to understand it readily. 

 

Guide to code changes in BricxCC 

The Lego Mindstorms brick can be programmed in Not eXactly C (NXC), which is a 

high-level language similar to C. NXC code can be compiled and uploaded to the brick 

using, BricxCC (BricxCC, 2011). For this thesis, the code was divided in two files; the 

algorithms (see appendix E) and the variables (see appendix F). The code in appendix E 

includes the 'task main', which starts all other tasks and sub routines. The code in 

appendix F is included at the top of the code in appendix E, effectively telling the 

compiler to start the byte-code with F and follow with E. 

 In most cases, changes in the code are done in appendix F only. For example, if the 

network learned new routes, the new exported network should replace the current 

network in the code. In addition, if the network layout has changed, values for the 

network layout in appendix F may have to be updated.  

 In some cases, adaptations need to be made to the program itself. To understand the 

program, a flowchart is included (see figure C3). When the program begins, first the user 

has to select a goal via the task 'goal button'. Then, the control task is started. This task 

keeps track of the sensors. The control task makes decisions based on the sensor data, and 

in particular, the color sensor. As long as the control task does not detect a color code, the 

lane-keeping task is activated. This task moves the robot forward and steers it clear of 

obstacles. When a color code is detected, the code is translated into a location. If this 

location is the destination, the program ends. If the location is not the destination, it is fed 
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to the navigation. This navigation task holds the artificial neural network. The network 

generates a turning decision (left, right or straight). A left or right turn cannot be executed 

by the lane-keeping task, and thus a separate task turns the robot in the desired direction. 

If the turn is completed, or no turn was required, the control task restarts the lane-keeping 

task. This moves the robot forward, until another (new) location is found. 

 

Guide to Lego Mindstorms  

The Lego Mindstorms platform is a very sophisticated toy, but a toy nonetheless. Maybe 

as such, it has its limitations, most notably for this thesis, the color sensor. It was not very 

reliable and extremely sensitive to the distance to the object. As described in the thesis, 

the sensor had problems with determining the correct color (e.g., the sensor found pink 

more red that actual red). Also, the sensor would only operate correctly if it was exactly 2 

mm above the colored surface. Any bump in the surface or vibrations as the robot drove 

along caused the distance between sensor and surface to change. This meant the sensor 

registered black or more sporadically a different, unpredictable color. Often, this made 

the robot unable to reach its destination. It got lost. 

 A solution might be available. A different color sensor for the Lego Mindstorms 

platform is on the market; the HiTechnic NXT Color Sensor Version 2 for LEGO 

MINDSTORMS NXT (HiTechnic, 2011). This sensor can detect more colors (18 instead 

of 6) and it is less sensitive to surface-sensor distance, see figure C4. 
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Figure C3: The flowchart for the Wobot software. The squares represent tasks and the 

diamonds represent decision points. 
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 The Lego Mindstorms brick features a very limited amount of memory and little 

processing power. It has a 16 MHz processor and only 256 kilobytes of memory (shared 

storage and working memory). The processing and memory limits led to a pursuit of a 

setup in which the neural network could be run externally (on a PC). This would 

circumvent the limits of the brick and allow for online learning of the neural network. 

 A real-time Bluetooth connection to a PC was considered. It was investigated 

whether the robot could send real-time sensor data to a PC, which would send back motor 

commands. The way the Bluetooth is setup in the Mindstorms platform, would mean a 

minimum delay of 100-200 ms between when sensor data was send and when motor 

commands could be received. The Bluetooth radio in the brick would be solely 

responsible for this delay (Toledo, 2006). Other possible delays would add up, such as 

the processing of commands in the brick or learning of the neural network on the remote 

PC. Such delay seemed impractical in the navigation task (and the obstacle avoidance) 

and a locally run artificial neural network approach was pursued. This approach has an 

advantage. The neural network is 'really' embodied and not embodied but run externally. 
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Figure C4: The HiTechnic NXT Color Sensor Version 2 for LEGO MINDSTORMS NXT 

in a setup that shows its optimal positioning (HiTechnic, 2011). 

 

Building guide to Wobot 

I created a Lego building guide for the robot. The guide is not included here, as it is 

rather voluminous. It is available on Google Docs, via:  

https://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B4oq088EBZ

YeZjVhYTA4YzQtNTFkMi00OGI3LThjZDMtMDA1NTkxOTNjMTAw&hl=en_US 

 

  

https://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B4oq088EBZYeZjVhYTA4YzQtNTFkMi00OGI3LThjZDMtMDA1NTkxOTNjMTAw&hl=en_US
https://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B4oq088EBZYeZjVhYTA4YzQtNTFkMi00OGI3LThjZDMtMDA1NTkxOTNjMTAw&hl=en_US
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Appendix D: Neural network in MemBrain 

In this appendix, the route finding network as modeled using MemBrain (2011) is 

displayed. This neural network learned a set of routes and the necessary turning decisions 

at the various locations along each route. In the figure location 9 is the goal and the 

current location is 8, resulting in the output 'straight'. See figure D1 caption for more 

details on the network layout. 

Figure D1: The route finding neural network as modeled in MemBrain. At the top the 

three input groups are visible. The top left shows a group of hidden neurons that are a 

copy of the previous activation in the first hidden layer. The top middle group of neurons 

inputs the current location to the network. At the top right, the neurons that encode for 

the goal location of a route are visible. At the bottom the output layer is visible, 

consisting of three neurons for the three possible turns. Between the input and output 

layers, the two hidden layers can be observed. (Image adapted from Membrain Neural 

Network Simulator). 
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Appendix E: NXC code, algorithms 

The code used to embody the artificial neural network in the Lego Mindstorms robot is 

displayed in this and the next appendix. The code is organized in two appendices, 

because a differentiation was made between algorithms and variables. This appendix (E) 

contains all algorithms and the next appendix (F) contains all variables, including the 

variables for the neural networks. This means that someone who wants to change the 

weights of the neural network described in this thesis or the amount of neurons in the 

network, only makes changes to appendix F. If you wish to implement a different 

network, changes to the code described in this appendix might be necessary. 

 The code is written in Not eXactly C (NXC), which is a high-level language similar 

to C. It can be used to program the Lego Mindstorms NXT brick. NXC programs can be 

compiled and uploaded to the Lego Mindstorms brick using Bricx Command Center 

(BricxCC, 2011). 

 

#include "include.nxc" 

 

//using buttons to select goal, returns goal 

sub goalbutton() 

{ 

 TextOut(0, LCD_LINE1, "Select goal and"); 

 TextOut(0, LCD_LINE2, "press start:"); 

 goal = 1;//start at 

 while ( ButtonPressed(BTNCENTER, true) != true ) //wait for start 

 { 

  ClearLine(LCD_LINE4); 

  NumOut(0,LCD_LINE4, goal); 

   if ( ButtonPressed(BTNRIGHT, true) != false) //press right is +1 

     { 

      if (goal < aant_locations) //highest goal is number of locations in maze 

         {goal++; 

         Wait(300);} 

      else 

      } 
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  else if ( ButtonPressed(BTNLEFT, true) != false) //left is -1 

       { 

       if (goal > 1) //lowest goal is 1 

          {goal--; 

          Wait(300);} 

       else 

       } 

  else 

 } 

 ClearScreen(); 

 TextOut(0,LCD_LINE1, "Ok, going to"); 

 NumOut(0,LCD_LINE2, goal); 

 Wait(1000); 

 ClearScreen(); 

} //end goalbutton 

 

//sensor can be called to renew sensordata (distance) 

sub sensor() 

{ 

  //what sensor on what port 

  SetSensorLowspeed(IN_1); 

  SetSensorLowspeed(IN_2); 

  SetSensorLowspeed(IN_3); 

 

  //reading sensor values 

  DistMid = SensorUS(IN_1); 

  DistRight = SensorUS(IN_2); 

  DistLeft = SensorUS(IN_3); 

} //end sensor 

 

//sensorcolor can be called to update sensordata (color) 

sub sensorColor() //extra steps because of noisy color sensor data 

{ 

 SetSensorColorFull(IN_4); 

 int sensorraw; 

 int ik =0; 

 

 while (true) //executes till new color is confirmed 

 { 

  sensorraw = Sensor(IN_4); 

  Wait(1); 

 

  if (sensorraw == Sensor(IN_4)) //true if after 1ms color is the same 

     { 

      ik++; 

     } 

  if (sensorraw != Sensor(IN_4)) //reset counter if color changed 

     { 
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      ik=0; 

     } 

  if (ik > kleurnauwkeurigheid) //if color is the same for long enough (kleurnauwkeurigheid), Color is updated 

     { 

      Color = sensorraw; //update Color 

      ik=0; 

      NumOut(0, LCD_LINE8, Color); 

      return; //stops sensorcolor 

     } 

 }//einde while 

      /* color sensor color codes: 

       1 = black 

       2 = blue 

       3 = green 

       4 = yellow 

       5 = red 

       6 = white 

       */ 

}//end sensorColor 

 

//starting color shouldnt be black, sensor might be to close to ground 

sub startcheck() 

{ 

 sensorColor(); 

 while (Color == 1) 

 { 

  TextOut(0, LCD_LINE1, "Check colorsensor"); 

  TextOut(0, LCD_LINE2, "Color ="); 

  NumOut(50, LCD_LINE2, Color); 

  sensorColor(); 

 } 

} //end startcheck 

 

//motorpwr can be called to change motorspeeds (by lane) 

sub motorpwr(int C, int B) 

{ 

 OnFwd(OUT_B, B); 

 OnFwd(OUT_C, C); 

} 

 

//turning on an intersection is done by this quick and dirty function, takes direction and turns robot this way 

sub turn(int direction) 

{ 

 ClearLine(LCD_LINE1); 

 TextOut(0, LCD_LINE1, "Turn"); 

 //little forward 

 OnFwd(OUT_BC, turn_straight); 

 Wait(1500); 
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 //turn 

 if (direction == 0)              //left 

    { 

     TextOut(60, LCD_LINE1, "Left"); 

     OnFwd(OUT_B, turn_circle); 

     OnRev(OUT_C, turn_circle); 

    } 

 if (direction == 1)              //straight 

    { 

     TextOut(60, LCD_LINE1, "Straight"); 

     OnFwd(OUT_B, turn_circle); 

     OnFwd(OUT_C, turn_circle); 

    } 

 if (direction == 2)              //right 

    { 

     TextOut(60, LCD_LINE1, "Right"); 

     OnRev(OUT_B, turn_circle); 

     OnFwd(OUT_C, turn_circle); 

    } 

     

 Wait(600); 

 Coast(OUT_BC); //stop motors 

 

 op_kruising = false; 

 ClearLine(LCD_LINE1); 

} //end turn 

 

//task for lanekeeping, using a neural network 

task lane() 

{ 

 while (currentlocation != goal) //dont drive away when you are at your destination 

 { 

   while (op_kruising == false) //dont do lanekeeping when youre on an intersection 

   { 

       sensor(); //reading (distance)sensor 

        

       //calculate input neuron activations 

       //input neuron[0] represents distleft, [1] = right distance, [2] = forward distance 

       //normalise distances to range 0 - 1, range neurons 

       if ((DistLeft / DistMax) < 1){ 

       LANE_NEURON_ACT[0] = (DistLeft / DistMax);} 

       else { 

       LANE_NEURON_ACT[0] = 1; } 

        

       if ((DistMid / DistMax) < 1){ 

       LANE_NEURON_ACT[2] = (DistMid / DistMax);} 

       else { 
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       LANE_NEURON_ACT[2] = 1; } 

        

       if ((DistRight / DistMax) <1){ 

       LANE_NEURON_ACT[1] = (DistRight / DistMax);} 

       else { 

       LANE_NEURON_ACT[1] = 1; } 

        

       //display the neural input activation, you can use this to check whether the distance sensor work properly 

       ClearLine(LCD_LINE1); 

       ClearLine(LCD_LINE2); 

       TextOut(0, LCD_LINE1, "L      M      R"); 

       NumOut(0, LCD_LINE2, LANE_NEURON_ACT[1]); 

       NumOut(40, LCD_LINE2, LANE_NEURON_ACT[2]); 

       NumOut(80, LCD_LINE2, LANE_NEURON_ACT[0]); 

       Wait(100); 

 

       //calculate hidden neurons 

       //i is used to 'walk through' activation of neurons in hidden layer 

       for (int i=0; i<aant_hid_lane;i++) 

       { 

       float InputSum = 0; //reset inputsum for next neuron 

               /* 

               First, calculate inputsum for current (i-th) neuron: 

               for-loop(j) selects relevant data: from start pointer 

               till (startpointer + nr of connections). 

               Select links (ie. weights) to current neuron. 

               Other words, forloop sums all ("link weight" * "activation of neuron on the other side of this link") 

               for all input connections to the current neuron 

               */ 

               for (int j = LANE_NEURON_PARMS_HIDDEN[((3 * i ) + 1)]; 

                        j < (LANE_NEURON_PARMS_HIDDEN[((3 * i ) + 1)] + 

                        LANE_NEURON_PARMS_HIDDEN[((3 * i ) + 2)]) ;j++) 

               { 

                InputSum += (LANE_NEURAL_LINK_PARMS[(2*j)] * 

                            LANE_NEURON_ACT[ (LANE_NEURAL_LINK_PARMS[((2*j)+1)]) ]); 

               } 

       //next calculate and update activation of current (i-th) neuron: 

       LANE_NEURON_ACT[( i + aant_in_lane)] = ACT(InputSum, LANE_NEURON_PARMS_HIDDEN[(3*i)]); 

       }//end calculation hidden neurons 

 

       //calculate output neurons 

       //workings are similar to hidden neuron calculation 

       for (int i=0;i<aant_out_lane;i++) 

       { 

       float InputSum = 0; 

                for (int j= LANE_NEURON_PARMS_OUTPUT[((3 * i) + 1)]; 

                         j < (LANE_NEURON_PARMS_OUTPUT[((3 * i) + 1)] + 

                         LANE_NEURON_PARMS_OUTPUT[((3 * i) + 2)]); j++) 
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                { 

                InputSum += (LANE_NEURAL_LINK_PARMS[(2*j)] * 

                            LANE_NEURON_ACT[ (LANE_NEURAL_LINK_PARMS[((2*j) + 1)]) ]); 

                } 

       //calculate activation of neuron and normalize 

       if (normalize == 1) 

       { 

       LANE_NEURON_ACT[(i+ aant_in_lane + aant_hid_lane)] = (( 

(ACT(InputSum,LANE_NEURON_PARMS_OUTPUT[(3*i)])) *2)-1); 

       } else if (normalize == 0) 

       { 

       LANE_NEURON_ACT[(i+ aant_in_lane + aant_hid_lane)] = 

(ACT(InputSum,LANE_NEURON_PARMS_OUTPUT[(3*i)])); 

       } 

       }//end output calculation 

 

    //motor power * activation motorneurons 

    motorpwr((Pwr * LANE_NEURON_ACT[7]), (Pwr * LANE_NEURON_ACT[8])); 

 

   //reset neurons for next iteration, not necessary for well trained networks 

   for (int c=0;c<aant_neur_lane;c++) 

   { 

    LANE_NEURON_ACT[c] = 0; 

   } 

 

   }//end while loop for lane keeping 

 }//end while current location != goal 

}//end task lane 

 

 

 

sub kruising() //kruising is Dutch for intersection 

{ 

   for (int i = 0; i<aant_iteraties; i++) 

   { 

        //input has range of 0 to 1 

 

       //input neurons  

       /* 

       Input neurons for my network are supposed to go from NAV_NEURON_ACT[0] 

       till NAV_NEUR_ACT[20], this means that: 

 

       vorige turns: 

       [0] = links 

       [1] = rechtdoor 

       [2] = right 

 

       currentlocations: 
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       [3-11] are locations 1-9 

 

       goals 

       [12-20] are goals 1-9 

       */ 

 

       //first input reset to 0 

       for (int j=0; j<aant_in_nav;j++) 

        {NAV_NEURON_ACT[j] = 0;} 

 

       //then vorige turn activeren 

       if (direction != 99) //deze if zet alleen vorige turn aan als ie niet net geinitialiseerd is, en er dus daadwerkelijk 

een vorige turn is 

        {NAV_NEURON_ACT[direction] = 1;} 

 

       //dan current location 

       NAV_NEURON_ACT[(currentlocation + 2)] = 1; 

 

       //dan goal 

       NAV_NEURON_ACT[(goal + 11)] = 1; 

        

       //hidden berekenen, i loopt van begin tot eind aantal hidden neuronen 

       //i wordt gebruikt om activatie van neuronen door te stappen 

       for (int i=0; i<aant_hid_nav;i++) 

       { 

       //reset voor volgend neuron 

       float InputSumN = 0; 

               /* 

               Eerst inputsom betreffende neuron berekenen: 

               for-loop(j) selecteert relevante data: van begin pointer 

               tot (beginpointer + aantal). 

               Linkjes (ie. weights) naar het betreffende neuron selecteren 

 

               */ 

               for (int j = NAV_NEURON_PARMS_HIDDEN[((3 * i ) + 1)]; 

                        j < (NAV_NEURON_PARMS_HIDDEN[((3 * i ) + 1)] + 

                        NAV_NEURON_PARMS_HIDDEN[((3 * i ) + 2)]) ;j++) 

               { 

               InputSumN += (NAV_NEURAL_LINK_PARMS[(2*j)] * 

                            NAV_NEURON_ACT[ (NAV_NEURAL_LINK_PARMS[((2*j)+1)]) ]); 

               } 

       //dan activatie van betreffende neuron berekenen: 

       NAV_NEURON_ACT[( i + aant_in_nav)] = ACTN(InputSumN, NAV_NEURON_PARMS_HIDDEN[(3*i)]); 

       }//einde hidden berekenen 

 

 

       //outneuronen berekenen 

       for (int i=0;i<aant_out_nav;i++) 
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       { 

       //reset voor volgend neuron 

       float InputSumN = 0; 

                for (int j= NAV_NEURON_PARMS_OUTPUT[((3 * i) + 1)]; 

                         j < (NAV_NEURON_PARMS_OUTPUT[((3 * i) + 1)] + 

                         NAV_NEURON_PARMS_OUTPUT[((3 * i) + 2)]); j++) 

                { 

                InputSumN += (NAV_NEURAL_LINK_PARMS[(2*j)] * 

                            NAV_NEURON_ACT[ (NAV_NEURAL_LINK_PARMS[((2*j) + 1)]) ]); 

                } 

       NAV_NEURON_ACT[(i+ aant_in_nav + aant_hid_nav)] =  

(ACTN(InputSumN,NAV_NEURON_PARMS_OUTPUT[(3*i)])) ; 

        

       }//einde output berekenen 

        

   //welke  output hett grootst (winner takes all) is berekenen, output consequentie 

   if ( (NAV_NEURON_ACT[(aant_in_nav + aant_hid_nav)] > NAV_NEURON_ACT[(aant_in_nav + aant_hid_nav 

+ 1)]) && (NAV_NEURON_ACT[(aant_in_nav + aant_hid_nav)] > NAV_NEURON_ACT[(aant_in_nav + 

aant_hid_nav + 2)]) ) 

      { direction = 0; } 

   if ( (NAV_NEURON_ACT[(aant_in_nav + aant_hid_nav +1)] > NAV_NEURON_ACT[(aant_in_nav + 

aant_hid_nav)]) && (NAV_NEURON_ACT[(aant_in_nav + aant_hid_nav +1)] > 

NAV_NEURON_ACT[(aant_in_nav + aant_hid_nav + 2)]) ) 

      { direction = 1; } 

   if ( (NAV_NEURON_ACT[(aant_in_nav + aant_hid_nav +2)] > NAV_NEURON_ACT[(aant_in_nav + 

aant_hid_nav)]) && (NAV_NEURON_ACT[(aant_in_nav + aant_hid_nav +2)] > 

NAV_NEURON_ACT[(aant_in_nav + aant_hid_nav + 1)]) ) 

      { direction = 2; } 

   //output betekend: 

   //direction: left = 0, straight = 1, right = 2 

    

   }//einde forloop 

    

   //output geven aan turn 

   turn(direction); 

   ClearLine(LCD_LINE7); 

   NumOut(0, LCD_LINE7, direction); 

   TextOut(10, LCD_LINE7, "direction"); 

   Wait(2000); 

    

   //neuronen resetten voor volgende iteratie 

   /*for (int a=0;a<aant_neur_nav;a++) 

   { 

    NAV_NEURON_ACT[a] = 0; 

   }   */ 

} //einde navigatie 

 

sub code() //hij komt hier binnen als ie van wit af is 
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{ 

 int j = 0; 

 int temp = 0; 

 

 while (Color != 6) //zolang niet op wit (=kruispunt) kleur opslaan 

 { 

 /* if ((j == 0) && (Color != 0) && (Color !=6) && (Color !=1) && (aant_strepen_kleurcode > j)) //eerste kleur 

opslaan 

  { 

   CurrentCode[j] = Color; 

   j++; 

  }       */ 

 

  sensorColor(); //volgende kleur halen 

 

  if ((Color != temp) && (Color != 0) && (Color !=6) && (Color !=1) && (aant_strepen_kleurcode > j))  //true als 

nieuwe kleur, niet lege waarde en niet zwart of wit 

     { 

      CurrentCode[j] = Color; 

      temp = Color; 

      j++; 

      ClearLine(LCD_LINE5); 

      NumOut(0, LCD_LINE5, j); 

      TextOut(10, LCD_LINE5, "Colors counted"); 

     } 

 /*if (aant_strepen_kleurcode < j) 

    { 

     return; //uit while stappen 

    } */ 

 } //einde while 

 ClearLine(LCD_LINE5); 

  

 //Kleurcode vertalen naar currentlocation 

 for (int i=0; i<aant_locations; i++)//aantal kruisingen doorlopen 

     { 

      int teller = 0; 

      for (int k=0; k<aant_strepen_kleurcode; k++) //aantal kleuren in kleurcode doorlopen 

          { 

           if ( COLORCODE[ ((i*(aant_strepen_kleurcode +1)) + k) ] == CurrentCode[ k ] ) 

              { 

               teller++; 

              } 

 

           if (teller == aant_strepen_kleurcode)//dus 3 opeenvolgende kleuren kloppen 

              { 

               currentlocation = COLORCODE[(i*(aant_strepen_kleurcode +1) + aant_strepen_kleurcode)]; 

              } 

          } 
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     }//einde currentlocation bepalen 

  NumOut(0, LCD_LINE3, currentlocation); 

  TextOut(10, LCD_LINE3, "Location"); 

  //Wait(1000); 

}//einde code() 

 

 

//kleurcodes lezen/bewaren/bewerken om lanekeeping of navigatie te beheren 

task colorcode() 

{ 

 op_kruising = false; //begint nooit op kruising, dan leest ie kleuren bij kruising afrijden (kwesties) 

 //destination bereikt of niet 

 while (currentlocation != goal) 

 { 

  sensorColor(); 

 

  //wait for white (sensorcode 6) 

  if ((Color == 6) && (blackcount == 0)) //op kruising (1e zwarte lijn), verwacht nu kleurcode 

     { 

      blackcount = 1; 

     } 

  if ((Color != 6) && (blackcount == 1))  //op kleurcode 

     { 

      blackcount = 2; 

      code();  //kleurcode lezen 

       

       if (currentlocation == goal) 

        { 

         ClearScreen(); 

         TextOut(0, LCD_LINE1, "Arrived!"); 

         blackcount = 10; 

         //Wait(500); 

         stop lane; 

         Coast(OUT_BC); 

         Wait(5000); 

         //play victory sound 

 

         abort(); 

        } 

       if (currentlocation == 0) //no code found, reset 

       { 

        TextOut(0, LCD_LINE8, "geen code"); 

        blackcount = 0; 

       } 

     } 

 

  if ((Color == 6) && (blackcount == 2) && (currentlocation != goal)) //van kleurcode af en op kruispunt 

     { 
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      op_kruising = true; //stopt lanekeeeping 

      stop lane; 

      Coast(OUT_BC); //stop motors 

      TextOut(0,LCD_LINE1,"Voorkruising!"); 

      Wait(500); 

       

      kruising(); //kruising rekent volgende stap uit en draait robot bij 

       

      TextOut(0,LCD_LINE2,"Nakruising!"); 

      Wait(500); 

      op_kruising = false; 

      start lane; 

      blackcount = 3; 

     } 

      

  if ((Color != 6) && (blackcount == 3))  //van kruispunt af (op reverse kleurcode) 

     { 

      blackcount = 4; 

     } 

      

  if ((Color == 6) && (blackcount == 4)) //op afsluitende witte lijn 

     { 

      blackcount = 5; 

     } 

  if ((Color != 6) && (blackcount == 5)) //hele kruising verlaten 

     { 

      blackcount = 0; //reset 

     } 

      

 } //einde while, betekend op goallocatie 

} 

 

task main() 

{ 

 //startchecks doen: bv pas doorgaan als sensor niet zwart leest 

 startcheck(); 

  

 //buttons gebruiken om goal te selecteren 

 goalbutton(); 

 

 //controle en lane taak starten 

 Precedes(colorcode, lane); 

} 
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Appendix F: NXC code, variables 

In this appendix, the variables for the artificial neural network are listed.  

 

//parameters for navigation 

int Color; 

int goal; 

bool op_kruising; 

int direction = 99; //put it in impossible position at first 

const int aant_strepen_kleurcode = 3; 

const int aant_locations = 9; 

const int aant_iteraties = 1; //how many iterations should the navigation network run for each instance 

 

//parameters voor turn 

int turn_circle =60; //turn_circle = 75 is about 90 graden 

int turn_straight = 60; //65 is about 12cm 

 

//colorcode stuff 

int CurrentCode[aant_strepen_kleurcode]; 

int currentlocation; 

bool kleurlezen; 

int kleurnauwkeurigheid = 120; //time that color is constant in ms 

int blackcount = 0; 

 

/*kleurcodes invullen en bijbehorende intersectienr 

  volgens format: kleur1, kleur2, .., kleurn, intersectienr, 

  color sensor color codes: 

       1 = black 

       2 = blue 

       3 = green 

       4 = yellow 

       5 = red 

       6 = white 

*/ 

const int COLORCODE[] = 

{ 

4, 3, 5, 1, 

4, 5, 3, 2, 

3, 4, 5, 3, 

3, 5, 4, 4, 

5, 4, 3, 5, 

5, 3, 4, 6, 

4, 3, 4, 7, 

4, 5, 4, 8, 

3, 4, 3, 9 

}; 
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//dingen voor lanekeeping: 

const byte DistMax = 25; //aangeven hoe breed de lane is 

const bool normalize = 1; //outputneuronen normalizeren naar -1 / 0 

long t; 

 

//sensordata globaal beschikbaar 

float DistMid; 

float DistRight; 

float DistLeft; 

 

//motoractivaties 

int B; 

int C; 

int Pwr = 40; //% motorvermogen in lanekeeping 

 

//individuele neuron activatie 

float Act; 

float ActN; 

 

//formule waarmee activatie van neuron uitgerekend wordt 

//let wel, moet per netwerk andere naam ivm globale bereikbaarheid 

#define ACT(InputSum,ActThres) \ 

Act = (1 / (1 + exp(-3 * ( InputSum - ActThres)))) 

 

#define ACTN(InputSumN,ActThres) \ 

ActN = (1 / (1 + exp(-3 * ( InputSumN - ActThres)))) 

 

//activatie array voor alle lanekeeping neuronen 

//aangeven hoeveel neuronen in netwerk zitten 

const byte aant_in_lane = 3; 

const byte aant_hid_lane = 4; 

const byte aant_out_lane = 2; 

const byte aant_neur_lane = (aant_in_lane + aant_hid_lane + aant_out_lane); 

 

//aantal en volgorde in array is: input,hidden,output 

float LANE_NEURON_ACT[aant_neur_lane]; 

 

// additional parameters for all hidden neurons 

const float LANE_NEURON_PARMS_HIDDEN[] = 

{ 

 1.787173, 0, 3, 

 1.532864, 3, 3, 

 1.526465, 6, 3, 

 -0.220554, 9, 3 

}; 

 

// additional parameters for all output neurons 
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const float LANE_NEURON_PARMS_OUTPUT[] = 

{ 

 4.46833, 12, 4, 

 4.46615, 16, 4 

}; 

 

// parameters for all links 

const float LANE_NEURAL_LINK_PARMS[] = 

{ 

 1.465972, 0, 

 -8.213511, 2, 

 1.478527, 1, 

 -1.613683, 0, 

 1.048116, 2, 

 1.26477, 1, 

 1.043337, 2, 

 1.248727, 0, 

 -1.608341, 1, 

 0.2584444, 0, 

 0.4347664, 2, 

 0.275253, 1, 

 -1.9963, 3, 

 0.4715854, 4, 

 -2.192937, 5, 

 5.784505, 6, 

 -1.992644, 3, 

 -2.214939, 4, 

 0.4767092, 5, 

 5.779757, 6 

}; 

 

 

 

 

 

//aangeven hoeveel neuronen in netwerk zitten 

const int aant_in_nav = 21; 

const int aant_out_nav = 3; 

const int aant_neur_nav = 57; 

const int aant_hid_nav = (aant_neur_nav - aant_in_nav - aant_out_nav); 

 

//activatie array voor navigatie 

float NAV_NEURON_ACT[aant_neur_nav]; 

 

/// additional parameters for all hidden neurons 

const float NAV_NEURON_PARMS_HIDDEN[] = 

{ 

 -0.1036854, 0, 11, 
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 0.3668929, 11, 11, 

 -0.0792937, 22, 11, 

 0.136707, 33, 11, 

 0.1657436, 44, 11, 

 0.4446662, 55, 11, 

 0.02316822, 66, 11, 

 -0.4624779, 77, 11, 

 0.2528726, 88, 11, 

 0.1511817, 99, 11, 

 -0.1358419, 110, 11, 

 -0.2447201, 121, 23, 

 0.3746862, 144, 23, 

 0.2375473, 167, 23, 

 -0.2593883, 190, 23, 

 0.5223933, 213, 23, 

 -0.1775616, 236, 23, 

 0.2903008, 259, 23, 

 0.1447954, 282, 23, 

 -0.3591918, 305, 23, 

 0.07387462, 328, 23, 

 -0.1795402, 351, 23, 

 -0.1821245, 374, 20, 

 -0.3109728, 394, 20, 

 0.09184624, 414, 20, 

 0.2914523, 434, 20, 

 0.2093737, 454, 20, 

 0.2012111, 474, 20, 

 -0.1866476, 494, 20, 

 -0.2810805, 514, 20, 

 0.2923291, 534, 20, 

 0.4272424, 554, 20, 

 -0.2929862, 574, 20 

}; 

 

/// additional parameters for all output neurons 

const float NAV_NEURON_PARMS_OUTPUT[] = 

{ 

 0, 594, 11, 

 0, 605, 11, 

 0, 616, 11 

}; 
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/*note, for paper saving purposes the next pages 

are printed in two columns.*/ 

/// parameters for all links 

const float NAV_NEURAL_LINK_PARMS[] = 

{ 

 -0.04607612, 32, 

 -0.1947516, 33, 

 -0.3001059, 34, 

 0.6478656, 35, 

 -0.03749508, 36, 

 -0.07418891, 37, 

 0.3079551, 38, 

 -0.5852257, 39, 

 -0.2629418, 40, 

 -0.4791997, 41, 

 0.5395703, 42, 

 0.07460979, 32, 

 -0.4270882, 33, 

 0.1951688, 34, 

 0.1608358, 35, 

 -0.2354473, 36, 

 -0.5623091, 37, 

 -0.1322427, 38, 

 0.3661621, 39, 

 -0.1363909, 40, 

 0.3225932, 41, 

 0.03897578, 42, 

 0.03463511, 32, 

 0.1099743, 33, 

 -0.06871366, 34, 

 -0.453012, 35, 

 0.3071162, 36, 

 -0.4532845, 37, 

 0.2529164, 38, 

 0.3778346, 39, 

 -0.1128644, 40, 

 -0.2490854, 41, 

 -0.2266207, 42, 

 0.2607281, 32, 

 -0.02187565, 33, 

 0.1389747, 34, 

 -0.1478053, 35, 

 0.2808233, 36, 

 -0.2202783, 37, 

 -0.3686299, 38, 

 0.5485493, 39, 

 0.1837366, 40, 

 0.2129322, 41, 

 -0.4919814, 42, 

 -0.2063357, 32, 

 -0.2189116, 33, 

 0.4101669, 34, 

 -0.3059344, 35, 

 -0.1173352, 36, 

 0.4952284, 37, 

 0.319669, 38, 

 -0.345582, 39, 

 0.553055, 40, 

 -0.0640868, 41, 

 -0.1430984, 42, 

 0.3081809, 32, 

 0.1651343, 33, 

 0.06825195, 34, 

 0.2970314, 35, 

 -0.3491393, 36, 

 -0.5337529, 37, 

 -0.05655213, 38, 

 -0.2778435, 39, 

 0.3125094, 40, 

 -0.01718545, 41, 

 -0.3100598, 42, 

 0.02805696, 32, 

 -0.1966186, 33, 

 0.2533906, 34, 

 0.178807, 35, 

 0.3086085, 36, 

 -0.3195972, 37, 

 -0.06904113, 38, 

 -0.3500529, 39, 

 0.5155271, 40, 

 0.4395974, 41, 

 -0.2664073, 42, 

 -0.1837437, 32, 

 -0.1964326, 33, 

 0.2940291, 34, 

 0.3270709, 35, 

 -0.05993629, 36, 

 -0.07427272, 37, 

 -0.3307962, 38, 

 0.4283512, 39, 

 0.1910288, 40, 

 0.5065045, 41, 

 0.142001, 42, 

 -0.2341973, 32, 

 0.3408906, 33, 

 -0.4969815, 34, 



90 

 

 0.3812514, 35, 

 0.3566203, 36, 

 -0.6033241, 37, 

 -0.1363282, 38, 

 0.3806947, 39, 

 -0.1659743, 40, 

 -0.2010765, 41, 

 0.1067511, 42, 

 0.1525594, 32, 

 0.0593756, 33, 

 0.3407933, 34, 

 0.1622232, 35, 

 -0.1515111, 36, 

 -0.2928939, 37, 

 -0.1898366, 38, 

 0.1062621, 39, 

 0.04453474, 40, 

 -0.1789008, 41, 

 0.1917746, 42, 

 -0.6005276, 32, 

 -0.03043847, 33, 

 -0.002461593, 34, 

 -0.002688768, 35, 

 -0.3020954, 36, 

 -0.0514572, 37, 

 -0.2743056, 38, 

 -0.4378282, 39, 

 0.3198417, 40, 

 0.08757166, 41, 

 -0.5900541, 42, 

 0.01981992, 0, 

 0.4609876, 1, 

 -0.6030329, 2, 

 0.425017, 3, 

 -0.2740159, 4, 

 -0.1655155, 5, 

 0.4094033, 6, 

 0.2954924, 7, 

 0.4902398, 8, 

 0.09393275, 9, 

 0.1422298, 10, 

 0.2404379, 11, 

 -0.01258026, 21, 

 0.3242318, 22, 

 0.2591584, 23, 

 -0.510666, 24, 

 0.04626951, 25, 

 0.3750233, 26, 

 -0.2131065, 27, 

 -0.1866099, 28, 

 0.3726676, 29, 

 0.1529743, 30, 

 0.398362, 31, 

 -0.3124259, 0, 

 0.4367426, 1, 

 0.08342322, 2, 

 0.1501504, 3, 

 -0.8159302, 4, 

 0.1647574, 5, 

 -0.5934923, 6, 

 0.2099046, 7, 

 -0.4244855, 8, 

 -0.06528184, 9, 

 0.02422303, 10, 

 0.2619441, 11, 

 0.2246569, 21, 

 -0.1104576, 22, 

 -0.1335697, 23, 

 0.1704974, 24, 

 -0.06273952, 25, 

 0.2479293, 26, 

 0.295205, 27, 

 0.0974323, 28, 

 0.4271264, 29, 

 0.4659519, 30, 

 -0.4629402, 31, 

 0.1508776, 0, 

 -0.1544592, 1, 

 0.3731623, 2, 

 -0.3564397, 3, 

 -0.117988, 4, 

 -0.4389415, 5, 

 0.3343066, 6, 

 0.3196306, 7, 

 0.2857715, 8, 

 0.5379475, 9, 

 -0.002340018, 10, 

 -0.1117715, 11, 

 0.096283, 21, 

 0.03931276, 22, 

 -0.4283414, 23, 

 -0.3486025, 24, 

 0.4855166, 25, 

 0.3614636, 26, 

 -0.225259, 27, 

 0.4113329, 28, 
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 0.1765543, 29, 

 0.2382559, 30, 

 0.357497, 31, 

 -0.1390974, 0, 

 0.02428469, 1, 

 -0.2333287, 2, 

 0.5215971, 3, 

 -0.558823, 4, 

 -0.768177, 5, 

 -0.1690464, 6, 

 0.1428109, 7, 

 -0.3432329, 8, 

 1.224189, 9, 

 0.9217204, 10, 

 -0.1331374, 11, 

 0.4388652, 21, 

 0.3955919, 22, 

 -0.3183793, 23, 

 -0.4039925, 24, 

 -0.1053075, 25, 

 -0.3618894, 26, 

 0.3385203, 27, 

 -0.4652991, 28, 

 0.1340846, 29, 

 0.006810163, 30, 

 -0.04089304, 31, 

 -0.1057991, 0, 

 0.4091602, 1, 

 -0.09212346, 2, 

 0.06536681, 3, 

 0.6835385, 4, 

 0.6498773, 5, 

 0.1326113, 6, 

 -0.1792834, 7, 

 -0.2324269, 8, 

 -0.8424821, 9, 

 0.05198848, 10, 

 0.36548, 11, 

 0.2038641, 21, 

 0.4086856, 22, 

 0.07641047, 23, 

 -0.1067694, 24, 

 -0.4558735, 25, 

 -0.3718811, 26, 

 0.06377377, 27, 

 0.2382234, 28, 

 0.5401028, 29, 

 -0.4086511, 30, 

 -0.2214995, 31, 

 0.2197253, 0, 

 0.5109611, 1, 

 -0.1617032, 2, 

 -0.305872, 3, 

 -0.001638905, 4, 

 0.3235504, 5, 

 0.1080271, 6, 

 -0.1194967, 7, 

 0.2777808, 8, 

 0.2683049, 9, 

 -0.02774126, 10, 

 -0.1883458, 11, 

 0.3070123, 21, 

 0.2594679, 22, 

 -0.2050716, 23, 

 -0.4701777, 24, 

 -0.09128114, 25, 

 -0.3428412, 26, 

 0.3248717, 27, 

 -0.3037794, 28, 

 0.3733665, 29, 

 0.2898872, 30, 

 -0.01096591, 31, 

 0.3245054, 0, 

 -0.602091, 1, 

 -0.3665991, 2, 

 0.2315464, 3, 

 0.03064952, 4, 

 -0.01311686, 5, 

 0.4328339, 6, 

 -0.2213215, 7, 

 0.2205029, 8, 

 0.0651893, 9, 

 -0.4879007, 10, 

 -0.2031004, 11, 

 -0.08466441, 21, 

 -0.1192809, 22, 

 0.01544791, 23, 

 0.4976075, 24, 

 0.4699446, 25, 

 0.02910952, 26, 

 0.3671738, 27, 

 -0.2345289, 28, 

 0.2435632, 29, 

 0.3829766, 30, 

 0.1454541, 31, 

 0.319473, 0, 
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 0.3789573, 1, 

 0.0329634, 2, 

 0.1410987, 3, 

 -0.01432919, 4, 

 0.2888195, 5, 

 0.08448362, 6, 

 0.3653275, 7, 

 -0.1689521, 8, 

 -0.8764529, 9, 

 -0.6587204, 10, 

 -0.2918057, 11, 

 -0.5157439, 21, 

 -0.3987413, 22, 

 0.01829555, 23, 

 0.4131251, 24, 

 -0.1697517, 25, 

 -0.3968538, 26, 

 0.2608297, 27, 

 -0.06512695, 28, 

 0.1563218, 29, 

 0.3362654, 30, 

 0.4941682, 31, 

 -0.495435, 0, 

 -0.5283466, 1, 

 0.5873008, 2, 

 0.3073063, 3, 

 0.3023637, 4, 

 -0.6990824, 5, 

 0.2071716, 6, 

 -0.4505045, 7, 

 -0.2261333, 8, 

 -1.280781, 9, 

 0.2111626, 10, 

 0.2245007, 11, 

 -0.4224006, 21, 

 0.3384967, 22, 

 0.02084541, 23, 

 -0.2913976, 24, 

 0.3000905, 25, 

 -0.006116187, 26, 

 0.6011472, 27, 

 0.4351869, 28, 

 -0.04069962, 29, 

 -0.08657888, 30, 

 -0.4366933, 31, 

 -0.3112207, 0, 

 -0.05326454, 1, 

 -0.4229204, 2, 

 0.8923073, 3, 

 -0.227114, 4, 

 -0.2495216, 5, 

 0.1727467, 6, 

 0.0252744, 7, 

 -0.2826834, 8, 

 -0.3392872, 9, 

 0.1279306, 10, 

 0.008328915, 11, 

 -0.1613645, 21, 

 -0.2826995, 22, 

 0.3146906, 23, 

 -0.1575923, 24, 

 -0.0009336806, 25, 

 0.20513, 26, 

 -0.2389869, 27, 

 -0.06392392, 28, 

 0.4471848, 29, 

 -0.1626097, 30, 

 0.2985291, 31, 

 -0.2993607, 0, 

 0.1628283, 1, 

 -0.2330353, 2, 

 -0.3610914, 3, 

 -0.9909131, 4, 

 0.2199632, 5, 

 -0.1721953, 6, 

 0.004091442, 7, 

 0.09729832, 8, 

 0.0244805, 9, 

 0.3693877, 10, 

 -0.2492126, 11, 

 0.4651854, 21, 

 -0.1037001, 22, 

 0.130072, 23, 

 -0.1269384, 24, 

 -0.06003388, 25, 

 0.4395554, 26, 

 0.02823348, 27, 

 -0.314862, 28, 

 0.381864, 29, 

 0.4290763, 30, 

 0.1935158, 31, 

 -0.3232849, 12, 

 -0.8866821, 13, 

 -0.9126719, 14, 

 0.651485, 15, 

 -0.02228711, 16, 
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 -1.146233, 17, 

 0.1943479, 18, 

 0.3247871, 19, 

 0.9519822, 20, 

 -0.3356668, 32, 

 -0.2508006, 33, 

 -0.1215491, 34, 

 -0.7948852, 35, 

 0.1707768, 36, 

 -0.465652, 37, 

 0.2467462, 38, 

 0.6869325, 39, 

 1.228027, 40, 

 0.1563181, 41, 

 -0.5037733, 42, 

 -0.03620899, 12, 

 -0.9898161, 13, 

 -1.014359, 14, 

 0.3056701, 15, 

 0.2036248, 16, 

 -1.043504, 17, 

 0.5802981, 18, 

 0.6490201, 19, 

 1.17018, 20, 

 -0.1830013, 32, 

 -0.7692795, 33, 

 -0.07017244, 34, 

 -0.945456, 35, 

 0.1962818, 36, 

 -0.07491156, 37, 

 0.4764812, 38, 

 0.09324323, 39, 

 1.21412, 40, 

 0.5408887, 41, 

 -0.7357209, 42, 

 0.1889458, 12, 

 0.1983726, 13, 

 0.1491904, 14, 

 -0.6025816, 15, 

 -0.3455529, 16, 

 -0.008085774, 17, 

 -0.1790912, 18, 

 -0.05221193, 19, 

 0.3966889, 20, 

 -0.27343, 32, 

 0.1386002, 33, 

 0.2339948, 34, 

 0.8795286, 35, 

 -0.6200368, 36, 

 -0.1117798, 37, 

 -0.2026014, 38, 

 -0.4091313, 39, 

 0.1891556, 40, 

 0.04303263, 41, 

 0.3676819, 42, 

 -0.2802205, 12, 

 0.04016042, 13, 

 -0.1356038, 14, 

 0.02646849, 15, 

 -0.4195531, 16, 

 0.8862307, 17, 

 -0.3818873, 18, 

 -0.09626281, 19, 

 -0.2528934, 20, 

 -0.3182625, 32, 

 -0.09371742, 33, 

 -0.1349966, 34, 

 -0.8938264, 35, 

 0.6905526, 36, 

 0.2598573, 37, 

 -0.7790076, 38, 

 0.5603904, 39, 

 -0.3421537, 40, 

 -0.5600239, 41, 

 -0.003398906, 42, 

 -0.1129106, 12, 

 -0.5503694, 13, 

 -0.6037062, 14, 

 -0.03923627, 15, 

 0.06484355, 16, 

 0.2522728, 17, 

 0.1516749, 18, 

 -0.2345577, 19, 

 0.3363025, 20, 

 0.2111501, 32, 

 -0.4736263, 33, 

 0.06106573, 34, 

 -0.8997774, 35, 

 0.4570113, 36, 

 0.1552557, 37, 

 0.2192169, 38, 

 0.2736788, 39, 

 0.7648274, 40, 

 -0.3779173, 41, 

 0.155513, 42, 

 -0.3970958, 12, 
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 -0.6446848, 13, 

 -0.352733, 14, 

 0.2532769, 15, 

 0.6687135, 16, 

 -0.3613442, 17, 

 -0.2252835, 18, 

 0.4240499, 19, 

 0.2860892, 20, 

 0.2988558, 32, 

 0.1823944, 33, 

 -0.6071549, 34, 

 -0.8865616, 35, 

 0.8156825, 36, 

 -0.08230403, 37, 

 0.4187318, 38, 

 0.4921252, 39, 

 -0.2601593, 40, 

 0.3926163, 41, 

 -0.3622873, 42, 

 0.1615237, 12, 

 0.2005439, 13, 

 0.1123752, 14, 

 0.3346848, 15, 

 -0.3538152, 16, 

 -0.1677519, 17, 

 0.2956051, 18, 

 -0.2668507, 19, 

 -0.01969587, 20, 

 -0.3526751, 32, 

 0.001209799, 33, 

 -0.1135077, 34, 

 -0.1703333, 35, 

 0.3258051, 36, 

 0.3966721, 37, 

 -0.08445534, 38, 

 0.05969881, 39, 

 0.1906026, 40, 

 -0.3496554, 41, 

 0.06787625, 42, 

 0.1479824, 12, 

 0.6891451, 13, 

 0.441027, 14, 

 -0.6083512, 15, 

 0.8645878, 16, 

 0.5780862, 17, 

 -0.534234, 18, 

 -0.3624139, 19, 

 -0.9232928, 20, 

 0.4246024, 32, 

 0.128021, 33, 

 -0.4807859, 34, 

 0.7872028, 35, 

 -0.1113451, 36, 

 0.3125493, 37, 

 -0.02693926, 38, 

 -0.1985426, 39, 

 -1.32337, 40, 

 0.3425955, 41, 

 0.4519697, 42, 

 0.4440315, 12, 

 0.6160571, 13, 

 0.3324997, 14, 

 0.3013702, 15, 

 -0.1503585, 16, 

 0.3759325, 17, 

 0.3502049, 18, 

 -0.006352367, 19, 

 -0.4757304, 20, 

 0.05613166, 32, 

 0.1067931, 33, 

 0.002633997, 34, 

 0.264383, 35, 

 0.02770893, 36, 

 -0.2624205, 37, 

 -0.0357626, 38, 

 -0.3184252, 39, 

 0.2746372, 40, 

 0.09638565, 41, 

 -0.1905001, 42, 

 0.05788422, 12, 

 -0.7354096, 13, 

 -0.8061858, 14, 

 0.6494159, 15, 

 0.3367285, 16, 

 -0.9782642, 17, 

 0.3434182, 18, 

 0.2504238, 19, 

 0.8502985, 20, 

 0.2188658, 32, 

 0.3319338, 33, 

 -0.513546, 34, 

 -0.2854121, 35, 

 -0.2307863, 36, 

 -0.2570601, 37, 

 0.2069206, 38, 

 0.08541752, 39, 
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 0.3984796, 40, 

 0.446887, 41, 

 -0.2330781, 42, 

 -0.1182401, 12, 

 0.4071289, 13, 

 0.4474115, 14, 

 -0.04638963, 15, 

 -0.2163839, 16, 

 0.302402, 17, 

 -0.4916026, 18, 

 -0.05404175, 19, 

 -0.6190587, 20, 

 0.2086924, 32, 

 -0.3706073, 33, 

 0.6956524, 34, 

 0.775125, 35, 

 -0.555711, 36, 

 -0.1705319, 37, 

 0.3330167, 38, 

 -0.553104, 39, 

 -0.2691969, 40, 

 -0.3407066, 41, 

 -0.2421417, 42, 

 -1.394436, 43, 

 -1.401122, 44, 

 -1.410878, 45, 

 1.765278, 46, 

 0.4824167, 47, 

 0.4055181, 48, 

 -0.2354013, 49, 

 0.2607708, 50, 

 -0.2262259, 51, 

 -0.6978661, 52, 

 -1.831314, 53, 

 2.01823, 43, 

 2.683339, 44, 

 -0.9439971, 45, 

 -0.3396298, 46, 

 0.1907513, 47, 

 0.4832624, 48, 

 -0.3297484, 49, 

 -2.366417, 50, 

 -0.4382596, 51, 

 1.455671, 52, 

 -0.6630589, 53, 

 -1.868437, 43, 

 -1.779221, 44, 

 1.067853, 45, 

 -1.710981, 46, 

 -1.176256, 47, 

 -1.622652, 48, 

 -0.6763716, 49, 

 1.962023, 50, 

 0.7409248, 51, 

 -1.205215, 52, 

 1.361526, 53 

}; 

 


