
D E T E C T I O N O F W E B B A S E D C O M M A N D & C O N T R O L
C H A N N E L S

martin warmer

November 2011

Distributed and Embedded Security Group
Faculty of Electrical Engineering,

Mathematics and Computer Science

A B S T R A C T

Recent malware allows criminals to remotely control computers using Com-
mand & Control (C&C) channels. These channels are used to perform crim-
inal activities using infected computers. These activities pose a threat to both
the user of the infected computer and other computer users on the network.
This threat can be mitigated by detecting C&C channels on the network. In
this thesis we attempt to improve the detection capabilities for web based
C&C channels. We provide a survey of current C&C channel detection tech-
niques and study the behaviour of web based C&C channels. Based on these
results, we propose three new techniques for detecting HTTP and HTTPS
based C&C channels. We evaluate these techniques and provide an overview
of their detection capabilities.

iii

C O N T E N T S

1 introduction 1

1.1 Introduction on malware . 1

1.1.1 Botnets . 1

1.1.2 Targeted attacks . 1

1.1.3 Scope of the malware problem 2

1.1.4 Model of operation for bots 2

1.1.5 Detection & reaction . 3

1.1.6 Network traffic generated by bots 4

1.1.7 Network protocol usage of bots 4

1.2 Problem statement . 5

1.2.1 Research questions . 5

1.2.2 Layout of the thesis . 6

2 current c&c channel detection methods 7

2.1 General overview . 7

2.2 C&C channel detection techniques 9

2.2.1 Blacklisting based . 9

2.2.2 Signature based . 9

2.2.3 DNS protocol based . 10

2.2.4 IRC protocol based . 11

2.2.5 HTTP protocol based . 11

2.2.6 Peer to peer protocol based 12

2.2.7 Temporal based . 12

2.2.8 Payload anomaly detection 13

2.2.9 Correlation based . 14

2.3 Discussion . 15

2.4 Research directions . 17

3 protocol introduction 19

3.1 HTTP . 19

3.2 TLS . 19

3.2.1 Handshake . 20

3.2.2 Application data transfer 22

3.2.3 Observable features . 22

4 collecting and analysing c&c traffic 25

4.1 Collecting malware traffic . 25

4.1.1 Collecting malware . 25

4.1.2 Setting up the lab . 26

4.1.3 Basic analysis of observed network traffic 27

4.2 Encrypting C&C traffic using TLS 27

4.2.1 Lab setup . 29

4.2.2 Limitations of tunnelling 29

4.2.3 Data normalization . 30

4.3 Analysis of traffic datasets . 30

4.3.1 Legitimate traffic dataset 30

4.3.2 Analysis of TLS malware traffic 31

4.3.3 Analysis of legitimate TLS traffic 31

4.3.4 Analysis of HTTP malware traffic 35

v

vi contents

4.3.5 Analysis of legitimate HTTP traffic 36

4.4 In-depth malware analysis . 36

4.4.1 Malware source code analysis 36

4.4.2 In depth analysis of the samples generating TLS traffic 38

4.4.3 Analysis of metasploit reverse_https traffic 39

4.5 Summary of malware observations 40

5 proposed c&c channel detection techniques 41

5.1 Machine learning-based TLS classification 41

5.1.1 Approach . 41

5.1.2 Details . 42

5.1.3 Selected machine-learning algorithms 42

5.2 Spoofed User-Agent detection 43

5.2.1 Approach . 43

5.2.2 Details . 45

5.3 2ν-gram based anomaly detection 46

5.3.1 Approach . 46

5.3.2 Details . 47

6 evaluating detection techniques 49

6.1 Evaluation method . 49

6.2 Detecting TLS C&C traffic based on initial request size 49

6.2.1 Preparing the data for machine learning 49

6.2.2 Testing by using machine learning software 50

6.2.3 Detection results . 51

6.2.4 Possible improvements 53

6.2.5 Conclusion . 53

6.3 Spoofed User-Agent detection 54

6.3.1 Building a model of legitimate browsers 54

6.3.2 Fingerprint discussion 55

6.3.3 Detection results . 57

6.3.4 Possible improvements 60

6.3.5 Conclusion . 61

6.4 2ν-gram based anomaly detection 61

6.4.1 Training . 62

6.4.2 Detection results . 62

6.4.3 Possible improvements 62

6.4.4 Conclusion . 64

7 conclusion 65

7.1 Answering the research sub-questions 65

7.2 Answering the research question 67

7.3 Future research . 67

7.3.1 Machine learning-based TLS classification 67

7.3.2 Spoofed User-Agent detection 67

7.3.3 2ν-gram based anomaly detection 68

a overview of malware families analysed 69

b browser fingerprints 71

bibliography 75

1I N T R O D U C T I O N

1.1 introduction on malware

Malicious software, also known as malware, has existed for almost as long
as computers are around. A lot of effort has been put into stopping mal-
ware over the years but malware still remains a problem. Everyday, a huge
amount of malware is released. For example, Symantec encountered more
than 268 million malware samples in 2010 [31], which amounts to more
than 8 samples per second. Keeping up with this number of samples is a
challenge.

According to a report by ENISA [40] the motivation of malware creat-
ors has shifted from showing off technical skills or trying to gain fame to
financial gain. This change also marks a shift in the functionality and soph-
istication of malware. Traditionally, when a piece of malware like a virus
was released the creator only could wait for a message in the media or an
anti-virus update, to see that the virus succeeded in infecting computers.
With the widespread adoption of the internet, malware is now able to con-
tact its creator after it infects a computer. The attacker can thus monitor and
control the spread of the virus. More importantly, the attacker can also re-
motely control the infected computers. This allows him to profit from his
creation by, for example, stealing data from the infected machines.

1.1.1 Botnets

Botnets consist of computers infected with malware which are called bots.
These bots connect to a C&C infrastructure to form a bot network or botnet.
The C&C infrastructure allows the attacker to control the bots connected to
it. This gives the attacker the ability to use these bots for his own financial
gain.

The ENISA report [40] mentions several methods used by criminals to
make money using a botnet. Bots can be instructed to steal user data, (finan-
cial) credentials or credit card details from the infected computers. This data
may be used to empty the victims bank account or impersonate the victim
and, for example, take out a loan in his or her name. Bots can be used to visit
websites and automatically click on advertisements; thus generating profit
for the website owner which is paid per advertisement click. A large group
of bots can be used to perform a Distributed Denial of Service (DDoS) attack
and bring down a server. This can be used to extort from website owners,
who can be asked to pay "protection money". Criminals also sell bot access
to other criminals. Access usually consists of the ability to send spam via
bots, perform a DDoS attack or gain control of the C&C infrastructure for
other purposes.

1.1.2 Targeted attacks

In the case of a targeted attack the attacker wants to infect a specific target.
This is quite different from the regular botnets we have described above,
where the criminal is not interested in which machines she infects. The goal

1

2 introduction

of a targeted attack can be to steal certain data from the target or sabotage
target systems. This is achieved by infecting one or just a few computers
with malware which contacts a C&C server. The C&C server allows the at-
tacker to remotely control the infected computers. The control functionality
can be used to infect other computers or search for documents the attacker
is interested in. After the data of interest has been found the attacker gives
instructions to exfiltrate the data. The exfiltration usually happens via a
channel separate from the C&C channel.

Detecting targeted attacks is much harder than detecting untargeted at-
tacks. The malware is only sent to a few targets, making anti-virus detection
unlikely, as antivirus vendors are unlikely to obtain a sample of the malware.
Detecting the C&C traffic also becomes harder as Intrusion Detection Sys-
tem (IDS) signatures for malware are unlikely to be available and the C&C
infrastructure is less likely to appear on any blocklists. Thus, detection of
targeted attacks relies heavily on heuristics or human inspection.

Recently targeted attacks have also been known under the name Ad-
vanced Persistent Threats (APT). This is an organized attack with the goal
of stealing information, where the attacker has large resources and tries
to maintain a persistent presence on the compromised systems. As the de-
scription indicates, an APT is a form of a targeted attack and also involves
malware controlled via a C&C server.

Operation Aurora is an example of a targeted attack that was published in
January 2010. It involved malware infections in at least 34 companies and hu-
man rights groups including large companies like Google, Northrop Grum-
man and Dow Chemical [23]. The goal of this attack seemed to be stealing
intellectual property and politically sensitive information from the infected
companies and organisation. Ghostnet [26] is another example where mal-
ware was used. In this case the malware was used to spy on the Tibetan
Government in Exile.

1.1.3 Scope of the malware problem

Malware is associated with huge economic losses. According to an ITU
study [18], the total economic loss attributed to malware in 2006 is estim-
ated to be US$ 13.2 billion in direct damages, with estimates of up to US$
67.2 billion for indirect and direct damages for 2005 in the U.S. alone. Even
a single piece of malware can cause large damages if the wrong computer
gets infected. For example, in February 2010 a small marketing firm lost
US$ 164,000 due to one computer infected with the Zeus bot [48].

One of the reasons for the huge losses related to malware is the large
number of computers that get infected. Microsoft reported [14] that in the
second quarter of 2010, it removed bots from 6.5 million computers around
the world. In march 2010 the Spanish police arrested three men suspected of
running a 13 million pc botnet [29]. One of the three arrestees was caught in
possession of 800,000 personal credentials. Given these numbers it is clear
that malware constitutes a widespread problem.

1.1.4 Model of operation for bots

One way to decompose the operation of bots is to split it into two phases:
the infection phase and the working phase.

The infection phase requires malicious code to be executed on at least one
target computer. This can happen in many different ways. A user might be

1.1 introduction on malware 3

tricked into executing a malicious program. This can, for example, happen
under the pretence that a certain program is required to view a video or
there is an important update for some piece of software. Malicious code can
also be executed automatically, for example when an infected USB drive is
inserted into a computer. Whereas executing programs is often considered
dangerous, viewing documents is usually considered safe, as documents
are not supposed to contain any code. However, programs used to open
documents often contain bugs which can result in execution of code inside
the document. Thus, when an user opens a specially crafted document, a
bug can be triggered, allowing malware to be installed on his computer. This
whole process can happen in the background without the user noticing it.

The working phase begins after a computer has been infected. The malware
will contact the C&C server notifying the server that it has been installed
and asking for new instructions. In some cases the bot also sends the results
of an initial set of instructions which were packaged with the bot. This can,
for example, include stealing login credentials and uploading them when
first contacting the C&C server, thus providing valuable information even if
the bot is quickly removed. The bot will continue to contact the C&C server
regularly, asking for new commands or sending the results of a previous
command.

1.1.5 Detection & reaction

Bots can be detected at two different levels, the network level or the host level.
At the host level, bots can be detected during infection. During an infection

the malware installs itself on the computer and makes sure it will start again
after reboot. To do so, the malware has to write a copy of itself on a local
disk. An on-access virus scanner may detect this. Similarly, adding itself
to a list of programs which automatically starts may trigger behavioural
based detection mechanisms. However, malware can disable virus scanners
or use a rootkit to hide itself from virus scanners. This makes it impossible
to guarantee detection after malicious code has started running even if the
virus is known by the virus scanner.

At the network level, bots are harder to detect during the infection phase.
Malicious code can be obfuscated and sent over a legitimately used protocol.
For example, a pdf document transferred via IMAP as an email attachment
is in most cases a legitimate document. However, emails with the same docu-
ment format and protocol can also be malicious. Thus, detection at network-
level would require a virus scanner which scans all documents sent over the
network. Systems for scanning all traffic sent over the network have been
proposed [56]. However, they can not be used in the case of encrypted con-
nections. Furthermore, they are a lot less efficient than the alternative of
scanning all files at the host given the large bandwidth of current networks
and limited processing time. Network level detection has the advantage of
being able to manage detection at a central location instead of managing
detection software on all networked devices.

During the working phase, bots are best detected at network level. At the
host level bots can pack the code differently, use random filenames or use
other tricks to make infections look different. However, at the network level
all bots have to use the same protocol to communicate with a specific C&C
infrastructure. Thus detection at network level may be easier as there are
fewer variants of C&C protocols than variants of malicious code.

4 introduction

Once malware is detected it can be removed from the infected computer(s)
by using specialized removal tools or by reinstalling the computer. This
protects users from having their data or credentials stolen by malware. It
also helps network administrators as malware generating malicious traffic
might cause their internet connection to be blocked or blacklisted.

1.1.6 Network traffic generated by bots

The network traffic generated by bots can be separated into several categor-
ies.

The first category is the infection related traffic. This is the traffic generated
during the infection of a host. This can for example include the download
of malware via a legitimate protocol. However, the traffic can also be absent
in case the malware propagates via a physical device like an USB drive.

The second category is C&C traffic. This is the traffic generated by the
bot when it tries to obtain new commands from the C&C infrastructure.
The commands are usually simple and involve only small data transfers.
However, the criminal does not want to wait very long before a bot executes
his command, therefore the bot frequently has to check for new commands.

The third category is malicious traffic generated as a result of the com-
mands received. The traffic generated depends on the command received
but can include sending spam, sending DDoS traffic or exfiltrating data
from the infected computer.

1.1.7 Network protocol usage of bots

Current malware generates traffic for a variety of different protocols. A pa-
per that analyses samples submitted to the Anubis platform [19] reports
that the most used protocols by malware are HTTP, IRC and SMTP. SMTP is
mostly used to send spam, while HTTP and IRC are mostly used for C&C.
Symantec reported [31] that in 2010, of all command & control servers they
detected, "10 percent were active on IRC channels and 60 percent on HTTP".
Thus, HTTP is currently the most used C&C protocol. HTTP and IRC are
plaintext protocols, but malware may encode data before sending it in a pro-
tocol compliant message. This makes it harder to analyse what is being sent
over the network.

A small group of malware uses TLS to encrypt (some of) their communic-
ation. In a paper about malware analysed using Anubis [19], 0.23% (796) of
the samples used TLS. Interesting to note is that almost all of the TLS traffic
is described as HTTPS traffic. Furthermore, in the paper it is noted that most
of the samples fail to complete the TLS handshake. This may indicate that
the malware does not actually implement TLS, but merely communicates
on a port which is normally used for TLS connections.

Usage of TLS has also been documented in the case of advanced persist-
ent threats. In a presentation from Mandiant [25] it was stated that the two
most common methods for data exfiltration are via FTP or via HTTPS. These
protocols are often used for legitimate traffic and are therefore often avail-
able unfiltered in corporate networks. The command & control channel is
often separate from the data exfiltration channel and can also use HTTPS.
The HTTPS connection can use anything from self-signed, stolen through
legitimate certificates [46]. APTs have also been seen which use legitimate
HTTPS services for command & control or exfiltration. Examples of such ser-
vices are Windows live mail, facebook, google talk and msn messenger [46].

1.2 problem statement 5

Many computers connect to the Internet via a proxy, router or firewall.
This allows these computers to make outgoing connections, but receiving
incoming connection is often not possible. Malware authors take this into
account by making malware connect to C&C infrastructure they can control,
instead of connecting directly to the malware. Some networks only allow
outgoing traffic to certain ports. For example, it is common to only allow
port 25 connections to a designated mail server in order to (be able to) block
outgoing spam. Almost all networks allow access to the web over port 80

(HTTP) and port 443 (HTTPS). Thus, malware often uses these ports to con-
nect to the C&C infrastructure.

Encrypted traffic on port 443 has two main peculiarities. First, port 443 is
usually not blocked by corporate border firewalls, to allow users to browse
the World Wide Web. Secondly, payload-based Network Intrusion Detection
Systems cannot monitor HTTPS traffic, as the contents are encrypted. This
makes it an ideal C&C channel.

1.2 problem statement

This research aims at detecting malware-infected desktop computers by
passively observing network traffic generated by these computers to and
from the Internet. In other words, we aim to detect command and control
channels masquerading as legitimate web traffic.

We focus on detecting malware at the network level because this provides
a centralized solution. No software has to be installed on the hosts and detec-
tion is automatically enabled for all hosts on the network. This is especially
useful when users connect their own devices to the network and therefore
security measures cannot be guaranteed to be present or up-to-date on such
devices.

Current techniques for detecting C&C channels are designed for detect-
ing known malware or large botnets. They are not designed to detect very
small botnets or single pieces of malware used in a targeted attack. To de-
tect these threats a detection technique is needed which can distinguish
legitimate traffic from C&C channels. The focus is on detecting C&C chan-
nels masquerading as web traffic. Web traffic is allowed almost everywhere,
whereas other kinds of traffic are often blocked, for example, in corporate
environments. Furthermore, traffic is generated to a variety of destinations
when browsing the Internet.

Current detection techniques are based on inspection of the contents of
network traffic. As malware authors want to evade detection they are likely
to use encrypted C&C traffic more often. An obvious choice for an encryp-
ted protocol is to use TLS on port 443, which is used for encrypted web
traffic.

1.2.1 Research questions

Generally, detecting malware by identifying C&C HTTP and TLS traffic is
a challenging task as these protocols are used for many different purposes.
Users may browse the web, view videos, run web applications and perform
automatic updates of their software using HTTP. Detection is even more
difficult in the case of HTTPS traffic. Because the traffic is encrypted, no
information is available about the contents of the traffic. Detection methods
therefore have to rely on indirect information about the content, as the size
or timing of packets. This provides much less information thus making de-

6 introduction

tection of C&C traffic more difficult. To the best of our knowledge, there
is no detection technique that can detect malware by observing encrypted
C&C traffic on port 443 or can generically detect single instances of HTTP
C&C traffic.

Therefore, the main research question is:

How can we distinguish C&C web traffic from legitimate web traffic
in both the encrypted and unencrypted case?

To address the research question, we tackle the encrypted and unencryp-
ted cases separately. We address the first case by selecting and benchmark-
ing different classification and anomaly detection techniques which can dis-
tinguish encrypted C&C traffic from legitimate encrypted traffic. We ad-
dress the second case by designing and benchmarking different anomaly
detection techniques which can distinguish C&C web traffic from legitimate
web traffic.

By further problem decomposition we therefore extract the following re-
search sub-questions:

1. How can a dataset of C&C web traffic be obtained?

2. How prevalent is the usage of HTTP based C&C channels in malware?
What are distinguishing characteristics of HTTP C&C traffic?

3. How prevalent is the usage of C&C channels on port 443 in malware?
How prevalent are TLS or SSL C&C channels in malware?

4. Which method works best to distinguish legitimate TLS or SSL traffic
from TLS or SSL C&C channels? What detection and false positive
rates can be achieved?

5. Which method works best to distinguish legitimate HTTP traffic from
C&C HTTP traffic? What detection and false positive rates can be
achieved?

6. How do we set-up proper experiments to measure both the "detection
rate" and the "false positive rate" of each technique?

1.2.2 Layout of the thesis

The rest of this thesis focuses on addressing the main research question
and sub-questions. In more detail, chapter 2 provides a survey of current
C&C channel detection methods. Chapter 3 provides an introduction of the
protocols used by web traffic. In chapter 4 we describe how we collect and
analyse a dataset of HTTP and TLS based C&C traffic. Based on the analysis,
several detection techniques are proposed in chapter 5. An experiment is set-
up in chapter 6 to measure both the "detection rate" and "false positive rate"
of the proposed techniques. Using these results we evaluate the proposed
techniques and answer the research questions in chapter 7.

2C U R R E N T C & C C H A N N E L D E T E C T I O N M E T H O D S

Many methods for detecting C&C channels have been proposed. These
methods range from signature based detection to automatic correlation of
network traffic patterns. This chapter contains a short survey of current C&C
channel detection methods.

2.1 general overview

Many of the C&C channel detection techniques focus on detecting C&C
channels using a specific protocol. Therefore, the detection techniques in
this survey are grouped per protocol. In this way we aim at comparing the
different approaches taken to detect similar C&C channels. Besides protocol-
specific techniques, several protocol-independent techniques are also included.
These techniques are grouped by the underlying principle used for detec-
tion. In this way we aim at comparing different techniques based on the
same principle. For each group we will briefly describe the general working
principles, together with the main advantages and disadvantages.

An overview of the detection techniques in this survey can be found in
table 2.1. This table also specifies the following attributes for each detection
technique.

description A very short description of what the technique is based on.
For more details the reader is referred to the corresponding paragraph
or the reference provided.

setup data The input needed to train or set-up the detection algorithm.
Most detection techniques which require training data need legitim-
ate or C&C traffic to built a model of such traffic. Other algorithms
require known C&C traffic signatures or blacklists. A large set of tech-
niques require no setup data, relying only on heuristics embedded in
the detection algorithm.

group detection Techniques which are group based are designed for
detecting groups of hosts with similar C&C traffic. By grouping hosts
these methods are able to filter out false positives and thus generate
fewer false positives. However, group detection methods are unable to
detect single instances of bots, requiring multiple hosts to be infected
with the same bot before they can detect it.

generic detection Techniques which are generic are able to detect bots
which were unknown during their training or setup phase. Generic
detection techniques are useful because new bots are created everyday.
Non-generic detection methods require a lot of work to keep up to
date for detection of the newest bots and provide a time window dur-
ing which bots are not detected. However, generic detection methods
have the disadvantage that they generate false positives when trying
to detect unknown bots.

malicious traffic Some techniques rely on detection of malicious traffic
for C&C channel detection. Using malicious traffic, these methods re-

7

8 current c&c channel detection methods

s
e
c

t
i
o

n
r

e
f
e
r

e
n

c
e

d
e
s
c

r
i
p
t
i
o

n
s
e
t
u

p
d

a
t
a

g
r

o
u

p

d
e
t
e
c

t
i
o

n

g
e
n

e
r

i
c

d
e
t
e
c

t
i
o

n

m
a

l
i
c

i
o

u
s

t
r

a
f
f
i
c

p
a

y
l
o

a
d

i
n

s
p
e
c

t
i
o

n

2.
2.

1
Blacklisting

[
1][

6][
7][

1
2]

C
&

C
server

blacklist
Blacklist

2.
2.

2
Signatures

[
5
5]

H
TTP

signatures
generation

C
&

C
traffic

X

[
6
5]

ID
S

signature
generation

C
&

C
traffic

X

2.
2.

3
D

N
S

[
6
1]

N
on-existent

dom
ains

X

[
2
4]

D
N

S
group

activity
X

X

[
1
5]

R
eputation

score
Blacklists,D

om
ain

&
IP

info
X

[
2
2]

Fast-flux
dom

ains
X

[
2
1]

Encoded
D

N
S

replies
Legitim

ate
and

C
&

C
traffic

X
X

2.
2.

4
IR

C
[
3
5]

N
icknam

e
signatures

Signatures
X

[
2
0]

Port
scanning

per
channel

X
X

X

[
4
5]

Suspicious
host

clustering
X

X
X

[
4
7][

4
9]

H
um

an/bot
distinguisher

Legitim
ate

and
C

&
C

traffic
X

2.
2.

5
H

TT
P

[
6
6]

Blacklist
non-linked

U
R

Ls
X

X

[
4
2]

Fast-flux
w

ebsites
X

2.
2.

6
P

2P
[
3
2]

P
2P

netw
ork

detection
X

X

[
6
7]

File-sharing/bot
distinguisher

X

[
5
2]

M
odelC

&
C

traffic
Legitim

ate
and

C
&

C
traffic

2.
2.

7
Tem

poral
[
1
7]

C
onnection

regularity
X

[
3
4]

Tem
poralpersistence

X

2.
2.

8
A

nom
aly

[
6
3]

1-gram
Legitim

ate
traffic

X
X

[
5
3][

1
6][

6
4]

n
-gram

Legitim
ate

traffic
X

X

[
4
4]

D
FA

m
odel

Legitim
ate

traffic
X

X

[
5
0]

n
-gram

clustering
X

X
X

2.
2.

9
C

orrelation
[
3
6]

ID
S

event
correlation

ID
S

signatures
X

X
X

[
3
8]

G
roup

sim
ilarity

X
X

X
X

[
3
7]

G
roup

sim
ilarity

X
X

X
X

Table
2.

1:O
verview

of
C

&
C

channeldetection
techniques

2.2 c&c channel detection techniques 9

duce the number of false positives they generate. However, their de-
tection is limited to bots which generate malicious traffic. Thus, bots
acting as proxy or stealing data from the local computer are not detec-
ted.

payload inspection Techniques which rely on payload inspection for
C&C channel detection. This has the advantage that more information
is available for detecting C&C channels. However, the disadvantage
is that payload inspection requires more resources. Furthermore, pay-
load inspection does not help for detection of encrypted C&C chan-
nels, as properly encrypted data is indistinguishable from random
data.

2.2 c&c channel detection techniques

2.2.1 Blacklisting based

A simple technique to limit access to C&C infrastructure is to block access
to IP addresses and domains which are known to be used by C&C servers.
There are several blacklists available which contain domain names and IP
addresses of C&C servers like the Zeus Tracker [12] or AMaDa [1]. More
general blacklists are also available which list sites hosting malware like
"malware domain list" [6] and "malware domains" [7].

The advantage of using blacklisting is that it is simple to implement. Fur-
thermore, blacklisting rarely produces any false positives, given that the
blacklists are maintained properly. The disadvantage of using blacklisting
is that it requires malware researchers to maintain an up to date list of
all domains and IP addresses associated with malware. This has two main
drawbacks. First, it is expensive to build the blacklist as this requires manual
work. Second, the technique creates a "window of opportunity" for attackers
during which new C&C servers are not blocked.

2.2.2 Signature based

A popular technique for detecting unwanted network traffic is to use a sig-
nature based Intrusion Detection System (IDS). Such a system tries to match
the traffic it observes to descriptions of known unwanted traffic called signa-
tures. This allows the IDS to detect unwanted traffic as long as a signature
is available.

Signatures for C&C traffic can be created manually by carefully analysing
malware. This is however a very time consuming process, thus techniques
for automatically generating signatures have been proposed. Perdisci et al.
[55] have proposed a technique to automatically generate signatures for
HTTP C&C traffic. The technique clusters similar bot traffic, tokenizes HTTP
requests and uses the Token-Subsequences algorithm to generate signatures
for each cluster. Wurzinger et al. [65] have proposed another technique to
generate signatures by first splitting traffic into snippets likely to contain
commands and generating token sequences of these snippets as signatures.

The advantage of signature based detection is that known bot traffic can
be easily detected if malware researchers have created a signature. The dis-
advantage is that bots are often obfuscating or encrypting their traffic which
makes it much harder or even impossible to write a signature. Furthermore,

10 current c&c channel detection methods

there is always a time window before the signature is released, in which
malware can operate without detection.

2.2.3 DNS protocol based

A bot needs to know the IP address of the C&C infrastructure to communic-
ate. This address can be hard-coded in the bot or it can be retrieved from a
domain name. Using a domain name provides more flexibility as it allows
the attacker to change the IP address easily.

The domain names requested by a host can be monitored for C&C traffic
detection. Villamarín-Salomón and Brustoloni [61] have shown that a host
which is repeatedly requesting a domain name which doesn’t exist is more
likely to contain malware. These requests may indicate that the malware is
trying to reach a C&C server which has been taken down. Another indica-
tion of C&C traffic proposed by Choi et al. [24] is a group of hosts requesting
a new domain name at the same time. This may happen when several hosts
are part of a botnet and a new C&C domain is setup, for example, because
a previous C&C domain gets taken down. A different approach is taken by
NOTOS [15], a system which tries to estimate the likelihood that a domain
is being used for malicious purposes. To do this, many features like network
information, DNS zones, black- and whitelists are combined to calculate a
reputation score.

Maintaining a DNS server and C&C server at a fixed address increases
the chance that it will be taken down. Therefore, bot creators have started
using fast-flux domains [41]. These are domains for which the owner rapidly
changes the IP address to which a domain points and, optionally, the IP
address of the DNS server as well. Caglayan et al. [22] have proposed a
method for detecting fast-flux domains using multiple DNS responses. They
take into account the Time To Live (TTL) of the domain, the number of
unique responses seen, and the geographic dispersion of the IP addresses
in the responses. By combining this data they are able to detect fast-flux
domains in real-time.

Instead of just using DNS to find the C&C server, bots can also use DNS
as C&C protocol. Bos et al. [21] have proposed a system to detect DNS
based C&C channels based on the entropy of DNS responses. Replies from
C&C servers often contain encrypted and encoded data, which has a higher
entropy than regular DNS responses.

The advantage of using DNS based systems is that DNS traffic is low
bandwidth and low volume, thus only a tiny amount of the total network
traffic needs to be analysed. Except for the technique of Bos et al. [21], these
techniques don’t detect the actual C&C traffic, but the DNS request(s) used
to lookup the C&C server. As a consequence, these techniques can not detect
C&C channels if the domain looks normal. Thus, bot creators can avoid
detection by using a DNS infrastructures similar to a regular webhoster in
combination with a legitimate sounding name. Another way they may avoid
detection is to not use DNS at all, but use IP addresses to connect to C&C
servers.

The detection technique of Bos et al. [21] provides a good method for
detecting DNS based C&C channels. However, if only a small amount of
data needs to be transferred, detection can be avoided by encoding it as low
entropy data.

2.2 c&c channel detection techniques 11

2.2.4 IRC protocol based

Traditionally, Internet Relay Chat (IRC) has been used for C&C of botnets.
Therefore, several bot detection techniques have been proposed which look
for specific features in IRC traffic or try to distinguish human from bot-
generated IRC traffic. One of the early examples of such a system is Rishi [35]
which scores IRC nicknames using a set of rules to detect C&C traffic.

A botnet detection system has been proposed by Binkley and Singh [20]
which clusters computers by IRC channel. This automatically groups bots
using the same IRC channel for C&C. For each cluster, the network is mon-
itored to detect TCP SYN scans and a cluster is marked as infected if scan-
ning activity is detected. Thus, the system is able to detect IRC based bots
performing TCP SYN scans.

A system by Karasaridis et al. [45] collects flow level data for all hosts
which have triggered a suspicious behaviour detection system. By cluster-
ing this data, C&C infrastructures can be detected under the assumption
that constant IP addresses are used. This allows for detection of bots and
the associated C&C server given that the bots are performing suspicious
activities which can be detected.

Other approaches have focused on separating IRC traffic into traffic gen-
erated by humans and bots. SVM classification on non payload data like
packet histogram size and direction has been reported to provide 95% ac-
curacy [47]. Others have used flow data to perform similar classifications
achieving high (30-40%) false positive and (10-20%) false negative rates [49].

Focussing on a specific protocol, IRC based techniques can take advant-
age of specific properties of IRC traffic. This allows them to, for example,
group traffic per IRC channel even if the IRC channel is on a server which
is also used for legitimate IRC traffic. IRC based detection techniques have
been around longer than any other detection technique. This gives them the
overall advantage that these techniques have had more time to be improved.
The disadvantage is that only IRC based bots can be detected. There are
currently many more HTTP based botnets than IRC based botnets, which
limits the set of bots that can be detected.

2.2.5 HTTP protocol based

Xiong et al. [66] have proposed a technique to detect HTTP C&C traffic
using user interaction. The technique analyses requested websites statically,
to obtain all domains linked to in the page. These domains are added to
the whitelist and any requests to a domain not on the whitelist requires
user confirmation. It is claimed that after training, this system will only
occasionally require users to confirm new domains. The disadvantage of this
system is that it requires users to make informed decisions. For example,
most users will find it difficult to determine whether a request made by
an automatic updater is legitimate. These requests are often generated in
the background and may not contain the program or vendor name in the
domain. Furthermore, if whitelists are shared between users, the mistake of
a single user can allow malware on all computers to access a C&C server.

Hsu et al. [42] have proposed a technique to detect fast-flux hosted web-
servers. Criminals may use such webservers as C&C server or use them
to host phishing sites. Fast-flux servers often use a large collection of bots
as proxies which redirect all requests transparently to the actual webserver.
The DNS records of these sites are frequently updated to point to a different

12 current c&c channel detection methods

bot. Such sites can be detected by measuring the timing of the requests. Bots
usually run on slower desktop computers with slower Internet connections.
Thus, they will respond slower than an average server. As the requests are
redirected, the difference in response time is even larger. A disadvantage
of this technique is that it will detect all websites hosted on slower serv-
ers. Thus, it may block legitimate websites hosted on a broadband Internet
connection.

2.2.6 Peer to peer protocol based

A small selection of bots uses a peer to peer (P2P) protocol [60] for its C&C
channels, instead of using, for example, a HTTP or IRC server-based C&C
channel.

François et al. [32] have shown that P2P networks can be detected and dis-
tinguished from each other. To detect these networks they generate a graph
of hosts talking to each other and calculate the "pagerank" of each node and
cluster the nodes. This provides detection of separate P2P networks, but al-
though their work focuses on detecting P2P botnets, they do not provide
any method to distinguish legitimate P2P networks from P2P botnets.

Yen and Reiter [67] provide a method to distinguish P2P C&C traffic from
file-sharing P2P traffic. The detection is based on the combination of several
behaviours observed for C&C P2P channels. They use the volume of data
transferred, the peer churn in the P2P network and the timing between
requests as distinguishing behaviours.

Noh et al. [52] propose another method to distinguish legitimate and C&C
P2P traffic. They collect and cluster flows of both legitimate and C&C traffic.
The attributes of these clustered flows are then compressed into a 7-bit state.
Using these compressed states, a Markov model is built for each cluster. Peer
to peer C&C traffic is detected by comparing the observed traffic with the
Markov models of both legitimate and C&C traffic. If the traffic is similar
enough to previously seen C&C traffic it is flagged as C&C traffic.

The first two techniques described above provide generic detection of P2P
networks, which is a first step for detecting P2P C&C traffic. While the
method of Yen and Reiter [67] can distinguish file-sharing and C&C P2P
traffic, it may generate false positives for legitimate non file-sharing P2P
networks. Thus, it may, for example, detect P2P VoIP calls on the Skype
network or P2P money transfers using Bitcoin. The method of Noh et al. [52]
avoids this problem, but can only detect P2P C&C traffic which is similar
to the P2P traffic which was used for training. A disadvantage of these
techniques is that malware may avoid detection by (ab)using a legitimate
P2P network.

2.2.7 Temporal based

A bot regularly has to send traffic to the C&C server in order to able to
receive new commands. Such traffic is sent automatically and is usually sent
on a regular schedule. The behaviour of user-generated traffic is much less
regular, thus bots may be detected by measuring this regularity. AsSadhan
et al. [17] have proposed a system to detect hosts generating regular traffic.
The system divides time into fixed size timeslot and records the address and
packet count of each timeslot. A periodogram of these counts is calculated
which shows regular traffic as a peak. If a significant peak is found, the
traffic is flagged as regular.

2.2 c&c channel detection techniques 13

Giroire et al. [34] have designed a detection system which measures the
temporal persistence of traffic. The system attempts to find hosts which
keep connecting to the same server. Bots are likely to keep connecting to
the same C&C server as long as it is online, thus persistent connections
may be used to detect C&C channels. The methods measures persistence
at several different time-scales using timeslots. This provides detection for
regular connections even if the timings are randomized within an interval.

The advantage of using a timing based approach is that it is protocol inde-
pendent, requiring only that the bot regularly sends or receives traffic from
a C&C server. However, legitimate software may also sent regular requests,
leading to false positives. These legitimate regular connections need to be
filtered using a whitelist, which may, for example, contain regular checks
for new mail or software updates. The disadvantage of time based detec-
tion systems is that a significant amount of work is required to maintain a
whitelist.

2.2.8 Payload anomaly detection

Payload Anomaly detection is based on the assumption that it is possible
to build a model of legitimate traffic content. Any network traffic not con-
forming to this model is considered anomalous. Given a perfect model of
legitimate traffic such a system should be able to detect all C&C and other
non legitimate traffic. However, practical systems are limited by the model-
ling technique chosen and the availability of representative legitimate data.

One of the early systems proposed is PAYL [63] which builds a model
based on the byte frequency distribution of the traffic contents. For every
combination of traffic length and port number, a model is generated. This
diversifies the model to support multiple protocols and request types. How-
ever, mimicry attacks have been published [30] which allow an attacker to
build an attack with the correct distribution. More advanced models have
been proposed which try to model the distribution of n-grams efficiently
for n > 2. Approximations of n-gram probability distributions have been
made using Support Vector Machines (SVM) [53], Hidden Markov Mod-
els (HMM) [16] and bloom filters [64]. Modelling the data using n-grams
for n > 2 makes mimicry more difficult and allows the model to include
keywords used in the protocols monitored. Detection techniques based on
tokenization of the data contents have also been proposed using, for ex-
ample, Discrete Finite Automata (DFA) to build a model of legitimate HTTP
traffic [44].

Lu et al. [50] have proposed an anomaly detection method using n-grams
for C&C channel detection. It is based on the assumption that the content
C&C traffic is less diverse than the content of legitimate traffic. The detection
methods first classifies all traffic into application groups using signatures or
a n-gram based decision tree. For each session, the temporal n-gram distri-
bution is computed, which is the n-gram distribution of all traffic in a fixed
time window. The resulting distributions are clustered and the cluster with
the smallest standard deviation is considered the botnet cluster. Thus, all
sessions in that cluster are marked as C&C traffic. This technique provides
a method for detecting groups of hosts using the same C&C protocol. It
has been evaluated for IRC based C&C channels and has shown good per-
formance for detecting such channels. Its performance on other protocols
is currently unknown, but it may generate false positives for automatically

14 current c&c channel detection methods

generated traffic. If this traffic is generated by the same software it would
have a very low diversity, thus making it likely that it is detected.

The biggest advantage of using anomaly detection techniques is that they
are capable of detecting new C&C channels. However, building a good de-
tection model can be difficult, especially when C&C traffic uses the same
protocol and keywords as legitimate traffic. Most of the current anomaly
detection system are designed to detect attacks on servers. Thus, their per-
formance for detecting C&C channels remains an open question. The tech-
nique proposed by Lu et al. [50] has shown good performance for detecting
IRC based C&C channels. However, its performance for other protocols is
unknown. Furthermore, it can not detect single bots as it is a based on de-
tecting groups of bots.

Bothunter [36], described in section 2.2.9, uses n-gram based anomaly
detection as part of its detection system. As the standalone performance of
this anomaly detection system is not discussed in the paper about Bothunter,
it is not included in this section.

2.2.9 Correlation based

One method to reduce the number of false positives for bot detection is
to require several correlated events before raising an alert. This allows the
system to use events which by themselves have a high false positive rate.
However, by requiring multiple events the system is able to filter out most
false positives. The events may be correlated for a single host or for a group
of hosts.

Bothunter [36] is a system which combines multiple events for a single
host and raises an alert if the events match its bot behaviour model. The
events are generated using IDS signatures (see 2.2.2) as well as payload and
scanning anomaly detection systems. The payload anomaly detection sys-
tem is based on an approximation of the n-gram distribution of the traffic.
Once a single host has generated a sufficient sequence of events which
match the behaviour model, it is flagged as a bot infection by Bothunter.

In a botnet, multiple bots are controlled via the same C&C server. Correla-
tion between hosts can provide a way to detect a group of bots connected to
the same C&C server. Botsniffer [38] is an example of such a system which
groups hosts logged on to the same IRC channel or contacting the same
webserver. If enough of the hosts in such a group perform similar malicious
activities within a certain time-frame, the group is marked as being part of a
botnet. Thus, bots are detected using spatio-temporal correlations between
hosts. A more generic variant of Botsniffer is called Botminer [37] which
works similarly but groups by server IP address. This has the advantage of
being more efficient, as well as being able to detect centralized C&C servers
independent of protocol.

The advantage of using correlations to detects bots is that there are fewer
false positives compared to using just the individual events. At the same
time, this can be a disadvantage because stealthy bots, which generate just
one or two events, may not be detected. Furthermore, correlation for a group
of hosts only works well if enough bots are present within the monitored
network. Thus, such a method will not work well within a small network
or for detecting bots with a very limited distribution. All three systems re-
quire detection of malicious traffic to confirm the C&C channel. Thus, these
systems are unable to detect bots which do not generate malicious traffic.

2.3 discussion 15

section pros cons

2.2.1 Blacklisting Low false positive rate
Easy to implement

Needs update for every
new C&C server

2.2.2 Signatures Low false positive rate
Easy to implement

Needs update for every
new C&C protocol or
implementation

2.2.3 DNS Protocol agnostic
detection of suspicious
domains

Only detects domain
based C&C servers

2.2.4 IRC Good detection of
suspicious IRC usage

IRC getting less popular
as C&C channel

2.2.5 HTTP Protocol specific detection
for most popular C&C
protocol

Methods are obtrusive or
only detect fast-flux C&C

2.2.6 P2P Can distinguish separate
P2P networks

No generic way to
distinguish legitimate
from C&C P2P network

2.2.7 Temporal Can detect most C&C
channels

Many false positives for
legitimate periodic traffic

2.2.8 Anomaly Can in principle detect all
unencrypted C&C traffic

Unclear if it works well
for C&C channels

2.2.9 Correlation Few false positives Requires multiple
detection events, may
miss malware

Table 2.2: Overview of C&C channel detection technique groups

However, a bot which does not generate malicious traffic may still have a
significant impact by, for example, stealing online banking credentials.

2.3 discussion

After presenting the main approaches proposed in scientific publications
to detect C&C traffic, we will discuss the pros and cons of each group of
detection techniques in this section. We provide an overview of the pros
and cons of each group in table 2.2 and go into detail in the rest of this
section.

Blacklisting and signature based techniques both focus on detecting known
C&C channels. They require a large database containing specific C&C serv-
ers and C&C protocol implementations, respectively. These techniques pro-
vide high detection rates for the C&C channels present in the database, with
few false positives. However, maintaining such a database requires a con-
siderable amount of work, as many new pieces of malware are released
everyday. Furthermore, there is always a time window in which new C&C
channels are not yet in the database, during which the malware can operate
without being detected. Despite the disadvantages, these systems are the

16 current c&c channel detection methods

most commonly used in practice, due to their low false positive rates. Few
false positives make it possible to manually investigate alerts or automatic-
ally block traffic without significantly hindering legitimate traffic.

DNS and IRC based techniques are the oldest types of technique in this sur-
vey that can detect new C&C servers and implementations without requir-
ing updates. Publications of these techniques date back to 2006. Having been
public for a long time, these techniques have been improved over the years.
This suggests that these techniques might be ready for production use. In the
case of DNS based techniques, for example, a commercial product [4] based
on NOTOS [15] is already available. From a practical perspective, the IRC
based techniques are not as interesting as DNS based techniques, as their
scope of use is limited by the scarceness of IRC based C&C channels [31].

HTTP based techniques are still very limited in their detection capabilities.
Current techniques either require user interaction or limit detection to fast-
flux hosted C&C servers. In the first case, the user is asked to decide whether
a request is legitimate or C&C traffic when an alert is generated. Most users
will find this difficult, as they have no understanding of the technical details
of HTTP. In the second case, a large group of C&C servers is ignored by
limiting detection to fast-flux servers. The limitations of current techniques
make it unlikely that they are usable as practical C&C channel detection
techniques.

P2P based techniques show the ability to detect separate P2P networks.
However, their ability to distinguish legitimate and C&C P2P networks is
still limited. Current techniques can only distinguish file-sharing and C&C
networks or detect the P2P behaviour of specific malware. In the first case,
false positives for legitimate non file-sharing P2P networks are a problem.
In the second case, a database of known C&C P2P behaviour needs to be
maintained, leading to similar difficulties as for signature based techniques.
Thus, current techniques provide a starting point for C&C channel detec-
tion, but still have significant weaknesses that prevent them to be successful
in practice.

Temporal based techniques provide a good detection rate for C&C channels.
However, they generate many false positives for legitimate software with
periodic behaviour. A whitelist may be used to filter out these false posit-
ives. However, creating such a whitelist takes a significant amount of work,
as all periodic traffic has to be checked before it is added to the whitelist.
As new software and servers are installed, new legitimate periodic traffic
may appear, requiring the whitelist to be updated. Thus, maintaining the
whitelist also takes a significant amount of work.

Anomaly based techniques might in theory detect all C&C traffic. However,
little research has been published focusing on detection of C&C channels.
Thus, it remains unknown how well anomaly detection works for C&C chan-
nel detection.

Correlation based techniques have the big advantage that they generate few
false positives. In order to detect malware, several detection techniques need
to raise suspicious events, which can then be correlated. The suspicious
events for the described techniques are generated using port scanning detec-
tion, payload anomaly detection and IDS signatures. These event generation
techniques have a focus on detecting malicious traffic, thus, malware which
does not generate such traffic is unlikely to be detected.

2.4 research directions 17

2.4 research directions

In this chapter, we have described many different C&C channel detection
techniques and discussed their advantages and disadvantages. Based on
this discussion, we derived the focus of this thesis.

We focus on detecting HTTP based C&C channels because 60% of C&C
channels are HTTP based [31] and current techniques have significant dis-
advantages. None of the current techniques is able to detect the majority of
C&C traffic without active participation of users. Thus, we focus on design-
ing a HTTP based detection technique which can detect the majority of C&C
traffic passively.

Closely related to HTTP is HTTPS, which secures HTTP traffic by wrap-
ping it in a TLS session. HTTPS traffic has two main peculiarities. First, it
is usually not blocked by (corporate) firewalls as it is needed to browse the
world wide web. Second, payload inspection based detection systems can-
not monitor HTTPS traffic, as the contents are encrypted. Switching from
HTTP to HTTPS requires few changes for malware authors, thus if payload
inspection based systems are deployed, HTTPS might become a popular
C&C protocol. The temporal detection techniques are the only techniques
which may be able to generically detect HTTPS C&C traffic. However, the
large number of false positives they generate makes it unlikely that these
techniques will be used in practice. Therefore, we focus on designing a de-
tection technique for HTTPS based C&C channels.

Anomaly detection systems might be able to detect all types of C&C
traffic. However, little research has been published regarding the C&C chan-
nel detection capabilities of current anomaly detection systems. Thus, we
decide to evaluate whether anomaly detection techniques can be used to
create a good C&C channel detection method.

3P R O T O C O L I N T R O D U C T I O N

In this chapter, we give a short explanation of how HTTP and TLS work.
This explanation is intended to provide some basic insight in how these
protocols work. It is, however, not intended to be a complete description of
either protocol. The exact specification of both protocols can be found by
looking up the respective RFCs. If the reader is familiar with both protocols
(s)he can skip to chapter 4.

3.1 http

The HyperText Transfer Protocol (HTTP) is a text based network protocol
designed for retrieval of webpages. To retrieve a webpage the client has
to send a request to the server. The server replies with the (dynamically
generated) file specified in the request.

A HTTP requests consists of a request line followed by one or more head-
ers. The request line consists of three parts: the method, the URI and the
protocol version. A standard request for the root document looks like GET /

HTTP/1.1. This request specifies the get method to retrieve the file associated
with the URI /. The request line is followed by one or more headers which
are specified as a line containing Name:Value. The headers are interpreted
based on their (case-insensitive) name thus their order is not significant.
Only the Host header is a required request header in the HTTP 1.1 specific-
ation. All other headers are optional, but most HTTP clients include many
other headers. A description of a few common headers is given below.

accept specifies the mime-types the client is able to handle

accept-encoding specifies the encodings the server may use in the reply

connection specifies whether the server should close the connection after
sending the reply

host specifies the domain name for the request

user-agent contains a string identifying the client version and name

3.2 tls

Transport Layer Security (TLS) is a protocol that provides a secure commu-
nication channel between two parties. It can provide authentication of both
parties and ensures confidentiality and integrity of the data transferred. TLS
has been designed to provide these features for any protocol which can run
over TCP. Thus running HTTP over TLS (a.k.a. HTTPS) provides a secure
version of the plaintext HTTP protocol.

Authentication of the parties is possible using (x.509) certificates. Usage
of these certificates is optional and in practice the server always provides a
certificate, while it is rare for a client to provide a certificate. After the server
has been authenticated, the client can communicate securely with the server
and can, for example, provide a username and password over the secured
connection.

19

20 protocol introduction

Netscape started development of what would become TLS under the
name Secure Sockets Layer (SSL). SSL 2.0 was the first version released in
1994, quickly followed by SSL 3.0 in 1995 because of security problems. After
SSL 3.0 was released Netscape handed over development to the Internet En-
gineering Task Force (IETF) which continued development under the name
TLS. TLS 1.0 is the result of the continued development of SSL 3.0. It is back-
ward compatible and internally uses the version number 3.1 as protocol
version. The term TLS in this thesis should be interpreted as referring to
both SSL (3.0) and TLS.

3.2.1 Handshake

A TLS sessions starts with a handshake during which authentication takes
places and session keys are exchanged. The client begins by sending a Client-
Hello message. This message contains a random number and specifies which
TLS version, ciphersuites and compression methods the client supports. A
ciphersuite is a combination of a key exchange, an encryption and a MAC al-
gorithm for use in TLS. (TLS 1.2 ciphersuites also include a pseudo random
function.)

The server chooses a TLS version, ciphersuite and compression method
from the ClientHello message to use for the session. A ServerHello message
is sent as response which contains another random number and the selec-
ted TLS version, ciphersuite and compression method. The server may op-
tionally send Certificate, ServerKeyExchange and CertificateRequest messages
followed by a ServerHelloDone message. The Certificate message can be used
by the server to authenticate itself using a x.509 certificate. If an ephemeral
key exchange algorithm is selected, a ServerKeyExchange message is sent con-
taining key material from the server. If the client is required to authenticate
itself using a certificate, the server sents a CertificateRequest message.

Now the client has all data needed to complete the key exchange, com-
pute the secret keys and sent the ClientKeyExchange message. The contents
of this message depend on the key exchange algorithm which is designed
such that only the server can use the message to determine the secret keys. If
the server requested a client certificate the client sends its certificate in a Cer-
tificate message before the ClientKeyExchange message which is followed by
a CertificateVerify message for signing certificates. After these messages the
client sends a ChangeCipherSpec message. This indicates that from that point
on, all messages from the client will be encrypted and authenticated using
the secret keys. The first encrypted message is a Finished message containing
data the server uses to verify that the key exchange and authentication were
successful.

The server uses the ClientKeyExchange message to compute the secret keys.
It sends a ChangeCipherSpec message indicating that from that point on, all
its messages will also be encrypted. This message is followed by an encryp-
ted Finished message to allow the client to verify that the key exchange and
authentication were successful.

Besides the complete handshake described above, a shorter handshake,
also known as a resumed handshake, is possible. During the complete hand-
shake the server may send a session identifier in the ServerHello message.
When the client makes another connection shortly after the first one it may
include this session identifier in its ClientHello message. If the server still
has the keys corresponding to the session identifier it will shorten its hand-
shake. It immediately sends the ServerHello, ChangeCipherSpec and Finished

3.2 tls 21

client server

ClientHello −→

←−

ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest*
ServerHelloDone

Certificate*
ClientKeyExchange

CertificateVerify*
ChangeCipherSpec

Finished

−→

←− ChangeCipherSpec
Finished

Application Data ←→ Application Data

* Optional message

Figure 3.1: The full TLS Handshake

messages. The client only has to respond with a ChangeCipherSpec and Fin-
ished message to conclude the handshake. This shortened handshake is more
efficient both in computation and traffic generated because no expensive
cryptographic operations have to be performed and fewer messages have to
be exchanged.

The TLS handshake is transmitted as cleartext with the exception of the
Finished messages. Thus anyone watching the network can read the mes-
sages and for example determine the ciphersuite used. If a TLS session is
open for a long time one of the parties may want to exchange new keys
and request a renegotiation. This starts the handshake protocol again in the
middle of an TLS session. In this case the handshake messages are encryp-
ted using the available keys, thus someone watching the network will not
be able to read the messages.

client server

ClientHello −→

←−
ServerHello
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

−→

Application Data ←→ Application Data

Figure 3.2: The resumed TLS Handshake

22 protocol introduction

Type Version Length (Compressed)
Data

MAC (Padding)

encrypted

Figure 3.3: TLS Record

3.2.2 Application data transfer

The record protocol is used to transport all messages in a TLS session. The
record protocol provides confidentiality and integrity for all messages sent.
Only the initial handshake messages are sent in plaintext as no keys are
available before the first ChangeCipherSpec message. Application data, for
example, HTTP traffic is also protected using the record protocol as this is
sent as an ApplicationData message.

For every message, the record protocol performs the following operations
before transmitting the message as a TLS record. If a compression method
has been negotiated during the handshake, the message data is first com-
pressed. A MAC is added to allow the recipient to check the integrity of
the data. The data and MAC are padded to a multiple of the blocksize if
a blockcipher is used for encryption. The result is encrypted using the ne-
gotiated cipher. The encrypted data is put in a TLS record with the type of
message, the TLS version and the length of the encrypted data in plaintext.
The resulting record is sent over the network.

All data sent using the record protocol is encrypted, authenticated and
possibly compressed. The encryption makes sure that no one except the
other party is able to read the messages. While the MAC makes sure that
the record they receive has been sent by the other party.

3.2.3 Observable features

Even though all application data is encrypted before transmission some in-
formation can still be determined by observing TLS traffic. The messages
for the initial handshake are sent in plaintext. Thus any observer can read
the ClientHello, ServerHello and Certificate messages. The ClientHello message
is interesting because it contains the ciphersuites, compression methods and
TLS extensions supported by the client. This may be used to (partially)
identify the client implementation as different implementations support dif-
ferent ciphersuites and compression methods.

The Certificate message(s) contain the certificate(s) used for authentication.
In practice the server always authenticates itself, thus its certificate is avail-
able. This certificate may be used to determine the host name and organisa-
tion of the server. However, as the IP address of the server is already known,
this may provide little information. The certificate also contains a signature
of the Certificate Authority (CA), which may be used to check the validity
of the certificate. Client certificates are rarely used in practice, but if they are
used, they may be used to uniquely identify the person or computer on the
clientside.

The ServerHello message contains the TLS version, ciphersuite and com-
pression method used for the TLS session. This information is useful for cor-
rectly interpreting records containing application data. Only the length of
each encrypted application data record is available as plaintext. This length

3.2 tls 23

is made up of the length of the (compressed) data, the MAC and any pad-
ding. (In TLS 1.1 and later an Initialization Vector may also be part of the
length.) The ciphersuite specifies the MAC algorithm used and thus the size
of the MAC. In case the ciphersuite specifies a stream cipher no padding
is used and the size of the (compressed) data can be obtained by simply
subtracting the MAC length from the record length. As compression is im-
plemented in very few clients this will usually give the exact length of the
application data. In case a block cipher is used an approximation of the
application data length can be made. The padding is allowed to be up to
256 bytes long, but for efficiency reasons the padding is usually between 1

byte and the blocksize long (8 or 16 bytes). Thus if a block cipher is used
the length of the application data rounded up to the nearest blocksize can
usually be determined.

Besides observing the length of application data, the timing and direction
of ApplicationData records can be observed as well. This may allow for gen-
eral identification of the type of application data transferred. An interactive
shell may, for example, sent small records for every key press and maintain a
long-lived connection which often changes direction as typed characters are
echoed back. Whereas web traffic (HTTPS) sessions are usually short-lived
with larger records.

4C O L L E C T I N G A N D A N A LY S I N G C & C T R A F F I C

4.1 collecting malware traffic

No dataset containing C&C traffic is available to study C&C traffic or evalu-
ate detection techniques. Therefore, in this chapter we focus on creating and
analysing a dataset of C&C traffic. This dataset is created by collecting mal-
ware and running it in a controlled environment where the network traffic
can be captured.

4.1.1 Collecting malware

The first step to creating a dataset of C&C traffic is to collect malware which
generates such traffic. This was done by collecting samples for malware
families which have been reported to use TLS and by collecting a large set
of malicious documents.

Only a small subset of malware uses TLS for its C&C traffic, as was de-
scribed in section 1.1.7. Therefore, we have decided to focus on collecting
malware families for which TLS usage or C&C traffic on port 443 was doc-
umented. To this end, we have performed a search on the websites of a
variety of anti-virus and security companies to find all malware families for
which they have documented usage of TLS or port 443. The resulting list of
malware families and usage references is included in appendix A. For each
of these families, samples were downloaded from Offensive Computing [9]
or from the site documenting TLS usage. Where necessary, these samples
were unpacked or decrypted to obtain an executable.

According to Annual Global Threat Report 2009 [13], "the vast majority
of modern malware encounters occur with exposure to compromised web-
sites". While the report also notes that PDF files compromised 80% of the
web-encountered exploits in 4

th quarter of 2009. According to Symantec [59],
malicious PDF files are not only distributed via websites but are also distrib-
uted via mass-mailing or targeted attacks. Thus, malicious PDF documents
are an important source of malware infections.

Because malicious PDF documents are a significant infection vector for
current malware, we have focused on collecting a large set of malicious
documents. The malware dropped by these documents is relatively recent
and should provide a selection of malware an average user is likely to be
infected by. Furthermore, as the documents are relatively recent, they are
likely to use HTTP for their C&C channel, as HTTP is currently the most
used C&C protocol [31].

The collected set of malicious documents is a combination of malicious
PDF and office documents which have been sent via email or offered for
download on a website. The set of documents consists mostly of documents
obtained from Contagio [3] combined with some documents obtained from
other websites. These documents are known to be malicious and thus likely
to drop malware when opened. According to the descriptions on Contagio,
some of these documents have been used in targeted attacks. As data ex-
filtration and C&C channels have been documented to use HTTPS in the
case of targeted attacks [46], a few of these documents might also use TLS.

25

26 collecting and analysing c&c traffic

Virtualbox

Control script

Network
VM additions

MALWARE
Windows XP

Adobe Reader
Microsoft Office

OBSERVER
Linux

Tcpdump
Inetsim

Figure 4.1: Lab setup

While searching malware and malicious documents several forums were
encountered were source code of bots was offered. The source code of these
bots was downloaded and is analysed in section 4.4.1.

4.1.2 Setting up the lab

A controlled environment has been setup to run the collected malware
samples and capture the network traffic they generate. This environment
consists of two virtual machines connected via a virtual network. One ma-
chine is used to run the malware, the other is used to observe all network
traffic. We refer to the first machine as the malware machine and to the second
machine as the observer machine. The malware machine runs Windows XP and
is used to run malware executable programs and view malicious documents.
To view the malicious documents several major versions of Microsoft Of-
fice and Adobe Reader were installed. The use of several major versions
increases the possibility of observing malicious behaviour. The malicious
code in some documents might depend on a bug in an older version, or
simply crash the viewer if not opened with the expected version of the ap-
plication. All PDF documents were opened using adobe Adobe Reader 6, 7,
8 and 9. All Microsoft Office documents were opened using Microsoft Office
2000, XP, 2003 and 2007.

The observer machine runs Linux and provides all network simulation and
capturing abilities. An Internet connection is simulated using inetsim [5].
Inetsim provides a range of (fake) servers including DNS, HTTP, HTTPS
and SMTP servers. These servers will for example respond to all HTTP and
DNS requests generated by samples. All network traffic to and from the
malware machine is captured using tcpdump [11].

Both virtual machines are controlled via a python script which automatic-
ally executes each sample and retrieves the packet captures and inetsim logs
afterwards. The virtual machines are isolated and only use virtual machine
additions to communicate with the host machine.

4.2 encrypting c&c traffic using tls 27

4.1.3 Basic analysis of observed network traffic

Using the lab setup described in the previous section, all collected samples
were run and their network traffic was captured. The captured network
traffic is analysed in this section.

Out of the sixteen malware families we analysed, only eight produced
traffic on port 443 and no traffic was observed on any other port assigned
to carry TLS traffic. Only four of these eight families actually use TLS. The
other four families use a custom protocol on port 443 and can be easily
detected by an IDS which checks for valid TLS records.

Interesting to note is that no TLS traffic was found for most of the obtained
malware families, even though these families have been described to use
TLS by malware researchers. The most likely explanation for this difference
is that the researchers only classified the traffic using port number instead
of the actual contents. Another explanation would be that the researchers
studied a different variant of the malware than the obtained variants. Most
samples were obtained by searching for the malware name thus it is quite
likely that different malware samples of the same family were used than the
one studied by the researcher mentioning TLS usage.

In total 7842 malicious PDF documents were opened and 47 (0.6%) doc-
uments dropped malware which generated traffic on port 443. None of
these samples used the TLS protocol, but instead they used HTTP (40%
19 samples) or a custom protocol (60% 28 samples). However, one sample
was capable of generating TLS traffic if triggered by opening a web browser
(see section 4.4.2).

Out of 301 malicious office documents, 18 (6%) dropped malware which
generated traffic on port 443. However, the TLS protocol was not used. In-
stead, 40% (7) used HTTP and the rest used a custom protocol.

The HTTP traffic generated by the malicious documents was almost all
over port 80. Only a few samples used HTTP over port 443 or port 8080

(the alternative HTTP port). Thus, in general the malware in the malicious
documents generated protocol compliant requests over the correct port.

The protocols used by the malware were determined using OpenDPI [10].
Which is a tool designed to detect the protocols used on a network using
deep packet inspection. After removing the traffic generated by Windows,
only HTTP remained as a protocol with significant usage, with 10 out of 16

malware families, 28.2% of office documents and 86.7% of PDF documents
generating HTTP traffic. TLS traffic was only observed for the four previ-
ously mentioned malware families. Besides HTTP, a further 3 malware fam-
ilies generated SMTP traffic and 2 families generated FTP and IRC traffic.
The remaining malware traffic is all classified as unknown and most likely
uses a custom protocol for C&C traffic.

4.2 encrypting c&c traffic using tls

As our first observations point out, very few samples currently use TLS
for C&C. However, TLS support could be easily added using the stand-
ard windows libraries. Malware authors might do this in the near future
to evade payload based detection systems. Therefore, HTTP traffic gener-
ated by malware samples has been tunnelled over a TLS tunnel to obtain
a dataset containing TLS encrypted C&C traffic. This dataset is generated

28 collecting and analysing c&c traffic

family name nr. of

samples

port 443

used

tls

traffic

observed

http

traffic

(any port)

Agobot 49 No No Yes

Ghegbot 19 Yes No Yes

Hydraq 4 Yes No No

Mebroot 56 Yes Yes No

Mega-D 14 No No No

NTESSESS 1 Yes Yes No

PingBed 2 Yes Yes No

Pushdo 50 No No Yes

Ramnit.C 25 Yes No Yes

Routrobot 24 No No Yes

Rustock 28 No No Yes

Spybot.worm.gen.p 50 No No No

Spyeye 26 Yes No Yes

Swrort 26 Yes Yes Yes

Tdss 60 No No Yes

Zeus 54 No Noa Yes

Total 488 8 Yes
8 No

4 Yes
12 No

10 Yes
6 No

a Supports TLS but TLS usage was not observed for in the wild samples (see section 4.4.1)

Table 4.1: Summary of traffic observed per malware family

document

type

port 443

traffic

http on

port 443

http

(any port)
nr. of

samples

Office 18 (6.0%) 7 (2.3%) 85 (28.2%) 301

PDF 47 (0.6%) 19 (0.2%) 6.802 (86.7%) 7.842

Table 4.2: Summary of observed traffic from malicious documents

port office documents pdf documents

80 68 6751

443 7 19

8080 4 17

Other 6 15

Table 4.3: Port usage for HTTP traffic

4.2 encrypting c&c traffic using tls 29

Virtualbox

Control script

Network
VM additions

MALWARE
Windows XP

Adobe Reader
Microsoft Office

OBSERVER
Linux

Tcpdump
Inetsim
stunnel

TLS ENDPOINT
Linux

Inetsim(http)
Stunnel

TLS Network

Figure 4.2: Lab setup for TLS tunnelling

using actual malware traffic and provides traffic similar to the traffic if TLS
support would be added to the malware.

4.2.1 Lab setup

The TLS tunnelled C&C traffic is generated using a setup similar to the one
described in section 4.1.2. The setup consists of the malware, the observer and
the TLS endpoint machines The malware machine runs Windows XP and is used
to execute the malware. The observer machine runs linux and provides net-
work simulation, capturing and TLS tunnelling capabilities. Network simu-
lation and capturing are done using inetsim and tcpdump. The TLS tunnel
receives all HTTP traffic and sends it over a TLS connection to the TLS
endpoint machine. The TLS endpoint machine decrypts the TLS traffic and
sends it to its local inetsim webserver. The observer machine captures both
the unencrypted HTTP traffic and the TLS tunnelled HTTP traffic for later
analysis.

All malware families and documents which generated HTTP traffic dur-
ing analysis were selected. These samples were opened on the malware ma-
chine and the TLS tunnelled traffic was captured. The TLS traffic used the
TLS_RSA_RC4_WITH_MD5 ciphersuite which is the ciphersuite preferred
by most servers[57]. Compression is explicitly disabled as the only major
browser to support it is Google Chrome1.

4.2.2 Limitations of tunnelling

Generating TLS C&C traffic by tunnelling HTTP C&C traffic has the disad-
vantage that exactly the same TLS implementation and configuration is used
for all samples. Therefore, this information can not be used to evaluate a de-
tection method, as the detection method may detect the lab setup instead
of the C&C traffic itself. The TLS handshake is ignored as its observable
attributes are fixed by the lab setup.

The timing of different records in the TLS traffic depends on the virtual
network of the lab setup. The timing on the virtual network is likely to be dif-

1 Google Chrome added TLS compression support in September 2010 with Chrome 6

30 collecting and analysing c&c traffic

ferent from the timing on a real network. Therefore, timing measurements
can not be used for evaluation of detection techniques.

Ignoring the handshake and timing means that only the size application
data records can be used for detection. The application data records sent to
the server contain the HTTP C&C requests sent by the malware. The content
of the replies depend on the configuration of inetsim. Therefore, the replies
from the server are ignored. Any detection method evaluated using this data
set can thus only use the application data records sent to the server.

4.2.3 Data normalization

As described in section 3.2.3 the size of application data transferred using
TLS can be observed by anyone on the network. In the lab setup no com-
pression and a stream cipher are used, thus the exact size of the application
data can be obtained. The application data sent to the server are HTTP re-
quests, thus the size of the HTTP requests generated by the malware can be
measured. If the C&C server would use a block cipher the measured size
might be up to 16 bytes larger.

Some malware keeps reconnecting to the C&C infrastructure if it doesn’t
understand the response generated. In the lab setup the responses are gen-
erated using inetsim by providing a file of the requested type. Thus, the
responses do not contain any recognizable instruction which makes certain
malware reconnect many times per second. The large number of TLS ses-
sions generated by this process can significantly change the statistical prop-
erties of all sessions. Therefore the sessions are filtered per sample and only
unique sessions in terms of initial request size are kept. The result of this
process is a list of request sizes for each sample.

4.3 analysis of traffic datasets

In this section we analyse the collected C&C traffic for both HTTP and TLS
(tunnelled) traffic. A network dataset containing legitimate traffic is also
introduced. This dataset is used to compare legitimate and C&C traffic at-
tributes and behaviour.

4.3.1 Legitimate traffic dataset

Network traffic captured at a university network is used as a source of le-
gitimate traffic for evaluation and training purposes. The network capture
consists of data generated during a week in a university network. Students
and employees are allowed to connect their own devices to this network.
The devices connected to the network range from cellphones to computers
running a variety of operating systems. These devices run a large range of
applications which have generated HTTP and TLS traffic.

It is assumed that the captured traffic contains almost no C&C traffic.
Thus, the traffic can be labelled as legitimate when training or evaluating
C&C detection methods. While many machines are infected with malware,
the percentage of machines infected on any particular network is usually
small. Even infected machines usually generate more legitimate traffic than
C&C traffic. Thus, if any C&C traffic is present it will be a negligible portion
of the total traffic and have very little influence on training or evaluation of
detection methods.

4.3 analysis of traffic datasets 31

4.3.2 Analysis of TLS malware traffic

The tunnelled malware traffic consists of 16694 TLS sessions generated by
7028 malware samples. These sessions are all very short-lived and consist
almost all of a single request, sent by the malware, followed by a reply from
the server. There are 34 samples which did not send a request but wait until
the server starts the conversation. Another 4 samples tried to send a second
request over the tunnel after a reply for the first has been received. However,
the webserver we have used does not support multiple requests in a single
connection, thus the connection is simply closed after the first reply has
been sent.

Most requests fit inside a single TLS record, only 79 samples used more
than one record to send their request. Most of these large requests are
caused by an upload speed test performed by the agobot malware family.
The bot tries to upload around 256 KiB of null bytes to the webserver of an
ISP.

As can be seen in figure 4.3a, the HTTP requests sent by malware are
small. Half of the requests are smaller than 250 bytes. Although the mean
request size is 1140 bytes because of the large speedtest requests sent by the
agobot malware family.

The TLS sessions of malware implementing TLS itself have also been cap-
tured and normalized. In total 53 TLS sessions generated by 20 different
samples have been captured. These sessions are short-lived just like the
tunnelled sessions. All initial requests fit inside one TLS record with the
exception of the pingbed Trojan which uses 2 TLS records. Compared to
tunnelled malware traffic, both the average and median size of the initial
request are significantly smaller, with an average of 110 bytes and a median
of 193 bytes. One of the reasons for these small sizes is the large number
(32%) of sessions with a request size of 0. These are all sessions in which the
client does not send a request because the certificate could not be validated.
After these sessions the client immediately starts another session in which
it ignores the validity of the certificate and sends the request.

In summary, the dataset has the the following limitations:

• Handshake can not be used

• Only one request per TLS session

• Server reply can not be used

• Request timing can not be used

• Request size can be used

4.3.3 Analysis of legitimate TLS traffic

Data about all TLS sessions in the legitimate traffic dataset was extracted
using the technique described in section 4.2.3 for tunnelled C&C traffic. Due
to the limitations of the tunnelled C&C traffic dataset, only the initial request
size is extracted, i.e. the size of the application data sent to the server before
the first server response is received. These sizes are adjusted for the MAC
used and may contain some padding.

The TLS sessions can be split in different protocols based on port number
for HTTPS (port 443), IMAPS (port 993) and POP3S (port 995). Both IMAP
and POP3 start with a server welcome message, thus these sessions have

32 collecting and analysing c&c traffic

0 200 400 600 800 1000 1200 1400
Initial request size in bytes

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

(a) Bytes sent by tunnelled malware in initial request

0 200 400 600 800 1000 1200 1400
Initial request size in bytes

0

5

10

15

20

Fr
eq

ue
nc

y

(b) Bytes sent by TLS supporting malware in initial request

0 200 400 600 800 1000 1200 1400
Initial request size in bytes

0

500

1000

1500

2000

Fr
eq

ue
nc

y

14122 Exchange sessions

Exchange
Other port 443

(c) Bytes sent in initial request for legitimate traffic on port 443

Figure 4.3: Initial request size distributions

4.3 analysis of traffic datasets 33

statistic (bytes) tunnelled malware tls-aware malware

Median 250 110

Mean 1.140 193

Std. dev. 14.143 275

Min 0 0

Max 256.772 1.267

Nr. of sessions 16.694 53

Table 4.4: Distribution of initial request size for TLS C&C traffic

block size cipher usage

Stream RC4 78.0%

8 bytes 3DES 1.0%

16 bytes AES 20.9%

Camellia 0.1%

(a) Cipher usage

version usage

SSL 3.0 7.1%

TLS 1.0 92.9%

(b) Version usage

certificate usage

Valid signature 97.8%

Invalid signature 2.2%

(c) Certificate signature validity

certificate domain usage

Matches DNS reply 99.3%

Non-matching DNS reply 0.3%

No DNS reply for IP 0.4%

(d) Certificate domain validity

Table 4.5: TLS properties for legitimate traffic

an initial request size of 0 for almost all requests. Upon closer inspection,
the HTTPS sessions can be split into two categories. The requests to the
university Microsoft Exchange server and the requests to all other servers.
The requests to the exchange server make up 31% of all TLS sessions and
the other HTTPS traffic makes up 48%. The initial request sizes of both types
are significantly different. The Exchange HTTPS requests are small with a
median of 338 bytes and a mean of 382 bytes. The other HTTPS requests
are much larger with a median of 812 bytes and a mean of 2017 bytes. This
difference can be clearly seen in the histogram in figure 4.3c. The number
of small Exchange requests is so high that the bar representing them is a
factor 7 longer than the largest bar for the other HTTPS traffic. The small
requests to the Exchange servers are (most likely) the result of Exchange
Activesync clients. These clients run on mobile devices and regularly ask
the Exchange server whether new data is available for synchronization. The
result of these devices asking for updates every few minutes is that 72%
(12327) of all connections to the Exchange server have an initial request size
of 300 or 339 bytes.

The captured traffic provides some useful information about TLS usage in
practice. The RC4 stream cipher is used to encrypt the data in 78% of the ses-
sions. As this is a stream cipher, the exact size of the application data can be
determined for these sessions. AES, triple DES and Camellia block ciphers

34 collecting and analysing c&c traffic

s
t
a

t
i
s
t

i
c

(
b

y
t

e
s)

a
l

l
p

o
r

t
s

p
o

r
t

9
9

3

(
i
m

a
p

s)
p

o
r

t
9

9
5

(
p

o
p

3
s)

p
o

r
t

4
4

3

(
h

t
t

p
s)

p
o

r
t

4
4

3

w
i
t

h
o

u
t

e
x
c

h
a

n
g

e

p
o

r
t

4
4

3

e
x
c

h
a

n
g

e

M
edian

3
3

4
0

0
5

5
6

8
1

2
3

3
8

M
ean

4
3

3
0

0
1.

3
8

2
2.

0
1

7
3

8
2

Std.dev.
3

4
2

1
0

6
5.

3
3

7
8

3.
5

3
4

1.
6

2
9

M
in

0
0

0
0

0
0

M
ax

1.
4

9
9

4
4

0
1

2.
6

1
4.

9
2

6
1

2.
6

1
4.

9
2

6
2

1
2.

0
9

5

N
r.of

sessions
5

5.
8

4
2

4.
9

5
0

(
9%

)
1.

7
2

7

(
3%

)
4

4.
1

5
4

(
7

9%
)

2
7.

0
0

2

(
4

8%
)

1
7.

1
5

2

(
3

1%
)

Table
4.

6:D
istribution

of
initialrequest

size
for

legitim
ate

traffic

4.3 analysis of traffic datasets 35

are used in 20.9%, 1.0% and 0.1% of the sessions respectively. For these ses-
sions padding is used, thus the measured application data size is slightly
larger than the real size. The great majority of the connections (92.9%) uses
TLS 1.0 to communicate but a small subset still uses the older SSL 3.0 (7.1%).
Compression was only used in one instance, when one client opened sev-
eral sessions to a specific server. Thus compression does not constitute any
problem in practice for measuring application data size.

A total of 544 different certificate chains were used by the servers to
identify themselves. Using the root certificates in Firefox and Windows, the
signatures of 532 (98%) of these chains could be validated. Leaving 12 (2%)
certificates which could not be validated, accounting for 1% of all TLS ses-
sions. These certificates were either self-signed or used a private CA. Thus
these servers are mostly likely intended for private usage only. To notable
exceptions where a connection to the TOR network which uses randomly
generated certificate and a connection to an online backup service which
distributes its own CA certificate with its backup software.

Using both TLS and DNS traffic, the domain names on the certificates
were also checked. The domain name matches the certificate in 99.3% of
the TLS sessions. Incorrect domain names were encountered for 0.3% of
the sessions and for 0.4% of the sessions no DNS lookup could be found
referring to the server IP address.

4.3.4 Analysis of HTTP malware traffic

In total, 32197 HTTP requests have been collected, which were generated
by 6735 malware samples. The great majority of these requests uses HTTP
1.1 (97.8%). These requests specify to which domain name (or IP address)
they are connecting in the Host header. Thus they contain the full URL to
which they are connecting. Most requests are GET requests (98.9%), as the
lab setup does not contain a C&C server which instructs the malware to
upload data.

The size of the HTTP requests has already been analysed in section 4.3.2
as part of the analysis of the tunnelled requests. Thus, the requests gener-
ated by malware can be considered small compared to legitimate requests.

The User-Agents of the requests generated by malware provide a clear
picture. The User-Agent of Internet Explorer 6 is used by 96.6% of the mal-
ware samples. This is the Internet Explorer version installed on the malware
machine. Thus, a possible explanation for this User-Agent is that the mal-
ware spoofs the User-Agent of the installed version of Internet Explorer.
This makes detection of a malicious User-Agent impossible as both Internet
Explorer and the malware use the same User-Agent.

We conducted an experiment to see if the malware uses a hard coded User-
Agent or spoofs the User-Agent of the installed Internet Explorer version. In-
ternet Explorer 8 was installed on the malware machine of the lab described
in section 4.1.2. Because of time constraints only a subset of the samples
were executed again on this updated malware machine. The User-Agent of
3658 (96%) out of the 3795 tested samples changed from Internet Explorer 6

to Internet Explorer 8. Given these numbers it is very likely that the majority
of the samples spoofs the User-Agent of the installed Internet Explorer ver-
sion. This User-Agent can be obtained using the ObtainUserAgentString

function in Windows. Thus, spoofing this User-Agent requires only one or
two lines of code.

36 collecting and analysing c&c traffic

user-agent samples

Internet Explorer 5 55 0.8%

Internet Explorer 6 6,521 96.6%

Internet Explorer 7 8 0.1%

Other 86 1.3%

No User-Agent 83 1.2%

Table 4.7: User-Agents in malware HTTP traffic

method malware legitimate

GET 98.9% 90.7%

POST 1.1% 8.5%

Other 0.0% 0.8%

(a) Method usage

version malware legitimate

HTTP 1.0 2.2% 0.1%

HTTP 1.1 97.8% 99.9%

(b) Version usage

Table 4.8: HTTP properties

4.3.5 Analysis of legitimate HTTP traffic

The legitimate traffic dataset contains a total of 730,510 HTTP requests gen-
erated during a week. The User-Agents of these requests specify a variety
of different operating systems and HTTP clients. A quick overview of the
operating systems shows that the dataset includes mobile phone traffic and
laptops running Windows, Linux and Mac OS X. The majority of the re-
quests are generated by browsers, but for example, SVN also generated re-
quests.

More requests use HTTP 1.1 compared to the malware dataset, but overall
the difference is not large enough to provide high detection rates. Similarly
the HTTP methods usage in the legitimate dataset is different from the usage
by malware, but the differences are not large enough to allow for detection.
The User-Agent is specified in 99.4% of all requests, thus a detection method
can rely on the User-Agent being specified in the request.

4.4 in-depth malware analysis

4.4.1 Malware source code analysis

The source code for several bots was encountered on forums while searching
for malware using TLS. Given the forum posts associated with the source
code, the intention of sharing it seems to be to allow people to create their
own bots. Analysing the source code of bots is much easier than analys-
ing the executables, therefore the source code was downloaded for quick

4.4 in-depth malware analysis 37

name description bot server

Blacksun bot Only support download and execute
via HTTP C&C channel, other

commands via custom protocol.

Source Source

Illusion bot C&C channel via either HTTP or IRC
supported. Commands include DDoS
attacks, proxy servers and e-mailing

files.

Builder Source

PsyProxy C&C channel via HTTP allows
changing C&C host and updating the

bot. Bot provides socks and HTTP
proxies.

Builder Source

Weedbot Bot can receive DDoS and update
commands via HTTP C&C channel

Source Source

Zeus C&C channel via HTTP or HTTPS.
No encapsulation for Socks proxy,

RDP and VNC support.

Source Source

Table 4.9: Bots with HTTP as C&C protocol

analysis. The collection of bot sources obtained is not representative but is
nonetheless interesting as it may provide insight into the C&C implementa-
tions used.

The collection of bots contained source code with the oldest samples hav-
ing timestamps in 2000 and the newest in 2011. This is a long time span but
most bots in the collection are at least several years old.

A quick check of the collection indicates that IRC is the most used C&C
protocol. This suggests that these are mostly older bots as IRC is becoming
less used. Team Cymru reported [58] in January 2010 that "traditional IRC
based botnets have remained steady whilst HTTP based botnets continue
to steadily climb in number and popularity, doubling in number over 6

months." Symantec reported [31] that in 2010 of all command & control
servers they detected "10 percent were active on IRC channels and 60 percent
on HTTP".

The set of bot source code contains slightly more than 200 bot(variants)
which use IRC. Most of these bots use plaintext IRC as C&C channel. How-
ever, a few bots also have the ability to connect to an IRC server using TLS.
In all cases they use the openssl implementation instead of the one provided
in the windows libraries. Based on the name of zipfiles and directories we
derive a rough classification of the TLS-supporting bots in 9 families and 14

variants. However, some families share many similarities, suggesting that
code was copied between bots. This suggests that only a small subset of IRC
bots employ TLS to encrypt their C&C channel.

Only four bots were encountered using HTTP as C&C protocol. These
bots are Blacksun bot, Illusion bot, Weedbot and Psyproxy, which are de-
scribed in table 4.9.

The only sample supporting HTTP over TLS was the zeus bot. Both an
old and recent version of this bot were obtained. The old one has version
number 1.1.0.0 and a compilation date in August 2008. This version came
complete with source code for the C&C server and a bot builder to configure
and generate bots. The recent version of the bot has version number 2.0.8.9

38 collecting and analysing c&c traffic

and the last date in the changelog was March 2011. This version came with
both the source code of the bot (builder) and the server.

Zeus uses HTTP to communicate with its C&C server. It uses the HTTP
implementation provided by the wininet library which is built into Win-
dows. The wininet library also supports HTTPS if the application sets a
flag when calling it. The Zeus bot sets this flag if the C&C URL starts with
"https". Thus, the bot author has explicitly enabled TLS support in the bot.
However, the bot author did not disable the certificate validation which
is automatically performed by wininet. This forces the attacker to obtain
a valid certificate for the C&C server instead of allowing him to create a
self-signed certificate. As a side effect, this also forces the attacker to use a
domain name for his server as certificates are not issued for IP addresses.

Besides HTTP, for its C&C channel, the bot also supports other proto-
cols. It can set up outgoing connections to provide direct remote control of
the computer via RDP or VNC. It can also set-up a connection to a socks
proxy or TCP tunnel to allow access to the (local) networks the computer
is connected to. These connections are all made without any obfuscation or
encryption. However, the intention to add TLS support in the future can be
seen in the source code. The source code contains a complete and working
implementation of a TLS socket which is not (yet) used anywhere. This code
deliberately supports self-signed certificates making it an obvious method
to hide the content of C&C connections from an IDS.

4.4.2 In depth analysis of the samples generating TLS traffic

The samples generating TLS traffic are analysed in detail in this section. The
TLS implementation used by each sample and the protocol used over the
TLS data channel are studied.

The samples of the pingbed Trojan are hidden inside a PNG image. These
images are not malicious in the sense that they make use of any bug in
the application that opens them. Instead, these images are simply a way of
disguising the executable during download. The images will render fine in
a browser and are unlikely to trigger any detection mechanism looking for
executables. In order to get infected by this Trojan the computer needs to be
running malicious code which extracts the executable from the PNG image
and executes it. As the code to do this could not be found, the executables
were extracted manually.

The pingbed Trojan has to be started with the IP address and port of its
C&C server as parameter. When started, it will connect to the C&C server
using TLS without verifying the certificate. To do this it uses SChannel, the
TLS implementation provided by Windows and disables certificate valida-
tion. The Trojan does not send HTTP traffic but uses a custom binary pro-
tocol to communicate over the TLS channel. The connection is persistent and
allows interactive remote control of the infected computer

The sample of the NTessess Trojan is hidden inside a PNG file similar to
the one of the Pingbed sample. The executable was extracted manually to
perform the analysis. The Trojan uses HTTPS as its C&C protocol. It sends
the HTTPS requests using the wininet library in Windows and disables cer-
tificate validation. All requests sent by the Trojan are valid HTTP GET and
POST requests and the server replies with valid HTTP responses. However,
the POST data sent and the replies received are in an obfuscated binary
format. The obfuscation seems unnecessary as the requests are sent over
an encrypted by TLS connection. However, it may indicate that the Trojan

4.4 in-depth malware analysis 39

wants to hide its traffic from a TLS gateway which inspects the traffic or may
simply be a feature left over from an earlier implementation using plaintext
HTTP.

The sample of Mebroot uses the wininet library to setup a HTTPS connec-
tion to the C&C server. If the server does not have a valid certificate, the
initial connection fails and the malware reconnects, skipping certificate val-
idation the second time. The communication over the TLS channel is valid
HTTP traffic and is handled by the wininet library.

The swrort sample uses the wininet library to setup a HTTPS connection.
However, it tries to connect to an address in the 192.168.0.0/16 range which
are private addresses not used on the Internet. Thus, it seems unlikely that
the connections are intended to be used for C&C communication. The ad-
dress is hardcoded and may have been used to test the malware. The TLS
connection setup is similar to the mebroot sample. In case the certificate
can not be validated a second connection is made. The HTTPS connection is
handled by the wininet library.

As described in section 4.1.3 none of the malicious documents we inspec-
ted generated TLS traffic when viewed. However, one document did drop
malware capable of communicating using TLS, but did not immediately
start the malware. Instead, the malware waited for the user to trigger it by
opening a browser. This action was performed manually with the result that
it tried to connect to mail.google.com using TLS. Using several separate TLS
connections the malware programmatically logged on to the webmail inter-
face of Google mail. After logging on, it was only observed to load the inbox
and logout. However, another researcher has observed that the malware sent
an encrypted email using google mail [62]. The malware uses the wininet
library to setup the TLS connection and send HTTP requests. Certificate
validation is enabled as mail.google.com should have a valid certificate.

4.4.3 Analysis of metasploit reverse_https traffic

Metasploit [8] is a popular penetration testing framework which provides
tools to attack and remotely control computers. One of the features it provides
is meterpreter, a program which allows an attacker to remotely control the
attacked computer. Meterpreter can be delivered to the target computer
using many methods including server exploits, web browser drive-by at-
tacks or malicious PDF documents. One of the C&C protocols offered by
meterpreter is a (reverse) HTTPS connection. As this is an easy to use
method for which the source code is available it is worth taking a look at it,
as an indicator of how malicious traffic may look.

Metasploit 3.7.2 and 4.0 have different implementations for the C&C HTTPS
connection. Therefore, both where separately installed on the observer ma-
chine in the lab set-up described in section 4.1.2. An executable containing
the meterpreter configured to use HTTPS was generated and executed on
the malware machine. The resulting network traffic for both versions is de-
scribed below.

The meterpreter in Metasploit 3.7.2 uses wininet to send a request to the
metasploit server without disabling certificate validation. As the certificate
used by metasploit is self-signed this connection fails. After this failed con-
nection, the same HTTPS request is send again with certificate validation dis-
abled. The metasploit server sends the core meterpreter executable as reply
and the client executes it. The core meterpreter executable uses openSSL to

40 collecting and analysing c&c traffic

setup a new TLS connection over which it communicates using a custom
(non HTTP) protocol.

Metasploit 4.0 starts by sending a request to the metasploit server using
wininet with certificate validation disabled. The response to this request is
the core meterpreter executable which is executed by the client. The core
meterpreter regularly sends HTTPS requests to check for new commands
and send back the results of the commands.

The meterpreter 3.7.2 HTTPS session stands out in several ways. It uses a
self-signed certificate and fails to connect on the first connection. It switches
between the wininet and openSSL implementations for connections to the
same server. But most importantly, it opens a longterm connection and uses
a binary protocol on top of it. Normal HTTPS connections will only be open
for a short time to retrieve one or more documents. Thus, a connection
in which the data transfer direction switches often or which is open for a
long time may be detected as anomalous by an IDS. The meterpreter 4.0
traffic is much harder to detect, it sends valid HTTPS requests using the
implementation provided by Windows. The traffic can only be detected by
its invalid certificate or the frequent requests required for interactive control.

4.5 summary of malware observations

The vast majority of the malware examined uses HTTP as C&C protocol.
Whereas only a few samples use TLS to communicate with the C&C server.
These samples all use the TLS implementation provided by Windows, with
the exception of meterpreter 3.7.2 and the IRC based bots. This implement-
ation is also used by many other programs like Internet Explorer and Win-
dows Update, thus detection of C&C traffic based upon TLS implementation
is impossible.

All of the TLS malware allows connections to servers with invalid certi-
ficates, with exception of Zeus and the google mail sample. If the servers
indeed use invalid certificates this property could be used to detect these
samples. Similarly, the double connection attempt in the case of an invalid
certificate might trigger detection.

In most cases, the TLS malware uses HTTP to communicate over the TLS
channel on port 443. This is the expected protocol for port 443 (the HTTPS
port). Therefore, this does not provide extra information to detect TLS mal-
ware. However, some samples do not use TLS when communicating on port
443. These can be detected by checking the protocol for traffic on port 443.

The majority of the examined malware uses HTTP based C&C channels.
The HTTP requests generated by these malware samples are usually GET
requests with a spoofed User-Agent. Where the majority of malware spoofs
the User-Agent of the installed Internet Explorer version. Thus, detecting
spoofed User-Agents might provide a method for C&C channel detection.

Source code of some bots is freely available online. However, these are
mostly older IRC based bots. The source code of more recent bots is rarely
available online. Thus, examining bot source code found online does not
provide much information about modern bots.

5P R O P O S E D C & C C H A N N E L D E T E C T I O N T E C H N I Q U E S

In this chapter, we select three different detection techniques for C&C chan-
nels in HTTP or TLS traffic. We leverage existing work in the field of an-
omaly detection and machine learning to select the detection technique
which works best to detect C&C traffic. The selection and evaluation process,
which is the main contribution of this thesis, is based on the information and
observations in chapter 2 and 4.

5.1 machine learning-based tls classification

As discussed in section 4.3, the distributions of the initial request size of
legitimate TLS traffic and C&C TLS traffic are different. These differences
should enable us to distinguish legitimate traffic from C&C traffic using
machine learning algorithms. Therefore, we propose the following detection
technique for C&C channels in TLS traffic based on the size of the initial
HTTP request.

5.1.1 Approach

The general approach of the detection technique is to extract the initial re-
quest size from each TLS session, classify it and raise an alert if the session
is classified as C&C channel. A graphical representation of this approach
can be seen in figure 5.1.

The classifier is generated using a machine learning algorithm trained
with the initial request sizes of labelled legitimate and C&C traffic. This
should allow the machine learning algorithm to learn the difference between
both types of traffic. Thus, the resulting classifier should be able to distin-
guish legitimate and C&C TLS sessions based on the initial request size. To
achieve the best detection we select the initial request size as distinguishing
attribute, and we choose the machine learning algorithms.

The size of the initial request sent over a TLS channel can be determined
by anyone observing the network traffic. However, as described in section
3.2.3, care has to be taken to take the size of the HMAC, as specified by the
ciphersuite, into account.

The proposed algorithm for detecting TLS C&C connections based on
initial request size is as follows.

Initial
Request

Size

Feature
Extractor

TLS
Traffic Classifier Alert

Figure 5.1: TLS based C&C channel detection architecture

41

42 proposed c&c channel detection techniques

TLS C&C channel training & detection algorithm

1. For each new TLS session, record

• the ciphersuite in the ServerHello message;

• the size of each application data record sent to the server before
the server has replied with any application data records.

2. Calculate the initial request size of each TLS session

a) Use the ciphersuite for the session to look up the size of the
HMAC

b) Subtract the size of the HMAC from the size of each application
data record

c) Sum up the resulting sizes to obtain the initial request size

3. When in training mode, build a classifier using initial request sizes la-
belled as either legitimate or C&C traffic.

4. When in detection mode, query the classifier with the initial request size.
If the classifier returns the C&C traffic class, then fire an alert.

5.1.2 Details

The algorithm has to be trained using a labelled set of network traffic. Dur-
ing this training phase, a classifier is build for use in detection mode. This
classifier depends on both the legitimate and C&C traffic in the training set.
Over time the behaviour of legitimate TLS sessions might change, as new
applications and services are introduced. In that case it will be necessary to
retrain the algorithm using an up to date set of labelled network traffic.

5.1.3 Selected machine-learning algorithms

A set of machine learning algorithms has been selected for use with the de-
tection algorithm. Most of these algorithms have been selected because they
have been successfully used to detect the protocol used in a TLS session.
This indicates that they are able to distinguish between TLS sessions based
on the observable attributes of TLS sessions. Thus, while we are not try-
ing to detect different protocols, these algorithms may be able to detect the
differences in protocol usage for HTTPS based legitimate and C&C traffic.

A short description and selection motivation of each selected algorithm is
included below. For more information about these algorithms we refer the
reader to the Weka machine learning toolkit [39], which is the implementa-
tion we used for evaluating this detection technique.

adaboost is a boosting algorithm which combines multiple classifiers gen-
erated by the same machine learning algorithm to obtain a better clas-
sifier. In this case we have selected decision stumps to be combined
using adaboost to obtain a classifier.
Adaboost has been selected because McCarthy [51] has reported good
results using adaboost for detecting the protocol used on top of TLS.

conjunctive rule produces a classifier consisting of a single rule to de-
termine if a TLS session contains C&C traffic.
Conjunctive rule has been selected to test the effectiveness of a simple

5.2 spoofed user-agent detection 43

classifier. As the distributions of legitimate and C&C traffic are very
different a single rule may be enough to achieve good detection.

j48 produces a decision tree as classifier. This is a binary tree containing a
comparison at each node and class label at each leaf.
J48 has been chosen because the decision trees it produces can be easily
inspected to see how the classifier works. Furthermore, McCarthy [51]
has reported good results using J48 for detecting the protocol used on
top of TLS.

naïve bayes uses the Bayesian theorem with an assumed Gaussian distri-
bution of variables for classification. However, in case only one vari-
able is used, the Bayesian theorem can not be used and the classifica-
tion is based only on the approximated Gaussian distribution of each
class.
Naïve Bayes has been selected to test whether a Gaussian distribution
can model the initial request size well enough to detect C&C channels.

ripper generates a set of rules for classification. These rules are built by
combining comparisons using logical AND and OR operators. Classi-
fication works by evaluating these rules and returning the class of the
first rule which evaluates to true.
RIPPER has been selected because McCarthy [51] has reported good
results using it for detecting the protocol used on top of TLS.

svm generates a classifier based on separation of the classes by a hyper-
plane. However, as most data can not be separated well using a plane,
the input data is mapped into a high dimensional space using a kernel.
The hyperplane is constructed and used for classification in this high
dimensional space.
SVM has been selected because Dusi et al. [28] have reported good
classification results using SVM to detect the protocol used in an SSH-
tunnel. While an SSH-tunnel is different from a TLS session, both
provide an encrypted and authenticated channel for use by another
protocol. Hsu et al. [43] recommend the Gaussian Radial Basis Func-
tion as a good kernel function for most data. Therefore a Gaussian
kernel has been selected for SVM classification.

5.2 spoofed user-agent detection

In section 4.3.4 we note that almost all malware spoofs the User-Agent of a
legitimate application when sending HTTP requests. We therefore propose
a new method for detecting spoofed User-Agents, such a method will be
able to detect most malware, but will let legitimate traffic with correct User-
Agents pass. We assume that legitimate programs will use their own User-
Agent as they have no reason to spoof it.

5.2.1 Approach

The spoofed User-Agent detection algorithm is based on the header order
in each HTTP request. The HTTP protocol allows implementers to send the
headers in any order. Therefore, any HTTP client implementation has to (im-
plicitly) fix a header order. As a result, the presence of certain HTTP headers,
and their order within an HTTP request are implementation dependent.

44 proposed c&c channel detection techniques

We use the implementation dependence of the header order and pres-
ence, to build fingerprints of different User-Agents and detect spoofed User-
Agents. Our detection method extracts both the User-Agent and the header
order from each HTTP request. It looks up the fingerprint for the User-
Agent and compares it against the observed header order. If they don’t
match, an alert is raised. A graphical overview of the detection system can
be seen in figure 5.2.

The detection system depends the presence of good fingerprints. A fin-
gerprint consists of a Discrete Finite Automata (DFA) model of the headers,
which captures both the presence and order of the headers. Fingerprints are
generated by taking a group of requests from the same major version of
a HTTP client. The DFA model is built using only the headers which are
present in every request. Transitions are added to the model for every pair
of consecutive headers.

Fingerprints are only generated for every major version of each HTTP cli-
ent as the HTTP client implementation is unlikely to change between minor
versions. The number of fingerprints is reduced and it is more likely that
a fingerprint is available for every request. The fingerprint is generalized
by only taking headers present in every request, into account. This makes
sure that the fingerprints can be used even if not not every possible set of
headers is observed when generating the fingerprint. Furthermore, it helps
to avoid false positives if websites add their own headers using javascript
and XMLHTTPRequest.

The following algorithm is used to generate fingerprints and takes as
input a set of HTTP requests with known correct User-Agents.

User-Agent fingerprint generation algorithm

1. Group all requests per major version of each browser (ignoring oper-
ating system)

2. For every group:

a) Extract a list of all observed header orders from the requests

b) Remove headers which are not present for all requests on the list

c) Add the states Start and End to the DFA model

d) Add every header in the list as a state to the DFA model

e) For every pair of consecutive headers m, n add a transition
between m and n

f) For every header m which occurs as first header add a transition
between Start and m

g) For every header m which occurs as last header add a transition
between m and End

h) Save the resulting DFA model as fingerprint

Given a set of fingerprints, the spoofed User-Agent algorithm can attempt
to detect requests in which the User-Agent is spoofed. It does this by check-
ing whether the observed header order can be generated by the DFA model
for the User-Agent specified in the request. Requests for which no finger-
print is available are ignored, as we have no information about the beha-
viour of the specified User-Agent. The algorithm for this detection process
works as follows.

5.2 spoofed user-agent detection 45

HTTP
Traffic

Feature
Extractor

Header
Order

User-
Agent

Look up
Fingerprint

Compare Alert

Fingerprint

Figure 5.2: Spoofed User-Agent detection architecture

Spoofed User-Agent detection algorithm

1. For every HTTP request:

a) Look up the DFA fingerprint for the User-Agent specified in the
request. If no fingerprint is available, ignore the request.

b) Extract the header order of the request.

c) Remove headers which are not present in the fingerprint.

d) Determine whether the header order can be generated using the
DFA fingerprint. If this is not the case, fire an alert.

5.2.2 Details

Identification of web browsers by monitoring network traffic has been at-
tempted before. For example, Yen et al. [68] have demonstrated that browsers
can be fingerprinted by classifying flow-data using SVM. The browserrecon
project [2] has tried to built a browser fingerprinting database. The data-
base contains a list of known header orders and header values for browsers.
Requests are identified by matching the observed header values and order
to the values and orders in the database. The implementation requires an
exact match of these values, no generalisation is performed. Identification
of browsers will thus be very precise but will require a very large finger-
printing database, containing all possible variations of header orders and
values. Our approach is different in that it focuses on building a compact
fingerprint for identification instead of using exact matches.

The proposed detection technique bears similarities to the DFA based an-
omaly detection technique described by Ingham et al. [44]. Both methods
detect unwanted HTTP traffic and use a DFA model for detection. How-
ever, the detection technique we propose is significantly different. We focus
on the detection of spoofed User-Agents, instead of attacks against websites.
We use headers to build the DFA model, instead of a tokenized input stream.
The generalization is performed before building the DFA model instead of
on a partially built DFA model. Thus, the contribution of this thesis is in
the application of a DFA model for browser fingerprinting and the design
of the generalization technique for building the fingerprints.

The obtained fingerprints remain useful for a long period as major re-
leases are rare for most browsers. Thus, new fingerprints have to be gener-
ated infrequently. Google Chrome is a big exception as 13 major versions
have been released in 3 years. Such frequent updates may be handled by
using the fingerprint of a previous version or by automating the process to
install a browser and create new fingerprints.

46 proposed c&c channel detection techniques

Calculate
2ν-gram Cluster SVM

Calculate
2ν-gram Cluster SVM

HTTP
Traffic AlertCalculate

2ν-gram Cluster SVM Combine

Figure 5.3: 2ν-gram based C&C channel detection architecture

To avoid detection, malware may start mimicking the requests of the
spoofed User-Agent. The header order of a legitimate User-Agent can be
easily determined by monitoring the requests of the legitimate User-Agent.
Once the order is known, the malware can be adapted to generate the same
header order for its C&C traffic. Thus, spoofed User-Agent detection only
works for malware which does not actively try to evade it. However, spoofed
User-Agent detection forces malware authors to make more complex mal-
ware capable of mimicry.

5.3 2ν -gram based anomaly detection

In section 2.2.8 we note that payload based anomaly detection systems may
provide a method for detecting C&C channels. However, little research has
been published about the detection capabilities of payload based anomaly
detection systems. Therefore, we propose to re-purpose an existing anom-
aly detection system for C&C channel detection. Specifically, we propose to
use McPaD [54] for C&C channel detection. McPaD is a payload anomaly
detection system which approximates n-grams using 2ν-grams and which
has shown good performance for detecting attacks on HTTP servers.

5.3.1 Approach

The anomaly detection system attempts to model the n-gram distribution
of legitimate HTTP requests. However, instead of using the n-gram distribu-
tion directly, 2ν-gram distributions are used which model the distribution
of (bytei,bytei+ν). By using the 2ν-gram distributions for ν = 0..n− 2, the
n-gram distribution is approximated. The advantage of using multiple smal-
ler distributions is that classification can be performed in a space with lower
dimensionality, which is more efficient and avoids over-generalization.

In general, the detection system works as depicted in figure 5.3. The 2ν-
gram frequency distributions for ν = 0..n− 2 are calculated. These distri-
butions are independently clustered and scored using SVM. The resulting
scores are combined and if the combined result crosses a threshold, an alert
is raised.

Like all anomaly detection systems, this system has to be trained using le-
gitimate traffic. During the training phase, the clustering and SVM classifier
are created for every ν using the following steps. The 2ν-gram frequency
distribution of the training traffic is calculated. The 2562 different 2ν-grams
in this distribution are clustered into k clusters using a feature clustering
algorithm proposed by Dhillon et al. [27]. This clustered 2ν-gram distribu-
tion is used to train a one-class SVM classifier. The final step is to determine
the threshold for raising an alert. The SVM scores of every request are cal-
culated using the trained SVM classifiers. These scores are combined per
request using the combination function fcombination. The distribution of
these combined scores is then used to determine the threshold based on the
desired false positive rate fpdesired.

5.3 2ν-gram based anomaly detection 47

The algorithm for training the anomaly detection system using legitimate
HTTP requests works as follows.
2ν-gram training algorithm

1. For every ν = 0..n− 2

a) Calculate the 2ν-gram distributions of all HTTP requests

b) Cluster the (bytei,bytei+ν) frequencies of the 2ν-gram distribu-
tions into k clusters using the feature clustering algorithm pro-
posed by Dhillon et al. [27]

c) Save the obtained clustering

d) Build a one-class SVM classifier for the clustered distribution us-
ing γ as the width of the kernel

e) Save the obtained classifier

2. Using the obtained clustering and classifiers

a) For each HTTP request, calculate the one-class SVM scores

b) Combine the one-class SVM scores using fcombination
c) Use the combined scores to compute the best threshold for the

desired false positive rate fpdesired
d) Save the threshold

The detection algorithm uses the clusterings and SVM classifiers of the
training algorithm to generate identically clustered 2ν-gram distributions
and calculate the SVM score of each distribution. These values are combined
and compared against the threshold obtained during training. If the value is
too low, the anomaly detector will raise an alert. This process is performed
using the following algorithm.

2ν-gram anomaly detection algorithm

1. For every ν = 0..n− 2

a) Calculate the 2ν-gram distribution of the HTTP request

b) Cluster the 2ν-gram distribution using the saved clustering

c) Calculate the score using the saved one-class SVM classifier

2. Combine the scores using fcombination

3. If the result is below the threshold, raise an alert.

5.3.2 Details

Ingham et al. [44] have compared different anomaly detection techniques for
detecting attacks against HTTP servers. While detecting attacks is different
from detecting C&C traffic, this comparison can provide some insight into
which anomaly detection methods work best for HTTP traffic. A selection
of methods was compared, based on byte distribution, length of request, 6-
gram distribution, token-based Discrete Finite Automata (DFA) and Hidden
Markov Models (HMM). The 6-gram anomaly detection method achieved
the lowest false positive rate at a detection rate of 80%. Given the perform-
ance of the 6-gram model for detecting anomalies in HTTP traffic, we de-

48 proposed c&c channel detection techniques

parameter description

n 2ν-grams for ν = 0..n− 2

k Nr. of clusters for 2ν-grams

γ Width of radial base function kernel

fcombination Function to combine SVM scores

fpdesired Desired false positive rate

Table 5.1: Parameters for 2ν-gram anomaly detection

cided to select a method which approximates n-grams for C&C channel de-
tection. The McPaD [54] anomaly detection system approximates n-grams.
It has shown good performance for detecting HTTP server attacks as an-
omalies, thus it is able to detect anomalies in HTTP traffic. Therefore, we
have selected the McPaD anomaly detection system for detection of C&C
channels.

There are several variables which can be set when training the anomaly
detection system. The n-grams approximated can be set by varying n to
determine the range of values for ν = 0..n− 2. This determines how many
2ν-gram distributions are used for detection. The number of clusters into
which 2ν-grams are clustered for a given value of ν is set by the parameter k.
Increasing the number of clusters gives the SVM classifier more freedom for
classification, but increases computational complexity. The SVM classifier
can also be configured by varying γ, the width of the radial base function
used. The function used to combine SVM scores is given as fcombination.
The desired false positive rate fpdesired is set to determine the threshold
for deciding whether a request is legitimate or C&C traffic.

The result of the training algorithm are the clustering and SVM classifier
for each ν and the threshold for detection. Together, these describe the be-
haviour of the legitimate HTTP requests in the training dataset. Over time,
the behaviour of legitimate HTTP requests may change as new services are
introduced. In that case the training algorithm has to be run again using a
new set of legitimate HTTP requests.

6E VA L U AT I N G D E T E C T I O N T E C H N I Q U E S

6.1 evaluation method

To evaluate the proposed detection techniques, we want to measure both the
detection rate and false positive rate of the detection algorithms proposed
in chapter 5. The detection rate is the percentage of C&C channels which
the technique detects. We want to detect all C&C channels, thus a good de-
tection technique should have a detection rate above 90%. The false positive
rate is the percentage of legitimate traffic which is incorrectly detected as
C&C channel. This should be as low as possible, as even low detection rates
will quickly cause many alerts per minute. Take for example, the HTTP re-
quests collected during a week described in section 4.3.1. With just a 1%
false positive rate on this dataset, a network administrator already has to
process 3 alerts per minute to process all alerts within a 40 hour working
week. Thus, a good detection technique should be able to achieve a false
positive rate below 0.1%.

Determining the detection rate using real-life network data can be hard,
as this would require us to label all the C&C traffic in advance. Manually
labelling all traffic is not possible, as this would take too much time for
a reasonably sized dataset. Therefore, the detection rate of the proposed
techniques is estimated by measuring how much of the C&C traffic captured
in the lab setups of chapter 4 can be detected.

Determining the false positive rate using real-life network data is also not
possible because it would require the same kind of labelling. If we simply
label all network traffic from a real network as legitimate we are likely to
label almost all traffic correctly. The percentage of infected machines on a
single network can be expected to be relatively low and even infected ma-
chines are likely to generate much more legitimate traffic than C&C traffic.
Therefore, the false positive rate is estimated using real-life network traffic,
by assuming that it contains no C&C traffic. The dataset described in section
4.3.1 is used for estimating the false positive rate.

The detection and false positive rates are evaluated by classifying the
two datasets. However, the same dataset can not be used both for training
and classification, as this would bias the results. Therefore, 10-fold cross-
validation is used if a dataset is used for training. The dataset is split up
into 10 parts. For each part the traffic is labelled as C&C or legitimate us-
ing a detector trained on the other 9 parts. This ensures that the detector is
tested against the entire dataset while the detector is only used for traffic it
has not seen during training

6.2 detecting tls c&c traffic based on initial request size

6.2.1 Preparing the data for machine learning

The TLS C&C channel detection technique uses machine learning algorithms
to build a model of legitimate and C&C traffic. Using these algorithms re-
quires that the data used for learning exhibits certain properties. The most
important property is that the number of malware and legitimate requests

49

50 evaluating detection techniques

is roughly equal. If the distribution is unequal the model will "optimize" its
performance by biasing its output to the majority class. For some machine
learning algorithms, outliers can negatively effect the performance of the
model built during the training process. To address this problem, all ses-
sions with an initial request size larger than 1500 bytes were removed. This
does not remove any C&C channels from the traffic. The only malware that
generated requests larger than 1500 bytes is Agobot which generated these
requests as part of a speed test and not as part of its C&C traffic.

We want to evaluate whether the detection technique is able to distin-
guish between legitimate and C&C HTTP requests send over TLS channels.
If TLS sessions with other protocols are used, the classifier might distin-
guish between HTTP and non HTTP traffic instead of between legitimate
HTTP and C&C HTTP traffic. Thus, we would like to remove all TLS ses-
sions which do not carry HTTP traffic from the dataset. This is achieved
by only keeping TLS sessions on port 443. This port is the designated port
for HTTP over TLS traffic, thus the traffic on port 443 is likely to be HTTP
over TLS traffic. If malware uses a different port for its HTTPS C&C traffic,
techniques for detecting the protocol inside a TLS session can be used, like
those described by McCarthy [51].

The sessions using compression are removed, as only the compressed size
instead of the uncompressed size can be measured for these sessions. Only
a small number of sessions use compression, thus the impact of removing
compressed TLS sessions is low.

As the initial request size of Exchange ActiveSync TLS traffic is signific-
antly different from other port 443 TLS traffic, two datasets are created. One
dataset including the traffic to the Exchange server and one excluding traffic
to the Exchange server. Both datasets are used in the evaluation, as the pres-
ence of the Exchange traffic may significantly influence the detection results.

Summarizing, training data for the machine learning algorithms was ob-
tained by the following steps:

1. Label and combine the initial request sizes for legitimate, tunnelled
malware and native TLS malware traffic.

2. Remove all sessions on ports other than 443.

3. Remove all sessions with compression enabled.

4. Remove all sessions with an initial request size larger than 1500 bytes.

5. Optionally, remove all traffic to the university Exchange server.

6. Resample the data such that the number of malware and legitimate
sessions is equal.

6.2.2 Testing by using machine learning software

The Weka machine learning toolkit [39] is used to build and evaluate the
classifiers for C&C channel detection. The labelled datasets with initial re-
quest sizes are loaded as input to the different machine learning algorithms.
These algorithms output a classifier which should be able to classify TLS ses-
sions as legitimate or C&C traffic based on the initial request size. Both the
detection rate and the number of false positives are evaluated using 10-fold
cross-validation.

6.2 detecting tls c&c traffic based on initial request size 51

The selected classification algorithms have all been evaluated using the de-
fault values provided by Weka as these settings provide reasonable values
for each algorithm. The J48 algorithm has been used both with default set-
tings and with modified settings to reduce the size of the classification tree.
The default settings include a confidence factor of 0.25 and minimum of 2 in-
stances per leaf. The reduced tree is generated by decreasing the confidence
factor to 0.1 and increasing the minimum number of instances per leaf to 50.
Increasing the minimum number of items per leaf forces the algorithm to
only create decisions based on a large number of samples. Decreasing the
confidence factor requires the difference in number of legitimate and C&C
samples to be larger before a decision node is added to the tree.

For each algorithm, the complexity of the classifier is approximated by
modelling the algorithm using detection ranges. Those are rules of the form
if a < x < b then classify the session as C&C traffic, where x is the size of the
initial request. This complexity measure does not describe the performance
of the classifier, but the complexity of the decision process captured in the
classifier.

6.2.3 Detection results

An overview of the detection and false positive rate of all evaluated al-
gorithms can be found in table 6.1 and figure 6.1. All algorithms are able to
detect more than 90% of the C&C TLS sessions. While most algorithms are
able to keep the number of false positives (legitimate sessions classified as
C&C) below 5%. However, the lowest false positive rate is still 2.4%. Thus,
detection of C&C traffic is possible using these algorithms, but the high false
positive rates limit the detection capabilities in practice.

Naïve bayes has the worst performance of all classifiers with false positive
rates of 12.0% and 44.3% for the dataset including and excluding exchange
traffic respectively. Because only a single attribute is used, Naïve Bayes only
models the classes using a normal distribution. Although the distributions
of legitimate and C&C traffic are clearly different, these differences are not
well captured using a normal distribution. This can be explained by the fact
that the distribution of legitimate request sizes in figure 4.3c do not follow
a normal distribution.

Conjunctive rule is able to achieve reasonable performance on the dataset
including Exchange TLS sessions with 5.1% false positives. The resulting
classifier uses only the rule 25 < x < 299 to detect C&C traffic, where x is
the size of the initial request. With only this rule, it is able to detect 94.9% of
C&C sessions with 5.1% false positives. In the dataset excluding Exchange
TLS sessions, the false positive rate increases to 9.4%, as the initial request
sizes of Exchange sessions falls within the the range of initial request sizes
for C&C traffic.

Adaboost applied to decision stumps achieves a slightly higher false pos-
itive rate than Conjunctive rule for the dataset including Exchange traffic.
However, for the dataset excluding Exchange traffic it is able to achieve a
false positive rate of 3.8%, which is significantly lower than Conjunctive
rule. This is achieved without increasing the complexity of the classifier as
still one detection range is used.

J48 is able to achieve good performance on both datasets using the default
settings. However, performance only slightly decreases when the algorithm
is limited to a much smaller tree. In the minimal case, the confidence factor
was decreased from 0.25 to 0.1 and the minimum number of objects in a

52 evaluating detection techniques

including exchange

detection rate false positives detection ranges

Adaboost 94.9% 5.5% 1

Conjunctive rule 94.9% 5.1% 1

J48 (default) 96.1% 3.2% 17

J48 (minimal) 96.0% 3.3% 4

Naïve Bayes 97.3% 44.3% 1

RIPPER 95.9% 2.9% 7

SVM 96.0% 2.4% 49

excluding exchange

detection rate false positives detection ranges

Adaboost 94.7% 3.8% 1

Conjunctive rule 95.1% 9.4% 1

J48 (default) 95.5% 3.2% 15

J48 (minimal) 95.5% 3.8% 4

Naïve Bayes 97.8% 12.0% 1

RIPPER 95.3% 3.1% 5

SVM 95.5% 2.9% 49

Table 6.1: Classification results for TLS C&C detection

90

92

94

96

98

100

D
et

ec
ti

on
 r

at
e

(%
)

A
da

bo
os

t

C
on

ju
nc

ti
ve

ru
le

J4
8

(d
ef

au
lt

)

J4
8

(m
in

im
al

)

N
aï

ve
 B

ay
es

R
IP

PE
R

SV
M

0

2

4

6

8

10

Fa
ls

e
po

si
ti

ve
s

(%
) With Exchange

Without Exchange

Figure 6.1: Detection results for TLS sessions

6.2 detecting tls c&c traffic based on initial request size 53

leaf increased from 2 to 50. This reduces the number of detection ranges
from 17 to 4 for the dataset including exchange traffic and from 15 to 4 for
the dataset excluding exchange traffic, while the false positive rate increases
only slightly from 3.2% to 3.3% or from 3.2% to 3.8%. With only this slight
increase, more than two thirds of the detection ranges of the default tree can
be removed.

RIPPER has a slightly lower detection rate than J48, but more importantly
it has lower false positive rates. Thus, the RIPPER detection model is likely
to be preferred in practice, since false positives generate extra work for end
users or administrators. To achieve these detection rates, the RIPPER detec-
tion model uses just 7 and 5 detection ranges, for the datasets including and
excluding exchange traffic respectively.

SVM produces by far the most complex model for classification. The svm
classifier model uses 49 detection ranges in order to achieve the lowest false
positive rate. However, given the complexity of the model it may be over-
fitting on the datasets. Thus, we doubt whether these results will hold for
future traffic or traffic on other networks.

6.2.4 Possible improvements

Malware uses a different initial request size for its C&C traffic than most
legitimate traffic. This allows the detection technique to achieve a high de-
tection rate. However, legitimate traffic with the same initial request size also
exists, therefore the false positive rate is high. Thus, this detection technique
could be improved by using extra information during the classification to
reduce the number of false positives.

Focusing on a single TLS session, there are several attributes which may
be used to lower the false positive rate. The signatures on the server certific-
ate could be checked for validity. Given the analysis in section 4.4.2, it seems
likely that C&C servers will use invalid certificates, whereas very few legit-
imate servers use invalid certificates. The size of the reply from the server
can also be used. It is likely that the reply size distribution for legitimate and
C&C traffic will be different, just like the request size distribution is differ-
ent. Unfortunately, both attributes can not be used for the dataset containing
tunnelled C&C traffic, as they are both determined by the setup used to cap-
ture TLS sessions. Thus, evaluation of these improvements would require
collecting a new dataset.

Another way to reduce the number of false positives is to use this tech-
nique as part of a correlation based detection technique. Using this tech-
nique to find suspicious TLS sessions and correlating them with suspicious
traffic , would improve the detection rate of correlation based techniques for
TLS C&C traffic. While at the same time, keeping the low false positive rate
of correlation based techniques.

6.2.5 Conclusion

Detection of TLS C&C traffic is possible by distinguishing traffic based on
the size of the initial request. With the considered algorithms, around 95%
of all C&C traffic can be detected. However, the best false positive rate is
still 2.4%. Thus, in practice these detection methods result in too many false
positives, as most traffic consists of many more legitimate TLS sessions than
C&C TLS sessions. Overall, the classifier generated using RIPPER is likely

54 evaluating detection techniques

Virtualbox

Network

CLIENT
Windows
Browser

SERVER
Linux
Apache
Tcpdump

Figure 6.2: Setup for capturing browser traffic

to be the best one, providing the lowest false positive rate while avoiding
possible over-fitting.

Detection results for both the datasets including and excluding Exchange
traffic are similar for the best performing algorithms. However, the data-
set with exchange traffic is slightly easier to classify, as a large portion of
legitimate traffic has identical initial request sizes.

6.3 spoofed user-agent detection

The spoofed User-Agent detection method aims at detecting HTTP C&C
traffic by comparing the specified User-Agent with a known fingerprint for
that User-Agent. Thus, fingerprints for all common User-Agents have to be
generated in order to use this method. We use these fingerprints to test the
detection technique and determine both the detection rate and false positive
rate.

6.3.1 Building a model of legitimate browsers

The detection method requires fingerprints for every major browser to be
available. Fingerprint generation needs to take into account the subtle dif-
ferences between HTTP implementations. Thus, it is very important to know
with certainty which browser generates a request. Therefore, the browsers
are installed on a clean virtual machine and used to browse a local web-
site. We have taken care to ensure that the local website contains a variety
of different elements such that different request generation code may be
exercised.

The setup used for collecting HTTP requests is shown in figure 6.2. It
consists of a client machine and a server machine. The client machine runs Win-
dows and has the browser installed. The server machine runs linux and hosts
a website using Apache. All HTTP requests are captured using tcpdump on
the server.

The following browsers have been installed on the client machine for fin-
gerprint generation:

• Internet Explorer 5.01, 6.0, 7.0, 8.0 & 9.0

• Firefox 1.0, 1.5, 2.0, 3.0 & 3.5

• Opera 9.0, 9.5, 10.0, 10.5 & 11.0

• Safari 3.1, 4.0 & 5.0

6.3 spoofed user-agent detection 55

• Chrome 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 & 12

• Maxthon 2.0 & 2.5

All browsers were installed only under Windows XP SP3, with the exception
of Internet Explorer. Internet Explorer and Windows are closely integrated
with each other. Thus, Internet Explorer may behave differently on different
versions of Windows. Therefore, each version of Internet Explorer has also
been installed under the supported versions of Windows 2000, XP, Vista and
7. The different installations of all browsers have been used to browse the
local website and the generated traffic has been collected.

We have grouped the collected traffic per major browser version. For each
major browser version, we have generated a DFA model of the possible
header orders. The precise steps taken to generate the fingerprints are de-
scribed in section 5.2.1.

While generating the fingerprints, it became clear that Internet Explorer
5.0 has two clearly separate paths for generating HTTP requests. The first
path generates all requests for webpages, images, stylesheets, etc. while the
second path generates all XMLHTTPRequests, which are, for example, used
by Ajax websites. This second path is implemented as a separate ActiveX
component instead of being part of the browser. As two separate request
generation paths are used, two different graphs have been generated for IE
5. A request with the IE5 User-Agent is considered legitimate if it matches
either graph.

A quick check of the HTTP requests generated on operating systems other
than Windows indicates that Firefox and Opera use the same code to gener-
ate requests on each platform. Safari, however, uses a different HTTP imple-
mentation on Mac OS X than on Windows. Therefore, the Safari fingerprints
are marked as Safari on Windows fingerprints instead of just Safari finger-
prints.

6.3.2 Fingerprint discussion

A selection of generated fingerprint graphs is included in figure 6.3 and dis-
cussed in this section. The full set of fingerprints can be found in appendix
B. Most fingerprints are very simple: they consist of only one path through
the graph. Thus, the requests generated by these clients always contain the
same set of headers in the same order. This is, for example, the case for
Firefox (6.3a) which generates requests containing the same 8 headers in a
fixed order. The fingerprint for Opera (6.3b) looks similar, but has a differ-
ent order for several headers and contains one header less. For both Opera
and Firefox, the fingerprints for all major versions installed look identical.
Thus, it is likely that the HTTP request generation code has not changed
significantly between these versions.

While most browser’s fingerprints are very simple, a few are more com-
plex. The fingerprint for Safari 5 on windows (6.3e) is the most complex
fingerprint obtained. Although it contains only 6 headers, it allows very
different header orders.

Comparing the fingerprints for IE 7 (6.3c) and IE 8 & 9 (6.3d) it is clear
that the HTTP request generation code changed between these versions. The
Accept-Encoding and User-Agent header are sometimes swapped in IE 8 &
9, while IE 7 always uses the same order. Furthermore, the UA-CPU header
present in IE 7 is not present any-more in IE 8 & 9.

56 evaluating detection techniques

Accept-Language

Accept-Encoding

Accept-Charset

Connection

End

Keep-Alive

Accept

User-Agent

Host

Start

(a) Firefox 1,2 & 3

Accept-Language

Accept-Charset

Accept-Encoding

Connection

End

Accept

User-Agent

Host

Start

(b) Opera 9,10 & 11

Accept-Encoding

User-Agent

Connection

End

Accept

UA-CPU

Host

Start

(c) IE 7

Host

Connection

End

Accept-Encoding

User-Agent

Accept

Start

(d) IE 8 & 9

Accept-Language

Accept-Encoding

User-Agent

Connection

End

Accept

Host

Start

(e) Safari 5 on Windows

Figure 6.3: Header order models of different browsers

6.3 spoofed user-agent detection 57

user agent

requests samples

total detected total detected

IE 5 14,979 14,979 100.0% 55 55 100.0%

IE 6 15,484 15,313 98.9% 6,521 6,511 99.8%

IE 7 106 106 100.0% 8 8 100.0%

Maxthon 2 3 0 0.0% 1 0 0.0%

Opera 9 1 1 100.0% 1 1 100.0%

Opera 10 5 5 100.0% 1 1 100.0%

No fingerprint
available

238 0 0.0% 81 0 0.0%

No User-Agent 1,381 0 0.0% 83 0 0.0%

Total 32,197 30,404 94.4% 6,751 6,576 97.4%

Table 6.2: Malware detection results for DFA method

6.3.3 Detection results

The detection rate was evaluated using the HTTP C&C requests captured
using the setup described in section 4.1.2. This dataset of malware HTTP
requests contains a total of 32197 requests generated by 6576 samples. The
number of HTTP requests is much larger than the number of samples. This
is caused in part by the fact that all malicious documents were opened in
multiple versions of the viewing application, thus malware may have been
deployed multiple times. Another reason is that a small set of malware gen-
erates hundred of requests per minute, with one sample sending more than
800 http requests in one minute.

All malware C&C requests are parsed to obtain the claimed User-Agent
and the header order. The correct fingerprint for the claimed User-Agent is
retrieved and checked against the observed header order. If the observed
header order can not be generated using the fingerprint, the request is
marked as C&C request. During this process all headers which are not in
the fingerprint are ignored as headers have been removed during fingerprint
generation as well.

As can be seen in table 6.2, nearly all HTTP requests generated by mal-
ware are detected. Looking at the raw numbers, 94.4% of all requests gen-
erated by malware are detected. For almost all of the samples which are
not detected, the User-Agent is unrecognised. These samples are ignored
as there is no fingerprint available for comparison. The detection rate when
requests are grouped per sample is even better, with 97.4% of malware detec-
ted. Again, almost all malware samples that are not detected use unknown
User-Agents. Only 11 samples for which a fingerprint is available are not
detected.

As indicated in section 4.3.4, most malware for which the Internet Ex-
plorer 6 User-Agent was observed, always uses the User-Agent of the in-
stalled Internet Explorer version. Thus, the detection rate may differ de-
pending on the installed version of Internet Explorer. Therefore, all requests
using the Internet Explorer 6 User-Agent were also evaluated using finger-
prints of other Internet Explorer versions. As can be seen in table 6.3, the
detection rates are high for Internet Explorer 5 through 7. However, most

58 evaluating detection techniques

signature requests detected samples detected

IE 5 15313 98.9% 6511 99.8%

IE 6 15313 98.9% 6511 99.8%

IE 7 15484 100.0% 6521 100.0%

IE 8/9 230 1.5% 98 1.5%

Table 6.3: Malware detection results when using different IE fingerprints

C&C traffic matches the Internet Explorer 8 & 9 fingerprints. This is most
likely caused by the small number of headers in the IE 8&9 fingerprint (fig-
ure 6.3d), especially given that the Host header is required by the HTTP 1.1
specification and the User-Agent header is required for spoofed User-Agent
detection. Thus, unfortunately, when running the latest versions of Internet
Explorer the detection rates are very low with 2.4% of the samples detected,
compared to 97.4% or higher for older versions.

A detection method for C&C traffic should not only have a high true pos-
itive rate, but must also have a low false positive rate, to be effective. Invest-
igating detected sessions becomes too much work if many false positives are
generated, while automatically blocking detected sessions will hinder users
too much.

The false positive rate was evaluated using the dataset described in sec-
tion 4.3.1. The detection results on the legitimate requests are presented in
table 6.4a. It is assumed that the dataset does not contain C&C traffic. There-
fore, it should report a very low number of detections. As can be seen in
table 6.4a this is not the case. For example, 72.3% of all Internet Explorer 6

requests are considered anomalous. A sample of the detected requests were
examined and if an obvious explanation could be found for the requests a
filter was written to remove these requests.

The filters obtained can be found in table 6.4b. The most important filter to
reduce the false positive rate is to filter out Lo-Jack laptop tracking software.
The laptop tracking software regularly makes requests to "search.namequery.com"
with an User-Agent identifying itself as Internet Explorer 6.0. These requests
are anomalous as the software is spoofing the User-Agent, they are however
not C&C requests and are therefore filtered from the dataset.

A filter was also added for an User-Agent containing a combination of
Firefox version and Gecko1 version which was never released. The User-
Agent in these requests was clearly spoofed, but given the request contents
they look legitimate and are therefore filtered.

Three filters were added for requests in which the Accept-Encoding was
masked out by replacing each character with the – or X character. Accord-
ing to Gentilcore [33], such requests are modified by desktop security soft-
ware before transmission. Thus, these requests are generated by the spe-
cified User-Agent, but do not match the fingerprint because they have been
modified. These requests have been filtered, as they are false positives.

After filtering, the false positive rate has been reduced to 0.5% of all
filtered requests for which a fingerprint is available. The great majority of
the requests detected still look legitimate upon quick inspection. However,
upon inspection of the anomalous Internet Explorer 5 requests, it quickly
becomes clear that none of the requests are actually generated by Internet
Explorer 5.

1 Gecko is the rendering engine used by Firefox

6.3 spoofed user-agent detection 59

user agent

before filtering after filtering

total detected total detected

Chrome 2 23,925 595 2.5% 23,330 0 0.0%

Chrome 3 5,930 0 0.0% 5,930 0 0.0%

Chrome 4 17 17 100.0% 17 17 100.0%

Firefox 1 8 8 100.0% 8 8 100.0%

Firefox 2 15,711 2,894 18.4% 13,002 185 1.4%

Firefox 3 306,849 2,030 0.7% 305,355 536 0.2%

IE 5 285 285 100.0% 145 145 100.0%

IE 6 20,068 14,514 72.3% 5,886 332 5.6%

IE 7 27,188 857 3.2% 26,999 668 2.5%

IE 8 57,555 759 1.3% 57,247 451 0.8%

Maxthon 2 48,178 146 0.3% 48,032 0 0.0%

Opera 9 24,074 3,086 12.8% 21,127 139 0.7%

Opera 10 11,497 35 0.3% 11,477 15 0.1%

Safari 3 42 42 100.0% 41 41 100.0%

Safari 4 205 0 0.0% 205 0 0.0%

Seamonkey 1 22,654 0 0.0% 22,654 0 0.0%

Total
(fingerprint
available)

564,186 25,268 4.5% 541,455 2,537 0.5%

(a) False positives

nr. of

requests

filter

14,170 Request made by Lo-Jack laptop tracking software

2,934 Opera Accept-Encoding header replaced by X’s

2,709 Requests with impossible Gecko version and Firefox version
combination

1,258 Firefox Accept-Encoding headers replaced by –‘s

593 Chrome Accept-Encoding headers replaced by –‘s

314 Office Live suite sending requests as Internet Explorer

203 Windows proxy auto configuration request

167 TCP stream reassembly problem

150 Firefox wipmania plugin

140 Internet Explorer 5 on Mac OS X

93 Alexa Toolbar for Internet Explorer

(b) Filtering rules

nr. of requests

Fingerprint available 564,186 77.2%

Fingerprint not available 162,152 22.2%

User-Agent not in request 4,172 0.6%

(c) Fingerprint availability

Table 6.4: False positives for spoofed User-Agent detection

60 evaluating detection techniques

user-agent total detected

Chrome 8 1,520 0 0.0%

Chrome 10 3,214 0 0.0%

Chrome 11 6,147 0 0.0%

Chrome 12 751 0 0.0%

Firefox 3 44,320 3 0.0%

IE 5 8,494 8,494 100.0%

IE 6 141,626 3,554 2.5%

IE 7 4,937,065 3,318 0.1%

IE 8 1,822,380 35 0.0%

IE 9 34 1 2.9%

Opera 11 1 1 100.0%

Total
(fingerprint
available)

6,965,552 15,406 0.2%

(a) False positives

nr. of requests

Fingerprint available 6,965,552 80.9%

Fingerprint not available 1,643,251 19.1%

User-Agent not in request 4,862 0.1%

(b) Fingerprint availability

Table 6.5: False positives for spoofed User-Agent detection on 2
nd dataset

We have also estimated the false positive rate using a second dataset con-
taining web traffic obtained from a company network. This dataset is more
recent and thus contains different browser versions. Furthermore, measur-
ing the false positive rate on a different network may provide better insight
into the false positive rates on different networks.

The dataset contains requests sent via a proxy, this proxy re-orders the
Connection, Host and Keep-Alive headers in the request. Therefore, these
headers have been removed from the fingerprints before evaluating the de-
tection method. The detection results on the dataset can be found in table
6.5a. The false positive rate on this dataset is only 0.2%. However, the In-
ternet Explorer 5 requests were generated by antivirus software, which uses
an Internet Explorer 5 User-Agent. Ignoring these requests, the false positive
rate is only 0.1%.

6.3.4 Possible improvements

Using spoofed User-Agent detection for C&C channel detection works well
for most User-Agents. Unfortunately, most malware spoofs the User-agent
of the installed Internet Explorer version and the fingerprint of Internet
Explorer 8 & 9 (figure 6.3d) is so simple that most C&C traffic matches it.

6.4 2ν-gram based anomaly detection 61

Thus, the current detection algorithm is not able to detect most C&C traffic
if Internet Explorer 8 or 9 is installed on the infected computer.

The current fingerprints are highly generalized, thus it may be possible to
improve the detection rate rate using a more detailed fingerprint of Internet
Explorer 8 & 9. There are several ways to create a more detailed finger-
print. Headers which are only present for a subset of requests may be in-
cluded. Multiple fingerprints may be created for different types of requests
(e.g. html pages, images, XMLHTTPRequests) Another possibility would be
to include certain header values in the fingerprint. The Accept-Encoding
header could, for example, be used as it contains a fixed value for a specific
browser version, but may be different between browser versions.

A large selection of requests with spoofed User-Agents are actually gen-
erated by legitimate software, leading to many false positives. The number
of false positives may be reduced by including filters or signatures for le-
gitimate software known to spoof the User-Agent. Unfortunately, this also
increases the work needed for generating the signatures.

Another possibility to improve spoofed User-Agent detection is to com-
bine information about multiple requests. The advantage of combining mul-
tiple requests is that single false positives may be suppressed based on the
rest of the requests. The requests may, for example, be combined based on
their TCP stream or their referrer header. These grouped requests may be
considered legitimate if, for example, at least 90% of the requests match the
fingerprint.

The false positive rate may also be reduced by combining the spoofed
User-Agent detection with, for example, a domain reputation score (e.g.
NOTOS [15]). Combining these systems, a lower false positive rate may be
achieved while keeping the high detection rate.

6.3.5 Conclusion

Detecting C&C traffic using spoofed User-Agents seems to work well, using
our test setup. The spoofed User-Agent detection technique is able to de-
tect 97.4% of the samples tested. However, if the malware would have been
executed on a machine running Internet Explorer 8 or 9, the detection rate
would have been much lower. An exact detection rate can not be given since
not all malware was run on such a machine, but the detection rate is estim-
ated to be around 6%. (Based on 4% of the Internet Explorer 6 User-Agents
being hard coded as estimated in section 4.3.4.)

Even after manually adding filters, the false positive rate of 0.5% on the
first dataset is still too high for many practical uses. The false positive rate of
0.1%, with just one filter, on the second dataset is much better. However, one
false positive for every thousand requests is still too high for most uses. One
of the reasons for the high false positive rate is the significant set of legitim-
ate programs providing an incorrect User-Agent. To reduce false positives,
fingerprints or filters have to be created for these applications. This adds
complexity to the filter and may decrease the sensitivity of the detection.

6.4 2ν -gram based anomaly detection

The 2ν-gram based anomaly detection method has to be trained using le-
gitimate traffic in order to build a model of legitimate traffic. The trained
model can then be used for detection of anomalous requests which should
include C&C requests.

62 evaluating detection techniques

parameter values description

n 5, 10 2ν-grams for ν = 0..n− 2

k 10, 20, 40, 80, 160 Nr. of clusters for 2ν-grams

γ 0.5 Width of radial base function kernel

fcombination Average, Minimum Function to combine SVM scores

fpdesired 0.5%, 0.25% Desired false positive rate

Table 6.6: Parameters for 2ν-gram evaluation

6.4.1 Training

We have trained the 2ν-gram based anomaly detection system using the le-
gitimate HTTP requests in the dataset described in section 4.3.1. For this pur-
pose we have extracted all HTTP requests in the dataset without their mes-
sage body (e.g. POST data). The message bodies are ignored because they
can significantly influence the 2ν-gram distribution, while 99% of the cap-
tured C&C requests do not contain message bodies. All duplicate requests
are also removed and the false positive rate is evaluated using 10-fold cross-
validation. The detection rate is evaluated with the C&C HTTP requests
captured using the setup described in section 4.1.2. The entire dataset has
been labelled using each of the 10 detectors trained for cross-validation. The
average of the detection rate among these 10 systems is taken for evaluation.

For evaluation of the detection method 7-grams and 12-grams are approx-
imated with ν = 0..5 and ν = 0..10. The number of clusters evaluated ranges
from 10 to 160 clusters by setting clusters to 10, 20, 40, 80, and 160. After
some initial tests ,γ = 0.5 was chosen as width of the radial base function
as it seems to provide good results for classification. The scores are com-
bined by either taking the average or the minimum as combination function
fcombination. The desired false positive rates fpdesired are set at 0.5% and
0.25%.

6.4.2 Detection results

The achieved detection rates for the different parameters can be found in
table 6.7. The results show that the detection rate is insensitive to different
values of the selected parameters. Almost every combination of parameters
achieves a 29% detection rate. As expected, the false positive rate is mostly
influenced by fpdesired. However, it is interesting to note that the achieved
false positive rate is significantly smaller than fpdesired when it is set to
0.5% in combination with a small number of clusters. In the best case, false
positive rates of 0.15% in combination with detection rates of 29.43% are
possible.

6.4.3 Possible improvements

The achieved detection rate of 2ν-gram anomaly detection is relatively low,
with only 29%. The most likely reason for this is the similarity between legit-
imate and C&C HTTP requests. Both requests use the same keywords and
are probably too similar when looking at the 2ν-grams. Thus, better detec-
tion results may be obtained by transforming the HTTP requests. Common

6.4 2ν-gram based anomaly detection 63

detection rate

fpdesired = 0.5% fpdesired = 0.25%

k ν = 0..5 ν = 0..10 ν = 0..5 ν = 0..10

average

probability

10 29.40% 29.38% 29.27% 14.04%

20 29.39% 29.38% 29.38% 18.93%

40 29.39% 29.38% 29.38% 23.30%

80 29.38% 29.38% 29.38% 16.97%

160 29.38% 29.38% 0.15% 2.36%

minimum

probability

10 29.53% 29.45% 7.64% 19.68%

20 29.49% 29.44% 29.38% 25.30%

40 29.52% 29.46% 29.21% 22.51%

80 29.20% 24.63% 29.21% 21.76%

160 23.68% 26.93% 23.99% 8.74%

achieved false positive rate

fpdesired = 0.5% fpdesired = 0.25%

k ν = 0..5 ν = 0..10 ν = 0..5 ν = 0..10

average

probability

10 0.52% 0.51% 0.20% 0.24%

20 0.50% 0.53% 0.24% 0.25%

40 0.50% 0.50% 0.25% 0.24%

80 0.51% 0.50% 0.24% 0.23%

160 0.55% 0.52% 0.28% 0.26%

minimum

probability

10 0.32% 0.35% 0.19% 0.13%

20 0.29% 0.31% 0.15% 0.21%

40 0.33% 0.34% 0.14% 0.14%

80 0.25% 0.28% 0.14% 0.13%

160 0.55% 0.50% 0.29% 0.24%

Table 6.7: Detection and false positive rates for 2ν-gram detection

64 evaluating detection techniques

keywords can, for example, be tokenized to enhance the difference between
legitimate and C&C traffic. Another approach would be, to only extract val-
ues which are likely to be discriminatory, like the URL, host, cookies and
unknown headers and use these for anomaly detection.

Another approach would be to build multiple 2ν-gram detection models
for specific types of requests. This would allow the detection models to be
more specific and thus more likely to detect C&C traffic as an anomaly.
However, it would require a good classification method for determining the
type of request.

The results of 2ν-gram anomaly detection can also be combined with an-
other system using, for example, correlation based techniques. This would
provide the ability to maintain or lower the false positive rate, while increas-
ing the detection rate.

6.4.4 Conclusion

The 2ν-gram anomaly detection method is not able to detect most malware.
However, low false positive rates of 0.15% can be achieved. This might make
this method suitable in a system which combines several independent detec-
tion methods. The combined system may be able to achieve higher detection
rates while maintaining the low false positive rate.

7C O N C L U S I O N

We have created and analysed a dataset containing web based C&C traffic.
Based on this analysis we have proposed and evaluated three detection tech-
niques for web based C&C channels. We have shown that each technique
is capable of detecting C&C channels, however their current false positive
rates are still high. Thus, future research may focus on improving these
techniques to reduce the false positive rate.

In the rest of this chapter we will revisit the research sub-questions and
the main research question. Finally, we conclude with an overview of re-
search directions which can be taken to improve the proposed detection
techniques.

7.1 answering the research sub-questions

How can a dataset of C&C web traffic be obtained?

In chapter 4 we have shown that a dataset containing C&C web traffic can
be obtained by running malware in a controlled environment. The malware
needed to create the dataset is freely available on the Internet. While a con-
trolled environment can be easily constructed using virtual machines. The
disadvantage of a controlled environment is that it limits the C&C traffic
which can be collected, because C&C server software is often not available.

How prevalent is the usage of HTTP based C&C channels in malware? What are
distinguishing characteristics of HTTP C&C traffic?

The majority of the samples analysed in chapter 4 use HTTP based C&C
channels. Similar observations have been found in literature confirming that
HTTP is the dominant C&C protocol. A precise estimate of the usage of
HTTP based C&C channels can not be made, but given the results we can
be fairly certain that more than half of all C&C channels are currently HTTP
based.

The most distinguishing characteristic of HTTP based C&C channels is
that the User-Agent in the requests is spoofed. The majority of malware
uses the User-Agent of the installed Internet Explorer version in its requests.
Another characteristic is that on average C&C HTTP requests are smaller
than legitimate requests.

How prevalent is the usage of C&C channels on port 443 in malware? How preval-
ent are TLS or SSL C&C channels in malware?

Of the samples analysed in chapter 4, half of the malware families and
6.0% of the malicious office documents generates traffic on port 443. How-
ever, only 0.6% of the PDF documents generated traffic on port 443. These
number most likely overestimate the usage of port 443 in malware, as the
samples were collected with the focus on obtaining malware using TLS or
port 443. Given the low prevalence, even for samples collected with a focus
on port 443 and TLS usage, the actual prevalence is likely to be extremely
low.

65

66 conclusion

TLS C&C channels are rarely used by malware. While specifically search-
ing for malware using TLS C&C channels only four malware families and
one malicious document were found to use it. A further fifth malware fam-
ily was found to support it, but no samples could be found in the wild using
this feature. Thus, while TLS support could be easily added to current mal-
ware it is rarely used at the moment.

Which method works best to distinguish legitimate TLS or SSL traffic from TLS or
SSL C&C channels? What detection and false positive rates can be achieved?

Too few samples are available to design or evaluate a general detection tech-
nique for TLS C&C channels. Instead, we have proposed and evaluated a
detection technique by simulating the effect of adding TLS support to cur-
rent malware. This was done by tunnelling HTTP based C&C traffic over a
TLS channel. Given the limitations of tunnelling traffic described in section
4.2.2, we show that C&C traffic can be distinguished from legitimate traffic
by observing the size of the initial HTTP request send over the TLS channel.

Several methods were evaluated for distinguishing legitimate TLS traffic
from TLS C&C channels. The best detection and false positive rates were
achieved using SVM classification. This allowed for a 96.0% detection rate
combined with a 2.4% false positive rate. However, these rates may have
been the result of over-fitting on the evaluation datasets. Thus, we consider
the results of the RIPPER algorithm more realistic with a detection rate of
95.9% and a false positive rate of 2.9%.

Which method works best to distinguish legitimate HTTP traffic from C&C HTTP
traffic? What detection and false positive rates can be achieved?

We have proposed two techniques for distinguishing legitimate web traffic
from C&C traffic in chapter 5. The first method is based on detecting spoofed
User-Agents, as the majority of malware spoofs the User-Agent for their
C&C HTTP traffic. The second method is based on detecting anomalous
HTTP requests based on the 2ν-gram distribution of the request.

The spoofed User-Agent method is able to achieve a false positive rate of
0.5% in combination with a few manual filters. While the anomaly detection
method is able to achieve a 0.14% false positive rate. However, their detec-
tion rates differ significantly. The spoofed User-Agent method achieves a
detection rate of 97.4%, which is much higher than the 29.2% detection rate
achieved by the anomaly detection method. Thus, high detection rates can
be achieved. However, the false positive rates remain too high for many
practical uses. On a large network there are likely to be multiple false pos-
itives every minute. Thus, making it impractical to look at each detection
manually or block all detected requests.

How do we set-up proper experiments to measure both the "detection rate" and the
"false positive rate" of each technique?

We have proposed an experiment to measure both the "detection rate" and
the "false positive rate" of each technique in section 6.1. The detection rate
is estimated by measuring the detection rate on a dataset containing C&C
traffic. This dataset has been collected in a controlled environment as de-
scribed in sections 4.1 and 4.2. The false positive rate is estimated by meas-
uring the detection rate on network traffic collected at a university network.
This dataset is described in section 4.3.1. The assumption is made that the

7.2 answering the research question 67

university network contains only legitimate traffic, therefore the detection
rate on this dataset is taken as an estimate for the "false positive rate".

To make sure that the detection and false positive rates are measured on a
different dataset than used for training, 10-fold cross-validation is used. This
splits up the dataset to ensure that all elements can be evaluated using a de-
tector trained on other elements. Cross-validation also helps to ensure that
the results remain stable when re-training. In case training is not required
for the detection techniques, the entire dataset is used for evaluation.

7.2 answering the research question

How can we distinguish C&C web traffic from legitimate web traffic
in both the encrypted and unencrypted case?

We have shown that encrypted C&C web traffic is rare, but if encryption
would be added to current unencrypted C&C web traffic, detection is pos-
sible by looking at the size of the HTTP request. However, using just this
measure the false positive rate is too high for most uses.

We have shown that web based C&C channels can be distinguished from
legitimate traffic because the User-Agent for C&C channels is usually spoofed.
Detection of C&C channels based on spoofed User-Agent detection provides
good detection results for most User-Agents. However, it needs to be com-
bined with filters for legitimate applications which also spoof their User-
Agent.

Using anomaly detection techniques to distinguish legitimate traffic from
C&C traffic is also possible. However, in the implementation we have evalu-
ated the detection rates are relatively low.

7.3 future research

We have shown that legitimate web traffic can be distinguished from C&C
web traffic. However, the detection and false positive rates of the techniques
we have proposed, have to be improved before they can be widely used. In
chapter 6, we have mentioned several directions of research to improve the
detection techniques.

7.3.1 Machine learning-based TLS classification

Detection based on just the initial request size provides good detection rates.
However, using only one variable results in high false positive rates. Thus,
future research may focus on finding other distinguishing attributes for TLS
C&C traffic and incorporating those in the detection system. Such attributes
may, for example, be the server reply size, certificate or domain name.

Another direction of research would be to incorporate the TLS C&C chan-
nel detection into a correlation based system. The correlation based system
may take suspicious TLS sessions as input, but can suppress false positives
by correlating these sessions with other suspicious events.

7.3.2 Spoofed User-Agent detection

Detecting C&C channels using spoofed User-Agent detection works very
well for most User-Agents. However, the proposed algorithm does not work

68 conclusion

very well for detecting C&C channels using the Internet Explorer 8 or 9 User-
Agent. Thus, future research may focus on creating a better fingerprint such
that these C&C channels can be detected as well.

Reducing the false positive rate might be possible by taking into account
more information. Future research could, for example, combine multiple
requests or take into account both the request and DNS traffic.

7.3.3 2ν-gram based anomaly detection

Future research may focus on how to improve the detection rate of the 2v-
gram based anomaly detection technique. One method to increase the dif-
ference in 2ν-gram distribution between legitimate and C&C traffic would
be to replace common keywords with tokens. Another possibility would be
to classify requests into different classes and build a more specific 2ν-gram
detector for each class.

AO V E RV I E W O F M A LWA R E FA M I L I E S A N A LY S E D

family name description of traffic as found on the internet

Agobot “uses Secure Socket Layer (SSL)”

http://about-threats.trendmicro.com/
ArchiveMalware.aspx?language=us

&name=WORM_AGOBOT.JT

Ghegbot
(Mondera.

Tofsee)

“Uses port 443 (SSL) to send and receive encrypted
commands. spam templates and download executable files.”

http://www.m86security.com/labs/
spambotitem.asp?article=897

Hydraq “Establishing an encrypted covert channel that
masqueraded as an SSL connection”

http://www.wired.com/threatlevel/2010/01/
operation-aurora

Mebroot
(Sinowal.
Mebload)

“Some of the websites it is known to connect to are . . . via
TCP port 443”

http://www.microsoft.com/security/portal/Threat/
Encyclopedia/Entry.aspx?

Name=TrojanDownloader:Win32/Sinowal.A

Mega-D “Reports to control server on port 80. also uses encrypted
HTTPS on port 443”

http://www.m86security.com/labs/
spambotitem.asp?article=896

NTESSESS “communicates . . . over TCP port 443. and actually uses
SSL”

http://www.cyberesi.com/2011/05/12/
malware-obfuscated-within-png-files-sample-2-2

PingBed “This Trojan uses SSL for its network communication”

http://www.cyberesi.com/2011/05/10/
malware-obfuscated-within-png-files

Pushdo
(Cutwail.
Pandex)

“encrypted its communications and routed them through
the SSL port (443); while this encryption looked like SSL at

first sight” . . . ” it is actually NOT.” “There is a routine
which generates some actual SSL traffic to a list of 339

known web sites”

http://blog.fortinet.com/pushdo-revolutions-
communication-encryption-and-decoy-traffic

69

70 overview of malware families analysed

family name description of traffic as found on the internet

Ramnit.C “The connection to a server which W32/Ramnit.C initiates
uses TCP port 443.”

http://techblog.avira.com/2010/11/25/
closer-look-at-w32ramnit-c/en

Routrobot
(buzus. prolaco)

“Connects to the following IP Addresses . . . through remote
port 443.”

http://www.mcafee.com/threat-intelligence/malware/
default.aspx?id=256356

Rustock “the Rustock botnet has been sending a lot more spam
using TLS”

http://www.symantec.com/connect/blogs/
death-thousand-cuts-rustock-botnet-sending-more-

encrypted-spam

Spybot.worm
.gen.p

“opens a backdoor at TCP port 443 and tries to connect to
IRC server”

http://www.mcafee.com/threat-intelligence/malware/
default.aspx?id=135336

Spyeye “connects to . . . through a remote port 443”

http://vil.nai.com/vil/content/v_494378.htm

Swrort “is known to connect to the following servers: . . . via TCP
port 443”

http://www.microsoft.com/security/portal/Threat/
Encyclopedia/Entry.aspx?Name=Trojan:Win32/Swrort.A

Tdss “data transmitted to and from C&C over HTTP/HTTPS"
http://resources.infosecinstitute.com/tdss4-part-2

Zeus (Zbot) Implements support for HTTPS C&C (see source code
analysis in section 4.4.1)

BB R O W S E R F I N G E R P R I N T S

Accept-Language

Accept-Charset

Accept-Encoding

Connection

End

Accept

User-Agent

Host

Start

(a) Chrome 1

Accept-Language

Accept-Charset

Accept-Encoding

Connection

User-Agent

End

Host

Start

(b) Chrome 2&3

Accept-Language

Accept-Charset

Accept-Encoding

Connection

User-Agent

Accept

End

Host

Start

(c) Chrome 4&5

Figure B.1: Chrome fingerprints

71

72 browser fingerprints

Accept-Language

Accept-Charset

Accept-Encoding

Connection

Accept

User-Agent

End

Host

Start

(a) Chrome 6

Accept-Language

Accept-Charset

Accept-Encoding

Connection

User-Agent

End

Host

Start

(b) Chrome 7&8

Accept-Language

Accept-Charset

Accept-Encoding

Connection

Accept

User-Agent

End

Host

Start

(c) Chrome 9

Accept-Language

Accept-Charset

Accept-Encoding

Connection

User-Agent

End

Host

Start

(d) Chrome 10&11

Accept-Language

Accept-Charset

Accept-Encoding

Connection

Accept

User-Agent

End

Host

Start

(e) Chrome 12

Accept-Language

Accept-Encoding

Accept-Charset

Connection

End

Keep-Alive

Accept

User-Agent

Host

Start

(f) Firefox 1,2 & 3

Figure B.2: Chrome & Firefox fingerprints

browser fingerprints 73

Accept-Language

Accept-Encoding

User-Agent

Connection

End

Accept

Host

Start

(a) IE 5

Content-Length

User-Agent

Connection

End

Referer

Host

Start

(b) IE 5 XMLHTTPRe-
quest

Accept-Language

Accept-Encoding

User-Agent

Connection

End

Accept

Host

Start

(c) IE 6

Accept-Encoding

User-Agent

Connection

End

Accept

UA-CPU

Host

Start

(d) IE 7

Host

Connection

End

Accept-Encoding

User-Agent

Accept

Start

(e) IE 8 & 9

Host

Connection

End

Accept-Encoding

User-Agent

Accept

Start

(f) Maxthon 2

Figure B.3: Internet Explorer & Maxthon fingerprints

74 browser fingerprints

Accept-Language

Accept-Charset

Accept-Encoding

Connection

End

Accept

User-Agent

Host

Start

(a) Opera 9,10 & 11

Accept-Language

Accept-Encoding

Accept-Charset

Connection

End

Keep-Alive

Accept

User-Agent

Host

Start

(b) Seamonkey 1

Accept-Language

Connection

Accept-Encoding

Accept

Host

End

User-Agent

Start

(c) Safari 3

Accept-Language

Accept-Encoding

User-Agent

Connection

End

Accept

Host

Start

(d) Safari 4

Accept-Language

Accept-Encoding

User-Agent

Connection

End

Accept

Host

Start

(e) Safari 5

Figure B.4: Opera, Safari & Seamonkey fingerprints

B I B L I O G R A P H Y

[1] Amada. URL http://amada.abuse.ch.

[2] Browserrecon project. URL http://www.computec.ch/projekte/

browserrecon/.

[3] Contagio. URL http://contagiodump.blogspot.com/.

[4] URL http://www.damballa.com/solutions/damballa_firstalert.

php.

[5] Internet simulator. URL www.inetsim.org.

[6] Malware domain list, . URL http://www.malwaredomainlist.com.

[7] Malware domains, . URL http://www.malwaredomains.com.

[8] Metasploit framework. URL www.metasploit.org.

[9] Offensive computing. URL www.offensivecomputing.net.

[10] Opendpi. URL www.opendpi.org.

[11] tcpdump. URL www.tcpdump.org.

[12] Zeus tracker. URL http://zeustracker.abuse.ch.

[13] Annual global threat report 2009. Technical report, Scansafe, 2010. URL
http://www.scansafe.com/downloads/gtr/2009_AGTR.pdf.

[14] D. Anselmi and R. et al. Boscovich. Security intelligence report. Tech-
nical report, Microsoft, 2010.

[15] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Build-
ing a dynamic reputation system for dns. In 19th Usenix Security Sym-
posium, 2010.

[16] D. Ariu, R. Tronci, and G. Giacinto. Hmmpayl: An intrusion detection
system based on hidden markov models. Computers & Security, 2011.

[17] B. AsSadhan, J.M.F. Moura, D. Lapsley, C. Jones, and W.T. Strayer. De-
tecting botnets using command and control traffic. In Network Comput-
ing and Applications, 2009. NCA 2009. Eighth IEEE International Sympo-
sium on, pages 156–162. IEEE, 2009.

[18] J.M. Bauer, J.G. Michel, and Y. Wu. Itu study on the financial aspects of
network security: Malware and spam. ICT Applications and Cybersecurity
Division, International Telecommunication Union, Final Report, July, 2008.

[19] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel. A view on
current malware behaviors. In Proceedings of the 2nd USENIX conference
on Large-scale exploits and emergent threats: botnets, spyware, worms, and
more, pages 8–8. USENIX Association, 2009.

[20] J.R. Binkley and S. Singh. An algorithm for anomaly-based botnet de-
tection. In Proceedings of the 2nd conference on Steps to Reducing Unwanted
Traffic on the Internet, pages 7–7, 2006.

75

http://amada.abuse.ch
http://www.computec.ch/projekte/browserrecon/
http://www.computec.ch/projekte/browserrecon/
http://contagiodump.blogspot.com/
http://www.damballa.com/solutions/damballa_firstalert.php
http://www.damballa.com/solutions/damballa_firstalert.php
www.inetsim.org
http://www.malwaredomainlist.com
http://www.malwaredomains.com
www.metasploit.org
www.offensivecomputing.net
www.opendpi.org
www.tcpdump.org
http://zeustracker.abuse.ch
http://www.scansafe.com/downloads/gtr/2009_AGTR.pdf

76 bibliography

[21] H. Bos, M. van Steen, and N. Pohlmann. On botnets that use dns for
command and control.

[22] A. Caglayan, M. Toothaker, D. Drapeau, D. Burke, and G. Eaton. Real-
time detection of fast flux service networks. In Proceedings of the 2009
Cybersecurity Applications & Technology Conference for Homeland Security,
pages 285–292. IEEE Computer Society, 2009.

[23] A. E. Cha and E. Nakashima. Google china cyberattack part of vast
espionage campaign, experts say. The Washington Post, January 14

2010.

[24] H. Choi, H. Lee, H. Lee, and H. Kim. Botnet detection by monitoring
group activities in dns traffic. pages 715–720, October 2007. doi: 10.
1109/CIT.2007.90. URL http://dx.doi.org/10.1109/CIT.2007.90.

[25] S. Coyne and R. Kazanciyan. The getaway. Black Hat DC 2011, January
2011.

[26] R. Deibert, A. Manchanda, R. Rohozinski, N. Villeneuve, and G. Walton.
Tracking ghostnet: Investigating a cyber espionage network. Information
Warfare Monitor, Munk Centre, JR02-2009, March, 29, 2009.

[27] I.S. Dhillon, S. Mallela, and R. Kumar. A divisive information theo-
retic feature clustering algorithm for text classification. The Journal of
Machine Learning Research, 3:1265–1287, 2003.

[28] M. Dusi, A. Este, F. Gringoli, and L. Salgarelli. Using gmm and svm-
based techniques for the classification of ssh-encrypted traffic. In Com-
munications, 2009. ICC’09. IEEE International Conference on, pages 1–6.
IEEE, 2009.

[29] J. Finkle. Spain busts ring accused of infecting 13 mln pcs,
March 2 2010. URL http://www.reuters.com/article/2010/03/02/

us-crime-hackers-idUSTRE6214ST20100302.

[30] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic
blending attacks. In Proceedings of the 15th USENIX Security Symposium,
pages 241–256, 2006.

[31] M. Fossi, G. Egan, K. Haley, E. Johnson, T. Mack, T. Adams, J. Blackbird,
M.K. Low, D. Mazurek, D. McKinney, and P. Wood. Symantec internet
security threat report. XVI, April, 2011.

[32] J. François, S. Wang, R. State, and T. Engel. Bottrack: Tracking botnets
using netflow and pagerank. NETWORKING 2011, pages 1–14, 2011.

[33] T. Gentilcore. Going beyond gzipping. Velocity, 2009.

[34] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Papagiannaki.
Exploiting temporal persistence to detect covert botnet channels. In
Recent Advances in Intrusion Detection, pages 326–345. Springer, 2009.

[35] J. Goebel and T. Holz. Rishi: Identify bot contaminated hosts by irc nick-
name evaluation. In Proceedings of the first conference on First Workshop
on Hot Topics in Understanding Botnets, pages 8–8. USENIX Association,
2007.

http://dx.doi.org/10.1109/CIT.2007.90
http://www.reuters.com/article/2010/03/02/us-crime-hackers-idUSTRE6214ST20100302
http://www.reuters.com/article/2010/03/02/us-crime-hackers-idUSTRE6214ST20100302

bibliography 77

[36] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter:
Detecting malware infection through ids-driven dialog correlation. In
Proceedings of 16th USENIX Security Symposium on USENIX Security Sym-
posium, page 12. USENIX Association, 2007.

[37] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: clustering analysis
of network traffic for protocol-and structure-independent botnet detec-
tion. In Proceedings of the 17th conference on Security symposium, pages
139–154. USENIX Association, 2008.

[38] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting botnet command
and control channels in network traffic. In Proceedings of the 15th Annual
Network and Distributed System Security Symposium. Citeseer, 2008.

[39] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten. The weka data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

[40] G. Hogben, D. Plohmann, E. Gerhards-Padilla, and F. Leder. Botnets:
Detection, measurement, disinfection & defence. Technical report, Eu-
ropean Network and Information Security Agency (ENISA), 2011.

[41] The Honeynet-Project. Know your enemy: Fast-flux service networks,
an ever changing enemy. Technical report, The Honeynet Project &
Research Alliance, 2007. URL http://www.honeynet.org/papers/ff/.

[42] C.H. Hsu, C.Y. Huang, and K.T. Chen. Fast-flux bot detection in real
time. In Recent Advances in Intrusion Detection, pages 464–483. Springer,
2011.

[43] C.W. Hsu, C.C. Chang, C.J. Lin, et al. A practical guide to support
vector classification, 2003.

[44] K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest. Learning
dfa representations of http for protecting web applications. Com-
puter Networks, 51:1239–1255, April 2007. ISSN 1389-1286. doi: 10.
1016/j.comnet.2006.09.016. URL http://dl.acm.org/citation.cfm?

id=1224244.1224379.

[45] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet detec-
tion and characterization. In Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets, pages 7–7. USENIX As-
sociation, 2007.

[46] R. Kazanciyan. The state of the hack. Tampa Bay ISSA InfraGard,
December 2010.

[47] S. Kondo and N. Sato. Botnet traffic detection techniques by c&c session
classification using svm. Advances in Information and Computer Security,
pages 91–104, 2007.

[48] B. Krebs. N.y. firm faces bankruptcy from $164,000 e-banking
loss, February 2010. URL http://krebsonsecurity.com/2010/02/

n-y-firm-faces-bankruptcy-from-164000-e-banking-loss/. [On-
line; accessed 27-Juny-2011].

[49] C. Livadas, R. Walsh, D. Lapsley, and W.T. Strayer. Using machine
learning techniques to identify botnet traffic. In 2nd IEEE LCN Workshop
on Network Security. Citeseer, 2006.

http://www.honeynet.org/papers/ff/
http://dl.acm.org/citation.cfm?id=1224244.1224379
http://dl.acm.org/citation.cfm?id=1224244.1224379
http://krebsonsecurity.com/2010/02/n-y-firm-faces-bankruptcy-from-164000-e-banking-loss/
http://krebsonsecurity.com/2010/02/n-y-firm-faces-bankruptcy-from-164000-e-banking-loss/

78 bibliography

[50] W. Lu, G. Rammidi, and A.A. Ghorbani. Clustering botnet communica-
tion traffic based on n-gram feature selection. Computer Communications,
2010.

[51] C. McCarthy. An investigation on detecting applications hidden in ssl
streams using machine learning techniques. 2010.

[52] S.K. Noh, J.H. Oh, J.S. Lee, B.N. Noh, and H.C. Jeong. Detecting p2p
botnets using a multi-phased flow model. In Proceedings of the 2009
Third International Conference on Digital Society, pages 247–253. IEEE
Computer Society, 2009.

[53] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of one-class svm
classifiers to harden payload-based anomaly detection systems. In
ICDM ’06: Proceedings of the Sixth International Conference on Data Min-
ing, pages 488–498, Washington, DC, USA, 2006. IEEE Computer Soci-
ety. doi: 10.1109/ICDM.2006.165. URL http://dx.doi.org/10.1109/

ICDM.2006.165.

[54] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee. Mcpad: A mul-
tiple classifier system for accurate payload-based anomaly detection.
Computer Networks, 53(6):864–881, 2009.

[55] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of http-
based malware and signature generation using malicious network
traces. In Proceedings of the 7th USENIX conference on Networked systems
design and implementation, pages 26–26. USENIX Association, 2010.

[56] M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos. Emulation-
based detection of non-self-contained polymorphic shellcode. In Pro-
ceedings of the 10th international conference on Recent advances in intrusion
detection, pages 87–106. Springer-Verlag, 2007.

[57] I. Ristic. State of ssl. InfoSec World 2011, April 2011.

[58] S. Santorelli. Developing botnets. Technical report, Team Cymru, Jan-
uary 2010.

[59] K. Selvaraj and N. F. Gutierrez. The rise of pdf malware. Technical
report, Symantec, 2010.

[60] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich. Analysis of the
storm and nugache trojans: P2p is here. USENIX; login, 32(6):2007–12,
2007.

[61] R. Villamarín-Salomón and J.C. Brustoloni. Identifying botnets us-
ing anomaly detection techniques applied to dns traffic. In Consumer
Communications and Networking Conference, 2008. CCNC 2008. 5th IEEE,
pages 476–481. IEEE, 2008.

[62] N. Villeneuve. Command and control in the cloud, Oc-
tober 2010. URL http://www.nartv.org/2010/10/22/

command-and-control-in-the-cloud/.

[63] K. Wang and S.J. Stolfo. Anomalous payload-based network intru-
sion detection. In Recent Advances in Intrusion Detection, pages 203–222.
Springer, 2004.

http://dx.doi.org/10.1109/ICDM.2006.165
http://dx.doi.org/10.1109/ICDM.2006.165
http://www.nartv.org/2010/10/22/command-and-control-in-the-cloud/
http://www.nartv.org/2010/10/22/command-and-control-in-the-cloud/

bibliography 79

[64] K. Wang, J. Parekh, and S. Stolfo. Anagram: A content anomaly detector
resistant to mimicry attack. In Recent Advances in Intrusion Detection,
pages 226–248. Springer, 2006.

[65] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda. Au-
tomatically generating models for botnet detection. Computer Security–
ESORICS 2009, pages 232–249, 2009.

[66] H. Xiong, P. Malhotra, D. Stefan, C. Wu, and D. Yao. User-assisted
host-based detection of outbound malware traffic. In Information and
Communications Security: 11th International Conference, Icics 2009, volume
5927, page 293. Springer-Verlag New York Inc, 2009.

[67] T.F. Yen and M.K. Reiter. Are your hosts trading or plotting? telling
p2p file-sharing and bots apart. In 2010 International Conference on Dis-
tributed Computing Systems, pages 241–252. IEEE, 2010.

[68] T.F. Yen, X. Huang, F. Monrose, and M. Reiter. Browser fingerprinting
from coarse traffic summaries: Techniques and implications. Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 157–175,
2009.

	Abstract
	Contents
	1 Introduction
	1.1 Introduction on malware
	1.1.1 Botnets
	1.1.2 Targeted attacks
	1.1.3 Scope of the malware problem
	1.1.4 Model of operation for bots
	1.1.5 Detection & reaction
	1.1.6 Network traffic generated by bots
	1.1.7 Network protocol usage of bots

	1.2 Problem statement
	1.2.1 Research questions
	1.2.2 Layout of the thesis

	2 Current C&C channel detection methods
	2.1 General overview
	2.2 C&C channel detection techniques
	2.2.1 Blacklisting based
	2.2.2 Signature based
	2.2.3 DNS protocol based
	2.2.4 IRC protocol based
	2.2.5 HTTP protocol based
	2.2.6 Peer to peer protocol based
	2.2.7 Temporal based
	2.2.8 Payload anomaly detection
	2.2.9 Correlation based

	2.3 Discussion
	2.4 Research directions

	3 Protocol introduction
	3.1 HTTP
	3.2 TLS
	3.2.1 Handshake
	3.2.2 Application data transfer
	3.2.3 Observable features

	4 Collecting and analysing C&C traffic
	4.1 Collecting malware traffic
	4.1.1 Collecting malware
	4.1.2 Setting up the lab
	4.1.3 Basic analysis of observed network traffic

	4.2 Encrypting C&C traffic using TLS
	4.2.1 Lab setup
	4.2.2 Limitations of tunnelling
	4.2.3 Data normalization

	4.3 Analysis of traffic datasets
	4.3.1 Legitimate traffic dataset
	4.3.2 Analysis of TLS malware traffic
	4.3.3 Analysis of legitimate TLS traffic
	4.3.4 Analysis of HTTP malware traffic
	4.3.5 Analysis of legitimate HTTP traffic

	4.4 In-depth malware analysis
	4.4.1 Malware source code analysis
	4.4.2 In depth analysis of the samples generating TLS traffic
	4.4.3 Analysis of metasploit reverse_https traffic

	4.5 Summary of malware observations

	5 Proposed C&C channel detection techniques
	5.1 Machine learning-based TLS classification
	5.1.1 Approach
	5.1.2 Details
	5.1.3 Selected machine-learning algorithms

	5.2 Spoofed User-Agent detection
	5.2.1 Approach
	5.2.2 Details

	5.3 2-gram based anomaly detection
	5.3.1 Approach
	5.3.2 Details

	6 Evaluating detection techniques
	6.1 Evaluation method
	6.2 Detecting TLS C&C traffic based on initial request size
	6.2.1 Preparing the data for machine learning
	6.2.2 Testing by using machine learning software
	6.2.3 Detection results
	6.2.4 Possible improvements
	6.2.5 Conclusion

	6.3 Spoofed User-Agent detection
	6.3.1 Building a model of legitimate browsers
	6.3.2 Fingerprint discussion
	6.3.3 Detection results
	6.3.4 Possible improvements
	6.3.5 Conclusion

	6.4 2-gram based anomaly detection
	6.4.1 Training
	6.4.2 Detection results
	6.4.3 Possible improvements
	6.4.4 Conclusion

	7 Conclusion
	7.1 Answering the research sub-questions
	7.2 Answering the research question
	7.3 Future research
	7.3.1 Machine learning-based TLS classification
	7.3.2 Spoofed User-Agent detection
	7.3.3 2-gram based anomaly detection

	A Overview of malware families analysed
	B Browser fingerprints
	Bibliography

