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Abstract 
Sensor networks produce streams of data. These streams may be transformed by 

processing elements. The data in the streams may be organized in data structures. We 

define a framework for describing data structures. The processing elements may 

transform the data structures into new data structures. We define a framework for 

describing the transformation of a data structure. The data structures may be 

annotated. We provide a framework for propagating these annotations when the data 

structure is transformed. We introduce the concept of locality, which is a similarity 

function that quantifies the closeness of elements in a data structure. The locality 

concept is used in the annotation transformation model. Finally, 3 use cases from 

scientific application are used to evaluate the annotation transformation model.
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1 

Introduction 

This chapter gives an introduction to the thesis. We start with a motivation for 

our research. The problem statement and research questions are presented. 

Finally we discuss our approach and the structure of this report. 

1.1 Motivation 

Contemporary sciences, such as environmental research, may involve the use of sensor 

networks. An example of such research is a sensor web deployed in the Antarctic 

[DCJ+03]. In this sensor web multiple sensors are deployed to measure temperature and 

humidity to get a better insight in the atmospherical conditions of Antarctica. 

Sensors usually produce data at certain time intervals. For example, each second a 

temperature value may be generated by the sensor. Instead of storing the data 

generated by the sensors, they may be processed by other elements in the network. 

These elements are called processing elements. In a temperature sensor network, 

processing elements may gather temperature values each second and output the 

average temperature per day. 

The data arrives at the processing elements in streams. This means that the data is 

generated, transported and processed continuously. We say that a data stream consists 

of data elements and these elements are ordered by the time of arrival at the processing 

element. Different processing elements may form a chain where the processing 

elements are connected by streams. A processing element takes a stream as its input, 

performs an operation on the data elements in the stream, and outputs a new stream. A 

chain of processing elements and streams may be described by a workflow chart. Figure 

1.1 shows an example workflow. 
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Figure 1.1: A workflow consisting of three processing elements and two streams 

In this workflow there are three processing elements and two streams. The three 

processing elements are all of a different type. We distinguish processing element types 

according to their input/output behavior [AWK10]: 

� PE1 is of the source type. Sources form the begin points of a workflow. They 

produce data streams but consume no existing data streams. 

� PE3 is of the sink type. Sinks form the endpoints of a workflow. Sinks consume 

data streams but do not produce data streams of their own. 

� PE2 is a transformation element. Processing elements that are in the middle of a 

workflow are called transformations. They produce output streams in a 

predetermined way based on input data streams.  

Transformation elements may perform all kinds of operations: operations that change 

the contents of the elements in the stream, or operations that leave the contents 

unchanged, but change the stream itself, for example by making a selection on the 

elements. It is also possible that multiple streams are consumed  

Sometimes it is necessary to indicate that something is wrong with the data. This can be 

done using annotations: parts of the data are given a specific mark. For example, a 

temperature sensor may be snowed in causing it to observe the temperature of the 

snow, instead of the air. These measurements may not need to look wrong: a 26 degree 

Celsius reading, instead of 24, may be plausible, though in subsequent calculations it 

may cause serious errors. In this case it would be nice if could annotate the data by 

saying for a particular element in the stream that the sensor was snowed in when the 

value was generated. 

But what needs to be done with the annotation when the data element it belongs to 

arrives at a transformation element? We could build the transformation elements in 

such a way that it discards all data that is marked as snowed in. We could also ignore the 

annotation and process the data element as if it wasn’t annotated. A third possibility is 

to have the transformation element transform the annotations as well. But to transform 

the annotations we need to know what kind of annotations we can expect in order to 

know how to handle them. 

It may be very well the case that the person responsible for the development of a 

transformation element may have no control over the development of other processing 

elements. In fact a whole workflow may be constructed of processing elements 

produced by different developers, where the person that constructs the workflow may 
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have no control over the development of any of the processing elements. When data 

streams contain annotations that processing elements do not expect they cannot be 

transformed. Some of these processing elements may not be able to process 

annotations at all. 

In this thesis we present a method where annotations can be transformed in a parallel 

system. We propose definitions that can be used to describe the concept of a 

transformation which then can be used to transform annotations accordingly. We focus 

only on transformations where one element from an input stream is used to produce 

one element in the output stream. These elements may consist themselves of other 

elements. We call those elements data structures. Part of these data structures may be 

annotated instead of the whole structure. We are concerned here with how one data 

structure is transformed into another and how the transformation of the corresponding 

annotations can be done. 

1.2 Problem Statement and Research Questions 

This thesis investigates answers to the following problem: 

PROBLEM STATEMENT How can annotations in a stream processing system be 

propagated? 

To contribute an answer to this problem, we need a way of defining the transformation 

of annotations. To describe the transformation of annotations we need to be able to 

describe how the transformation of a data structure looks like. To describe the 

transformation of a data structures, we need to be able to describe how a data structure 

looks like. This leads us to the following research questions:  

RESEARCH QUESTION 1 How can the description of data structures be formalized? 

This research question will be answered by investigating how a data structure can be 

formally defined; what elementary data structures are; how nested data structures can 

be defined and what the properties are of elementary data structures. 

RESEARCH QUESTION 2 What type of transformations of data structures exist and what 

are their properties? 

This research question will be answered by investigating how the transformation of a 

data structure can be defined; how the algorithm of a transformation can be described; 

what the properties of a transformation are and how its effect can be described. 

With the first group of research questions we investigate what the relation between 

elements in a data structure is. With the second group of research questions we 

investigate the relation between elements in the input and elements in the output of a 
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transformation. With the third group of research questions we investigate what the 

effect from transformations investigated in the second group is on the relations 

investigated in the first group. 

RESEARCH QUESTION 3 How can locality be used to describe the effect of a 

transformation on the relation between elements in a data 

structure? 

This research question will be answered by investigating how locality can be defined; 

how locality can be applied to different data  structures; what the possible effects are of 

a transformation on locality. 

The answers to the first three groups of research questions will be used to investigate 

how the fourth group of research questions can be answered: 

RESEARCH QUESTION 4 How can annotations in a data structure be propagated? 

This research question will be answered by investigating how data in the elementary 

data structures can be annotated; by defining a annotation transformation model and 

applying this model to different scenarios. 

1.3 Approach 

In this part of the chapter we discuss the approach we have taken for our research. We 

have started with collecting examples of real life stream processing setups. Three of 

these examples are used as use cases in this work. We used these examples to find out 

what data structures are used to store the data products in order to construct a list of 

elementary data structures. We have developed a framework of formal definitions that 

can be used to describe data structures. 

We used the elementary data structures to gain insight in possible transformations of 

these data structures. We have investigated how these transformations can be 

described by an algorithm of elementary operations. To describe such an algorithm one 

needs still quite a lot of information. We have proceeded to find methods that are less 

cumbersome. This lead us to analyze properties of the transformations that we could 

use to characterize the transformations and make a distinction between very complex 

and lesser complex transformations. For a specific class of transformations we were able 

to describe the effect by transforming the position of the input elements, which made it 

unnecessary to describe the full algortithm. 

We used the description of the effect of the transformations to develop a model that 

can be used to decide whether annotations in a data structure should be propagated or 

not. This model uses a weighting method, based on the elements that contribute to the 
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output. We’ve found that we could find these contributing elements using the position 

transformation function. 

In some of these scenario’s it was possible to propagate annotations only on the basis of 

the relation between output elements and contributing input elements. In some other 

scenario’s more information was needed. We found that the change in the relation 

between elements in a data structure before and after a transformation is in some 

scenario’s the extra information we need to propagate annotations. This lead us to 

investigate and give a formal definition of the concept of locality. Locality is based on 

distance between elements, so we investigated different methods of measuring distance 

in a data structure. 

Lastly we wanted to verify whether our model of data structures, transformations, the 

concept of locality and the methods of propagating annotations would really work when 

applied to real world, non-trivial cases. For this part we have selected examples from the 

work flows that we analyzed in the very beginning and worked them out into proper use 

cases. 

1.4 Structure of the Report 

In this chapter we introduce the results of our work and in this part we will describe an 

outline of the rest of the thesis. The structure of this report is mainly related to the 

research questions, as each group of research questions is addressed in the same 

chapter.  

� In CHAPTER 2 we present an overview of related work. We describe related work 

in the fields of provenance, data quality and stream processing. 

� CHAPTER 3 is the first chapter that addresses research questions. These are 

RESEARCH QUESTION 1 and its sub questions. We describe what a data structure is 

and what the elementary data structures are. We introduce formal definitions 

that can be used to describe specific instances of elementary data structures 

and which can be extended to describe more specialized data structures. Finally, 

a classification model is presented that distinguishes between the different data 

structures. This classification is based on properties that make one type of 

elementary data structure different from another. 

� We describe how data structures can be transformed in CHAPTER 4. We start with 

a transformation model that we use to investigate five properties of 

transformations. We then show how any transformation can be constructed 

using elementary operations. Finally we show how in some scenarios the 

relation between output elements and their contributing input elements can be 
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described using a formula based on the position of the elements. This chapter 

addresses RESEARCH QUESTION 2 and its sub questions. 

� In CHAPTER 5 we address RESEARCH QUESTION 3 and its sub questions. We 

investigate how the relation between elements in a data structure changes over 

a transformation. Especially we investigate how a property called locality 

changes. We introduce a definition of locality, which is based on the distance 

between elements. We show how different distance measurements can be 

applied to different data structures. Finally we present four scenarios in which 

the locality between elements may be affected by a transformation. 

� The final chapter that addresses research questions is CHAPTER 6 and addresses 

RESEARCH QUESTION 4 and its sub questions. First, we show for each elementary 

data structure how annotations at different levels can be made. Second, we 

present a model for propagating annotations and finally we show five scenarios 

where we apply the model with different parameters. 

� The chapters that address the research questions provide many definitions that 

can be used to describe data structures and transformations and which can be 

used to propagate annotations in a data stream system. In each corresponding 

chapter we have given trivial examples to show how a definition can be applied. 

In CHAPTER 7 we test our definitions on three non-trivial uses cases as a 

verification of our work. 

� Finally we will present our conclusions, discuss them and describe what future 

work could be done in CHAPTER 8. 



 

 

2 

Related Work 

In this chapter we discuss the literature that is related to our work. Most of the 

papers deal with provenance. Provenance describes the origin of data and 

includes descriptions of the transformations in a work flow. In this thesis we 

focus on the propagation of annotations. Because we use descriptions of 

transformations for the propagation of annotations, we investigate how data 

provenance approaches deal with this topic. In subchapter 2.1 we review 

provenance in static databases and in subchapter 2.2 we review provenance 

approaches in streaming environments. Annotations can be used to assess the 

quality of data. In subchapter 2.3 we review papers about data quality in 

streams. Finally we present our conclusions about in what extent the related 

work fits our own research. 

2.1 Provenance in Static Databases 

Buneman et al. were one of the first to use the notion of provenance in an information 

processing context. In their paper they introduce two notions of data provenance: 

where- and why-provenance [BKT01]. 

When performing a query, a set of input tuples is used to generate a set of output 

tuples. In order to reproduce the output set, one needs the query and the input set. The 

set of input tuples is referred to as the why-provenance. When creating a view on a 

database, a new set of tuples is generated. When one wants a change in the view to also 

update the original data, one needs to know where this element in the original data is 

located. This is what Buneman et al. refer to as where-provenance. 

The term data lineage shares a great deal of overlap with that of data provenance. The 

TRIO project [Wid08] is developing a DBMS that focuses on two topics: uncertainty and 

lineage of data. The lineage is essentially what Buneman et al. call why-provenance. The 
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TRIO-DBMS is able to generate the set of input tuples that contributed to the output set 

of a given query. This is also called query-inversion. However, it needs the original input 

data for this, which makes the method inapplicable for streaming contexts, where data 

might not be persistent. 

2.2 Provenance in Streaming Environments 

Both Buneman et al. and the Trio-project focus on the origins of data in static databases. 

Later the focus shifted towards scientific workflows, some of them using web-services as 

components of the workflow. 

[SM03] propose a method for recording and reasoning over data provenance in web and 

grid services. They focus on a workflow enactment using web services. In these setups, 

the provenance information describes which services have been used, what kind of data 

has been passed between those services and what results have been generated by the 

services. They created a service-oriented architecture, where they use a specific web 

service for the recording and querying data provenance. 

Any time a web service in the workflow is invoked it also contacts the provenance 

service, and submits a provenance record. This way it builds a trace of the services that 

are invoked. Using the provenance records, a user can verify whether a certain web 

service will produce the same output given a specific input. It cannot perform a 

complete workflow re-enactment however, as the provenance service does not have an 

understanding of the workflow script. 

Zhao et al. explore a more abstract notion of provenance information for workflows 

[ZWF06]. In their view provenance incorporates two parts: “all the aspects of the 

procedure or workflow used to create a data object (prospective provenance, or 

‘recipe’) as well as information about the runtime environment in which a procedure 

was executed and the resources used in its invocation (retrospective provenance).” 

The prospective provenance is all that is needed to produce or reproduce a data object 

and can be used to track its derivation. A workflow consists of a set of calls to 

procedures. A workflow together with the input data can be used to (re)produce output 

data. A call specifies the values of the arguments that are passed to a procedure. 

Zhao et al. distinguish between a call and an invocation, in that an invocation is a call at 

a particular moment in time. Any invocation of a call to a procedure on a given data set 

would result in the same output set. Therefore the provenance on the invocation is 

retrospective. It isn’t needed to be able to reproduce the output set, but it does describe 

the circumstances under which the output set was created.  

During the years different architectures and systems have been proposed for recording 

and reasoning over data provenance. Simmhan et al. give an overview of data 
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provenance techniques that were used in e-science projects around 2005 [SPG05]. They 

define a taxonomy, which can be used for surveying different provenance models 

(Figure 2.2.1). 

 

Figure 2.2.1: Provenance Taxonomy, adapted from [SPG05] 

 

Ledlie et al. discuss the problem of storing provenance-aware sensor data [LN+05]. 

Within the taxonomy model of Figure 2.2.1, they focus on provenance at the data-level. 

They identify two levels of indexing the data in a streaming context: for each tuple or for 

sets of tuples. This can be fit to the two granularity levels, coarse and fine grained, of the 

taxonomy model. Where the taxonomy model defines two aspects of provenance 

storage, Ledlie et al. define six criteria to evaluate provenance index and query 

architectures. Two of them are similar to two concepts defined in the taxonomy of 

[SPG05]. Both define the concept of scalability. Ledlie et al. define resource consumption 

which is similar to overhead in the taxonomy. In addition four more criteria are 

provided: reliability, query result quality, usability and speed.  

The paper of Ledlie et al. concludes by proposing different models for storage. They 

distinguish between centralized and decentralized systems. Because query processing is 

becoming increasingly more distributed, a centralized option is not always possible. 

However, decentralized solutions may give problems when the hosts aren’t stable 

[LN+05]. 

Within scientific workflows Simmhan et al. identify a specific class of workflows called 

data-driven workflows [SPG08].  In data driven workflows, data products are first-class 

parameters to services that consume and transform the input to generate derived 

products. They propose a framework called Karma2 for recording not only data 

provenance on the processes but also on the data products themselves. In their 

approach they use an abstract notion of a workflow, as to be independent from models 

used. 
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Blount et al. argue that the annotation model, where each data item is annotated with 

corresponding data provenance, is unsuitable for streaming environments, because “it 

fails to exploit the dependency characteristics of data items in streams and causes 

unnecessary overhead” [BD+07]. They discuss the distinctive features of the provenance 

problem for stream-oriented middleware systems and introduce their own TVC-model. 

The proposed TVC model addresses three characteristics: 

� The high data rates of streams results in high data volumes if collected. 

Annotating each data element will increase this burden, and is not efficient from 

a storage perspective. 

� Processing the streams for provenance must be computationally efficient as not 

to slow down the system’s throughput. 

� Most transformations by processing elements output data based on input values 

accumulated in a fixed time window. They are therefore to be considered 

stateful as the output depends on a fixed set of past input elements. 

Lim et al. use streaming data based on provenance to assess the trust scores of stream 

sources [LMB09]. Two types of provenance are introduced: physical and logical 

provenance. Physical provenance is used to show where the item was produced and 

how it was delivered to the server. This kind of provenance is used to compute trust 

scores. Logical provenance represents the semantic meaning in the context of a given 

application.  

They address different challenges for using and delivering data provenance. The relevant 

challenges are summarized in the following the questions: 

� How can the data provenance of more complex applications be represented? 

� How can provenance data from different sources be combined? 

� How can variable and fixed data provenance be combined? 

� How can data provenance be used to improve the data quality? 

� How can the size of provenance information be minimized, to improve efficient 

delivery? 

� How can it be ensured that provenance information is safe from malicious 

attacks? 

For a few of these questions they give hints for solutions, but essentially they’re left as 

open questions. 

The Tupelo semantic context management system is a concrete attempt to build a 

server that can be used to register provenance information using semantic web 

technologies [FG+09]. The server has an API that can be used by processing elements in 

a workflow to register provenance information. Using ontologies the semantics of 

provenance information can be described. It supports different protocols so the Tupelo 

system can be embedded in existing software packages. 



Chapter 2. Related Work  11 

 

 

With different research groups investigating different aspects of data provenance, the 

need for standardization has risen. This has been discussed during sessions at 

conferences on data provenance and ultimately led to the Open Provenance Model 

[MF+08]. To discuss the potential model, a series of workshops have been organized. For 

each of these workshops a Provenance Challenge was defined. At the time of writing 

there have been four Provenance Challenges [Pcw11]. Each challenge consisted of a case 

that could be used by participants to prepare for the workshop, where each other’s 

results would be discussed and compared. 

 The first provenance challenge was a case that was used to investigate and discuss the 

capabilities of different provenance systems and the expressiveness of their provenance 

representations. It focused on the following three details: 

• The representations that systems use to document details of processes that 

have occurred. 

• The capabilities of each system in answering provenance-related queries. 

• What each system considers to be within scope of the topic of provenance 

(regardless of whether the system can yet achieve all problems in that scope). 

The second challenge was a case that has been used to investigate and discuss the way 

how provenance information could be exchanged by different systems. The same case 

as in the first challenge was used. This time participants were to query over data 

provenance generated by other teams, as if it were generated by their own system. In 

particular, two questions were tried to be answered: 

• Understand where data in one model is translatable to or has no parallel in 

another model. 

• Understand how the provenance of data can be traced across multiple systems, 

so adding value to all those systems. 

These first two provenance challenges led to the specification of the Open Provenance 

Model. Version 1.0 was proposed and after a workshop where it was discussed, a 

revised version 1.01 was published. The third provenance challenge was mainly to 

identify weaknesses and strengths of the specification, to determine how well it can 

represent a variety of technologies (not just scientific workflows, but also databases, 

etc). Many proposals were made that ultimately led to version 1.1 of the open 

provenance model [Opm09]. Finally the activities of the planned fourth challenge were 

merged with activities of the World Wide Web Consortium Provenance Incubator 

Group[Pig11] culminating in the W3C Provenance Working Group [Pwg11] 
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2.3 Data Quality 

When it comes to the streaming environment, most research focuses on one particular 

application of data provenance: assessing the quality of the data. Bizdikian et al. propose 

a framework for assessing the Quality of Information in sensor networks. They define 

Quality of Information as:  

The collective effect of information characteristics (or attributes) that determine the 

degree by which the information is (or perceived to be) fit-to-use for a purpose. 

[BD+09]  

The latter part ‘fit-to-use for a purpose’ is different from the concept of data 

provenance. In addition to data provenance this definition of Quality of Information 

takes into account what an end-user has meant to do with the information. Put 

differently, Quality of Information represents characteristics of both the producer as 

well as the consumer. A model with six dimensions, called the 5WH framework is used 

as metric to describe the quality.  

These dimensions are why, when, where, what, who and how. The why-dimension is 

specific for the application domain, as it represents the purpose. When and where 

represent temporal and spatial dimensions, and are specific to both the consumer and 

the producer. Finally, who and how are specific for the provider domain, as they 

represent the sensors and other providers of data. The different dimensions can be used 

to perform match-making between sensors and applications. 

Klein et al. [KL09] describe in their paper how data quality of streams can be managed. 

They use five dimensions to define the quality of the data: accuracy, confidence, 

completeness, data volume and timeliness. Besides giving a definition of quality they 

also give a formal description of the impact of certain operators on the quality of data, 

such as joins, selections and aggregations. These concepts of data quality can be used 

when generating provenance information. 
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2.4 Conclusion 

Most of the literature that we have reviewed focuses on data provenance. Provenance is 

mainly concerned with the origins of the data. To know where the data came from 

concepts are described that can be used to model the workflow that produced the data. 

Some of these research papers presented models to describe how a workflow works on 

a global level. These approaches do not provide the option of specifying a 

transformation in detail. For example it is possible to describe that a processing element 

has two input streams, joins them and produces one output stream. In these models it is 

not possible however, to describe exactly how the data from these streams are joined.  

Other research papers presented a more detailed approach, where a web service could 

be invoked by processing elements. We are looking for a detailed approach where 

transformations can be described in detail without having access to the development of 

the processing elements. This rules out the option of invoking a web service by the 

processing element. 

Provenance is sometimes used to assess the quality of the data in the streams. In this 

thesis we focus on annotations which also can be used to measure quality of the data. 

Although data quality is a very generic concept, some of the papers reviewed in this 

chapters had very specific applications. They are more specific than the approach of our 

research allows. Where they mainly deal with what to do with the annotations we focus 

on how to propagate the annotations, whatever annotations they may be. 

 





 

 

3 

Classification of Data Structures 

In this chapter we present a formal model that can be used to describe data 

structures. First we give a definition of a generic data structure. We present a 

list of elementary data structures and show how they can be constructed using 

the definition of a generic data structure. These data structures all have 

properties that make them different from other data structures. We address 

these properties and show how they are specific to the corresponding data 

structures. We use these properties in a classification model which we present 

at the end of the chapter. The definitions from this chapter are used in the next 

chapter to model the transformation of data structures.  

The research question that we answer in this chapter is: 

RESEARCH QUESTION 1  

How can the description of data structures be formalized? 

3.1 Definition of a Data Structure 

A data structure is an organization of information. The information is divided in data 

items, and the method of organizing these data items makes up the structure. We call 

these data items elements. A group of elements is called a collection. A data structure 

then consists of a collection of elements and the relation between those elements. First 

we introduce a formalization to represent a generic data structure. In Chapter 3.2 we 

show how the formal definition of a generic data structure can be used to represent six 

different types of elementary data structures.  
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DEFINITION 3.1  A unique element in a data structure is denoted ��. Here � denotes an 

element of a generic data structure and � is a unique natural number. When referred to 

an element of a specific type of data structure, a different alphabetic character than � 

may be used.  

Within each data structure these elements are grouped into a collection. We call the 

underlying collection of a data structure its base set. The base set has the same form for 

each type of data structure. 

DEFINITION 3.2  The underlying collection of a data structure is called the base set 

and is represented by ����	. 

The base set forms the collection of the elements in the data structure. A data structure 

may include a relation to organize the elements. Such a relation may 

be specific to each type of data structure. The relation must have the 

base set as its domain, co-domain or both. When the relation has the 

base set as both its domain and co-domain it is called a binary 

relation on ����	.  

In Chapter 3.2 we will consider six elementary data structures in detail, but we present 

here already an example of a specific instance to illustrate the application of the 

definition of a generic data structure. One of these elementary data structures is the 

graph.  

EXAMPLE 3.1 shows such a relation. In the other scenario elements from the base set are 

related to elements from another set or vice versa. Such a relation occurs in a vector, as 

we will see in Chapter 3.2.2. 

DEFINITION 3.3  A data structure may include a relation. The set of relations among 

the elements make up the structure. This set of relations is 

represented by 
. 

In Chapter 3.2 we will consider six elementary data structures in detail, but we present 

here already an example of a specific instance to illustrate the application of the 

definition of a generic data structure. One of these elementary data structures is the 

graph.  

EXAMPLE 3.1 We consider the following graph: 

 

This graph consists of three nodes and three 

edges. The nodes form the elements, and we give each node a 

unique number. So here ����	 = {�
, ��, ��}. The relation of this data 

structure is formed by the edges between the nodes: 
 ={��
, ���, ���, ���, ���, �
�}. 
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Any element can have different properties. The most common property of an element is 

its value, and these values are the actual data. Multiple elements may have the same 

value. In those cases it is not possible to distinguish between two elements only on the 

basis of their values. For this reason we have introduced Definition 3.1 to identify a 

unique element. We define a function that maps each element to a value. The elements 

are members of the base set and the values are members of the value set. The value 

function, which is denoted by the � symbol, maps members of the base set to members 

of the value set. 

DEFINITION 3.4  The value function maps each element to a value and is denoted �: ����	 → �����	, where �����	 is the value set. 

EXAMPLE 3.2 We use the graph from EXAMPLE 3.2. The value set for this graph is 

given by �����	 = {1,2} and the value function is given by � ={��
, 1�, ���, 2�, ���, 1�}. 

We combine these definitions to give a formal definition of a complete data structure. 

DEFINITION 3.5  A generic data structure is represented by � = �����	, 
, �� where 

the tuple �����	, 
� forms the structure part and the function � the 

data part. To denote a specific type of data structure a non-italic 

upper case alphabetic character is used instead of �. 

The definitions from this part of the chapter can be used to describe a complete 

instance of a data structure. Instead of using mathematical symbols it is also possible to 

describe this visually using what we call a data structure diagram, or DS-diagram.  

DEFINITION 3.6 A data structure diagram, or DS-diagram, is a visual description of a 

data structure. It consists of elements, values and arrows that relate 

elements to each other and elements to values. 

• An element is represented by a circle:  

• A value is represented by a square:  

• An element that is related to another element or to a value is 

represented by an arrow:  

EXAMPLE 3.3 The graph from EXAMPLE 3.1 can be visually described using a data 

structure diagram. Figure 3.1a shows the DS-diagram for this graph. 

Figure 3.1b shows how the base set consists of elements and the 

value set of values. The relation that relates elements to elements 

and the value function that relates elements to values are depicted in 

Figure 3.1c. 

e1

1
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FIGURE 3.1a:  

DS-diagram 

 
FIGURE 3.1b: base set 

and value set 

 
FIGURE 3.1c: relation 

and value function 

 

3.2 Elementary data structures  

In this part of the chapter we present a list of six elementary data structures. Although 

there are many different types of data structures, we need a limited list of data 

structures that are very different from each other. The list is based on examples of how 

data is organized in programming languages and scientific applications. Java is an object-

oriented programming language, and provides many classes to organize data. Although 

many of these classes have very special characteristics, most are based on arrays, lists 

and trees [Jav11]. Many scientific workflows involve the use of other data structures 

than available in programming languages. Other data structures that are used are sets, 

vectors, matrices, tables, images and graphs [Sci11, DCJ+03, BDN+07].  

Some of these data structures are quite similar, and in some cases they are even the 

same, just bearing different names. For example a vector and a list are essentially the 

same. In other cases a data structure can be formed using a nesting of other data 

structures. Finally we have chosen a list of six elementary data structures. We aim to 

cover a wide range of very different data structures. The six elementary data structures 

are: set, vector, matrix, array, graph and tree. 

Although images and tables are often used, we do not consider them elementary, as we 

will show in Chapter 3.3 that they can be represented using nestings of the data 

structures that are on the list of elementary data structures. 

We use DEFINITION 3.1 - DEFINITION 3.6 to construct new definitions for each type of 

elementary data structure. The purpose of these definitions is to create building blocks 

out of which other data structure can be constructed. This can be done by nesting two 

or more elementary data structures or by extending the definition of an elementary 

data structure.  
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3.2.1 Set 

Giving an exact definition of a set is rather difficult, but in a more intuitive way we say 

that a set is a well-defined collection of objects where the objects are called elements 

and are said to be members of the set [Gri98]. Well-defined in this case means that for 

all elements with certainty it can be said whether or not the element is a member of the 

set. Sets are basically collections without a structure, this means that the only operation 

on an element with regard to a set is to test whether it is a member of that set or not. 

An example of a set using mathematical notation is {1,2,3}. In a set an element must be 

unique and can therefore occur only once, meaning that {1,2,3,3} = {1,2,3}. In these 

cases there is no difference between an element and the value. The elements are 

natural numbers and these natural numbers are both used as a means of identifying an 

element as well was given value to that element, i.e. an element is its value. But with 

DEFINITION 3.4 we have separated the identification of an element and its value with a 

value function. This also applies to sets when considered as a data structure. 

The general definition of a data structure includes a relation. Since a set has no real 

structure we define the relation as an empty set. Elements of a set have no specific 

characteristics, so we use DEFINITION 3.1 to denote elements of a set. 

DEFINITION 3.7  A set data structure S is defined as S = �����	, 
, �� = �{�
, . . , �"}, ∅, �� where $ = %����	%. 
3.2.2 Vector 

Lay defines a vector as a list of numbers [LAY03]. The notation used is & = '(
 (� ⋯ ("* where $ is the size of the vector. Here (� is the element ( at 

position � and 1 ≤ � ≤ $. An example of a vector using this notation is , = '9 4 9* 
where /
 = 9; /� = 4; /� = 9. Another way of modeling a vector is by defining a 

position set function that maps a value to a set of positions [JGT01]: 2: 3 → P�ℕ�. Here 3 is the set of values and P�ℕ� is the powerset of the natural numbers. The position set 

function maps one value to a set of positions, because the same value can occur at 

multiple positions. For the vector , the position function has the values 2�9� = {1,3} 

and 2�4� = {2}. 

Both methods have their limitations. The first method defines the position of an 

element in an implicit way: the position is determined by the order of the elements in 

the vector and denoted using a subscript.  The second method provides a more explicit 

way to denote the position, but there’s no possibility to distinguish between elements 

having the same value. We need a definition for a vector data structure that is 

consistent with the definition of a generic data structure. We need a way of 

distinguishing between elements with the same value and an explicit way of denoting 

the position of an element. 

We define an element of a vector data structure using DEFINITION 3.1: 
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DEFINITION 3.8  /� represents a unique element of a vector data structure of size 6 

where 1 ≤ � ≤ 6 

The subscript � only refers to unique elements and not the position. We need a 

definition that specifies the position in an explicit way. DEFINITION 3.3 specifies that 

elements in a data structure may be organized by a relation. We define a function to 

represent the relation based on the idea of the position set function. We call this the 

element function of a vector, or vector function, and it can be used to retrieve an 

element at a given position. The element function relates an index set, which we denote ��"7	8 in general, to the base set. 

DEFINITION 3.9-I  The element function of a vector, or vector function, is a function 

that relates an index set to the base set. The vector function is 

denoted 29 and is defined as the bijective function 29: ℕ: → ����	 

where ℕ: is the index set and ℕ: = {1,2, … , 6}. 

The function 29 can be used to find out which element is located at a certain position in 

the vector. In some cases we might want to know the reverse: at what position is a 

certain element located in the vector? Because 29 is bijective, we can create its inverse 

function, which we call the inverse vector function or the position function of a vector: 

DEFINITION 3.9-II  The vector function 29 can be inverted and is defined as 29<
: ����	 → ℕ: where ℕ: = {1,2, … , 6}. 

We use DEFINITION 3.8 and DEFINITION 3.9 to give a definition of a vector. The definition of 

the value function is the same as for the generic data structure. 

DEFINITION 3.10  A vector V of size $ is defined as V = �����	, 
, �� = �{/
, … , /"}, 29 , �� 

In the beginning of this chapter we have used to model a data structure as a DS-

Diagram. The relation in a vector relates index numbers to elements. We extend 

DEFINITION 3.6 here to include a symbol for an index. 

DEFINITION 3.11 An index in a DS-diagram is represented by a hexagon:  

EXAMPLE 3.4 We consider the vector '1 2 1*. Here ����	 = {/
, /�, /�}, 
 = {�1, /
�, �2, /��, �3, /��} and � = {�/
, 1�, �/�, 2�, �/�, 1�}. We 

use DEFINITION 3.6 and DEFINITION 3.11 to create the DS-diagram for 

the. Figure 3.2a displays the DS-diagram. Figure 3.2b displays the 

index set, base set and value set. Figure 3.2c displays the relation and 

value function. 
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Figure 3.2a: DS-Diagram 

 

 
Figure 3.2b: index set, base 

set and value set 

 
Figure 3.2c: relation and 

value function 

 

3.2.3 Matrix 

In linear algebra, an 6 × $ matrix is a rectangular array of 6$ numbers arranged in 6 

rows and $ columns [Gri98, p.A-11]. Such a matrix is denoted by ? = �@�A�:×" where 1 ≤ � ≤ 6 and 1 ≤ B ≤ $. The number @�A  is called the ��, B�-entry. The matrix A can be 

visually represented as follows [Lay03, p.107]:  
? =

CD
DD
E @
,
 ⋯ @
,A ⋯ @
,"⋮ ⋮ ⋮@�,
 @�,A @�,"⋮ ⋮ ⋮@:,
 ⋯ @:,A ⋯ @:,"GH

HH
I 

For example: 

J = �K�,A��×� = L1 21 63 1N 

Here J is a 3 × 2 matrix where @
,� = 2 and @�,� = 6. When we consider a matrix as a 

data structure, these definitions are too limited. The mathematical definition limits 

entries to numbers and the position is explicated using a subscript. When considering a 

matrix as a data structure, we want to separate the value from the element and model 

the position using a function. Therefore we redefine an element of a matrix to be no 

more than a unique element. 

DEFINITION 3.12  6� represents a unique element of an 6 × $ matrix where 1 ≤ � ≤ 6 ∙ $ 

Analogously to the vector we can define a matrix function that relates a tuple of two 

natural numbers to an element. This function can then be used to find out which 

element is located at position ��, B�. 

DEFINITION 3.13-I  The matrix function is denoted 2P and is defined as the bijective 

function 2P: ℕ: × ℕ" → ����	 where ℕ: = {1,2, … , m} and ℕ" = {1,2, … $}. 
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The matrix function is bijective and it be inverted to retrieve the position at which a 

given element is located. 

DEFINITION 3.13-II  The matrix function 2P can be inverted and is defined as  

2P<
: ����	 → ℕ: × ℕ" where ℕ: = {1,2, … , 6} and ℕ" ={1,2, … $}. 

We can now give a definition of a matrix that complies with the definition of the 

abstract data structure. 

DEFINITION 3.14  A matrix M of size 6 × $ is defined as  

M = �����	, 
, �� = �{�
, … , �:∙"}, 2P , ��. 

EXAMPLE 3.5 We consider the matrix S4 31 2T which is represented by M =�{6
, 6�, 6�, 6U}, {�1,1, 6
�, �1,2, 6��, �2,1, 6��, �2,2, 6U�},{�6
, 4�, �6�, 3�, �6�, 1�, �6U, 2�}� 

3.2.4 Array  

An array is a higher dimensional generalization of the vector and matrix concepts. A 

vector is a one-dimensional array and a matrix is a two-dimensional array. Although 

vectors and matrixes are arrays as well, in this case we emphasize with the term “array” 

the higher dimensionality. Specific arrays have a certain dimension and each dimension 

has a boundary. The size of an array is the product of the boundaries of its dimensions. 

DEFINITION 3.15  The size of an array is the product of the boundaries of its 

dimensions. The number of dimensions of an array is V ∈ ℕ where V > 2. The size of an array is then given by  

X = Y 6�
7

�Z
  

where 6� is the boundary of the �[\  dimension. 

Using the definition of the dimension and the size of an array we can specify how unique 

elements of an array can be defined.  

DEFINITION 3.16  @�  represents a unique element of an array of size X where 1 ≤ � ≤ X. 

We can generalize the vector and matrix function and its inverse and use that to give a 

definition of an array. 
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DEFINITION 3.17-I  The array function 2] is defined as 

2]: ^Y ℕ:�
7

�Z
 _ → ����	 

where ℕ:� = {1,2, … , 6�} and 6� is the boundary of the �[\  dimension.DEFINITION 3.17-

II  The array function 2] can be inverted and is defined as 

2]<
: ����	 → ^Y ℕ:�
7

�Z
 _ 

where ℕ:� = {1,2, … , 6�} and 6� is the boundary of the �[\ dimension. 

 

DEFINITION 3.18  An array of size s is defined by  

A = �����	, 
� = �{@
, … , @�}, 2], �� 

EXAMPLE 3.6 We consider an 3 × 4 × 2 × 1 array. This array has 4 dimensions and 

the boundary of the 3
rd

 dimension is 2. The size is X = 3 ∙ 4 ∙ 2 ∙ 1 =24. The array function is given by: ℕ� × ℕU × ℕ� × ℕ
 → ����	 

which is equal to {1,2,3} × {1,2,3,4} × {1,2} × {1} → ����	. 

3.2.5 Graph 

In the beginning of this chapter we have used the graph as an example to illustrate the 

use of the definitions of a generic data structure. There are different types of graphs and 

in this part of the chapter we address the graph as a data structure in detail. The 

mathematical definition of a graph is given as follows: 

Let a be a finite nonempty set, and let b ⊆ a × a. The pair (V,E) is then called a 

directed graph […] where a is the set of vertices, or nodes, and b is its set of 

(directed) edges or arcs. We write d = �a, b� to denote such a graph. When there 

is no concern about the direction of any edge […], b is a set of unordered pairs of 

elements taken from a, and d is now called an undirected graph. [Gri98, p. 478] 

The difference between directed and undirected graphs are the form of the edges. For 

example: {@, K} is unordered pair and {@, K} = {K, @}; �@, K� is an ordered pair and �@, K� ≠ �K, @�. Figure 3.3 shows an example of an undirected graph and Figure 3.4 an 

example of an directed graph.  
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Figure 3.3: An undirected graph with  f = {g, h, i, j, k, l} mno k= p{g, h}, {h, i}, {h, j}, {i, k}, {j, k}, {k, l}q 

 

 

Figure 3.4: A directed graph with  f = {g, h, i, j, k, l} mno k= {�g, h�, �h, i�, �h, j�, �i, k�, �j, k�, �k, l�} 

 

The mathematical definition of a graph consists of a set of nodes and a set of edges. This 

fits nicely to the definition of a generic data structure.  We use this as the basis to define 

a graph data structure. 

DEFINITION 3.19  An element of a graph is called a vertex and a unique vertex is 

represented by /� and /� ∈ a where ����	 = a 

Now that we have defined the elements as the nodes of a graph, we need to define the 

relation as the set of edges. We give two definitions, one for directed graphs and 

another for undirected graphs. 

DEFINITION 3.20-I  In a directed graph the relation 
 is represented by the edge set b 

where b ⊆ a × a. Elements of b have the form �/�, /A� where /�, /A ∈ a. The relation 
 is asymmetric. 

DEFINITION 3.20-II  In an undirected graph the relation 
 is represented by the edge set b where elements of b have the form {/�, /A} where /� , /A ∈ a. The 

relation R is symmetric. 

The only part of the definition of a generic data structure that is not mentioned in the 

mathematical definition of a graph is the value function. We define this the same way as 

for any other data structure. Now we can give the definition of a graph data structure: 

DEFINITION 3.21  A graph d is represented by G = �����	, 
, �� = �a, b, �� 
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3.2.6 Tree 

An undirected graph is called a tree if it is connected and does not contain any cycles 

[Gri98]. Connected means that there must be a path between all pairs of nodes. A cycle 

is a path from a node that returns back to the node itself without repeating edges. In 

figure 1, B-C-E-D-B forms a cycle and therefore that graph is not a tree. Although a tree 

is a graph, we consider it elementary because in practice it is used in a very different 

way, where it is used to represent a hierarchy. In this sense we speak of parents and 

children, roots and leafs. 

A node can have a child node, which makes this node a parent of the child node. Every 

node can have only one parent, but a node may have more than one child. A node that 

has no parent is called a root node and a node that has no children is called a leaf. Figure 

3.5 shows a tree and the different types of nodes in a tree. 

 

Figure 3.5: A tree 

We consider the tree data structure to be a hierarchical tree and this resembles the 

definition of a directed tree that has a root: 

 If d is a directed graph, then d is called a directed tree if the undirected graph 

associated with d is a tree. When d is a directed tree, d is called a rooted tree 

if there is a unique vertex s, called the root, in d with the in degree of s = �V�s� = 0, and for all other vertices /, the in degree of / = �V�/� = 1 

[Gri98]. 

The in-degree �V�/� defines how many incoming arcs (edges directed towards the node /). Saying that a root node s has an in degree of 0 means that a root has no parent. 

Saying that the other nodes / have an in degree of 1 means that they must have exactly 

one parent. The following two definitions are the conditions for a graph to be tree: 

DEFINITION 3.22  The root of a tree is defined by s = {/ ∈ a|�V�/� = 0} 

DEFINITION 3.23  A tree T is defined by T = �����	, 
, �� = �a, bw , ��. The tree must 

be constructed such that: it contains a root, is connected, and 

contains no loops. 
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3.3 Nested data structures 

In chapter 3.1 we mention that we tables and images are frequently used data 

structures, but that we do not consider them elementary as we can construct these data 

structures by nesting other elementary data structures. In this part of the chapter we 

show how this is done.  First, we give a definition of a nested data structure and use it to 

describe a trivial example of a nested data structure.  Second, we show how table and 

image data structures can be described. 

DEFINITION 3.24  A nested data structure consists of an outer data structure of which 

the elements do not have regular values, but consist of inner data 

structures. A nested data structure may also serve as an inner 

structure, producing multiple nestings. Elements from an inner outer 

structure are given a superscript number to distinguish them from 

elements from the outer structure and elements from other inner 

structures. 

EXAMPLE 3.7 In Chapter 0 we discussed how a set is represented as a data 

structure. It is possible to create a set of sets. We consider the set � = {?, J}. The powerset of � is then a set of sets: P��� =p{?}, {J}, {?, J}q. The set � can be modeled as a data structure 

according to DEFINITION 3.7: S = �{�
, ��}, ∅, {��
, ?�, ���, J�}�. The 

powerset of set � can then be modeled as a nested data structure: 

PS =
x
yyy
z{�
, ��, ��}, ∅,

{|}
|~��
, �{�

}, ∅, {��

, ?�}��,���, �{�
�}, ∅, {��
�, J�}�� ,���, �{�
�, ���}, ∅, {��
�, ?�, ����, J�}���|�

|�
�
���
�

 

This nested data structure consists of one outer structure and three 

inner structures. The superscripts of the elements serve to 

distinguish them from elements from other inner structures. 

In the next two subchapters we show how tables and images can be constructed. 
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3.3.1 Table 

We consider tables as they are used in the context of relational databases. Such a table 

is also called a recordset. A recordset is a set of records, where records are tuples. We 

represent a table as a data structure by using a set (DEFINITION 3.7) as the outer structure 

and vectors (DEFINITION 3.10) as the inner structures. The set consists of elements to 

identify records and the values of these elements are the vectors. The vectors contain 

the values of the fields in the records. 

DEFINITION 3.25  A table T of $ records and � columns is defined as a set according to 

DEFINITION 3.7 with $ elements, where each element represents a 

record and the value of each element is a vector of size � according 

to DEFINITION 3.10. 

EXAMPLE 3.8 We consider the following table of ages and names: 

Name Age 

John 52 

Frank 29 

 

 We represent this table as a data structure: 

T =
x
yyz

{�
, ��},∅,
���
, �{/

, /�
}, {�1, /

�, �2, /�
�}, {�/

, ��ℎ$�, �/�
, 52�}�� ,���, �{/
�, /��}, {�1, /
��, �2, /���}, {�/
�, �����, �/��, 29�}�� ��

��� 

 

3.3.2 Image 

An image is a 2d plane of pixels. In this subchapter we show how an image can be 

represented by a nested data structure. We start with an example to give an idea of how 

images are used in practice. 

EXAMPLE 3.9 We consider a blown up version of a 5x5 pixels image: 

 

 An image is usually stored in a binary format, consisting of a header 

and pixel data. When this image is stored in the BMP format, the file 

read out in hexadecimals is as follows: 
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The header contains information on how to render the image, such 

as the height and width of the image. The bitmap data consists of 

RGB values for each pixel, where RGB stands for red, green and blue. 

An RGB value is a tuple of three numbers, where the numbers 

represent the shades of the three color bands, giving unique colors. 

Because this is a 24-bit image, each pixel is represented by three 

bytes where each byte is used for a band. This gives 2� = 256 

possible values for a band and 256� = 16.777.216 unique different 

colors. In hexadecimals this reads F7 EE E8 for the first pixel. When 

converted to decimals, we get the three numbers 232, 238 and 247. 

We represent an image as data structure by using a nested data structure. The outer 

structure is a matrix (DEFINITION 3.14) where the elements represent pixels. The inner 

structures represent the pixels and are formed by vectors (DEFINITION 3.10) of size 3.  

DEFINITION 3.26  An image I of $ rows and 6 columns is defined as an $ × 6-matrix 

according to DEFINITION 3.14, with $ ∙ 6 elements, where each 

element represents a pixel and the value of each element is a vector 

of size 3 according to DEFINITION 3.10. 

EXAMPLE 3.10 We use the three left-most pixels from the top row of the image from 

EXAMPLE 3.9. A matrix of tuples is given by : '�232,238,247� �232,238,247� �128,0,128�*. 

 An image consisting of these three pixels can be represented as data 

structure: 

� =
x
yyz

{6
, 6�, 6�},{�1,1, 6
�, �1,2, 6��, �1,3, 6��},
��{/

, /�
, /�
}, {�1,1, /

�, �1,2, /�
�, �1,3, /�
�}, {�/

 , 232�, �/�
, 238�, �/�
, 247�}�,�{/
�, /��, /��}, {�1,1, /
��, �1,2, /���, �1,3, /���}, {�/
� , 232�, �/�� , 238�, �/�� , 247�}�,�{/
�, /��, /��}, {�1,1, /
��, �1,2, /���, �1,3, /���}, {�/
� , 128�, �/�� , 0�, �/��, 128�}� ��

��� 
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3.4 Properties of data structures

As we have seen the different elementary structures are constructed in different ways. 

It can be recalled from 

and a set of relations. It is the set of relations that makes elementary structures 

different from each other. We will now show how these differences can be distilled into 

a set of properties that can be used to classify the elementary data structures.

Some properties are consistent for the whole class. These are the properties that 

distinguish one class from another.

3.4.1 Ordering 

As we have seen for vectors, matrixes and arrays the relationship between elements can 

be modeled as a function that maps element to a natural nu

relations at all and graphs and trees have relations between two elements. 

The vector, matrix and array functions are not just for looking up elements. They provide 

a means of arranging the elements. Because one number is larger than t

can say that one element in a vector precedes another.

PROPERTY 1 A data structure 29, 

The following tree shows which data structures are ordered and which are not.
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3.4.2 Dimension 

The three ordered structures differ in one way and that is the amount of natural 

numbers that is needed to identify an element. This is the dimension of a data structure, 

as specified in DEFINITION 3.15

PROPERTY 2 The dimension of a data 

numbers that is needed to identify an element

 

 

 

3.4.3 Relation based 

The main difference between graphs and sets

the elements. Sets are completely free of relations.

PROPERTY 3 A data structure 

 

 

1-
dimensional
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Chapter 3. Classification of Data Structures

The three ordered structures differ in one way and that is the amount of natural 

numbers that is needed to identify an element. This is the dimension of a data structure, 

15. 

The dimension of a data structure is given by the amount of natural 

numbers that is needed to identify an element 

 
 

 

The main difference between graphs and sets is that graphs contain a relation between 

the elements. Sets are completely free of relations. 

A data structure � is relation based if 
 ≠ ∅ 
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The three ordered structures differ in one way and that is the amount of natural 

numbers that is needed to identify an element. This is the dimension of a data structure, 

is given by the amount of natural 

is that graphs contain a relation between 
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3.4.4 Hierarchical relations

The difference between a graph and a tree is that a tree is hierarchical 

not. 

PROPERTY 4 A data structure has the hierarchical property if is directed and 

contains no loops

 

 

3.5 Properties of instances

Some properties such as size are particular for the instance of the data structure. These 

are properties that can be used to distinguish instance within a specific class. 

examples are color depth/palette for an image.

PROPERTY 5 The size of aX���
• The size of an $

amount of elements: 

• The size of an 6
the amount of elements: 

• The size of an array depends on the amou

given  by d integers whose product is equal to the amount of elements: 

Y $�V
�=1 � |����	|

• The size of a set is equal to the amount of elements which is 

• The size of a graph is denoted by the amount of no

amount of elements: 

• The size of a tree is denoted by the amount of nodes which is equal to the 

amount of elements: 
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Hierarchical relations 

The difference between a graph and a tree is that a tree is hierarchical and a graph is 

A data structure has the hierarchical property if is directed and 

contains no loops. 

Properties of instances: Size 

Some properties such as size are particular for the instance of the data structure. These 

hat can be used to distinguish instance within a specific class. 

r depth/palette for an image. 

The size of a data structure is given by the amount of elements: X������ � %����	%  
$ �vector is given by a single integer n that is equal to the 

amount of elements: $ � %����	%. 6 > $ �matrix is given by two integers whose product is equal to 

the amount of elements: 6 > $ � |����	| 
The size of an array depends on the amount of dimensions d. The size is then 

given  by d integers whose product is equal to the amount of elements: 

| 
set is equal to the amount of elements which is |�

The size of a graph is denoted by the amount of nodes which is equal to the 

amount of elements: |a| � %����	% 
The size of a tree is denoted by the amount of nodes which is equal to the 

amount of elements: |a| � %����	% 

Hierarchical

Yes

Tree

No

Graph
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and a graph is 

A data structure has the hierarchical property if is directed and 

 

Some properties such as size are particular for the instance of the data structure. These 

hat can be used to distinguish instance within a specific class. Other 

is given by the amount of elements: 

vector is given by a single integer n that is equal to the 

matrix is given by two integers whose product is equal to 

nt of dimensions d. The size is then 

given  by d integers whose product is equal to the amount of elements:  

���	| 
des which is equal to the 

The size of a tree is denoted by the amount of nodes which is equal to the 
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3.6 Overview 

The following table shows an overview of all the data structures and the

Table 3.1: Overview of elementary data structures and their properties

Structure Ordering 

Vector Ordered 

Matrix Ordered 

Array Ordered 

Set Unordered 

Graph Unordered 

Tree Unordered 

 

Using the properties specified in

classified by property: 
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Dimension Relation-based Hierarchical 

1   

2   

n   

 No  

 Yes No 

 Yes Yes 

the properties specified in subchapter 3.4 the elementary data structures 
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properties: 

 Size 
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%����	% 
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3.7 Conclusion 

In this final part of the chapter we will reflect on the results that try to answer the 

research questions. In this chapter we have addressed the following research question: 

RESEARCH QUESTION 1 How can the description of data structures be formalized? 

First we have given a formal definition of a generic data structure. The key result of this 

formalization is the separation of the elements, their values and the structure. The 

advantage is the bridge that is created between mathematical abstraction and practical 

use in computer science applications. By separating elements from their values we have 

provided a method to distinguish between elements that have the same value. The 

limitation of our model is that we have provided place for only one relation on the 

elements. It may be argued that there are data structures where more than one relation 

on the elements, perhaps even of different type, may be needed. 

We have proceeded by defining a list of elementary data structures: sets, vectors, 

matrixes, arrays, graphs and trees. For each of these data structures we have shown 

how the definitions that we formulated for the generic data structure can be applied. 

The list of elementary data structures is based on practical examples. It could be argued 

that the list should be different. The list could be shorter, for example by arguing that 

vectors and matrixes are also arrays. This way the list could be limited to sets, arrays and 

graphs, with possible even modeling a set as a graph without edges. The result would be 

such a list that is too short to be practicable. It may also be argued that other data 

structures should also be considered elementary. We have chosen not to do so as we 

found that it some data structures were specializations of data structures from our list, 

while others could be modeled as a nestings of our elementary data structures. We have 

shown that it was possible to model tables and images as nestings of sets of vectors and 

matrixes of vectors, respectively. 

Finally we have described four properties to classify the elementary data structures. 

When it is argued that more elementary data structures are needed, possible more 

properties are needed. It may also be possible to use other properties than the current 

ones for the classification. The current four properties are all specific to the relation on 

the set of elements for each data structure and proved sufficient to make a 

classification. 

In the next chapter we will use the results from this chapter to describe how one data 

structure can be transformed into another data structure. 





 

 

4 

Classification of Transformations 

In Chapter 3 we have defined a list of elementary data structures and classified 

them by different properties. In this chapter we will show how these properties 

can be used to describe possible transformations of these structures. We start 

with a transformation model for unary transformations. Next, we show how a 

transformation can be modeled as a series of elementary operations. We 

describe different properties to characterize transformations to define a class 

of transformations, for which an important part of the transformation can be 

described by the transformation of the position of contributing elements. 

Finally, the framework is extended to $-ary transformations. 

The research question that we will answer in this chapter is: 

RESEARCH QUESTION 2  

What type of transformations of data structures exist and what are their 

properties? 

4.1 Transformation model 

In the introduction of this thesis we have seen that processing elements of a workflow 

convert input data streams to output data streams. A data stream is a sequence of 

tuples ordered by a timestamp. Each tuple may be a data structure as defined in Chapter 

3. A processing element consumes tuples to produce new tuples. In the introduction we 

describe that elements in a data structure may annotated. In order to understand how 

the output data structure can be annotated we investigate in this part of the chapter 

how an input data structure is transformed into an output data structure. We focus first 

on unary transformations, where only one input data structure is transformed into an 

output data structure. At the end of the chapter we will address the $-ary 

transformations. 

C
h

a
p
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r 
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We consider first three examples of different types of transformations. 

EXAMPLE 4.1  The vector a � '1,2,3* is transformed into a′ = '3,2,1* by mirroring 

the elements. Here the input vector is defined according to definition 

X as: 

a = �{�/
, /�, /�}, {�1, /
�, �2, /��, �3, /��}, {�/
, 1�, �/�, 2�, �/�, 3�}� 

The output vector is defined as: 

a′ = �{�/
, /�, /�}, {�1, /��, �2, /��, �3, /
�}, {�/
, 1�, �/�, 2�, �/�, 3�}� 

 

EXAMPLE 4.2  The matrix � = �1 23 4� is transformed into the vector a = �37� by 

summing the values in each row. The matrix is defined according to 

definition X as  

� = ^{6
, 6�, 6�, 6U},{�1,1, 6
�, �1,2, 6��, �2,1, 6��, �2,2, 6U�},{�6
, 1�, �6�, 2�, �6�, 3�, �6U, 4�} _ 

The vector is defined according to definition X as: 

a = �{/
, /�}, {�1, /
�, �2, /� �}, {�/
, 3�, �/�, 4�}� 

EXAMPLE 4.3  The matrix � = �1 20 4� is transformed into a graph where a node is 

created if an element of the matrix has a value >0 and an edge 

between two nodes is created when the corresponding elements in 

the matrix are neighbors. Two elements are considered a neighbor 

when they are next to each other or above/below each other. This 

results in the graph G: 

 

The matrix M is defined as: 

� = ^{6
, 6�, 6�, 6U},{�1,1, 6
�, �1,2, 6��, �2,1, 6��, �2,2, 6U�},{�6
, 1�, �6�, 1�, �6�, 0�, �6U, 1�} _ 

And the graph G is defined as: 

d = �{/
, /�, /�}, {�/
, /��, �/�, /��}, {�/
, 1�, �/�, 2�, �/�, 4�}� 
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The above examples show three quite different transformations. We can observe a few 

differences. In EXAMPLE 4.1 the elements are only moved to a new position. The values 

do not change, and no new elements are created. In the other two examples new 

elements are created in the process. In EXAMPLE 4.2 the size of the output vector is 

determined only by the amount of rows in the input matrix. This means that the output 

structure depends only on the input structure. In EXAMPLE 4.3 the size of the output 

graph depends on more than the input structure, as it depends on the amount of 

elements with a value >0. This means that a 2 × 2 matrix can result in a graph of size 0, 

1, 2, 3 or 4. Another difference is that the values of the vector are calculated by 

summing values from the matrix at particular positions. This means that in order to 

produce the values output, both the structure and the values from the input must be 

taken into account. 

In the rest of this chapter we investigate these differences more deeply. We present 

new definitions and properties to characterize transformations. First we start with a 

general definition of a transformation of a data structure. In chapter 3 we gave a 

definition for a general data structure. DEFINITION 3.5 reads:  

A data structure S is represented by � = �����	, 
, �� 

If one data structure is transformed into another, clearly the three components of a data 

structure must be transformed into three new components. We define a transformation 

as the creation of three output components based on three input components. 

DEFINITION 4.1  A transformation of an input data structure into an output data 

structure is defined as �: �����	, 
, �� → �����	� , 
�, ���. 

The statement in DEFINITION 4.1 only specifies that one complete data structure is 

transformed into another complete data structure. It does not specify which parts of the 

data structure are transformed and how they are transformed. For example, only the 

value function may be transformed, while leaving the base-set and the relation 

unchanged. The following definitions can be used to provide more detail on what 

actually changes in a transformation. 

DEFINITION 4.2  When a transformation � changes the base-set ����	  this effect is 

denoted as ��. 

DEFINITION 4.3  When a transformation � changes the relation 
 this effect is 

denoted as ��. 

DEFINITION 4.4  When a transformation � changes the value function � this effect is 

denoted as � . 

The transformation � is then a combination of the three effects �  , �� , ��. 
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DEFINITION 4.5  A transformation � is a combination of three effects  � ⊆ ��  , �� , ���. 

Using Definition 4.2 - Definition 4.4 we state that the following 

conditions must always be true: 

�  ∈ � ⇔ �� ≠ � (1) �� ∈ � ⇔ ����	� ≠ ����	 (2) �� ∈ � ⇔ 
� ≠ 
 (3) 

EXAMPLE 4.4 For each of the three examples from the beginning of this subchapter 

we can formulate the effects of the transformation: 

� EXAMPLE 4.1: � � ���� 

� EXAMPLE 4.2: � � �� , �� , ��� 

� EXAMPLE 4.3: � � �� , �� , ��� 

4.2 Transformation Diagram 

In Chapter 3 we have shown how an instance of a data structure can be represented by 

a data structure diagram, or DS-diagram (DEFINITION 3.6 and DEFINITION 3.11). In this part 

of the chapter we extend the notation of the DS-diagram to visualize instances of 

particular transformations. 

DEFINITION 4.6 A transformation diagram is an extension of the data structure 

diagram (DEFINITION 3.6 and DEFINITION 3.11) and is used to visually 

model a specific instance of a transformation of a data structure. 

Figure 4.1 shows a transformation diagram. On the left hand side the 

input is shown and on the right hand side the output. The arrows 

from left-to-right represent the transformation. When an element, 

index or value is unchanged after the transformation a solid arrow is 

drawn. A dashed arrow represents a change: an element, index or 

value may be directly transformed or contribute in another way to 

the output. 

 

Figure 4.1: A Transformation Diagram 
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In some cases it is possible to describe the complete transformation using the above 

notation. In other cases it may be useful to describe only part of the transformation. 

Figure 4.2 shows the transformation diagram for EXAMPLE 4.2.  

 

 

 

 

 

Figure 4.2: A transformation diagram for Example 4.2 
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4.3 Elementary Operations 

The transformation model from DEFINITION 4.5 only describes what parts of the data 

structure are affected by the transformation, but it does not describe how these parts 

are affected by the transformation. In this part of the chapter we describe how a 

transformation can be described by algorithms that involve the execution of elementary 

operations. We define elementary operations as very small transformations of a data 

structure. It changes only one element, index or value. A complete instance of a 

transformation can then be modeled as a series of elementary operations. A 

transformation may either be a series of elementary operations that operate on the 

input data structure, or the transformation may read the input using an algorithm and 

then invoke elementary operations to fill a new data structure. 

A data structure consists of three parts (DEFINITION 3.5): elements, relations and values. 

This means that the set of elementary operations must include at least operations that 

cause the creation and deletion of relations, elements, and values. For each type of data 

structure these elementary operations are different. We define for each elementary 

data structure one set of elementary operations. There may be other variations possible, 

but that does not matter as it is our aim to show how a complete set of operations can 

be constructed. 

4.3.1 Set 

According to DEFINITION 3.7 a set data structure is defined as S � �����	, 
, �� ����
, . . , �"�, ∅, �� where $ � %����	%. This means that a set is a data structure without a 

relation. The elementary operations only need to cover operations on the elements and 

the values. An element must have a value, so we add an element and a value with one 

operation. When an element is deleted, its value must also be automatically deleted. 

1. �$X�s���¢�6�$�, /@¢(�� � £� : �� ≔ � ∪ ���¢�6�$�, /@¢(����� : ����	� ≔ ����	 ∪ ��¢�6�$�� ¦ 
2. §�¢�����¢�6�$�� � £� : �� ≔ � ∖ p��¢�6�$�, ���¢�6�$���q�� : ����	� ≔ ����	 ∖ ��¢�6�$�� ¦ 

EXAMPLE 4.5  The vector '3 2 1* is transformed into the set {1,2,3}. In this case 

the transformation reads the input and constructs a new data 

structure using the elementary operations. 

// Before: S = �©, ©, ©� a= �{�
, ��, ��}, {�1, �
�, �2, ���, �3, ���}, {��
, 3�, ���, 2�, ���, 1�}� ª�s � = 1. .3 V� 
 �$X�s� �29���, ��29����� 

//After: � = �{�
, ��, ��}, ∅, {��
, 3�, ���, 2�, ���, 1�}� 
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4.3.2 Vector, Matrix and Array 

The difference between a vector and a set is that the elements are indexed by a unique 

integer. For each element there is exactly one index number and each index number 

must refer to exactly one element (DEFINITION 3.9-I). This means that we cannot create or 

delete an element without performing the same operation on the corresponding index. 

Another property of the vector is that the list of index numbers must be consecutive. 

This means that if we want to insert an element at a certain position, some other 

elements must move to new positions. Instead of defining such an operation, we define 

an operation that inserts an element at the end and an operation that swaps two 

elements. These two operations can then be combined to insert an element at a 

specified position. In the same way we define an operation that deletes an element at 

the end. This operation can then be combined with swaps to delete an element at a 

certain position. 

1. �$X�s���¢�6�$�, /@¢(�� � �� : �� ≔ � ∪ ���¢�6�$�, /@¢(�����: ����	� ≔ ����	 ∪ ��¢�6�$����: 
� ≔ 
 ∪ ��|����	| + 1, �¢�6�$��}¦ 

2. §�¢��� = ¬� : �� ≔ � ∖ S�29�|����	|�, ��29�|����	|���T��: ����	� ≔ ����	 ∖ �29�|����	|����: 
� ≔ 
 ∖ p�|����	|, 29�|����	|��q ¦ 
3. �­@®��, B� � £��: 
′ ≔ 
 ∖ p��, 29����, �B, 29�B��q∪ p��, 29�B��, �B, 29����q¦ 

The elementary operations for matrix and array data structures work in the same way as 

the elementary operations for the vector data structure. In these operations, indexes 

are replaced by respectively two-dimensional and higher dimensional indexes and the 

function 29 is replaced by 2P and 2] respectively. 

EXAMPLE 4.6  Let the element v4 with the value 2 be added, and elements at 

position 2 and 3 be swapped in the vector V � ��/
, /�, /��, ��1, /
�, �2, /��, �3, /��}, {�/
, 4�, �/�, 2�, �/�, 6�}�: 

�$X�s��/U, 2� =
{|}
|~ ��: ����	�≔ {/
, /�, /�} ∪ {/U} = {/
, /�, /�, /U};��: 
′≔ {�1, /
�, �2, /��, �3, /��} ∪ {�3 + 1, /U�}= {�1, /
�, �2, /��, �3, /��, �4, /U�}� : ��≔ {�/
, 4�, �/�, 2�, �/�, 6�} ∪ {�/U, 2�}= {�/
, 4�, �/�, 2�, �/�, 6�, �/U, 2�}

¦ 
and 

�­@®�2,3� = £��: 
′ ≔ 
 ∖ p�2, 29�2��, �3, 29�3��q  ∪ p�2, 29�3��, �3, 29�2��q= {�1, /
�, �2, /��, �3, /��} ¦ 
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4.3.3 Graph 

In a graph data structure the elements and the relations are called nodes and edges. In a 

graph, nodes may exist without edges pointing to them. This means that nodes and 

edges can be created and deleted separately from each other. 

Inserting a node is exactly the same as adding an element to a set. 

�$X�s�¯�V��$�V�, /@¢(�� � £� : �� ≔ � ∪ ��$�V�, /@¢(�����: ����	� ≔ ����	 ∪ �$�V�� ¦ 
EXAMPLE 4.7  Let a node with value 4 be added to the following graph: 

 

 �$X�s�¯�V��$U, 4�� £��: ����	� ≔ ����	 ∪ �$U� � �$
, $�, $�, $U�� : �� ≔ � ∪ ��$U, 4�� � ��$
, 1�, �$�, 2�, �$�, 3�, �$U, 4�}¦ 
Deleting a node is a bit more difficult than inserting it. A node may exist without 

relations, but a relation cannot exist without nodes. This gives us two options: deleting a 

node together with all its relations or prohibiting the deletion of a node that has 

relations. We opt for the second, because it is easier to define: 

§�¢���¯�V��$�V��
= £� : �� ≔ � ∖ p�$�V�, ��$�V���q�� : ����	� ≔ ����	 ∖ {$�V�|∄$�V�2 ∙ �$�V�, $�V�2� ∈ 
 ∨ �$�V�2, $�V�� ∈ 
�¦ 

If we want to delete the node with value 2 from the graph in EXAMPLE 4.7 we have a 

problem. There is an edge connected to this node, and this edge must be removed first. 

This is easier than deleting nodes because no checks need to be made. An edge can be 

deleted even if it is connected to a node, because nodes are allowed to exist without 

edges. 

§�¢���bV²��$�V�1, $�V�2� = ³��: 
� ≔ 
 ∖ {�$�V�1, $�V�2�}¦ 
Now it is possible to delete the edges between 1 and 2, and then delete the node with 

value 2 as is shown in EXAMPLE 4.8. 
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EXAMPLE 4.8  Let the edge between nodes 1 and 2, and consequently the node 

with value 2 be deleted from the following graph: 

 

§�¢���bV²��$
, $�� = ³��: 
� ≔ 
 ∖ {�$
, $��} ¦ 
Now that the edge is deleted, it is also possible to delete the node 

with value 2: 

 

§�¢���¯�V��$�� = £� : �� ≔ � ∖ p�$�, ��$���q�� : ����	� ≔ ����	 ∖ {$�} ¦ 
The last operation we need to make the set of elementary operations of a graph 

complete is the addition of an edge. Because an edge cannot be connected to non-

existing nodes, a check must be made first if both nodes of the edge that needs to be 

added really exist. 

�$X�s�bV²��$�V�1, $�V�2� = ³��: 
� ≔ 
 ∪ {�$�V�1, $�V��|$�V�1, $�V�2 ∈ ����	}¦ 
 

EXAMPLE 4.9  Let a new edge between nodes 2 and 3 be added to the following 

graph:  

 

 

�$X�s�bV²��$�, $�� = ³��: 
′≔ 
 ∪ {�$�, $��|$
, $� ∈ ����	�� ��$
, $��, �$
, $��, �$�, $��� ¦ 
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4.3.4 Tree 

In Chapter 3 we have defined a tree as a directed connected graph with a root and 

without cycles. Because of the differences with a graph the elementary operations are 

also different. Each node except the root that is inserted must have a parent. Therefore 

edges and nodes must be created at the same time: 

�$X�s��®@s�$�, $�V�, /@¢(�� � �� : �� ≔ � ∪ ��$�V�, /@¢(�����: ����	� ≔ ����	 ∪ �$�V����: 
� ≔ 
 ∪ ��®@s�$�, $�V���´®@s�$� ∈ ����	� 

When a node with children would be deleted the output tree would be unconnected, 

which is not allowed. In order to keep things simple, we only allow leafs (nodes without 

children) to be deleted. When a leaf is deleted its relation with its parent is also deleted: 

§�¢����$�V��
� �� : �� ≔ � ∖ p�$�V�, ��$�V���q��: ����	� ≔ ����	 ∖ �$�V����: 
� ≔ 
 ∖ �®@s�$�, $�V�|∃®@s�$� ∙ �®@s�$�, $�V�� ∈ 
}´∄$�V�2 ∙ �$�V�, $�V�2� ∈ 
� 

A tree contains a root which is a node without a parent. We cannot use the insert 

operation to create root because that operation needs a parent as a parameter. Deleting 

a root is not possible, because it has children. The delete operation will rightly fail on an 

attempt to delete the root, just as any other node with children. To create a root we 

define a specific operation, which can only be used when the tree is empty: 

¶s�@��
����$�V�, /@¢(�� = �����	 = ∅� ⇒ ���: ����	� ≔ {$�V�}
� ≔ ∅� : �� ≔ {�$�V�, /@¢(��}¦ 
It is also possible to make another node the root. This is effectively done by reversing 

the direction of the arrow between the root and one of its children: 

�­@®
�����¢V
���, $�­
����= ³��: 
� ≔ 
 ∖ {��¢V
���, $�­
����}∪ {�$�­
���, �¢V
����}¸ ��¢V
���, $�­
���� ∈ 
∧ ∄$�V� ∙ �$�V�, �¢V
���� ∈ 
º 
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4.4 Transformation Properties 

In the previous subchapter we have seen that a transformation of a data structure can 

be modeled as a sequence of elementary operations. For any specific instance of a 

transformation this sequence may be different. It is possible to specify an algorithm that 

produces this sequence based on the input data structure, but specifying this algorithm 

is still quite a lot of work, and it comes close to defining the actual algorithm that 

underlies the transformation. We are looking for a method to describe how (a part of) 

the transformation is performed that is less cumbersome. As we have seen from the 

examples in subchapter 4.1 not all transformations are as complex. In this part of the 

chapter we investigate properties of transformations that can be used to characterize 

transformations. We will use these properties to distinguish between transformations 

for we which we can describe how input elements contribute to output elements, and 

transformations for which we cannot. 

4.4.1 Transformation Effect Dependency 

In subchapter 4.1 we state that a transformation is a combination of three effects 

(DEFINITION 4.5). These three effects are denoted � , �� and �� and mean that the 

transformation affects the data, elements and/or structure of the output. Each of these 

effects may depend on different parts of the input structure. For example, the output 

structure in the matrix-to-graph transformation from EXAMPLE 4.3 depends on both the 

input structure and the input data, while the output structure in the matrix-to-vector 

transformation of EXAMPLE 4.2 depends only on the input structure. In this subchapter 

we investigate what the possible dependencies are of the output parts on the input 

parts. 

There are three parts in a data structure: the data part §, the element part b and the 

structure part �. Each output part may depend on zero, one or more of these parts, 

which gives ��»� + ��
� + ���� + ���� � 8 theoretically possible combinations.  

DEFINITION 4.7 We extend DEFINITION 4.2 - DEFINITION 4.4 to denote the dependency of 

an output part on the input. The input is denoted as a combination of 

the characters §, b and � and is used as a superscript in the 

transformation effect. For example, �� � means that the output 

structure depends on the input data and structure. 

With 8 possible dependencies on the input for each effect, and three effects, we have 8 > 8 > 8 � 512 theoretically possible types of transformations. In practice however, 

not all of these variants occur very frequently. Some of them may occur very rarely or 

even not at all. For each effect we list the most common dependency variants and the 

examples in which they occur. In practice the output only depends on combinations of 

the data and structure part. Very rarely are the elements directly involved in a 

transformation. Either they are selected using the structure, for example by their 

position using the inverse matrix function, or by their value. 
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Table 4.1: Dependency of the output data on parts of the input  

Depends 

on 

Symbol Description 

∅ � ∅ 

Data ex-nihilo: The output data is not influenced in anyway by the 

input. The transformation generates the data without any input. For 

example, a transformation may produce values using a random-number 

generator. This variant occurs in processing elements that act as sources 

(See chapter 1 Introduction for the definition of a source). � �   Data-by-data: In this case the values of the output data only depend on 

the values of the input data. See EXAMPLE 4.10. 
 � � Data-by-structure: In this case the input data is not used to produce the 

output data, but only the input structure is used. For example, the edges 

of a graph may be transformed into values of an adjacency matrix. See 

EXAMPLE 4.11. 
, � �  ,�
 Data-by-data&structure: This is a very common variant, where the 

values in the output data depend on both the input structure and the 

input data. See EXAMPLE 4.2. Here all values in a row are summed. To 

produce an output value, elements are retrieved using the inverse matrix 

function and then the value function is used to find the value of the 

elements. 

 

EXAMPLE 4.10  The matrix � � �6 14 3� is transformed into a new matrix by giving all 

the elements a new value using the formula ¼ 6�V 4. The new 

matrix then is: � = �2 10 3�. This transformation does not affect the 

structure or the elements, so � = �  . 

Table 4.2: Dependency of the output structure on parts of the input 

Depends 

on 

Symbol Description 

∅ ��∅ 

Structure ex-nihilo: The output structure does not depend on any part of 

the input. This is the case for example when the output of a 

transformation has a fixed structure. Processing elements that act as 

sources in a workflow create structure ex-nihilo. � ��  Structure-by-data: The output structure depends only on the input data. 

This happens when a graph is created from an adjacency matrix. See 

also the inverse of this transformation in the variant � � and EXAMPLE 

4.11. 
 ��� Structure-by-structure: This is a very common variant when converting 

vectors, matrixes and arrays into vectors, matrixes and arrays. Only the 

position is used to retrieve elements from the input. See EXAMPLE 4.2. 
, � �� � Structure-by-data&structure: This variant occurs when both the position 

and the value of an element are used to determine the output structure. 

In EXAMPLE 4.3 edges are created based on the value of an element and 

its position. 
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EXAMPLE 4.11  A graph may be transformed into an adjacency matrix. Each row and 

column corresponds to a node. When two nodes are connected a 1 is 

marked a the crossing of the corresponding row and column. An 

adjacency matrix can be transformed into a graph again. The 

following graph and adjacency matrix are the same. 

 

L0 1 01 0 10 1 0N 

Table 4.3: Dependency of the output elements on part of the input 

Depends 

on 

Symbol Description 

∅ ��∅ 
Elements ex-nihilo: elements are created without using any parts of the 

input. This variant occurs in processing elements that act as sources. � ��  Element-by-data: A transformation may create new elements or delete 

elements from the base-set. In this case the creation or deletion of 

elements depends only on the value of elements. The matrix-to-graph 

transformation of EXAMPLE 4.3 creates nodes only on the basis of the 

values of the elements in the matrix. 
 ��� Element-by-structure: In this case the creation or deletion of elements 

depends only on the structure. In the matrix-to-vector transformation of 

EXAMPLE 4.2 new elements are created only on the basis of the input 

structure. It does not matter what the values of the elements are, it only 

matters how many rows there are in the matrix. 
, � �� �  Element-by-data&structure: In this case the creation or deletion of 

elements depend both on the value and position of elements from the 

input. 

 

The three transformation effects may share the same input part dependencies. This is 

the case in EXAMPLE 4.2. The transformation produces a vector and creates new elements 

for that vector. The values of the new elements depend on their position in the vector, 

because the value is based on the sum of the values of the elements in the 

corresponding row in the matrix. The transformation must create new elements, new 

values and a new structure all at once. The following example shows that this does not 

always have to be the case. 

EXAMPLE 4.12  Let � be a transformation that causes a 2 × 2 matrix to be 

horizontally flipped and all values negated. �: �1 00 1� → � 0 −1−1 0 �. 

Here all values in the output depend only on the values from the 

input. It doesn’t matter where an element is located; its value simply 

is negated. At the same time it doesn’t matter what the value of an 

element is, it simply is moved to a new position. 
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When the transformation effects share similar input part dependencies, the 

transformation cannot be modeled as serializable sub transformations. The 

transformation effects are called co-dependent. In the case of EXAMPLE 4.12 the 

transformation effects are independent: it does not matter whether we first negate the 

values or flip the structure. 

In most cases when new elements are created, the value function or the relation must 

also change, because they have the base set as their domain or co-domain. This is not 

always true. For example, new nodes without a value and edges may be added to a 

graph. When vectors, matrixes and arrays are involved, at least the relation must 

change, because the function that maps an index number to an element is bijective and 

must therefore be specified for every element. 

4.4.2 Contributing Element Cardinality 

In subchapter 4.1 we describe three examples of transformations. In EXAMPLE 4.2 we see 

that all the elements in a row from the input matrix contribute to one element in the 

output vector. In EXAMPLE 4.3 nodes in the output graph are based on only one 

contributing element from the input matrix.  

DEFINITION 4.8 In a transformation elements from the input may contribute to the 

elements of the output. The contributing element cardinality 

specifies how many elements from the input contribute to elements 

from the output. 

When describing the relations with output elements for an input element, it may be the 

case that an input element contributes to only one output element. When all input 

elements contribute only to one output element, the transformation is called one-to-

one. It is also possible that an input element contributes to more than one output 

element. In this case the transformation is called one-to-many. 

DEFINITION 4.9 A transformation is one-to-one if each input element contributes to 

only one output element. 

EXAMPLE 4.13 Let the transformation � add the values of each element in the 

vector  V � '3 6 9* to its right neighbor (the value of the last element is 

added to the first): V� � '12 9 15*. Each element from the input 

is related to only one element from the output thus � is called one-

to-one. 
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Figure 4.3: Diagram of a one-to-one transformation 

DEFINITION 4.10 A transformation is one-to-many if some or all input elements 

contribute each to more than an output element. 

EXAMPLE 4.14 Let the transformation � multiply the input vector V � �24� with the 

vector '1 0*. Then we get M = V × '1 0* = �2 × 1 2 × 04 × 1 4 × 0� =
�2 04 0�. Here each element of V is used twice and we say that T is 

one-to-many. 

 

Figure 4.4: Diagram of a one-to-many transformation 

Instead of describing to how many output elements an input element contributes it is 

also possible to describe the reverse. In that case we describe how many input elements 

contribute to a certain output element. When each output element is related to only 

one input element we have the same scenario as in DEFINITION 4.9 and the 

transformation is called one-to-one. When an output element is related to more than 

one output element we say that the transformation is many-to-one. 

DEFINITION 4.11  A transformation is many-to-one if more than one input element 

contributes to some or all of the output elements. 
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EXAMPLE 4.15  Let the matrix �1 24 3� be transformed into the vector �37� by 

horizontally summing all the elements in a row. Here each time two 

input elements are used to produce one output element and the 

transformation is many-to-one. 

 

Figure 4.5: A diagram of a many-to-one transformation 

 

It is also possible that a transformation is a combination of the scenario’s described in 

DEFINITION 4.10 and DEFINITION 4.11. We call these transformations many-to-many, 

because an input element may be related to more than one output element and at the 

same time such an output element may be related to more than one input element. 

DEFINITION 4.12  A transformation is many-to-many if some or all input elements 

contribute to more than one output element and at the same time 

more than one input element contributes to some or all of the output 

elements. 

EXAMPLE 4.16  Let the transformation � produce the matrix M� � M� � �@ K½ V�� ��@ > @ + K > ½ @ > K + K > V½ > @ + V > ½ ½ > K + V > V�. Here the element in the left-top 

corner of the matrix M′ is produced using the input elements @, K and ½. At the same time element @ is used to produce three elements in 

the output matrix. Therefore transformation � is many-to-many. 

 

Figure 4.6: A diagram of a many-to-many transformation 
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4.4.3 Contributing Relation Member Cardinality 

For vectors, matrixes and arrays the relation is a bijective function, so there is exactly 

one index number for each element. When a matrix is transformed and we know that 

the one input element contributes to only one output element, we say the 

transformation is one-to-one. Here the index numbers are also transformed each into 

one new index number. 

In a graph a node may be connected to multiple other nodes. A transformation may use 

multiple edges from the input to produce one new edge in the output. For graphs and 

trees it may be the case that one or more members of the relation from the input are 

used to produce members of the relation in the output. 

EXAMPLE 4.17 Let the following tree be transformed into a new tree: 

 

All the white nodes are deleted and the incoming edges and outgoing 

edges are replaced by one edge: �¶, J� +  �J, ? � → �¶, ?�. 

In EXAMPLE 4.17 we see that two edges are needed to produce a new edge. Just as with 

the transformation of elements it is possible that more than one member of the relation 

is needed to produce a new relation. 

DEFINITION 4.13  A transformation may use one or more members of the input relation 

to produce members of the output relation. This called the 

contributing relation member cardinality and can be one-to-one, 

many-to-one, one-to-many and many-to-many. 

4.4.4 Reversibility 

We call a transformation reversible if the original input can be recreated using the 

output. The transformation that performs this operation is called the inverse 

transformation and is denoted by �<
. 

DEFINITION 4.14 A transformation � is reversible if there exists a transformation �<
 

that creates the original input from the output. The inverse 

transformation is defined by �<
: �����	� , 
�, ��� → �����	, 
, �� 

Intuitively a transformation is reversible when there is no loss of information. But 

exactly what information is lost? 

A

B

C

A 

C 
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EXAMPLE 4.18 Let the matrix �1 24 3� be transformed into the vector �37� by 

horizontally summing all the elements in a row. When we would like 

to produce the matrix again using the vector as the input, we do not 

know anymore how to split the value into two separate vlues. This 

information is lost. 

EXAMPLE 4.18 shows that due to loss of information it may become impossible to 

regenerate the original input from the output. It is difficult to formulate exactly what 

information needs to be preserved for a transformation to be reversible. Starting from 

simple transformations moving to more complex transformations we show under what 

conditions certain transformations may be reversible. 

To describe reversible transformations we look to the concept of invertible functions 

from the field of mathematics. A function ª: ? → J is invertible if and only if it is one-to-

one and onto [Gri98, p.255]. One-to-one means that each element of B may be mapped 

to at most one element from A [Gri98, p.225]. Onto means that all the elements of B 

must be mapped to at least one element of A [Gri98, p.230].  

A mathematical function only maps elements to elements. From DEFINITION 4.7 we know 

that the transformation of data structures involves more than mapping input elements 

to output elements. Members of the relations and values may all be involved in the 

transformation and therefore it is not enough to consider the contributing elements to 

describe a reversible transformation. 

Although it is difficult to come with a definition of reversible transformation that covers 

all possible transformations, it is possible to describe this for specific types of 

transformations. It is easier to define reversibility for a transformation that does not 

create new elements, than for a transformation that does. 

When a transformation does not create new elements, we only need to look at �� and � . When these two effects are independent, the transformation � is reversible if �  

and �� are reversible. When a transformation has a data-by-data and structure-by-

structure effect, we only need to show that we can create the original structure from 

the output structure and the original data from the output data. This is the case when 

contributing element cardinality and the contributing relation member cardinality are 

both one-to-one. EXAMPLE 4.19 shows a reversible transformation that only has a 

structure-by-structure effect and EXAMPLE 4.20 shows a reversible transformation that 

only has a data-by-data effect. 
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EXAMPLE 4.19  The elements in the vector V are all shifted one place to the right, 

where the last item is moved to the front: V = '1 2 3* → V� ='3 1 2*. The only thing that changes here is the position of the 

elements. The elements are not changed and neither are their values. 

Because the contributing relation member cardinality is one-to-one, 

the transformation is reversible. 

EXAMPLE 4.20  The values in the vector V are all incremented by one:   V = '1 2 3* → V� = '2 3 4*. The original values can be 

obtained by decreasing all the values by one. 

Even when �  and �� are not independent it may be possible that the whole 

transformation � is reversible. EXAMPLE 4.21 shows a transformation that has co-

dependent effects. Still this transformation is reversible. The data part from the input is 

still encoded as data in the output. The structure of the input is not transformed into 

new structure, but is encoded as values in the output. All the necessary information is 

preserved and the transformation is reversible. 

EXAMPLE 4.21  Let G be a graph where  G = �{@, K, ½}, {�@, K�, �K, ½�}, {�@, 4�, �K, 1�, �½, 3�}  

This graph can be transformed into an adjacency matrix augmented 

with a list of nodes: 

  → L000
100

010 ¾413¦N 

The output matrix is defined as follows: 

� =

x
yyy
yyy
yyz

¿6
, 6�, 6�, @6U, 6À, 6Á, K6Â, 6�, 6Ã, ½ Ä ,

{}
~�1,1, 6
�, �1,2, 6��, �1,3, 6��,�2,1, 6U�, �2,2, 6À�, �2,3, 6Á�,  �3,1, 6

�, �3,2, 6
��, �3,3, 6
��,�1,4, @�, �2,4, K�, �3,4, ½� ��

� ,

{}
~�6
, 0�, �6�, 1�, �6�, 0�,�6U, 0�, �6À, 0�, �6Á, 1�,�6Â, 0�, �6�, 0�, �6Ã, 0�,�@, 4�, �K, 1�, �½, 3� ��

�
�
���
���
���

 

 

4 1 3 
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We can see clearly that all the elements and values from the graph are stored in the 

same way in the matrix. The difference is how the relations are stored. Still there is a 

one-to-one mapping: for each edge in the graph there is a 1 in the matrix. 

In this case it also becomes clear why reversible transformations are different from 

invertible functions. The matrix contains much more elements and relations than the 

graph. There is no mapping from these extra elements to the original input.  

4.4.5 Invariance 

A data structure has three parts and a transformation can affect all three parts 

(DEFINITION 4.5). A transformation does not always affect all three parts. It can be the 

case that only the structure is changed but the data remains intact. The opposite is also 

possible. When either the data or the structure remains unchanged after a 

transformation we call it invariant over the transformation. This can only happen when 

the structure and the data sub transformations are independent and no elements are 

created or deleted. 

DEFINITION 4.15  A transformation where the structure part is invariant over a 

transformation � is called a data-only transformation and is denoted 

by � � �  . Only the value function is changed by the transformation. 

EXAMPLE 4.22  Let the following vector be transformed by multiplying the values of 

all the elements by 2: '2 3* → '3 4*. Here the structure part is 

invariant and �   performs the complete transformation, so � � �  . 

 

Figure 4.7: A data-only transformation 

DEFINITION 4.16  A transformation where the data part is invariant over a 

transformation � is called a structure-only transformation and is 

denoted by � � ���. Only the relation is changed by the 

transformation. 
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EXAMPLE 4.23  Let the elements of a vector be mirrored: '1 2* → '2 1*. The 

elements and the values do not change. Only the relation changes, so 

it is a structure-only transformation. 

 

Figure 4.8: A structure-only transformation 

4.4.6 Data/Structure contribution coherence 

In the matrix-to-vector transformation of EXAMPLE 4.2 the output elements and their 

index numbers are created using contributing elements from the input on the basis of 

their position: for each row of elements in the matrix, an element in the vector is 

created. The values of the output elements are based on the same elements that were 

used to create the structure. This is not always the case as is shown in  

EXAMPLE 4.24  The value of the middle element in the vector a � '1 _ 3* is 

found by interpolating the two outer values to produce the output 

vector a = '1 2 3*. Here each input element contributes to the 

structure of one element in the output, but the two outer elements 

contribute to the value of the middle element in the output. 

DEFINITION 4.17  When other elements from the input are used for the value of an 

output element than for the structure of that element, the 

data/structure contribution is incoherent. 

Figure 4.9 shows the transformation diagram of EXAMPLE 4.24. From the structure point 

of view,  /� is the contributing element of /�� , but from the data point of view, /
 and /� 

are the contributing elements. 
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Figure 4.9: A data/structure incoherent transformation 
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4.5 Structure by structure transformation 

In this part of the chapter we describe how for certain types of transformations the 

input elements that contribute to an output element can be found using a function that 

describes the transformation of the position function. We describe this for a special class 

of transformations called structure-by-structure transformations. 

DEFINITION 4.18  A structure-by-structure transformation is a transformation where 

the output structure depends only on the input structure (DEFINITION 

4.7). It does not matter how the output data is created. Thus a 

transformation � is a structure-by-structure transformation if ��� ∈�. 

In subchapter 4.4.2 we specified that the cardinality of contributing elements could be 

one-to-one, one-to-many, many-to-one and many-to-many (DEFINITION 4.8). This means 

that each input element is related to one or more output elements and vice versa. 

DEFINITION 4.19  The set of input elements that contribute to an output element is ��"'�Æ�[* 
DEFINITION 4.20  The set of output elements to which an input element contributes is �Æ�['��"* 
For vectors, matrixes and arrays it was possible to model the relations between the 

elements as a function (DEFINITIONS 3.9-I, 3.13-I and 3.17-I). This means that if we can 

show how the position of input and output elements relate to each other, we can show 

which input elements correspond to which output elements. 

The method of describing the correspondence between input and output elements 

depends on the contributing element cardinality. For each of these four cases we will 

give a description of how the position formula can be used to describe this 

correspondence. Since vectors and matrixes form a sub class of arrays we use arrays as 

an example to describe a generic method. 

4.5.1 One-to-one 

When the correspondence between input elements and output elements is one-to-one 

we can define the position of an output element as function of the position of the 

contributing input element. The position of an element is given by an index according to 

DEFINITION 3.17-I.The position transformation function is a bijective function that maps 

each index number of the input onto an index number of the output. 
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DEFINITION 4.21  The position of an output element can be expressed as a 

transformation of the position of an input element:  

�Ç: Y ℕ:È
7

�Z
 → Y ℕ"É
7�

AZ
  

where V is the number of dimensions of the input data structure; 6� 
is the boundary of the �[\ dimension; ℕ:È � �1,2, … , 6�}; V� is the 

dimension of the output data structure; $A is the boundary of the B[\ 

dimension and ℕ"É = {1,2, … , $�}. Because this is a one-to-one 

transformation the following equation must be true: 

Y 6�
7

�Z
 = Y $A
7�

AZ
  

The transformation of the position can be used to identify the element that is located at 

that position. This way the position-transformation can be used to find the output 

element to which the input element contributes. 

DEFINITION 4.22  The set of output elements to which an input element contributes in 

a one-to-one transformation can be found using the position-

transformation function:  

�Æ�[Ê��"Ë = S�Æ�[ ∈ ����	�Ì�Æ�[ = 2]� Í�Ç �2]<
���"��ÎT 

where 2]� is the function that retrieves an element from the output at 

a given position, �Ç is the position-transformation function and 2]<
 

retrieves the position of a given element from the input. 

This formula may seem rather complex, but step by step it performs the following 

operations: 

- 2]<
���"� - retrieve the position of the input element 

- �Ç�2]<
���"�� - use that position to find the position of the corresponding 

output element 

- 2]� ��Ç�2]<
���"��� - retrieve the element from the output that is located at the 

position calculated in the previous step. 
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EXAMPLE 4.25  Let the elements of a vector of size 3 be shifted one place to the right 

(with the last element moving to the front):  V → V′ � '1 2 3* → '3 1 2* 

The transformation of the structural part can be described by:  ���: �{/
, /�, /�}, {�1, /
�, �2, /��, �3, /��}� →�{/
, /�, /�}, {�1, /��, �2, /
�, �3, /��}�.  

Both the input and the output are of dimension 1 and size 3, so �Ç: ℕ� → ℕ�. Specifically for this transformation �Ç is specified as �Ç��� = � + 1 6�V 3. The output element to which /� contributes is �Æ�['/�* = S29� ��Ç�29<
�/����T = {/�} because 29<
�/�� = 3 and �Ç�3� = 3 + 1 6�V 3 = 1 and 29� �1� = /�.  This is right, because the 

elements are only rearranged so the input element is always the 

same as the output element that it corresponds with. 

In some cases we do not want to know what output elements correspond to an input 

element, but we would like to know the reverse. Because the transformation is one-to-

one �Ç can be inverted. 

DEFINITION 4.23  The position of an input element can be expressed as a 

transformation of the position of an output element which is the 

inverse of transformation �Ç: 

�Ç<
: Y ℕ"É
7�

AZ
 → Y ℕ:È
7

�Z
  

where V is the number of dimensions of the input data structure; 6� 
is the boundary of the �[\ dimension; ℕ:È � �1,2, … , 6�}; V� is the 

dimension of the output data structure; $A is the boundary of the B[\ 

dimension and ℕ"É = {1,2, … , $�}. 

In the same manner as DEFINITION 4.22 we can now give a formula to find the input 

elements that correspond to a certain output element: 

DEFINITION 4.24  The set of input elements that contribute to an output element in a 

one-to-one transformation can be found using the inverse position 

transformation function:  

��"'�Æ�[* = S��" ∈ ����	Ì��" = 2] Í�Ç<
 �2]<
���Æ�[��ÎT 

where 2] is the function that retrieves an element from the input at a 

given position, �Ç<
 is the inverse position-transformation function 

and 2]<
�
 retrieves the position of a given element from the output. 
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EXAMPLE 4.26  Using the same case as from EXAMPLE 4.25 we now would like to know 

what input elements correspond to the element /� from the output: ��"'/�* � S29 Í�Ç<
 �2]<
��/���ÎT � �/�� because �Ç<
��� � � �1 6�V 3;  2]<
��/�� = 3; �Ç<
�3� = 3 − 1 6�V 3 = 2; 2]�2� = /�. 

4.5.2 Many-to-one 

In the many-to-one scenario, an output element has multiple contributing input 

elements. Still, each input element contributes to exactly one output element. The size 

of the input data structure is larger than the size of the output data structure, so the 

following equation must be true: 

Y 6�
7

�Z
 > Y $A
7�

AZ
  

where V is the number of dimensions of the input data structure; 6� is the boundary of 

the �[\ dimension; V� is the dimension of the output data structure and $A is the 

boundary of the B[\ dimension. 

The transformation function �Ç for a many-to-one transformation is not bijective 

because more than one input element is mapped onto the same output element. We 

can still find the output element to which an input element contributes  

using DEFINITION 4.22. But we cannot find ��"'�Æ�[* using �Ç<
 because �Ç is not 

invertible. DEFINITION 4.25 shows that it is possible to find ��"'�Æ�[* using �Ç instead. 

This method can also be used for one-to-one scenarios when �Ç<
 is not specified. 

DEFINITION 4.25  For a many-to-one transformation the input elements that 

correspond to an output element can be found using the following 

formula: 

��"'�Æ�[* � S��" ∈ ����	Ì�Ç �2]<
���"�� � 2]<
���Æ�[�T 

In the one-to-one scenario the set of input elements that corresponds to an output 

element always contains only one member. In the following example we see that this 

now contains more than one member: 

EXAMPLE 4.27  Let � � �2 44 2� � ^�6
, 6�, 6�, 6U�,��1, 6
�, �2, 6��, �3, 6��, �4, 6U�},{�6
, 2�, �6�, 4�, �6�, 4�, �6U, 2�} _
 be 

transformed into the vector a = �66� = �{/
, /�}, {�1, /
�, �2, /��}, {�/
, 6�, �/�, 6�}� by summing 

all the elements in a row. For this transformation the input is of 

dimension 2 and the output of dimension 1, so �Ç: ℕ� × ℕ� → ℕ�. 
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Specifically for this transformation we have �Ç��, B� � �.  

Now �Æ�['6�* � S�Æ�[ ∈ ����	Ì�Æ�[ � 2]� ��Ç�2]<
�6����T � �/
� 

and ��"'/�* � S��" ∈ ����	Ì�Ç �2]<
���"�� � 2]<
��/��T.  

2]<
��/�� � 2 but now we need to check for all the input elements 

what �Ç �2]<
���"�� is: 2]<
�6
� � �1,1� and  �Ç�1,1� = 1; 2]<
�6�� = �1,2� and  �Ç�1,2� = 1; 2]<
�6�� = �2,1� and  �Ç�2,1� = 2; 2]<
�6U� = �2,2� and  �Ç�2,2� = 2. From this we 

conclude that ��"'/�* = {6�, 6U}. 

4.5.3 One-to-many 

The one-to-many scenario is the reverse case of the many-to-one scenario. The size of 

the input data structure is smaller than the size of the output data structure, so the 

following equation must be true: 

Y 6�
7

�Z
 < Y $A
7�

AZ
  

where V is the number of dimensions of the input data structure; 6� is the boundary of 

the �[\ dimension; V� is the dimension of the output data structure and $A is the 

boundary of the B[\ dimension. 

In this case it is only possible to define �Ç<
 and not �Ç. Both ��"'�Æ�[* and �Æ�['��"* 
must in this scenario be based on �Ç<
. To find ��"'�Æ�[* we use DEFINITION 4.24, but to 

find �Æ�['��"*, we define a new function, similar to DEFINITION 4.25. This method can also 

be used in a one-to-one scenario where �Ç cannot be formulated.  

DEFINITION 4.26  For a one-to-many transformation the set of output elements to 

which an input element contributes can be found using the following 

formula: 

�Æ�[Ê��"Ë � S�Æ�[ ∈ ����	�Ì2]<
���"� � �Ç<
 �2]<
���Æ�[��T 

4.5.4 Many-to-many 

In the many-to-many scenario neither �Ç nor �Ç<
 can be defined and our previous 

solutions for finding ��"'�Æ�[* and �Æ�['��"* do not work. With one-to-many and many-

to-one there was at least one direction (from input to output or vice versa) in which 

there was one element mapped to another and we could specify �Ç or �Ç<
 as a function 

of one position to another. EXAMPLE 4.28 shows that this is not possible for a many-to-

many transformation. 
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EXAMPLE 4.28  Let V � '1,3,5,3,1* be a vector of size 5 and the transformation � 

perform a blur on the vector. The blur is performed by having a 

window of size 3 slide over the vector. The position of the window is 

measured from its middle. So if we put the window in position three 

over the vector V, the elements in the window are '3,5,3*. If the 

window is at position 1, the window consists only of '1,3*. The 

window moves from position 1 to 5 and the output in the vector at 

that position is created by taking the average of the 

window: '1|3|5|3|1* → Ê2|3|3ÐÑ|3|2Ë. In this case the 3 at position 2 

is used to generate the numbers at position 1,2 and 3. The number at 

position 2 in the output in return is again also linked to multiple 

elements from the input: 1,3 and 5 at respectively position 1,2 and 3. 

This make � a many-to-many transformation. 

In a many-to-many scenario, a function that transforms a position must have multiple 

positions as its output. This can be done by creating a function that transforms one 

position into a set of positions. 

DEFINITION 4.27  The function that transforms the position of an input element into a 

set of positions of the output elements to which it contributes is:  

�ÇÒÒ: Y ℕ:È
7

�Z
 → � ^Y ℕ"É
7�

AZ
 _ 

where V is the number of dimensions of the input data structure; 6� 
is the boundary of the �[\ dimension; ℕ:È � �1,2, … , 6�}; V� is the 

dimension of the output data structure; $A is the boundary of the B[\ 

dimension and ℕ"É = {1,2, … , $�}. We use ++ to indicate that the 

result is a set of positions. 

EXAMPLE 4.29  The position for EXAMPLE 4.28 can be specified using DEFINITION 4.27: �ÇÒÒ: ℕÀ → ��ℕÀ� where �ÇÒÒ��� = {max�1, � − 1� , �, min�$, � +1�}. In the case of position 3 this results in: �ÇÒÒ�3� = {max�1,2� , 3, min�5,4�} = {2,3,4}. For position 5: �ÇÒÒ�5� = {max�1,4� , 5, min�5,6�} = {4,5}. 

Now that we have a function that gives a set of the positions of all the output elements 

to which an input element contributes we specify a new method of finding the set of 

output elements for a given input element. 
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DEFINITION 4.28  The set of output elements to which a given input element 

contributes in a many-to-many transformation is given by:  

�Æ�[Ê��"Ë � S�Æ�[ ∈ ����	�Ì2]<
���Æ�[� ∈ �ÇÒÒ �2]<
���"��T 

where 2]<
���"� is the position of the input element and �ÇÒÒ�… � 

the set of positions that correspond to the position of the input 

element. 2]<
���Æ�[� is the position of the output element, and for all 

output elements it is verified if its position is part of the set of 

positions that correspond to the position of the input element. 

EXAMPLE 4.30  Using DEFINITION 4.28 we can now find the set of output elements that 

correspond to the element /U:  �Æ�['/U* � S�Æ�[ ∈ ����	�Ì2]<
���Æ�[� ∈ �ÇÒÒ �2]<
�/U��T 
First we need to find 2]<
�/U� � 4. Now �ÇÒÒ�4� � �3,4,5�. Now we 

need to compare the positions of all the input elements:  2]<
��/
� � 1; 2]<
��/�� = 2; 2]<
��/�� = 3; 2]<
��/U� = 4; 2]<
��/À� = 5. Only the output positions of /�, /U and /U correspond 

to the input position of /U so �Æ�['/U* = {/�, /U, /À}. 

To find out what input elements are related to an output element we need a 

transformation function similar to �ÇÒÒ. We call this function �ÇÒÒ<
  where we use <
 

to indicate that this function gives the input positions for an output position even 

though it is not a real inverse of the function �ÇÒÒ. 

DEFINITION 4.29  The function that transforms the position of an output element into a 

set of positions of the contributing input elements is:  

�ÇÒÒ<
 : Y ℕ"É
7�

AZ
 → � ^Y ℕ:È
7

�Z
 _ 

where V is the number of dimensions of the input data structure; 6� 
is the boundary of the �[\ dimension; ℕ:È = {1,2, … , 6�}; V� is the 

dimension of the output data structure; $A is the boundary of the B[\ 

dimension and ℕ"É = {1,2, … , $�}. We use ++ to indicate that the 

result is a set of positions. 
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The input elements that correspond to a specific output element can now be found 

using the following formula: 

DEFINITION 4.30  The set of input elements that contribute to a given output element 

in a many-to-many transformation is given by:  

��"'�Æ�[* � S��" ∈ ����	Ì2]<
���"� ∈ �ÇÒÒ<
 �2]<
���Æ�[��T 

When in a one-to-one scenario either �Ç or �Ç<
 cannot be formulated, the formulas of 

the one-to-many and many-to-one scenarios can be used instead. In a many-to-many 

scenario it may also be possible that only �ÇÒÒ or �ÇÒÒ<
  can be formulated. In these 

cases ��"'�Æ�[* can also be found using �ÇÒÒ and �Æ�[Ê��"Ë using �ÇÒÒ<
 . 

DEFINITION 4.31  The set of output elements to which a given input element 

contributes in a many-to-many transformation can be found using �ÇÒÒ<
 :  

�Æ�[Ê��"Ë � S�Æ�[ ∈ ����	�Ì2]<
���"� ∈ �ÇÒÒ<
 �2]<
���Æ�[��T 

DEFINITION 4.32  The set of input elements that contribute to a given output element 

in a many-to-many transformation can be found using �ÇÒÒ: 

��"'�Æ�[* � S��" ∈ ����	Ì2]<
���Æ�[� ∈ �ÇÒÒ �2]<
���"��T 

4.6 Multiple Input Sources 

Until now we have considered only unary transformations: one data structure is 

transformed into another data structure. It is very well possible that more than one 

input data structure used in a transformation; these are called binary transformations if 

there are two input data structures, or $-ary transformations if there are more. 

In this subchapter we show how the definitions from subchapter 0 can be modified to 

be used in an $-ary transformation. First we introduce a new definition to identify an 

input data structure using an index, which we will use in an example of an $-ary 

transformation. 

DEFINITION 4.33  An $-ary transformation transforms $ input data structures into an 

output data structure. Each of these input data structures is number 

using the index '�*, where 1 ≤ � ≤ $. An element of a numbered 

input data structure is marked with � as a superscript: ��× where � is 

the number that identifies a unique element (DEFINITION 3.1) within 

the input data structure with number �. Specific parts of an input 

data structure can be referred to using the index �. ����	'�* is the 

base set of the input data structure with number �. 
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EXAMPLE 4.31  We have three vectors: 

V'1* = '/

 /�
 /�
*;  V'2* = '/
� /�� /��*;  V'3*= '/
� /�� /��* 
We can create a matrix using the three vectors as an input: 

M = Ø/

 /
� /
�/�
 /�� /��/�
 /�� /��
Ù 

Here ����	'1* = {/

, /�
, /�
} and 29'2* = {�1, /
��, �2, /���, �3, /���}. 

The position transformation function is: �Ç'�*��� = ��, �� where � is 

the position of an element in one of the input vectors. There is only 

one output data structure, so we don’t need k in the inverse position 

transformation function: �Ç<
��, B� = B. 

Just as with unary transformations, we consider different scenarios accord to the 

contributing element cardinality: one-to-one, many-to-one, one-to-many and many-to-

many. It must be stressed that we do not refer here to the cardinality of the input 

sources. The transformation in EXAMPLE 4.31 is one-to-one because each element of the 

different input data structures contributes only to one element in the output and for 

each output element there is only one contributing element from any of the input data 

structures. 

In the one-to-one and one-to-many scenarios the index number of the input data 

structure that contains the contributing element may be directly obtained from the 

output element, because there is only one contributing input element, and hence there 

is only one contributing input source. 

DEFINITION 4.34  In one-to-one and one-to-many scenarios the index number of the 

input data structure that contains the contributing input element can 

be specified as a function of the output element to which that input 

element contributes. This function is denoted as: 

�$#��Æ�[� 
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4.6.1 One-to-one 

The most common one-to-one transformation is a join of multiple data structures to 

create a new data structure. There are no elements created or deleted, because the 

elements are only arranged in a new data structure. The elements also do not get a new 

value, and therefore a join is a structure-only transformation. In EXAMPLE 4.31 a join 

transformation is shown. To find X�"'�Æ�[* and �Æ�['�Æ�[* we need to extend DEFINITION 

4.22 and DEFINITION 4.24. 

DEFINITION 4.35  The set of output elements to which an input element contributes in 

a $-ary one-to-one transformation is given by: �Æ�[Ê��"Ë� S�Æ�[ ∈ ����	�Ì�∃� ∙ ��" ∈ ����	'�*� ∧ �Æ�[ � 2]� Í�Ç'�* �2]'�*���"��Î T 

DEFINITION 4.36  The set of input elements that contribute to an output element in an $-ary one-to-one transformation is given by: ��"'�Æ�[*� S��" ∈ ����	'�*Ì� � �$#��Æ�[� ∧ ��" � 2]'�* Í�Ç<
 �2]<
���Æ�[��ÎT 

4.6.2 Many-to-one 

Similar to the unary transformation, we can only define �Ç and not �Ç<
. To find �Æ�['��"* in an $-ary many-to-one transformation we use DEFINITION 4.35 and to find ��"'�Æ�[* we extend DEFINITION 4.25. 

DEFINITION 4.37  The set of input elements that contribute to an output element in an $-ary many-to-one transformation is given by: ��"'�Æ�[*� S��" ∈ ����	'�*Ì1 ≤ � ≤ $ ∧ �Ç'�* �2]<
'�*���"�� = 2]<
���Æ�[�T 

EXAMPLE 4.32  A binary transformation combines two 2x2 matrixes by adding the 

elements at the same position to produce another 2x2 matrix: �1 23 4� + �5 67 8� → � 6 810 12� 

The three data structures are described by: 

�'1* = ^{6

, 6�
, 6�
, 6U
},{�1,1, 6

�, �1,2, 6�
�, �2,1, 6�
�, �2,2, 6U
�},{�6

, 1�, �6�
, 2�, �6�
, 3�, �6U
, 4�} _ 

�'2* = ^{6
�, 6��, 6��, 6U�},{�1,1, 6
��, �1,2, 6���, �2,1, 6���, �2,2, 6U��},{�6
�, 5�, �6��, 6�, �6��, 7�, �6U�, 8�} _ 
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�′ � ^�6
� , 6�� , 6�� , 6U� �,��1,1, 6
� �, �1,2, 6�� �, �2,1, 6�� �, �2,2, 6U� �},{�6
� , 6�, �6�� , 8�, �6�� , 10�, �6U� , 12�} _ 

We can find the contributing input elements using: �Ç<
��, B� = ��, B� 

So the contributing input elements of 6��  are: 

��"'�Æ�[* = {6�
, 6��} 

4.6.3 One-to-many 

Similar to the unary transformation, for a one-to-many $-ary transformation we can 

only define �Ç<
 and not �Ç. To find ��"'�Æ�[* in an $-ary many-to-one transformation 

we use DEFINITION 4.36 and to find �Æ�[Ê��"Ë we extend DEFINITION 4.26. 

DEFINITION 4.38  The set of output elements to which an input element contributes in 

an $-ary one-to-many transformation is given by: 

�Æ�[Ê��"Ë� S�Æ�[ ∈ ����	�Ì�∃� ∙ ��" ∈ ����	'�*� ∧ 2]<
'�*���"� � �Ç<
 �2]<
���Æ�[��T 

4.6.4 Many-to-many 

It is not possible to define either �Ç or �Ç<
 for an $-ary many-to-many transformation, 

similarly to the unary many-to-many transformation. For these types of transformations �ÇÒÒ'�* and �ÇÒÒ<
  need to be defined according to DEFINITION 4.27 and DEFINITION 4.29. 

We extend DEFINITION 4.28, DEFINITION 4.30, DEFINITION 4.31 and DEFINITION 4.32 to find �Æ�[Ê��"Ë and ��"'�Æ�[* for a many-to-many $-ary transformation. 

DEFINITION 4.39  The set of output elements to which an input element contributes in 

an $-ary many-to-many transformation is given by: 

�Æ�[Ê��"Ë� S�Æ�[ ∈ ����	�Ì1 ≤ � ≤ $ ∧ 2]<
���Æ�[� ∈ �ÇÒÒ'�* �2]<
'�*���"��T 

DEFINITION 4.40  The set of input elements that contribute to an output element in an $-ary many-to-many transformation is given by: 

��"'�Æ�[*= S��" ∈ ����	'�*Ì1 ≤ � ≤ $ ∧ 2]<
'�*���"� ∈ �ÇÒÒ<
 �2]<
���Æ�[��T 
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DEFINITION 4.41  The set of output elements to which a given input element 

contributes in an $-ary many-to-many transformation, when �ÇÒÒ'�* 
cannot be defined, is given by:  �Æ�[Ê��"Ë � S�Æ�[ ∈ ����	�Ì1 ≤ � ≤ $ ∧ 2]<
'�*���"� ∈ �ÇÒÒ<
 �2]<
���Æ�[��T 

DEFINITION 4.42  The set of input elements that contribute to a given output element 

in a $-ary many-to-many transformation, when �ÇÒÒ<
  cannot be 

defined, is given by: ��"'�Æ�[* = S��" ∈ ����	'�*Ì1 ≤ � ≤ $ ∧ 2]<
���Æ�[� ∈ �ÇÒÒ'�* �2]<
'�*���"��T 

4.7 Summary 

In this chapter we showed how the transformation of one data structure into another 

can be represented by sub transformations that produce the new data part and that 

produce the new structure part. 

We have formulated five properties of which the first describes how the sub 

transformations can take only the data part, the structure part, both or neither as their 

input. The second property describes how over a transformation one or more elements 

from the input may be related to elements from the output: they may be one-to-one, 

one-to-many, many-to-one and many-to-many. The third property describes this idea 

for relations, which also may be one-to-one, etc. Reversibility is the fourth property and 

it describes under which circumstances a transformation may be reversed. A 

transformation may be reversed if the original input can be recreated using the output. 

The last property is invariance. In some transformations, the data part may not change 

while in other the structure part may not change. The part that does not change is said 

to be invariant. 

Elementary operations are the smallest possible transformations of a data structure. It 

may be possible to define different variants of elementary operations, but the set of 

elementary operations must be chosen in such a way that any transformation of a data 

structure can be modeled as a series of these elementary operations. A transformation 

that is build using these elementary operations is called a elementary transformation. 

When only the sub transformation that creates the structure part of the output only 

depends on the structure part of the input it is called a structure-by-structure 

transformation. For these types of transformations, the transformation of the structure 

part can be described without having knowledge of the transformation of the data part. 

For structure-to-structure transformations that only use vectors, matrixes and arrays as 

input and output it is possible to describe the relation between input and output 

elements using a mathematical formula. For each of the four cases -  one-to-one, many-

to-one, one-to-many and many-to-many – a different method is described to identify 

the input elements that correspond to an output element and vice versa. 



 

 

 

5 

Locality 

In this chapter we discuss the concept of locality. Locality is property that can 

be used when the effects of a transformation cannot fully be described using a 

position transformation function as described in chapter 4. We define locality 

as a property of the combination of two elements in a data structure. Locality is 

a concept based on the distance between two elements. Before giving a formal 

definition we will look at how distance between elements of a data structure 

can be measured. Using the definition of distance and the various methods of 

measuring the distance between two elements, we will give a definition of 

locality. We then show for each of the elementary data structures how locality 

can be applied. 

Transformation of a data structure may also have an effect on the locality of 

the elements. In the last part of this chapter we discuss the effect of the 

transformation in four scenarios.  

The research question that we answer in this chapter is: 

RESEARCH QUESTION 5   

What is locality and how is it affected by a transformation? 
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5.1 Distance 

Locality is a concept based on distance, so before giving a formal definition of locality we 

need to give a definition of distance. From the Encyclopedia of Distances [DD09, p.03-

04] we get the following definition: 

A function V: 3 > 3 → ℝ is called a distance function if the following properties hold for 

all ¼, Ü ∈ 3: 

1. V�¼, Ü� ≥ 0 (non-negativity). 

2. V�¼, Ü� � V�Ü, ¼� (symmetry). 

3. V�¼, Ü� � 0 if and only if ¼ � Ü (identity of indiscernibles). 

4. V�¼, Ü� ≤ V�¼, �� + V��, Ü� (triangle inequality).  

There are many different possible functions on a set 3 that have the above four 

properties. For our definition of locality it does not matter what specific function is used. 

In the next part of this subchapter we will describe four different distance function. The 

Euclidean distance is the most common distance. We describe the Manhattan and 

Chebyshov distance because these are frequently used in digital applications. These 

three distance functions have no application in graphs and trees. We describe the path 

distance to show how distances can be measured in these types of data structures. 

5.1.1 Euclidean distance 

The Euclidean distance measures the distances between two points over a straight line. 

These points are Cartesian coordinates: the position of point ® can be written as �®
, … , ®"� where $ is the number of dimensions. We use the following definition of 

Euclidean distance [DD09, p.94]: 

V��¼, Ü� � ÞY�¼� � Ü���"
�Z
  

EXAMPLE 5.1  We have a grid with points ® and ß at coordinates �0,0� and �1,2� 

respectively:  

 

The distance between p and q is given by: 

V��®, ß� = à�0 − 1�� + �0 − 2�� = √5 
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When we are concerned with data structures we are not concerned with distance 

between Cartesian coordinates, but with distance between elements. Matrixes have a 

position function that maps index numbers to elements. Matrixes look like two-

dimensional planes but the index numbers are constrained to whole numbers. Using the 

inverse position function of a matrix (DEFINITION 3.13-II) we can find the index number of 

an element. We use the general definition to specify a specific Euclidean distance for 

matrixes: 

DEFINITION 5.1  The Euclidean distance between elements of a matrix is defined as  

V�P��
, ��� � V� �2P<
��
�, 2P<
�����
� â�2P<
��
�'1* − 2P<
����'1*�� + �2P<
��
�'2* − 2P<
����'2*�� 

where 2P<
���'�* denotes the �th 
coordinate. 

EXAMPLE 5.2  In the matrix below the distance for the middle element to all the 

other elements is calculated using the Euclidean distance: 

 

 

Just as for the matrix we can define Euclidean distance for vectors and arrays: 

DEFINITION 5.2  The Euclidean distance between elements of a vector is defined as:   

V�9��
, ��� = V� �29<
��
�, 29<
����� = â�29<
��
� − 29<
������
= %29<
��
� − 29<
����% 

Since the position for a vector returns only one index number we 

don’t need to consider individual coordinates as with the matrix. 

  



72  Chapter 5. Locality 

DEFINITION 5.3  The Euclidean distance between elements of an $-dimensional array 

is defined as: 

V�]��
, ��� � V� �2]<
��
�, 2]<
�����
� Þã�2P<
��
�'�* � 2P<
����'�*��"

�Z
  

where 2P<
���'�* denotes the �th 
coordinate. 

5.1.2 Manhattan distance 

The Euclidean distance function is the most natural distance on a real plane ℝ� [DD09, 

p.323]. There are many more distance functions possible on the real plane, some of 

which may be restricted to digital spaces (ℤ") [D09, p.332], which are called digital 

distance functions. Vector, matrix and array data structures are essentially digital 

spaces, so we can use the digital distance functions. One example is the Manhattan 

distance, also called the Taxi-cab distance. It has that name because the streets of the 

city of Manhattan form a grid. The taxi-cab problem deals with the question what the 

distance is to take a taxi from one point on that grid to another. The Manhattan distance 

as a digital distance function is defined as [DD09, p.333]: 

VP�¼, Ü� � ã|¼� � Ü�|"
�Z
  

EXAMPLE 5.3  We return to EXAMPLE 5.1 where we have the following grid: 

 

The Euclidean distance was √5. The Manhattan distance between 

point p and q is: VP�®, ß� � |0 � 1| + |0 � 2| � 3 

We use the general definition of the Manhattan distance to definitions for the 

Manhattan distance in a vector, matrix and array: 

DEFINITION 5.4  The Manhattan distance between elements of a vector is equal to the 

Euclidean distance and is defined by: VP9 ��
, ��� � V�9��
, ��� � %29<
��
� � 29<
����% 
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DEFINITION 5.5  The Manhattan distance between elements of a matrix is defined by:  

VPP��
, ���� %2P<
��
�'1* − 2P<
����'1*% + %2P<
��
�'2* − 2P<
����'2*% 
where 2P<
���'�* denotes the �th 

coordinate. 

DEFINITION 5.6  The Manhattan distance between elements of an array of dimension $ is defined by: 

VP] ��
, ��� = ã%2P<
��
�'�* − 2P<
����'�*%"
�Z
  

where 2P<
���'�* denotes the �th 
coordinate. 

EXAMPLE 5.4  In the matrix below the distance for the middle element to all the 

other elements is calculated using the Manhattan distance:  

 

5.1.3 Chebyshev distance 

In this part we give a second example of a digital distance function: the Chebyshev 

distance. The Chebyshov distance as a digital distance function is defined as [DD09, 

p.333]:  

Vå�¼, Ü� = max æç{|¼� � Ü�|�"
�Z
 è 

EXAMPLE 5.5  We return to EXAMPLE 5.1 where we have the following grid: 

 

The Euclidean distance was √5. The Chebyshev distance between 

point p and q is: Vå�®, ß� � max �|0 � 1|, |0 � 2|� � 2 
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We use the general definition of the Chebyshov distance to give definitions for the 

Chebyshev distance in a vector, matrix and array: 

DEFINITION 5.7  The Chebyshev distance between two elements in a vector is equal to 

the Euclidean distance and is defined by: Vå9��
, ��� � V�9��
, ��� � max �p%29<
��
� � 29<
����%q� %29<
��
� � 29<
����%  
DEFINITION 5.8  The Chebyshev distance between two elements in a matrix is defined 

by: VåP��
, ���� max �p%29<
��
�'1* − 29<
����'1*%, %29<
��
�'2* − 29<
����'2*%q 

where 2P<
���'�* denotes the �th 
coordinate. 

DEFINITION 5.9  The Chebyshev distance between two elements in an array of 

dimension $ is defined by: 

Vå]��
, ��� = max æçp%29<
��
�'1* − 29<
����'1*%q"
�Z
 è 

where 2P<
���'�* denotes the �th 
coordinate. 

EXAMPLE 5.6  In the matrix below the distance for the middle element to all the 

other elements is calculated using the Chebyshev distance: 

 

5.1.4 Path distance 

The three distance functions presented above can only be applied to the vector, matrix 

and array data structures. In graphs and trees distance is measured in a different way. 

According to Definition 3.21 in a graph data structure the elements are called nodes and 

the relation on the nodes consists of edges between two nodes.  The distance between 

two nodes is measured as the length of the shortest path between two nodes and is 

denoted Vé�[\. A path between ( and / is a sequence of edges ­»­
, ­
­�, …  , ­"<
­" with ( = ­» and / = ­" such that ­� ≠ ­A for � ≠ B, �, B ∈ {0,1, … , $}. [DD09, p.257] 

From this definition we know that a series of nodes is only a path, if no node occurs 

more than once. 
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EXAMPLE 5.7  In the following graph @V, VK, K@, @½ is not a path, but @V, V½ is. 

 

 There are five possible paths, from @ to V: @½, ½V with length 2; @½, ½K, KV with length 3; @K, KV with length 2; @K, K½, ½V with length 3 

and finally @V with length 1. The shortest of these five paths is @V, so Vé�[\�@, ½� � 1. 

The graph in EXAMPLE 5.7 is undirected, so a path from ( to / is the same as the path 

from / to (, hence Vé�[\�@, V� = Vé�[\�V, @�. In a directed graph this is not the case 

and the symmetry rule (rule #2) of the definition of a distance is violated. When used for 

a directed graph, Vé�[\ does not represent a distance function according to the official 

definition. 

EXAMPLE 5.8  The following graph is a directed version of the graph in EXAMPLE 5.7. 

Some paths from that example are not a path in this digraph: @V; @½, ½K, KV; @K, KV and @K, K½, ½V. The only possible path now is @½, ½V 

and so Vé�[\�@, V� = 2. 
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5.2 Locality 

Now that we have shown how different functions can be used to measure distance 

between elements in a data structure, we can use those concepts to define locality. 

DEFINITION 5.10  Locality is a normalized degree that specifies how close one element 

of a data structure is to another. Locality is denoted as ¢�6
, 6�� 

where ¢ can take any real value in the range of '0. .1*. Locality is 

defined as a ratio between the distance of the first element to the 

second and the diameter of the data structure. The distance is 

denoted by V��
, ��� and the diameter is denoted by ∅���. The 

locality is then defined by  ¢��
, ��� = ∅��� − V��
, ���
∅���  

The definition of locality hinges on two concepts: distance and diameter. We have a 

definition of distance, but we still need to define what the diameter of data structure is. 

DEFINITION 5.11  The diameter of a data structure is an upper boundary on the 

distances between all pairs of elements. The diameter of a specific 

instance of a data structure is denoted ∅���. By definition 

∅��� ≥ V��
, ��� for all �
, �� ∈ ����	. 

The function that we have defined to measure locality is what is called a similarity. A 

function X: 3 × 3 → ℝ is called a similarity if it is non-negative (1), symmetric (2) and if X�¼, Ü� ≤ X�¼, ¼� holds for ¼, Ü ∈ 3, with equality if and only if ¼ = Ü (3) [DD09, p.04]. 

These three properties hold for the definition of locality: 

1. From DEFINITION 5.11 we know that ∅��� ≥ V��
, ��� for all �
, �� ∈ ����	. 

Therefore ∅��� − V��
, ��� ≥ 0 and 
∅���<7�	ê,	Ð�

∅��� ≥ 0. Hence ¢��
, ��� is non-

negative for all �
, �� ∈ ����	. 

2. Let’s assume that 
∅���<7�	ê,	Ð�

∅��� = ∅���<7�	Ð,	ê�
∅��� , then ∅��� − V��
, ��� = ∅��� −V���, �
� and V��
, ��� = V���, �
� which is true according to the symmetry 

property of the definition of a distance. Hence ¢��
, ��� is symmetric. 

3. This property hold if 
∅���<7�	ê,	Ð�

∅��� = ∅���<7�	ê,	ê�
∅���  when �
 = �� and 

∅���<7�	ê,	Ð�
∅��� < ∅���<7�	ê,	ê�

∅���  when �
 ≠ �� for all �
, �� ∈ ����	. The diameter is 

a constant in these equations and can be removed from both sides. We then get 

the equation V��
, ��� = V��
, �
� which is true according to property 3 of the 

definition of a distance, and the inequality V��
, ��� > V��
, �
� which is true, 

because V��
, �
� = 0 (property 3) and V��
, ��� > 0 (property 1 and 3). Hence, 

the third property of a similarity holds for ¢��
, ���. 
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To apply the definition of locality on a data structure we need to specify which distance 

function is used and what the diameter is. In the rest of this subchapter we give a 

definition of locality for each elementary data structure. 

5.2.1 Locality in a set 

From Definition 3.7 we know that a set data structure does not contain a relation. The 

absence of the relation gives us no means of measuring distance between two elements. 

To apply locality to a set we need a definition of distance in a set.  

DEFINITION 5.12  Distance in a set is specified as V���
, ��� � 0 if and only if �
 � ��. 

For all �
 ≠ �� we have V� � %����	%. The diameter is given by 

∅ � %Sëìíî%. The locality in a set is denoted as ¢���
, ���. 

EXAMPLE 5.9  We have the set � � ���
, ���, ∅, ��. Here ¢��
, �
� � �<»� � 1 and ¢��
, ��� = �<�� = 0. 

5.2.2 Locality in a vector 

For a vector the Euclidean, Manhattan and Chebyshev distance all measure the same 

distance between two elements so we do not need to make a choice between those 

three when defining locality.  

DEFINITION 5.13  The diameter of a vector is given by its size  ∅�V� = %����	% and the 

locality of two elements in a set is defined by: 

¢9��
, ��� = ∅��� − V��
, ���
∅��� = %����	% − %29<
��
� − 29<
����%|����	|  

EXAMPLE 5.10  We have the vector V � '/
 /� /�*. The distance between /
 and /� is V�/
, /�� � %29<
�/
� � 29<
�/��% � 1. The diameter is 

∅�V� = %����	% = 3. The locality of /
 and /� then is: ¢9��
, ��� =�<
� = ��. 

5.2.3 Locality in a matrix 

Locality in a matrix is similar as in a vector. Only here it makes a difference what 

distance metric is chosen. The diameter of a matrix also depends on this choice. We 

define the diameter of an $ × 6-matrix as the distance from the origin to the point $ × 6: ∅�M� = V��0,0�, �$, 6��. 

DEFINITION 5.14  Locality in a matrix must be specified for a specific distance metric. 

We use the Euclidean metric as example. Locality is then defined as:  

¢�P��
, ��� = ∅��� − V��
, ���
∅��� = V�P��0,0�, �$, 6�� − V���
, ���V��0,0�, �$, 6��  
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EXAMPLE 5.11  We have the 2 > 2-matrix M � �6
 6�6� 6U�.  

When we use the Euclidean metric we have: the diameter is 

∅�M� � V�P��0,0�, �2,2�� � √8; V�6
, 6�� � √2; so the locality of 6
 and 6� is ¢�P�6
, 6�� � √�<√�√� � 
�. 

 

When we use the Manhattan metric we have: the diameter is 

∅�M� � VPP��0,0�, �2,2�� � 4; VPP�6
, 6�� � 2; so the locality of 6
 and 6� is ¢PP�6
, 6�� � U<�U � 
�. 

 

When we use the Chebyshov metric we have: the diameter is 

∅�M� � VåP��0,0�, �2,2�� � 2; VåP�6
, 6�� � 1; so the locality of 6
 and 6� is ¢åP�6
, 6�� = �<
� = 
�. 

5.2.4 Locality in an array 

Locality in an array works the same as in a matrix. The size of an array of dimension V is 

given by $
 > … $7. The diameter is given by ∅�A� � V��0
, … , 0ï�, �n
, … , nï��.  

DEFINITION 5.15  The locality of two elements in an array is defined (in this case using 

the Euclidean metric) as 

¢�]��
, ��� � ∅��� � V��
, ���
∅���� V�]��0
, … , 0ï�, �n
, … , nï�� � V�]�e
, e��V�]��0
, … , 0ï�, �n
, … , nï��  

5.2.5 Locality in a graph 

The distance between two nodes in a graph is given by the path metric Vé�[\. The 

diameter is given by the maximal length of the shortest �(, /�-path in a graph: 

∅�A� � max�pVé�[\�(, /�|(, / ∈ aq�. 
DEFINITION 5.16  The locality of two nodes in a graph is defined as: 

¢ñ��
, ��� = ∅��� − V��
, ���
∅���= max�{®@�ℎ�(, /�|(, / ∈ a}� − Vé�[\��
, ���max�{®@�ℎ�(, /�|(, / ∈ a}�  
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EXAMPLE 5.12  We have the following graph: 

 

 
In this case the diameter is 2. The locality of nodes 1 and 3 is: 

¢ñ��
, ��� � 2 � 12 = 12 

5.2.6 Locality in a tree 

When we treat a tree as a graph we can use the path distance to measure distance 

between two nodes. This is not practical when we consider trees as data structures. We 

define the distance between two nodes as the longest distance from either of the two 

nodes to their lowest common ancestor. 

DEFINITION 5.17  The distance between two nodes is defined as: 

V[ò		��
, ��� � max �Vé�[\�¢½@��
, ���, �
�, Vé�[\�¢½@��
, ���, ���� 

where ¢½@��
, ��� is the lowest common ancestor of the nodes �
 

and ��. 

DEFINITION 5.18  The diameter of a tree is the longest path from any node to the root: 

∅��� � max��V�s, ��%s, � ∈ ����	�� 

where s is the root node. The locality in a tree is then defined as: 

¢w��
, ��� � ∅��� � V[ò		��
, ���
∅���  
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EXAMPLE 5.13  We have the following tree: 

 

 

Here ∅��� � 3; ¢½@���, �Ã� � �U; ¢½@��À, ��� � ��; ¢���, �Ã� ��<óìô��7�	õ,	ö�,7�	÷,	ö��� � � �<
� � ��; ¢��À, ��� � �<óìô��
,���� � 
�. 

5.3 Locality and transformations 

Locality consists of two components (Definition 5.10): a distance measurement and a 

diameter. The transformation of a data structure may affect the locality in four ways: 

- The distance between all the elements stays the same and the diameter stays 

the same: locality is not affected. 

- The distance between all the elements stays the same, but the diameter 

changes: locality is affected. 

- The distance between the elements changes, but the diameter stays the same: 

locality is affected. 

- The distance between the elements changes and the diameter changes: locality 

changes unless the distance between the elements and the diameter are scaled 

with the same ratio. 

In this part of the chapter we show for each of these four scenarios how the locality in 

the data structure is affected. We limit ourselves to vectors, matrixes and arrays as they 

share the same distance metrics. 

5.3.1 Distance and Diameter Unchanged  

In this scenario both the distance function and diameter remain unchanged after the 

transformation. A distance is measured between two elements. When the base set of 

elements changes, the distance function must change. Therefore the distance function 

can only be the same if the base set stays the same. Also for each pair of two elements 

the distance must be equal to the distance between those two elements after the 

transformation. EXAMPLE 5.14 shows that this is the case when a vector is mirrored. 
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EXAMPLE 5.14  The vector V is mirrored by a transformation: '/
 /�* → '/� /
*. 

Before the transformation we have: 

29 � ��1, /
�, �2, /��} V = {�/
, /�, |1 − 2|�, �/�, /
, |2 � 1|�� ���/
, /�, 1�, �/�, /
, 1�} 

∅�V� = %����	% = 2 

 

After the transformation we have: 

29� = {�1, /��, �2, /
�} V� = {�/
, /�, |2 � 1|�, �/�, /
, |1 − 2|�� ���/
, /�, 1�, �/�, /
, 1�} 

∅�V′� = %����	�% = 2 

Now we see that V = V′ and ∅�V� = ∅�V′� so the locality is 

preserved. 

 

5.3.2 Distance Unchanged, Diameter Changed 

In this part we look at transformations where the distance between elements that exist 

before and after the transformation have not changed, but where the transformation 

causes the diameter to change. This has the effect that the locality between two 

elements that exist before and after the transformation, changes. This is the case when 

elements are added or deleted. 

EXAMPLE 5.15  We have the matrix � � �6
 6�6� 6U� here V�6
, 6�� � 1 and 6@¼�V� = 3 (when using Manhattan distance) so ¢�6
, 6�� = 
�. We 

now add 6À to position �1,3� and 6Á to position �2,3�. This gives us 

the matrix �� = �6
 6� 6À6� 6U 6Á�. Still V�6
, 6�� = 1, but now 6@¼�V�� = 4 so ¢�6
, 6�� = 
U. 

EXAMPLE 5.16  We have the matrix � from EXAMPLE 5.15. We now delete 6� and 6U. Now max�V�� = 2 so ¢�6
, 6�� = 
�. 

5.3.3 Distance Changed, Diameter Unchanged. 

In this part we look at transformations that cause the distance between elements to 

change while the maximum distance stays the same. This is the case for rearrangement 

transformations. When elements in a matrix, vector, or array are swapped, the 

maximum distance doesn’t change, but the distance between individual elements 

changes. 
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EXAMPLE 5.17  We have the matrix � � �6
 6� 6�6U 6À 6Á� and we swap the elements 6
 and 6�. Before the swap we had V�6
, 6�� � 2 and after the 

swap we have V�6
, 6�� � 1. 

5.3.4 Distance Changed, Diameter Changed 

It is also possible that both the distance between elements and the diameter changes. 

This happens when one type of data structure is transformed into another by creating 

completely new elements. Only in some of these cases the maximum distance changes 

with the same degree as the distance between all the elements. This is the case for 

example when an image is stretched. When the distance between the elements 

increases with the same ratio as the diameter, locality is preserved. 

EXAMPLE 5.18  In the following transformation a 2x2 matrix is resized to a 4x4 

matrix: 

�6
 6�6� 6U� → CDD
E 6
� 6�� 6�� 6U�6À� 6Á� 6Â� 6��6Ã� 6
»� 6

� 6
��6
�� 6
U� 6
À� 6
Á� GHH

I
 

 

Here ��6
� � ø6
′ 6��6À� 6Á� ù and ��6�� � ø6�� 6U�6Â� 6�� ù.  

 

The distance between the elements 6
 and 6� from the input is 

using the Euclidean method is: V��6
, 6�� � 1. If we take the 

distance between each corresponding element from the output we 

see that it has increased twofold: V�� �6
� , 6�� � = V�� �6�� , 6U� � =V�� �6À� , 6Â� � = V�� �6Á� , 6�� � = 2.  

 

At the same time the diameter also increases twofold: 

∅�M��
∅�M� = à|4� + 4�|à|2� + 2�| � √32√8 � 2 

The locality of elements 6
 and 6� is also the same as the locality of 

their corresponding output elements: ¢�P�6
, 6�� � ∅�ú�<7ûü�:ê,:Ð�
∅�ú� � √�<
√� ≈ 0,65 and ¢�P��6
� , 6�� � �

√��<�√�� ≈ 0,65. 
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EXAMPLE 5.19  When we use the case from EXAMPLE 5.18 but now use the 

Manhattan distance, we get the same results: 

∅�M��
∅�M� � |4 + 4||2 + 2| � 84 � 2 

 VPP��6
� , 6�� �VPP�6
, 6�� � |1 − 1| + |3 � 1||1 − 1| + |2 � 1| � 21 = 2 

 ¢PP�6
, 6�� = 4 − 14 = ¢PP��6
� , 6�� � = 8 − 28 = 34 

 

EXAMPLE 5.20  When we use the case from EXAMPLE 5.18 but now use the Chebyshov 

distance, we get the same results:  

∅�M��
∅�M� = max�{4,4}�max�{2,2}� = 42 = 2 

 VåP��6
� , 6�� �VåP�6
, 6�� = max�{|1 − 1|, |3 � 1|��max��|1 − 1|, |2 � 1|�� � 21 = 2 

 ¢åP�6
, 6�� = 4 − 14 = ¢åP��6
� , 6�� � = 8 − 28 = 34 

 

5.4 Conclusion 

In this final part of the chapter we will reflect on the results that try to answer the 

research questions. In this chapter we have addressed the following research question: 

RESEARCH QUESTION 3 How can locality be used to describe the effect of a 

transformation on the relation between elements in a data structure? 

In this chapter we have introduced the definition of locality. Locality is a normalized 

function based on the distance between two elements and the diameter of a data 

structure. First we have presented a formal definition of distance. We have given 

examples of four different ways of measuring distance in different data structures. We 

have used the definition of distance to introduce a new definition: locality. Locality is 

based on the distance between two elements and the diameter of the data structure 

that contains the elements. Finally we have shown what the possible effects are of a 

transformation on the locality of two elements. 

The results of this chapter are used in chapter 6 where locality is used in one of the 

scenario’s to propagate annotations. 

 





 

 

 

6 

Propagation of Annotations 

In the introduction we have described a workflow that consists of processing 

elements that transform streams into other streams. The data in these streams 

may be organized as data structures. In Chapter 3 we define how these data 

structures can be described and in Chapter 4 we define how the transformation 

of these data structures can be described. The data structures in the stream 

may be annotated. In this model we describe how annotations in a data 

structure can be transformed. First, we describe how data structures can be 

annotated. Next, we present a model for deciding on the propagation of 

annotations. Finally, we show how this model is applied in five different 

scenarios.  

In this chapter we answer the following research question: 

RESEARCH QUESTION 4  

How can annotations in a data structure be propagated? 

6.1 Annotated data structures 

Data structures can be annotated to mark parts of the data structure with extra 

information. Mostly annotations are used in streaming setups to indicate that there are 

quality issues with part of the data. In Chapter 3 we define what a data structure is and 

how it is denoted (DEFINTION 3.6). We extend this definition to create a new definition 

for an annotated data structure: 

DEFINITION 6.1  An annotated data structure is a data structure that contains 

annotations and is denoted by �∗ � �����	, 
, �, ?� where �����	, 
, �� � � according to DEFINITION 3.5 and ? is a set of 

annotations. 

C
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a
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Since the data is transformed in a streaming setup, annotations also may need to be 

transformed. This means that in addition to �  and �� we are now also concerned with �] which described the transformation of the annotations. 

DEFINITION 6.2  A transformation �∗ is a transformation of an annotated data 

structure where �∗: �∗ → �∗�
 and �∗ � � ∪ ��]�. 

According to DEFINITION 3.5 a data structure consists of a set of elements, a relation and a 

value-function. Annotations can occur in all three of them, depending on how the 

system is set up. In each of these cases we denote the set of annotations by ?� for 

annotated elements, ?� for annotated elements of the relation and ?� for annotated 

values. For example, we might want to annotate an element so that it remains 

annotated even when it gets a new value. An element of the relation can be annotated 

when for example a complete row in a matrix must remain annotated, even after extra 

elements are added to that row. Finally, sometimes it may be necessary to annotate the 

value of an element, so it only remains annotated as long as the value is not changed. 

We consider annotating subsets of elements the same as annotating individual 

elements. 

When a data structure is annotated extra information is added. Annotations may 

contain all kinds of information, but it is not the aim of our research to investigate the 

semantics of actual annotations. We consider binary annotations for simplicity: 

something is annotated or not; we do not specify any value for the annotation. 

This means that in the case of annotated elements the set of annotations is subset of 

the set of elements: ?� ⊆ ����	. An element e is annotated if � ∈ ?� ∧ � ∈ ����	. 

Elements are given a value by the � function. The set of all the values in the data 

structure is called �����	. The set of annotated values is then a subset of the value set: ?� ⊆ �����	. 

The relation may be of a very different type according to the particular type of data 

structure. For vectors, matrixes and arrays, the relation can be modeled as a function 

where the domain consists of a numbered index and the co-domain of elements. For 

graphs and trees the relation is binary relation on the set of nodes. This has an impact 

on how to specify annotations on the relation. In some cases whole elements of the 

relation are annotated and ?� ⊆ 
. In other cases the basis of ?� will be formed by 

parts of the elements of the relation. We discuss these implications for each type of data 

structure. 

It is also possible that an annotation cannot be related to a specific element, relation or 

value. In this case we can only say that the data structure as a whole is annotated. We 

indicate this by keeping �∗ but with ? � �½�6®¢����.  

We will now look at how annotations can be made on each type of elementary data 

structure. 
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6.1.1 Set 

From DEFINITION 3.7 we know that a set data structure does not contain a relation. This 

means that annotations on a set data structure can only be made on elements, their 

values, and the set as a whole.  

Suppose we have a set of temperature values S = �22.0, 26.5, 22.0� = ���
, ��, ���, ∅, ���
, 22.0� , ���, 26.5� , ���, 22.0��� and we 

know that any value below 25°C is an outlier. We can annotate the corresponding 

elements: ?� � ��
, ��� or annotate the values: ?� � �22.0�. Here it becomes clear why 

it makes a difference in annotating elements or values. When elements have the same 

value and only the value is annotated it is not possible to distinguish between which 

element is annotated. 

When we cannot annotate specific values or elements and still want to indicate that the 

set in the example is annotated we denote it by: S∗ � ���
, ��, ���, ∅, ���
, 22.0, ���, 26.5� , ���, 22.0��, �½�6®¢����� 

6.1.2 Vector 

Annotating a vector can be done as for any data structure by annotation elements, 

values, elements of the relation and the vector as a whole. What makes annotating 

vectors different from annotating other structures such as sets and graphs, is how 

annotations are made at the relation level. Relations in a vector are formed by a 

function that maps an index number to an element (DEFINITION 3.9-I). So this relation 

consists of an index number and an element. In this case annotating the whole relation 

means effectively annotating an element. It is more useful to only make an annotation 

for the position. We have the annotated vector a∗ � '22 15 21∗*. The annotation 

could be made in three different ways: ?� = �/��; ?� = �21�; ?� = �3�. 

The difference becomes clear when we reverse the vector: a∗� = '21∗ 15 22*. When 

the annotation is made for the element or the value, the annotation stays the same, but 

when the annotation is made at the relation level, the annotation must be transformed: ?�� = �1�. 

6.1.3 Matrix 

Annotating a matrix is similar to annotating a vector. Annotations on elements, values 

and the matrix as a whole are the same as for other data structures. For a vector it is 

possible to annotate positions. This is also the case for a matrix. A position in a matrix is 

denoted by two natural numbers: ��, B) and the annotations in a matrix could look like ?� = ��2,2), �3,1)�. It may be useful to annotate a whole row or column. Such 

annotations are indicated by a * for one of the index numbers: �1,∗) means that the 

whole first row is annotated and �∗ ,2) means that the whole second column is 

annotated.                                
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6.1.4 Array 

Annotating arrays is equal to annotating matrixes and vectors. In a matrix whole rows 

and columns could be annotated. This is also possible in an array. Any number in the 

index can be replaced by a * indicating that the whole range for that index number is 

annotated, for example: �1,∗ ,6,∗). 

6.1.5 Graph 

A graph data structure consists of nodes and edges and is denoted by G = �����	, 
, �� = �a, b, �) (DEFINITION 3.21). The nodes are the elements and the 

edges are the relations of a graph data structure. Annotations in a graph can be made at 

all the places as specified for a general data structure: node, value, edge and the graph 

as a whole. This is expressed graphically in Figure 6.1. 

 

   

Figure 6.1: three levels of annotations in a graph 

 

At the value level annotations are given by ?� ⊆ ��a) and at the node level annotations 

are given by ?� ⊆ a. An edge is a combination of two nodes. Annotating edges means 

that the whole relation is part of the annotation: ?� ⊆ b. Lastly, when the graph as a 

whole is annotated it is specified by ? = ∅. 

6.1.6 Tree 

Annotating a tree works exactly as annotating graphs. 

 

Figure 6.2: three levels of annotations in a tree 
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6.2 Annotation transformation model 

In this subchapter we introduce the annotation transformation model which can be 

used to decide on the propagation of annotations on elements. DEFINITION 6.2 states that 

the transformation of an annotated data structure also includes a transformation of the 

annotations called �]. How the transformation of the annotations looks like depends on 

the transformation of the data and the structure and choices made by the user. 

These choices are about making a decision under which conditions an annotation should 

be propagated or not. We propose a model for propagating annotations for elements, 

where the decision is based on the information related to the input elements. Although 

we use only structural information in this model as a basis for deciding whether an 

annotation should be propagated, it is also possible to extend the model to include the 

value of an element. 

There are two methods of describing the transformation of annotations. The first 

method looks at all the annotated elements in the input and describes where the 

annotation should be placed in the output. The second method looks at all the output 

elements and decides on the basis of the contributing input elements whether this 

particular output element should be annotated or not. Our model is based on the 

second method because in this way it is possible to compare the different input 

elements that contribute to the output element. 

In our model the transformation of annotations consists of going over all the output 

elements and deciding for each element whether it should be annotated on the basis of 

the contributing input elements. 

DEFINITION 6.3  An element is annotated if it is a member of the annotation set: � ∈ ? 

DEFINITION 6.4  The transformation of the annotations consists of calculating for all 

the output elements an annotation weight. When the annotation 

weight exceeds a certain threshold, the output element is annotated:  

�]: ?� � p�Æ�[ ∈ ����	�%­�'�Æ�[* ≥ �ℎs�Xℎ�¢Vq 
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DEFINITION 6.5  To decide whether an output element should be annotated, an 

annotation weight is calculated: 

­�'�Æ�[* �
xy
yz

ã ­Ê��"Ë ∗ @Ê��"Ë	È�∈�È�'	���*ã ­Ê��"Ë	È�∈�È�'	���* ��
�� 

Where according to DEFINITION 4.19:  ��"'�Æ�[* is the set of 

contributing input elements of the output element �Æ�[;  @Ê��"Ë � ³1, ��". @$$��@��V0, ! ��". @$$��@��V¦  
and ­Ê��"Ë is the weight that the input element carries in producing 

the output element. 

What this formula does is finding all the contributing input elements for the given 

output element. If an element is annotated @Ê��"Ë has value 1. This value is then 

multiplied by the weight ­Ê��"Ë of the input element in the transformation. This weight 

is specific to the transformation and can take any numeral value. The sum of all the 

weights multiplied by the annotation value is then compared to a threshold. If it is 

higher than the threshold, the output element is annotated. We divide this sum by the 

sum of all the weights to normalize the value. This way the value can be compared to a 

threshold∈ '0,00. .1,00*. We call the denominator of the formula the normalization 

value: ã ­Ê��"Ë	È�∈�È�'	���*  

There are two parts in this formula that are particular to the type of transformation. The 

first is assigning a weight to an element. This can be done on the basis of the value of 

the element and its relations. We do not take the value of an element into account. The 

second part is finding the input elements that correspond to the output element. The 

annotation transformation therefore needs the following information: 

- Description of the elements and structure of the input 

- Description of the elements and structure of the output 

- A position transformation function 

- A formula that assigns weights to contributing elements 

In the next subchapter we apply the model to structure-by-structure transformations as 

described in Chapter 4. 
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6.3 Transformation of Annotations 

The annotation transformation model depends mainly on the cardinality of the 

contributing input elements and the weight assigned to each contributing element. 

Different scenarios can be distinguished according to the cardinality of the 

transformation and the weight chosen. We denote the amount of contributing input 

elements of an output element by $. On the basis of $ and the weights that are assigned 

to input elements we describe five scenarios. This is not a complete list, but functions as 

a list of examples to show how the generic formula can be applied. 

- $ = 1;  ­Ê��"Ë � 1 for all ��". In this scenario there is exactly one input element 

for each output element. Also we assume that each element has the same 

influence on the output element and therefore we assign the weight 1. 

- $ ≥ 1;  ­Ê��"Ë � 1 for all ��". In this case we assume there may be more than 

one input element, but each input element has the same contribution. 

- $ ≥ 1;  ­Ê��"Ë � �1,2�. In this case we show how in a matrix multiplication 

some elements may have more influence on the output than others. 

- $ ≥ 1;  ­Ê��"Ë V�®�$VX �$ V�X�@$½�.  In this case we show a more complex 

scenario where the distance between a contributing input element and the 

output element is used to determine the weight. 

- $ ≥ 1;  ­Ê��"Ë V�®�$VX �$ ¢�½@¢��Ü.  In this case we show a scenario where the 

locality of a contributing input element and the output element is used to 

determine the weight. 

The rest of this subchapter describes how the annotation transformation model is 

applied to each of the five scenarios. 

6.3.1 One input element / weight 1 

In this part of the chapter we consider one-to-one transformations where exactly one 

input element contributes to an output element (DEFINITION 4.9). This element can be 

found using DEFINITION 4.24. There is only one input element and we base the decision to 

annotate the output element only on the fact whether that input element is annotated 

we use a weight of 1. 

Because there is only one input element and the weight is 1, there’s no need to 

normalize. This gives us the following formula: 

­�'�Æ�[* � ã 1 ∗ @Ê��"Ë	È�∈�È�'	���*  
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Because the transformation is one-to-one, the set ��"'�Æ�[* contains exactly one 

element. This means that we can replace ��" in the formula by the part from DEFINITION 

4.24 that retrieves the input element:  

­�'�Æ�[* � @ �2] Í�Ç<
 �2]<
���Æ�[��Î� 

EXAMPLE 6.1  Let the transformation � flip an image.  

      

The stars indicate annotated cells. To describe the propagation of the 

annotations we need the following information:  

- The elements and structure of the input: �����	, 
� �
^¿6
, 6�, 6�,6U, 6À, 6Á,6Â, 6�, 6Ã,Ä , ��1,1, 6
) �1,2, 6�) �1,3, 6�)�2,1, 6U) �2,2, 6À) �2,3, 6Á)�3,1, 6Â) �3,2, 6�) �3,3, 6Ã)�_ 

- The annotation information from the input: ? = �6U, 6�� 

- The elements and structure from the output: �����	�, 
�� =
^�6
� , 6��  , 6�� ,6U� , 6À� , 6Á� ,6Â� , 6�� , 6Ã� ,� , ��1,1, 6
� ) �1,2, 6�� ) �1,3, 6�� )�2,1, 6U� ) �2,2, 6À� ) �2,3, 6Á� )�3,1, 6Â� ) �3,2, 6�� ) �3,3, 6Ã� )�_ 

- The inverse position transformation function: �Ç<
��, B) = ��, 3 − B + 1) 

Using this information we can now calculate for each output element 

whether it should be annotated or not. For example: ­�'6Ã� * = @ �2] Í�Ç<
 �2]<
���Æ�[)�Î� = @ �2] ��Ç<
(3,3)��
= @'2](3,1)* = @'6Â* = 0 

And 

­�'6Á� * = @ �2] Í�Ç<
 �2]<
���Æ�[)�Î� = @ �2] ��Ç<
(2,3)��
= @'2](2,1)* = @'6U* = 1 

We use �ℎs�Xℎ�¢V = 1, so 6Ã� ∉ ? and 6Á� ∈ ?. 

  

   

  * 

 *  

 

 

� 

   

*   

 *  
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6.3.2 Multiple input elements / weight 1 

In the many-to-one (DEFINITION 4.11) and many-to-many (DEFINITION 4.12) scenarios as 

described in Chapter 4, multiple elements contribute to one output element. Some of 

these contributing input elements may be annotated while others are not. In this case 

we choose to annotate an element in the output only if more than a specific share of the 

contributing input elements is annotated. We do this by modifying the generic 

annotation model to use a weight of 1 for all the elements (which effectively means ­Ê��"Ë can be left out of the formula). This way the sum of all the weights is equal to the 

amount of elements and we can normalize the result by dividing by $, where $ �%��"'�Æ�[*%: 
­�'�Æ�[* � 1$ ã @Ê��"Ë	È�∈�È�'	���*  

This formula first identifies the contributing input elements, sums 1 if they are 

annotated – otherwise 0, and divides the result by the amount of contributing input 

elements. 

EXAMPLE 6.2  Let the matrix � � �2∗ 4 63 5∗ 7∗� be transformed into the vector a � �1215� by summing all the values in a row. The elements with a ∗ 

are annotated. We annotate an element in the output if more than 

50% of its input is annotated. To describe �] we need to know that: 

�����	, 
� = ÍS6
, 6�, 6�,6U, 6À, 6Á,T , ³�1,1, 6
), �1,2, 6�), �1,3, 6�),�2,1, 6U), �2,2, 6À), �2,3, 6Á),ºÎ 

�����	�, 
�� = ��/
, /��, ��1, /
), �2, /�)�) �Ç��, B) = � ? = �6
, 6À, 6Á� 
 

Now we can calculate what elements in the output should be annotated: 
­�'/
* = 1$ ã @Ê��"Ë	È�∈�È�'�ê*

= 13 ã @Ê��"Ë	È�∈�:ê,:Ð,:Ñ�
= 13 ∗ (1 + 0 + 0) = 13 

And: 

­�'/�* = 1$ ã @Ê��"Ë	È�∈�È�'�ê*
= 13 ã @Ê��"Ë	È�∈�:ö,:�,:��

= 13 ∗ (0 + 1 + 1) = 23 

When we use an arbitrary �ℎs�Xℎ�¢V = 
� we have /
 ∉ ? and  

/� ∈ ?. 
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6.3.3 Multiple input elements / weight ∈∈∈∈{1,2} 

We consider a special case where a square matrix is multiplied with itself. Again multiple 

elements are used to produce an output element. We use the self-multiplication of a 

matrix from EXAMPLE 4.16: 

M� = M� = �@ K½ V�� = �@ × @ + K × ½ @ × K + K × V½ × @ + V × ½ ½ × K + V × V� 

One of the input elements is used twice, this occurs when the position of the output 

element is equal to the position of the input element. We assign a weight of 1 to 

elements that contribute once to the same output element and a weight of 2 to 

elements that contribute twice to the same output element: 

­Ê��"Ë = £1 2P<
���") ≠ 2P<
���Æ�[)
2 2P<
���"� = 2P<
���Æ�[)¦ 

Of all the contributing input elements there is only one with weight 2, the rest has 

weight 1. Therefore:  

ã ­Ê��"Ë	È�∈�È�'	���*
= $ + 1 ­ℎ�s� $ = %��"'�Æ�[*% 

This gives the following annotation formula: 

­�'�Æ�[* = 1$ + 1 ã ­Ê��"Ë ∗ @Ê��"Ë	È�∈�È�'	���*
 

Because matrix multiplication is a many-to-many transformation we need to define �ÇÒÒ<
  (DEFINITION 4.29). We can then use DEFINITION 4.30 to find the contributing input 

elements. For the multiplication of a square 6 × 6-matrix the position transformation 

function is given by: 

�ÇÒÒ<
 (�, B) = ���, 1) … ��, 6)� ∪ ��1, B) … �6, B)� 

EXAMPLE 6.3  We consider the multiplication of a 2x2 matrix with a threshold of 1: 

M� = M� = �2∗ 0∗0∗ 2 �� = �2 × 2 + 0 × 0 2 × 0 + 0 × 20 × 2 + 2 × 0 0 × 0 + 2 × 2� = �4 00 4� 

 

We need the following information: 

�����	, 
� = ÍS6
, 6�,6�, 6U T , ³�1,1, 6
), �1,2, 6�),�2,1, 6�), �2,2, 6U)ºÎ 

�����	�, 
�� = Í³6
� , 6�� ,6�� , 6U� º , ³�1,1, 6
� ), �1,2, 6�� ),�2,1, 6�� ), �2,2, 6U� )ºÎ 

�ÇÒÒ<
 ��, B) = ���, 1), ��, 2)� ∪ ��1, B), �2, B)�  ? = �6
, 6�, 6�� 
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Now: 

­�'6
� * = 13 + 1 ã ­Ê��"Ë ∗ @Ê��"Ë	È�∈�:ê,:Ð,:Ñ�
= 14 (2 ∗ 1 + 1 ∗ 1 + 1 ∗ 1) = 1 

And: 

­�'6�� * = 13 + 1 ã ­Ê��"Ë ∗ @Ê��"Ë	È�∈�:ê,:Ð,:ö�
= 14 (1 ∗ 1 + 2 ∗ 1 + 1 ∗ 0) = 34 

 

And: 

­�'6�� * = 13 + 1 ã ­Ê��"Ë ∗ @Ê��"Ë	È�∈�:ê,:Ñ,:ö�
= 14 (1 ∗ 1 + 2 ∗ 1 + 1 ∗ 0) = 34 

And: 

­�'6U� * = 13 + 1 ã ­Ê��"Ë ∗ @Ê��"Ë	È�∈�:Ð,:Ñ,:ö�
= 14 (1 ∗ 1 + 1 ∗ 1 + 2 ∗ 0) = 24 

With a �ℎs�Xℎ�¢V = 1 we get ? = �6
� � and ��∗ = �4∗ 00 4�. With a 

�ℎs�Xℎ�¢V = �U we get ? = �6
� , 6�� , 6�� � and ��∗ = �4∗ 0∗
0∗ 4 �. 
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6.3.4 Multiple input elements / weight depends on distance 

In this part we consider a more complex transformation. We extend EXAMPLE 4.28 to 

create a transformation that blurs values in a vector using a window of size 5. 

EXAMPLE 6.4  Let the input vector be V = '5 4 6 3 8 7 5 6 4*. Now, 

the window at position � is given by ­�$V�­'�* ='� − 2 ⋯ � + 2*, so ­�$V�­'4* = '4 6 3 8 7*. The values 

at position � − 2 and � + 2 are taken once, the values at positions � − 1 and � + 1 are taken two times and the value at position � is 

taken three times, and the weighted average is calculated to produce 

a value in the output at position �. So, �(�®(�'4* = 
∗UÒ�∗ÁÒ�∗�Ò�∗�Ò
∗Â
Ò�Ò�Ò�Ò
 = U�Ã = 
ÁÃ ≈ 5,3. When the 

window falls partly out of the range of the input vector, the positions 

outside the vector are omitted. The complete output is: a� ='4,8 4,6 5 5,3 6,1 6,2 5,8 5,4 4,8*. 

The formula that produces an output value using a window of size 5 is given by: 

����Æ�[) =
ã �3 − V(®, �)� × ����"�

ó���",é)
�Zóìô�
,é)

ã �3 − V�®, �)�ó���",é)
�Zóìô�
,é)

   

­��ℎ ® = 29<
���Æ�[); ��" = 29��); $ = %����	%;  V�®, �) = |® − �| 
 

From this formula we can distill the inverse position transformation function to find the 

contributing input elements for an output element (DEFINITION 4.29).  

�ÇÒÒ<
 ��) = �max�1, � − 2) , … , min�$, � + 2)� 

We can then use the generic annotation transformation model to decide which output 

elements should be annotated (DEFINITION 6.5): 

­�'�Æ�[* =
ã ­Ê��"Ë ∗ @Ê��"Ë	È�∈�È�'	���*

ã ­Ê��"Ë	È�∈�È�'	���*
 

We base the contribution weights on the distance between input and output elements: 

­Ê��"Ë = 3 − V �29<
���"�, 29<
���Æ�[)� 



Chapter 6. Propagation of Annotations  97 

 

 

EXAMPLE 6.5  We consider the case from EXAMPLE 6.4 and assume the following: 

�����	, 
�= ��/
, /�, /�, /U, /À, /Á, /Â, /�, /Ã�,��1, /
), �2, /�), �3, /�), �4, /U), �5, /À), �6, /Á), �7, /Â), �8, /�), �9, /Ã)�) 

�����	�, 
��= ��/
� , /�� , /�� , /U� , /À� , /Á� , /Â� , /�� , /Ã� �,��1, /
� ), �2, /�� ), �3, /�� ), �4, /U�), �5, /À� ), �6, /Á� ), �7, /Â� ), �8, /�� ), �9, /Ã� )�) 

? = �/U, /Á� 

We can now calculate ?�. First we calculate ��"'/�� * using DEFINITION 

4.30:  

��"'/�� * = S��" ∈ ����	Ì29<
���"� ∈ �ÇÒÒ<
 �29<
��/�� )�T  

, where �ÇÒÒ �2]<
��/�� )� = �ÇÒÒ�2) = �max�1, � − 2) , … , min�$, � + 2)� =�max�1,2 − 2) , … , min�9,2 + 2)� = �1,2,3,4� 

From here we know that ��"'/�� * = �/
, /�, /�, /U�.  

­�'/�� *
= �­'/
* ∗ @'/
*) + �­'/�* ∗ @'/�*) + �­'/�* ∗ @'/�*) + �­'/U* ∗ @'/U*)­'/
* + ­'/�* + ­'/�* + ­'/U*
= �2 ∗ 0) + �3 ∗ 0) + �2 ∗ 0) + �1 ∗ 1)2 + 3 + 2 + 1 = 18 

We can calculate the annotation weights for all elements: 

ø0 18 29 49 49 49 29 18 0ù 

 

on the basis of a threshold three elements in the output get 

annotated:  

?� = �/U� , /À� , /Á� � 
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6.3.5 Multiple input elements / weight depends on locality 

In the previous cases the weight was used to compare contributing input elements. 

When we use weights based on the distance, the weights have no absolute meaning. 

They cannot be compared to weights in other cases. Because the weights are not 

normalized, the total result needs to be normalized. Locality is a means of normalizing 

distance, as the distance is measured against the maximum distance possible in that 

data structure. Here we show how locality can be used as a weight. We use the case 

from EXAMPLE 6.4 only this time we base the weight on the locality instead of the 

distance. 

 The new annotation formula is given by: 

­�'�Æ�[* = 1$ ã ­Ê��"Ë ∗ @Ê��"Ë	È�∈�È�'	���*
 

The weight is now based on the locality of the input and output elements: 

­Ê��"Ë = ¢�9���", �Æ�[� = ∅(V) − V�9���", �Æ�[�
∅(V)  

 ­ℎ�s� ∅(V) = %����	%; V�9���", �Æ�[� = %29<
���"� − 29<
���Æ�[)% 
Since the weights are now all in the range of [0..1] we can simply normalize the result by 

dividing by $. 

EXAMPLE 6.6  Using the above case we can now calculate the annotation values for 

each output element. We describe the full calculation for one output 

element: ?$$��@��V(/À� ). The diameter is given by the size of the 

vector: ∅(V) = %����	% = 9. 

­�'/À� * = 15 ∗ Í79 ∗ 0 + 89 ∗ 1 + 99 ∗ 0 + 89 ∗ 1 + 79 ∗ 0Î = 15 ∗ 169 = 1645 

For all the output elements the annotation levels are given by:  

ø0 736 745 1645 1645 1645 745 736 0ù 

The annotated output is given by ?� = �/U� , /À� , /Á� � which in this case 

is the same as when we used the distance as the weight. 
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6.4 Conclusion 

In this final part of the chapter we will reflect on the results that try to answer the 

research questions. In this chapter we have addressed the following research question: 

RESEARCH QUESTION 4 How can annotations in a data structure be propagated? 

In order to understand how annotations could be propagated, it necessary to know 

annotations can be made in a data structure. We have shown for each type of 

elementary data structure how annotations can be made: at the level of elements, 

relations, values and the data structure as a whole.  

In the second part of this chapter we have presented a model for transforming 

annotations at the element-level. When the transformation is of the structure-from-

structure type, the annotations can be propagated using the position transformation 

function. We have shown for five different scenarios how the results from Chapter 4 can 

be used in the model presented in this chapter. In the first scenario there is only one 

contributing input element and the output element is simply annotated when the 

contributing input element is annotated. In the second scenario there is more than one 

contributing input element and the output is annotated when more than a certain share 

of the contributing input elements is annotated. In the third case the contributing input 

elements are given a weight of 1 or 2. In the fourth scenario the weight depends on the 

distance between contributing input element and output element. The last scenario 

shows how in addition to the results from Chapter 4, the results from Chapter 5 can be 

used in the annotation transformation model presented in this chapter. In this scenario 

the weight depends on the locality of the contributing input element and output 

element.  

In the next chapter we will validate the annotation model presented in this chapter by 

applying the results to three non-trivial real-life examples. 

 





 

 

 

7 

Use Cases 

In the chapters 3 – 6 we have provided definitions that can be used as building 

blocks to describe how annotations can be propagated in a work flow. We have 

given many trivial examples to show how these building blocks can be used. In 

this chapter we present three non-trivial cases distilled from scientific 

applications to show how the building blocks can be used in practice. 

7.1 Earth Remote Sensing 

Earth remote sensing is about gathering data using sensors positioned in the air. This 

can be done using planes, balloons and satellites. In this subchapter we focus on 

creating photographical maps using satellites. We present a use case from scientific 

literature that describes a possible work flow for the processing of the data produced by 

the satellites. This case is extended to create a practical example with complete 

specifications to which the annotation transformation model can be applied.  

We start by giving an overall description of the use case. We proceed to give an 

overview of the data structures used in the workflow, based on Chapter 3. Next we 

describe the transformations in the workflow using the definitions from Chapter 4. 

Finally we use these descriptions of the data structures and the transformations to 

describe the propagation of the annotations using the material from Chapter 6. 

7.1.1 Description 

SciDB is a data management system that works with very large scale array data [Sci11] 

and is still under development. In the early phase of the development process a few use 

cases were defined. One of these deals with earth remote sensing and imaging satellites 

in particular [Fre08]. The Landsat program has orbited multiple satellites of the type 

described in the SciDB use case, of which Landsat 7 is the most recent. The Landsat 7 

Science Data Users Handbook provides many details about this satellite and the data it 
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generates [Nasa11]. The satellite has a near polar orbit which ensures, in combination 

with the rotation of the earth, that the whole earth between 81 degrees north and 

south is covered. Figure 7.1 shows the orbit of the satellite. 

 

 

Figure 7.1: The orbit of Landsat 7 

The satellite scans the earth in lines from west to east while it moves along the track 

from south to north (and vice versa). These are called scan lines and are perpendicular 

to the ground track. A series of scan lines is called a swath [HDF08]. Figure 7.2 shows a 

satellite moving along its track.  

 

Figure 7.2: A satellite creating a swath by scanning the earth [HDF08] 
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Figure 7.3 shows the track of a swath. The ground track is approximately 185 km wide 

and is framed each 170 km. The exact size of the covered area depends on the 

resolution, which is 30 meter, so one pixel represents an area of 30x30 meter. The 

resulting image swath consists of 6000 scan lines of 6600 pixels each. The total area 

covered by an image swath therefore has a width of 198m and a length of 190m 

(6000x30m) [Nasa11, p.49]. The satellite orbits the earth just over 14 times a day. Each 

orbit it has moved 2752km east with respect to the previous orbit, which creates a large 

gap between two orbits. Each day its position with respect to the ground moves the 

width of one swath and in 16 days it covers the whole area between the tracks of two 

consecutive orbits as is shown in Figure 7.4.  

 

  
Figure 7.3: Swath track [Nasa11, p.38] Figure 7.4: Swath Pattern [Nasa11, p.38] 

 

The earth rotates while the satellite moves from pole to pole. This causes the satellite to 

move from east to west with respect to the ground. The produced swaths are therefore 

skewed. Also the swaths have overlap (ranging from 7% on the equator and 80% near 

the poles) because the earth is a globe To produce proper image maps, these swaths 

need to be projected [Nasa11, p.102]. 

The projection algorithm is quite complex and the used data structures are quite large, 

therefore we simplify the workflow that generates image from satellite data. Figure 7.5 

shows the workflow. A box represents a processing element (source, transformation and 

sink). A circle represents a data structure. 
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Figure 7.5: An earth remote sensing workflow 

Although a real scan line is 6600 pixels wide and a real image swath 6000 scan lines, we 

consider scan lines of 4 pixels and swaths of 7 scan lines. Our workflow produces a 

projected image from two swaths, so 14 scan lines are needed.  The first processing 

element is the sensor, which is of the source type, which generates 14 scan lines. Each 

consecutive 7 scan lines are framed into a swath. This is transformation is performed by 

the processing element T1. The processing element T2 combines two swaths to create 

an image which is still skewed. The skewed image is unskewed by T3 and finally T4 

selects the right portion of the unskewed image to produce a usable image which is 

consumed by a sink. We ignore here that real swaths need projection and contain 

overlap. The only image processing we consider is the unskewing. Figure 7.6 shows how 

the workflow looks when the data is viewed as colored pixels. 

 

Figure 7.6: The transformation of the data produced by the satellite 
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7.1.2 Data structures 

All the data structures used in the workflow are image data. Essentially they are treated 

as one and two-dimensional arrays, so we choose to model them as vectors and 

matrixes of pixels instead. We use the definitions from Chapter 3 to give a formal 

description for each of the five data structures. 

• Data Structure 1: The satellite captures 14 scan lines of 7 pixels each. We 

number each of the scan lines 1 ≤ � ≤ 14 and each pixel within a scan line 1 ≤ B ≤ 4. Pixel number B in scan line number � is then defined as (using the 

definition of a vector, DEFINITION 3.10): 

aé�8	�'�*'B* � ��s, ², K�, ��1, s), �2, ²), �3, K)�, �) ­��ℎ �: �s, ², K� → �0 … 255� 

We model a scan line as a vector of pixels (DEFINITION 3.10). The number � 

denotes the number of the scan line, which we will consider to be the number of 

the input source (DEFINITION 4.33). 

a���"��"	'�*� �p/
� , … , /U�q, p�1, /
��, … , �4, /U��q, p�/
� , aé�8	�'�*'1*�, … , �/U� , aé�8	�'B*'4*�q� 

• Data Structure 2: The 14 scan lines are combined into swaths of 7 scan lines 

each. The result is a 7¼4-matrix. We number the swaths: 1 ≤ � ≤ 2. The matrix 

that represents swath number � is given by: 

����[\'�* = ^ p6U×��<
)ÒA× %1 ≤ � ≤ 7, 1 ≤ B ≤ 4q,p��, B, 6U×��<
)ÒA× )%1 ≤ � ≤ 7, 1 ≤ B ≤ 4q,� _ 

• Data Structure 3: The two swaths are joined to create an image. Empty cells are 

added which are needed in the next processing step. The result is a 7¼14-

matrix: 

��:��	 = ^ p6
U×��<
)ÒA%1 ≤ � ≤ 7, 1 ≤ B ≤ 14q,p��, B, 6
U×��<
)ÒA)%1 ≤ � ≤ 7, 1 ≤ B ≤ 14q,� _ 

• Data Structure 4: The previous data strcture is unskewed producing a new 

image: 

��:��	 = ^ p6
U×��<
)ÒA%1 ≤ � ≤ 7, 1 ≤ B ≤ 14q,p��, B, 6
U×��<
)ÒA)%1 ≤ � ≤ 7, 1 ≤ B ≤ 14q,� _ 
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• Data Structure 5: The unskewed image still contains a lot empty pixels. The final 

data structure is produced by selecting a rectangular range of pixels: 

��:��	 = ^ p6Á×��<
)ÒA%1 ≤ � ≤ 4, 1 ≤ B ≤ 6q,p��, B, 6Á×��<
)ÒA)%1 ≤ � ≤ 4, 1 ≤ B ≤ 6q,� _ 

 

The following table gives an overview of the properties of the five data structures: 

 DS1 DS2 DS3 DS4 DS5 

Type Vector matrix matrix matrix Matrix 

Amount 14 2 1 1 1 

Size 7 7x4 7x8 7x14 4x6 

Ordering Ordered Ordered Ordered Ordered Ordered 

Dimension 1 2 2 2 2 

Relation based n/a n/a n/a n/a n/a 

Hierarchical n/a n/a n/a n/a n/a 

 

7.1.3 Transformations 

In this part we describe the processing elements that perform a transformation on the 

data structures. There are four processing elements of the transformation type. We use 

the definitions of Chapter 4 to describe the relation between input and output 

elements. These descriptions will in the next part of the chapter be used to show how 

annotations can be propagated. 

• Transformation 1: The first transformation is of the join type as described in the 

introduction of this chapter. T1 consists of two separate sub transformations, 

T1[1] and T1[2], where each transformation takes 7 scan lines and converts it 

into a swath. The output swats are numbered, which are the numbers in 

brackets. For each output swath �, the inverse position transformation function 

(DEFINITION 4.23) is given by: 

�Ç<
'�*��, B) = B 

For each swath seven different input data structures are used. This means that 

the contributing input elements for two different output elements may come 

from different input data structures. This is a one-to-one $-ary transformation, 

of the join type as described in Chapter 4. For these type of transformations , 

the input number can directly be calculated on the basis of the output element 

(DEFINITION 4.34). For swath � this input number function is given by: 

�$#'�*��Æ�[) = 7 × (� − 1) + � with ��, B) = 2P<
'�*��Æ�[) 
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We use the input number function to find the input elements that contribute to 

an output element of the swath ����[\'�* in this one-to-one $-ary 

transformation: 

��"'�*'�Æ�[*= S��" ∈ ����	'ℎ*Ìℎ = �$#'�*��Æ�[) ∧ ��" = 29'ℎ* Í�Ç<
'�* �2P<
�'�*��Æ�[)�ÎT 

We can now find for each output element its contributing input element. For 

example ��"'1*'6Á
*. First we need to know the position of the output element: 2P<
�'1*�6Á
) = �2,2). Using the inverse position transformation function we 

can find the position of the input element: �Ç<
'1*�2,2) = 2. The input number 

of the contributing data structure is given by: �$#'1*�6Á
) = 2. The contributing 

input element can be found using: 29'2*�2) = /��. 

The same calculations can be done for each output element. The following table 

shows four examples and the calculations for all output elements are given in 

Appendix B.1. 

� ���  l!<"�'�*���� )= �#, $) 

%&<"'�*�#, $)= ' 

#n#'�*���� )= n 

lf'n*�') 

1 6Á
�
  2P<
�'1*�6Á
) = �2,2) �Ç<
'1*�2,2)= 2 

�$#'1*�6Á
) = 2 29'2*�2)= /�� 

1 6�U
 �
 2P<
�'1*�6�U
 )= �6,4) 

�Ç<
'1*�6,4)= 4 

�$#'1*�6�U
 )= 6 

29'6*�4)= /UÁ 

2 6���
 2P<
�'2*�6��) = �2,4) �Ç<
'2*�2,4)= 4 

�$#'2*�6��) = 9 29'9*�4) = /UÃ 

2 6
U� �
 2P<
�'2*�6
U� )= �4,2) 

�Ç<
'2*�4,2)= 2 

�$#'2*�6
U� )= 11 

29'11*�2)= /�

 

 

• Transformation 2: The second transformation is also a join. The two data 

structures that form the output of T1 are joined to produce one matrix. Extra 

columns are added which are needed by T3. The inverse position transformation 

function for T2 is given by (DEFINITION 4.23): 

�Ç<
��, B) = ��, 1 + �B − 1 6�V 4)�, ª�s B ≤ 8 

From this function it follows that the row of the output element is the same as 

the row of its contributing input element. In the output matrix the two input 

matrixes are joined from left to right, such that the first four elements in a row 

in the output matrix correspond to the four elements in a row of the first input 

matrix. The second four elements in a row of the output matrix correspond to 

the four elements in a row of the second input matrix. For example the fifth 

element of the fourth row of the output matrix corresponds to the first element 

of the fourth row of the second input matrix. The elements in column 9-14 are 

added extra, so there are no corresponding input elements. For this reason the 
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function is only defined for B ≤ 8. To find the contributing input data structure 

for a given output element we define the input number function (DEFINITION 

4.34): 

�$#��Æ�[) = (AU) where (�, B) = 2P<
��Æ�[) 

We use the input number function to find the input elements that contribute to 

an output element of the matrix ��:��	 in this one-to-one $-ary 

transformation: 

��"'�Æ�[*= S��" ∈ ����	'�*Ì� = �$#��Æ�[) ∧ ��" = 2P'�* Í�Ç<
 �2P<
���Æ�[)�ÎT 

For example, we can find the contributing input element of 6
Á� . First we need 

to find its position: 2P<
�(6
Á� ) = (2,2). The position of the contributing input 

element is: �Ç<
(2,2) = (2,2) and the number of the input number is: �$#�6
Á� ) = 1. The contributing output element is now given by 2P'1*�2,2) =6Á
. The following table shows four examples (full calculations are given in 

Appendix B.1): 

���  l!<"����� ) = �#, $) %&<"�#, $) = �', *) #n#���� ) = n l!'n*�', *) 6
Á�  2P<
��6
Á� ) = �2,2) �Ç<
�2,2) = �2,2) �$#�6
Á� ) = 1 2P'1*�2,2)= 6Á
 6�À�  2P<
��6�À� ) = �2,11) �Ç<
�2,11) $�� V�ª�$�V 

n/a n/a 

6ÂU
�  2P<
��6ÂU� ) = �6,4) �Ç<
�6,4) = �6,4) �$#�6ÂU� ) = 1 2P'1*�6,4)= 6�U
  6���  2P<
��6��� ) = �2,8) �Ç<
�2,8) = �2,4) �$#�6��� ) = 2 2P'2*�2,4)= 6�� 6U��  2P<
��6UÀ� ) = �4,6) �Ç<
�4,6) = �4,2) �$#�6U�� ) = 2 2P'2*�4,2)= 6
U�  

 

• Transformation 3: The third transformation skews the image. This means that 

almost all elements are moved. This transformation takes only one input and is 

reversible, so we can defined both the position transformation function 

(DEFINITION 4.21) and its inverse (DEFINITION 4.23): 

�Ç��, B) = ��, 1 + ��6 − � + B) 6�V 14�� 

�Ç<
��, B) = ��, ��B − 8 + �) 6�V 14� + 1� 

Starting from the bottom each row is moved one position more to the right. 

Elements that ‘fall of the map’ are added to beginning of the row. We find the 

contributing input elements using DEFINITION 4.24. For example the contributing 

input element for output element 6U��  is given by: 



Chapter 7. Use Cases  109 

 

 

��"'6U�
� * = S��" ∈ ����	Ì��" = 2P Í�Ç<
 �2P<
��6U�� )�ÎT 

First we calculate the position: 2P<
��6U�� ) = �4,9). The position of the 

contributing input element is then given by: �Ç<
�4,9) = �4, ��9 − 6 +4) 6�V 13� − 1� = �4,6). 2P�4,6) = 6UÀ, so the contributing input element 

then is: ��"'6U�
� * = �6UÀ�. The following table shows four examples (full 

calculations are given in Appendix B.1): 

���  l!<"����� ) = �#, $) %&<"�#, $) = �', *) l!�', *) 6�
�  2P<
��6�
) = �2,7) �Ç<
�2,7) = �2,2) 2P�2,2) = 6
Á 6
Â�  2P<
��6
Â) = �2,3) �Ç<
�2,3) = �2,11) 2P�2,11) = 6�À 6ÂÀ�   2P<
��6ÂÀ) = �6,5) �Ç<
�6,5) = �6,4) 2P�6,4) = 6ÂU 6�Â�  2P<
��6�Â) = �2,13) �Ç<
�2,13) = �2,8) 2P�2,8) = 6�� 6À
�   2P<
��6À
) = �4,9) �Ç<
�4,9) = �4,6) 2P�4,6) = 6U� 

 

• Transformation 4: The last transformation in the workflow makes a rectangular 

selection of the pixels in the centre. This is a one-to-one non-reversible 

transformation. The inverse position transformation function is given by: 

�Ç<
��, B) = �� + 2, B + 4), ª�s 1 ≤ � ≤ 4,1 ≤ B ≤ 6 

We find the contributing input elements using DEFINITION 4.24. For example the 

contributing input element for output element 6

�  is given by: 

��"'6

� * = S��" ∈ ����	Ì��" = 2P Í�Ç<
 �2P<
��6

� )�ÎT 

We start by calculation the position in the output matrix: 2P<
��6

� ) = �2,5). 

The position in the input matrix is then: �Ç<
�2,5) = �2 + 2,5 + 4) = �4,9). 

Finally, 2P�4,9) = 6À� so the contributing input element is: ��"'6

� * = �6À��. 

The following table shows two examples (the complete calculation is shown in 

Appendix B.1): 

���  l!<"����� ) = �#, $) %&<"�#, $) = �', *) l!�', *) 6

�   2P<
��6

) = �2,5) �Ç<
�2,5) = �4,9) 2P�4,9) = 6À� 6
Ã�  2P<
��6
Ã) = �4,1) �Ç<
�4,1) = �6,5) 2P�6,5) = 6ÂÀ 

 

  



110  Chapter 7. Use Cases 

In Chapter 4 we list five properties of data transformations. The following table lists 

these properties for each transformation. From this table it becomes clear that most 

transformations in the workflow have the same properties. 

 T1 T2 T3 T4 

Structure 

dependency 

� � � � 

Data dependency - - - - 

Element 

dependency 
- - - � 

Element cardinality 1: 1 1: 1 1: 1 1: 1 

Relation cardinality 1: 1 1: 1 1: 1 1: 1 

Reversible Yes Yes Yes No 

Invariance § § § § 

Data/structure 

coherence 
    

Transformation 

formula 
� = ����� � = ����� � = ����� � = ����, ���� 

 

7.1.4 Annotations 

We assume that there are some annotations in the data structures that are generated 

by the sources. The data structures that are generated by the source are the 14 vectors V'1* … V'14*. Each vector data structure has its own annotation set: ?'1* … ?'14*. We 

assume that the annotation sets have the following values: ?'1* = ∅, ?'2* =�/���, ?'3* … ?'10* = ∅, ?'11* = �/�

�?'12* … ?'14* = ∅. We now show for each 

transformation how the annotations can be propagated. 

• Transformation 1: This transformation is one-to-one so we can use the 

annotation formula from Chapter 6.3.1:  

­�'�Æ�[* = @ �29'�$#��Æ�[)* Í�Ç<
 �2P<
�(�Æ�[)�Î� 

­ℎ�s� @Ê��"Ë = £1, ��" ∈ ?'�$#��Æ�[)* 0, ��" ∉ ?'�$#��Æ�[)* ¦ 
To find out if an output element must be annotated, we need to find out 

whether its contributing input element is annotated or not. In the previous part 

of this chapter we calculated for each output element the contributing input 

element. We now need to know if the contributing input element is annotated. 

We do this by retrieving the annotation set of the contributing input data 

structure. For the output element 6Á
�
 the contributing input element is /��. The 

annotation set of the contributing data structure is given by ?'�$#��Æ�[)* =?'2* = �/���. Since the contributing input element is part of the annotation set, 

the output element must be annotated as well. The following table shows this 

calculation for four examples. 
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� ���  ��" �$#��Æ�[) ?'�$#��Æ�[)* @'��"* �Æ�[ ∈ ? 

1 6Á

�

 /�� 2 ?'2* = �/��� 1 �s(� 

1 6�U
 �
 /UÁ 6 ?'6* = ∅ 0 ª@¢X� 

2 6���
 /UÃ 9 ?'9* = ∅ 0 ª@¢X� 

2 6
U� �
 /�

 11 ?'11* = �/�

� 1 �s(� 

 

Appendix B.1 shows the calculation for each output element. From this table we 

find that the two annotation sets in the output are formed by: 

?�'1* = p6Á
�q; ?�'2* = p6
U� �q 

• Transformation 2: This transformation is a join just as T1. The annotations in the 

output are also calculated using the same formula. For four output elements this 

gives the following result: 

���  #n#���� ) = n �#n ?'�$#��Æ�[)* @'��"* �Æ�[ ∈ ? 6
Á�  1 6Á
 ?'1* = �6
Á� 1 �s(� 

6�À�  n/a n/a n/a 0 ª@¢X� 

6ÂU�  1 6�U
  ?'1* = �6
Á� 0 ª@¢X� 6���  2 6�� ?'2* = �6
U� � 0 ª@¢X� 6U��  2 6
U
  ?'2* = �6
U� � 1 �s(� 

 

From the complete listing in Appendix 3.1 we retrieve the output annotation set: 

?� = �6
Á� , 6U�� � 

• Transformation 3: Since there is only one input data structure, there is no need 

to find the contributing annotation set. Output elements are simply annotated 

when the contributing input element is annotated. 

���  �#n g m'�#n* �Æ�[ ∈ ? 6�
�  6
Á ? = �6
Á, 6U�� 1 �s(� 

6
Â�  6�À ? = �6
Á, 6U�� 0 ª@¢X� 

6ÂÀ�   6ÂU ? = �6
Á, 6U�� 0 ª@¢X� 

6�Â�  6�� ? = �6
Á, 6U�� 0 ª@¢X� 

6À��   6U� ? = �6
Á, 6U�� 1 �s(� 

 

From the complete listing in Appendix 3.1 we retrieve the output annotation set: 

?� = �6�
� , 6À
� � 
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• Transformation 4: Just as with T3, output elements are annotated when their 

contributing input element is annotated. 

���  �#n g m'�#n* �Æ�[ ∈ ? 6

�   6À
 ? = �6�
, 6À
� 1 �s(� 

6
Ã�  6ÂÀ ? = �6�
, 6À
� 0 ª@¢X� 

 

From the complete listing in Appendix 3.1 we retrieve the output annotation set: 

?� = �6

� � 

7.1.5 Conclusion 

For this use case it was possible to apply the annotation without difficulties. This is 

mainly due to the data structures and transformations used. All data structures are of a 

similar type: either vector or matrix. The transformations are all one-to-one so we had 

to find only one contributing input element for each output element. The output 

element would then be annotated simply when its contributing input element was 

annotated. Therefore picking the right threshold was not an issue here. There was no 

transformation of the values, so it was no problem that the annotation model does not 

take the values into account. Finally we conclude that the annotation model is fully 

applicable to this use case. 
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7.2 Temperature sensor network 

Environmental sensor networks are used to monitor the environment. These sensor 

networks may be deployed on a large scale to cover a large geographic area, for 

example weather stations. They may also be deployed on a local scale, where they 

normally measure relatively straightforward generic properties such as temperature and 

humidity [HM06]. An example of such a local sensor network is deployed in the Antarctic 

to monitor microclimates on earth, to mimic environmental circumstances on Mars 

[DCJ+03]. This sensor network consists of 14 nodes that each measure internal 

temperature, external temperature and humidity. The nodes are connected to each 

other through a wireless network. One node functions as the mother node, which is 

attached to a laptop, and continuously downloads data from the other nodes. 

We use this application to derive a practical use case. Besides collecting the data we add 

an extra step that creates a color map using the temperature readings by interpolation 

of the data. We proceed with describing the workflow in detail. Next we show how the 

data structures, transformations, and the propagation of annotations can be modeled 

using the definitions from Chapters 3–6. 

7.2.1 Description 

The case here presented is a simplified version of real life applications. The sensor 

network in the case consists of three sensors that each produces a temperature 

measurement. The locations of the sensors are converted into points on a map. A grid is 

placed over this map to move the points to the nearest point on the grid. Now the 

positions of the points on the grid can be used to put the temperature values in a 

matrix. The empty cells in the matrix are completed using interpolation on the three 

temperature measurements. Finally the values are converted into color codes to 

produce a color map. Figure 7.7 outlines the workflow of the case. 

 

Figure 7.7: Workflow of the temperature sensor network 
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The three processing steps from the workflow: 

• The first processing is done by the three sources, which are the sensors. Each of 

them have a fixed location and generate streams of temperature readings. A 

temperature reading consists of a real number value. The following table shows 

the number of the sensor, its position, and the temperature value that is 

produced: 

Sensor Location Temp 

1 52.427, 5.581 28,0 

2 52.429, 5.616 27,0 

3 52.394, 5.592 25,0 

• The sensors are placed at specific coordinates. We want to put the data in a 

matrix in such a way that the position in the matrix resembles the real position. 

This means that we need to discretize the positions. This is done using a grid. 

Figures 7.8 shows the original map and Figure 7.9 show the grid that we want 

the points to be placed on. The dividing lines in figure 7.10 are used to move the 

points onto the grid, which is shown in figure 7.11. 

 

 
Figure 7.8: A map of the area 

 
 

Figure 7.9: The grid 

 

Figure 7.10: Dividing lines 
 

Figure 7.11: Points moved onto grid 
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The grid in figure 7.11 consists of 5 × 5 points. We let each point correspond to a 

cell in a 5 × 5 matrix. Data from sensor number 1 is then placed in cell �1,1) 

which is the top left cell. Data from sensor number 2 is then placed in cell �1,5) 

and data from sensor number 3 is placed in cell �5,2). This gridding may be part 

of the transformation. In that case the location of a sensor must also form part 

of the input. We choose to keep the position of the sensors in this case fixed, so 

the data always is placed in cells �1,1), �1,5) and �5,2). The output of this 

processing element is: 

CDD
DE28,0 □ □ □ 27,0□ □ □ □ □□ □ □ □ □□ □ □ □ □□ 25,0 □ □ □ GHH

HI
 

• The matrix has now three cells that contain a value, while the other cells are still 

empty. The values of the empty cells are calculated using interpolation. The 

interpolation method that we use is called Inverse Distance Weighting (IDW) 

[She68]. The method uses a set of given values to interpolate a new value. It 

differs per implementation which and how many given values are used to 

calculate an interpolated value. In our case there are three sensors and hence 

three given values. For each of the empty cells in the matrix, we will use all 

three given values as input for the interpolation algorithm. An interpolated 

value can be calculated using: 

(�,) = ã ­�(,) ∗ (�
"

�Z


ã ­�(,)
"

�Z


 

In this formula, ((,) is the interpolated value at point , and (�  are the 

input values. In this case $ = 3 because we have three input values. The 

influence of an input value on the interpolated value is inversely related 

to the distance from the input point to the interpolated point. This weight 

is ­�(,) is defined as: 

­�(,) = 1
V(,, ,�)é 

Here V(,, ,�) is the distance from the known input point ,�  to the unknown 

point ,. Specifically ¼
 = (1,1); ¼� = (1,5); ¼� = (5,2). The choice for ® 

determines the influence of far nodes on the interpolation. We use ® = 2 

because that presents the easiest calculation of the distance, while it also gives 

satisfactory empirical results [She68]. For ® = 2 we get the following distance 

based weight (based on Euclidean distance, DEFINITION 5.1): 

V�,, -)� = |�¼
 − Ü
)� + �¼� − Ü�)�| 
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The weights 1-3 for point , at position �2,2) to the three input cells are: 

­
�¼) = 
|��<
)ÐÒ��<
)Ð| = 
�; ­��¼) = 
|��<
)ÐÒ��<À)Ð| = 

»; ­��¼) =

|��<�)ÐÒ��<À)Ð| = 
Ã. 

The interpolated value is then: 

(�¼) = 12 ∗ 28,0 + 110 ∗ 27,0 + 111 ∗ 25,012 + 110 + 19 ≈ 27,4 

After the interpolation is performed for all unknown values we get: 

CDD
DE28,0 27,7 27,2 27,0 27,027,7 27,4 27,0 26,9 27,026,7 26,4 26,4 26,6 26,725,6 25,4 25,6 26,0 26,425,2 25,0 25,2 25,7 26,1GHH

HI
 

• The last processing step involves transforming the matrix into a picture. Each 

value is rounded to the next integer:  

CDD
DE28 27 27 27 2727 27 27 26 2726 26 26 26 2625 25 25 26 2625 25 25 25 26GHH

HI
 

All values are in the range [25-28]. We assign to each value from the range a 

different color. There are four values in the range, so we need four colors. Each 

cell is transformed into a pixel of the corresponding color. A legend is added 

which of a border and numbers. The matrix has small size because of the 

practical nature of this case. The resulting image is therefore much smaller in 

reality. This means that we cannot add a real legend, so we represent it with 

single black and gray pixels. The (enlarged version) of the resulting image is: 

28 28 27 27 27

28 27 27 27 27

27 26 26 27 27

26 25 26 26 26

25 25 25 26 26

 

In the rest of this subchapter we will show how the data products, transformations and 

propagation of the annotations can be modeled using the definitions from Chapters 3 – 

6. The locality concept from Chapter 5 is specifically involved in this case. 
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7.2.2 Data structures 

In this part of the chapter we give a description of all the data structures used in the 

workflow. We use the definitions of Chapter 3. 

• Data Structure 1: The data structures used in the first processing step are 

created by the sources (the temperature sensors). The three sources all produce 

single values, which we model as vectors of size 1. The number of the vector is 

the number of the input source. V'1* = '28,0* = ��/

�, ��1, /

)�, �/

, 28,0�) V'2* = '27,0* = ��/
��, ��1, /
�)�, �/
�, 27,0�) V'3* = '25,0* = ��/
��, ��1, /
�)�, �/
�, 25,0�) 

• Data Structure 2: The gridding and joining of the three input vectors results in a 

matrix with empty cells: 

M =
CDD
DE28,0 □ □ □ 27,0□ □ □ □ □□ □ □ □ □□ □ □ □ □□ 25,0 □ □ □ GHH

HI

= �p6À×��<
)ÒA%1 ≤ �, B =< 5q, p��, B, 6À×��<
)ÒA�%1 ≤ �, B =< 5q,��6
, 28,0), �6À , 27,0), �6��, 25,0)�� 

• Data Structure 3: The completed matrix has the same structure as the input 

matrix: 

M =
CDD
DE28,0 27,3 27,0 26,9 27,027,2 27,0 26,8 26,8 26,826,7 26,5 26,5 26,6 26,726,1 25,9 26,1 26,3 26,525,8 25,0 25,8 26,2 26,4GHH

HI

= �p6À×��<
)ÒA%1 ≤ �, B =< 5q, p��, B, 6À×��<
)ÒA�%1 ≤ �, B =< 5q, �� 

• Data structure 4: The final output data structure is a matrix that can be used to 

display a black-and-white image with a border and a legend on the screen. We 

represent the colors as integer values in the range [0..255]. The result is the 

matrix: 

M =
CD
DD
DD
E180 0 242 242 216 216 216180 0 242 216 216 216 216180 0 216 165 165 216 216180 0 165 127 165 165 165180 0 127 127 127 165 165180 0 0 0 0 0 0180 180 180 180 180 180 180GH

HH
HH
I

= �p6À×��<
)ÒA%1 ≤ �, B =< 7q, p��, B, 6À×��<
)ÒA�%1 ≤ �, B =< 7q, �� 
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7.2.3 Transformations 

In this part we describe the three transformations that are performed in the 

temperature sensor workflow.  

• Transformation 1: The first transformation involves placing the values of three 

size 1 input vectors at the appropriate position in a matrix. This transformation 

is a join as presented in the introduction of this chapter. There are three input 

vectors. Each vector contains only one element. Each element is placed at a 

fixed position in the output matrix. This position depends on the number of the 

input vector �. The position transformation function (DEFINITION 4.21) is given by: 

�Ç'�* = ��1,1), � = 1�5,2), � = 2�1,5), � = 3¦ 
Most of the elements in the output matrix are empty. For three elements 

there is a contributing input element, each from a different input source. The 

inverse position transformation function (DEFINITION 4.23) is given by: 

�Ç<
��, B)
= ³1, ��, B) = �1,1) �s ��, B) = �5,2) �s ��, B) = �1,5)

($V�ª�$�V, �¢X� ¦ 
The input source number depends on the position of the output element: 

�$#��Æ�[) =
{|}
|~1, 2P<
(�Æ�[) = (1,1)2, 2P<
(�Æ�[) = (5,2)3, 2P<
(�Æ�[) = (1,5)
($V�ª�$�V, �¢X�

¦ 

We use the input number function to find the input elements that contribute to 

an output element in a one-to-one $-ary transformation (DEFINITION 4.36): 

��"'�Æ�[*= S��" ∈ ����	'�*Ì� = �$#��Æ�[) ∧ ��" = 29'�* Í�Ç<
 �2P<
���Æ�[)�ÎT 

We can now find for each output element its contributing input element. For 

example ��"'6
� *. First we need to know the position of the output element: 2P<
��6
� ) = �1,1). Using the inverse position transformation function we can 

find the position of the input element: �Ç<
�1,1) = 1. The input number of the 

contributing data structure is given by: �$#�6
� ) = 1. The contributing input 

element can be found using: 29'1*�1) = /

. 
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The same calculations can be done for each output element. The following table 

shows four examples and the calculations for all output elements are given in 

Appendix B.2.  

���  l!<"����� ) = �#, $) %&<"�#, $) = ' #n#���� ) = n lf'n*�') 6
�  2P<
��6
) = �1,1) �Ç<
�1,1) = 1 �$#�6
) = 1 29'1*�1)= /

 6À�  2P<
��6À) = �1,5) �Ç<
�1,5) = 1 �$#�6À) = 2 29'2*�1)= /
� 6���  2P<
��6��) = �5,2) �Ç<
�5,2) = 1 �$#�6��) = 3 29'3*�1)= /�
 6�À�  2P<
��6�À) = �5,5) �Ç<
�5,5) $/@ �$#�6�À) $/@ $/@  
 

• Transformation 2: The second transformation involves interpolating the 

unknown values on the basis of the three known values. For the known values 

the contributing input element is the element at the same position in the input 

matrix. For each unknown value the set of contributing input elements is the 

same. This is reflected in the inverse position transformation function  

(DEFINITION 4.29): 

�ÇÒÒ<
 ��, B)
= ³���, B)�, ��, B) = �1,1) �s ��, B) = �5,2) �s ��, B) = �1,5)��1,1), �1,5), �5,2)�, �¢X� ¦ 

We use DEFINITION 4.30 to find the contributing input elements: 

��"'�Æ�[* = S��" ∈ ����	Ì2P<
���"� ∈ �ÇÒÒ<
 �2P<
���Æ�[)�T 

  



120  Chapter 7. Use Cases 

The following table shows four examples (the complete listing can be found in 

Appendix B.2): 

���  l!<"����� ) = �#, $) %&ÒÒ<" �#, $) /#n'��� * 6
�  1,1 ��1,1)� �6
� 6U�  1,4 ��1,1), �1,5), �5,2)� �6
, 6À, 6��� 6���  5,2 ��5,2)� �6��� 6�À�  5,5 ��1,1), �1,5), �5,2)� �6
, 6À, 6��� 

 

• Transformation 3: The final transformation is for a large part data-only. The 

other part consists of moving all elements from the input to the right, and 

adding new elements to the left. This is reflected in the position transformation 

function and its inverse: 

�Ç��, B) = ��, B + 2) 

�Ç<
��, B) = ³��, B − 2), 1 ≤ 1 ≤ 5,3 ≤ B ≤ 7
($V�ª�$�V, �¢X� ¦ 

The inverse function is only defined for those elements that come directly from 

the input. Using DEFINITION 4.24 we can find the contributing input elements: 

��"'�Æ�[* = S��" ∈ ����	Ì��" = 2P Í�Ç<
 �2P<
���Æ�[)�ÎT 

The following table shows for four elements what the contributing input 

elements are: 

���  l!
<"(��� ) = (#, $) %&

<"(#, $) = (', *) �#n 6
�  1,1 n/a n/a 6À�  1,5 1,3 6� 6
Â�  3,3 3,1 6

 6���  6,3 n/a n/a 
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In Chapter 4 we have listed five properties of data transformations. The following table 

lists these properties for each transformation. From this table it becomes clear that 

most transformations in the workflow have the same properties. 

 T1 T2 T3 

Structure dependency � � � 

Data dependency - §, � § 

Element dependency ∅ - S 

Element cardinality 1: 1 ∗: 1 1: 1 

Relation cardinality 1: 1 1: 1 1: 1 

Reversible Yes No Yes 

Invariance § � $�$� 

Data/structure coherence Yes No Yes 

Transformation formula � = p���, ��∅q � = ����, �  �� � = ����, �   , ���� 
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7.2.4 Annotations 

Here we assume that the temperature measurement produced by one of the sensors is 

annotated. For each sensor the annotation set is represented by ?'$*. In this case we 

have ?'1* = �/

�, ?'2* = �/
�� and ?'3* = ∅. We now show how after each 

transformation the annotations are propagated: 

• Transformation 1: This transformation is one-to-one so we can use the 

annotation formula from Chapter 6.3.1:  

­�'�Æ�[* = @ �29'�$#��Æ�[)* Í�Ç<
 �2P<
�(�Æ�[)�Î� 

­ℎ�s� @Ê��"Ë = £1, ��" ∈ ?'�$#��Æ�[)* 0, ��" ∉ ?'�$#��Æ�[)* ¦ 
We now need to find for each output the contributing input element and the 

annotation set of the contributing input data structure. The following table lists 

four examples: 

���  ���  n g'n* m'�#n* ��� ∈ g 6
�  /

 1 ?'1* = �/

� 1 �s(� 

6À�  /
� 2 ?'2* = �/
�� 1 �s(� 

6���  /�
 3 ?'3* = ∅ 0 ª@¢X� 6�À�  $/@  $/@ $/@ 0 ª@¢X� 

 

From the listing in Appendix B.2 we retrieve the output annotation set: 

?� = �6
� , 6��� � 

• Transformation 2: This is the most complex transformation of the workflow. We 

want to propagate the annotations without having to implement the complete 

details of the transformation. Because we know that the influence of the 

contributing input elements is inversely proportional to the distance, we make 

use of the locality property. We use the annotation formula from Chapter 6.3.6 

adapted for a matrix: 

­�'�Æ�[* = 1$ ã ­Ê��"Ë ∗ @Ê��"Ë	È�∈�È�'	���*
 

­ℎ�s� ­Ê��"Ë = ¢�P���", �Æ�[� = ∅(M) − V�P���", �Æ�[�
∅(M)  

@$V ∅(M) = V��(0,0), (5,5)� = 5√2; V�P���", �Æ�[�
= %2P<
���"� − 2P<
���Æ�[)% 
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For the known values, the contributing element is only one element, which is 

the one at the same position in the input matrix. Above formula will then be 

basically the same as the one in Chapter 6.3.1: ­�'�Æ�[* = @ �2] Í�Ç<
 �2]<
�(�Æ�[)�Î� 

In this case the output element is simply annotated if the contributing input 

element is annotated. For the unknown values the annotation formula depends 

on a fixed set of three contributing input elements: �6
, 6À, 6���. Using this set 

and $ = 3 we get the following formula to calculate the annotation weight: 

­�'�Æ�[* = 13 ∗ (¢(�Æ�[, 6
) ∗ @'6
* + ¢(�Æ�[, 6À) ∗ @'6À* + ¢(�Æ�[, 6
) ∗ @'6��*) 

In this case we have @'6
* = 1; @'6À* = 0; @'6��* = 1 so we get: 

­�'�Æ�[* = 13 ∗ �¢(�Æ�[, 6
) + ¢(�Æ�[, 6À)� 

The following table lists four examples (the full listing can be found in Appendix 

B.2). We use here �ℎs�Xℎ�¢V = 0,40: 

���  /#n'��� * 0���� , 1") 0���� , 12) 0���� , 133) ­�'�Æ�[* ��� ∈ g 

6
�  �6
� 1,00 n/a n/a 1,00 �s(� 

6��   �6
, 6À, 6��� 0,72 0,72 0,42 0,38 ª@¢X� 
6À�  �6À� n/a 1,00 n/a 0,00 ª@¢X� 

6
��  �6
, 6À, 6��� 0,68 0,49 0,72 0,47 �s(� 

 

From the listing in Appendix B.2 we retrieve the output annotation set: 

?� = �6
� , 6Á� , 6Â� , 6�� , 6

� , 6
�� , 6
�� , 6
Á� , 6
Â� , 6
�� , 6�
� , 6��� , 6��� � 

If we put these results in a matrix the cells with a 1 are annotated and those 

with 0 are not: 

CD
DD
E1 1 0 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0GH

HH
I
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Transformation 3: In the last transformation the input elements are shifted 2 

places to the right. The values of these elements are transformed one-to-one. 

Finally there are extra elements added. These elements are added without any 

dependency on the input, so they will never be annotated. The other elements 

are simply annotated if their contributing input element is annotated. The 

following table lists four examples: 

���  �#n m'�#n* ��� ∈ g 

6
�  n/a 0 ª@¢X� 

6À�  6� 0 ª@¢X� 

6
Â�  6

 1 �s(� 

6���  n/a 0 ª@¢X� 

 

From the complete listing in Appendix B.2 we retrieve the output annotation 

set: 

?� = �6�� , 6U� , 6
»� , 6

� , 6
�� , 6
Â� , 6
�� , 6
Ã� , 6�U� , 6�À� , 6�Á� , 6�
� , 6��� , 6��� � 

If we put these results in a matrix the cells with a 1 are annotated and those 

with 0 are not: 

C
DD
DD
D
E0 0 1 1 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0G

HH
HH
H
I
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7.2.5 Conclusion 

This use case proved to be more complex than the first use case. In this case the data 

structures are also of a similar type: vector and matrix. However, the transformations 

are more complex. The first transformation puts the data from the sensors in a matrix. 

In reality a gridding process is used to transform a geographic location into a position in 

the matrix. We have assumed that the sensors were fixed and that the data would 

always be put in the same cells, thereby discarding the gridding formula. Without this 

assumption, for example when the data included not only the temperature 

measurement but also the position of the sensor, the position in the matrix would not 

only be based on the input number, but also on the value of one of the elements, which 

is of the form �� ,�
. For this type of transformations it is not possible to use the position 

transformation function to determine what the contributing input elements are and our 

annotation model would fail. A solution would be extending the model by taking the 

value into account. 

The second transformation is also complex. Here we have assumed that the set of 

contributing input elements is fixed and equal for all output elements. In reality they 

might not be fixed as transformation 1 may cause the data from the sensors to be 

placed in different cells. In this case the contributing input elements can only be found 

by looking at the value of the cells (only non-empty cells contribute to the interpolated 

values), which results in the same problem type as transformation 1. Also it may be very 

well the case that the set of contributing input elements is not equal for all output 

elements; especially when the matrix is large and there are quite a few known values. 

When there are a lot of known values a selection must be made. Such a selection can be 

made by taking only those values within a certain distance. To measure a distance only 

the position of elements is needed and our annotation model still works. 

The third transformation is one-to-one and the annotations can be propagated without 

difficulty. This transformation and the first one are one-to-one so it is not an issue what 

the threshold should be. The second transformation could produce annotation values in 

the whole range which made specifying what threshold to use more important. What a 

right threshold is, is not the focus of this thesis however. 

With the assumptions we have made in this case we have shown that the annotation 

model is fully applicably. However, to make a more realistic case it would be better to 

take values into account in the annotation model, by considering the location of a 

sensor as a value of an element. 
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7.3 Bio-informatics: Cell-Graph Analysis 

This use case mainly serves to show an example of a complex transformation which 

cannot be completely described using the definitions put forward in this thesis. 

Classification systems are used to determine automatically if pictures of breast tissue 

contain cancer cells [BDN+]. They process image data from tissue samples to create 

graphs of cells. Metrics are extracted from these graphs to determine if there are cancer 

cells present. We have adapted the methodology to create a use case. In some cases we 

have simplified the process, for example images of a small resolution, and in other case 

we have added details to complete the workflow. 

7.3.1 Description 

The Cell-Graph Analysis workflow consists of one source, five transformations and one 

sink. In between five data structures are transmitted. The workflow is visualized as 

follows:  

 

Figure 7.12: The workflow of a cell-graph analysis setup 

The microscope produces an image. This image is converted to black-and-white by T1. A 

grid is used to group the pixels in the black-and-white image. T2 outputs a matrix where 

a value 1 is registered when the majority of the pixels in that grid cell is black. T3 

transforms the matrix in a graph by clustering values in the matrix. Finally the graph is 

analyzes and T4 outputs a vector containing two metrics. We will describe each step in 

detail: 

  



Chapter 7. Use Cases  127 

 

 

• The images generated by the microscope are 50x50 pixels. In reality these 

images might be much larger, but we choose a low resolution to keep things 

practical. We following images show the original and a blown-up version of the 

example that we use in this case: 

 
1:1 

 
 1:8 

Figure 7.13: A cell tissue image 

The purple, brown and green pixels represent cell-tissue material while the 

sandy pixels represent non-cell-tissue material. 

• The color image is converted into a binary image consisting of only black and 

white pixels. An output pixel is colored black when the input pixel has a color 

that belongs to cell-tissue material. The following two images show the original 

size and a blown-up version of the output: 

 

 
1:1 

 
 1:8 

Figure 7.14: A cell tissue image in black-and-white 
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• A grid is used to group pixels in squares. The elements in the output matrix all 

correspond to a cell in the grid. The following figure shows the grid layout: 

 

Figure 7.15: Application of a raster 

When the majority of the pixels is colored black, the corresponding element in 

the matrix is assigned the value 1, otherwise the value 0. The following figure 

shows in red which grid cells contain a majority of black pixels: 

 

Figure 7.16: Counting pixels 

The output matrix that is generated from the image is: 

CD
DD
DD
DD
DE1 1 0 0 0 0 0 0 0 01 1 0 0 0 1 1 1 0 01 0 0 1 0 0 1 1 1 00 0 1 1 1 0 1 1 0 01 0 1 1 1 0 0 0 0 01 1 0 0 0 0 1 1 0 01 1 0 0 0 0 1 1 0 00 0 0 1 1 0 0 0 0 01 0 1 1 1 0 0 1 1 11 1 0 1 0 0 0 1 1 1GH

HH
HH
HH
HI
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• The matrix is transformed into a graph. The nodes in a graph are formed by 

clustering elements from the matrix with value 1 that have Manhattan distance VP��
, ��) = 1 (DEFINITION 5.5). The following matrix shows which elements are 

grouped together: 

CD
DD
DD
DD
DE
1 1 0 0 0 0 0 0 0 01 1 0 0 0 6 6 6 0 01 0 0 2 0 0 6 6 6 00 0 2 2 2 0 6 6 0 03 0 2 2 2 0 0 0 0 03 3 0 0 0 0 7 7 0 03 3 0 0 0 0 7 7 0 00 0 0 5 5 0 0 0 0 04 0 5 5 5 0 0 8 8 84 4 0 5 0 0 0 8 8 8GH

HH
HH
HH
HI

 

An edge is created between two nodes if one of the contributing input elements 

of the first node is within Chebyshev distance Vå(�
, ��) = 2 (Definition 5.8) 

from one of the contributing input elements of the second node. This is done by 

taking all the contributing input elements from one node, expanding it with all 

elements within Chebyshev distance 2. If the expanded the collection forms an 

overlap with contributing input elements of the second node, an edge is 

created. The *’s in the matrix below are within distance 2 of the contributing 

input elements of node 1. There is overlap with contributing input elements of 

node 2 and 3, so edges are created between node 1 and 2, and between node 1 

and node 3. 

CD
DD
DD
DD
DE
1 1 ∗ ∗ 0 0 0 0 0 01 1 ∗ ∗ 0 6 6 6 0 01 ∗ ∗ ∗ 0 0 6 6 6 0∗ ∗ ∗ ∗ 2 0 6 6 0 0∗ ∗ ∗ 2 2 0 0 0 0 03 3 0 0 0 0 7 7 0 03 3 0 0 0 0 7 7 0 00 0 0 5 5 0 0 0 0 04 0 5 5 5 0 0 8 8 84 4 0 5 0 0 0 8 8 8GH

HH
HH
HH
HI

 

The final graph looks as follows: 

 

• Finally two metrics are extracted from the graph. The number of nodes is 

calculated and the average degree of the nodes. In this case there are 8 nodes, 

and the average degree is: 

� ∗ (2 + 4 + 4 + 2 + 3 + 2 + 4 + 1) = 2 �U. The final 

output is: �8 2 �U� 
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7.3.2 Data Structures 

There are five data structures being used in the workflow. The first two data structures 

are images of 50x50 pixels. We represent them as matrixes here. The third is a 10x10 

matrix, the fourth a graph, and the final output is a vector of size 2. We use the 

definitions from Chapter 3 to give a formal description for each of the five data 

structures. 

• Data structure 1: The workflow starts with images generated by a digital 

microscope. In reality these images have a higher resolution, but to keep things 

practical for this use case we assume the images are 50 by 50 pixels.  M = �p6À»∗��<
)ÒA|1 ≤ �, B ≤ 50q, p��, B, 6À»∗��<
)ÒA�|1 ≤ �, B ≤ 50q, �� 

• Data structure 2: The images produced by the digital microscope are colored. 

The first transformation converts the color image into a binary image, consisting 

only of purely black and white pixels. The output data structure is of the exact 

same size as the input. M = �p6À»∗��<
)ÒA|1 ≤ �, B ≤ 50q, p��, B, 6À»∗��<
)ÒA�|1 ≤ �, B ≤ 50q, �� 

• Data structure 3: A grid is used to compartmentalize the binary image in 10x10 

squares of 5x5 pixels each. When the majority of the pixels in a square is black, a 

1 is assign to the corresponding cell in the output matrix, otherwise a 0. The 

output matrix corresponds to the squares in the grid and is a 10x10 matrix. M = �p6
»∗��<
)ÒA|1 ≤ �, B ≤ 10q, p��, B, 6
»∗��<
)ÒA�|1 ≤ �, B ≤ 10q, �� 

• Data structure 4: A graph is constructed on the basis of the 0-1 matrix. The 

output graph contains in this particular case eight nodes and eleven edges. The 

size of the output structure depends on the values in the input structure, and 

may therefore vary. The nodes have no value, that’s why the value function is 

replaced by the empty set. The graph for this particular transformation is 

denoted by: G= ��/�|1 ≤ � ≤ 8�,
p�/
, /��, �/
, /��, �/�, /��, �/�, /Á�, �/�, /Â�, �/Á, /Â�, �/�, /À�, �/�, /U�,
�/U, /À�, �/À, /Â�, �/Â, /��q, ∅� 
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• Data structure 5: In the final transformation metrics are extracted from the 

graph. In this case we consider only two metrics: the number of nodes and the 

average degree of a node. The metrics are presented in a 2-size vector. The 

particular graph in this case contains 8 nodes and the average node degree is 2 

¾. 

V = Í�/
, /��, ��1, /
), �2, /�)�, ³�/
, 8), Í/�, 2 34ÎºÎ 

The following table gives an overview of the properties of the five data structures: 

 DS1 DS2 DS3 DS4 DS5 

Type matrix matrix matrix Graph vector 

Size 50 × 50 50 × 50 10 × 10 /@s�@K¢� 2 

Ordering ordered ordered ordered unordered ordered 

Dimension 2 2 2 n/a 1 

Relation based n/a n/a n/a yes n/a 

Hierarchical n/a n/a n/a no n/a 

Element-

relation card. 

1: 1 1: 1 1: 1 1:∗ 1: 1 

 

7.3.3 Transformations 

In this part we describe the processing elements that perform a transformation on the 

data structures. There are four processing elements of the transformation type. We use 

the definitions of Chapter 4 to describe the relation between input and output 

elements. These descriptions will in the next part of the chapter be used to show how 

annotations can be propagated. 

• Transformation 1: The first transformation is data-only. It assigns 1’s to pixels 

with a color that belong to cell tissue material. To non-cell tissue material a 0 is 

assigned. Essentially the color image is transformed into a black-and-white 

image of the same size. This has the effect that the position of output elements 

is exactly the same as their contributing input element: �Ç<
��, B) = ��, B) 

We can now use DEFINITION 4.24 to find the contributing input elements: ��"'�Æ�[* = S��" ∈ ����	Ì��" = 2P Í�Ç<
 �2P<
���Æ�[)�ÎT 

 

For example ��"'6�À� *: 2P<
��6�À� ) = �1,3); �Ç<
�1,35) = �1,35); 2P�1,35) =6�À. 
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• Transformation 2: The second transformation uses a grid to compartmentalize 

the image in 10x10 squares of 5x5 pixels. Each square relates to one element in 

the output matrix. If the majority of the pixels in the square is black, a 1 is 

assigned to the value of the element, otherwise a 0 is assigned. This is a many-

to-one transformation and the inverse position transformation function is 

(DEFINITION 4.29):  �ÇÒÒ<
 ��, B) = ��5 ∗ �� − 1) + ®, 5 ∗ �B − 1) + ß)|1 ≤ ®, ß ≤ 5� 

We use DEFINITION 4.30 to find the contributing input elements: ��"'�Æ�[* = S��" ∈ ����	Ì2P<
���"� ∈ �ÇÒÒ<
 �2P<
���Æ�[)�T 

The contributing input elements for the grid cell (4, 2) is given by ��"'6��� *. First 

we need to find the inverse positions: 

�ÇÒÒ<
 �4,2) =
{|}
|~�16,6), �16,7), �16,8), �16,9), �16,10),�17,6), �17,7), �17,8), �17,9), �17,10),�18,6), �18,7), �18,8), �18,9), �18,10),�19,6), �19,7), �19,8), �19,9), �19,10),�20,6), �20,7), �20,8), �20,9), �20,10) �|�

|�
 

Using the position function we can now find the contributing input elements: 

 

��"'6��� * =
{|}
|~6ÂÀÁ, 6ÂÀÂ, 6ÂÀ�, 6ÂÀÃ, 6ÂÁ»6�»Á, 6�»Â, 6�»�, 6�»Ã, 6�
»6�ÀÁ, 6�ÀÂ, 6�À�, 6�ÀÃ, 6�Á»6Ã»Á, 6Ã»Â, 6Ã»�, 6Ã»Ã, 6Ã
»6ÃÀÁ, 6ÃÀÂ, 6ÃÀ�, 6ÃÀÃ, 6ÃÁ» �|�

|�
 

• Transformation 3: The third transformation creates a graph. Neighboring 1’s in 

the matrix are clustered, and for each cluster a node is added to the graph. 

When 1’s in a cluster are within a distance of 2 from 1’s in the other cluster an 

edge is added between the two corresponding nodes. The transformation is 

many-to-one as neighboring elements from the input matrix with value 1 are 

clustered to create one node in the graph. This means that the creation of the 

output structure depends on both the input structure and data. For this type of 

transformation it is not possible to define a position transformation function 

that can be used to find the contributing input elements. For example, the set of 

contributing input elements of node /
 is: ��"'/
� * = �6
, 6� , 6

, 6
��.  
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The following table lists all the contributing input elements for the elements of 

the graph in this particular case: 

���  /#n'��� * /
�  �6
, 6�, 6

, 6
�� /��  �6�U, 6��, 6�U, 6�À, 6U�, 6UU, 6UÀ� /��  �6U
, 6À
, 6À�, 6Á
, 6Á�� /U�  �6�
, 6Ã
, 6Ã�� /À�  �6ÂU, 6ÂÀ, 6��, 6�U, 6�À, 6ÃU� /Á�  �6
Á, 6
Â, 6
�, 6�Â, 6��, 6�Ã, 6�Â, 6��� /Â�  �6ÀÂ, 6À�, 6ÁÂ, 6Á�� /��  �6��, 6�Ã, 6Ã», 6Ã�, 6ÃÃ, 6
»»� 

 

• Transformation 4: The final transformation outputs a vector that is always of 

size 2. The output structure does not depend on the input and is embedded in 

the transformation. The output data is only depended on the input structure. 

The transformation is many-to-many where all input elements contribute to 

each of the output elements. ��"'�Æ�[* = ����	 

In Chapter 4 we list five properties of data transformations. The following table lists 

these properties for each transformation. 

 T1 T2 T3 T4 

Structure 

dependency 

� � §, � ∅ 

Data dependency § §, � §, � § 

Element 

dependency 

- � §, � ∅ 

Element 

cardinality 

1: 1 1:∗ 1:∗ 1:∗ 

Relation 

cardinality 

1: 1 1:∗ 1:∗ 1:∗ 

Reversible No No No No 

Invariance � $�$� § § 

Transformation 

formula 
� = ��   , ���� � = ��  �, ���, ���� � = ��  �, �� ��� �� � = p� �, ��∅, ��∅q 
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7.3.4 Annotations 

Here we assume that part of the original image created by the microscope is annotated. 

The whole region from pixel (18, 7) to (29, 20) is annotated. 

? = p6À»∗��<
)ÒA|18 ≤ � ≤ 32,7 ≤ B ≤ 20q 

 

Figure 7.17: Annotation in a cell-tissue image 

• Transformation 1: The first transformation is data only. For one-to-one 

transformations we can use the annotation formula from Chapter 6.3.2: ­�'�Æ�[* = @ �2P Í�Ç<
 �2P<
�(�Æ�[)�Î� 

For each of the elements in the output we need to check if its contributing input 

element was annotated. There are 2500 elements in the data structure, so we 

give one example: 6�À� . 

2P<
�(6�À� ) = (1,35); �Ç<
(1,5) = (1,5); 2P(1,5) = 6�À; @'6�À* = 0; so 6�À� ∉ ?. The complete annotation set for the output is given by: 

?� = p6À»∗(�<
)ÒA� |18 ≤ � ≤ 32,7 ≤ B ≤ 20q 

 

• Transformation 2: The second transformation is many-to-one. In this case we 

annotate an element if the majority of the contributing input elements are 

annotated. This is done using the formula from Chapter 6.3.3: 

­�'�Æ�[* = 1$ ã @Ê��"Ë	È�∈�È�'	���*
 

There are 100 elements in the output. We calculate the annotation value for a 

few elements as an example. In the previous part of this chapter we have 

calculated what the set of contributing input elements for 6���  was: 
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��"'6��� * =
{|}
|~/ÂÀÁ, /ÂÀÂ, /ÂÀ�, /ÂÀÃ, /ÂÁ»,/�»Á, /�»Â, /�»�, /�»Ã, /�
»,/�ÀÁ, /�ÀÂ, /�À�, /�ÀÃ, /�Á»,/Ã»Á, /Ã»Â, /Ã»�, /Ã»Ã, /Ã
»,/ÃÀÁ, /ÃÀÂ, /ÃÀ�, /ÃÀÃ, /ÃÁ» �|�

|�
 

Twelve of these elements are annotated: /�ÀÂ, /�À�, /�ÀÃ, /�Á», /Ã»Â, /Ã»�, /Ã»Ã, /Ã
», /ÃÀÂ, /ÃÀ�, /ÃÀÃ, /ÃÁ» ∈ ? 

And thirteen are not: 

/ÂÀÁ, /ÂÀÂ, /ÂÀ�, /ÂÀÃ, /ÂÁ», /�»Á, /�»Â, /�»�, /�»Ã, /�
», /Ã»Á, /ÃÀÁ ∉ ? 

Therefore we have: 

­�'6��� * = 1$ �12 ∗ 1 + 13 ∗ 0) = 1225 

We set the threshold of �ℎs�Xℎ�¢V = 
� and 6���  is not annotated. There are six 

grid cells, that contain annotated pixels. For each of the corresponding output 

elements we count the number of annotated pixels. When thirteen or more 

pixels are annotated the output element is also annotated. 

 

���  Annotated pixels ��� ∈ g 6���  15 �s(� 

6�U�  15 �s(� 

6U��  20 �s(� 

6U��  25 �s(� 

6UU�  25 �s(� 

6À��  20 �s(� 

6À��  25 �s(� 

6ÀU�  25 �s(� 

6Á��  8 ª@¢X� 

6Á��  10 ª@¢X� 

6ÁU�  10 ª@¢X� 

 

It is too exhaustive to give a calculation for all the output elements here, but 

neither of the output elements not listed above is annotated. The output 

annotation set is: 

?� = �6��� , 6�U� , 6U�� , 6U�� , 6UU� , 6À�� , 6À�� , 6ÀU� � 

• Transformation 3: In the previous part of this chapter we have seen that it is not 

possible to find the set of contributing input elements using a mathematical 

formula. This means that the option we have is annotating the whole data 

structure. We basically then have a many-to-one transformation where all input 

elements contribute to one single output. Also in such a case a decision needs to 

be made? Do we want to annotate the whole output structure even if only a few 

of the input elements are annotated? In this case we annotate the whole output 
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structure if more than 5% of its input was annotated. We calculate this as 

follows: 

4 |?||����	| = 8100 = 0,075 ≥ 0,05  
When we would have a method for finding the contributing input elements, it 

would be possible to calculate the annotation values for the output. In the 

previous part we have listed the contributing input elements for the graph in the 

particular instance of the case. We use this to calculate the annotation values: 

���  /#n'��� * %/#n'��� * ∩ g% %/#n'��� *% ��� ∈ g /
�  �6
, 6�, 6

, 6
�� 0 4 Í04 ≥ 0,5Î = ª@¢X� 

/��  �6�U, 6��, 6�U, 6�À, 66UU, 6UÀ� 

4 7 Í47 ≥ 0,5Î = �s(� 

/��  �6U
, 6À
, 6À�, 6Á
, 61 5 Í1
5 ≥ 0,5Î = ª@¢X� 

/U�  �6�
, 6Ã
, 6Ã�� 0 4 Í04 ≥ 0,5Î = ª@¢X� 

/À�  �6ÂU, 6ÂÀ, 6��, 6�U, 66ÃU� 

0 6 Í06 ≥ 0,5Î = ª@¢X� 

/Á�  �6
Á, 6
Â, 6
�, 6�Â, 66�Ã, 6�Â, 6��� 

0 8 Í08 ≥ 0,5Î = ª@¢X� 

/Â�  �6ÀÂ, 6À�, 6ÁÂ, 6Á�� 0 4 Í04 ≥ 0,5Î = ª@¢X� 

/��  �6��, 6�Ã, 6Ã», 6Ã�, 66
»»� 

0 6 Í06 ≥ 0,5Î = ª@¢X� 

 

The output annotation set now would be ? = �/�� �. 

• Transformation 4: When in the previous transformation the data structure as a 

whole would be annotated, we can now make no other choice than to annotate 

the whole data structure again. Even though for this transformation we can find 

the contributing input elements using a formula, the information of annotations 

on the element level is lost.  

When we consider the annotation set ? = �/�� � that we would have if in the 

previous transformation when we would be able to identify the contributing 

input elements, we can also calculate the annotations for the output elements. 

Both output elements depend on the all of the input elements. We annotate the 

output elements when more than 10% of the input elements is annotated: 

­�'�Æ�[* = |?||����	| 
­�'/
� * = ­�'/�� * = 18 ≥ 0,10  

This means that ?� = �/
� , /�� � 
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7.3.5 Conclusion 

The final case is the most complex of the three. Where in the first two use cases we had 

similar data types, we have now very different types: vector, matrix, image and graph, of 

which the last is most different from the others. Also we had transformations of very 

different type. The first was a data-only, which poses no problem for our annotation 

model. The second was many-to-one and quite a large amount of elements were 

transformed into a single new element. The annotation model worked fine for this 

transformation. The fourth transformation also didn’t cause problems when applying 

the annotation model. 

It was the third transformation that caused the most problems. Here we did not have a 

function to find the contributing input elements, and the only option we had was 

propagating the annotations to the whole data structure. When using this option we 

needed to define a specific threshold. Again, this was not the aim of this thesis, but we 

must point out that picking the right threshold is of importance to the propagation of 

the annotations in this case. 

Only when we made a very strong assumption, namely that we did know what the 

contributing elements were, it was possible to propagate annotations to elements. In 

practice however, images will be very different from another, resulting in very different 

graphs. Therefore we can only conclude that the annotation model is not sufficient to 

have useful propagations in the third transformations. 
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7.4 Conclusion 

In this chapter we have applied the definitions from this thesis to three use cases. For 

each of the cases we have described the successful applications and the limitations of 

the annotation model. We will briefly summarize the most important conclusions. 

The annotation model consists basically of three parts: finding the right contributing 

input elements, assigning a weight to them, and comparing the normalized result to a 

threshold. 

Finding the right contributing input elements worked fine for most transformations, but 

proved difficult for three of them. In these cases the value was necessary to find the 

contributing input elements. Therefore the annotation model failed, unless we made 

strong assumptions. Extending the annotation model to take also the value into 

consideration would be a solution. 

Assigning a weight was in none of the transformations a problem. For most of the 

transformations it was a simple matter of counting what contributing input elements 

were annotated by assigning each a weight of one. In the transformation that 

interpolated values in a matrix, assigning a weight was more difficult, but applying the 

locality property proved successful. 

Most of the transformations were either one-to-one or many-to-one. For a one-to-one 

transformation it was not necessary to pick a specific threshold and an output element 

was simply annotated when its contributing input element was annotated. For most 

many-to-one transformations it was only a matter of counting how many contributing 

input elements were annotated. A threshold of 50% was chosen which is an arbitrary 

choice. For some other many-to-one transformations and the many-to-many 

transformations, calculating the annotation value was more complex and picking the 

right threshold was even more important. As this was not the aim of this thesis we have 

chosen arbitrary values, but it needs to be stressed that in practice picking the right 

threshold is important. 



 

 

 

8 

Conclusion 

In this chapter we will reflect on the research questions presented in the 

introduction. At the end of this chapter we will discuss potential future work. 

8.1 Reflection on research questions 

In the introduction we have formulated four research questions. We will now reflect on 

each of these research questions separately. After reflecting on the four research 

questions we will reflect on the overall problem statement. 

RESEARCH QUESTION 1 How can the description of data structures be formalized? 

This research question is addressed in Chapter 3. We have presented a formal 

description of a data structure and we have shown how this could be applied to six 

elementary data structures. The key result of this formalization is the separation of the 

elements, their values and the structure. This way a bridge is created between 

mathematical abstractions and practical use in computer science applications. We have 

chosen six elementary data structures: sets, vectors, matrixes, arrays, graphs and trees. 

We have shown that these elementary data structures can be used to construct two 

other types of data structures: tables and images. Finally we have described four 

properties to classify the elementary data structures. These four properties are all 

specific to the relation on the set of elements for each data structure and proved 

sufficient to make a classification. 
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RESEARCH QUESTION 2 How can the description of a transformation of data structure 

and the effects of that transformation be formalized? 

In Chapter 4 we have addressed this research question. We have used the definitions 

from Chapter 3 to investigate how a formal definition of a transformation of a data 

structure can be given. First we have defined two aspects of a transformation. A data 

structure consists of a data part and a structure part. We have defined the two aspects 

as one that produces the data part and the other that produces the structure part. 

We have then proceeded by showing that the production of any data structure can be 

described by a sequence of elementary operations. Giving such a description is too 

cumbersome so we have investigated other ways to describe aspects of a 

transformation. We have formulated properties that describe various aspects of a 

transformation on a higher level than elementary operations. We have used these 

properties to distinguish a special class for which we could describe the effect of the 

transformation by describing the transformation of the position of the elements. To 

describe a transformation using this method the transformation must be such that, to 

produce the output structure, only the input structure is needed. These transformations 

are called structure-from-structure transformations. Also the transformation must be 

uniform: when an element at a certain position is used to produce an element at 

another position, also the value of the output element must be produced using only the 

value of the contributing input element.  

For these types of transformations we have shown that it is possible to link contributing 

input elements to an output element by a transformation of the position. We have 

shown that it is sufficient to specify only the structure of the input and output data 

structures, and a position transformation function. This is much less information than 

describing the full elementary operations algorithm. The results are used to address 

RESEARCH QUESTION 4, where we will this see that this is sufficient information to 

propagate annotations in certain scenarios. 

RESEARCH QUESTION 3 How can locality be used to describe the effect of a 

transformation on the relation between elements in a data structure? 

In some cases it may be enough to have a formal description of the transformation of 

the structure part. In other cases more information may be needed. Locality is a 

distance-based property that provides such information and is introduced in Chapter 5. 

First we have presented a formal definition of distance. We have given examples of four 

different ways of measuring distance between elements in different data structures. We 

have used the definition of distance to introduce a formal definition of locality. Locality 

is based on the distance between two elements and the diameter of the data structure 

that contains the elements. Finally we have shown what the possible effects are of a 

transformation on the locality of two elements. 



Chapter 8. Conclusion  141 

 

 

Using the results from RESEARCH QUESTION 1,2 and 3 we can now address RESEARCH 

QUESTION 4. 

RESEARCH QUESTION 4 How can annotations in a data structure be propagated? 

This RESEARCH QUESTION is addressed in Chapter 4. In order to understand how 

annotations could be propagated, it necessary to know annotations can be made in a 

data structure. We have shown for each type of elementary data structure how 

annotations can be made: at the level of elements, relations, values and the data 

structure as a whole.  

In the second part of this chapter we have presented a model for transforming 

annotations at the element-level. When the transformation is of the structure-from-

structure type, the annotations can be propagated using the position transformation 

function. We have shown for five different scenarios how the results from Chapter 4 can 

be used in the model presented in this chapter. In the first scenario there is only one 

contributing input element and the output element is simply annotated when the 

contributing input element is annotated. In the second scenario there is more than one 

contributing input element and the output is annotated when more than a certain share 

of the contributing input elements is annotated. In the third case the contributing input 

elements are given a weight of 1 or 2. In the fourth scenario the weight depends on the 

distance between contributing input element and output element. The last scenario 

shows how in addition to the results from Chapter 4, the results from Chapter 5 can be 

used in the annotation transformation model presented in this chapter. In this scenario 

the weight depends on the locality of the contributing input element and output 

element.  

The results of each of these research questions can now be used to address the overall 

problem statement. 

PROBLEM STATEMENT How can annotations in a stream processing system be 

propagated? 

The results of the four research questions have been validated by applying them to 

three use cases in Chapter 7. The results of this chapter form an answer to the general 

problem statement. We repeat here the most important conclusions. The annotation 

model consists basically of three parts: finding the right contributing input elements, 

assigning a weight to them, and comparing the normalized result to a threshold. Picking 

the right threshold was not the aim of this thesis. So the results of this thesis hinge on 

the other two aspects. Assigning weights was fully possible for all transformations. In a 

more complex transformation the locality property was successfully applied as a weight. 

Finding the contributing input elements worked fine in most cases. Only in a few cases it 

was only possible when assumptions were made. Without these assumptions the value 
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of an input element needs to be taken into account, which is not possible in our model. 

For the first use case we could apply the annotation model without any problems. For 

the second use case we could apply the annotation model when certain assumptions 

were made. However, these assumptions still provided a valid use case. Only in the third 

use case the assumptions that needed to be made were so strong that the use case 

would be not valid anymore. 

8.2 Future research 

Our thesis introduces many new concepts, but with each answer comes new questions. 

We present here a few topics based on this research that could be further investigated. 

We have presented a formal definition of a data structure. One part of this definition is a 

relation on the elements. For each type of elementary data structure we have provided 

a very specific relation. For vectors, matrixes and arrays this relation could be modeled 

as a function that maps a natural number to an element. In graphs and trees the relation 

consists of edges. These are very different concepts, but they all provide a certain way of 

organizing the elements. It would be interesting to investigate this part more to 

generalize the concept of the relation. The field of topology organizes elements using 

metrics. We have used this concept to define our locality property. Topology might 

serve as a good candidate to provide a means for generalizing the concept of the 

relation in a data structure. 

In our annotation model we have discarded the value of an element. Although it worked 

fine for many transformations, it would be interesting to investigate whether there’s a 

method for extending the annotation model to values. This can be done at two points. 

The first point is extending the function that finds the contributing input elements by 

taking the value into account. This could be done using a predicate logic. The second 

point is to consider the weights. The weights are now only based on the position. 

Certain values may be more important than others and this may influence the decision 

of propagating annotations. 

We have discussed only simple joins where data structures were glued together. In 

practice there are many more n-ary transformations thinkable and it is worth wile to 

investigate these. This can be done in two ways: data structures within one stream may 

be accumulated and transformed into one new data structure, or data structure from 

different streams may be combined. 

As discussed before we have chosen sometimes arbitrary thresholds. However it may be 

very important to pick a right threshold. This may be done by self-learning algorithms, 

adjusting the threshold over time, or empirical research could be done to investigate 

what the right thresholds are in certain scenarios. 

The annotation model calculations an annotation value for each output element and 

then decides what whether or not that output element should be annotated. 
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Accumulative effects are ignored however. A next processing element simply sees that 

element annotated in its input. In the current model it is not possible to say that an 

element is for x% annotated. 

We have only considered binary annotations. An element was simply annotated or it 

was not. In practice, the annotations usually have certain values, for example an 

element may be marked as “weak”. Different values may have different meanings. The 

semantics of such annotations is now completely ignored. Investigating what the effect 

would be of combining annotations of different semantics may worth investigating. 
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Appendix A Symbol Chart 
Symbol Definition Description �� 3.1 A unique element 

����	 3.2 The base set; collection of elements 


 3.3 Relation 

�����	 3.4 The value set 

� 3.4 The value function � 3.5 A data structure in general S 3.7 A set data structure /� 3.8 A unique element of a vector 

29 3.9-I The vector function; returns the element at a position 

29<
 3.9-II The inverse vector function: returns the position of an element 

V 3.10 A vector data structure 

6� 3.12 A unique element of a matrix 

2P 3.13-I The matrix function 

2P<
 3.13-II The inverse matrix function 

M 3.14 A matrix data structure 

V 3.15 Dimension 

@� 3.16 A unique element of an Array 

2] 3.17-I The array function 

2]<
 3.17-II The inverse array function 

/� 3.19 A node of a graph 

a 3.19 The set of nodes of a graph 

b 3.20 The edge set of a graph 

G 3.21 A graph data structure 

s 3.22 The root of a tree 

T 3.23 A tree data structure 

� 4.1 A transformation 

��  4.2 The effect of a tansformation on the elements 

�� 4.3 The effect of a transformation on the structure 

�  4.4 The effect of a transformation on the data 

��"'�Æ�[* 4.16 The set of input elements that contribute to an output element 

�Æ�['��"* 4.17 The set of output elements to which an input element contributes 

�Ç 4.18 The position transformation function 

�Ç<
 4.20 The inverse position transformation function �ÇÒÒ 4.24 The position transformation function for many-to-many 

transformations �ÇÒÒ<
  4.26 The inverse position transformation function for many-to-many 

transformations �$#'�Æ�[* 4.31 The input source number of the data structure that contributed to the 

output element V�P 5.1 Euclidean distance in a Matrix V�9 5.2 Euclidean distance in a Vector V�] 5.3 Euclidean distance in an Array VP9  5.4 Manhattan distance in a Vector VPP 5.5 Manhattan distance in a Matrix VP]  5.6 Manhattan distance in an Array 
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Symbol Definition Description Vå9 5.7 Chebyshov distance in a Vector VåP 5.8 Chebyshov distance in a Matrix Vå] 5.9 Chebyshov distance in an Array ¢(�
, ��) 5.10 The locality of two elements in a data structure 

∅(�) 5.11 The diameter of a data structure �∗ 6.1 An annotated data structure �∗ 6.2 The transformation of an annotated data structure � ∈ ? 6.3 The element � is annotated �] 6.4 The transformation of the annotations ­�'�Æ�[* 6.5 The annotation weight, if it exceeds a threshold, �Æ�[ is annotated @'��"* 6.5 1 if the input element is annotated, otherwise 0 

­'��"* 6.5 The weight of the contributing input element in the transformation 

 



 

 

Appendix B Use case results 

B.1 Transformation & Annotation Listing of Use Case 1 

These are the complete listings of the description of the transformation of elements and 

the propagation of annotations in use case 1: Earth Remote Sensing.  

B.1.1  Transformation 1 

 

� ���  # $ ' n �#n g'n* mÊ�#nË ��� ∈ g 

1 6

�
 1 1 1 1 /

 ?'1* = ∅ 0 FALSE 

1 6�
�
 1 2 2 1 /�
 ?'1* = ∅ 0 FALSE 

1 6�
�
 1 3 3 1 /�
 ?'1* = ∅ 0 FALSE 

1 6U
�
 1 4 4 1 /U
 ?'1* = ∅ 0 FALSE 

1 6À
�
 2 1 1 2 /
� ?'2* = �/��� 0 FALSE 

1 6Á
�
 2 2 2 2 /�� ?'2* = �/��� 1 TRUE 

1 6Â
�
 2 3 3 2 /�� ?'2* = �/��� 0 FALSE 

1 6�
�
 2 4 4 2 /U� ?'2* = �/��� 0 FALSE 

1 6Ã
�
 3 1 1 3 /
� ?'3* = ∅ 0 FALSE 

1 6
»
 �
 3 2 2 3 /�� ?'3* = ∅ 0 FALSE 

1 6


 �
 3 3 3 3 /�� ?'3* = ∅ 0 FALSE 

1 6
�
 �
 3 4 4 3 /U� ?'3* = ∅ 0 FALSE 

1 6
�
 �
 4 1 1 4 /
U ?'4* = ∅ 0 FALSE 

1 6
U
 �
 4 2 2 4 /�U ?'4* = ∅ 0 FALSE 

1 6
À
 �
 4 3 3 4 /�U ?'4* = ∅ 0 FALSE 

1 6
Á
 �
 4 4 4 4 /UU ?'4* = ∅ 0 FALSE 

1 6
Â
 �
 5 1 1 5 /
À ?'5* = ∅ 0 FALSE 

1 6
�
 �
 5 2 2 5 /�À ?'5* = ∅ 0 FALSE 

1 6
Ã
 �
 5 3 3 5 /�À ?'5* = ∅ 0 FALSE 

1 6�»
 �
 5 4 4 5 /UÀ ?'5* = ∅ 0 FALSE 

1 6�

 �
 6 1 1 6 /
Á ?'6* = ∅ 0 FALSE 

1 6��
 �
 6 2 2 6 /�Á ?'6* = ∅ 0 FALSE 

1 6��
 �
 6 3 3 6 /�Á ?'6* = ∅ 0 FALSE 

1 6�U
 �
 6 4 4 6 /UÁ ?'6* = ∅ 0 FALSE 

1 6�À
 �
 7 1 1 7 /
Â ?'7* = ∅ 0 FALSE 

1 6�Á
 �
 7 2 2 7 /�Â ?'7* = ∅ 0 FALSE 

1 6�Â
 �
 7 3 3 7 /�Â ?'7* = ∅ 0 FALSE 

1 6��
 �
 7 4 4 7 /UÂ ?'7* = ∅ 0 FALSE 
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� ���  # $ ' n �#n g'n* mÊ�#nË ��� ∈ g 

2 6
��
 1 1 1 8 /
� ?'8* = ∅ 0 FALSE 

2 6���
 1 2 2 8 /�� ?'8* = ∅ 0 FALSE 

2 6���
 1 3 3 8 /�� ?'8* = ∅ 0 FALSE 

2 6U��
 1 4 4 8 /U� ?'8* = ∅ 0 FALSE 

2 6À��
 2 1 1 9 /
Ã ?'9* = ∅ 0 FALSE 

2 6Á��
 2 2 2 9 /�Ã ?'9* = ∅ 0 FALSE 

2 6Â��
 2 3 3 9 /�Ã ?'9* = ∅ 0 FALSE 

2 6���
 2 4 4 9 /UÃ ?'9* = ∅ 0 FALSE 

2 6Ã��
 3 1 1 10 /

» ?'10* = ∅ 0 FALSE 

2 6
»� �
 3 2 2 10 /�
» ?'10* = ∅ 0 FALSE 

2 6

� �
 3 3 3 10 /�
» ?'10* = ∅ 0 FALSE 

2 6
�� �
 3 4 4 10 /U
» ?'10* = ∅ 0 FALSE 

2 6
�� �
 4 1 1 11 /


 ?'11* = �/�

� 0 FALSE 

2 6
U� �
 4 2 2 11 /�

 ?'11* = �/�

� 1 TRUE 

2 6
À� �
 4 3 3 11 /�

 ?'11* = �/�

� 0 FALSE 

2 6
Á� �
 4 4 4 11 /U

 ?'11* = �/�

� 0 FALSE 

2 6
Â� �
 5 1 1 12 /

� ?'12* = ∅ 0 FALSE 

2 6
�� �
 5 2 2 12 /�
� ?'12* = ∅ 0 FALSE 

2 6
Ã� �
 5 3 3 12 /�
� ?'12* = ∅ 0 FALSE 

2 6�»� �
 5 4 4 12 /U
� ?'12* = ∅ 0 FALSE 

2 6�
� �
 6 1 1 13 /

� ?'13* = ∅ 0 FALSE 

2 6��� �
 6 2 2 13 /�
� ?'13* = ∅ 0 FALSE 

2 6��� �
 6 3 3 13 /�
� ?'13* = ∅ 0 FALSE 

2 6�U� �
 6 4 4 13 /U
� ?'13* = ∅ 0 FALSE 

2 6�À� �
 7 1 1 14 /

U ?'14* = ∅ 0 FALSE 

2 6�Á� �
 7 2 2 14 /�
U ?'14* = ∅ 0 FALSE 

2 6�Â� �
 7 3 3 14 /�
U ?'14* = ∅ 0 FALSE 

2 6��� �
 7 4 4 14 /U
U ?'14* = ∅ 0 FALSE 
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B.1.2  Transformation 2 

 

���  # $ ' * n �#n g'n* mÊ�#nË ��� ∈ g 

6
�  1 1 1 1 1 6

 ?'1* = �6Á
� 0 FALSE 6��  1 2 1 2 1 6�
 ?'1* = �6Á
� 0 FALSE 6��  1 3 1 3 1 6�
 ?'1* = �6Á
� 0 FALSE 6U�  1 4 1 4 1 6U
 ?'1* = �6Á
� 0 FALSE 6À�  1 5 1 1 2 6
� ?'2* = �6
U� � 0 FALSE 6Á�  1 6 1 2 2 6�� ?'2* = �6
U� � 0 FALSE 6Â�  1 7 1 3 2 6�� ?'2* = �6
U� � 0 FALSE 6��  1 8 1 4 2 6U� ?'2* = �6
U� � 0 FALSE 6Ã�  1 9 n/a n/a n/a n/a n/a 0 FALSE 6
»�  1 10 n/a n/a n/a n/a n/a 0 FALSE 6

�  1 11 n/a n/a n/a n/a n/a 0 FALSE 6
��  1 12 n/a n/a n/a n/a n/a 0 FALSE 6
��  1 13 n/a n/a n/a n/a n/a 0 FALSE 6
U�  1 14 n/a n/a n/a n/a n/a 0 FALSE 6
À�  2 1 2 1 1 6À
 ?'1* = �6Á
� 0 FALSE 6
Á�  2 2 2 2 1 6Á
 ?'1* = �6Á
� 1 TRUE 6
Â�  2 3 2 3 1 6Â
 ?'1* = �6Á
� 0 FALSE 6
��  2 4 2 4 1 6�
 ?'1* = �6Á
� 0 FALSE 6
Ã�  2 5 2 1 2 6À� ?'2* = �6
U� � 0 FALSE 6�»�  2 6 2 2 2 6Á� ?'2* = �6
U� � 0 FALSE 6�
�  2 7 2 3 2 6Â� ?'2* = �6
U� � 0 FALSE 6���  2 8 2 4 2 6�� ?'2* = �6
U� � 0 FALSE 6���  2 9 n/a n/a n/a n/a n/a 0 FALSE 6�U�  2 10 n/a n/a n/a n/a n/a 0 FALSE 6�À�  2 11 n/a n/a n/a n/a n/a 0 FALSE 6�Á�  2 12 n/a n/a n/a n/a n/a 0 FALSE 6�Â�  2 13 n/a n/a n/a n/a n/a 0 FALSE 6���  2 14 n/a n/a n/a n/a n/a 0 FALSE 6�Ã�  3 1 3 1 1 6Ã
 ?'1* = �6Á
� 0 FALSE 6��  3 2 3 2 1 6
»
  ?'1* = �6Á
� 0 FALSE 6�
�  3 3 3 3 1 6


  ?'1* = �6Á
� 0 FALSE 6���  3 4 3 4 1 6
�
  ?'1* = �6Á
� 0 FALSE 6���  3 5 3 1 2 6Ã� ?'2* = �6
U� � 0 FALSE 6�U�  3 6 3 2 2 6
»�  ?'2* = �6
U� � 0 FALSE 
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���  # $ ' * n �#n g'n* mÊ�#nË ��� ∈ g 

6�À�  3 7 3 3 2 6

�  ?'2* = �6
U� � 0 FALSE 

6�Á�  3 8 3 4 2 6
��  ?'2* = �6
U� � 0 FALSE 

6�Â�  3 9 n/a n/a n/a n/a n/a 0 FALSE 

6���  3 10 n/a n/a n/a n/a n/a 0 FALSE 

6�Ã�  3 11 n/a n/a n/a n/a n/a 0 FALSE 

6U»�  3 12 n/a n/a n/a n/a n/a 0 FALSE 

6U
�  3 13 n/a n/a n/a n/a n/a 0 FALSE 

6U��  3 14 n/a n/a n/a n/a n/a 0 FALSE 

6U��  4 1 4 1 1 6
�
  ?'1* = �6Á
� 0 FALSE 

6UU�  4 2 4 2 1 6
U
  ?'1* = �6Á
� 0 FALSE 

6UÀ�  4 3 4 3 1 6
À
  ?'1* = �6Á
� 0 FALSE 

6UÁ�  4 4 4 4 1 6
Á
  ?'1* = �6Á
� 0 FALSE 

6UÂ�  4 5 4 1 2 6
��  ?'2* = �6
U� � 0 FALSE 

6U��  4 6 4 2 2 6
U�  ?'2* = �6
U� � 1 TRUE 

6UÃ�  4 7 4 3 2 6
À�  ?'2* = �6
U� � 0 FALSE 

6À»�  4 8 4 4 2 6
Á�  ?'2* = �6
U� � 0 FALSE 

6À
�  4 9 n/a n/a n/a n/a n/a 0 FALSE 

6À��  4 10 n/a n/a n/a n/a n/a 0 FALSE 

6À��  4 11 n/a n/a n/a n/a n/a 0 FALSE 

6ÀU�  4 12 n/a n/a n/a n/a n/a 0 FALSE 

6ÀÀ�  4 13 n/a n/a n/a n/a n/a 0 FALSE 

6ÀÁ�  4 14 n/a n/a n/a n/a n/a 0 FALSE 

6ÀÂ�  5 1 5 1 1 6
Â
  ?'1* = �6Á
� 0 FALSE 

6À��  5 2 5 2 1 6
�
  ?'1* = �6Á
� 0 FALSE 

6ÀÃ�  5 3 5 3 1 6
Ã
  ?'1* = �6Á
� 0 FALSE 

6Á»�  5 4 5 4 1 6�»
  ?'1* = �6Á
� 0 FALSE 

6Á
�  5 5 5 1 2 6
Â�  ?'2* = �6
U� � 0 FALSE 

6Á��  5 6 5 2 2 6
��  ?'2* = �6
U� � 0 FALSE 

6Á��  5 7 5 3 2 6
Ã�  ?'2* = �6
U� � 0 FALSE 

6ÁU�  5 8 5 4 2 6�»�  ?'2* = �6
U� � 0 FALSE 

6ÁÀ�  5 9 n/a n/a n/a n/a n/a 0 FALSE 

6ÁÁ�  5 10 n/a n/a n/a n/a n/a 0 FALSE 

6ÁÂ�  5 11 n/a n/a n/a n/a n/a 0 FALSE 

6Á��  5 12 n/a n/a n/a n/a n/a 0 FALSE 

6ÁÃ�  5 13 n/a n/a n/a n/a n/a 0 FALSE 

6Â»�  5 14 n/a n/a n/a n/a n/a 0 FALSE 
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���  # $ ' * n �#n g'n* mÊ�#nË ��� ∈ g 

6Â
�  6 1 6 1 1 6�

  ?'1* = �6Á
� 0 FALSE 6Â��  6 2 6 2 1 6��
  ?'1* = �6Á
� 0 FALSE 6Â��  6 3 6 3 1 6��
  ?'1* = �6Á
� 0 FALSE 6ÂU�  6 4 6 4 1 6�U
  ?'1* = �6Á
� 0 FALSE 6ÂÀ�  6 5 6 1 2 6�
�  ?'2* = �6
U� � 0 FALSE 6ÂÁ�  6 6 6 2 2 6���  ?'2* = �6
U� � 0 FALSE 6ÂÂ�  6 7 6 3 2 6���  ?'2* = �6
U� � 0 FALSE 6Â��  6 8 6 4 2 6�U�  ?'2* = �6
U� � 0 FALSE 6ÂÃ�  6 9 n/a n/a n/a n/a n/a 0 FALSE 6�»�  6 10 n/a n/a n/a n/a n/a 0 FALSE 6�
�  6 11 n/a n/a n/a n/a n/a 0 FALSE 6���  6 12 n/a n/a n/a n/a n/a 0 FALSE 6���  6 13 n/a n/a n/a n/a n/a 0 FALSE 6�U�  6 14 n/a n/a n/a n/a n/a 0 FALSE 6�À�  7 1 7 1 1 6�À
  ?'1* = �6Á
� 0 FALSE 6�Á�  7 2 7 2 1 6�Á
  ?'1* = �6Á
� 0 FALSE 6�Â�  7 3 7 3 1 6�Â
  ?'1* = �6Á
� 0 FALSE 6���  7 4 7 4 1 6��
  ?'1* = �6Á
� 0 FALSE 6�Ã�  7 5 7 1 2 6�À�  ?'2* = �6
U� � 0 FALSE 6Ã»�  7 6 7 2 2 6�Á�  ?'2* = �6
U� � 0 FALSE 6Ã
�  7 7 7 3 2 6�Â�  ?'2* = �6
U� � 0 FALSE 6Ã��  7 8 7 4 2 6���  ?'2* = �6
U� � 0 FALSE 6Ã��  7 9 n/a n/a n/a n/a n/a 0 FALSE 6ÃU�  7 10 n/a n/a n/a n/a n/a 0 FALSE 6ÃÀ�  7 11 n/a n/a n/a n/a n/a 0 FALSE 6ÃÁ�  7 12 n/a n/a n/a n/a n/a 0 FALSE 6ÃÂ�  7 13 n/a n/a n/a n/a n/a 0 FALSE 6Ã��  7 14 n/a n/a n/a n/a n/a 0 FALSE 
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B.1.3  Transformation 3 

 

���  # $ ' * �#n
 g mÊ�#nË ��� ∈ g 6
�  1 1 1 9 6Ã ? = �6
Á, 6U�� 0 FALSE 6��  1 2 1 10 6
» ? = �6
Á, 6U�� 0 FALSE 6��  1 3 1 11 6

 ? = �6
Á, 6U�� 0 FALSE 6U�  1 4 1 12 6
� ? = �6
Á, 6U�� 0 FALSE 6À�  1 5 1 13 6
� ? = �6
Á, 6U�� 0 FALSE 6Á�  1 6 1 14 6
U ? = �6
Á, 6U�� 0 FALSE 6Â�  1 7 1 1 6
 ? = �6
Á, 6U�� 0 FALSE 6��  1 8 1 2 6� ? = �6
Á, 6U�� 0 FALSE 6Ã�  1 9 1 3 6� ? = �6
Á, 6U�� 0 FALSE 6
»�  1 10 1 4 6U ? = �6
Á, 6U�� 0 FALSE 6

�  1 11 1 5 6À ? = �6
Á, 6U�� 0 FALSE 6
��  1 12 1 6 6Á ? = �6
Á, 6U�� 0 FALSE 6
��  1 13 1 7 6Â ? = �6
Á, 6U�� 0 FALSE 6
U�  1 14 1 8 6� ? = �6
Á, 6U�� 0 FALSE 6
À�  2 1 2 10 6�U ? = �6
Á, 6U�� 0 FALSE 6
Á�  2 2 2 11 6�À ? = �6
Á, 6U�� 0 FALSE 6
Â�  2 3 2 12 6�Á ? = �6
Á, 6U�� 0 FALSE 6
��  2 4 2 13 6�Â ? = �6
Á, 6U�� 0 FALSE 6
Ã�  2 5 2 14 6�� ? = �6
Á, 6U�� 0 FALSE 6�»�  2 6 2 1 6
À ? = �6
Á, 6U�� 0 FALSE 6�
�  2 7 2 2 6
Á ? = �6
Á, 6U�� 1 TRUE 6���  2 8 2 3 6
Â ? = �6
Á, 6U�� 0 FALSE 6���  2 9 2 4 6
� ? = �6
Á, 6U�� 0 FALSE 6�U�  2 10 2 5 6
Ã ? = �6
Á, 6U�� 0 FALSE 6�À�  2 11 2 6 6�» ? = �6
Á, 6U�� 0 FALSE 6�Á�  2 12 2 7 6�
 ? = �6
Á, 6U�� 0 FALSE 6�Â�  2 13 2 8 6�� ? = �6
Á, 6U�� 0 FALSE 6���  2 14 2 9 6�� ? = �6
Á, 6U�� 0 FALSE 6�Ã�  3 1 3 11 6�Ã ? = �6
Á, 6U�� 0 FALSE 6��  3 2 3 12 6U» ? = �6
Á, 6U�� 0 FALSE 6�
�  3 3 3 13 6U
 ? = �6
Á, 6U�� 0 FALSE 6���  3 4 3 14 6U� ? = �6
Á, 6U�� 0 FALSE 6���  3 5 3 1 6�Ã ? = �6
Á, 6U�� 0 FALSE 6�U�  3 6 3 2 6� ? = �6
Á, 6U�� 0 FALSE 6�À�  3 7 3 3 6�
 ? = �6
Á, 6U�� 0 FALSE 6�Á�  3 8 3 4 6�� ? = �6
Á, 6U�� 0 FALSE 6�Â�  3 9 3 5 6�� ? = �6
Á, 6U�� 0 FALSE 
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���  # $ ' * �#n
 g mÊ�#nË ��� ∈ g 6���  3 10 3 6 6�U ? = �6
Á, 6U�� 0 FALSE 6�Ã�  3 11 3 7 6�À ? = �6
Á, 6U�� 0 FALSE 6U»�  3 12 3 8 6�Á ? = �6
Á, 6U�� 0 FALSE 6U
�  3 13 3 9 6�Â ? = �6
Á, 6U�� 0 FALSE 6U��  3 14 3 10 6�� ? = �6
Á, 6U�� 0 FALSE 6U��  4 1 4 12 6ÀU ? = �6
Á, 6U�� 0 FALSE 6UU�  4 2 4 13 6ÀÀ ? = �6
Á, 6U�� 0 FALSE 6UÀ�  4 3 4 14 6ÀÁ ? = �6
Á, 6U�� 0 FALSE 6UÁ�  4 4 4 1 6U� ? = �6
Á, 6U�� 0 FALSE 6UÂ�  4 5 4 2 6UU ? = �6
Á, 6U�� 0 FALSE 6U��  4 6 4 3 6UÀ ? = �6
Á, 6U�� 0 FALSE 6UÃ�  4 7 4 4 6UÁ ? = �6
Á, 6U�� 0 FALSE 6À»�  4 8 4 5 6UÂ ? = �6
Á, 6U�� 0 FALSE 6À
�  4 9 4 6 6U� ? = �6
Á, 6U�� 1 TRUE 6À��  4 10 4 7 6UÃ ? = �6
Á, 6U�� 0 FALSE 6À��  4 11 4 8 6À» ? = �6
Á, 6U�� 0 FALSE 6ÀU�  4 12 4 9 6À
 ? = �6
Á, 6U�� 0 FALSE 6ÀÀ�  4 13 4 10 6À� ? = �6
Á, 6U�� 0 FALSE 6ÀÁ�  4 14 4 11 6À� ? = �6
Á, 6U�� 0 FALSE 6ÀÂ�  5 1 5 13 6ÁÃ ? = �6
Á, 6U�� 0 FALSE 6À��  5 2 5 14 6Â» ? = �6
Á, 6U�� 0 FALSE 6ÀÃ�  5 3 5 1 6ÀÂ ? = �6
Á, 6U�� 0 FALSE 6Á»�  5 4 5 2 6À� ? = �6
Á, 6U�� 0 FALSE 6Á
�  5 5 5 3 6ÀÃ ? = �6
Á, 6U�� 0 FALSE 6Á��  5 6 5 4 6Á» ? = �6
Á, 6U�� 0 FALSE 6Á��  5 7 5 5 6Á
 ? = �6
Á, 6U�� 0 FALSE 6ÁU�  5 8 5 6 6Á� ? = �6
Á, 6U�� 0 FALSE 6ÁÀ�  5 9 5 7 6Á� ? = �6
Á, 6U�� 0 FALSE 6ÁÁ�  5 10 5 8 6ÁU ? = �6
Á, 6U�� 0 FALSE 6ÁÂ�  5 11 5 9 6ÁÀ ? = �6
Á, 6U�� 0 FALSE 6Á��  5 12 5 10 6ÁÁ ? = �6
Á, 6U�� 0 FALSE 6ÁÃ�  5 13 5 11 6ÁÂ ? = �6
Á, 6U�� 0 FALSE 6Â»�  5 14 5 12 6Á� ? = �6
Á, 6U�� 0 FALSE 6Â
�  6 1 6 14 6�U ? = �6
Á, 6U�� 0 FALSE 6Â��  6 2 6 1 6Â
 ? = �6
Á, 6U�� 0 FALSE 6Â��  6 3 6 2 6Â� ? = �6
Á, 6U�� 0 FALSE 6ÂU�  6 4 6 3 6Â� ? = �6
Á, 6U�� 0 FALSE 6ÂÀ�  6 5 6 4 6ÂU ? = �6
Á, 6U�� 0 FALSE 6ÂÁ�  6 6 6 5 6ÂÀ ? = �6
Á, 6U�� 0 FALSE 6ÂÂ�  6 7 6 6 6ÂÁ ? = �6
Á, 6U�� 0 FALSE 
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���  # $ ' * �#n
 g mÊ�#nË ��� ∈ g 6Â��  6 8 6 7 6ÂÂ ? = �6
Á, 6U�� 0 FALSE 6ÂÃ�  6 9 6 8 6Â� ? = �6
Á, 6U�� 0 FALSE 6�»�  6 10 6 9 6ÂÃ ? = �6
Á, 6U�� 0 FALSE 6�
�  6 11 6 10 6�» ? = �6
Á, 6U�� 0 FALSE 6���  6 12 6 11 6�
 ? = �6
Á, 6U�� 0 FALSE 6���  6 13 6 12 6�� ? = �6
Á, 6U�� 0 FALSE 6�U�  6 14 6 13 6�� ? = �6
Á, 6U�� 0 FALSE 6�À�  7 1 7 1 6�À ? = �6
Á, 6U�� 0 FALSE 6�Á�  7 2 7 2 6�Á ? = �6
Á, 6U�� 0 FALSE 6�Â�  7 3 7 3 6�Â ? = �6
Á, 6U�� 0 FALSE 6���  7 4 7 4 6�� ? = �6
Á, 6U�� 0 FALSE 6�Ã�  7 5 7 5 6�Ã ? = �6
Á, 6U�� 0 FALSE 6Ã»�  7 6 7 6 6Ã» ? = �6
Á, 6U�� 0 FALSE 6Ã
�  7 7 7 7 6Ã
 ? = �6
Á, 6U�� 0 FALSE 6Ã��  7 8 7 8 6Ã� ? = �6
Á, 6U�� 0 FALSE 6Ã��  7 9 7 9 6Ã� ? = �6
Á, 6U�� 0 FALSE 6ÃU�  7 10 7 10 6ÃU ? = �6
Á, 6U�� 0 FALSE 6ÃÀ�  7 11 7 11 6ÃÀ ? = �6
Á, 6U�� 0 FALSE 6ÃÁ�  7 12 7 12 6ÃÁ ? = �6
Á, 6U�� 0 FALSE 6ÃÂ�  7 13 7 13 6ÃÂ ? = �6
Á, 6U�� 0 FALSE 6Ã��  7 14 7 14 6Ã� ? = �6
Á, 6U�� 0 FALSE 
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B.1.4  Transformation 4 

 

���  # $ ' * �#n g mÊ�#nË ��� ∈ g 6
�  1 1 3 5 6�� ? = �6�
, 6À
� 0 FALSE 6��  1 2 3 6 6�U ? = �6�
, 6À
� 0 FALSE 6��  1 3 3 7 6�À ? = �6�
, 6À
� 0 FALSE 6U�  1 4 3 8 6�Á ? = �6�
, 6À
� 0 FALSE 6À�  1 5 3 9 6�Â ? = �6�
, 6À
� 0 FALSE 6Á�  1 6 3 10 6�� ? = �6�
, 6À
� 0 FALSE 6Â�  2 1 4 5 6UÂ ? = �6�
, 6À
� 0 FALSE 6��  2 2 4 6 6U� ? = �6�
, 6À
� 0 FALSE 6Ã�  2 3 4 7 6UÃ ? = �6�
, 6À
� 0 FALSE 6
»�  2 4 4 8 6À» ? = �6�
, 6À
� 0 FALSE 6

�  2 5 4 9 6À
 ? = �6�
, 6À
� 1 TRUE 6
��  2 6 4 10 6À� ? = �6�
, 6À
� 0 FALSE 6
��  3 1 5 5 6Á
 ? = �6�
, 6À
� 0 FALSE 6
U�  3 2 5 6 6Á� ? = �6�
, 6À
� 0 FALSE 6
À�  3 3 5 7 6Á� ? = �6�
, 6À
� 0 FALSE 6
Á�  3 4 5 8 6ÁU ? = �6�
, 6À
� 0 FALSE 6
Â�  3 5 5 9 6ÁÀ ? = �6�
, 6À
� 0 FALSE 6
��  3 6 5 10 6ÁÁ ? = �6�
, 6À
� 0 FALSE 6
Ã�  4 1 6 5 6ÂÀ ? = �6�
, 6À
� 0 FALSE 6�»�  4 2 6 6 6ÂÁ ? = �6�
, 6À
� 0 FALSE 6�
�  4 3 6 7 6ÂÂ ? = �6�
, 6À
� 0 FALSE 6���  4 4 6 8 6Â� ? = �6�
, 6À
� 0 FALSE 6���  4 5 6 9 6ÂÃ ? = �6�
, 6À
� 0 FALSE 6�U�  4 6 6 10 6�» ? = �6�
, 6À
� 0 FALSE 
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B.2 Transformation & Annotation Listing of Use Case 2 

These are the complete listings of the description of the transformation of elements and 

the propagation of annotations in use case 2: Temperature Sensor Network. 

B.2.1  Transformation 1 

 

���  # $ ' n �#n g'n* m'�#n* ��� ∈ g 6
�  1 1 1 1 /

 ?'1* = �/

� 1 TRUE 6��  1 2 n/a n/a n/a n/a 0 FALSE 6��  1 3 n/a n/a n/a n/a 0 FALSE 6U�  1 4 n/a n/a n/a n/a 0 FALSE 6À�  1 5 1 2 /
� ?'2* = ∅ 0 FALSE 6Á�  2 1 n/a n/a n/a n/a 0 FALSE 6Â�  2 2 n/a n/a n/a n/a 0 FALSE 6��  2 3 n/a n/a n/a n/a 0 FALSE 6Ã�  2 4 n/a n/a n/a n/a 0 FALSE 6
»�  2 5 n/a n/a n/a n/a 0 FALSE 6

�  3 1 n/a n/a n/a n/a 0 FALSE 6
��  3 2 n/a n/a n/a n/a 0 FALSE 6
��  3 3 n/a n/a n/a n/a 0 FALSE 6
U�  3 4 n/a n/a n/a n/a 0 FALSE 6
À�  3 5 n/a n/a n/a n/a 0 FALSE 6
Á�  4 1 n/a n/a n/a n/a 0 FALSE 6
Â�  4 2 n/a n/a n/a n/a 0 FALSE 6
��  4 3 n/a n/a n/a n/a 0 FALSE 6
Ã�  4 4 n/a n/a n/a n/a 0 FALSE 6�»�  4 5 n/a n/a n/a n/a 0 FALSE 6�
�  5 1 n/a n/a n/a n/a 0 FALSE 6���  5 2 1 3 /
� ?'3* = �/
�� 1 TRUE 6���  5 3 n/a n/a n/a n/a 0 FALSE 6�U�  5 4 n/a n/a n/a n/a 0 FALSE 6�À�  5 5 n/a n/a n/a n/a 0 FALSE 
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B.2.2  Transformation 2 

 

���  # $ ' * /#n'��� * 0���� ,1") 0���� ,12) 0��^�� ,133) mÊ�#nË ��� 
∈ A 6
�  1 1 1 1 �6
� 1,00 n/a n/a 1,00 TRUE 6��  1 2 1 2 �6
, 6À, 6��� 0,86 0,58 0,43 0,43 TRUE 6��  1 3 1 3 �6
, 6À, 6��� 0,72 0,72 0,42 0,38 FALSE 6U�  1 4 1 4 �6
, 6À, 6��� 0,58 0,86 0,37 0,31 FALSE 6À�  1 5 1 5 {m_5} n/a 1,00 n/a 0,00 FALSE 6Á�  2 1 2 1 �6
, 6À, 6��� 0,86 0,42 0,55 0,47 TRUE 6Â�  2 2 2 2 �6
, 6À, 6��� 0,80 0,55 0,58 0,46 TRUE 6��  2 3 2 3 �6
, 6À, 6��� 0,68 0,68 0,55 0,41 TRUE 6Ã�  2 4 2 4 �6
, 6À, 6��� 0,55 0,80 0,49 0,35 FALSE 6
»�  2 5 2 5 �6
, 6À, 6��� 0,42 0,86 0,40 0,27 FALSE 6

�  3 1 3 1 �6
, 6À, 6��� 0,72 0,37 0,68 0,47 TRUE 6
��  3 2 3 2 �6
, 6À, 6��� 0,68 0,49 0,72 0,47 TRUE 6
��  3 3 3 3 �6
, 6À, 6��� 0,60 0,60 0,68 0,43 TRUE 6
U�  3 4 3 4 �6
, 6À, 6��� 0,49 0,68 0,60 0,36 FALSE 6
À�  3 5 3 5 �6
, 6À, 6��� 0,37 0,72 0,49 0,29 FALSE 6
Á�  4 1 4 1 �6
, 6À, 6��� 0,58 0,29 0,80 0,46 TRUE 6
Â�  4 2 4 2 �6
, 6À, 6��� 0,55 0,40 0,86 0,47 TRUE 6
��  4 3 4 3 �6
, 6À, 6��� 0,49 0,49 0,80 0,43 TRUE 6
Ã�  4 4 4 4 �6
, 6À, 6��� 0,40 0,55 0,68 0,36 FALSE 6�»�  4 5 4 5 �6
, 6À, 6��� 0,29 0,58 0,55 0,28 FALSE 6�
�  5 1 5 1 �6
, 6À, 6��� 0,43 0,20 0,86 0,43 TRUE 6���  5 2 5 2 �6
, 6À, 6��� n/a n/a 1,00 1,00 TRUE 6���  5 3 5 3 �6
, 6À, 6��� 0,37 0,37 0,86 0,41 TRUE 6�U�  5 4 5 4 �6
, 6À, 6��� 0,29 0,42 0,72 0,34 FALSE 6�À�  5 5 5 5 �6
, 6À, 6��� 0,20 0,43 0,58 0,26 FALSE 
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B.2.3  Transformation 3 

 

���  # $ ' * �#n mÊ�#nË ��� ∈ g 6
�  1 1 1 1 6
 1 TRUE 6��  1 2 1 2 6� 1 TRUE 6��  1 3 1 3 6� 0 FALSE 6U�  1 4 1 4 6U 0 FALSE 6À�  1 5 1 5 6À 0 FALSE 6Á�  1 6 n/a n/a n/a 0 FALSE 6Â�  1 7 n/a n/a n/a 0 FALSE 6��  2 1 2 1 6Á 1 TRUE 6Ã�  2 2 2 2 6Â 1 TRUE 6
»�  2 3 2 3 6� 1 TRUE 6

�  2 4 2 4 6Ã 0 FALSE 6
��  2 5 2 5 6
» 0 FALSE 6
��  2 6 n/a n/a n/a 0 FALSE 6
U�  2 7 n/a n/a n/a 0 FALSE 6
À�  3 1 3 1 6

 1 TRUE 6
Á�  3 2 3 2 6
� 1 TRUE 6
Â�  3 3 3 3 6
� 1 TRUE 6
��  3 4 3 4 6
U 0 FALSE 6
Ã�  3 5 3 5 6
À 0 FALSE 6�»�  3 6 n/a n/a n/a   FALSE 6�
�  3 7 n/a n/a n/a   FALSE 6���  4 1 4 1 6
Á 1 TRUE 6���  4 2 4 2 6
Â 1 TRUE 6�U�  4 3 4 3 6
� 1 TRUE 6�À�  4 4 4 4 6
Ã 0 FALSE 6�Á�  4 5 5 5 6�» 0 FALSE 6�Â�  4 6 n/a n/a n/a 0 FALSE 6���  4 7 n/a n/a n/a 0 FALSE 6�Ã�  5 1 5 1 6�
 1 TRUE 6�»�  5 2 5 2 6�� 1 TRUE 6�
�  5 3 5 3 6�� 1 TRUE 6���  5 4 5 4 6�U 0 FALSE 6���  5 5 5 5 6�À 0 FALSE 6�U�  5 6 n/a n/a n/a 0 FALSE 6�À�  5 7 n/a n/a n/a 0 FALSE 6�Á�  6 1 n/a n/a n/a 0 FALSE 6�Â�  6 2 n/a n/a n/a 0 FALSE 
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���  # $ ' * �#n mÊ�#nË ��� ∈ g 6���  6 3 n/a n/a n/a 0 FALSE 6�Ã�  6 4 n/a n/a n/a 0 FALSE 6U»�  6 5 n/a n/a n/a 0 FALSE 6U
�  6 6 n/a n/a n/a 0 FALSE 6U��  6 7 n/a n/a n/a 0 FALSE 6U��  7 1 n/a n/a n/a 0 FALSE 6UU�  7 2 n/a n/a n/a 0 FALSE 6UÀ�  7 3 n/a n/a n/a 0 FALSE 6UÁ�  7 4 n/a n/a n/a 0 FALSE 6UÂ�  7 5 n/a n/a n/a 0 FALSE 6U��  7 6 n/a n/a n/a 0 FALSE 6UÃ�  7 7 n/a n/a n/a 0 FALSE 

 

 


