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1. INTRODUCTION 
 

Power amplifiers for radar applications require a relatively wide bandwidth (for example from 
8.0 -12 GHz) and need to deliver as much output power as possible. Therefore these 
amplifiers are designed to the limit of what is offered by the used processing technology. The 
main limit is the voltage breakdown of the transistors. For typical GaAs processing 
technologies this gate-drain voltage breakdown limit is around 16 to 20 V, and typical drain 
bias voltage is around 8 V. 

In standard class- AB amplifier designs the voltage swing at the output of the transistors is 
around 2 times the drain bias. Therefore the maximum drain bias is around half of the 
breakdown voltage limit (with some correction for the knee region and extra margin for 
reliability). This maximum drain bias (together with the maximum current) defines the 
maximum output power.  

Given a fixed technology and transistor size the current cannot be increased. The only way to 
increase the output power any further is to increase the voltage swing. One way of doing this 
is to use a cascode transistor: the combination of a common gate transistor (either as two 
separate transistors or as one dual gate transistor). This approach is often used in low voltage 
CMOS technology, where the bias voltage is limited to only 1.1 V 

This approach is also often used in very high frequency designs, where the gain offered by the 
cascode is higher than that of a single common source transistor. A cascode configuration also 
offers more bandwidth and is therefore often applied in very wide band distributed amplifiers. 

In this thesis following study questions will be investigated.  

 For what applications are cascodes currently used, and why? (What is the theory 
behind cascodes?) 

 Can cascode transistors be used to increase the output power of microwave power 
amplifiers in the range of S- band (2 to 4 GHz)? 

 Are cascode devices useful for other operating classes, such as Class-E, Class-F, etc., 
where higher drain voltage peaks can occur? 

 Can a microwave power amplifier with cascodes offer more bandwidth (while 
delivering at least the same output power and efficiency) than standard power 
amplifiers (using only common source devices)? 

 What specific modeling is required for cascodes (especially for the common-gate 
device)? 

 What implementation of cascodes is most useful: 2 separate devices (common source 
+ common gate, or a dual-gate device)? 

 Demonstrate the use of cascodes by designing a microwave integrated power amplifier 
in GaAs technology  
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To be able to answer the above described research questions, literature information will be 
provided together with simulation results in ADS.  Following design goals will be achieved 
with employing aforementioned cascode concept at S band. 

	

1.1	GOAL	OF	DESIGN	
 

Increase the output power of microwave power amplifiers and/or increase the maximum 
Power Added Efficiency, 

For: 

• Microwave (>2 GHz) integrated power amplifiers (MMICs) 

• In GaAs technology ( 0.5um pHEMT, TNO model) 

Target specifications  

For S-band Bandwidth: 2.9 – 3.5 GHz 

We start with background information about the power amplifiers for radars.  

	

1.2	ACTIVE	DEVICE	TECHNOLOGIES	IN	POWER	AMPLIFIERS	FOR	RADAR	APPLICATIONS	
	
There	are	several	active	device	technologies	that	are	mostly	used	in	radar	applications.		
Most	important	technologies	that	are	used	are	based	on	GaAs,	LDMOS	and	GaN	which	is	
the	new	generation	amplifier	technology.	

 
LDMOS-based Amplifiers  
 
 
LDMOS is an enhanced MOSFET structure especially suited for high power applications. It is 
used from point-to-multipoint communications to Radar. The most pervasive application is in 
cell phone base-stations. [5] 

These technologies are best known to operate with supply voltages of 28V with recent 
improvements allowing 50V operation 

LDMOS technology works well up to around 3.5 GHz. The intrinsic parasitic capacitance 
characteristics of LDMOS limit the frequency and bandwidth performance as well as its 
power-handling capabilities. [4] Therefore these types of technologies are less attractive for 
high frequency radar applications. 
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1.3	ORGANIZATION	OF	THESIS	
 

The goal of this thesis is, to increase the output power and/or increase the maximum power 
added efficiency (PAE) of a microwave power amplifier in GaAs technology. 
 
Introduction and power amplifiers for radar applications are described above in chapter 1 
 
The thesis is organized as follows: 
 
Chapter 2 presents the specification for the high power amplifier (HPA) design and selected 
operating HPA operating class. 
 
 
Chapter 3 deals with explanation of the functioning, use and advantages of cascode structure.  
 
 
Chapter 4 discusses the design issues. Unit cell (cascode) performance and bias point 
selection, output matching, input matching, total performance of the whole circuit and layout 
is presented in this chapter. 
 
Chapter 5 represents the designed PA with design kit components and the layout  
 
Chapter 6 gives conclusions and recommendations  
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2.	OVERVIEW	OF	POWER	AMPLIFIERS	
 

Power amplifiers can be categorized into two major groups [5]: Linear PAs and Nonlinear 
PAs. Linear PAs are able to generate output power proportional to the input power with a 
negligible amount of harmonic power generated. On the contrary, non-linear Pas operate near 
the cut-off region with a significant amount of harmonics generated besides the fundamental 
signal. The input and output power are no longer proportionally related.   

Furthermore, amplifiers can also be classified into 2 categories: biasing class and switching 
class. In biasing class, amplifiers such as Class A,B, AB and C amplifiers are classified based 
on their quiescent point (bias point) or output Current Conduction Angle (CCA) θ. θ is 
defined as the fraction of RF input drive signal where non-zero current is flowing through the 
device [5]. 

In this thesis we will investigate the benefits of stacked topology with circuits both in linear 
and non linear characteristics.  This will provide us a good comparison opportunity whether 
we can make use of power efficiency enhancement using switch mode power amplifiers for 
MMIC power amplifiers at high frequencies.  In this way we will try to increase the output 
power about 2 times more than a common source stage and at the same time keeping a 
relative high PAE. 

For linear PA design case the circuit will be biased in class AB mode according to reason that 
will be explained in the coming section. In non linear case we will use a class E switch mode 
power amplifier because of the reasons which are also be explained in the coming sections.  

 

2.1	POWER	AMPLIFIERS	WORKING	AS	A	CURRENT	SOURCE	
 
In PAs working as a current source, different bias points result in different conduction angles, 
and therefore different classes of operation with each having own pros and cons. Here we will 
briefly describe each class of operation. The detailed analysis and derivation of the linear 
power amplifiers are fully discussed elsewhere (see e.g. [7], [8])  
 
 
Efficiency for linear PA can be given in general form as follows [9]. 
 
For the voltage and current we have (see fig 4.1), 
 

cosin b inv v V t   ,         (2.1) 

cosqi I I    ; For -θ<ωt<θ; otherwise i=0,      (2.2) 

 
in which Vb is the bias voltage, Iq is the quiescent current, θ is the half of the conduction 
angle, and Vin and I are amplitude of the input voltage and the output current respectively 
Since θ is the half of the conduction angle, it can be determined at the moment when current 
is equal to zero, as shown in (2.3) 
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cos 0 cos (cos cos ) 0q
q

I
I I i I t t

I
                 (2.3) 

In order to determine the efficiency for each class of operation, first the DC component of the 
current and the fundamental component of it should be calculated using (2.4) and (2.5), 
 
 

0

1
(cos cos ) (sin cos )

2

I
I I t d t





     
 

         (2.4) 

1

1
(cos cos )cos ( sin cos )

2

I
I I t td t





      
 

         (2.5) 

 
 
Knowing that the efficiency is the ratio of power at the fundamental to the power at DC, and 
assuming an ideal condition of zero saturation voltage (voltage peak factor (Vin/Vcc) is equal 
to 1, in which Vcc is the DC supply voltage), we have, 
 
 

1 1

0 0

2
0

0

1 1 ( sin cos )

2 2 (sin cos )

2

P I

P I

V
P

R

  
  


    




       (2.6) 

 
Depending on the conduction angle, efficiency and linearity of each class is determined. More 
details on different classes of operation of this category will be provided in the following 
sections. 
 
 

2.1.1.	CLASS	A	AMPLIFIER	
 

A Class A amplifier is a linear amplifier, which has conduction angle of 360°. The 360° 
conduction angle means that the transistor in this class is turned on and conducts over the 
entire sinusoidal cycle. Most of the small-signal amplifiers are designed in this class because 
of its simplicity and the best linearity among all classes of amplifiers. Because of the 360° 
conduction angle of Class A, these amplifiers have the lowest efficiency and are only suitable 
for low-power applications. The transfer characteristic of a Class A amplifier and its 
corresponding voltage and current waveforms are shown in Fig.2.1 

The class A amplifier is cheap, because it only requires a single active device. It is biased in 
the active linear region and amplifies the signal over the entire input cycle. Fig. 2.1 shows 
how a class A amplifier operates. Its performance is good in terms of linearity (it contains no 
harmonics at the output), but undesirable in terms of efficiency. In other words, it is very 
inefficient because it is always conducting even when there is no input signal. According to 
(2.6) it can obtain a maximum efficiency of 50% (θ=π). 
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2.1.3	CLASS	C	POWER	AMPLIFIERS	
 
A class C amplifier conducts even less than half of the cycle of the input signal (θ is less than 
90°), which makes it more efficient than class B. But it should be noted that the advantage of 
high efficiency comes with the disadvantage of high distortion at the output. 
 

2.1.4	CLASS	AB	POWER	AMPLIFIERS	
 
The class AB amplifier is a classical compromise, which has higher efficiency than class A, 
but inevitably increased nonlinearity [8]. In other words, the class AB amplifier is biased 
somewhere between class A and class B (which means less than full cycle but more than half 
a cycle conduction). Therefore, the ideal efficiency will be between 50% and 78.5% (feasible 
PAE 40-50%), and the linearity will be better than a class B, but worse than a class A 
amplifier. 
 
Since in our design, efficiency and output power is more important than the linearity; our 
choice for biasing will be in class AB mode.  
 
 
Following section will analyzes the switch mode power amplifiers. Among different class of 
switch mode power amplifiers class E type power amplifiers gain more attention since class E 
power amplifiers can better  tolerate real circuit variation[10] and also it has a relative simple 
configuration compared to the other switching modes PAs. Therefore our attention will be 
focused mainly on this class of amplifiers. 

 
	

2.2	SWITCH	MODE	POWER	AMPLIFIERS		

  
 In this category, power amplifiers are designed so that the transistor acts as an RF switch, 
rather than as a voltage-controlled current source. In other words, the output networks provide 
non-overlapping waveforms. Furthermore, efficiency of this category is improved, because of 
operation in the saturation region at the cost of more complex load networks (which means at 
lower powers, switching mode power amplifiers will have poor efficiency). On the other 
hand, linearity is sacrificed due to operation in a strongly nonlinear region, which results in 
nonlinear voltage and current waveforms. 
 
In the following sections we will look at two different switch mode power amplifier types. 
We first start with a short introduction about class F PAs and after that deal with class E 
power amplifier theory and some class E PAs with alternative load networks.  
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2.3	DISADVANTAGES	OF	SWITCH	MODE	PAS	
 
It is also important to note that switch mode amplifiers  are not suited for microwave 
application where broadband width is required since the design procedure of these class of 
operations is based on considering a single fundamental frequency, which makes it 
narrowband and unsuitable for broadband power amplifiers. Another drawback of switch 
mode PAs is that although switch mode PAs achieves much higher efficiencies they generate 
strong nonlinearities.   
 
A large output capacitance and switch on resistance (Ron) are also limiting factors at high 
frequencies.  At very high frequencies (at  -wave range) this can cause deviation from the 
ideal drain/collector voltage- current waveform for switch mode PAs which in turns result in 
an overlapping of both signal quantity. This will have then, of course, deleterious effect on the 
efficiency. 
 
However there are some papers have been published with promising results at S band with 
switch mode PAs. In [6] PAE of greater than 70% over 3.0-3.7 GHz is obtained for 15.0 dBm 
input power drive, and a peak PAE of more than 90% is obtained at around 3.25 GHz when 
the amplifier is driven by only 12.0 dBm of input power. Over 10% bandwidth in S-Band, an 
inverse class-F amplifier exhibits [13] more than 60% drain efficiency and 10W output 
power. Also in [14] and [15] peak PAE performances close to 80% have been published for 
class-F and inverse class-F GaN power amplifiers operating at around 2GHz. We have to also 
stress out here that these designs are not all of them MMIC applications. A more general 
conclusion will be given after comparing the performance results of class AB PA with switch 
mode class E PA.  

 
In the coming sections we will compare the performance of both, linear and switch mode PAs 
through simulation results.  In this way we want to conclude that despite of those 
aforementioned disadvantages of switch mode PAs, whether we can still achieve an 
acceptable relative broadband characteristic and enough output power and PAE for S band 
system with the aid of stacked- switch mode PA.  
 
 

3.	CASCODE	ARCHITECTURE		
 

The cascode configuration is formed by a cascade of a common source (CS) stage driving a 
common gate (CG). (See figure 3.1) The cascode configuration is usually used for low-noise 
amplifier applications when a mixer is the next stage [B.Razavi et.al]. Then the load will be 
capacitive which will limit the frequency response of the LNA due to Miller effect. Also it is 
frequently used in wideband amplifiers because of high reverse isolation and high gain 
characteristic of the cascode configuration. 
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 Number of gates per device is twice of a single gate one, hence higher yield is 
required during the processing, this practically becomes an issue 

  A dual Gate device has higher knee voltage Vknee than the single gate one.  
 Due to the complexity, it is difficult to get an accurate nonlinear model for the 

dual gate device.  [17,18] 
 

Following argument explains the lower feedback of the cascode configuration. For better 
understanding of this argument, definition of Miller effect has to be given first. The Miller 
effect accounts for the increase in the equivalent input capacitance of an inverting voltage 
amplifier due to amplification of the capacitance between the input and output terminals. The 
additional input capacitance due the Miller effect is given by [2] 

    (1 )m v gdC A C      (3.1) 

 
 

 Loaded with the input impedance 
1

mg
 of the common gate circuit, the small signal gain, Av, 

of the common source stage with transconductance mg  exhibits a low value of -1 since

m LAv g R   .  

 According to Eq. (3.1) we get  

    (1 ) 2m v gd gdC A C C       (3.2) 

In comparison to the common source circuit this result in a much smaller Miller capacitance 
than the one for the common source circuit. Consequently, the low pass characteristic 
associated with the input capacitance is less pronounced yielding higher cutoff frequencies for 
the voltage, current and power gain. [3] .The nearly unilateral nature of cascode cell helps 
improving the stability as well. 

 

As it can be seen from the figure 3.1 an additional capacitor is added on the gate of the 2nd 
transistor. Next section will highlight the reason of this configuration.  

 

3.2	WHY	AN	ADDITIONAL	CAPACITOR	MUST	BE	ADDED	ON	THE	GATE	OF	THE	SECOND	
TRANSISTOR?	

 
The capacitor at the gate of the common gate transistor enables to equalize the output 
impedances of both transistors within the cascode cell. [16] And also reduce the voltage swing 
between the gate and drain of the stacked FET’s below the breakdown voltage limit. [30] 
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Simplifying	this	result	gives	eq	(3.12)	

	

	 ,

,

( 1)

1

m
c gs N

gs

g N

N V
V V

C

C


 


									 (3.12)	

Since	Vc	is	constant	the	current	sources	in	all	cells	have	the	same	magnitude	Im	

		 	 	 	

,

( 1)
.

1

m
m m c m

gs

g N

N V
I g V g

C

C


 


				 (3.13)	

If	we	assume	that	Yopt	is	optimum	admittance	needed	at	the	drain	terminal	of	a	common	source	
single	FET,	then	we	get:	

	 	 	 		 	

	 	 	 	 ( ) /opt m ds m mY I j C V V  				 	 (3.14)	

From	(3.13)	and	(3.14)		

	

		 	 	 	 	

,

( 1)
.
1

opt ds m
gs

g N

N
Y j C g

C

C

 
 


				 				 (3.15)	

	

Hence		

, ( 1) / ( ) 1
gs

g N
m opt ds

C
C

g N Y j C


  
			 		(3.16)	

	 	

	

And	for	2	cell	stacked	structure	this	will	be	equal	to:	

	

,2 / ( ) 1
gs

g
m opt ds

C
C

g Y j C


 
			 	 	(3.17)	

Since	for	the	microwave	transistors	 optY 	can	be	approximated	by	a	shunt	resistor	and	a	shunt	

negative	capacitor	which	can	be	defined	as	follows:		
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	 	 	 	 	 opt opt optY G j C  	 	 	 (3.18)	

Assuming	Copt	=Cds	and	from	(3.16	and	3.18)		

, ( 1) / ( ) 1
gs

g N
m opt opt ds

C
C

g N G j C j C 


   
	

 

( 1) / 1
gs

m opt

C

g N G


 
	 	 	 	 (3.19)	

	

The mathematical analysis above show us why the stacked topology gives more output power  
compared to a common source stage and the following analysis after that establishes the 
relation of gate capacitance with other circuit parameters.  

The more accurate value for the gate capacitance will be found through performing simulation 
which also take account of ignored parasitic.   
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4.	PERFORMANCE	ANALYSIS	OF	STACKED	MMIC	POWER	AMPLIFIER	

IN	GaAs	TECHNOLOGY	USING	ADS			
	
 

In order to demonstrate whether stacked FET can be used to increase the output power of 
microwave power amplifiers in the range of S- band, we will design a linear power amplifier 
and a switch mode PA in ADS. These will give us also an opportunity whether we can make 
use of efficiency benefit of switch mode power amplifiers (SMPA) with enough bandwidth 
for radar systems. 

 

	

4.1	LINEAR	PA	DESIGN	TO	VERIFY	THE	STACKED	STRUCTURE	CONCEPT	FOR	S	BAND	SYSTEM	
 

To show that the output power will be doubled as mentioned in [16] when it is designed in 
stacked topology, we start with a power amplifier that is biased in class AB mode for 
optimum tradeoff between power and PAE (see fig 4.1). 

 

	4.1.1	LINEAR	SINGLE	GATE	DESIGN	
 

One of the first steps in designing a power amplifier is that you guarantee the stability of the 
power amplifier.  The following section highlights this issue. 

 

 STABILITY ISSIUES 

Stability is an important consideration when designing an amplifier. In order to fulfill to have 
a two-port be stable for all combinations of passive impedance terminations; conditions, 
which is called Rollet’s stability criterion, in eq (4.1) has to be satisfied. Two relations must 
be fulfilled to have a necessary and sufficient criterion for unconditionally stability.  

    
2 2 2

11 22

21 12

1
1

2

S S
K

S S

   
  ,   (4.1) 

    11 22 12 21 1S S S S     

Here K is called Rollet stability factor and  is being the determinant of the S parameter 
matrix of the two-port. 
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Another useful criterion that combines the S parameters in a test involving only a single 
parameter, , defined as [19] 

2

11

*
22 11 12 21

1
1

S

S S S S



 

 
   (4.2) 

Where   is again the determinant of the S-parameter matrix 

Thus, if  >1, the device is unconditionally stable. In addition, larger values of   imply 

greater stability. In contrast, the Rollett factor itself cannot give secure prediction about 
unconditional stability. An additional auxiliary condition such as |Δ| < 1 is necessary and 
sufficient for unconditional stability of a two-port (see eq. 4.1). 

   Figure 4.1: verification of unconditional stabilization according to Rollet stability  

         criteria K (stabFact1)>1 and ( _ ) 1Mag delta     

 

Rollet’s criterion in our circuit is achieved by adding a parallel RC combination at the gate of 
our active device. The values of these components are chosen such that at low frequencies the 
circuit shows a relative high resistance in order to suppress the unwanted oscillation, because 
of high small signal gain at those frequencies. Further, the values are optimized with the 
tuning tool in ADS.  The result is given in fig 4.1.   

 

In the coming section load pull analysis will be performed in order to determine the optimum 
load. The circuit will be biased in AB mode, operating at 3.2 GHz with an input drive level of 
27 dBm. 
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     Figure4.2: Setup for load pull analysis and bias point selection  

                     

 

      Figure 4.3: Load pull analysis for determining the optimum load  
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 PERFORMANCE PARAMETERS FOR COMMON SOURCE PA 

 

In the figures below following results are achieved at 3.2 GHz with 27dBm input drive signal.  

 Output Power = 32.38 dBm 
 Power added efficiency=52.23 % 
 Power Gain=11.18dB 
 Optimum Load= 36.1+j13.4 Ohm 

  

    

Figure 4.4: Performance results of unmatched common source PA  
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Figure 4.5: Frequency (in GHz) characteristic of Pout and PAE for the common source stage 
PA 

 

 

4.1.1 STACKED CONFIGURATION BIASED IN CLASS AB-MODE 
 

As for the single stage, after determining the DC bias condition, the next step was determining 
the optimum load to be presented to output of transistor. For the cascode configuration we 
have found Zopt= 57.149+j*38.147 

 

    

      Figure 4.6: Load Pull analysis result of stacked configuration  
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      Figure 4.7: Unmatched stacked class AB PA 

 

                       

                                  Figure 4.8: Unconditional stability, K>1 and ∆൏ 1 is satisfied 
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Figure 4.9: Source and Load stability Circles 

 

 

                    Figure 4.10: Power performance of the stacked amplifier @ 3.2GHz and VDD=28[V] 
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Figure 4.11: PAE, Pout and Power gain versus Frequency of the cascode stage amplifier @ S band 	

	

	

	

4.1.2	PERFORMANCE	OF	DESIGNED	UNMATCHED	CLASS	AB	PA	
	

	

The performance comparison of common source stage ‘linear’ PA with stacked PA is given in 
table 4.1   

The output power is increased almost 2 times in stacked topology compared to the common 
source stage as expected from the literature information.  Other important points are the 
increased output power bandwidth and PAE bandwidth (about 20% increasing) along with 
increased power gain in stacked topology. 
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Table	4.1:	Performance	summary	of	common	source	‘linear’	PA	and	Stacked	PA	

	

 

In the next section we will deal with the same analysis but this time we will do it for a switch 
mode PA. 

	

	

4.2			 SWITCH	MODE	DESIGN	AS	AN	ALTERNATIVE	APPROACH	TO	LINEAR	DESIGN	IN	ORDER	

TO	IMPROVE	THE	EFFICIENCY			
 

 

Switching-mode power amplifiers (SMPA) use active transistors as switches. That is, the 
active device is ideally fully on (short-circuit) or fully off (open-circuit). The theoretical 
efficiency of the SMPA’s is 100%. However this is in practice never the case. Especially in 
the high frequency range, optimum drain current and voltage waveforms deviate substantially 
from the ideal non-overlapping situation.  

We will perform some simulations with a class E power amplifier with quarter wave 
transmission line configuration. The reason of chosen configuration is explained in section 
4.2.2.4.  But it could be also done in other kind of configuration of class E PA. 

 

	

	

	

	

	

	 Common		Source	
Stage	

Stacked	structure

	 	 	

Output	Power[dBm]@P1dB	 32.4    35.1 

Power	added	efficiency[%]	 51    51 

Power	Gain[dB]	 11.2    13.2 

Pout	Bandwidth[%]	 37.5    56.3 

	PAE	Bandwidth[%]	 31.3     55.4 
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Figure 4.13: Unconditional stability verification  

 

                       

Figure 4.14: Load and Source stability Circles  
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Figure 4.15:  Simulated PAE, Pout, and Power Gain vs. frequency bias (Vd=10 [V], Vg=-1.75[V]    

                                  Figure 4.16: Drain Voltage and current vs. time and load signal vs. time  
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Figure 4.18: Unconditional stability verification; above the load and source stability circles beneath that          
the K factor and Δ are given 

 

Figure 4.19: Drain current and Voltage waveforms of bottom and top transistors  
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Figure 4.20: PAE, Power Gain and PAE vs. Pavs 

 
Figure 4.21: Pout and PAE vs. frequency( in GHz) characteristic 
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4.2.3		PERFORMANCE	SUMMARY	OF	DESIGNED	SWITCH	MODE	PA		
	

In table 4.2 the performance comparison of single stage SMPA with stacked version given.  
We see here again an increase in the bandwidth and the output power for the stacked 
topology. Also the power gain is greater for the stacked configuration as it was the case for 
linear PA.   

Table	4.2:	Performance	summary	of	single	stage	SMPA	with	stacked	SMPA	

	

The increase in bandwidth for PAE is pretty high but this is due to the fact that we have used 
here class E power amplifier with quarter wave transmission line that possess 4 harmonic 
termination which makes the output characteristics more selective for single stage SMPA.  
We do not expect that much increasing in the bandwidth for other kinds of class E PAs but 
still the increasing would be about 2 times more for stacked topology compared to the single 
stage. 

Another important observation is that the switch mode PAs do not perform very well in the 
sense of PAE and output power when we compare it with ‘linear’ PAs at S band. This is 
because of the difficulties in achieving the optimum class E conditions at high frequencies. 
The maximum output power that is achieved with SMPA is almost 2 dBm less than linear PA 
but it also provides 3dB more output power when using stacked structure compared to single 
stage version as it was for the linear PA. 

 

In the figure below we see the improvement in the bandwidth characteristic for the SMPA 

 

	 Single	Stage Cascode	Stage

	 	 	

Output	Power[dBm]@P1dB	 30.5    33.3 

Power	added	efficiency[%]	 60    55 

Power	Gain[dB]	 14.3    15.8 

Pout	Bandwidth[%]	 15.6    31.2 

	PAE	Bandwidth[%]	 9.7    31.2 
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Figure 4.22: Improvement in the bandwidth characteristic for the SMPA: first two belong to the single stage 
SMPA and below that the cascode stage SMPA frequency characteristic. 

	

 

Having finishing the comparison of unmatched circuit performances, it is now time to design 
the impedance matching circuits for the PAs in order to have a more realistic performance 
merits. 

 

 

 

4.3	IMPEDANCE	MATCHING	NETWORK	DESIGN	FOR	LINEAR	POWER	AMPLIFIER	
 

Matching networks provide a transformation of impedance to a desired value to maximize the 
power dissipated by a load. The input impedance of the transistor is highly nonlinear, i.e., 
dependent on the operating point. Thus, the device operating under large-signal conditions 
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           Figure 4.26: Output matching network  
 
 
 
 
 

 
       

Figure 4.27: Output match verification  
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The data display in figure 4.27 shows that the desired impedance is achieved. Furthermore to 
satisfy the broadband matching characteristic multi section filter is designed through ‘staying’ 
within the border of the quality factor (Q=1) circle when transforming the load impedance to 
the optimum impedance. 
 
 

INPUT MATCHING CIRCUIT DESIGN FOR COMMON SOURCE STAGE PA  

	

 

 
After having designed the output matching network, we determined the large signal input 
impedance.  The simulated impedance value is given in the figure 4.28 which is equal to 
4.04+j28.73 [Ω]  
 

 
    Figure 4.28: Large signal Zin at fo 
 
 
 
 
We then conjugate match the input in order to get the maximum power transfer. Design 
procedure and results are given 
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Figure 4.37: Output Matching Network for stacked  linear PA 
 
 
 
 
 

 
 
Figure 4.38: Output Match verification  
 

 
 
 
The design procedure is the same as we for the common source stage. Also we see from the 
figure 4.38 that our output matching circuit is matched very well with a broadband 
characteristic. Next step is determining the large signal Zin and conjugately match the input 
according to this impedance value. 
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Input Matching Network Design for Stacked Class AB PA 

 
The design steps of input matching circuit are given below. We follow exactly the 

same procedure for designing the input matching circuit as we done for the common source 
stage.  

 

              
Figure 4.39: Large signal Zin @ 3.2GHz 
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Figure 4.40: Input Match verification  
 

 

 

 

 

            

 

      Figure 4.41: Designed input Matching network for stacked PA  
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Figure 4.42: Unconditional stability verification of the designed 
stacked PA  
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5.1	PERFORMANCE	OF	THE	PA	WITH	NON	IDEAL	COMPONENTS	
	

In figure 5.5 the performance merits of the designed PA given .   
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Figure 5.5: Pout, PAE and Power Gain vs. freq of the cascode PA with non ideal 
components for Vd=24 V, Vg =-1.58V and Pavs=22 dBm and load lines of both transistors.  
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Figure 5.6: Source and Load stability circles above and impedances 

seen from the drain of the both transistors given in the plots below. 

	

The designed PA shows a 47% peak PAE and 10 % bandwidth over S band with PAE of  
43%  and about 33.3 dBm peak output power. 
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In this project we have investigated the benefits of the stacked configuration in the power 
amplifiers for radar systems at microwave frequencies; more specifically at S band with a 
centre frequency of 3.25 GHz.  Therefore we have first designed a common source stage 
amplifier and compared the performance of this amplifier with the stacked version of that 
amplifier. Besides that we have also designed a switch mode PA in order to see the 
performance of this kind of amplifier at the high frequency range; especially with the aim of 
increasing the PAE along with the output power using it in a stacked configuration. 

It is known from the literature study that the stacked configuration provides us a 3dB more 
output power compared to the common source stage PA. But there is not so much information 
available about the benefits of stacked configuration in the sense of PAE, influence on the 
bandwidth characteristics, robustness of the stacked configuration on the load impedance 
variation etc. Therefore in this work it is also tried to find answers to these questions. 

The important point in using of the stacked structure is the addition of a capacitor between the 
gate of the FET and ground. This capacitor plays an important role in adjusting the impedance 
level seen by the drain of active device. This impedance adjustment is important since the 
optimum power from the active device is delivered only when the output of the device is 
matched to the optimum impedance. [22].  

An additional capacitor is also used between the drain source terminals of the top transistor to 
make it possible to obtain twice the output conductance of a single common source transistor. 
[16]. However during the simulations it is observed that using this capacitor cause difficulties 
in achieving the unconditional stability condition. It is also pointed out in [16] that in most 
cases this capacitor could not be integrated because of its low value.  

Having dealt with these issues, it is time to summarize results of this thesis: 

 

 We have shown in this work that the stacked structure provides 3 [dB] (2 times) more 
output power for both types of PAs (for the linear PA and for the SMPA) than the 
single stage versions at S band frequency range.  
 

o The common source PA that is biased in class AB mode gives 32.4 dBm Pout with a 
bandwidth (BW) of 37.5% while the stacked version of this PA gives 35 dBm Pout 
with a 56.3% BW. 

o The single stage SMPA gives 30.5 dBm Pout with a 15.6 % BW while the stacked 
version of this SMPA provides 33.5 dBm Pout with 31.2% BW. 

 

 The Power added Efficiency (PAE) of the switch mode PA (SMPA) is better than that 
of the ‘linear’ PA but the achieved bandwidth @S band with SMPA is less than the 
linear version. 
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o The PAE for the single stage ‘linear’ PA is 51%  with a 31.3% BW which is also 
51% for the stacked configuration of this PA  with a BW of  55.4 % 

o The PAE for the single stage SMPA is 60% with a 9,7% BW and 55% for the stacked 
stage SMPA with a BW of  31.2 % 

 

 Power gains are also increasing in stacked configuration compared to the single stage. 
 

o The power gain for the single stage linear common source PA is 11.2 dB which is 
13.2 dB for the stacked stage 

o The power gain for the single stage SMPA is 14.3 dB while it is 15.8 dB for the 
stacked version. 
 
 

For a clearer overview of these results see the tables 5.1.2 and 5.2.3 

 

 Stacked configuration results in a higher output impedance which minimizes the losses 
of output matching circuit. 
 

o Zopt_single=36.108+j13.4 [Ohms] for the common source stage while it’s 
Zopt_cascode= 57.15+j38.15 [Ohms] for the linear stacked   PA. 
 

 

 In this project we have used 0.5um GaAs pHEMT technology. However if  the cost is not 
primary concern, GaN technology would probably result in a much better performance in 
the sense of output power, PAE and gain than the GaAs technology. 

There are several papers which are show the superiority of GaN technology comparing 
with the first generation semiconductor Si, Ge and second generation compound 
semiconductor GaAs, InP. In order to compare GaAs and GaN technology performance 
we will provide here two different designs from the literature.  

In  [26] the GaN Monolithic Class E Power Amplifier  that is measured under three pulsed 
drain voltages at 7.5 GHz gives the following results (67%, 36.8 dBm @ 20 V), (64%, 
37.8 dBm @ 25 V) and (58%, 38.3 dBm @ 30 V). Also the load possesses a broadband 
class-E performance showing a nearly frequency independent response over 6.0-12.0 
GHz. So in this design one octave bandwidth is achieved with a high PAE along with a 
high output power thanks to GaN technology.  

The S band HPA which is designed for radar application by SELEX Sistemi Integrati 
S.p.A. Engineering Division (Rome Italy) has the following properties:  In the frequency 
bandwidth 2.4-3.6GHz, the HPA biased at Vd=10V delivers an output power of 20W @ 
4dB of gain compression, with an associated PAE of circa 28%  in  0.5μm GaAs PHEMT 
technology.   
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If we now compare these two designs, we see that in [27] very poor PAE is achieved at S 
band. Also to achieve 20 Watt Pout they had to use more active devices in parallel.  The 
HPA in [26] which uses GaN technology shows a PAE of 67 % and 36.8 dBm output 
power at the operating frequency 7.5 GHz. It is shown in that work that the (min. & max.) 
values for PAE and power over 7.0 -11.0 GHz at 30 V drain bias are: (43%-57%) and 
(37.0-37.9 dBm) respectively.  

 

 As a comparison of our cascode PA with a similar work, we can give the result which is 
performed by Amin K Ezzeddine and Ho.C Huang [22] because their circuit operates also 
at the same frequency range. So this would give a bit fair comparison. 

Their circuit operates at 3.5 GHz. The P1dB is 31.5 dBm with a PAE of 42% at 1 dB 
compression. There is no bandwidth information available in their work. 

 

Our  PA shows a 47% peak PAE and 10 % bandwidth over S band with PAE of  42%  and 
about 33 dBm peak output power. The operating frequency is 3.2 GHz  

 

This comparison shows us that our circuit has some better performance merits but actually 
a fair comparison is not possible because each design has different design specifications.  

 

An important conclusion might be that using a switch mode PA along with GaN 
technology can offer us a high PAE with a high output power in compare to the linear 
mode PAs in other technologies than GaN.  We have to also note here that the work in 
[26] which is performed through Raytheon Space & Airborne Systems uses a different 
load network than the classical ones which is stated in that paper. And it’s entirely not 
explained; probably because of the confidentiality. So with the load networks for class E 
PAs, that are covered in the literature it is almost impossible to achieve such a high 
bandwidths with such a high PAE at S and X bands. In the future works this kind of better 
performed load networks for class E PAs can be investigated first. Using the better output 
power performance of cascode stage this would result in a best performed PA at high 
frequencies.  

As a final word we can say that using cascode configuration in a SMPA or harmonic 
termination applied to a linear PA in GaN technology will result best performance 
parameters for a HPA. 
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