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Abstract

This thesis describes the research into modelling cash flows for Residential

Mortgage Backed Securities (RMBS). RMBS notes are secured by proceeds,

interest and principal payments, of the underlying mortgage pool. A transac-

tion is divided into several classes of notes with different risk profiles, though

they all reference to the same underlying assets.

The quality or creditworthiness of an RMBS transaction is assessed by credit

rating agencies. During the credit crisis substantial losses were suffered on

several RMBS notes, sometimes up to the most senior ones. In response, the

rating agencies downgraded a lot of RMBS transactions, and more impor-

tantly the market questioned the ability of the rating agencies to assess the

quality of structured credits. As a consequence pricing RMBS notes became

very subjective. This forces investors to develop their own pricing models

instead of relying on rating agencies. Finally, regulatory supervisors have

reacted by requesting more transparency from issuers, resulting in the obli-

gation for issuers to make available to investors detailed loan-level data on

the underlying mortgage pool. The new regulations gave rise to research on

how to purposefully apply loan-level data to consistently and arbitrage free

value an RMBS note.

In this thesis we develop a model based on loan-level data to forecast the

cash flows to the noteholders. This model has a stochastic part, the cash

flows from the mortgage pool, and a deterministic part, the allocation of

these cash flows to the noteholders established by the transaction structure.

Besides interest payments, default and early repayment are determinants of

v
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the size and timing of cash flows from the underlying mortgage pool. In this

research, both the default and early repayment model are based on survival

analysis, which allows for the estimation of month-to-month default and early

repayment probabilities at a mortgage level. The Cox proportional hazards

model adopted is able to incorporate both mortgage specific variables and

time-varying covariates relating to the macro-economy. Since both default

and early repayment can cause a mortgage to be terminated before maturity,

these causes are termed ’competing risks’. In this paper we will extend the

Cox model such that it explicitly accounts for the competing risk setting.

We find that the probability of default for a mortgage is higher if:

• the ratio of loan to foreclosure value is higher;

• the borrower has a registered negative credit history;

• the ratio of main income to total income associated with the loan is

higher;

• there is only one registered borrower;

• the income of the borrower is not disclosed to the lender, but to an

intermediary.

For early repayment, we find that the probability of occurrence for a mortgage

is higher if:

• the ratio of loan to foreclosure value is higher;

• the applicant is younger;

• the total income of the borrower(s) is lower;

• the 3-months Euribor is higher;

• it is an interest reset date;

• the refinancing incentive is higher.
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We obtain a method to estimate the month-to-month default and early re-

payment probabilities for a specific mortgage with certain characteristics and

age. Monte Carlo simulation is used to compute different realisations of de-

fault and early repayment for the underlying mortgage pool over the maturity

of the RMBS. Finally, the deterministic structure of the notes allows us to

derive the corresponding discounted cash flows to the noteholders and esti-

mate a profit distribution for an RMBS note.

The research resulted in a tool for NIBC to assess the quality of a mortgage

pool and employ this information to arbitrage free value a corresponding

RMBS note.
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Chapter 1

Introduction

In this first chapter we will give an introduction to the subject of Residential

Mortgage Backed Securities and define the scope of the performed research,

while at the same time motivating the reason of this research. The second

section will describe the organization of this thesis.

1.1 Scope and motivation of the research

Residential Mortgage Backed Security (RMBS) notes are secured by pro-

ceeds, interest and principal payments, of the underlying mortgage pool. A

transaction is divided into several classes of notes with different risk profiles,

though they all reference to the same underlying assets. The different risk

profiles are due to the transaction structure, which is generally quite com-

plex but can, in short, be summarised as follows: income from interest or

principal repayment is in general first distributed to the most senior ranking

class. With losses, due to missed interest and principal payment, it works

the other way around. These are first allocated to the junior class of the

transaction. In other words, the more senior a class is, the less risk it bears

of missing interest payments and losing part of the principal. Consequently

more junior classes are offered a higher return to compensate for the higher

risks investors bear.

1



2 1. Introduction

To gain an idea of the scope and importance of pricing adequately (Dutch)

RMBS notes especially since the credit crisis, we will give a brief overview

of the market for this financial product. In the first quartile of 2011 e 31.9

billion of securitised Dutch RMBS transactions were issued, which amounts

to almost 47% of total European RMBS issued and 28% of total European

issued Asset Backed Securities (ABS). Figure 1.1a gives a graphical overview

of European issuance of ABS in the first quartile of 2011. Figure 1.1b shows

the absolute value of European supply of RMBS, publicly sold and retained

by the issuer, in the years 2000 till 2010. From this figure we can clearly see

the impact of the crisis in the years 2007 and later, when the market for all

ABS collapsed.
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Figure 1.1: Overview of European ABS market. Source: Association for Financial

Markets in Europe (2011).

For the Dutch RMBS market there was e 289 billion outstanding collateral

at the end of the first quartile of 2011, which amounts to 91% of the total

ABS market in the Netherlands, indicating the significant size and relevance

of RMBS transactions within the Dutch ABS market. It also accounts for

22.5% of total European outstanding collateral in RMBS transactions, which

makes Dutch RMBS notes a significant contributor to the European market.

Figure 1.2a shows the total size of the Dutch mortgage pools underlying

the issuance over the last few years in absolute value and as a fraction of
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European issuance of RMBS notes. Finally, figure 1.2b displays how the

spread in basispoints (equals one-hundreth of a percentage point) on AAA-

rated RMBS notes have evolved over the last few years for a few European

countries, including the Netherlands. The spread offered to investors is an

indication of the risk the market anticipates for the financial product. Spread

on Dutch RMBS have been relatively low, indicating that these products are

still a relatively safe investment.

The quality or creditworthiness of an RMBS transaction is assessed by credit

rating agencies (Moody’s, Fitch and S&P). During the credit crisis substan-

tial losses were suffered on several RMBS notes, sometimes up to the most

senior ones. In response the rating agencies downgraded a lot of RMBS trans-

actions, and more importantly the market questioned the ability of the rating

agencies to assess the quality of structured credits. As a consequence pricing

RMBS transactions became very subjective. This forced investors to develop

their own pricing models instead of relying on rating agencies. Finally, regu-

latory supervisors have reacted in requesting more transparency from issuers.

Therefore, issuers of new RMBS transactions are obliged to provide loan-level

data in the near future. This implies that issuers of RMBS notes have to

deliver to investors a large datafile containing a number of pre-specified mort-
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gage characteristics of all securitisated residential mortgage loans, and also

present investors with a frequent update of this file. Note that in this paper

we will simply speak of a mortgage loan or a mortgage when referring to a

residential mortgage loan.

The new regulations give rise to research on how to purposefully use this

detailed loan-level data to be able to consistently and arbitrage free value an

RMBS note. In this thesis we will develop a model based on loan-level data

to forecast the cash flows to the noteholders. This model has a stochastic

part, the cash flows originating from the mortgage pool, and a deterministic

part, the allocation of these cash flows to the noteholders established by the

transaction structure. The unknown cash flows from the mortgages cause

the risk to the investor. The size and timing of these cash flows are unknown

due to three main reasons:

• interest payments of an individual mortgage will change at an interest

reset date. Since the underlying mortgage pool of an RMBS can consist

of thousands of mortgages, it is impossible to know the resulting interest

cash flows. This risk is often mitigated in the structure by an interest

rate swap. The next chapter discusses this in more detail.

• a borrower could default on his mortgage, in that case it might happen

that the proceeds of selling the house will not cover the entire outstand-

ing loan. If the borrower cannot cover for the remaining amount, a loss

might be incurred by the noteholders. In first instance these losses will

be allocated to the most junior notes.

• a borrower could repay his mortgage before maturity, for example when

he decides to move or refinance his mortgage elsewhere. The proceeds

of this repayment are in general sequentially distributed to the most

senior notes.

It is since long recognized that the probabilities of default and early repay-

ment may vary over the duration of the loan. Therefore we need to develop a

dynamic model which reflects the particular structure of the mortgage as well
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as the economic changes that may occur during the outstanding period of the

loan. To this end, both the default and early repayment model are based on

survival analysis, which allows for the estimation of month-to-month default

and early repayment probabilities at a mortgage level. The Cox proportional

hazards model adopted is able to incorporate both mortgage specific vari-

ables and time-varying covariates relating to the macro-economy. Since both

default and early repayment can cause a mortgage to be terminated before

maturity, these causes are termed ’competing risks’. In this thesis we will

extend the Cox model such that it explicitly accounts for the competing risk

setting. Monte Carlo simulation is used to compute different realisations of

default and early repayment for the underlying mortgage pool over the ma-

turity of the RMBS. The deterministic structure of the notes allows us to

derive the corresponding discounted cash flows to the noteholders and esti-

mate a profit distribution for an RMBS note.

Rating agencies simply use a rating scale to express the risk in a bond from a

loss perspective. Thus, a AAA rating estimates the risk of a loss (i.e. missed

payment) as less then 0.01%. However, the value of a note also depends

upon the interest rate used in discounting and can therefore change without

a missed payment. The model we develop accounts for the uncertainty in

size and timing of cash flows and therefore will give the complete distribu-

tion function of the value of a note. In this respect it distincts itself from

the approach of the rating agencies as it can be used for valuation as well as

risk management, indicating the uncertainty of the expected cash flows.

Although NIBC is an active originator in the Dutch market of RMBS is-

sues, it is also an investor in RMBS notes. Besides investments in RMBS

notes issued by other firms, including foreign banks, NIBC also holds a share

of the RMBS notes it issued itself. Reasons for investing in RMBS notes

issued in-house are, next to profitability, a regulatory obligation to retain

part of the issued notes and the inability to sell (all) non-senior notes since

the outburst of the credit crisis. For this thesis we take the perspective of

NIBC as an investor in RMBS notes. While since the credit crisis, investors
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only carefully invest in the most senior notes, an issuer will, for the reasons

previously mentioned, also have riskier notes in its portfolio. Therefore, our

interest will not merely be in the most senior notes but in all notes of an

RMBS. Our focus will primarily be on notes issued by NIBC, although we

assume that our model is also applicable to other Dutch RMBS notes.

1.2 Organization of the thesis

The organization of this thesis is as follows: in chapter two we will give an

overview of Residential Mortgage Backed Securities and their characteristics.

Chapter three describes the framework of the pricing tool for RMBS notes

which we will develop in this project. It discusses in general the modelling

of unknown cash flows and the simulation process combining the stochastic

cash flows of the mortgage pool with the deterministic structure of an RMBS.

Chapter four gives an overview of the existing literature on prepayment and

default models as well as on how to model the incurred loss when a default

occurs. Chapter five introduces survival analysis, which we will apply in

this project to estimate the probability of default and early repayment of a

mortgage. By applying a competing risk model we also explicitly account

for the fact that a mortgage may be either terminated by default or by early

repayment. In chapter six we discuss the mathematical details of our model,

such as the formulas necessary to estimate the parameters of the model.

Chapter seven then describes the characteristics of the data set we use to

obtain the models. This chapter also discusses the model development steps.

Chapter eight reports the results of the default and early repayment model for

mortgages as well as the obtained results for a specific RMBS transaction.

Finally, the last chapter draws conclusions and gives recommendations on

further research on the model and improvement of the developed valuation

tool.



Chapter 2

Overview of Residential

Mortgage Backed Securities

Residential Mortgage Backed Securities (RMBS) are financial securities with

mortgage loans as the underlying asset. Although there might be significant

differences between RMBS transactions we will describe in this chapter the

general characteristics.

2.1 Securitisation process

The process of creating a Residential Mortgage Backed Security is called

securitisation. This process goes as follows: the originator (usually a bank

or an insurance company) has a portfolio of residential mortgages, called

the collateral pool, on its balance sheet and sells them to a so-called Special

Purpose Vehicle (SPV). An SPV is a legally independent entity, which is most

often created by the originator and has as a sole purpose the securitisation

process. The arrangement has the effect of insulating investors from the

credit risk of the originator. For mortgage originators, there are several

reasons to issue mortgage backed securities, the most important are:

• transform relatively illiquid assets (mortgages) into liquid and tradable

market instruments (notes);

7



8 2. Overview of Residential Mortgage Backed Securities

• the originator may obtain funding at lower cost by securitisation than

by borrowing directly in the capital markets;

• it allows the issuer to diversify his financing sources, by offering alter-

natives to more traditional forms of debt and equity financing;

• removing assets from the balance sheet, which can help to improve

various financial ratios and reduce the exposure risk.

The SPV raises funds by issuing notes to investors structured as multiple

classes, called tranches. These tranches have different seniority, ranging from

most senior (typically rated AAA) to equity (typically unrated).

The fact that different tranches have different risk profiles, though they all

reference to the same underlying assets, is based on the transaction struc-

ture. This enables investors to satisfy their individual appetites and needs.

Assuming that the notes are sold at par (the face value) the equity tranches

will, due to the higher risk, earn a higher return. This return will often

consist of a floating part and a spread, for example 3-months Euribor + x

basis points. Figure 2.1 depicts the general structure of a typical RMBS by

a clarifying example.

2.2 Principal waterfall

The underlying mortgage pool generates interest and principal payments

which are distributed via the interest and principal waterfall. The source for

the principal waterfall consists besides principal repayments of foreclosure

proceeds. Principal can be paid sequential or on a pro rata basis. If the

principal is paid on a sequential basis, the senior notes are at the top of the

waterfall and only after the senior notes are fully redeemed, principal pay-

ment is distributed to the mezzanine notes. For principal waterfalls in which

principal is distributed on a pro rata basis, the transaction often incorpo-

rates triggers to protect senior notes. Such a transaction can be triggered,

for example, by a high level of defaults, after which a switch is made from



2. Overview of Residential Mortgage Backed Securities 9

SPV
Collateral pool
Total principal:
€1.000.000.000

Swap counterparty

Reserve account
€5.000.000

            Class B
principal: €45.000.000
Return: 3-months 
Euribor + 0.21%

            Class C     
Principal:€30.000.000
Return: 3-months 
Euribor+0.35%

4

7

3

8

2 5

61

Se
n

io
r

m
ez

za
n

in
e

Ju
n

io
r

eq
u

it
y

Initial credit 
enhancement

10.5%

10.5%

6%

3%

0.5%

Cashflows
1 = purchase of mortgage loans
2 = interest and principal proceeds          
from performing mortgages
3 = interest received from mortgages
4 = interest due on the notes plus     
excess spread
5 = interest and principal payments 
6 = proceeds of the sale of the notes
7 = replenishment of reserve account
8 = withdrawal from reserve account

            Class A2
principal: €300.000.000
Return: 3-months 
Euribor + 0.15%

            Class A1
principal: €600.000.000
Return: 3-months 
Euribor + 0.13%

            Class D     
Principal:€25.000.000
Return: 3-months 
Euribor+0.95%

RMBS transaction

P
ri

o
ri

ty
 o

f 
p

ay
m

en
ts

lo
ss

es

Figure 2.1: RMBS example

pro rata payments to sequential payments. However, there are many other

structures of principal waterfalls possible.

If the portfolio of assets starts to experience default losses, these losses are

first allocated to the equity tranche by reducing the outstanding amount of

this tranche. This affects both the payment of principal as the payment of

interest, since interest is paid over the remaining outstanding amount in the

tranche.

2.3 Credit enhancement

Credit enhancement is the percentage loss that can be incurred on the mort-

gages before one Euro of loss is incurred on a particular note, see figure 2.1.

There are several ways in which the structure can increase it. Credit en-

hancement techniques can be broadly divided into four categories, which we
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will shortly discuss.

• Subordination is the first line of defence in an RMBS transaction. A

tranche will only start to experience losses after the tranches subordi-

nate to it are completely written off. For the most senior notes this

implies all other notes, for mezzanine notes this implies the junior and

equity tranche.

• A reserve account can be created to reimburse the SPV for losses up

to the amount credited to the reserve account.

• Excess spread can be seen as the ’fat’ in a structure. If the underlying

mortgage pool yields on average a higher interest than the average

interest on the notes (minus certain costs) some ’excess’ stays in the

SPV. When it is incorporated in the structure, it will absorb the first

losses. Another use for excess spread can be to create and maintain

the reserve account.

• Overcollateralisation ensures that the underlying collateral pool has

a face value higher than the issued notes. Because the SPV owns

more assets than it has debt with the noteholders, there is some extra

certainty for these noteholders.

2.4 Interest swap and interest waterfall

The interest waterfall establishes the distribution of interest received from

the mortgage pool. In most RMBS transactions the proceeds of an interest

rate swap are used for interest payments to the noteholders. RMBS notes

normally pay floating rates, whilst the mortgage collateral consist of mort-

gages with fixed and floating interest. To hedge the resulting interest rate risk

an RMBS often incorporates an interest rate swap. This is another feature

protecting investors from risks other than those arising from the mortgage

pool. In general the SPV pays the swap counter party:
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• Scheduled interest on the mortgages;

• plus prepayment penalties,

and the swap counter party pays the SPV:

• scheduled interest on the notes;

• plus excess spread if applicable.

While in the most simple case noteholders will always receive the interest

payments, in more complex situations payment of interest is done on a se-

quential basis where the senior notes are at the top of the waterfall. The

interest waterfall is subject to changes when it incorporates triggers that are

activated. In these instances, the interest proceeds that would normally go

to the mezzanine and equity tranches could be redirected to pay down the

senior notes.

Finally, we mention so-called Principal Deficiency Ledgers (PDL’s). When

excess spread comes from the interest rate swap it is most often used through

the PDL’s to (partly) make up for incurred losses. There is a separate PDL

for each tranche and it records any shortfall that would occur in repayment

of the outstanding notes. Thus, when due to a loss the size of a tranche is

reduced, the same amount is written to the corresponding PDL. The excess

spread is than used in order of seniority to reduce the PDL and thereby the

loss on the specific tranche; in this case the general order of payments in the

interest waterfall is consecutively:

• interest on senior notes;

• replenishment of senior notes PDL;

• interest on mezzanine notes;

• replenishment of mezzanine notes PDL;

• (same for the junior and equity notes)

• replenishment of reserve fund;

• deferred purchase price to issuer.
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2.5 Other common features

In this section we describe some other common features of RMBS transac-

tions, namely subclasses, liquidity facilities, substitution and replenishment

of the mortgage pool and redemption of the notes.

Within a tranche sometimes subclasses are indicated, where interest pay-

ments and default losses are equally distributed over the subclasses. How-

ever, repayment of principal is done sequentially, resulting in longer expected

maturities for lower subclasses. Subclasses are common in the senior tranche.

The liquidity facility manages a timing mismatch between payments received

from the mortgage pool and payments to be made to the noteholders. The

SPV can temporarily draw money from the facility to bridge the timing mis-

match. To ensure that a liquidity facility is not transformed to a credit

enhancement tool, all amounts drawn from this facility are repaid to the liq-

uidity provider at the top of the interest waterfall.

Two processes resulting in adding new mortgages to the underlying mortgage

pool are substitution and replenishment. Substitution relates to substituting

a mortgage which no longer meets the requirements on the mortgage pool

set in the prospectus. This could for example happen if a borrower takes out

a second mortgage on the same property. Some RMBS transactions specify

an initial replenishment period in which no redemption of the outstanding

notes occurs, instead prepaid mortgages are replaced by new mortgages.

Finally, the issuer has in general some freedom in determining the date at

which the transaction is called and the remaining outstanding notes are re-

deemed in full. If the issuer decides not to redeem at the first optional

redemption date (FORD), a step-up margin will have to be paid out to the

noteholders on top of the interest payments at each payment date following

the FORD. Every consecutive payment date until the final maturity of the

RMBS is an optional redemption date. Besides redemption after the FORD,

issuers can frequently also exercise a clean-up call option, which is the option

to redeem all notes before the FORD when only a small portion, for example

10%, of the initial balance is still outstanding.



Chapter 3

Framework of RMBS valuation

tool

In this chapter we describe the framework of the RMBS pricing tool devel-

oped in this project. We will follow the approach outlined by McDonald et al,

(2010), whom developed a pricing model for mortgages in the UK mortgage

market. Although our purpose is not to price mortgages directly, the value

of an RMBS transaction heavily depends on the underlying mortgages. The

model by McDonald et al. estimates the probability of default on a month-

to-month basis at customer level, and applies this information to conduct

a Monte Carlo simulation on the cash flows from a mortgage. We will ex-

tend the mentioned model by explicitly incorporating the competing events

of mortgage termination by default and early repayment; details are supplied

in the next chapters. The first section discusses in general the modelling of

cash flows and the second section describes in greater detail the steps in the

simulation process.

3.1 Cash flow modelling

The goal of this research is to develop a valuation and risk management

tool for notes of an RMBS transaction that NIBC holds in its portfolio.

13
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Subsequently the valuation of a note can be compared to the price offered in

the market. We define the value of a note as the net present value (NPV)

of all cash flows to the relevant tranche divided by the number of notes in

the tranche. Our interest is solely in the NPV at the time of issue of the

financial product, which we will define as time t0. In general the NPV of a

financial product is the sum over all discounted cash flows:

NPVt0 =
m∑
t=1

CFt · dft , (3.1)

where the summation over the payment dates t extends over the interest and

notional cash flows (CF ) of the note and df is the discount factor. To make

this more precise, let us define, in analogy with Burkhard and De Giorgi

(2004), by W = (Wt)t≥t0 = {(di, Bi, Vi, Ii, Li), i = 1, . . . , n} a portfolio of n

mortgages outstanding during some period after time t0. The process W is

defined on a complete probability space {Ω, (Ft)t≥0, P}, with (Ft)t≥0 a right-

continuous filtration. For mortgage i, di denotes the time of origination, Bi =

(Bi,t)t≥di is a process giving the outstanding balance at time t, Vi = (Vi,t)t≥di

is a stochastic process representing the house value at time t, Ii = (Ii,t)t≥di

is the process (stochastic or deterministic) describing the contract rate due

on mortgage i and finally, Li = (Li,t)t≥di stands for any further information

available on borrower i, such as his income and the location of the property.

We assume that a mortgage portfolio is completely characterized by W. Also

define the stochastic interest rate process r = {rt| t ∈ [0, T ]} on the same

probability space. The cash flows to the noteholders depend on defaults and

early repayments in the underlying mortgage pool which is described at each

time t by the stochastic process Wt. The actual value of the cash flows

at time t0 to the investors is determined by the discount factor, which is a

function of r. Hence, we can write the expectation of the NPV of the cash

flows to a tranche as

E[NPVt0(W, r)] = E

[
m∑
t=1

CF (Wt) · df(rt)

]
. (3.2)

The function CF (·) is not linear or continuous in W, therefore it is very hard
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to solve this expectation directly. Consequently we will revert to a (Monte

Carlo) simulation. To this end we generate a large number of independent

realisationsW i and ri, i = 1 . . . , N of the respective random process W and r

and calculate the sample average

1

N

N∑
i=1

NPVt0(W
i, ri) =

1

N

N∑
i=1

m∑
t=1

CF (W i
t ) · df(rit) . (3.3)

We can safely assume that E[NPVt0(W, r)] <∞ and therefore we can con-

clude from the strong law of large numbers by Kolmogorov that with prob-

ability 1 it holds that

1

N

N∑
i=1

NPVt0(W
i, ri)→ E[NPVt0(W, r)] as N →∞ . (3.4)

See for more details on Monte Carlo simulation and the corresponding prop-

erties and techniques, Krystul (2006) or Caflisch (1998). More important

from a risk perspective, is calculating a probability distribution of the NPV

of a note at t0 such that the uncertainty in the value of an RMBS transaction

can be quantified. Having run the model for N iterations one is left with N

potential cash flow forecasts for the loan portfolio. From the allocation of

these cash flows we can calculate the distribution of NPVt0 of the notes in

the RMBS transaction. Note that this approach is far more comprehensive

than the approach used by rating agencies. Rating agencies simply use a

rating scale to express the risk in a bond from a loss perspective. Thus, a

AAA rating estimates the risk of a loss (i.e. missed payment) as less then

0.01%. However, the NPV of a note also depends upon the interest rates

used in discounting and can therefore change without a missed payment.

The approach we use gives the complete distribution function and thereby

distincts itself from the rating agencies.

3.2 Simulation process

In the simulation process outlined in the previous section we need to predict

the cash flows from the underlying mortgage pool. To this end we will predict
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the state of the mortgage pool at time t+ 1 based on the state at time t and

roll this forward from issue date to maturity. This process is outlined in

figure 3.1 and explained step by step below.

1. Mortgage pool
(loan-level data)

2. Mortgage 
termination model

3. Sample defaults

5. LGD model
7. Mortgage pool
(loan-level data)

6. prepayments

8. Structural model AAA

A

BBB

NR

9.

P(default) per 
mortgage

true defaults

losses

Prepaid amount
mortgages

t = i

Macro economic 
covariates

Interest rate used 
for discounting

Allocation of cahs flows
and losses to 
noteholders

4. Sample prepaid 
mortgages

P(early repayment)
per mortage

Prepaid 
mortgages

t = i +1

Figure 3.1: Outline of simulation process

1. We will describe the mortgage pool by data for each individual mort-

gage. Calculation time will of course increase significantly compared

to using aggregated data, but since this process is not part of daily

business, it is not really problematic.

2. The loan-level data of a mortgage is then used as input for the mortgage

termination model, which will calculate the probability of default as
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well as the probability of early repayment for each individual mortgage.

The details of this model are outlined in the chapters 5 and 6.

3. From the probabilities of default we can sample which mortgages will

actually default.

4. In the same way we can sample the mortgages that will be prepaid,

where prepaid mortgages are defined as mortgages that are fully repaid

before maturity.

5. The sampled defaulted mortgages are used as input in the loss-given-

default (LGD) model. From this model we obtain the loss for each

mortgage; this is further discussed in section 4.2 and section 8.3. The

result of this step will give us the loss on the portfolio.

6. We can sample for each mortgage an amount prepaid, which in contrast

to early repayment is only a partial repayment of the mortgage debt.

As will be discussed in section 4.1 we will, in this project, assume these

prepayments to be zero.

7. Based on the sampled early repayments and defaults, it is now possible

to describe the mortgage pool at the next payment date.

8. The description of the mortgage pool and the losses incurred are then

used as input for the structural model. This model describes the trans-

action specifics, such as the triggers in the waterfall structure, the size

of the tranches and the return on the notes.

9. Finally the losses and cash flows from the underlying mortgage pool

can be allocated to the different tranches.

One simulation consists of the mentioned process rolled forward to maturity,

such that we obtain the NPV at the issue date of a note in each tranche under

a specific realisation of the stochastic processes. The simulation is run for

N iterations, which the user may vary according to computational resources



18 3. Framework of RMBS valuation tool

available. Finally we obtain a probability distribution for the NPVt0 for each

tranche.

Note that the developed model is limited to RMBS transactions based on

Dutch mortgages. It is not realistic to assume that a model calibrated on

Dutch mortgages is also valid for other markets. The main reason for this is

that the parameters of the model will be different due to other characteristics

of the underlying market. For example in the Netherlands a borrower can

deduct the interest payments on his mortgage loan from his taxable income.

This effect is not explicitly modelled, but it does keeps prepayment lower than

it would be without this tax regulation. In other words, the interpretation

of the parameters is restricted to actual study conditions and these differ for

other countries too much from those in the Netherlands.



Chapter 4

Modelling mortgage cash flows

Valuation of RMBS transactions requires modelling the size and timing of

cash flows from the underlying mortgage pool. To this end we need a model

for the probability that a borrower will default. The actual loss when a

borrower defaults, called loss-given-default (LGD), depends primarily on the

amount still outstanding, the value of the underlying property and the prob-

ability of recovery. Recovery takes place when a defaulted borrower starts

to pay his debt again, such that the default does not result in a loss to the

issuer.

Since the value of a note also depends on the timing of cash flows, we also

need to model early repayment of mortgage loans. In this chapter we give

an outline of the existing literature on default and early repayment models

for mortgages and we also briefly discuss LGD models.

4.1 Termination of mortgage loans by default

or early repayment

A mortgage may be terminated before the legal maturity for two distinct rea-

sons, either the mortgage is prepaid or the borrower defaults on his payment

obligations. The most important reasons for fully prepaying a mortgage are

house sale and refinancing the mortgage loan by taking out a new mortgage

19
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against a lower interest rate. A borrower can redeem part of his mortgage

if he has excess money and wants to lower his debt. As Alink (2002) points

out these kinds of extra prepayments, although they are quite common, only

account for around 5% of the cash flows resulting from prepayment. For this

reason we will, in this project, assume that these kind of prepayments are

nonexisting. We will concentrate on modeling the probability that a borrower

fully prepays his mortgage and refer to this as early repayment in contrast

to partial redemption of a mortgage which we will refer to as prepayment.

Default is another important feature of mortgage loans. When payments on a

mortgage loan are first missed, the lender considers that the borrower is only

temporarily delaying payment with the intention of renewing payment in the

future, at which point the borrower is said to be in delinquency (Quercia and

Stegman, 1992). It is the lender who decides when default has happened. We

will use the definition for default from Basel II, which states that a borrower

is in default if he is more than 90 days in arrears, i.e. the borrower has not

made any interest or principal payments on his mortgage obligation for more

than 3 months.

Essentially, there are two alternative views of residential mortgage default

(Jackson and Kasserman, 1980), which are closely related to the two different

ways of analysing early repayments: the equity theory and the ability-to-pay

theory. We will discuss both these theories and discuss which one is most

appropriate for our purpose.

4.1.1 Equity theory

The equity theory of default (also called option-theoretic view), assumes that

borrowers will behave economically. Any mortgage contract contains two op-

tions: the prepayment option and the default option. A rational borrower

will base his default decision on a comparison of the financial cost and re-

turns involved in continuing or terminating mortgage payments. This view

explicitly models defaulting on the mortgage as a put option on the under-

lying asset, where borrowers are hypothesized to exercise the option when
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their equity position becomes negative. In this case the borrower sells back

his house to the lender in exchange for eliminating the mortgage obligation.

Early repayment is considered a call option, i.e. an option to buy back the

mortgage at par. The ancestor of all option based models of default is the

model by Merton (1974). Early contributions based on this idea are by Foster

and Van Order (1985), Epperson et al. (1985) and Hendershott and van Or-

der (1987). While these assumptions might seem appropriate for commercial

borrowers, they are not that realistic when considering residential borrowers.

A private individual’s purpose is to finance his property with the mortgage

and therefore his behaviour will not always be rational in the economic the-

ory sense. An even more important shortcoming of the equity theory arises

when we consider the legal aspects of a mortgage contract. The majority of

these models were developed in an attempt to describe the credit risk of the

mortgage market in the United States. While in the U.S. the originator of

the loan only has rights on the property in case of default, this is different

in Europe where mortgage lenders have full recourse to the borrower. That

is, if a borrower defaults on his mortgage and the proceeds from the foreclo-

sure do not cover the outstanding principal amount, the lender may chase

the borrower for the shortfall on the market value of the property and the

outstanding mortgage amount. For example, in the Netherlands a lender is

able to seize a portion of the borrower’s earnings from his employer in case

the borrower defaults (Dutch MBS prospectus, 2005). Note that although

in the Netherlands the law of remission of debt (in Dutch: wet schuldsaner-

ing) can restrict the actual recourse on the lender we will not account for

this in our model. Also, among others Kau and Slawson (2002) report that

borrowers do not exercise early repayment options optimally and that most

practitioners do not believe in optimal prepayments. In the Netherlands it

is common practice that borrowers pay a prepayment penalty when they re-

pay their mortgage before maturity on another date than an interest reset

date. Therefore it is not suitable for our purpose to model default or early

repayment as an option on the value of the property.
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4.1.2 Ability-to-pay-theory

The ability-to-pay theory of default states that borrowers refrain from loan

default as long as income flows and cash reserves are sufficient to meet the

periodic payments. Models based on this view are therefore much less eco-

nomical and are based on empirical research. Within the ability-to-pay the-

ory there is a wide variety of models, but popular ways of modelling defaults

are binary choice models and survival models.

Binary choice models use a dependent variable which takes the value one if a

certain event happens and zero otherwise. It models binomially distributed

data of the form Yi ∼ B(ni, pi) for i = 1, 2, . . . ,m, where the number ni of

Bernoulli trials are known and the probabilities of success pi are unknown.

In our case we would define ’success’ as the event of a default or an early

repayment. Two common variants of binary choice models are the probit

model and the logit model, where respectively the inverse cumulative distri-

bution function and the logit function
(

logit(pi) = log
(

pi
1−pi

))
are assumed

to be linearly related to a set of predictors. The probit model is among others

used by Webb (1982) to differentiate probability of default among different

mortgage instruments. Campbell and Dietrich (1983) apply the logit model

to residential mortgages in the U.S. and Wong et al. (2004) apply it to resi-

dential mortgages in Hong Kong.

Survival models deal with the distribution of survival times. Although there

exists some well-known methods to estimate the unconditional survival dis-

tribution, more interesting models relate the time that passes before a certain

event occurs to one or more explanatory variables. In our case the event of

interest would be the termination of a mortgage, either by early repayment or

by default. Since both causes of termination have their own specific effect on

the value of the mortgage to the lender, we want to be able to estimate these

probabilities separately. In this case we speak of a competing risk setting,

where the occurrence of default (early repayment) prevents the occurrence

of early repayment (default). Survival models explicitly incorporate the al-

tering probability of occurrence of an event with time. This is essential in
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a mortgage setting, where presumably both the probability of default and

the probability of early repayment are not constant over time. Although this

could also be achieved in, for example, a logit model by incorporating age as

an explanatory variable, this type of model is less informative and intuitively

understood. Therefore we will in this project apply the survival approach to

model the probability of default as well as the probability of early repayment;

details of this approach will be supplied in the next two chapters.

4.2 Loss-Given-Default

As mentioned before, a mortgage is considered to be in default when no in-

terest or principal payments have been made for more than three months.

The process of foreclosure can than be started by the originator of the loan.

Foreclosure is a legal process, which targets to sell the property so that the

proceeds can be used to meet the contractual obligations of the mortgage

contract. This process can take between a few months to over a year de-

pending on the jurisdictions of a country. Loss-given-default (LGD) is the

incurred loss when default happens and includes the unpaid balance, accrued

interest, legal foreclosure expenses, property maintenance expenses and sales

costs. This definition resembles the Basel II definition. LGD is equal to

exposure at default (EAD) · (1 − the recovery rate). This recovery rate is

in literature most often modelled by an U-shaped beta distribution. An ex-

tensive research on the LGD is outside the scope of this research; we will

therefore approach this issue from a more practical point of view and return

to this point in section 8.3.
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Chapter 5

Survival analysis

Survival analysis is the area of statistics that deals with the analysis of life

time data and has its origin in medical and reliability studies concerned with

the failure time of machines and devices. As shown by Banasik et al. (1999)

and McDonald et al. (2010) it is also applicable to estimate the time to both

default and early repayment of mortgages. The major strength of survival

analysis is the ability to incorporate censored data; observations for which the

event of interest does not take place in the sample period. The best known

survival model is the Cox proportional hazards model, which we will apply

in this project. To be able to incorporate the competing risk of terminating

a mortgage by either default or early prepayment, where occurrence of one

event rules out the possibility of occurrence of the second event, we need to

adapt the Cox model. This chapter will start by explaining the basics of a

survival model. Then we will discuss the Cox proportional hazards model in

the absence of competing risks and finally we will discuss adaptations to the

Cox model in a competing risks setting.

5.1 Definition and formulas

The general terminology in survival analysis speaks of subjects, which are

in our cases mortgages, and an event or a failure which is for our model

25
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the termination of a mortgage by either default or early repayment. In

this chapter and the next we will use the survival analysis formulation when

explaining a general concept and the formulation in terms of mortgages when

applying the model to our problem.

In this research, we will apply survival analysis to model the probability of

default or early repayment of a mortgage. Both default and early repayment

are causes of terminating a mortgage. By using survival analysis we can

relate the lifetime of a mortgage to certain characteristics of the loan. The

probability density function of the survival time of a mortgage, i.e. the time

to termination of a mortgage, with certain age and characteristics gives a

direct way to find the month-to-month probabilities of termination. We will

derive the probability density function in this section.

Let us consider a random time τ defined on a probability space (Ω,F , P ), i.e.

τ : Ω→ (0,∞) is a positive continuous F -measurable random variable. Note

that τ is a stopping time. We can interpret τ as the time to termination of

a mortgage. We denote by f(t) the probability density function of τ , i.e.

f(t) = lim
∆t→0

P (t ≤ τ < t+ ∆t)

∆t
(5.1)

and by

F (t) = P (τ ≤ t) =

∫ t

0

f(u) du (5.2)

the cumulative distribution function of τ . We have assumed here that F (t)

is absolutely continuous. The survival function measures the probability of

no occurrence of the event till time t, i.e.

S(t) = 1− F (t) = P (τ > t). (5.3)

We assume that F (0) = P (τ = 0) = 0 and that S(t) > 0 for all t <∞.

The most important function of survival analysis is the hazard rate.

Definition 5.1. Hazard rate can be interpreted as the time-specific failure

rate and can formally be expressed as a ratio of the conditional probability for
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the event to occur within an infinitely small interval over the time interval,

as follows:

λ(t) = lim
∆t→0

P (t ≤ τ < t+ ∆t|τ ≥ t)

∆t
. (5.4)

By this definition, the hazard rate λ(t) measures the rate of change at time

t. Note that hazard rates can exceed the value one. The cumulative hazard

function is the integral of the hazard rate from time 0 to time t,

Λ(t) =

∫ t

0

λ(u) du. (5.5)

One can express λ(t) as a function of f(t), F (t) and S(t) as follows:

λ(t) = lim
∆t→0

P (t ≤ τ < t+ ∆t|τ ≥ t)

∆t

= lim
∆t→0

P (t ≤ τ < t+ ∆t)/∆t

P (t ≤ τ)

=
f(t)

S(t)
=
− d
dt
S(t)

S(t)
= − d

dt
logS(t), (5.6)

where the last equality follows from the chain rule. So we also have

S(t) = e−Λ(t). (5.7)

If we want to determine the survival function without accounting for charac-

teristics of a specific mortgage, we can estimate it by the well-known Kaplan-

Meier estimator (Kaplan and Meier, 1958). With this estimator every mort-

gage has the same probability of termination during it’s lifetime, without

distinguishing between mortgages based on characteristics other than age.

The Kaplan-Meier method starts by sorting the event times in an ascending

order; we denote the rank-ordered failure times τ(1) < τ(2) < .. < τ(m). Now

we will give a definition for risk set, since we will encounter this term more

often in this chapter and the next.

Definition 5.2. The risk set at time t is a set of indices of all subjects

(mortgages) that are ’at risk’ of failing (defaulting or early repaying) at time

t. Thus the risk set contains all subjects which did not fail before time t.
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For the Kaplan-Meier estimator let the risk set at time τ(i) be denoted by ni,

so ni are all mortgages still performing at time τ(i). We denote the observed

number of failures at time τ(i) by di. The Kaplan-Meier estimator of the

survival function at time t is

Ŝ(t) =
∏
τ(i)≤t

1− di
ni
. (5.8)

5.2 Censoring

Before going into more details on survival analysis, we first have to describe

censoring. Censoring refers to a situation where exact event times are known

only for a portion of the study subjects (Guo, 2010). The ability of survival

techniques to cope with censored observations gives them an important ad-

vantage over other statistical techniques. It is nearly impossible to analyse

the duration of a mortgage without including censored ones. Their absence

would necessitate at least 30 years of historical data, which is the legal ma-

turity of a typical Dutch mortgage contract. To describe what a censored

observation is, it is easiest to describe first an uncensored observation.

Definition 5.3. An uncensored time-observation of the life-time of a mort-

gage, starts at the issue date (t=0) and ends when the mortgage is terminated

by default or early repayment.

So, for an uncensored observation of a mortgage all covariates are known

over its lifetime and it is terminated at a known time point by either default

or early repayment. An observation of a mortgage which never defaults and

pays of the loan at maturity is by this definition not an uncensored observa-

tion, even though the entire lifespan of the mortgage is observed.

The most common type of censoring is when the subject has not experienced

an event at the end of the observation period. This type of censoring is

called right-censoring. Although, we do not know for a right-censored mort-

gage observation if the mortgage will ever default or early repay, we obtain
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the information that the mortgage has survived at least until the time of cen-

soring. Survival analysis techniques use this information in fitting a model;

this wil be discussed in section 6.1.

Other types of censoring are left-censoring and left-truncation (or delayed

entry). Left-censoring occurs when an event is known to have happened be-

fore the sample period starts, however the exact event time is unknown. We

speak of left-truncation when t = 0 is preliminary to the start of the observa-

tion period. In this case it may happen that subjects with a lifetime less than

some threshold are not observed at all. In a so called delayed entry or (left-

truncated) study, subjects are not observed until they have reached a certain

age. The type of censoring in which observations are both left-truncated and

right censored is called interval-censoring. This research will examine three

types of censored observations in addition to the uncensored observations,

namely; left-truncated, right-censored and interval-censored observations. In

figure 5.1 the different types of observations that we encounter are displayed

graphically. The observation period starts July 2004 and ends December

mortgages

time

A

B

C

D

Not censored

Left-truncated

Interval-censored

2004  2005  2006  2007  2008  2009  2010

Right-censored

Origination

No event

Event

Figure 5.1: Different types of censoring

2010, while a portion of the mortgages in the sample are issued before July

2004. This fact makes our study to a typical delayed entry study; we will

discuss in section 6.5 specific issues arising in such a study and how it can
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be dealt with to prevent biasing the estimated probabilities. A description

of the data is given in section 7.1.

We have to discuss the different reasons of occurrence of right-censored data

in more detail, as it will be of importance later on. Right-censored event

times can be categorized as (Putter et al, 2007):

• End of study: the event has not yet happened at the end of the sample

period. This is also called administrative censoring.

• Loss to follow-up: the subject left the study due to other reasons. The

event may have happened but this information is unknown.

• Competing risk: another event has occurred, which prevents occurrence

of the event of interest.

If the reason of censoring is ”‘end of study”’ then we can, in general, safely

assume that the censoring mechanism is independent of the event time. In the

other two situations we should be more careful. Right-censored data plays

an important role in survival models, but when the censoring mechanism can

be assumed to be independent of the event time, it can be dealt with fairly

easily. We will return to this point later.

5.3 Cox proportional hazards model

In this section we will present a way to model the hazard rate. The Cox

proportional hazards model is a well known survival model mostly applied in

medical science to model the relationship between the survival of a patient

and one or more explanatory variables (called covariates). We will in this

section explain the basic model by first assuming that the censoring mecha-

nism is independent of the event times. In the next section we will discuss

the competing risks setting and thereby relax this assumption.

The Cox proportional hazards model (sometimes abbreviated to Cox model)

was first proposed by Cox (1972) to extend the results of Kaplan and Meier
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(1958) by incorporating covariates in the analysis of failure times. The name

of the model comes from the feature that the ratio of the hazard rates of two

subjects is constant over time.

Definition 5.4. The Cox proportional hazards model can be expressed as:

λ(t|X) = λ0(t) · exp(βTX), (5.9)

were λ(t|X) is the hazard rate conditional on a vector of covariates X =

(X1, .., Xp) and β = (β1, .., βp) gives the influence of these covariates on the

hazard rate. λ0(t) is the baseline hazard function and can be thought of as

the hazard rate for an individual whose covariates all have value zero.

The proportional hazards model is non parametric in the sense that it involves

an unspecified function in the form of an arbitrary baseline. In this model

a unit increase in a covariate has a multiplicative effect with respect to the

hazard rate. To be exact, if Xj increases by one unit the hazard rate is

multiplied by a factor eβj .

5.4 Time-varying covariates

Until now we have assumed that the values of all covariates were determined

at the starting point of the study and that these values did not change over

the sample period. It is also possible to explicitly account for changes to one

or more covariates during the sample period by making use of time-varying

(or time-dependent) covariates. The basic idea behind time-varying covari-

ates requires thinking in terms of a ’counting process’ setup; for details on

the counting process formulation of the Cox model see Andersen and Gill

(1982). In this setup, each record (line of data) gives the value of covariates

that are constant between two time points, and whether the event of interest

took place by the ending time point or not. In our model we intend to incor-

porate covariates that might change every month. Consequently, our data

will consist of a number of records equal to the number of observed months,
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i.e. outstanding months during the sample period, for each mortgage.

In analogy with Hosmer et al. (2008) we can classify time-varying covariates

as being either internal or external. An internal time-varying covariate is

subject specific and therefore requires that the subject is under direct obser-

vation. In contrast, an external time-varying covariate is typically a study or

environmental factor which applies to all subjects in the sample. This type of

covariate does not require periodic observations of the subject. Both types of

time-varying covariates might play a role in our model. An example of an in-

ternal time-varying covariate is the outstanding balance of the mortgage loan

and an example of an external time-varying covariate is the unemployment

rate. We can write the Cox model with time-varying covariates as

λ(t|X) = λ0(t) · exp
(
βT1 X1 + βT2 X2(t)

)
, (5.10)

where X1 is the vector with constant covariates and X2(t) consists of the

time-varying covariates.

From a conceptual point of view the model becomes much more complicated

by introducing time-varying covariates. Specifically, it causes an inability

to give individualized predictions of the estimated event time when the fu-

ture values of time-varying covariates are unknown. We can deal with this by

making strict assumptions on the progress of the covariates or simulate possi-

ble paths. A discussion with elaborate examples on the issue of time-varying

covariates can be found in Fisher and Lin (1999).

5.5 Competing risk models

Another useful generalization of survival models is the concept of competing

risks. This assumes that a subject can fail due to more than one reason, but

only the first to occur can be observed. In our case there are two competing

risks, namely default and early repayment, which are both of interest to

us. In this case we extend the setting of no competing risks by supposing

that the n subjects give rise to the data (τi, δi, εi,Xi), i = 1, . . . , n where
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again τi is the observed survival time, δi is the censoring indicator (δi = 0

if the i-th subject is right-censored and 1 if any of the m competing events

happened), εi is the failure type (εi = 1, ..,m) and Xi = (Xi,1, Xi,2, . . . , Xi,p)

is the covariate vector of the i-th subject. For our model, n is the number of

mortgage observations, m = 2 and εi = default, early repayment.

Note that the Kaplan-Meier estimator in equation (5.8), used to estimate

the overall survival distribution, treats the competing risks as censored. The

probability of failure due to a specific cause is overestimated if the competing

risks are not independent, which is due to the fact that the independent

censoring assumption is not fulfilled, see Klein and Bajorunaite (2004), Tai

et al. (2001) and Satagopan (2004) for details.

5.5.1 Overview of competing risk literature

Competing risk models can be classified to belong to one of two classes. The

first one assumes that there are m hypothetical failure times, whereas the

second is related to the joint distribution of time τ and cause j of failure.

The first approach, often called latent failure time approach, views com-

peting risk models as a multivariate failure time model, where each sub-

ject is assumed to have a potential failure time for each failure type. The

earliest of these failures is actually observed and the others are latent, i.e.

τi = min(τi,1, τi,2, ..., τi,m) or for our model τi = min(τi,default, τi,early repayment).

Although this view gives a nice physical interpretation to latent failure times

as potential failure times, it also has some serious drawbacks. The latent

failure time approach involves the very strong assumption that the time of

failure from cause j under one set of study conditions in which all m causes

are present is exactly the same as under an altered set of conditions in which

all causes except the j-th have been removed; this is only the case if the

competing risks are independent of each other. According to Prentice et

al. (1978) it has been long recognized that the elimination of certain failure

types may well alter the risks of other types of failure. Since it is undesirable

to assume independence of default and early repayment, we will not discuss
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this approach further.

The second approach to competing risks is more recent and it deals with the

existence of failure times τi,1, τi,2, .., τi,m on each subject i under the actual

study conditions. The random variable τi,j is the observed time of failure of

subject i due to cause j, and there is no physical interpretation attached to

the unobserved τi,k’s. Concretely, this means that when a mortgage defaults,

no information on the potential early repayment time for this mortgage is

obtained. One of the earliest attempts to account for a form of informative

censoring was presented by Kimball (1969), where subjects that failed from

competing risks will fail from the event of interest with probabilities related

to those obtained before the competing risk was eliminated. This approach is

somewhat arbitrary and we will therefore not further discuss it. Two meth-

ods of the second approach often applied in the context of possible dependent

competing risks, are the cause-specific hazard rate (Kalbfleisch and Prentice,

1980 and Prentice et al, 1978) and the subdistribution hazard rate (Fine and

Gray, 1999). We will discuss both methods methods in more detail now.

5.5.2 Cause-specific hazard rate

The classical approach of Kalbfleisch and Prentice defines the cause specific

hazard rate in the presence of competing risks as an evident extension to the

ordinary hazard rate of definition 5.1.

Definition 5.5. The cause-specific hazard rate of cause j in the presence of

competing risks is defined as

λj(t|X) = lim
∆t→0

P (t ≤ τ < t+ ∆t, ε = j|τ ≥ t,X)

∆t
for j = 1, . . . ,m (5.11)

where X is the regression vector.

For our purpose we define τ as the time to termination of a mortgage

and j = 1, 2 refers to respectively default and early repayment of a mort-

gage. Observations of subjects for which ε 6= j are treated as censored at

the time of termination in the same way actual right-censored observations
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are treated. We may, similar to the ordinary Cox model, define the cu-

mulative cause-specific hazard function by Λj(t) =
∫ t

0
λj(s) ds and define

Sj(t) = exp(−Λj(t)). Note that, although Sj(t) can be estimated it should

not be interpreted as a marginal survival function; it only has this interpre-

tation if the competing event times and the censoring times are independent.

In that case, the marginal distribution describes the event time distribution

in the situation that the competing events do not happen. We can also de-

fine S(t) = exp(−
∑m

j=1 Λj(t)), which does have a clear interpretation as the

probability of not having failed at time t from any cause.

Based on the Cox model, we assume that the cause-specific hazard rate has

the following form:

λj(t|X) = λ0,j(t) · exp(βTj X), (5.12)

where λ0,j(t) is the cause-specific baseline function of cause j, and the vec-

tor βj represents the covariate effects of cause j. Note that for our model

j = 1, 2 refers to respectively default and early repayment of a mortgage. The

interpretation of the effects of the covariates is restricted to actual study con-

ditions and there is no implication that the estimates would remain the same

under a new set of conditions. This implies, for example, that if the de-

ductibility of mortgage loan interest from taxable income, which is currently

a highly popular income tax policy in the Netherlands, would be restricted

by law, the obtained model for the probability of default is no longer valid.

Due to a lower available income the probability of default will presumably

increase.

Another implication worth mentioning is the impossibility to directly pre-

dict the effect of the covariates on the cumulative incidence function, see

definition 5.6.

Definition 5.6. The cumulative incidence function (CIF) of cause j, is de-

fined as the probability of failing from cause j before time t; it can be expressed

as

Fj(t) = P (τ ≤ t, ε = j) . (5.13)
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The CIF can be expressed in terms of the cause-specific hazards function as:

Fj(t) = P (τ ≤ t, ε = j)

=

∫ t

0

λj(s)P (τ ≥ s) ds

=

∫ t

0

λj(s)S(s) ds

=

∫ t

0

λj(s) exp

(
−
∫ s

0

m∑
i=1

λi(u) du

)
ds. (5.14)

Note that we left out, for ease of notation, the conditioning on the regression

vector X. From equation (5.14) it follows that the cumulative incidence

function for cause j does not only depend on the hazard rate of cause j, but

also on the hazard rates of all other causes. In other words, the probability

of default for a mortgage does not only depend on the hazard rate of default,

but also on the hazard rate of early repayment and vice versa.

5.5.3 Subdistribution hazard rate

In order to avoid the highly non-linear effect of covariates on the cumulative

incidence function in the approach by Kalbfleish and Prentice, Fine and

Gray introduced a way to directly regress on the CIF. Gray (1988) defined

the subdistribution hazard rate in a bit trickier way than the cause-specific

hazard rate.

Definition 5.7. The subdistribution hazard rate for cause j in the presence

of competing risk is defined as

αj(t|X) = lim
∆t→0

P (t ≤ τ < t+ ∆t, ε = j|τ ≥ t ∪ (τ ≤ t ∩ ε 6= j) ,X)

∆t
(5.15)

for j = 1, . . . ,m .

where X is the regression vector.

Again τ is the time to termination of a mortgage by any of the competing

risks. The difference between the cause-specific hazard rate and the subdis-

tribution hazard rate is the definition of the risk set. In the first case the risk
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set at time t exists only of those subjects that did not fail from any cause

by time t. Whereas in the latter case the risk set at time t includes subjects

that did not fail from any cause by time t and, in addition, the subjects that

have previously failed from competing risks. This means that observations

of subjects for which ε 6= j are not treated as censored as is the case for the

cause-specific hazard rate approach. Clearly, the risk set associated with the

subdistribution hazard rate αj is unnatural, as in reality those subjects that

have already failed due to another cause than ε = j prior to time t are not

”at risk” at time t any more. We can define the random variable

τ ∗j =

τ if ε = j

∞ if ε 6= j

and write τ = min(τ ∗1 , τ
∗
2 , ..., τ

∗
m). One can think of αj as the hazard rate for

τ ∗j . The distribution function of the implied failure time τ ∗j can be written

in terms of the CIF Fj(t) asFj(t) ∀ t <∞

P (τ ∗j = t) = P (τ < t, ε 6= j) = 1− lim
t→∞

Fj(t) for t =∞
(5.16)

Fine and Gray (1999) proposed a regression model based on Cox model by

αj(t|X) = α0,j(t) · exp(βTj X). (5.17)

The subdistribution hazard rate is by construction explicitly related to the

cumulative incidence function by

αj(t) =
−d log(1− Fj(t))

dt
. (5.18)

Note the close resemblance to the relationship in equation (5.6). As discussed

in the previous subsection, the cause-specific hazard rate has a less clear

relation to the cumulative incidence function and it involves the cause-specific

hazard rates of failures from all other causes.



38 5. Survival analysis

5.5.4 Choice of method

We intend to use a Cox proportional hazards model in a competing risks

setting with time-varying covariates to estimate the probability of default

and the probability of early repayment of a mortgage. From this section we

can conclude that there are two candidate models for this purpose, namely

the cause-specific hazard rate and the subdistribution hazard rate. In the

cause-specific hazard rate approach, we can only calculate the cumulative

incidence function of a cause by making use of all cause-specific hazard rates.

This is not the case for the subdistribution hazard rate approach.

However, a big disadvantage of the model by Fine and Gray is that it can

have some significant bias in the presence of two situations which are both

applicable to our data, namely larger differences in the occurrence frequency

of competing risks and time-varying covariates. The first case is evident

from the definition of the risk set. Latouche et al. (2005) showed that the

subdistribution hazard rate approach is not appropriate for estimating the

effect of any time-varying covariate unless the entire path is observable. Since

both default and early repayment terminate a mortgage, it would be hard

to observe the entire path. Finally, the cause-specific hazard rate approach

offers a much more intuitive interpretation of the risk set and the cause-

specific hazard rate as the hazard rate of a cause in the presence of competing

risks, where the subdistribution hazard rate has no physical interpretation.

For these reasons we will implement the approach by Kalbfleisch and Prentice

in this project.

5.6 Prediction

The purpose of applying survival analysis in our project is to be able to

predict the probability of default and the probability of early repayment of a

mortgage with specific age and characteristics. As discussed in the previous

section we will follow the approach by Kalbfleish and Prentice to deal with

the competing risks of terminating a mortgage by either default or early
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repayment. We will be able to predict the cash flows originating from the

mortgage pool, by going from one payment date of the RMBS to the next

payment date and sample for all still outstanding mortgages whether they

will default, early repay or remain performing. Our interest is therefore the

monthly probability of default (or early repayment), conditional on survival

up till this date, i.e.:

P (τ = t, ε = j|τ > t− 1) for j = 1, 2. (5.19)

This equation can be rewritten as follows:

P (τ = t, ε = j|τ > t− 1) =
P ((τ = t, ε = j) ∩ (τ > t− 1))

P (τ > t− 1)

=
P (τ = t, ε = j)

P (τ > t− 1)

=
P (τ ≤ t, ε = j)− P (τ ≤ t− 1, ε = j)

P (τ > t− 1)

=
Fj(t)− Fj(t− 1)

S(t− 1)
, (5.20)

where

S(t) = exp(−Λ1(t)− Λ2(t)) ,

Λj(t) =

∫ t

0

λj(u) du ,

and Fj(t) is defined as in equation (5.14). By filling in these quantities we

can write

P (τ = t, ε = j|τ > t− 1) = λj(t) exp (−λ1(t)− λ2(t)) . (5.21)

The next chapter will describe the methods to estimate the model parame-

ters, i.e. the vector β and the baseline λ0(t).
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Chapter 6

Model estimation

In this chapter we describe the methods and formulas to estimate the model

of chapter 5 for default and early repayment. For ease of notation we will in

this chapter, whenever it does not cause ambiguity, leave out the subscript to

denote the specific cause of failure and assume that covariates are constant

over time. The first section describes the method to estimate the vector β,

the second section describes how to calculate the corresponding baseline using

these estimates. The third section illustrates the methods by a simplified

theoretical example. In the fourth section we discuss how to account for

ties in the data. The last section discusses the design of our analysis and

specifically the exact definition of the risk set in the context of our delayed

entry study.

6.1 Parameter estimation

To estimate the influence of the covariates Cox (1972) applies a method

called partial likelihood estimation, which discards the baseline function and

only deals with the exponential part of the equation. We shall give a brief

derivation of the maximum likelihood estimator for this method. Assume

again that n study subjects give rise to the data (τi, δi,Xi), i = 1, .., n where

τi is the observed survival time, δi is the censoring indicator (δi = 0 if the i-th

41
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subject is right-censored and 1 if an event happened) and Xi is the covariate

function for the i-th subject. Assume for the time being that there are

no ties among the failure times and that we have observed k ≤ n mortgage

terminations. First we sort the failure times in an ascending order, i.e. τ(1) <

τ(2) < .. < τ(k), as for the Kaplan-Meier estimator in equation (5.8). The

likelihood function for subject i to have the event at time t is simply the

hazard rate for subject i divided by the sum of the hazard rates for all subjects

that are at risk of failing at time t, that is all mortgages outstanding at time

t. So we can write the likelihood function for subject i as

PLi =
λ(i)(t|X)

λ(i)(t|X) + λ(i+1)(t|X) + · · ·+ λ(n)(t|X)

=
λ(i)(t|X)∑n

j=1 I(j ≥ i)λ(j)(t|X)

=
λ0(t) exp(βTX(i))∑n

j=1 I(j ≥ i)λ0(t) exp(βTXj)

=
exp(βTX(i))∑n

j=1 I(j ≥ i) exp(βTXj)
, (6.1)

where I(·) is the indicator function and X(i) is the covariate vector corre-

sponding to the i-th mortgage in ascending order. We can also define R(τ(i))

as the risk set at time τ(i), this means that R(τ(i)) is a set of indices of all

mortgages which are still performing at time τ(i). Formally,

R(τ(i)) = {j = 1, .., n|τj ≥ τ(i)},

so the mortgage i corresponding to failure time τ(i) is itself also part of the

risk set R(τ(i)). We can now rewrite PLi as

PLi =
exp(βTX(i))∑

j∈R(τ(i))
exp(βTXj)

. (6.2)

By multiplying the partial likelihood function for all n subjects we obtain

the sample partial likelihood function, in which the likelihood function for
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censored data is set to one:

PL(β) =
n∏
i=1

PLi

=
∏
i:δi=1

exp(βTX(i))∑
j∈R(τ(i))

exp(βTXj)
. (6.3)

It is convention in statistics to take the logarithm of the likelihood function.

Doing so, we seek to maximize

pl(β) =
∑
i:δi=1

βTX(i) − ln

 ∑
j∈R(τ(i))

exp(βTXj)

 . (6.4)

6.2 Baseline estimation

After we have obtained the estimates for β by maximizing the partial like-

lihood function of the previous section, we can plug in this estimate in the

full likelihood function to obtain the corresponding baseline. Following this

approach we find the best known estimator for the baseline, the so called

Breslow estimator (Breslow, 1972). In this section we derive the formula of

this estimator.

As in the previous section, assume for the time being that there are no ties

among the failure times and let τ(1) < . . . < τ(k) denote the k distinct, or-

dered failure times in the sample set. Note that we have n observations, i.e.

k ≤ n. The full likelihood function for discrete measured failure times can

be expressed as:

L(β, λ0(t)) =
n∏
i=1

[
λ0(τi) exp

(
βTXi

)]δi
exp

[
−

τi∑
u=0

λ0(u) exp(βTXi)

]
,

(6.5)

and the corresponding log likelihood function as:

l(β, λ0(t)) =
n∑
i=1

δi
[
ln(λ0(τi)) + βTXi

]
−

n∑
i=1

λ0(τi)
∑

j∈R(τi)

exp(βTXj) . (6.6)
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The derivation of the full likelihood formula and the corresponding log like-

lihood formula can be found in appendix A. The vector β is replaced by

the estimate β̂ and the only remaining unknown parameter in the likelihood

function is the baseline function λ0(t). For discrete measured data it holds

that if no event happened in the underlying data at time t, the model as-

sumes that the probability of an event at time t is zero. Therefore we can

conclude that λ̂0(t) = 0 for t /∈ {τ(1), . . . , τ(k)} and if all censored observations

which occur in the interval between two consecutive events (τ(i), τ(i+1)) are

adjusted to have occurred at τ(i), we can rewrite (6.6) as

l(β̂, λ0(t)) =
k∑
i=1

[
ln(λ0(τ(i))) + β̂

T
X(i)

]
−

k∑
i=1

λ0(τ(i))
∑

j∈R(τ(i))

exp(β̂
T
Xj) .

(6.7)

Maximizing (6.7) with respect to λ0(τ(i)) gives the maximum likelihood esti-

mate of λ0(τ(i)) as

λ̂0(τ(i)) =
1∑

j∈R(τ(i))
exp(β̂

T
Xj)

. (6.8)

The baseline survival function estimate is given by

Ŝ0(t) =
∏
τ(i)<t

1− 1∑
j∈R(τ(i))

exp(β̂
T
Xj)

 . (6.9)

Note the close resemblance of Ŝ0(t) with the Kaplan-Meier estimator in equa-

tion (5.8) if the number of observed failures at one measurement time cannot

exceed one.

6.3 An illustrating example

This section presents a simplified theoretical example to show the application

of the approaches discussed in this chapter and the previous. We will assume

that there are no time-varying covariates, no ties in the data and also there
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are no delayed entries in the study. We assume that there is only one vari-

able, the age of the borrower at time of issuance, which influences both the

probability of default and the probability of early repayment of a mortgage.

We assume furthermore that all mortgages are issued at the same time and

that we are only interested in the first 40 months of the lifetime of a mort-

gage; our sample period is 40 months. In table 6.1 we give the details of our

example and figure 6.1 displays this example graphically. A ’1’ in the column

of default (early repayment) indicates that the borrower has defaulted (early

repaid) at the end of the observation period. The column with time gives the

observation time, either until the mortgage is terminated by default or early

repayment or the maximum observation time of 40 months if no termination

event takes place. For example mortgage A is repaid 18 months after it is

issued and mortgage B defaults after 30 months. Mortgage C and F have not

yet experienced a default or early repayment event at the end of the sample

period of 40 months, i.e. they are right-censored observations.

Mortgage Age borrower default early repayment time

A 42 1 0 18

B 31 0 1 30

C 28 0 0 40

D 35 1 0 36

E 53 0 1 22

F 25 0 0 40

Table 6.1: Example data set

If we assume that the age of a borrower contains no information relevant for

either the probability of default or the probability of early repayment, we

can derive the overall probability of survival of a mortgage by applying the

Kaplan-Meier estimator of equation (5.8). All mortgages were outstanding

at time t = 0 and remain so until mortgage A defaults after 18 months. So,

the estimated survival probability Ŝ(t) = 1 for t < 18. We consider the

estimate of the survival probability at exactly 18 months, the value of this
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mortgages

Issue date
age

A
(42 years)

B
(31 years)

C
(28 years)

E
(53 years)

18 months

30 months

40 months

22 months

No event

Default

36 months

40 months

Early repaymentD
(35 years)

F
(25 years)

Figure 6.1: Example data set

estimate is

Ŝ(18) = 1.0 · [1− 1/6] = 5/6.

The probability of termination in the interval (18, 22) is zero and thus Ŝ(t) =

5/6 for t ∈ [18, 22). Next, we derive the estimated survival probability for

t = 22,

Ŝ(22) = 5/6 · [1− 1/5] = 2/3.

By continuing in the same way we find the estimated survival probability of

a mortgage during the first 40 months after issuance as displayed in figure

6.2.

The example becomes more interesting when we also use the information of

the age of a borrower and account for the fact that a mortgage can be termi-

nated by two competing risks. By formula (6.4) we can write the logarithm

of the likelihood function for default as

pldef (β) =
∑
i:δi=1

βTX(i) − ln

 ∑
j∈R(τ(i))

exp(βTXj)
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Figure 6.2: Graph of the Kaplan-Meier estimate of the survival function for the

example data set

= βdef ·XA − ln

 ∑
m∈{A,B,C,D,E,F}

exp(βdefXm)


+ βdefXD − ln

 ∑
m∈{C,D,F}

exp(βdefXm)

 ,

where Xm is the age of the borrower of mortgage m. By maximizing this

equation over βdef , which in this case is a vector of only one element, we find

that βdef = 0.1015.

After obtaining βdef we can calculate the corresponding baseline by formula

(6.8). The only default events in the data happen at time points t = 18 and

t = 36, so it holds that λ̂0,def (t) = 0 for t /∈ {18, 36}. We find that for t = 18

λ̂0,def (18) =
1∑

m∈{A,B,C,D,E,F} exp(βdefXm)
= 0.0026558,

and for t = 36

λ̂0,def (36) =
1∑

m∈{C,D,F} exp(βdefXm)
= 0.0154381.

By following the same steps for early repayment we find that βER = 0.1894
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and

λ̂0,ER =


0 for t /∈ {22, 30}

0.000041 for t = 22

0.000702 for t = 30.

We have now fully characterized the model. We assume a new mortgage of

which the borrower is 39 years old when he applies for the mortgage. For this

mortgage we can derive the Cumulative Incidence Function (CIF) as defined

in definition 5.6 to estimate the probability of a default or early repayment

event. The CIFdef gives the probability of the occurrence of a default event

for this new mortgage. We write

P (τ ≤ t, ε = default) =

∫ t

0

λdef (s) exp

(
−
∫ s

0

(λdef (u) + λER(u) du)

)
ds.

(6.10)

However, since λ0,def (t) = 0 for t /∈ {18, 36} it holds that λdef (t) = 0 for t /∈
{18, 36}. By the same reasoning we find that λER(t) = 0 for t /∈ {22, 30},
and thus we can write

P (τ < 18, ε = default) = 0

P (τ ≤ 18, ε = default) = λdef (18) · exp (−λdef (18))

= 0.1212.

P (τ < 36, ε = default) = P (τ ≤ 18, ε = default)

P (τ ≤ 36, ε = default) = P (τ ≤ 18, ε = default) + λdef (36)

· exp (− (λdef (18) + λdef (36) + λER(22) + λER(30)))

= 0.2157.

P (τ > 36, ε = default) = 0.

We have used that λj(t) = λ0,j(t)·exp(βj ·39) for j =default,early repayment.

The cumulative probability of default is graphically displayed in figure 6.3a.

The same method can be applied to the probability of early repayment to

find for this same mortgage with a 39 year old borrower the cumulative

probability of early repayment as displayed in figure 6.3b.
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(a) Default
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(b) Early repayment

Figure 6.3: Cumulative probability of (a) default and (b) early repayment for

working example

This example has shown in a simplified setting the methods we will apply on

our much larger data set to find an estimate for the probability of default and

the probability of early repayment of a specific mortgage. Note that since

this example contains only six mortgages, results may seem quite odd. For

example, a default event can in the model derived from the example data

set only occur when the mortgage is either 18 or 36 months old. This is not

an issue when the number of mortgages in the data set and especially the

number of events significantly increases, as for our actual data set holds.

To clarify the methods we have assumed in this example some simplifications;

besides the inclusion of time-varying covariates which was already discussed

in section 5.4, we still have to discuss two more complicating factors. Firstly,

the formulas (6.4) and (6.8) should be adjusted to account for possible ties

in the data, we discuss this in the next section. The other aspect is that we

have to account for the fact that our study is a delayed entry study to ensure

that the estimated model is not biased, this is discussed in section 6.5.
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6.4 Ties in the data

Our data is recorded on a monthly basis, whereas the Cox proportional haz-

ards model is a continuous time model. This is not a real problem for data

from a long sample period as ours, but it does mean that we have to account

for ties in the data.

Definition 6.1. Ties occur when at some measurement time more than one

subject under observation experiences the event of interest.

Let τ(1) < . . . < τ(m), with m ≤ k denote the m distinct, ordered event times.

Several methods have been developed to take care of tied times; an exact ex-

pression derived by Kalbfleisch and Prentice (1980) and approximations due

to Breslow (1974) and Efron (1977). Note that the Breslow approximation

for the partial likelihood in the presence of ties, besides being named after the

same statistician, is unrelated to the Breslow estimator for the baseline. We

will not present the mathematical expression for the exact partial likelihood

function here. The basis for its construction is the assumption that the d ties

are due to a lack of precision in measuring survival times. The exact partial

likelihood is obtained by modifying the denominator of (6.3) to include each

of the d factorial arrangements of their values at each risk set. The Breslow

approximation follows unmodified the approach in (6.3) even when ties are

present and thus maximizes the partial likelihood function:

PLB(β) =
m∏
i=1

exp(βTX(i)+)[∑
j∈R(τ(i))

exp(βTXj)
]di , (6.11)

where di denotes the number of subjects with survival time τ(i) and X(i)+

equals the sum of the covariate values over the di subjects. Mathemati-

cally, X(i)+ =
∑

j∈D(τ(i))
Xj, where D(τ(i)) represents the set of indices of

subjects with survival time τ(i). The Efron approximation is a bit more com-

plicated and yields a slightly better approximation to the vector β of the

exact method in most settings, see for a simulations study comparing the

Breslow and Efron approximation Hertz-Picciotto and Rockhill (1997). The
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Efron approximation is an approximation for the di factorial possible order-

ings of the occurrence of events, where each ordering has equal probability:

PLE(β) =
m∏
i=1

exp
(
βTX(i)+

)∏di
k=1

[∑
j∈R(τ(i))

exp
(
βTXj

)
− k−1

di

∑
j∈D(τ(i))

exp
(
βTXj

)] .
(6.12)

Since the exact method is computationally too extensive for our large dataset,

we will use an approximation for the tied times. The Efron method is

more accurate and computationally as efficient as the Breslow method, which

makes it the method of our choice.

Also for the baseline we have to account for ties in the data, see for an elab-

orate research on this topic Weng (2007). Since we will apply the Efron

method to construct the partial likelihood, we will also apply this method

to deal with the ties in estimating the baseline hazard function. For this

purpose we rewrite the baseline estimator as

λ̂0,E(τ(i)) =
∏

1≤k≤di

1∏di
k=1

[∑
j∈R(τ(i))

exp(β̂
T
Xj)− k−1

di

∑
j∈D(τ(i))

exp(β̂
T
Xj)

] .
(6.13)

6.5 Delayed entry study

The standard approach in survival analysis is to define the survival time as

the elapsed time from the beginning of the sample period until failure occurs.

In our study we define the survival time as the elapsed time from issue date

of the mortgage until default or early repayment, thus taking the age of the

mortgage as the time-scale instead of the observation time of the mortgage.

The main advantage of this approach is that it has a more intuitive and

meaningful interpretation. Also, this approach directly takes into account

the age effect on the default (or early repayment) rate.

Although the earliest mortgage in the database is issued in 1963, monitoring

starts only in July 2004. Since our data consists of all mortgages outstanding

in the period from July 2004 till December 2010, defining age as the time-
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scale makes our study a classical delayed entry study where observations are

left-truncated, see section 5.2. Left-truncation is a situation characterized

by the fact that the sample does not include those subjects that have not

survived long enough to be observed; for us these are mortgages issued and

terminated before July 2004. Consequently, the sample that is observed is

an incomplete sample and this should be taken into account in the statistical

analysis. In fact, not including mortgages that have been previously termi-

nated results in an underestimation of the failure risk, since mortgages at the

highest risk are not observed.

Our sample period starts at a predetermined point in time and it is there-

fore reasonable to assume that the delayed entry process is independent of

the survival distribution. Li (2010) describes methods to accommodate for

dependently left-truncated data in survival analysis. The key for dealing in

a correct manner with the delayed entries is now in the definition of survival

time and the risk set at each time t in the partial likelihood formula (6.3) and

the baseline estimation (6.8). Let Y be a variable measuring the exposure

time, or time from entry into the study until termination or censoring, i.e.

censoring occurs when the mortgage is not terminated by default or early

repayment before the end of 2010 or the legal maturity of the mortgage falls

in the observation period. And let W denote the delayed entry, that is the

elapsed time from issue date of the mortgage until monitoring starts in July

2004. We can now write τ , the complete survival time, as the sum of these

two variables, i.e. τ = W + Y . Based on these quantities we can define

the risk set at each time point, such that it is an unbiased estimator for the

parameter β and the baseline function. Figure 6.4 illustrates the concept

by displaying the above variables for four different mortgages, assuming that

we are for the time being only interested in an event of default. Thus early

repaid mortgages are treated as ordinary right-censored observations. Note

that the time axis for this figure is different from that in figure 5.1, where we

displayed the kind of censored observations that we have in our data. The

time scale in figure 6.4 is based on the definition of the survival time, where
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Figure 6.4: definition of survival time. y=time from entering the study until

censoring or default, w=time from issue until first observation

t = 0 is the time of issuance of a mortgage. Mortgage I and II are issued after

July 2004 and therefore enter the study at issue date. Mortgage I defaults

before the end of the sample period, whereas mortgage II is still outstanding

by then. Mortgage III is issued before July 2004 and therefore enters the

study delayed as does mortgage IV. An important feature of the proposed

method is that mortgages are not considered to be at risk prior to the age

at which they enter the study. Therefore, a subject should be counted in the

risk set at time t if this subject is associated with an entrance time smaller

than t and a failure time greater than t. Formally we can write

R(τ(i)) = {j = 1, . . . , n|Wj ≤ τ(i) ≤ τj}. (6.14)

Specifically, mortgage III does not contribute to the risk set at the time that

mortgage I defaults. A detailed example of this method to deal with de-

layed entry as well as right-censoring in survival analysis is in Lamarca et al.

(1998).

Note that a related issue is the definition of a default event. As discussed in

section 4.1 we consider a mortgage to have defaulted when it has been in ar-
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rears for more than three months. Such a mortgage could start paying again

and thereby becomes once more a performing mortgage; in this situation the

mortgage will after starting to pay again be, as before, part of the risk set.

This is not the case for prepaid mortgages which will obviously be removed

from the risk set the moment there is no outstanding balance on the loan

any more.



Chapter 7

Characteristics of data set and

model development

This chapter describes the available data in the first section. The second

section gives an outline of the model development steps.

7.1 Characteristics of data set

NIBC has maintained a database of all Dutch residential mortgages on the

balance of the bank between 01/07/2004 and 31/12/2010. The data is

recorded on a monthly basis and contains 3,350,022 observations of 70,518

mortgages. The mortgages are issued between February 1963 and December

2010 and 1,760 defaults and 33,408 early repayments have been recorded. In

table 7.1 a summary is given of the variables in the study. Some of these

data points are recorded at time of issuance of the mortgage, while others are

calculated based on given data or extracted from the market. Also note that

some variables are static, while others are time-varying. Since the distinction

is not always completely intuitive, the time-varying variables are indicated

by a T in the table. For example, even though the income of a borrower

might change over the maturity of the mortgage, it is only recorded at issue

date, making it a static variable. Some of the variables need some further

55
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Variable Description Codes/Values Time-varying

ID Identification code

IsDate Issue date dd/mm/yyyy

MatDate maturity date dd/mm/yyyy

ObDate month of observation mm/yyyy T

OutB outstanding balance Euro’s T

VProp Value of the property Euro’s

Inc Yearly income of borrower(s), Euro’s

there may be 1-3 reported incomes

NumApp Number applicants 1

Int interest on the mortgage loan percentage T

AdV Advisor verified 0=No,1=Yes

BKR negative credit history 0=No,1=Yes

Age age of (oldest and youngest) borrower years T

Reg region of the underlying property Zeeland,Utrecht,etc

IRDate interest reset date 0=No,1=Yes T

LTFV ratio of outstanding loan to percentage T

foreclosure value 2

LTiFV ratio of outstanding loan to percentage T

indexed foreclosure value 3

IPTI ratio of monthly interest payments Euro’s/Euro’s T

to monthly total income

LTI total loan amount divided Euro’s/Euro’s T

by total yearly income

SMI largest income divided by total income 4 percentage

associated with the mortgage

3ME 3-months Euribor rate percentage T

5YS 5 year versus 3 months swap rate percentage T

10YS 10 year versus 3 months swap rate percentage T

RetSpr Retail spread percentage T

RefInc Refinancing incentive T

1 although the majority of mortgages is held by 1 or 2 applicants, values up to 10 are

registered.
2 in Dutch ’executiewaarde’.
3 this index is the house price index reported monthly by the ’Kadaster’
4 A maximum of 3 incomes may be registered for each loan. This variable is a measure of

resiliency to unemployment.

Table 7.1: Description of variables in mortgage data
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explanation:

• Advisor verified: an income is advisor verified if the borrower does not

disclose his income to the lender, but to an intermediary.

• BKR: a Dutch institution registering credit history of inhabitants. A

’1’ indicates the person has been in default or in arrears of any financial

obligation to a firm reporting to BKR in the past, a ’0’ means there is

no such information.

• Interest reset date: at such a date the borrower can refinance his mort-

gage in the market without paying the prepayment penalty, which can

be a significant amount. This variable only plays a role in modelling

early repayment, not in modelling default.

• 3 months Euribor: a reference rate quoted daily at which banks offer

to lend unsecured funds to other banks in the inter-bank market for a

period of three months. The interest payment of variable rate mort-

gages is linked to the 3-months Euribor plus some spread to cover risk

and expenses.

• The 5 year versus 3 months swap: a derivative in which one party

receives every month 3-months Euribor, fixing every 3 months, and

pays a fixed interest rate for the maturity of 5 years. This fixed rate

is quoted daily at the market such that the arbitrage free value of the

swap at issue date is zero. This quote plus some spread is the basis

for the adjustable rate mortgages. Equivalent for the 10 year versus 3

months swap.

• Retail spread: measures the average spread over the swap curve that

is charged in the mortgage market. This spread captures operational

risk, credit risk and funding costs. Although this variable should not be

interpreted as the state of the macro economy, many factors regarding

mortgage credit risk are captured in this variable.
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• Refinancing incentive: is a measure for the incentive to refinance a

mortgage in the market. When the borrower pays a high interest rate

while market quotes are low, the incentive to refinance will be relatively

high. It is defined as the interest paid by the borrower divided by an

adjusted market interest rate. This market interest rate is mortgage

specific and reflects the interest the borrower would have to pay if he

decides to refinance his debt and it is calculated by the 5 year versus

3 months swap rate from the market plus the retail spread plus or mi-

nus some basispoints reflecting the risk category the specific mortgage

belongs to. If we call this last part x, we can write

Refinancing incentive =
Interest on the mortgage

5Y vs 3M swap rate + retail spread + x

7.2 Model development

We will carry out the statistical analysis of the data in the software program

R (version 2.10.0), which has some very useful packages available. We use

the package ”Survival” to estimate the influence of the covariates and the

form of the baseline. Dedicated code was written for data preparation and

estimating the cumulative incidence function by the approach of Kalbfleisch

and Prentice.

In this section we discuss the development of the model. For this purpose

we will first describe some statistics to analyse the performance and signif-

icance of a model. The next subsection describes the actual steps in the

process of choosing the covariates in the model. And the final subsection

gives the details of one of these steps, namely methods to analyse the scale

of a continuous covariate.

7.2.1 Assessment of model significance

Typically, the first step following the fit of a regression model is the assess-

ment of the significance of the model and the model covariates. The relevant
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models for assessing the significance of a covariate are the partial likelihood

ratio test, the Wald test and the score test, which can all be obtained directly

from R. The null hypothesis for all statistics is that the coefficient is equal

to zero. The partial likelihood ratio test is calculated as

G = 2
(
Lp(β̂)− Lp(0)

)
, (7.1)

where Lp(β̂) is the log partial likelihood of the model containing the covari-

ate and Lp(0) is the log partial likelihood for the model not containing the

covariate. Under the null hypothesis this statistic will follow a chi-square

distribution with 1 degree of freedom. The Wald statistic is defined as

Z =
β̂

ŜE(β̂)
, (7.2)

where ŜE is the estimated standard error. This Wald statistic follows under

the null hypothesis a standard normal distribution.

The score test is a third test frequently used. The equation for the score test

is

S =
∂Lp/∂β√

I(β)

∣∣∣∣∣
β=0

, (7.3)

where

I(β) = −∂
2Lp(β)

∂β2
. (7.4)

This test also follows the standard normal distribution under the null hy-

pothesis. In practice, the same conclusion is usually drawn from the three

tests about the significance of the coefficient. In situations where there is

disagreement, we will choose to use the Wald statistic.

7.2.2 Purposeful selection of covariates

For the model building process we will follow the approach outlined by Hos-

mer et al. (2008, p. 133-136), which we can summarize as follows:
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1. We begin by fitting a multivariable model containing all variables which

are significant in the univariable analysis at the 25% level by the Wald

test.

2. We remove all covariates that are not significant as identified by the

Wald test of the individual covariate one by one. At this stage we take

a significance of 5% to ensure we do not delete too many variables at

once.

3. Based on the fit of the reduced model, we assess whether the removal of

the covariate has caused a change of more than 20% of the coefficients

of the remaining covariates. If this is the case we add the covariate

back into the model.

4. When no more covariates can be removed, we add to the model one by

one the covariates initially excluded from the multivariable model to

confirm that they are not statistically significant in the presence of the

remaining covariates.

5. We check for each continuous covariate in the resulting model the lin-

earity of the log hazard (the proportional hazards assumption) and

when necessary transform the continuous covariate. See for details of

this step the next subsection.

6. We determine whether there are interaction terms needed in the model.

7. The final step is the evaluation of the model for overall goodness-of-fit

and checking the model assumptions.

7.2.3 Methods to examine scale of continuous covari-

ates

An important modelling step is to determine whether the data supports the

assumption of linearity in the log hazard for all continuous covariates. A

common practice in medical studies is to convert continuous covariates into
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binary dummy variables. Although such a model may not be optimal for

continuous covariates, the decision to use such a model is often made on the

grounds that it is easier to interpret the results in case of binary covariates

(Klein and Wu, 2004). As Royston and Sauerbrei (2008) mention, catego-

rization introduces the problem of defining cut point(s), overparametrisation

and loss of efficiency. They state that in any case, a cut point model is an

unrealistic way to describe a smooth relationship between a predictor and an

outcome variable. An alternative approach is to keep the variable continu-

ous and allow for some form of nonlinearity. We discuss in this section two

methods that can be performed to analyse the assumption of linearity in the

log hazard and suggest possible transformations.

The simplest method is to replace the covariate with design variables from

its quartiles, where the first quartile is used as a reference. If plotting the

estimated coefficients for the design variables against the midpoints of the

intervals gives an approximately straight line, the scale can be assumed linear

in the log hazard. If the line connecting the points substantially departs from

a linear trend it might suggest a transformation of the covariate.

A second more advanced method is the fractional polynomials method. This

method can be used with a multivariable regression model by applying the

method to the continuous variables one after another (or even iteratively).

However, for simplicity we describe the method here for a model with a single

continuous covariate. We generalize the hazard function to

λ(t|X) = λ0(t) · exp

(
J∑
j=1

Fj(x)βj

)
, (7.5)

where Fj(x) is a particular type of power function. Although, we could

allow the covariate to enter the model with any number of functions, we will

restrict the transformation to a maximum of two powers. The value of the

first function is F1(x) = xp1 , and that of the second is defined as

F2(x) =

x
p2 if p2 6= p1

F1(x) · ln(x) if p2 = p1
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In theory the power, pj, could be any number, but for practical purposes

Royston and Altman (1994) propose to restrict the power to be among those

in the set

Ω = {−2,−1,−0.5, 0, 0.5, 1, 2, 3},

Where pj = 0 denotes the natural log of the variable.

The steps and methods discussed in this section are carried out in the appen-

dices B.1 and B.2 to obtain a default model and an early repayment model

respectively. The results of these steps are presented in the next chapter.



Chapter 8

Results

In this chapter we describe the results of the estimated default and early

repayment models as well as the simulation process. The first two sections

describe respectively the default and early repayment model, discuss the in-

terpretation and give some theoretical justification of the covariates in the

model. The third section describes our practical approach in modelling the

LGD and the final section discusses the assumptions we made in the simula-

tion process and some simulation results for a specific RMBS.

8.1 Default model

By following the steps outlined in section 7.2 we obtained a model to describe

the probability of default for a specific mortgage. The covariates influencing

the probability of default and the corresponding maximum likelihood esti-

mates for the β coefficients are displayed in table 8.1. The details of the

model fitting process can be found in appendix B.1.

From table 8.1 we see that all parameters have a significant influence on the

probability of default and we can write the model as follows:

λ(t|X) = λ0(t) · exp

(
0.412748 ·

√
LTFV + 1.872541 · BKR + 0.013006 · SMI

−0.185020 · NumbApp{0,1} + 1.481644 · AdV

)
. (8.1)

63
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Coefficient exp(coef) se(coef) z P-value

√
Loan-to-Foreclosure-Value 0.412748 1.510964 0.028906 14.279 <2e-16

BKR 1.872541 6.504805 0.138789 13.492 <2e-16

Share main income 0.013006 1.013090 0.002266 5.739 9.51e-09

Number applicants{0,1} -0.185020 0.831087 0.080746 -2.291 0.0219

Advisor verified 1.481644 4.400173 0.094783 15.632 < 2e-16

Table 8.1: Default model

We will now discuss the interpretation of the model. Starting with the BKR

covariate, we can interpret the β as follows: ceteris paribus, borrowers with a

negative credit history (BKR) default at a 5.5 times higher rate than borrow-

ers without a negative credit history. In the same way, we can interpret the

results for Advisor verified and Number applicants. Where for Number ap-

plicants we have to remark that we made this variable into a binary variable,

with a ’0’ indicating that there is only one borrower and a ’1’ that there are

two or more applicants. This means that mortgages with two or more appli-

cants default at a rate 17% lower than mortgages on one name. Share main

income (SMI) is a continuous covariate for which we can interpret the result

as follows: a 1 percentage point increase in the SMI, for example from 50% to

51%, results in a 1.3% higher rate of default. And the estimated hazard ratio

for a 10 percentage point increase of the SMI is exp(10 · 0.013006) ≈ 1.139.

This means for example that mortgages with a SMI of 100% default at a

14% higher rate than mortgages with a SMI of 90%. The interpretation of

the value for the LTFV is a little less intuitive, since we applied a nonlinear

transformation to this value. For example, borrowers with a LTFV of 110%

having all other covariates equal, default at a 22% higher rate than borrowers

with a LTFV of 100%, i.e. exp
((√

110−
√

100
)
· 0.412748

)
≈ 1.2232.

Figure 8.1a displays the cumulative hazard for a mortgage with the follow-

ing characteristics: a LTFV of 100, Share main income of 100, 1 applicant,

no BKR and non-advisor verified. The straight line from a duration of 300

months on indicates that in the data there are no defaults recoreded of mort-
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Figure 8.1: Graphs of (a) cumulative hazard and (b) cumulative incidence function

of default

gages older than 300 months. Also it seems like the cumulative hazard is

rapidly increasing after 150 months which would indicate an increasing prob-

ability of default after 150 months. Unfortunately, the interpretation of the

cumulative hazard in the presence of a competing risk is not that straightfor-

ward. As discussed in subsection 5.5.2 we cannot conclude anything about

the probability of default from the hazard rate without accounting for the

probability that a mortgage is repaid. Figure 8.1b displays the Cumulative

Incidence Function for the same mortgage, which is defined as

Fdefault(t) = P (τ ≤ t, ε = default) . (8.2)

The CIF can be interpreted as the cumulative probability of default in the

presence of the competing risk of terminating a mortgage by early repayment.

For the calculation of the CIF use is made of formula (5.14) and also the early

repayment model is needed as input; this model is further discussed in the

next section. Based on the CIF we can calculate the probability that a certain

mortgage with specific age and characteristics will default in the next month.

For example, if we take again the same mortgage, and assume it is issued
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one year ago, the 1-month probability of default, according to the model, is

P (τ = 13, ε = default|τ > 12)

=
P (τ ≤ 13, ε = default)− P (τ ≤ 12, ε = default)

P (τ > 12)

=
0.002000− 0.001652

0.968527
= 0.000363.

Equivalently, for this same mortgage, if it is still outstanding after 10 years,

its probability of default in the next month is equal to 0.020296−0.020264
0.316971

=

0.000102.

Some theoretical justification for the covariates in the model is as follows:

• LTFV. A higher Loan-to-foreclosure-value at origination indicates that

the borrower provided little or no own equity for his property. Thereby

the borrower has less incentive to continue paying the mortgage debt.

• BKR code. A borrower that has defaulted or has been in arrears on a

financial obligation in the past is more likely to default on his mortgage

loan.

• Share main income. Unemployment of borrowers is a key driver in

the credit risk of residential mortgages. This risk may be partially

mitigated if the mortgage loan is associated with more than one income.

• Number of applicants. The number of applicants is also associated with

the ability to cushion unemployment.

• Advisor verified. Intuitively it is not surprising that advisor-verified

loans have a higher PD than non-advisor-verified loans, since there is

a higher uncertainty of income-statements for these loans and these

borrowers are often entrepreneurs whose income is more volatile. The

risk is partly mitigated by the lower LTFV of advisor verified-loans.
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8.2 Early repayment model

The covariates influencing the probability of early repayment and the corre-

sponding maximum likelihood estimates for the β coefficients are displayed

in table 8.2. The details of the intermediary steps can be found in appendix

B.2. The final model can be written as

λ(t|X) = λ0(t)· exp

(
− 0.573927 · ln(LTFV) + 0.010762 · LTFV

−0.008309 · Age + 1.858693/
√

Inc + 0.154317 · 3ME

+1.009755 · IRDate + 1.044252 · RefInc

)
. (8.3)

Coefficient exp(coef) se(coef) z P-value

ln(Loan-To-Foreclosure-Value) -0.573927 0.563309 0.034304 -16.731 <2e-16

Loan-To-Foreclosure-Value 0.010762 1.010820 0.000531 20.270 <2e-16

Age youngest applicant -0.008309 0.991726 0.000543 -15.313 <2e-16

1/
√

Income 1.858693 6.415348 0.069052 26.917 <2e-16

3-months Euribor 0.154317 1.166860 0.004072 37.897 <2e-16

Interest reset date 1.009755 2.744928 0.018534 54.483 <2e-16

Refinancing incentive 1.044252 2.841272 0.021116 49.453 <2e-16

Table 8.2: Early repayment model

Although the interpretation of the model is similar to the interpretation of

the PD model discussed in the previous section, we will briefly discuss it

for the ER model too, to get some comfort with the model. An increase

of the age of the youngest applicant has a decreasing effect on the rate of

early repayment. The estimated hazard ratio for a 10 year increase of the

age of the youngest applicant is exp(10 · −0.008309) ≈ 0.92. This means

that mortgages for which the youngest borrower is 10 years older early re-

pay at a 8% lower rate than younger borrowers. For Euribor the effect of

an increase is positive and can be interpreted in the same manner, thus a

one procent point increase gives an almost 17% higher rate of early repay-

ment. For the refinancing incentive again the interpretation is equivalent



68 8. Results

and a one procent point increase gives a 1.84 times higher rate of early re-

payment. Reset date is a binairy variable for which we can see from table

8.2 that the rate of early repayment at a reset date is 1.74 times higher than

at another date, all other things being equal. For both LTFV and Income

the interpretation is harder, since their effect is not linear. For example,

borrowers with a LTFV of 120% having all other covariates equal, early re-

pay at an almost 12% higher rate than borrowers with a LTFV of 100%, i.e.

exp (−0.573927 · (ln(120)− ln(100)) + 0.010762 · (120− 100)) ≈ 1.117. For

Income, which is measured in thousands of euros, there is a negative corre-

lation between the rate of early repayment and income. The average income

is about e42,000 a year. Borrowers with a yearly income of e30,000 early

repay at an almost 8% higher rate than, ceteris paribus, borrowers earning

e50,000 a year, i.e. exp
(
1.85869 ·

(
1/
√

30− 1/
√

50
))
≈ 1.079.

Figure 8.2a displays the cumulative hazard for a mortgage with a LTFV

of 100, the age of the youngest applicant is 41, an income of 42000 and Euri-

bor is constant at 2.747% while the refinancing incentive is constant at 1.092;

these are average values. Figure 8.2b displays the cumulative incidence func-

tion of early repayment of this same mortgage for which we also know that

there is no negative BKR registration, it is non-advisor verified and there is

one applicant. This extra information is needed since the CIF also depends

on the hazard rate of default. The CIF can be interpreted as the cumulative

probability of early repayment, see section 5.5.2 and 8.1 for more details. For

example, if the mortgage described above was issued 5 years ago, we find a

1-month probability of early repayment (ER) of

P (τ = 61, ε = ER|τ > 60)

=
P (τ ≤ 61, ε = ER)− P (τ ≤ 60, ε = ER)

P (τ > 60)

=
0.358136− 0.349219

0.627635
= 0.014207.

And when this mortgage is still outstanding after 10 years, the 1-month prob-

ability of early repayment is equal to 0.016354.
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Figure 8.2: Graphs of (a) cumulative hazard and (b) cumulative incidence function

of early repayment of a mortgage

Some theoretical justification for the covariates in the model is as follows:

• LTFV. Following the reasoning of Alink (2002), the LTFV is in the

Netherlands not an indicator of wealth as it is in other countries. It can

be seen as an indicator of financial awareness. Because interest is tax

deductible in the Netherlands, it is advantageous for borrowers to have

a high as possible mortgage loan. Therefore we assume that borrowers

who are more financially aware will take out loans with higher LTFV’s.

When we take this together with Alink’s proposition that more financial

aware borrowers will repay faster, we can conclude that a higher LTFV

leads to higher early repayment rates.

• Age youngest applicant. Young borrowers typically have lower incomes

and when they start to get children and their income increases they

will look around for another house. Also younger people tend to move

more often, resulting in higher repayment rates.

• Income. Since borrowers with a high income have easier access to
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refinancing opportunities, we would expected a positive correlation be-

tween the probability of early repayment and income. However, from

our analysis it turned out that income is negatively correlated with

the probability of early repayment. This was also the result of the

univariable analysis and we are therefore comfortable that we are not

overfitting the data. One possible explanation is that borrowers with

higher incomes can profit more from tax savings by reducing early re-

payment of their mortgages.

• Euribor. This variable is the rate at which banks offer to lend unsecured

funds to other banks for a 3-months period, it is an indicator for the

overall market conditions.

• Interest reset date. By refinancing a mortgage at an interest reset date

the borrower does not have to pay the lender a prepayment penalty.

This can be a significant amount and thus it is for the borrower attrac-

tive to refinance his mortgage at an interest reset date, instead of at

any other date.

• Refinancing incentive. This variable is a measure for the incentive to

refinance a mortgage in the market. It is defined as the interest paid by

the borrower divided by an adjusted market interest rate. The refinanc-

ing incentive is bigger than one when a borrower pays a higher interest

rate on his mortgage than he would when applying for a new loan. By

prepaying the existing mortgage and taking out a new mortgage loan,

he could have an economic benefit.

The interested reader is referred to Alink (2002) for details on early repay-

ments in the Netherlands.

8.3 LGD model

The LGD is the incurred loss in case a borrower defaults on his mortgage.

This amount will depend on the outstanding balance of the loan and the
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value of the underlying property. In the years before the credit crisis house

prices were rising rapidly, making actual losses for lenders a rare event. If a

borrower was not able to pay the mortgage instalments, the proceeds from

the foreclosure process were almost always enough to cover the mortgage

debt. We can conclude from this that the market value of a property instead

of the value as registered at issue date of the mortgage should be consid-

ered in determining the LGD. An approximation for the market value can be

found by using the house price index as published by ’het kadaster’. How-

ever, since house prices exhibit a lot of autocorrelation, a good prediction of

future house prices is highly complicated. Also the liquidity in the market

might influence the proceeds from the foreclosure process. From the credit

crisis it became evident that even though a house is in good shape it might

be unsaleable due to an illiquid market. Although the incurred loss in case

of a residential mortgage has a significant impact on the cash flows to the

RMBS notes, an in-depth research on the LGD is outside the scope of this

thesis.

Instead, we will approach the LGD issue from a more practical point of view

and exploit the knowledge on this topic present within the bank. From prac-

tice it turns out that about 60% of the defaulted mortgages starts paying

again and these mortgages will eventually pay down the missed interest pay-

ments. We assume therefore that a defaulted mortgage, irrespective of it’s

individual characteristics, has a probability of 0.6 of becoming a perform-

ing mortgage again. For those mortgages for which the bank actually starts

a foreclosure process, we split up the loss in a fixed part and a part that

depends on the outstanding balance and the value of the property. This

fixed part is estimated to be about e 5000, which covers administration

and processing cost. For the variable part we consider the difference of the

outstanding balance and the value of the property in a foreclosure process,

where we will also take an extra safety factor of 10% into account. This

safety factor is the factor with which we assume that we have overestimated

the foreclosure proceeds based on the LTFV. For a mortgage which is taken
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out under NHG conditions (in Dutch ’Nationale Hypotheek Garantie’) the

variable amount is taken to be only a fourth of the loss for a mortgage not

taken out under NHG conditions. The reason is that the mortgage guarantee

fund that operates NHG provides safety for the borrower to the lender. In

formula we can write the loss as

loss = X +OB ·max

(
0, 1− 1

LTFV · (1 + SF )

)
· I{not NHG}

+OB ·max

(
0, 1− 1

LTFV · (1 + SF )

)
· I{NHG} · 0.25 , (8.4)

where X is the fixed amount, SF is the safety factor and OB is the outstanding

balance.

8.4 Simulation

In this section we will discuss the tool developed to price RMBS notes and the

results of the simulation described in chapter 3. The first subsection discusses

the assumptions on which the simulation is based and the second subsection

shows and discusses some results obtained for a specific transaction. We used

Delphi R© (Embarcadero; San Francisco, CA, USA) integrated development

environment, running within the Windows operating system, to develop a

valuation tool for RMBS notes. This resulted in a user-friendly application

giving the user the opportunity to select the input file containing the data on

the underlying mortgages, choose the desired output and define the specifics

of the transaction. The tool offers several options related to the structure of

the tranches, the interest swap, payment frequency, the principal and interest

waterfall and technicalities with respect to the valuation method, see for more

details on the developed tool appendix C.

8.4.1 Underlying assumptions

As already outlined in chapter 2 an RMBS is a highly complex investment

product, coming in many forms and shapes. A prospectus for this product
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will average about 150 pages of legal language, making it difficult to really

understand the structure of the transaction. For this reason we choose one

specific transaction of which a lot of in-house knowledge is available within

the bank; called DMBS XV (Dutch Mortgage Backed Security). We will

discuss now the assumptions made in the development of the RMBS pricing

tool:

• Prepayment penalties are not taken into account, i.e. they are zero.

• Partial redemption of the mortgage is non existing; the only prepay-

ments are full redemptions.

• There is no timing difference between payments made by the mort-

gage borrowers and the payments to the noteholders, thus we do not

explicitly model a liquidity facility.

• There is no replenishment period and substitution is not explicitly mod-

elled.

• A foreclosure process always takes the same number of months; this is

a choice made by the user. We will assume for DMBS XV a period of

18 months.

• There are always sufficient funds to pay fees and other expenses.

• In case a defaulted mortgage recovers, we assume that the future pay-

ments eventually equate to those if no default had occurred. For this

reason, we will also assume that the mortgage in that case recovers

immediate.

• A transaction is always called at the first optional redemption date

(FORD), so no step-up margin is taken into account.

We will use an interest curve based on market quotes at the issue date in-

creased by a discount spread to define the discount curve. This discount
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spread is an indication for the funding cost of the bank; it consists of a re-

turn for the risk a borrow bears when lending money to NIBC plus a liquidity

premium. The discount curve is a tool to calculate the fair value of an RMBS

note at issue date.

As the previous section showed, also the probability of early repayment de-

pends on the interest rate in the market, through two variables: 3-months

Euribor and repayment incentive: which value depends on the 5-year swap

rate and the retail spread. We could simulate for these variables a possible

path based on an interest model, however since we already obtained an in-

terest curve which is used for valuation purposes in the model, it is more

consistent to use this same interest curve in determining the values for these

variables. For this purpose we can derive the 3-months and 5-year forward

rate from the interest curve on any payment date after the issue date. While

interest rates are quoted in the market, there is no indication for the mar-

ket’s expectation of the retail spread. Remember that the retail spread can

be thought of as a spread over the risk free rate charged in the market to cover

expenses and risks associated with a mortgage loan. As figure 8.3 indicates,

the retail spread has been highly volatile during the last years.
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Figure 8.3: Graph of retail spread in the market in the period of 2004 till 2010

Since (1) there is no literature on the distribution of the retail spread, (2) we

have only a few data points and (3) the data mainly covers the period of the

financial crisis, which is not very representative for any other period in time,
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we will not use a sophisticated model to derive possible paths for the retail

spread. Instead we will simply model a possible path of the retail spread in

the following way:

RSt = (1 + Z) ·RSt−1 , (8.5)

where RSt is the retail spread at time t and Z is a normal distributed random

variable, i.e. Z ∼ N(µ, σ2). From historical data we could estimate the mean

and variance of the relative change in the retail spread and we found that

µ = 0.01766 and σ = 0.091114. In appendix D ten different realisations of

the retail spread based on this model are displayed.

8.4.2 Results DMBS XV

DMBS XV is a 750 million Euro securitisation transaction, originated in the

Netherlands and issued by NIBC in March 2010. Table 8.3 gives a summary

of the notes issued in this transaction.

Amount Credit

Note class (Size (e) 1 enhancement Coupon 2

Class A1 182,100,000 5.00 % 1M + 110 bps 3

Class A2 530,600,000 5.00 % 1M + 150 bps

Class B 11,200,000 3.50 % 1M + 200 bps

Class C 10,450,000 2.10 % 1M + 300 bps

Class D 10,400,000 0.70 % 1M + 400 bps

Class E 1,500,000 0.50 % 1M + 450 bps

Class F (reserve account) 3,750,000 0.00 % 1M + 500 bps

1 including the reserve account (F notes)
2 1M is 1 month Euribor rate
3 bps stands for basis points, and it equals a one-hundredth of a percentage

point

Table 8.3: DMBS XV notes

The collateral pool for this mortgage consists of 4,180 mortgages and has a

size of e746,250,000. The proceeds of the notes A1 till E are used to fund the
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mortgages, while the proceeds of the F notes fund the reserve account up-

front. Furthermore we can summarize the characteristics of this transaction

as follows:

• All notes are issued in denominations of e50,000.

• Issue date is March 25, 2010.

• The first optional redemption date is April 2, 2015.

• Payments are made monthly and the first payment date is May 3, 2010.

• Losses are recorded on the PDL of the corresponding tranche.

• The interest swap guarantees an excess spread of 50 bps a year. It is

applied sequentially to absorb missed interest on the mortgages, cover

losses through the PDL’s, replenish the reserve fund to it’s target level

and pay out the remaining amount to the issuer.

Based on the funding cost of NIBC we will apply a discount spread of 150

basispoints over the risk free interest curve. We obtain for notes in tranche

A2 a value exactly at par, due to the fact that these notes pay coupons of one

month Euribor plus 150 basispoints, exactly the same as used in discounting.

In other words, as long as this tranche is not suffering any losses, it will

always value at par. There are only very minor differences in the outcomes

of the 100,000 simulation runs we have performed, especially tranche B till E

generate exactly the same cash flows in all runs, see table 8.4 for a summary

of the obtained results.

The reason that the outcomes are identical is that there is in every realisa-

tion enough excess spread and money on the reserve account to absorb all

losses, while repayment is never high enough to redeem even the smallest

part of the tranches B till E before the FORD. Tranche A1 is affected by

the number of borrowers early repaying their mortgage, see figure 8.4 for

the cumulative discounted cash flows to tranche A1 where the lower bound

(upper bound) refers to the realisation with the lowest (highest) total value
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Tranche Minimal value Average value Maximal value

A1 e49593.42 e49646.39 e49702.49

A2 e50000.00 e50000.00 e50000.00

B e51106.53 e51106.53 e51106.53

C e53305.24 e53305.24 e53305.24

D e55485.11 e55485.11 e55485.11

E e56568.10 e56568.10 e56568.10

Table 8.4: Result of simulation for DMBS XV

for a note. Figure 8.5 displays the corresponding (not discounted) cash flows

at each monthly payment date.

Figure 8.6 displays for each payment date the minimal, maximal and median

cash flow from the 100,000 simulation runs. Note that these do not corre-

spond to an actual realisation, since the minimum, maximum and median

are taken per month. Given that the tranches B till E give a very similar

pattern we only display the cumulative discounted and (not discounted) cash

flows per payment date for tranche E in respectively figure 8.7 and figure 8.8.

The purpose of this research was to be able to quantify the probability dis-

tribution of the value of the notes. However, since tranche A1 will always

result in a loss due to the discount spread that is higher than the margin

an investor in a A1 note receives, no investor will in these circumstances

invest in a tranche A1 note and there is little use in calculating a probability

distribution for the loss. For tranche A2 till E there is only one possible

realisation and a probability distribution is also of little meaning. If we now

assume that NIBC is able to fund itself against Euribor plus only 90 basis-

points, we can calculate a probability distribution for the value of notes in

tranche A1 and A2. We again performed 100,000 simulation runs and the

resulting profit as a percentage of the initial outlay for notes in tranche A1

and A2 are displayed in respectively figure 8.9 and figure 8.10.
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Figure 8.4: Graph of cumulative discounted cash flows to a note in tranche A1,

where the upper bound refers to the realisation with the highest value and the

lower bound to the realisation with the lowest value
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refers to the realisation with the highest value and the lower bound to the realisa-

tion with the lowest value
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Figure 8.6: Graph of realisations of cash flows to a note in tranche A1, where each

line (upper bound/lower bound/median) refers to the highest/lowest/median cash

flow for that specific month
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Figure 8.7: Cumulative discounted cash flows to a note in tranche E
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Figure 8.8: Monthly cash flows to a note in tranche E
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Figure 8.9: Probability distribution of profit for tranche A1 discounted at 90 bps

over 1M Euribor
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Figure 8.10: Probability distribution of profit for tranche A2 discounted at 90 bps

over 1M Euribor

We can conclude from this example that the credit risk for DMBS XV is

only minor; the reserve account and the excess spread can in all cases cover

the incurred losses. In figure 8.11 two different realisations of incurred losses

in DMBS XV according to our models are displayed. Note that in our sim-

ulation runs there can not be an incurred loss in the first 18 months due

to the fact that we assume that a foreclosure process takes this amount of

time. In general for structures similar to that of DMBS XV and with a

Dutch mortgage pool there is only minor credit risk; we can highlight this

fact by a numerical example. Let us assume, as for DMBS XV holds, that

the interest swap generates an excess spread of 50 basispoints per year and

that payment dates are monthly. If we do not account for missed interest

on the mortgages which have defaulted but are not foreclosed yet, than the

excess spread can not cover all incurred losses at a certain payment date if

incurred losses exceed 0.5%
12

= 0.042% of outstanding principal at that specific

month. This is for Dutch mortgages a very high percentage, since default

rates are very low and LGD is also low in the Netherlands. Even more, if
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Figure 8.11: Two different realisations of incurred losses for DMBS XV

at a specific payment date an extraordinary high loss would be incurred, the

reserve account forms an extra cushion agaisnt losses. So, only if for several

payment dates on a row incurred losses are exceptionally high, a loss will be

incurred on the most junior notes.

Contrasting, early repayments do cause uncertainty about the value of a

note. Although in our example this only holds for the most senior notes

in the tranches A1 and A2. The reason that the more junior notes are not

affected by early repayments is that early repayments are not high enough in

any realisation of our simulation to fully redeem the tranche A2 notes before

the FORD. Therefore the notes in tranche B till E always receive only one

principal cash flow at the call date of the transaction.

Furthermore, the applied discount spread plays an important role in the

determination of the value of a note. This discount spread is a source of

uncertainty and ambiguity of the value of a note in the market. If we would

lower the applied discount spread of 90 basispoints, the entire probability

distribution of the value of a note would shift to higher values. Note that

the probability distribution for the notes in tranche B till E consist of only

one fixed value with probability 1.



Chapter 9

Conclusions and further

research

In this final chapter we will summarize the steps that were taken in this

project and the conclusions that we were able to draw from it, in the first

section. The second section discusses further research to be done to improve

the RMBS pricing tool that we developed in this project.

9.1 Conclusions

In this paper we have presented a method for modelling the distribution of

the value of RMBS notes based on individual data of the underlying mort-

gage pool. The motivation for this research was the fact that regulatory

supervisors have, as a result of the credit crisis, requested more transparency

from issuers of RMBS notes. Investors have therefore at their disposal, in the

near future, loan-level data on the underlying mortgage pool of an RMBS

transaction. NIBC is an issuer as well as an investor in RMBS notes and is

therefore confronted with the question how to purposefully employ the avail-

able data to arbitrage free value an RMBS note. This has been the starting

point of the research performed in this thesis.

The valuation of an RMBS note has a stochastic part, the cash flows from the
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mortgage pool, and a deterministic part, the allocation of these cash flows to

the different notes determined by the transaction structure. Besides interest

payments, there are two sources influencing the timing and amount of prin-

cipal cash flows from a mortgage: default and early repayment. We started

the research by a general overview on the available literature on modelling

these two processes, see chapter 4. We argued to apply survival analysis and

specifically a Cox proportional hazards model. There are several reasons for

this particular choice, namely the Cox model:

• enables us to model the default and early repayment intensity over the

lifetime of a mortgage, which we expect not to be constant.

• is capable of coping with censored observations. A censored observation

is a observation for which no exact event time is known.

• offers the possibility to explicitly model the competing risk of termi-

nating a mortgage by either default or early repayment.

We discussed the characteristics of the Cox proportional hazards model in

chapter 5. In this chapter we also described the different approaches, as an

extension to the Cox model, to explicitly model the competing risk setting

and we selected the cause-specific hazard approach by Kalbfleish and Pren-

tice. The value of the parameters in the model by Cox can be estimated

by the non-parametric partial likelihood approach. In chapter 6 we have de-

scribed this method as well as methods to deal with ties in the data and the

fact that our study is a delayed entry study, meaning that some mortgages

are only observed a few years after they have been issued.

Chapter 7 described the characteristics of the data set we had at our disposal

for estimating the Cox model for default and early repayment. This chapter

also gave an outline of the model development steps.

Chapter 8 described the results for the probability of default and the prob-

ability of early repayment model. We have shown that the probability of

default for a mortgage is higher if:
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• the ratio of loan to foreclosure value is higher;

• the borrower has a registered negative credit history;

• the ratio of main income to total income associated with the loan is

higher;

• there is only one registered borrower;

• the income of the borrower is not disclosed to the lender, but to an

intermediary.

For early repayment of a mortgage, we have shown that the probability of

occurrence for a mortgage is higher if:

• the ratio of loan to foreclosure value is higher;

• the (youngest) applicant is younger;

• the total income of the borrower(s) is lower;

• the 3-months Euribor is higher;

• it is an interest reset date;

• the refinancing incentive is higher.

In this last chapter we also applied the models for default and early repay-

ment to forecast cash flows for an RMBS transaction. For this purpose we

have developed in Delphi R© (Embarcadero; San Francisco, CA, USA) inte-

grated development environment a user-friendly tool to value a note of an

RMBS transaction. The tool offers the user the possibility to select the input

data and specify the characteristics of the specific RMBS. We have applied

the model to a transaction issued by NIBC, called DMBS XV, and the results

are displayed in chapter 8. We concluded for this transaction that credit risk

is only minor and therefore defaults have almost no influence on the value

of a note in DMBS XV. However, early repayments and the discount spread
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applied in discounting cash flows influence the value of a note. The discount

spread depends on the funding cost and may be different for each investor.

For tranches that might be (partially) redeemed before the FORD we obtain

a probability distribution of the value of a note depending on the timing of

early repayments. This distribution shifts with the choice of the discount

spread. Tranches that are not redeemed before the FORD in any realisation

of the simulation process (and also never incur a loss) have only one possible

value-outcome, which also shifts with the choice of the discount spread.

The developed model can be used for the analysis of any Dutch RMBS as

long as loan-level data on the underlying mortgage pool is available, which

by regulation will be the case for any newly issued transaction. Also the

structure should fit within the options the tool offers. However, the model

cannot be easily adopted for other countries. The reason is that other coun-

tries might have a completely different mortgage market and it would be

unrealistic to assume that the model can be extended to these markets with-

out any changes. Nevertheless, the methods described in this paper can be

adopted for other countries, provided that enough historical data on residen-

tial mortgages originated in that market is available.

9.2 Further research

With this project we have made an important step towards a user-friendly

RMBS pricing tool based on loan-level data. However, since we build this

tool from scratch, we had to make some simplifying assumptions. In this

section we describe which are the main areas for further research to improve

the model.

1. When we started this project, the expectation was that we would find

one or more market related parameters which influence the probabil-

ity of default. The idea was to generate a large number of possible

realisations of these parameters, which would give the same number

of different realisations of the probabilities of default. This stochastic
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element completely fell out the analysis, since we did not discover such

a variable and the probabilities of default became static. With the

framework for the valuation tool standing, it would be very relevant

to do further research on possible market parameters influencing the

probability of default. In this way it would also be possible to stress

the market and analyse the effect on the NPV of the RMBS notes.

2. We use for LGD a simple formula expressing the loss for a defaulted

mortgage as a fixed amount plus an amount depending on the loan-to-

foreclosure value (LTFV). However, it would be interesting to model

the LGD in a more sophisticated manner. For example the liquidity

in the market could be a good indicator of the actual proceeds from a

foreclosure process. From the credit crisis it became evident that, even

though a house is in good shape, it might be unsaleable due to an illiq-

uid market. Also, by relating the LGD to the value of the property at

the last taxation, we do not account for the up-to-date market value of

the property. We could incorporate an estimator for the market value

of the property by using the house price index. Since house prices are

highly autocorrelated, prediction of a price index is complicated and we

decided that it was outside the scope of this research. Hypothetically,

making the LGD a stochastic variable relating to market conditions

would further improve the model. This could also bring to light the

dependency we expect between PD and LGD. Supposedly, when mort-

gage default rates are higher (a higher PD) also the incurred loss (LGD)

is higher, possibly because a higher PD results in a less liquid market

which in turn results in a higher LGD.

3. We have made some simplifying assumptions related to the recovery of

a defaulted mortgage. We assumed that the probability of recovery is

for each mortgage the same and we modelled it as a constant which

was derived from the data. Also, according to the model a mortgage

which has recovered from a default becomes an ordinary performing
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mortgage again. This is, however, not very realistic since defaulted

mortgages have evidently a higher probability of going in default again.

A first improvement would therefore be to include an extra variable in

modelling the probability of default, which is an indicator of the event of

previous default. A second, more complicated step, would be to model

the probability of recovery based on the mortgage characteristics.

4. The available data was quite restricted; it spans only 6.5 years (in-

cluding the credit crisis, which is not a very representative period) and

includes no more than 1,760 defaults. A database that spans over a

longer period could improve the accuracy of the model and possibly

bring to light more explanatory variables.

5. Further research has to be done in the direction of handling missing

variable values. We have chosen to replace all missing values by the

median of the observed values, however in literature other methods are

described as well, see for an extensive overview Schafer and Graham

(2002). It was outside the scope of this research to further investigate

the effect that different methods have on the estimated model and the

sensitivity and significance of the parameters.

6. In our search through literature we found a lot of articles related to

the appropriateness of the model assumptions and assessment of the

overall goodness-of-fit for a Cox proportional hazards model. In spite

of this, none of these methods were easily extendable or even appropri-

ate for a model with time-varying covariates. It would therefore be a

useful extension to literature to do research on easy to implement meth-

ods to analysis the goodness-of-fit for a Cox model with time-varying

covariates.

7. As discussed in the previous section we think that the developed model

is not easily applicable to other countries. Nevertheless, a similar re-

search could be done on historical data of residential mortgages from
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another country and then it would require only minor adjustments to

adopt the model to include RMBS transactions from this country.

8. The RMBS tool offers the user some options to specify the structure

of a specific transaction. The transactions we have studied, all issued

by NIBC, can be matched with these options. However, more flexibil-

ity to also match the specifics of other transactions, especially related

to triggers in the principal and interest waterfall, would broaden the

applicability of the tool. For this purpose it would be useful to do a

dedicated research on the structures of RMBS transactions available in

the market.
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Appendix A

Derivation likelihood function

Let us suppose that n subjects give rise to the data (τi, δi,Xi), i = 1, . . . , n,

where τi is the observed survival time, δi is the censoring indicator (δi = 0

if the i-th subject is censored and 1 if an event happened) and Xi is the

covariate vector of the i-th subject. In simplest terms, the likelihood function

is an expression that yields a quantity similar to the probability of occurrence

of the observed data under the model.

We construct the actual likelihood function by considering the contribution

of subjects for which an event is measured separately from the contribution of

censored subjects. In case of the triplet (τi, 1,Xi) we know the exact survival

time of subject i to equal τi. It’s probability to have this exact survival time

is given by f(τi|X) which is defined analogous to definition (5.1). For the

triplet (τi, 0,Xi) we know that the survival time of subject i was at least τi,

this probability equals S(τi|X). Furthermore we assume that the censoring

time of subject i is a random variable with survival and density function

G(t|Xi) and g(t|Xi) respectively. In general we can write the contribution of

observation i to the likelihood as

[f(τi|Xi)G(τi|Xi)]
δi [S(τi|Xi)g(τi|Xi)]

1−δi . (A.1)

Since the censoring time is non-informative we can rewrite (A.1) as
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[f(τi|Xi)]
δi [S(τi|Xi)]

1−δi . (A.2)

As the observations are assumed to be independent, the likelihood function

is the product of the expression in (A.2) over the entire sample. We can now

rewrite the likelihood function, of which the only unknown parameters are

the vector β and the baseline function λ0(t), as

L(β, λ0(t)) =
n∏
i=1

(
[f(τi|Xi)]

δi [S(τi|Xi)]
1−δi
)
. (A.3)

We can use the relation λ(t|X) = f(t|X)/S(t|X), see equation (5.6), to

rewrite (A.3) to

L(β, λ0(t)) =
n∏
i=1

λ(τi|Xi)
δiS(τi|Xi) . (A.4)

From section 5.1 it holds that S(t|X) = exp
(
−
∫ t

0
λ(u|X)du

)
and for the

Cox model we have λ(t|X) = λ0(t) · exp
(
βTX

)
. We can therefore express

the likelihood function for the Cox model as

L(β, λ0(t)) =
n∏
i=1

[
λ0(τi) exp

(
βTXi

)]δi
exp

[
−
∫ τi

0

λ0(u) exp(βTXi)du

]
.

(A.5)

The corresponding log-likelihood equation is

l(β, λ0(t)) =
n∑
i=1

(
δi
[
ln(λ0(τi)) + βTXi

]
− exp

(
βTXi

) ∫ τi

0

λ0(u)du

)
.

(A.6)

This full likelihood function contains an unspecified baseline hazard function

so that the estimate of β is difficult to obtain. Cox developed for this purpose

the partial likelihood method described in section 6.1. The full likelihood

function is used to estimate the baseline after obtaining the estimate for β

as described in section 6.2.



Appendix B

Model fitting

In this appendix we give a detailed overview of the steps we took to fit a

survival model for the default and early repayment of a mortgage; these steps

have been discussed in section 7.2. The purpose of this process is to find the

relevant variables with the corresponding β vector. To this end we maximize

the likelihood function (6.12) over the vector β. When the final model is

obtained we can calculate the baseline by formula (6.13). The variables we

have at our disposal are listed in table 7.1. While most of the variables might

have an influence on both default and early repayment, other variables will

only be part of the initial variables set of one of the two analyses. Examples

of the last case are the reset date and the refinancing incentive, which will

both not be considered for the probability of default.

The data set contains some missing data for the income and therefore also for

LTI, IPTI and SMI. We assume that the probability that a value is missing

does not depend on the outcome or on any of the covariates measured, i.e.

data is missing completely random. We therefore replace the missing values

by the median of the data.

The first section of this appendix describes the steps taken for the default

model and the second section those of the early repayment model. The final

models are discussed in section 8.1 and 8.2 respectively.
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B.1 Default model

step 1-4: multivariable model

We perform a univariable analysis for all variables that could play a role

in the default process of a mortgage and we find at the 20% level only in-

come, value of the property, outstanding balance and area of the property

to be insignificant. The next step is to fit a multivariable model contain-

ing all the remaining variables. However the LTFV is highly correlated to

the LTiFV and for this reason we will not use both variables in our final

model. Something similar holds for the age of the oldest and the age of the

youngest applicant. Therefore we will use four different settings to fit the

initial multivariable model by combing LTFV or LTiFV with the age of the

oldest applicant or the age of the youngest applicant.

For all four models we first remove the interest and swap rates and observe

only small changes in the parameter values. Next we remove the interest on

the mortgage, thirdly the LTI, and in the fourth step the age of the applicant.

The IPTI is still marginally significant in both models, but the effect is prac-

tically zero and removing the IPTI does barely influence the performance of

the model or the values of the other covariates. We therefore also remove the

IPTI from the model.

The next step is to add, one at the time all variables initially excluded from

the multivariable analysis. In this step we obtain that those variables are also

not significant in the presence of the other variables and they can therefore

be removed again. We are now left with two quite similar models which are

summarized in table B.1a and B.1b. The Wald statistic z for the individual

β’s is calculated as z = β̂

ŜE(β̂)
and it is together with it’s two-sided p-value

displayed.

To decide which model will be our preliminary main effects model, we com-

pare the performance of both models. From table B.2 we see that the model

based on LTFV scores better on all test statistics and therefore we will use

this model in the remainder of the analysis.
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Coefficient exp(coef) se(coef) z P-value

LTFV 0.018573 1.018747 0.000597 31.119 < 2e-16

BKR 1.909917 6.752527 0.091695 20.829 < 2e-16

SMI 0.012634 1.012714 0.001621 7.794 6.55e-15

Number applicants -0.14526 0.864796 0.055799 -2.603 0.00923

Advisor verified 1.403831 4.070766 0.068946 -20.361 < 2e-16

(a) LTFV

Coefficient exp(coef) se(coef) z P-value

LiTFV 0.022971 1.023236 0.000921 24.945 <2e-16

BKR 1.879058 6.547333 0.091934 20.965 <2e-16

SMI 0.014715 1.014824 0.001641 8.965 < 2e-16

Number applicants -0.09892 0.905818 0.036019 -2.746 0.00603

Advisor verified 1.452564 4.274059 0.070723 20.539 < 2e-16

(b) LTiFV

Table B.1: Preliminary models for PD with LTiFV and LTFV

step 5: scale continuous covariates

The next step is to check the scale of the continuous covariates, in our case

the LTFV and the SMI; a summary of these variables is given in table B.3.

For the SMI almost 75% of the data has a value of 100, this is partly due

to the fact that we changed the missing values for SMI to 100. For about

10% of the mortgages no income details are registered, and consequently for

those mortgages we have no information on SMI either.

To have a first impression of the scale of the continuous covariates we will

apply the quartile design variable method. Since the data for SMI is so

poorly distributed we will only apply this method to the LTFV, which is

displayed in figure B.1. To ensure that the graph is not too much disturbed

by heavy outliers, we did not take into account the 0.1% biggest outliers

when determining the midpoint of the last quartile.

It is difficult to tell from figure B.1 whether the plot for LTFV indicates a sig-
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Model LTFV Model LTiFV

LR 1090 1074

Wald 641.7 632.8

Score 369.2 348.6

Table B.2: Comparing model performance

min 1st Q Median mean 3rd Q max NA’s

LTFV 0 66.94 89 87.94 118 532.5 2471

SMI 0 67 100 85.62 100 100 0

Table B.3: Summary LTFV and SMI data

nificant departure from linearity or is due to a random variation. Therefore

we will apply the fractional polynomials method to suggest a transformation

of the covariate, see for details on this method section 7.2.3. From the sum-

mary of the application of this method in table B.4a, we can conclude that

we will apply a transformation of LTFV by taking the square root of the

LTFV. Although this transformation gives a better description of the data,

it will make the model harder to interpret.

As we can see from table B.4b no transformation of the SMI covariate gives

a significant improvement of the model and therefore we keep this covariate

linear. We now have the model as in table B.5

step 6-7: interaction terms and overall goodness-of-fit

The final step in the variable selection procedure is to determine whether

interaction terms are needed in the model. The only plausible interaction

term in our point of view would be the interaction between BKR and Advisor

verified, since both have a very large increasing effect on the probability

of default thereby possibly overestimating the PD of someone with a BKR

registration and an Advisor verified loan. We conclude from the distribution
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Figure B.1: Graph of estimated coefficients versus quartile midpoints for LTFV

of the data over these variables, see table B.6, that it would not be meaningful

to include such an interaction term.

Before proceeding to the final step of checking for the appropriateness of the

model, we first want to approach the selected covariates with some common

sense. That the selected covariates have an effect on the probability of default

is not unexpected and also the size of the effects could be explained, see for

more details section 8.1. For the continuous covariates we have checked the

scale and made a transformation to one of them. We will also have a look

at the scale and definition of the other covariates. The covariates ”BKR”

and ”Advisor verified” are binary variables and therefore there is nothing

to check about there scale. The covariate ”Number Applicants” can have

the values 1 to 10, but only 14,800 observations of the 3,350,022 have more

than 2 applicants registered of which only 24 defaults happen. Since the

model assumes that an increase of 1 applicant gives the same effect on the

probability of default when going from 1 to 2 applicants as for any other

increase of 1 applicant, this might not be the most appropriate definition of
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G for model Approx.

Log likelihood vs Linear p-value Powers

Not in model -17218.94

Linear -16960.91 0.000 0.0001 1

J=1 -16923.27 75.28 0.00002 0.5

J=2 -16919.4 76.56 0.8653 0, 0.5

(a) LTFV

G for model Approx.

Log likelihood vs Linear p-value Powers

Not in model -16960.91

Linear -16930.52 0.000 0.0001 1

J=1 -16930.21 0.31 0.8652 -0.5

J=2 -16925.82 4.70 0.3193 0.5, 3

(b) SMI

1 compares linear model to model without LTFV/SMI
2 compares the best J=1 model to model with LTFV/SMI
3 compares the best J=2 model to the best J=1 model

Table B.4: summary of fractional polynomial method for PD

our covariate. We change the covariate to a binary covariate indicating a ’0’

when there is only one applicant and a ’1’ when the number of applicants

is two or more. As can be seen in table B.7 this model significantly bet-

ter describes the data and we will therefore carry on our analysis with this

model. Hence our final model is the model in table B.8 in which LTFV is the

only remaining time-varying covariate, al other covariates are only recorder

at issue date. The LTFV may change due to a change in the foreclosure value

of the property or a change in the loan amount. The registered foreclosure

value can change when a new taxation report is received by the issuer, for

example when a borrower wants to increase his mortgage. The loan amount

decreases when a borrower decides to partly redeem his mortgage. Finally,
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Coefficient exp(coef) se(coef) z P-value

√
LTFV 0.424136 1.528269 0.019092 22.215 <2e-16

BKR 1.872514 6.504628 0.091945 20.366 <2e-16

SMI 0.014187 1.014288 0.001642 8.640 < 2e-16

Number applicants -0.107295 0.898261 0.055947 -1.918 0.00499

Advisor verified 1.507872 4.517108 0.073043 20.644 < 2e-16

Table B.5: Model PD

Total Defaulted

mortgages mortgages

All mortgages 70518 1760

Advisor verified 7901 363

BKR 907 131

Advisor verified and BKR 124 12

Table B.6: defaults among Advisor verified and BKR mortgages

we can proceed to checking for the appropriateness of the model and assess

the overall goodness-of-fit. The most important aspect to check for in the

Cox proportional hazards model is, as the name reveils, the proportional

hazards assumption. This assumption states that the hazard of any subject

in the sample is a fixed proportion of the hazard of any other subject and

the ratio of the hazard of two subjects is constant over time. However, since

our model includes time-varying covariates the proportionality assumption

is violated.

Standard back testing approaches for Cox model assume that the model does

not include time-varying covariates. Also literature on testing for overall

goodness-of-fit when the model contains time-varying covariates is very re-

stricted and we did not succeed to find any method understandable and clear

enough to implement in R. To determine whether an estimated Cox model

fits the data to an acceptable degree is the likelihood ratio test mentioned in

section 7.2. The test statistic for our model is 1122 and it is subject to a chi-
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model Number Model Number

applicants ∈ {1, . . . , 10} applicants binary

LR 1116 1122

Wald 709.2 721.3

Score 352.8 359.3

Table B.7: Comparing model performance

Coefficient exp(coef) se(coef) z P-value

√
LTFV 0.412748 1.510964 0.028906 14.279 <2e-16

BKR 1.872541 6.504805 0.138789 13.492 <2e-16

SMI 0.013006 1.013090 0.002266 5.739 9.51e-09

Number applicantsbin -0.185020 0.831087 0.080746 -2.291 0.0219

Advisor verified 1.481644 4.400173 0.094783 15.632 < 2e-16

Table B.8: Final model PD

square distribution with 5 degrees of freedom. We have P (χ2(5) > 1122) ≈ 0,

indicating that the model including the covariates is significantly better de-

scribing the data than a model without the covariates. Also all individual

covariates are significant in the model.

One way to graphically show the performance of a regression model is by

plotting realisations versus modelled events. To this end we take time-scale

as the observation period, instead of the outstanding months. The reason

is that it is an in-sample back test where the model is estimated with the

time-scale as outstanding months. If we would do the back test with the

same time-scale the baseline would perfectly match and the coefficients are

the maximum likelihood estimates. By using this different time-scale for the

back test, grouping of the mortgage observations is completely different and

the test has some properties of an out-of-sample back test. In figure B.2 the

number of realised defaults divided by the number of observations for each

month are displayed as well as the expected defaults according to the model.
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Figure B.2: Graph of realised defaults and modelled defaults by observation month.

The blue line indicates the realised defaults divided by the number of observations

for each month and the red line displays the expected defaults according to the

model divided by the number of observations.

B.2 Early repayment model

step 1-4: multivariable model

Besides the variables listed in table 7.1 we will introduce two new variables

related to the interest reset date:

• Two months around the Interest reset date (called IR2M): a binary

variable indicating whether an interest reset will take place in 2 months

or has taken place less than 2 months ago. So there are five values equal

to one around a reset date for this variable.

• Three months around the Interest reset date (called IR3M): equivalent

to IR2M but for three months around the reset date.

The logic behind these variable is that borrowers are notified of the new in-

terest rate they will have to pay after the reset date about 2 or 3 months
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before the actual reset date and this triggers borrowers to refinance their

mortgage in this period. In the same line of reasoning, borrowers tend to

forget about refinancing a mortgage in time, consequently they refinance a

few months after the actual interest reset date. Even though borrowers do

not always make from a economic perspective the most rational decision to

refinance at a reset date, which saves them money from not having to pay

a prepayment penalty, practice reveals that early repayment is higher in the

months around the interest reset date.

In the univariable analysis we found that except for the LTiFV, BKR, LTI,

IPTI, SMI, NumbAppl and Reg, all variables were significant at the 20%

level. The Refinancing incentive is calculated using the variables interest,

5YR vs 3M swap and Retail spread. Since this variables expresses an incen-

tive to prepay we will not use the related variables in our further analysis.

We now proceed with the following variables: LTFV, Advisor verified, In-

come, Age youngest applicant, Age oldest applicant, Refinancing incentive,

Euribor rate, IRDate, IR2M and IR3M . The different variables related to

the interest reset date are highly correlated, if a row has a ’1’ in IRDate it

will always also have a ’1’ in the other two variables, and we therefore cannot

use more than one interest reset date related variable in a model. Something

similar holds for the age of the youngest and of the oldest applicant. We

will therefore use six different settings to fit the initial model, combining the

different interest reset date variables with the age of the oldest respectively

youngest applicant.

For all six models we remove Advisor Verified as a covariate and the remain-

ing covariates are all significant at the 5% level in all six models. The model

with the age of the youngest applicant and the first definition of the inter-

est reset date has the best performance at all test statistics. This model is

displayed in table B.9

We expected that an indicator for the months around the interest reset date

would give a better description of the data than the exact month of reset. It
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Coefficient exp(coef) se(coef) z P-value

LTFV 0.001723 1.001725 0.000232 7.441 1,08e-13

Age youngest applicant -0.008229 0.991805 0.000528 -15.597 <2e-16

Income -0.006067 0.993952 0.000354 -17.162 <2e-16

Euribor 0.154065 1.166567 0.004118 37.412 <2e-16

resetdate 1.056820 2.877207 0.017608 60.020 <2e-16

Refinancing incentive 1.064326 2.898885 0.020782 51.214 <2e-16

Table B.9: Preliminary model ER

follows that there are significantly more early repayments in these months,

especially in one or two months before or after the reset date, as displayed

in table B.10.

Repaid mortgages

At reset date 4732

In 1 or 2 months before and after reset date 944

In 2 months around reset date 5676

In 3th month before and after reset date 268

In 3 months around reset date 5954

Total 33408

Table B.10: Early repayment of mortgages at interest reset date

However, we found that the exact interest reset date was a better predictor

for early repayment than the IR2M or IR3M variable. The most plausible

explanation for this is that these indicators do not give a higher weight to

the exact month of an interest reset date, although from the data it becomes

clear that the reset date is the most likely date of early repayment. We

therefore define two other variables by changing the ’1’ for IR2M and for

IR3M at the exact date to 2; this gives a kind of stair function. We replace

the variable reset date in the model from table B.9 by these variables, but

again both models perform worse than the model in table B.9 and therefore
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we stick to this model.

Next we add the variables initially excluded from the multivariable analysis

one at the time, except LTiFV since it is highly correlated to the LTFV.

All variables are found to be still insignificant in the presence of the other

covariates and therefore the model in table B.9 will be our preliminary model.

step 5: scale continuous covariates

The next step is to check the scale of the continuous covariates, which are in

this case LTFV, Age youngest applicant, Income, Euribor and Refinancing

incentive. We first apply the quartile design variables method to see which

variables are candidate for a transformation. A summary of these continuous

variables is in table B.11 and the graphs of the method for all five continuous

covariates are displayed in figure B.3. In the same way as for the PD model,

the 0.01% biggest outliers were not taken into account for the drawing of

the graphs. We see that for the variables LTFV and Income it is doubful

whether the linearity assumption is reasonable and hence we will apply the

fractional polynomials method to these variabels.

min 1st Q Median mean 3rd Q max NA’s

LTFV 0 66.94 89 87.94 118 532.5 2471

Age youngest applicant -67.00 35.00 41.00 44.09 50.00 110 202

Income (in 1000’s) -11.44 33.35 42.46 47.41 55.07 51840 354658

Euribor 0.635 1.825 2.474 2.718 3.924 5.291 0

Refinancing incentive 0 0.9422 1.0916 1.1303 1.2817 3.0228 2250

Table B.11: Summary continuous covariates in the model

The results of this method are in table B.12. As we can see from table

B.12a a transformation for the LTFV of two powers is significantly better

than a one power transformation which in turn is significantly better than a

linear model. We will therefore proceed with the two-term (0,1) fractional

polynomial model.
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Figure B.3: Graph of estimated coefficients versus quartile midpoints for (a)LTFV,

(b)age, (c)Income, (d)Euribor, and (e)refinancing incentive.

For the Income variable table B.12b indicates that a one power transforma-

tion is significantly improving the model, while a two-term transformation is

not significantly improving the fit of the one power transformation. We will
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therefore transform the Income variable by 1/
√

Income.

G for model Approx.

Log likelihood vs Linear p-value Powers

Not in model -329650.51

Linear -329566.16 0.00 0.00001 1

J=1 -329553.54 25.24 0.00002 -1

J=2 -329542.78 21.52 0.00023 0, 1

(a) LTFV

G for model Approx.

Log likelihood vs Linear p-value Powers

Not in model -329775.21

Linear -329557.83 0.00 0.0001 1

J=1 -329014.64 1086.38 0.000 2 -0.5

J=2 -329011.52 6.24 0.1823 -2, 1

(b) Income (in thousands)

1 compares linear model to model without LTFV/Income
2 compares the best J=1 model to model with LTFV/Income
3 compares the best J=2 model to the best J=1 model

Table B.12: summary of fractional polynomial method for ER

This results in our final model as displayed in table B.13, from which it

becomes clear that all variables have a significant effect on the probability of

early repayment.

step 6-7: interaction terms and overall goodness-of-fit

There are no interaction terms which we expect from the study’s perspective

to be of interest and we therefore do not include any interaction term and

stick with the model in table B.13.

Before proceeding to the final step of checking for the appropriateness of the

model, we should first ensure ourselves that the model is intuitively correct.
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Coefficient exp(coef) se(coef) z P-value

ln(LTFV) -0.573927 0.563309 0.034304 -16.731 <2e-16

LTFV 0,010762 1.010820 0.000531 20.270 <2e-16

Age youngest applicant -0.008309 0.991726 0.000543 -15.313 <2e-16

1/
√

Income 1.858693 6.415348 0.069052 26.917 <2e-16

Euribor 0.154317 1.166860 0.004072 37.897 <2e-16

resetdate 1.009755 2.744928 0.018534 54.483 <2e-16

Refinancing incentive 1.044252 2.841272 0.021116 49.453 <2e-16

Table B.13: Final model ER

A detailed discussion on the theoretical justification of the covariates is in

section 8.2. Here we just state that the model is feasible.

In contrast to the PD model which had a lot of binary or integer covariates,

the early repayment model mainly has continuous covariates. The scale of

these covariates have been checked already. The only remaining covariate is

the interest reset date, which is binary and there was some discussion on how

to define this variable at the beginning of this section.

A discussion on the difficulties related to assessing the overall goodness-of-fit

of a Cox model with time-varying covariates is placed in the previous section.

A method to determine whether an estimated Cox model fits the data to an

acceptable degree is the likelihood ratio test mentioned in section 7.2. The

test statistic for our model is 7549 and it is subject to a chi-square distribu-

tion with 7 degrees of freedom. We have P (χ2(7) > 7549) ≈ 0, indicating

that the model including the covariates is significantly better describing the

data than a model without the covariates. Also all individual covariates are

significant in the model.

Furthermore figure B.4 graphically displays the realised and expected early

repayments by observation period. For each month between July 2004 and

December 2010 the realised early repayments divided by the number of ob-

servations in the data are displayed by the blue line. The red line gives the

expected early repayments according to the model divided by the number
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of observations. For this back test we use observation period as the time

scale, where age was used as time scale in fitting the model. This gives the

back test, even though it is an in-sample back test, also something of an

out-of-sample back test.
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Figure B.4: Graph of realised early repayments and modelled early repayments by

observation month. The blue line indicates the realised early defaults divided by

the number of observations for each month and the red line displays the expected

early defaults according to the model divided by the number of observations.



Appendix C

RMBS valuation tool

The RMBS valuation tool which we developed in this project offers the user

several options to match the characteristics of the transaction he intends to

value, these include:

• the underlying mortgage pool (the user should select the file in which

this data is contained);

• monthly or quarterly payment dates;

• the number of tranches and senior tranches;

• for each tranche, the size in Euro’s and the margin over 1-months Eu-

ribor in case of monthly payment dates or over 3-months Euribor in

case of quarterly payment dates;

• denomination of notes, these must be equal for all tranches;

• whether or not there is initially a reserve account, and if so if it is

funded by cash or by the underlying mortgage pool;

• the target size of the reserve account (can also have a value if there is

no initial reserve account, the reserve account is than build up from

excess spread);

115
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• whether or not the swap agreement guarantees excess spread and if so

how much basispoints it is on a yearly basis;

• the issue date, the first payment date and the call date;

• whether the transaction has a clean-up call option, and if so for which

percentage of initial outstanding asstets the transaction can be called

by the issuer;

• redemption options: pro rata, sequential or pro rata up till a certain

tranche;

• triggers related to the principal waterfall;

• day count convention,

and several other transaction specifics. Furthermore, the user should specify

the underlying assumptions he would like to make regarding:

• the discount spread applied for valuation;

• the probability of recovery of a mortgage;

• the number of months a foreclosure process takes;

• the parameters regarding the LGD (fixed loss, safety factor, loss factor

for NHG, see section 8.3).

Lastly, the user should specify how much simulation runs he would like to

perform.

The figures on the next pages give an idea of the tool.
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Figure C.1: RMBS valuation tool, tab: tranche input
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Figure C.2: RMBS valuation tool, tab: structural input



C. RMBS valuation tool 119

 

Figure C.3: RMBS valuation tool, tab: mortgage pool input
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Figure C.4: RMBS valuation tool, tab: simulation input
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Figure C.5: RMBS valuation tool, tab: output input
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Appendix D

Realisations Retail spread

In section 8.4.1 we estimated a model for the retail spread as:

RSt = (1 + Z) ·RSt−1

Where RSt is the retail spread at time t and Z is a normal distributed random

variable, i.e. Z ∼ N(µ, σ2). We found that µ = 0.01766 and σ = 0.091114.

Figure D.1 shows ten different realisations of the retail spread for the next

five years, corresponding to the maturity of DMBS XV.
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Figure D.1: Graph of 10 different realisations of the retail spread

123






