
Faculty of Electrical Engineering,

Mathematics & Computer Science

On the effect of antenna coupling

on spectrum sensing using a

cross-correlation spectrum analyser

with two antennas

P.J. Prins, Bsc.

MSc. Thesis
January 2012

Supervisors
prof.dr.ir.ing. F.B.J. Leferink

dr.ir. M.J. Bentum
dr.ir. A.B.J. Kokkeler
M.S. Oude Alink, Msc.

Chair of Telecommunication Engineering &
Chair of Integrated Circuit Design,
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede
The Netherlands





Summary

Spectrum sensing for cognitive radio is a technique to find unused
pieces of spectrum which can then be used to transmit and receive data.
This requires sensitive, low noise, measuring. For that purpose it has
been proposed to use a cross-correlation spectrum analyser. Such a sys-
tem can use one antenna and a splitter to two receiver paths. Alterna-
tively, a second antenna can be used instead of a splitter.

In this report the signal reception and system noise reduction of both
designs are compared analytically, in case the antennas are dipole anten-
nas, positioned in parallel, collinear or in echelon. The antenna coupling
is described using an impedance matrix of which the entries are expressed
according to the induced electromagnetic force method. For this purpose
it is assumed that the environment is reflection-free and time-invariant.

The contribution of signals and (thermal) noise from the passive
front-end, consisting of an H-type resistive attenuator, to the best achiev-
able signal to noise ratio at the output of the receivers is derived. Some
approaches for optimization of the two-antenna design are discussed, sup-
ported by plots.
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Chapter 1

Introduction

1.1 Cognitive radio

The paradigm

A cognitive radio (cr) is a wireless communication device which automatically
adjusts its transmission and reception parameters to avoid interference with
other wireless communication, while optimizing communication along the line
or network it is part of. These parameters include channel and transmission
power. Ideally two or more of these devices can be put anywhere to set up a
network along which they can communicate without interfering with other li-
censed or unlicensed users of the electromagnetic (em) spectrum. This requires
scanning and monitoring of the radio environment and adjusting transmission
accordingly.

A spectrum sensing cr is a type of cr that regularly scans the em spectrum
for (currently) unused frequency bands and sets up transmission within this
band. Compared to other kinds of cr, in a spectrum sensing cr only frequency
divided channels are considered and not for example time, space or code-divided
channels. Furthermore only free channels are used, while the wider definition
of cr would allow communication along channels in use as long as harmful
interference with the other user is averted somehow.

Scanning and monitoring of the em spectrum without prior or external
knowledge can only be done by some form of energy detection. If there is more
em energy in a frequency band than some threshold above the background
noise level, the band is assumed to be occupied. Other methods can be more
sensitive, but rely on information of the signal that can be present. For exam-
ple when looking for an empty television (tv) band, information on the local
protocol for television broadcast can help distinguishing a tv channel in use
from background noise. In practice that means that weaker tv signals can still
be detected than with energy detection. However, having this information is a
concession on the cr paradigm in which any other usage of the em spectrum
needs to be detected.

Spectrum sensing

Energy detection for the purpose of cr is meant to prevent re-using a frequency
band that is already in use. That would be unwanted for two reasons. First, it

1



2 CHAPTER 1. INTRODUCTION

might interfere with the reception at a receiver for which some signal was sent.
Therefore it is undesirable to re-use a channel to which a receiver is listening.
Second, to use a channel in which already a lot of power is present, would
require extra power compared to using an empty channel. Because of this it
is undesirable to re-use a channel on which an other transmitter is sending, as
long as there are other channels with less power present. Any or both of these
two reasons may apply. General examples of each case are given in Table 1.1.

Other transmitter active No other transmitter active
Other receiver
listening

•Communication in progress •Idle time during communication
•Electromagnetic susceptibility (ems)

No other receiver
listening

•Unattended broadcast
•Electromagnetic interference (emi)

•Unassigned unused band
•Assigned but unused band

Table 1.1: Examples of bands with or without an active transmitter and/or a
receiver listening

On the left hand side of the table we find examples of cases in which a
transmitter (other than our own) is sending. This could mean there is a receiver
listening to what is being sent. In that case we can speak of communication
in progress. In this case reuse of the channel by a cr will likely cause harmful
interference, which would therefore be forbidden in most cases, because that
reuse is undesirable to other users of the spectrum.

Conversely: a transmitter can also be sending, while there is no receiver
to listen. Examples include a radio station that is broadcasting music all
night, while perhaps no radio is tuned to that particular station at that time,
or a wireless local area network (lan) router that is broadcasting its service
set identifier (ssid) while there is no mobile device within reach to use that
information. Another kind of transmitter to which no receiver is listening
is an unintentional transmitter: an electromagnetic interferer. If we have for
instance a variable frequency drive (vfd)1 that is causing emi, there is probably
no receiver intentionally listening to it.2 In all cases where there is no receiver
listening, no harm is done by a cr reusing that particular channel, as the sender
will not even take notice.

On the right hand side of Table 1.1 are examples in which no transmitter
is sending. This can be the case when there is no sender as well: the band is
unused. The use of such a band will cause no harm, but whether it is allowed to
use a channel that is possibly assigned to an other user or for another purpose,
will depend on local regulations. There are also cases in which there is an
active receiver, but no transmitter. One can think of a receiver waiting for an
interrupted or unstarted transmission, like a receiver for radio astronomy or a
pager waiting for a message to come. Also equipment suffering from ems like
medical equipment can be seen as a receiver in the absence of a transmitter.
A cr can cause harmful interference to such a device without being able to
detect that.

1A vfd is a system to control the speed of an electric motor by controlling the frequency
of the power to that motor. Due to the combination of high powers and high frequencies,
such systems are infamous for causing emi.

2There may be a victim system that is “unintentionally listening” to emi, but that is
usually called hearing rather than listening.
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All examples on the left hand side of table 1.1 are possibly detectable,
but certainly not distinguishable by means of energy detection only. There-
fore when using energy detection as the only means of spectrum sensing, both
harmful and unharmful reuse needs to be avoided. Furthermore some addi-
tional knowledge is required to avoid certain channels in which no transmitter
is active, required by local regulations, or by the presence of a legitimate re-
ceiver to which no harmful interference may be caused. Although this tells us
that implementing a cr with spectrum sensing as its only channel selection
mechanism will not suffice, the remainder of this report will be confined to
spectrum sensing, or, more specifically, spectrum sensing by means of energy
detection.

A reliable implementation of a cr based on energy detection requires a high
sensitivity. This puts severe demands on the noise floor of the receiver and the
spectrum analyser (sa), because a weak signal can only be recognised when the
uncertainty of the level of the noise floor is lower. Furthermore the system needs
to be sufficiently linear, because strong higher harmonics or intermodulation
products will be recognised as separate occupied bands, preventing the system
from using these possibly empty bands. To meet these requirements it was
proposed to implement the sa as a cross-correlation spectrum analyser (xcsa),
which will be discussed in Chapter 2.

1.2 Previous work

Correlation spectrum analysers are widely known for a long time and through
the years several approaches were studied to optimize its design. Sampietro
et al. [1] showed that using a xcsa with two independent amplifier paths in
a measurement instrument instead of a traditional system, improved the sen-
sitivity by at least 50 dB. A slightly different implementation was chosen by
Ciofi et al. [2]. Instead of calculating the cross-correlation between the two
receiver paths, he chose to approximate the autocorrelation of the sum and the
difference between the two paths. This had the advantage that the correlation
could be estimated in the time-domain, if desired. Kokkeler and Gunst [3]
derived a general expression for the correlation function in the case of cross-
correlating multi-bit quantized signals. With this expression the response of
the active part of a correlation amplifier to noise and periodic signals can be
analysed. The use of more than two amplifiers to be able to reduce the system
noise even further than with two amplifiers, was discussed by Crupi et al. [4].
They found that in principle their method would allow complete elimination of
the noise introduced by the amplifiers. Oude Alink [5] elaborated on improving
the linearity and reducing the variance of an xcsa with two paths. One of his
design decisions to improve the linearity, was attenuating the input signal. His
design is the basis for the spectrum analysers discussed in this report. Heskamp
and Slump [6] compared three designs for a correlation receiver for the purpose
of energy detection for the purpose of cr and concluded that only the two
front-end design was promising. An implementation of an xcsa was published
by Oude Alink et al. [7, 8]. This design includes the front-end attenuation.
Measurements showed that this design was more linear than a receiver with
a single path, while reducing the noise figure within an acceptable amount of
time. In [9] the uncertainty of the noise level in a cross-correlation receiver was
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analysed, compared to an autocorrelation receiver.
For an xcsa the signal needs to be directed to both paths of the receiver.

The splitter that is required to do so, is a weak point in the design, because
system noise can travel trough the splitter to the other path. Therefore, it
was suggested to replace the splitter by a second antenna. Domizioli et al.
[10] presented a mathematical description of the correlation of noise in a two-
antenna xcsa, in which the antenna coupling is assumed to be known as an
impedance matrix. Results are shown in case of parallel dipole antennas at the
frequency for which the total length of the antennas equals a half wavelength.
Smeenge [11], Oude Alink et al. [12] addressed the problem of having two
antennas that receive an unequal signal. Non-ideal effects like multipath, fading
and the Doppler effect were explored using a far-field antenna model.

1.3 Goal of this work

An xcsa with two antennas is supposed to lower the system noise compared
to an xcsa with only one antenna. Whether that is actually the case, is
determined by the amount of system noise that is transmitted via the antennas
to the other receiver path, compared to the amount of noise that is passed by
a splitter. Furthermore, two antennas are not at the same spot, so they receive
signals slightly different. This has a negative influence on the correlation of
signals. If the deterioration of the signal reception is bigger than the reduction
of the noise, using two antennas will not be beneficial.

The transmission of system noise via the antennas is determined by the
(near-field) coupling of the antennas. This depends on the type, size and po-
sition of the antennas, which also effects the reception of signals. Reducing
noise coupling and maintaining signal reception are conflicting requirements in
designing the antennas. To make a good design, one needs to model the effect
of the design parameters on these requirements. This leads to the following
research question:

“What is the effect of antenna coupling on spectrum sensing for
cognitive radio using a cross-correlation spectrum analyser with two
antennas?”

To answer this question, we use the following sub-questions:

• How can we model antenna coupling?

• How is the propagation of system noise to the output effected by antenna
coupling in a two-antenna xcsa?

• How is the measurement of signals effected by using two antennas instead
of one?

• Which antenna designs are promising for a two-antenna xcsa for cogni-
tive radio?
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1.4 Outline

In the next chapter, we will give an overview of the spectrum analyser designs
that will be compared. We will start with a description of the evolution of an
autocorrelation spectrum analyser via a one-antenna xcsa to a two-antenna
xcsa and briefly discuss the advantages and disadvantages of these systems.
We continue with the definition of signal and noise we will use throughout this
report and end with the assumptions we will use while modelling the systems.

Chapter 3 will be about modelling the coupling between two or more dipole
antennas in a parallel, echelon or collinear position. Starting with a deriva-
tion of the impedance of a dipole antenna and the mutual impedance between
two dipole antennas, we will describe the antenna coupling as an impedance
matrix. It will be shown how to calculate the transfer function in case we con-
nect the antennas to (Thévenin equivalent) sources. We will end this chapter
with a derivation of the optimal load impedances we should ideally connect to
(strongly coupled) dipole antennas.

In Chapter 4 we will derive equations that describe the propagation of
several system noise components to the output of a one-antenna and a two-
antenna xcsa. Parallel dipole antennas are assumed, but most of the equations
can be used for any linear time-invariant antenna configuration of which the
impedance matrix is known by calculation or by measurement. This chapter
ends with a series of plots that aim to show the effect of design parameters and
the unknown direction of a transmitter on measurement by both a two-antenna
xcsa and a similar one-antenna xcsa.

The mathematical background of cross-correlation can be found in Ap-
pendix A.





Chapter 2

System overview of a correlation
spectrum analyser

2.1 Principle of a correlation spectrum analyser

This section is meant to give a qualitative description of different kinds of
correlation sas: an outocorrelation sa, an xcsa with one antenna and an xcsa

with two antennas. This will allow us to compare these systems conceptually
without loosing track because of the mathematics. The terminology and general
mathematics of stochastic signals are found in Appendix A. The mathematical
description of both kinds of xcsas is found in the remainder of this report,
starting from the next chapter.

Autocorrelation spectrum analyser

The autocorrelation of a random signal is well known to reveal how the energy
of that signal is spread among different frequencies. [13]

To show the advantages of an xcsa, let us first have a look at a receiver
with an autocorrelation sa. A block diagram of such a receiver is shown in
figure 2.1. The signal from the antenna is often amplified first before passing
to the mixer to improve the signal strength. After mixing down with a local os-
cillator (lo), the resulting signal is further amplified. Next the signal is passed
through an analog-to-digital converter (adc) after which the discrete fourier
transform (dft) is taken. Taking the product of this complex-valued spectrum
and its complex conjugate, results in an estimation of the power spectral den-
sity (psd) of the signal. This can be seen as the discrete time equivalent for the
cross-spectrum estimation shown in Equation A.36 on Page 85 in Appendix A.
By choosing a larger number of samples in the dft-window the frequency res-
olution of this estimation is enlarged. The variance of this estimation can be
reduced by repeating this process several times for the required number of
samples and by taking the average of all obtained spectra.[5, 7, 11]

The accuracy of this kind of system is severely limited by the internal noise
of the receiver. Noise that is generated between the antenna and the dft

adds up to the antenna signal and cannot be distinguished from the resulting
power spectrum. In most cases the psd of the system noise is not exactly
known. When detecting energy in a certain band at the system output, there
is uncertainty whether a high amount of system noise, or a signal with a small

7
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1
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Figure 2.1: Block diagram of an autocorrelation receiver

amount of system noise is observed. In this way signals that appear weaker
than the uncertainty of the system noise cannot be reliably detected. The
straightforward way of improving this system is trying to reduce the amount
of noise generated by the system, but that is limited by other performance
parameters, as noise reduction is generally a trade-off with parameters like
linearity, measurement time or power consumption. An approach to improve
the receiver even further is discussed in the next subsection.

Cross correlation spectrum analyser with one antenna

A cross correlation receiver uses an xcsa. This system makes use of the fact
that noise from different sources is usually not correlated. Figure 2.2 shows this
system doubles some components and adds a splitter. The pre-amplifiers are
in this design replaced by attenuators, which will be explained in a moment.

In both the upper and the lower branch of the system, noise is generated.
If all these components are equal and the system is thus symmetric, the noise
process in the upper and lower branch will even have the same probability den-
sity function (pdf). However, because the noise comes from different sources,
their cross correlation can be expected to be zero. When there is no transfer of
noise between the branches before the correlator circuit, the noise contribution
is expected to be zero in the cross-psd. Nevertheless, noise that is generated
between the antenna and the splitter has a non-zero contribution to the psd.
Furthermore both the splitters and the attenuators need to be passive electrical
components to maintain the systems linearity. As a drawback, noise can travel
from the upper attenuator via the passive splitter to the lower branch and vice
versa. This will result in some noise contribution of the attenuators to the
cross-psd. However, when using sufficient time to estimate the cross-psd, the
resulting system noise contribution to the output can be made smaller than
the system noise of an autocorrelation receiver.

Part of the improved signal-to-noise-ratio (snr) can be traded off against
an increase in the systems linearity. This was done by Oude Alink et al. [7] by
replacing the amplifiers between the antenna and the mixers by passive atten-
uators. In this way a smaller range of the mixers is used, making the mixers
more linear and reducing higher harmonics. Higher harmonics and intermodu-
lation products from strong signals can cause false positives of occupied bands
that may or may not actually be occupied.

Cross correlation spectrum analyser with two antennas

As the splitter was the main cause for noise coupling between the branches of
the cross correlation receiver with one antenna, its noise performance can be
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Figure 2.2: Block diagram of a cross correlation receiver with one antenna
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Figure 2.3: Block diagram of a cross correlation receiver with two antennas

further improved by removing this splitter.[7] To still get the signal to both
branches, a second antenna needs to be added. A block diagram of this is
shown in figure 2.3. This can be advantageous as far as the system noise is
concerned, because the amount of noise that is passed between the branches
can be made smaller compared to the amount passed by the splitter. This
requires reducing the coupling between the antennas, suggesting to put them
apart as far as possible. Doing that will unfortunately have a drawback in the
detection of a signal. Because the signal that is passed to both branches is no
longer exactly the same, depending on the direction from which the signal to
be detected is coming, the estimated signal psd will alter. This will be shown
in Chapter 4.

2.2 Definitions of signals and noise in energy detection
for cognitive radio

Definition of a signal

According to [14], a signal is “an impulse or a fluctuating electric quantity,
such as voltage, current, or electric field strength, whose variations represent
coded information” The information to be revealed for a cr by means of energy
detection, is how much power is present at different frequency bands of the em
spectrum.
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signal a fluctuating electric quantity whose variations represent the amount
of power that is present at different frequency bands of the em spectrum.

Referring to Table 1.1 on Page 2 there are three types of transmission we
would like to detect using energy detection. These are the cases on the left
hand side of the table, in which some other transmitter is active.

• Transmission of information to which a receiver is listening: communica-
tion in progress,

• Transmission of information to which no receiver is listening, like unat-
tended broadcast,

• Unintentional transmission: emi.

All of these cases can cause a certain amount of power to be present in certain
bands of the em spectrum. Consequently the amount of power being transmit-
ted in any of these cases is a quantity whose variations represent information
that is to be revealed by means of energy detection: a signal.

One could argue that the third case should be referred to as noise, because
the energy that is being transmitted was not intended to deliver information
to a receiver. That would indeed be the case if we were discussing a receiver
for communication purposes, that is meant to receive information that was
deliberately coded and sent to be received. In such a system, a signal would be
characterised by the fact that it is a fluctuating electric field strength to which
the receiver is listening. In that case in Table 1.1 the top row shows examples
of signals, while the bottom row shows examples of noise.

In this report emi will be considered a signal, because just like the other
cases, in the case of energy detection, the presence of emi can be a contraindi-
cation for a reusable channel. Whether there is a receiver listening to it or
whether the power was even radiated with the intention for it to be received
is an insignificant detail with respect to the subject at hand, as the difference
cannot be detected with energy detection.

As discussed in Section 1.1, a cr will need other sources of information if
it has to meet certain local regulations, like ensuring to avoid using certain
bands, even if little or no power is present. As these other sources are meant
to reveal other information, a discussion of these other sources would require
an other definition of a signal.

Definition of noise

According to [14], noise is “a disturbance, especially a random and persistent
disturbance, that obscures or reduces the clarity of a signal”. As all power in
some band of the em spectrum is a signal by definition, any disturbance of the
signal must not be in the em spectrum. Consequently no noise is received. The
only remaining disturbances come from within the energy detector.

noise a disturbance originating from the energy detector itself that obscures
or reduces the clarity of the signal

Examples of noise sources are thermal noise, higher harmonics and quantization
noise.
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2.3 Assumptions to accommodate analysis

Correlator

As only the passive front ends differ between the one-antenna receiver and the
two-antenna receiver, we are only interested in the influence of this part of the
systems with respect to the output of the systems. The purpose of the rest of
the systems is estimation of the cross-psd, so it makes sense to model these
parts with their idealized relevant behaviour: as a black box that outputs the
cross-psd of the two signals that enter it, with any noise they already contain. If
any noise is added within this black-boxed part of the system, it will assumably
add that noise both in the one-antenna and two-antenna system, so it has no
effect on the comparison of both systems.

This way of thinking can be described as a “preservation of correlated sys-
tem noise”, in which the amount of correlated noise that enters the correlator
cannot diminish with respect to the signal towards the output of the system.
This is not generally true, as will be mathematically shown in Chapter 4. For
the time being the reasoning is as described in the following two paragraphs.

Both signals that enter the mixers are a linear combination of the signal and
noise from one or more sources. This means that for each of these sources there
are two “inverse” linear operations that add the noise from that source up to
zero in one of the two branches of the system. In that case the resulting cross
correlation of that noise component will be zero as well. That same inverse
linear operation will not cause that cancellation for the signal component as
well, because it will enter the mixer in a different linear combination than
the noise. From this we can see that it is possible to have a linear operation
that cancels noise while leaving some part of the signal. This means there is
no “preservation of correlated system noise”, even if the parts of the system
behind the mixers are idealized as some linear operation.

In practice there might be some coupling between the branches of the sys-
tem, but of course it is highly improbable that this causes complete cancellation
of a noise component. However, the fact that it is possible that the snr, the
ratio between the amount of signal and the amount of noise in the cross correla-
tion between the two branches, is increased by cross talk between the branches,
shows some additional assumption is required to allow a part of the system to
be modelled as an ideal cross correlator black box. To be able to say anything
about the influence of the coupling at the passive front end with respect to
the correlated noise at the output, we must either know what coupling takes
place between both paths behind the mixer inputs, or we must assume there
is no coupling at all in this part of the system. The latter assumption will be
used. We have to keep in mind that in case some receiver design actually does
have a significant amount of coupling between both signal paths in the mixers,
the amplifiers or the adcs, the noise performance of one receiver type might
actually get better while the performance of the other receiver type gets worse.

Antennas

To facilitate a theoretical analysis of the receivers, all antennas are assumed
to be parallel dipole antennas, because the electric properties of these anten-
nas can be derived mathematically reasonably well. In Chapter 3 the dipole
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antenna behaviour will be described as an impedance matrix Z0. When the
system needs to be modelled with other antennas, this impedance matrix can
be replaced by another one that describes these antennas. This matrix can
either be derived mathematically or be measured. The only limitations are
that the antenna setup can be regarded as a linear time-invariant system and
that the antennas by itself are passive.

Signal source

Although many signal sources can be present at the same time, only one will be
used in the analysis. When source antennas are sufficiently far apart, they will
not influence the signal an other source is sending. In that case the presence of
multiple source antennas can be seen as a superposition of multiple cases with
one source antenna and the reception of these cases can be added to model
the multiple source case. This simplification greatly reduces the mathematical
complexity, because the matrices that are used in the equations are not bigger
than 3× 3, describing the coupling between one source antenna and one or two
antennas in the receiver.

2.4 Receiver circuit

Under the assumption that there is no coupling between the signal paths behind
the mixer inputs, the required performance measures of both receiver types can
be calculated by only taking into account the signals that enter the mixers.
Figures 2.4 and 2.5 show only the parts of the circuit prior to the mixers.
The systems are assumed to be balanced, but not necessarily equal in both
branches.

The source is modelled as a voltage source UΞ with an internal impedance
ZΞ which is connected to a dipole antenna.

The n-port (where n equals the number of receiving antennas plus one send-
ing antenna) models the coupling between the antennas. Its parameters
depend on the length of the dipole antennas and their mutual position.
This will be elaborated in Chapter 3.

The splitter of the one-antenna receiver is modelled as a star-type resistive
splitter, consisting of the balanced noisy resistors Rs and a part of RaΨ

and RaO , that are also part of the attenuator.

The attenuator is modelled as an H-type (also known as balanced T-type)
resistive attenuator, consisting of all noisy resistors with indices a, b and c.

The load is formed by a resistor that models the input impedance of the mix-
ers. As this load models the mixer input rather than an actual resistor,
the load impedances are not modelled with thermal noise, but with a
noise process of which the psd is unknown.
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Figure 2.4: Circuit drawing of the two-antenna receiver
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Figure 2.5: Circuit drawing of the one-antenna receiver





Chapter 3

Antenna coupling

3.1 Impedance of a dipole antenna

The description of the behaviour of an antenna starts with a calculation of its
impedance. The method used in this section to calculate the impedance of a
dipole antenna is known as the induced electromagnetic force (emf) method.
For this method the ohmic losses in the antenna are neglected and the current
in the antenna is simplified to a perfect cylindrical surface current. Because
of this, currents are considered to be flowing only in the z-direction. As a
consequence only the z-component of the electric field is of interest. This
reduces the computational complexity at the cost of less accuracy in the result.1

When the current is only flowing in the longitudinal direction, either side
of the dipole antenna can be modelled like a standing wave tube or a string
that is attached on one end. At the outer ends of the antenna the current can
go no further, so it must be zero. This forces a so called node at these ends
in the standing wave tube model, as shown in Figure 3.1. When being driven
by a signal consisting of one frequency, the standing wave takes the shape of
a sine along both sides of the antenna, the wavelength of which is determined
by the wave number k = 2πfc−1 [15]:

Iz(z) = Im · sin (k(!− |z|)) (3.1)

1These inaccuracies include the effect of non-homogeneous currents at the connections
in relatively thick antennas.

!

z

Iz

Im

Iz(0)

Figure 3.1: Sinusoidal current dis-
tribution in a dipole antenna
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Figure 3.2: Vectors to fieldpoints
around a dipole antenna
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In this equation Iz is the phasor of the current in the z-direction and Im is
the maximum amplitude of a standing current wave. If we idealize this current
as a uniform sheet current along the perimeter of the antenna, the current
distribution is approximated by:

Jz =

{
Im
2πa sin (k(!− |z|)) · δ(s− a) |z| ≤ !

0 |z| > !
(3.2)

In this formula δ is the Dirac delta function, a is the antenna radius, s is the
radial coordinate in a cylindrical coordinate system and Jz is the phasor of the
z-component of the current distribution. The z-component of the electric field
of a finite-length electric dipole, assuming a sinusoidal current distribution as
shown in Figure 3.1, is given in [15, p. 408]:

Ez = −j
ηIm
4π

(
exp (−jkR1)

R1
+

exp (−jkR2)

R2
− 2 cos (k!)

exp (−jkr)

r

)

(3.3)

The parameter η is the impedance of free space (≈ 120πΩ). The parameters
R1, R2 and r are the lengths of the vectors from the dipole endpoints and
midpoint respectively to some field-point. Referring to Figure 3.2:

r =
√

s2 + z2 (3.4)

R1 !

√

s2 + (z − !)2 (3.5)

R2 !

√

s2 + (z + !)2 (3.6)

In these formulas s and z refer to the cylindrical coordinates with respect to
the dipole. The antenna impedance at its terminals (z = 0) is then given by
[15–17]:

Z0 !
U(0)

Iz(0)
= − 1

I2z (0)

∫∫∫

all space

Ez · Jz dV = − 1

I2z (0)

∫ !

−!
Ez

∣
∣
∣
∣
s=a

· Iz dz

=
I2m

I2z (0)

!∫

−!

jη

4π

(

e−jkR1

R1
+

e−jkR2

R2
− 2 cos (k!)

e−jkr

r

)∣
∣
∣
∣
∣
s=a

· sin (k(!− |z|)) dz

(3.7)

The antenna impedance can not only be modelled as an impedance at the ter-
minals, but also as an impedance at some distance from the antenna terminals.
As long as the same amount of power is radiated for every possible input cur-
rent, both ways of modelling will be equivalent. If we choose that distance
such that the location at which the impedance is modelled coincides with a
maximum of the standing current wave (known as an anti-node), we obtain:

Pradiated = I2z (0) · Z0 = I2m · Zm =
I2z (0)

sin2(k!)
· Z0 (3.8)

⇒ Zm ! sin2(k!) · Z0 (3.9)
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The location of the antenna impedance related to the maximum current am-
plitude Zm depends on k and thus on the frequency. When the antenna is
smaller than a half wavelength, there is not even an anti-node in the antenna,
so the physical interpretation of Zm vanishes, but it can still be calculated,
using Equation 3.9 as a definition. The importance of using Zm instead of
Z0 is of mathematical nature, which will become clear in Section 3.3. Using
Equation 3.8 in Equation 3.7 yields:

4π

η
Zm =

4πI2z (0)

ηI2m
Z0

=

!∫

−!

j sin (k(!− |z|))
(

e−jkR1

R1
+

e−jkR2

R2
− 2 cos (k!)

e−jkr

r

)∣
∣
∣
∣
∣
s=a

dz

(3.10)

The derivation of the solution of this integral is shown in Appendix B on Page 87.
This solution cannot be expressed in closed form. Instead, the solution can be
given in terms of the E1-function:

E1(z) !

∫ ∞

z

exp(−w)

w
dw &(z) ≥ 0 (3.11)

E′
1(a, x) !E1

(

jk(
√

a2 + x2 + x)
)

(3.12)

4π

η
Zm =− exp(2jk!) · E′

1(a, 2!) + (2 · exp(2jk!) + 2) · E′
1(a, !)

+ (− exp(2jk!)− exp(−2jk!)− 4) · E′
1(a, 0)

+ (2 · exp(−2jk!) + 2) · E′
1(a,−!)− exp(−2jk!) · E′

1(a,−2!)

=2E′
1(a, !)− 4E′

1(a, 0) + 2E′
1(a,−!) + cos (2k!)

·
[

− E′
1(a, 2!) + 2E′

1(a, !)− 2E′
1(a, 0) + 2E′

1(a,−!)− E′
1(a,−2!)

]

+ j sin (2k!) ·
[

− E′
1(a, 2!) + 2E′

1(a, !)− 2E′
1(a,−!) + E′

1(a,−2!)
]

(3.13)

As explained in Appendix B, Equation 3.13 can cause large inaccuracies when
used in a numerical evaluation. The following approximation can be used when
a ( !, which is often the case:

4π

η
Zm ≈2E1(2jk!) + 2γ + jπ + 2 ln (2k!)

+ cos (2k!)

[

−E1(4jk!) + 2E1(2jk!) + γ +
jπ

2
+ ln (k!)

]

+ j sin (2k!)

[

−E1(4jk!) + 2E1(2jk!) + γ +
jπ

2
+ ln

(
ka2

!

)]

(3.14)

In these equations γ is the Euler-Mascheroni constant (0.577. . . ). The real and



18 CHAPTER 3. ANTENNA COUPLING

imaginary part of the impedance related to the current maxima yield:

4π

η
&{Zm} =2Ci(2k!) + 2γ + 2 ln (2k!)

+ cos (2k!) [−Ci(4k!) + 2Ci(2k!) + γ + ln (k!)]

+ sin (2k!) [ Si(4k!)− 2 Si(2k!)] (3.15)

4π

η
){Zm} =2Si(2k!) + cos (2k!) [− Si(4k!) + 2 Si(2k!)]

+ sin (2k!)

[

−Ci(4k!) + 2Ci(2k!)− Ci

(
ka2

!

)]

(3.16)

with:

Si(x) !

∫ x

0

sin (w)

w
dw (3.17)

Ci(x) !

∫ ∞

x

cos (w)

w
dw (3.18)

Equations 3.15 and 3.16 are also found in [15], but in that book an alternative
definition of the Ci-function is used and the antenna length parameter equals
2!. Using Equation 3.9 the antenna impedance at the terminals Z0 can be
found from the antenna impedance related to the maximum current amplitude
Zm. As these impedances appear to depend mostly on the value 2k!, they
can be plotted as a function of this value. This value becomes more easy to
interpret after dividing by 2π, after which it can be interpreted as a normalized
frequency. The only remaining independent parameter is the antenna radius a.
The real and imaginary part and the magnitude of the impedances are shown in
Figure 3.3 for a = !/100. The corresponding phase plot is shown in Figure 3.4.
The real part of the antenna impedance is positive at every frequency, because
it is a passive device.

3.2 Mutual impedance of two dipole antennas in echelon

When two dipole antennas are placed next to each other, a current in one
antenna will cause an electric field around the other antenna, which causes an
open terminal voltage across the terminals of the other antenna. The (complex)
ratio of the two is defined as the mutual impedance as shown in Equation 3.19.
From the Rayleigh-Carson reciprocity theorem, the relation in Equation 3.20
can be derived, provided that the medium between the two antennas is linear,
passive and isotropic [15, 16].

Z0,12 ! − U1(0)

Iz2(rz2)

∣
∣
∣
∣
∣
Iz1(0)=0

(3.19)

Z0,12(ω) ≡ Z0,21(ω) ! −U2(rz2)

Iz1(0)

∣
∣
∣
∣
∣
Iz2(rz2)=0

(3.20)

The value Iz2(rz2) is the current at the terminal pair of the second dipole
antenna, which is not (necessarily) located at z=0. The mutual impedance
describes the electric coupling between two ports. In this case these ports
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are the terminal pairs of two dipole antennas. Together with the impedance
of both antennas, the electric properties of a linear time-invariant two-port is
fully described. This will be shown in Section 3.3. In the current section, the
mutual impedance of two dipole antennas that are positioned in echelon (in
parallel at any distance, as shown in Figure 3.5) will be modelled. The induced
emf method can be used to calculate their mutual impedance. The electric
field of the first dipole antenna is just as in Equation 3.3 and the current in
the second dipole antenna can be modelled as a line current parallel to the first
dipole antenna. This is a current with an infinitesimal cross section area:

Ez1 = −j
ηIm1

4π

(
exp (−jkR1)

R1
+

exp (−jkR2)

R2
− 2 cos (k!)

exp (−jkr)

r

)

(3.21)

Iz2(z) = Im2 · sin (k(!2 − |z − rz|)) (3.22)

Jz2 =

{

Im2 sin (k(!2 − |z − rz |)) · δ(s− rs) · δ(ϕ− rϕ) |z − rz | ≤ !2
0 |z − rz | > !2

(3.23)

The variables s, z and ϕ refer to the cylindrical coordinates with respect to
the first dipole antenna. The variables rs, rz and rϕ refer to the coordinates of
the center of the second dipole antenna, as shown in Figure 3.5. The mutual
impedance between the antennas is then given by [15, 17, 18]:

Z0,12 !
U1(0)

Iz2(rz)
= − 1

Iz1(0)Iz2(rz)

∫∫∫

all space

Ez1 · Jz2 dV

= − 1

Iz1(0)Iz2(rz)

rz+!2∫

rz−!2

Ez1

∣
∣
∣
∣
s=rs

· Iz2 dz =
Im1Im2

Iz1(0)Iz2(rz)
. . .

·
rz+!2∫

rz−!2

jη

4π

(

e−jkR1

R1
+
e−jkR2

R2
−2 cos (k!1)

e−jkr

r

)∣
∣
∣
∣
∣
s=rs

·sin (k(!2 − |z − rz |)) dz

(3.24)

Noting that according to Equation 3.1 and Equation 3.22

Im1Im2

Iz1(0)Iz2(rz)
=

1

sin (k!1) sin (k!2)
(3.25)

it makes sense to define:

Zm12 ! sin(k!1) · sin(k!2) · Z0,12 =

rz+!2∫

rz−!2

jη

4π

(

e−jkR1

R1
+

e−jkR2

R2
− 2 cos (k!1)

e−jkr

r

)∣
∣
∣
∣
∣
s=rs

· sin (k(!2 − |z − rz |)) dz

(3.26)

This integral can be solved by following the same procedure as is shown
for the impedance in Appendix B, but because of the two extra parameters
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the equations in both the derivation and the solution will become even longer.
In [15] a solution is given that is only valid for dipole antennas for which both
!1 and !2 are odd multiples of λ/2. Because we are interested in the wide-band
behaviour of the antenna system, these equations do not suffice. A more general
equation is given in [18]. A more compact and computationally efficient form of
the result of [18] is given below. The real and imaginary part are merged into
one complex equation by using the “mapping” between the real and imaginary
part provided by King [18] and noting its relation to the exponential integral.
Then the geometric factors can be merged into exponential factors, after writing
products of geometric factors as a sum. The length of the equation is further
reduced by sorting the addition by equal exponential integrals. As a result, the
32 trigonometric factors of King [18] per required Zm12-value are replaced by
four, while the 96 trigonometric integrals of King [18] are replaced by eighteen
complex exponential integrals.

d !





1 1 1 1 1 1 1 1 1
−1 −1 −1 0 0 0 1 1 1
−1 0 1 −1 0 1 −1 0 1





T

·





rz
!1
!2



 (3.27)

a+n ! E1

(

jk

(√

rs2 + dn
2 + dn

))

∀n ∈ {1, 2, 3, . . .9} (3.28)

a−n ! E1

(

jk

(√

rs2 + dn
2 − dn

))

∀n ∈ {1, 2, 3, . . .9} (3.29)

b !







exp (jkd1)
exp (jkd3)
exp (jkd7)
exp (jkd9)







T

·







−1 1 0 1 −1 0 0 0 0
0 1 −1 0 −1 1 0 0 0
0 0 0 1 −1 0 −1 1 0
0 0 0 0 −1 1 0 1 −1







(3.30)

Zm12 =
η

8π

(

a+ · b+ a− · b
)

(3.31)

In the latter equation a line above a symbol indicates the (element by element)
complex conjugate. From this, the mutual impedance related to the antenna
terminals can be found using Equation 3.26. The mutual impedance according
to this model appears to depend on the lengths of both antennas and their
position with respect to each other. In Figure 3.6 some parallel antennas of
equal length are shown. The magnitude of the mutual impedance between the
black antenna and either of the coloured antennas is shown in Figure 3.8 and
its phase angle in Figure 3.9. In Figure 3.7 some antennas of equal length
are shown at a constant distance in different directions from each other. The
corresponding mutual impedances are shown in Figure 3.10 and in Figure 3.11.
In Figure 3.12 and Figure 3.13 the mutual impedances of two parallel antennas
of different lengths are shown.
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!1/2 !1 3!1/2 2!1 rs2

!1 !2

Figure 3.6: Two dipole antennas of equal length in parallel with rz = 0 at
different distances

2.5!1
!1 !2

Figure 3.7: Two dipole antennas of equal length in echelon with a distance
between its centers of 2.5! at different angles
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Figure 3.12: Mutual impedance of two dipole antennas of different length in
parallel with rs2 = !1 and rz2 = 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−π

−π/2

0

π/2

π

Normalized frequency k!1
π = 2f!1

c = 2!1
λ

P
h
as
e
an

gl
e
(R

A
D
)

!2 = !1
!2 = 5

6
!1

!2 = 2
3
!1

!2 = 1
2
!1

Figure 3.13: Phase angle of the mutual impedance of two dipole antennas of
different length in parallel with rs2 = !1 and rz2 = 0



26 CHAPTER 3. ANTENNA COUPLING

3.3 Matrix description of multiple dipole antennas in
echelon

The electric behaviour at the ports of a linear time invariant n-port that con-
sists of n dipole antennas in echelon, can be completely described by the n
antenna impedances and the n(n− 1)/2 distinct mutual impedances. This can
be compactly written in matrix notation. We define:

u !








U1(0)
U2(rz2)

...
Un(rzn)








i !








Iz1(0)
Iz2(rz2)

...
Izn(rzn)








Z0 !








Z0,11 Z0,12 . . . Z0,1n

Z0,21 Z0,22 . . . Z0,2n
...

...
. . .

...
Z0,n1 Z0,n2 . . . Z0,nn








The parameters rz refer to the location of the antenna terminals. This para-
meter was necessary to derive the mutual impedances. Normally in an electric
circuit model we are not interested in the location of the components, so this
parameter can be omitted. In the impedance matrix the diagonal elements
Z0,mm are the self impedances of the antennas, while the non-diagonal elements
are mutual impedances between pairs of antennas. This matrix is symmetric,
which can be concluded from Equation 3.20. According to the definitions of
the (mutual) antenna impedance in Equation 3.7 and Equation 3.24:

u = Z0 · i (3.32)

We further define:

S !








sin (k!1) 0 · · · 0
0 sin (k!2) 0
...

. . .
...

0 0 · · · sin (k!n)








(3.33)

Zm !








Zm,11 Zm,12 . . . Zm,1n

Zm,21 Zm,22 . . . Zm,2n
...

...
. . .

...
Zm,n1 Zm,n2 . . . Zm,nn








(3.34)

Then the following relation holds, as can be checked using Equation 3.9 and
Equation 3.26.

Z0 = S−1 · Zm · S−1 (3.35)

When multiple dipole antennas are placed next to each other, a signal can
be sent from any antenna to the others. This voltage to voltage transmission
can be described as a transfer matrix H. In this case the ports of the n-port are
assumed to be loaded with some load impedance Zl, as shown in Figure 3.14.
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Figure 3.14: An n-port with load impedances

In matrix notation:

u− e = H · e (3.36)

Zl !








Zl1 0 · · · 0
0 Zl2 0
...

. . .
...

0 0 · · · Zln








(3.37)

u− e = −Zl · i

= −Zl · (Z0 + Zl)
−1 · e

= −Zl ·
(

S−1ZmS−1 + Zl

)−1 · e

= −Zl ·
(

S−1 (Zm + SZlS)S
−1
)−1 · e

= −Zl · S (Zm + SZlS)
−1

S · e (3.38)

⇒ H = −ZlS (Zm + SZlS)
−1

S (3.39)

In case of a receiver with only one antenna, receiving from only one other
antenna, the transmission matrix can be calculated from Equation 3.39 using
2× 2 matrices. This results in:

H=

[

−Zl1 sin
2(k!1)

(

Zm22+Zl2 sin
2(k!2)

)

Zm12Zl1 sin(k!1) sin(k!2)
Zm21Zl2 sin(k!1) sin(k!2) −Zl2 sin

2(k!2) ·
(

Zm11 + Zl1 sin
2(k!1)

)

]

(Zm11 + Zl1 sin
2(k!1))(Zm22+Zl2 sin

2(k!2))− Zm12Zm21

(3.40)

In case Zm12 = Zm21 is very small compared to the antenna and load
impedances, which is the case if the antennas are far apart, it is seen that:

H11 ≈ −Zl1 sin
2(k!1)

Zm11 + Zl1 sin
2(k!1)

=
−Zl1

Z0,11 + Zl1
(3.41)

This is just a voltage divider of the load impedance and the antenna impedance,
as could be expected.
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Zm

Z0 = S−1ZmS−1

Z0 + Zl = S−1ZmS−1 + Zl
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Figure 3.15: Graphical interpretation of Equation 3.38
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In Equation 3.41 we see that all occurrences of the load impedances Zln

appear as a multiplication with sin (k!n), whereas the elements of the matrix
Zm, where these sine-functions came from, appear solo. To show why this is the
case, Figure 3.15 shows two diagrams of the three-antenna case. In the upper
diagram the straightforward calculation of H is shown. Suppose we want to
calculate H31, there are multiple contributing signal paths. The two shortest
paths are shown: directly and via a reflection at antenna 2. This reflection
depends on the load impedance of antenna 2, Zl2. Suppose furthermore that
antenna 2 has a different length than the other two antennas. If we try to
calculate H13 at a frequency for which (k!2) is a multiple of π, such that
sin (k!2) = 0, we will find that Z022 → ∞, according to Equation 3.9 on

Page 16. As a consequence, if we try to calculate
(

S−1ZmS−1 + Zl

)−1
, we will

get a singularity. That is unnecessary, because all the condition “sin (k!2) = 0”
says, is that according to Equation 3.1 on Page 15, there is no current flowing
at the terminals of antenna 2, which should not prohibit the calculation of
the transfer H13 between antenna 1 and antenna 3. In the lower diagram of
Figure 3.15 Equation 3.39 is illustrated. The load impedances are transferred
to the “reference plain” of Zm, whereas in the upper diagram the antenna
impedance Zm was transferred to the “reference plain” of Z0. If we now try to
calculate H13 in case sin (k!2) = 0, we find that the virtual load impedance of
antenna 2, Zl2 sin (k!2) is zero. This causes no singularity in the calculation of
H13. Because of the use of these virtual load impedances, the load impedances
Zln appear as a multiplication with sin (k!n) in Equation 3.41. Hereby it is also
shown why using Zm in calculations is more favourable than Z0: it prevents
unnecessary singularities in the results of these calculations.

The transfer functions between different antennas show that although the
mutual impedances between two antennas are generally equal (Zm12 = Zm21)
for any antenna positioning and size, the corresponding transfer functions are
only equal if and only if the load impedances are equal:

Zl1 ≡ Zl2 ⇐⇒ H12 ≡ H12 (3.42)

Some examples of transfer functions are shown in graphs. In Figure 3.16 the
transfer function of two dipole antennas of equal length with aligned axes is
shown where the load impedances are altered. The phase plot of this transfer
function is shown in Figure 3.17. It can be seen that a higher load impedance
yields wider lobes in the magnitude of the transfer function and a less steep
phase curve. In Figure 3.16 the magnitude transfer function between two par-
allel antennas of equal length with a quite large range of distances is shown,
where both have a 50Ω load impedance. It is seen that a ten times bigger
distance yields about 20 dB of attenuation. As the energy at a ten times larger
distance spreads over a 100 times larger surface, the attenuation in decibels
yields 10 log(1/100) = −20dB. However, at short distances this appears not to
be valid: The shape of the curve is less regular. This shows it is difficult to
show representative graphs about the near field antenna coupling, as the curve
shapes vary greatly within a short distance. The phase plot corresponding to
this magnitude plot is not shown, because this plot becomes to steep to read
at the larger distances.
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Figure 3.18: Magnitude of the transfer function of two parallel dipole antennas
of equal length at different distances, with a1 = a2 = !1/100, Zl1 = Zl2 = 50Ω
and rz2 = 0

3.4 Optimal load impedance of coupled antennas

By matching the input impedances of the receiver circuit to the antenna, the
transfer of signals between the antenna and the circuit can be optimized. There
are two kinds of impedance matching: Choosing the input impedance equal to
the antenna impedance (Zl=Z0) yields no reflections at the connection between
the antenna and the circuit. Choosing the input impedance equal to the com-
plex conjugate of the antenna impedance (Zl = Z0) yields a maximum power
transfer from the antenna to the circuit.

When two dipole antennas are put close to each other, their radiation im-
pedance is altered. Consequently both types of optimal matching impedances,
are altered as well. In this section these impedances are calculated. These
values will not be practically achievable, nor will they be accurate in practice
due to other objects surrounding the antennas, but it is meant to give a rough
idea of the influence of a close antenna spacing to the radiation impedance.

Reflection-free matching

In case of one dipole antenna, the optimal matching impedance to prevent
reflection equals the dipole impedance related to its terminals. In case of two
coupled dipole antennas, the optimal matching impedance for each antenna
equals the equivalent impedance at the antenna terminals. This depends on all
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Z0−
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+

e2

Zl2or

i2

+

u1

–

+
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–

Figure 3.19: Two-port with optimal load impedances

parameters of the respective impedance matrix as well as the load impedance
of the other dipole antenna. The optimal matching impedances for a reflection-
free connection are found as:







Zl1or =
u1
i1

∣
∣
∣
e2=0

Zl2or =
u2
i2

∣
∣
∣
e1=0

(3.43)

The corresponding circuit is shown in Figure 3.19. The calculation below is
valid in case both dipole antennas have their optimal load impedance. Applying
these optimal load impedances ensures that there are no reflections, but does
not say anything obout the mutual coupling.















[

u1

u2

]

e2=0

=

[

u1

−i2Zl2or

]

=

[

Z0,11 Z0,12

Z0,21 Z0,22

]

·
[

i1

i2

]

[

u1

u2

]

e1=0

=

[

−i1Zl1or

u2

]

=

[

Z0,11 Z0,12

Z0,21 Z0,22

]

·
[

i1

i2

] (3.44)

⇒















[

u1

0

]

=

[

Z0,11 Z0,12

Z0,21 Z0,22 + Zl2or

]

·
[

i1

i2

]

[

0

u2

]

=

[

Z0,11 + Zl1or Z0,12

Z0,21 Z0,22

]

·
[

i1

i2

] (3.45)

⇒















[

i1

i2

]

=

[

Z0,11 Z0,12

Z0,21 Z0,22 + Zl2or

]−1

·
[

u1

0

]

[

i1

i2

]

=

[

Z0,11 + Zl1or Z0,12

Z0,21 Z0,22

]−1

·
[

0

u2

] (3.46)
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Using Equation 3.43:

⇒

























Zl
−1
1or =





[

Z0,11 Z0,12

Z0,21 Z0,22 + Zl2or

]−1




11

=
Mor,11

∣

∣

∣

∣

∣

∣

∣

Z0,11 Z0,12

Z0,21 Z0,22 + Zl2or

∣

∣

∣

∣

∣

∣

∣

Zl
−1
2or =





[

Z0,11 + Zl1or Z0,12

Z0,21 Z0,22

]−1




22

=
Mor,22

∣

∣

∣

∣

∣

∣

∣

Z0,11 + Zl1or Z0,12

Z0,21 Z0,22

∣

∣

∣

∣

∣

∣

∣

(3.47)

Here, Mor is the minor matrix of (Z0 + Zlor).

⇒





















Zl1or =

∣

∣

∣

∣

∣

∣

∣

Z0,11 + Zl1or Z0,12

Z0,21 Z0,22 + Zl2or

∣

∣

∣

∣

∣

∣

∣

−Zl1or·Mor,11

Mor,11

Zl2or =

∣

∣

∣

∣

∣

∣

∣

Z0,11 + Zl1or Z0,12

Z0,21 Z0,22 + Zl2or

∣

∣

∣

∣

∣

∣

∣

−Zl2or·Mor,22

Mor,22

(3.48)

⇒



















Zl1or =

∣

∣

∣

∣

∣

∣

∣

Z0,11 + Zl1or Z0,12

Z0,21 Z0,22 + Zl2or

∣

∣

∣

∣

∣

∣

∣

2Mor,11

Zl2or =

∣

∣

∣

∣

∣

∣

∣

Z0,11 + Zl1or Z0,12

Z0,21 Z0,22 + Zl2or

∣

∣

∣

∣

∣

∣

∣

2Mor,22

(3.49)

The equations up until Equation 3.49 can be generalized for receivers with
three or more antennas, but the further derivation will be quite lengthy. In the
present case of two antennas we obtain:

⇒
{

2Zl1or(Z0,22 + Zl2or) = (Z0,11 + Zl1or)(Z0,22 + Zl2or)− Z0,12Z0,21

2Zl2or(Z0,11 + Zl1or) = (Z0,11 + Zl1or)(Z0,22 + Zl2or)− Z0,12Z0,21

(3.50)

⇒
{

Z0,12Z0,21 = Z0,11Z0,22 − Zl1orZl2or

Z0,11Zl1or = Z0,22Zl2or
(3.51)

⇒







Zl
2
1or = Z0

2
,11 − Z0,11

Z0,12Z0,21

Z0,22
= sin−4(k!1)

(

Zm
2
11 − Zm11

Zm12Zm21

Zm22

)

Zl
2
2or = Z0

2
,22 − Z0,22

Z0,12Z0,21

Z0,11
= sin−4(k!2)

(

Zm
2
22 − Zm22

Zm12Zm21

Zm11

)

(3.52)

As could be expected, the optimal matching impedance is about equal to the
antenna impedance, but with a correction that depends on the coupling with
the other antenna and the impedance of the other antenna.

Conjugate matching

In case of one dipole antenna, the matching impedance for optimal power trans-
fer equals the complex conjugate of the dipole impedance related to its termi-
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nals. In case of two coupled dipole antennas, the optimal matching impedance
for each antenna equals the complex conjugate of the equivalent impedance at
the antenna terminals. The optimal matching impedances for maximum power
transfer are found as:







Zl1op = u1
i1

∣
∣
∣
e2=0

Zl2op = u2
i2

∣
∣
∣
e1=0

(3.53)

The first part of the calculation is similar to the case of reflection-free
matching. Equation 3.54 can be derived just like Equation 3.47.

























Zl
−1
1op =





[

Z0,11 Z0,12

Z0,21 Z0,22 + Zl2op

]−1




11

=
Mop,11

∣

∣

∣

∣

∣

∣

∣

Z0,11 Z0,12

Z0,21 Z0,22 + Zl2op

∣

∣

∣

∣

∣

∣

∣

Zl
−1
2op =





[

Z0,11 + Zl1op Z0,12

Z0,21 Z0,22

]−1




22

=
Mop,22

∣

∣

∣

∣

∣

∣

∣

Z0,11 + Zl1op Z0,12

Z0,21 Z0,22

∣

∣

∣

∣

∣

∣

∣

(3.54)

Here, Mop is the minor matrix of
(

Z0 + Zlop

)

.

⇒



















Zl1op =

∣

∣

∣

∣

∣

∣

∣

Z0,11 + Zl1op Z0,12

Z0,21 Z0,22 + Zl2op

∣

∣

∣

∣

∣

∣

∣

−Zl1op·Mop,11

Mop,11

Zl2op =

∣

∣

∣

∣

∣

∣

∣

Z0,11 + Zl1op Z0,12

Z0,21 Z0,22 + Zl2op

∣

∣

∣

∣

∣

∣

∣

−Zl2or·Mop,22

Mop,22

(3.55)

⇒
{

(Zl1op + Zl1op)(Z0,22 + Zl2op) = (Z0,11 + Zl1op)(Z0,22 + Zl2op)− Z0,12Z0,21

(Zl2op + Zl2op)(Z0,11 + Zl1op) = (Z0,11 + Zl1op)(Z0,22 + Zl2op)− Z0,12Z0,21

(3.56)

⇒







Zl1op + Zl1op = Z0,11 + Zl1op − Z0,12Z0,21

Z0,22+Zl2op

Zl2op + Zl2op = Z0,22 + Zl2op − Z0,12Z0,21

Z0,11+Zl1op

(3.57)

⇒





















Zl1op − Z0,11 +
Z0,12Z0,21

2& {Z0,22}−
Z0,12Z0,21

Z0,11 + Zl1op

= 0

Zl2op − Z0,22 +
Z0,12Z0,21

2& {Z0,11}−
Z0,12Z0,21

Z0,22 + Zl2op

= 0

(3.58)

If we take the complex conjugate and multiply by (2& {Z0,22}(Z0,11+Zl1op)−
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Z0,12Z0,21) or (2& {Z0,11}(Z0,22+Zl2op)−Z0,12Z0,21) respectively, we obtain:

⇒




















2& {Z0,22}Zl
2
1op + 2& {Z0,22}Z0,11Zl1op − 2& {Z0,22}Z0,11Zl1op

−Z0,12Z0,21Zl1op + Z0,12Z0,21Zl1op + Z0,11Z0,12Z0,21

+Z0,11Z0,12Z0,21 − 2& {Z0,22}Z0,11Z0,11 = 0

2& {Z0,11}Zl
2
2op + 2& {Z0,11}Z0,22Zl2op − 2& {Z0,11}Z0,22Zl2op

−Z0,12Z0,21Zl2op + Z0,12Z0,21Zl2op + Z0,22Z0,12Z0,21

+Z0,22Z0,12Z0,21 − 2& {Z0,11}Z0,22Z0,22 = 0

(3.59)

Dividing by 2& {Z0,22} and 2& {Z0,11} respectively and collecting conjugate
pairs, yields:

⇒




























Zl
2
1op +

(

2) {Z0,11}−
) {Z0,12Z0,21}

& {Z0,22}

)

jZl1op

+

(

&
{

Z0,11Z0,12Z0,21

}

& {Z0,22}
− |Z0,11|2

)

= 0

Zl
2
2op +

(

2) {Z0,22}−
) {Z0,12Z0,21}

& {Z0,11}

)

jZl2op

+

(

&
{

Z0,22Z0,12Z0,21

}

& {Z0,11}
− |Z0,22|2

)

= 0

(3.60)

From these quadratic equations Zl1op and Zl2op can be solved. Using Equa-
tion 3.61 to Equation 3.64, the result can be written as shown in Equation 3.65
or as shown in Equation 3.66.

&
{

Z0,11Z0,12Z0,21

}

≡ & {Z0,11}& {Z0,12Z0,21}+ ) {Z0,11}) {Z0,12Z0,21}
(3.61)

&
{

Z0,22Z0,12Z0,21

}

≡ & {Z0,22}& {Z0,12Z0,21}+ ) {Z0,22}) {Z0,12Z0,21}
(3.62)

|Z0,11|2 − () {Z0,11})2 ≡ (& {Z0,11})2 (3.63)

|Z0,22|2 − () {Z0,22})2 ≡ (& {Z0,22})2 (3.64)
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⇒



































Zl1op =

√

(& {Z0,11})2 −
& {Z0,11}& {Z0,12Z0,21}

& {Z0,22}
−
(
) {Z0,12Z0,21}
2& {Z0,22}

)2

+

(
) {Z0,12Z0,21}
2& {Z0,22}

−) {Z0,11}
)

j

Zl2op =

√

(& {Z0,22})2 −
& {Z0,22}& {Z0,12Z0,21}

& {Z0,11}
−
(
) {Z0,12Z0,21}
2& {Z0,11}

)2

+

(
) {Z0,12Z0,21}
2& {Z0,11}

−) {Z0,22}
)

j

(3.65)

⇒





































Zl1op =

(√

(& {Zm11})2 −
& {Zm11}& {Zm12Zm21}

& {Zm22}
−
(
) {Zm12Zm21}
2& {Zm22}

)2

+

(
) {Zm12Zm21}
2& {Zm22}

−) {Zm11}
)

j

)

· sin−2(k!1)

Zl2op =

(√

(& {Zm22})2 −
& {Zm22}& {Zm12Zm21}

& {Zm11}
−
(
) {Zm12Zm21}
2& {Zm11}

)2

+

(
) {Zm12Zm21}
2& {Zm11}

−) {Zm22}
)

j

)

· sin−2(k!2)

(3.66)

We can verify that in case the mutual impedances are zero, which is nearly
the case if the antennas are far apart, the conjugate matching impedances are
equal to the complex conjugate of the antenna impedances:

lim
Zm,12→0

Zl1op = & {Z0,11}−) {Z0,11} = Z0,11 (3.67)

lim
Zm,12→0

Zl2op = & {Z0,22}−) {Z0,22} = Z0,22 (3.68)

Plots

In Figure 3.20 and Figure 3.21 the optimal impedance for reflection-free match-
ing is compared to the antenna impedance. In Figure 3.22 and Figure 3.23 the
optimal conjugate matched impedance is compared to the complex conjugate
of the antenna impedance. In both cases it is seen that only if the second
antenna is really close, the optimal matching impedances differ significantly
from the antenna impedance or its complex conjugate respectively. In Fig-
ure 3.24 the transfer between parallel antennas is compared in case they are
both connected to a 50Ω impedance, to their optimal matching impedance for
reflection-free matching or to their complex conjugate matched impedances. In
the both matching cases the zeros at integer values of the normalized frequency
disappear, but the transfers are still far from flat. As expected the complex
matched designs yield the highest transfer. Especially the lower frequencies in
the complex conjugate matching case stand out, as the transfer is larger then
0 dB. Looking at figure Figure 3.21 and Figure 3.23, we see that in this fre-
quency region the antenna impedance is nearly pure inductive, so its complex
conjugate match is nearly pure capacitive. Consequently, the antenna and the
complex conjugate matched load form a resonator. Resonance in the receiver
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Figure 3.20: Optimal load impedance for reflection-free matching of a dipole
antenna in parallel to a second dipole antenna of equal length, compared to
the impedance of the first antenna with a1 = a2 = !1/100 and rz2 = 0

is undesired, because it would increase the demands on the dynamic range of
the system and slow the system down with respect to time-variant signals. In
practice we will have to make sure that the amount of ohmic resistance in the
antenna load is sufficient in case the load is chosen partly capacitive.
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Figure 3.21: Phase angle of the optimal load impedance for reflection-free
matching of a dipole antenna in parallel to a second dipole antenna of equal
length, compared to the impedance of the first antenna with a1 = a2 = !1/100
and rz2 = 0
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Figure 3.22: Optimal conjugate matched load impedance of a dipole antenna in
parallel to a second dipole antenna of equal length, compared to the impedance
of the first antenna with a1 = a2 = !1/100 and rz2 = 0
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Figure 3.23: Phase angle of the optimal conjugate matched load impedance
of a dipole antenna in parallel to a second dipole antenna of equal length,
compared to the complex conjugate of the impedance of the first antenna with
a1 = a2 = !1/100 and rz2 = 0
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Figure 3.24: Transfer functions of parallel dipole antennas of equal length at
different distances, both connected to 50Ω or one of the optimal mathcing
impedances respectively, with rz2 = 0
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3.5 Summary

In this chapter, expressions were presented to calculate the impedance of a
dipole antenna in a reflection-free environment and for the mutual impedance
between two dipole antennas of unequal length in echelon position. These
parameters were used to describe the electric circuit behaviour of several dipole
antennas in a parallel, echelon or collinear position with respect to each other
in a reflection-free environment as an impedance matrix Z0. These results will
be used in the next chapter to model the propagation of signals and noise in a
receiver front-end, using circuit-theory.

Furthermore, an expression for the transfer matrix was derived in case the
antennas are all connected to some voltage source in series with a load impe-
dance. These transfer functions include all direct and indirect paths between
the dipole antennas. It was shown to be beneficial to express the dipole antenna
coupling with respect to the amplitude of the standing wave in the antenna
instead of the current amplitude at the antenna terminals to obtain the matrix
Zm. This is mainly because it reduces the amount of indeterminate values
when calculating transfer functions.

To show the effect of close antenna spacing on the apparent impedance of
the antennas, expressions were derived for the required load impedances to
prevent reflections at the antenna terminals or to maximize power transfer to
the load impedance, respectively. Although these load impedances cannot be
realised in practice for a broadband system, its values may serve as a reference
for designing a receiver front-end.





Chapter 4

Signal and noise propagation in a
cross correlation spectrum
analyser

4.1 Determining the propagation of signal and noise

Signals with additive noise

We will analyse the propagation of signals and noise through the receiver sys-
tems, by starting from a simple model and gradually working to a more more
precise description. The most idealised model of an xcsa is an ideal correlator.
The stochastic signals that enter the correlator will in general both comprise
of a signal component and a noise component. The most basic model of this is
shown in Figure 4.1. For simplicity we will analyse a situation with only one
external signal source and noise from internal noise sources first. As the noise
components are uncorrelated to the signal components, the cross spectrum will
consist of the cross spectrum of both signal components added to the cross
spectrum of both noise components according to Equation A.22 on Page 82, as

X1

X2

N1

N2

corr. SY1Y2

Y1

Y2

Figure 4.1: Block diagram of the cross correlation of signals with additive noise
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CORRELATION SPECTRUM ANALYSER

Ξ

N1

Nn

Υ1

Υ2

corr. SΥ1Υ2

Figure 4.2: Block diagram of the cross correlation of a linear combination of
signal and noise

indicated in Equation 4.3.

Y1 = X1 +N1 (4.1)

Y2 = X2 +N2 (4.2)

SY1Y2
= SX1X2

+ SX1N2
︸ ︷︷ ︸

0

+ SN1X2
︸ ︷︷ ︸

0

+ SN1N2
(4.3)

We can explain Equation 4.3 as: We want to measure SX1X2
using as xcsa,

but due to additive noise from within this system we measure SY1Y2
instead.

The signal to noise ratio at the output of this simplified model is thus given
by:

snr =
SX1X2

SN1N2

(4.4)

Signals and noise transferred from their sources

In all correlation receivers the signal components entering the correlator are
transferred from a transmitter, through the air, via some path through the
receiver to the correlator. The internal noise components are transferred from
some point within the receiver to the correlator. We will call the signal as trans-
mitted at the source Ξ and the noise components as created at their source Nn

with n replaced by a symbol referring to the specific noise source. The signals
that enter the ideal correlator will be referred to as Υ1 and Υ2. The model is
illustrated in Figure 4.2. If we assume these transfers to be linear, the signals
entering the correlator can be expressed as in Equation 4.5 and Equation 4.6.

Υ1 = HΥ1ΞΞ +
∑

n

HΥ1Nn
Nn (4.5)

Υ2 = HΥ2ΞΞ +
∑

n

HΥ2Nn
Nn (4.6)

Using Equation A.25 on Page 83, this results in expression 4.7 for the cross
spectrum, where a line above a variable indicates the complex conjugate of that
variable.

SΥ1Υ2
= HΥ1ΞHΥ2Ξ · SΞΞ +

∑

n

HΥ1Nn
HΥ2Nn

· SNnNn
(4.7)
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This cross spectrum is seen to be linearly dependent on the psd of the signal
Ξ that was to be measured. Furthermore, the output spectrum has a term
that is linearly dependent on the noise. If the transfer from a noise source
to either of the correlator inputs is zero, the noise source does not contribute
to the output noise, independent of the transfer to the other correlator input.
From Equation 4.7 we find at the output:

snr =
HΥ1ΞHΥ2Ξ · SΞΞ

∑

n
HΥ1Nn

HΥ2Nn
· SNnNn

(4.8)

The snr is often expressed in decibels to be able to handle the large range of this
parameter more conveniently. In this case a problem rises: The autocorrelation
spectra SΞΞ and SNnNn

are always real positive, but this is not generally the
case for the transfer functions that relate them to the output cross correlation
spectra. Consequently, the snr can be a complex value, which cannot be
expressed in decibels using the normal definition. A complex snr means that
a signal can not only differ from noise because of its absolute value, but also
because of its angle in the complex plane. This can be shown on a decibel scale
if we extend the definition of decibels using the principal value of the complex
logarithm of a complex number, such that for a real-valued snr the result is
equal to the normal definition:

Log(z) ! log10 |z|+ j∠z (4.9)

snr[dB] = 10 · Log




HΥ1ΞHΥ2Ξ · SΞΞ

∑

n
HΥ1Nn

HΥ2Nn
· SNnNn



 dB

= 10 log10

∣
∣
∣
∣
∣
∣

HΥ1ΞHΥ2Ξ · SΞΞ
∑

n
HΥ1Nn

HΥ2Nn
· SNnNn

∣
∣
∣
∣
∣
∣

+10 j∠




HΥ1ΞHΥ2Ξ · SΞΞ

∑

n
HΥ1Nn

HΥ2Nn
· SNnNn



 dB

(4.10)

Signal and noise transfer of the front end

Because only the passive front ends differ between the receiver with one antenna
and the receiver with two antennas, it would be handy to be able to focus on
the signal and noise transfer of this front end, instead of the systems as a whole.
If we call the signals entering the mixers I and Γ respectively and the mixers,
amplifiers and adcs are modelled as a linear system with two inputs and two
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outputs1, we get the following equations:

I =HIΞΞ +
∑

n

HINn
Nn (4.11)

Γ =HΓΞΞ +
∑

n

HΓNn
Nn (4.12)

Υ1 =HΥ1II +HΥ1ΓΓ (4.13)

Υ2 =HΥ2II +HΥ2ΓΓ (4.14)

SΥ1Υ2
=HΥ1IHΥ2ΓSΓI +HΥ1ΓHΥ2ISΓI

+HΥ1IHΥ2ISII +HΥ1ΓHΥ2ΓSΓΓ

=

(

HΥ1IHIΞHΥ2ΓHΓΞ +HΥ1ΓHΓΞHΥ2IHIΞ

+HΥ1IHΥ2I |HIΞ |2 +HΥ1ΓHΥ2Γ |HΓΞ |2
)

SΞΞ

+
∑

n

(

HΥ1IHINn
HΥ2ΓHΓNn

+HΥ1ΓHΓNn
HΥ2IHINn

+HΥ1IHΥ2I |HINn
|2 +HΥ1ΓHΥ2Γ |HΓNn

|2
)

SNnNn
(4.15)

From this it can be concluded that in order to calculate the output spec-
trum, all four transfer functions of this two-port are required, together with
the power spectra and the cross spectrum at its input. These power spectra
will presumably contain a larger portion of noise than the cross spectrum, as
that is why a cross correlation receiver is supposed to have a better noise per-
formance. Without knowledge or assumption of the transfer functions in Equa-
tion 4.13 and Equation 4.14, the output spectrum, according to Equation 4.16,
can be any combination of these spectra. As already stated in Chapter 2 we
either need to know the transfer functions of the rear end of the system, or
presume there is no coupling between the branches between the mixer inputs
and the correlator inputs, as was also suggested in the block diagrams in Fig-
ure 2.2 and Figure 2.3, so HΥ2I = 0 and HΥ1Γ = 0. The latter will be done, to
obtain the situation depicted in Figure 4.3 on the left hand side. In equations
this becomes:

1Mixers are quadratic components, so they are definitely not linear. However, when the
mixer input is sufficiently band-limited, the band-limited mixer output can be interpreted
as a frequency-shifted version of the input. This results in measurement of a frequency-
shifted version of the psd to be measured. Because in that case there is a bijective relation
between the actual measurement and the modelled measurement, the frequency shift can
and will be cancelled at the output of the system for interpreting the data. Consequently,
while modelling the mixers and adcs as a black box, we can forget about the frequency shift
altogether.
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Figure 4.3: Equivalent block diagram in case of uncoupled noise at the rear
end of the system. The signals I and Γ are the signals at the mixer inputs.

Υ1 =HΥ1II +HΥ1ΓΓ
︸ ︷︷ ︸

0

(4.16)

Υ2 =HΥ2II
︸ ︷︷ ︸

0

+HΥ2ΓΓ (4.17)

SΥ1Υ2
=HΥ1IHΥ2Γ · SΓI

=HΥ1IHΥ2Γ ·
(

HIΞHΓΞSΞΞ +
∑

n

HINn
HΓNn

SNnNn

)

(4.18)

snr[dB] =10 · Log




HIΞHΓΞSΞΞ

∑

n
HINn

HΓNn
SNnNn



 dB (4.19)

From Equation 4.19 it can be seen the snr of the cross correlation of the
signals I and Γ that enter the mixers is now equal to the snr of the output
SΥ1Υ2

. Therefore by calculating SIΓ , we can compare the noise performance of
correlation receivers with one or two antennas, without having to bother about
HΥ1I and HΥ2Γ , as these form just a frequency dependent constant in all cases.
This is shown in Figure 4.3 on the right hand side.

Transfer of signal and noise power spectral densities

To be able to make a clear distinction between signals referring to the receiver
with one antenna and the receiver with two antennas, the signals entering the
mixer in the two-antenna system will be referred to as I and Γ , whereas those
signals in the one-antenna system will be referred to as Ψ and O, respectively.

If we see the spectrum SΞΞ as a signal which we want to measure by using
SIΓ or SΨO respectively as an estimator that is biassed due to the noise spectra,
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it makes sense to assign these spectra a name:

Θ ! SΞΞ (4.20)

Λn ! SNnNn
(4.21)

Π ! SIΓ (4.22)

Φ ! SΨO (4.23)

HΠΘ ! HIΞ ·HΓΞ (4.24)

HΠΛn
! HINn

·HΓNn
(4.25)

HΦΘ ! HΨΞ ·HOΞ (4.26)

HΦΛn
! HΨNn

·HONn
(4.27)

⇒ Π = HΠΘ · Θ +
∑

n

HΠΛn
· Λn (4.28)

⇒ Φ = HΦΘ · Θ +
∑

n

HΦΛn
· Λn (4.29)

The transfer functions defined in Equation 4.24 to Equation 4.27 differ from
the transfer functions from which they are defined, because they operate on
(cross) psd signals instead of voltage signals in the separate branches of the
system. The input of the system is a signal power we would like to detect and
its output is proportional to this power. However, this output is quadratically
related to the voltage signals in both branches, so there is no linear transfer
from, say, Nn to Π . What we have in our model is for both receiver types
a linear system with the signal source and all noise sources as its inputs and
the branch signals I and Γ or Ψ and O respectively as its outputs. The cross
correlation of these branch signals is a linear combination of the power spectra
of the signal source and all noise sources.

The snr of both systems can be calculated according to Equation 4.30 and
Equation 4.31 respectively:

snr2-antenna [dB] = 10 · Log




HΠΘ · Θ

∑

n
HΠΛn

· Λn



 dB (4.30)

snr1-antenna [dB] = 10 · Log




HΦΘ · Θ

∑

n
HΦΛn

· Λn



 dB (4.31)

Multiple signal and noise sources

In case multiple external sources are active, the contribution of signals in the
output spectrum becomes a summation, just like the contribution of the inter-
nal noise:

Π =
∑

n

HΠΘn
· Θn +

∑

n

HΠΛn
· Λn (4.32)

Φ =
∑

n

HΦΘn
· Θn +

∑

n

HΦΛn
· Λn (4.33)
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If one wants to count the signal coming from some of these sources as noise,
the snr at the output of the (still partly idealized) xcsa will be:

snr2-antenna [dB] = 10 · Log









∑

signal
sources

HΠΘn
·Θn

∑

noise
sources

HΠΘn
· Θn +

∑

n
HΠΛn

· Λn









dB (4.34)

snr1-antenna [dB] = 10 · Log









∑

signal
sources

HΦΘn
·Θn

∑

noise
sources

HΦΘn
· Θn +

∑

n
HΦΛn

· Λn









dB (4.35)

Using these formulas, the snr can be calculated if we know how much power is
sent in which band by all sources within reach and what the transfer function
from that source to the receiver is. The snr can be estimated even more
accurate by taking the noise contribution of the rear ends of both systems into
account. This contribution would originate from noise that is generated by
the rear end components and the error in the cross correlation estimate due to
taking a finite amount of time.

Thermal noise power spectral density

It is well known that the noise power generated by a resistor is independent
of the value of that resistor, but some care must be taken in the context of
stochastic processes: When talking about the power of a stochastic process,
normally the expectation of the square of that process is meant, so the unit of
stochastic power is equal to the square of the unit of the signal. For a voltage
signal this leads to a stochastic power that is expressed in V2. The Fourier
transform of the stochastic power, the psd, is then expressed in V2s. When
talking about physical power, one usually means an amount of energy per unit
of time, commonly expressed in the unit W. The physical psd is then expressed
in Ws. Although the physical psd of the thermal noise from a resistor in Ws
does not depend on the value of that resistor, the stochastic psd in V2s is
linearly dependent on the resistor value. As a consequence, Λn can not be
taken out of the summations in Equation 4.32 and Equation 4.33. If we use
Boltzmann’s constant in JK−1 and the temperature in K, we get:
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Λn ! SNnNn
= 2kBT (Ws) = 2kBT Rn (V2s) see:[13] (4.36)

∑

resistor
noise

HΠΛn
· Λn = 2kBT ·

∑

resistor
noise

HΠΛn
· Rn (V2s)

=
2kBT
√

RlIRlΓ

·
∑

resistor
noise

HΠΛn
· Rn (Ws) (4.37)

∑

resistor
noise

HΦΛn
· Λn = 2kBT ·

∑

resistor
noise

HΦΛn
· Rn (V2s)

=
2kBT

√

RlΨRlO

·
∑

resistor
noise

HΦΛn
· Rn (Ws) (4.38)

Please note that the psd in this report, as defined in Equation A.14 on
Page 81, has a double sided spectrum, which means that the spectrum contains
both positive and negative frequencies. As a consequence, if we would for
example filter resistor noise with a passband filter with a bandwidth B and a
passband gain of 1, the negative part of the spectrum needs to be taken into
account as well. The resulting physical noise power would yield:

P = 2B · 2kBT (W) = 4BkBT (W) (4.39)

Comparison of signal and noise performance of the receivers

If we look back at the cr paradigm, our receiver is meant to give us information
about which frequency bands we can use, ideally without knowledge of other
transmitters in advance. However, because the snr, according to Equation 4.34
or Equation 4.35 respectively, depends on complete knowledge of all sources
within reach, it is practically impossible to give an insightful overview of pos-
sible situations and their corresponding snr. To compare the performance of
the one- and two-antenna system there are three parameters we con calculate
and show for a representative selection of situations that give insight in the
performance of the receivers:

• the transfer function from a representative selection of transmitters to
the output of either system: HΠΘ versus HΦΘ,

• the power spectrum at the output of either system due to thermal noise
in the resistors of the front ends:

∑

resistor
noise

HΠΛn
Λn versus

∑

resistor
noise

HΦΛn
Λn and

• the transfer function from noise appearing at the mixer inputs to the
output of the systems: HΠΛlΓ

and HΠΛlI
versus HΦΛlO

and HΦΛlΨ
.
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The first two of these performance parameters can be combined to give some
more insight:

Stwo-antena =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

resistor
noise

HΠΛn
Λn

HΠΘ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.40)

Sone-antena =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

resistor
noise

HΦΛn
Λn

HΦΘ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.41)

The parameter S is the power spectral density for which at the output of the
system, the magnitude of the signal contribution is equal to the magnitude of
the thermal noise of the front end. This means that if a source has a psd of
S, the real part of the snr in decibels at the output of the system would be 0
dB, if there were no other noise sources than thermal noise from the front end
resistors. It is a measure for the blind spot of the xcsas due to noisy resistors
in the front end.

4.2 Calculation of transfer functions

One-antenna system

The circuit diagram of the one-antenna system with noise sources is shown in
Figure 4.4. To analyse the signal transfer of the one-antenna system, we need
the transfer functions HΨΞ and HOΞ to calculate HΦΞ according to Equa-
tion 4.26. To analyse its noise transfer, we need the transfer functions HΨNn

and HONn
to calculate HΦΛn

of each internal noise source according to Equa-
tion 4.27. These noise sources include thermal noise for each physical resistor,
where the resistors with the same name in Figure 4.4 can be used in the calcula-
tion as being one: HΨ,aΨ

, HO,aΨ
, . . . , HO,cO to calculate HΦ,ΛaΨ

, HΦ,ΛbΨ
, . . . ,

HO,ΛcO
. Furthermore we will calculate the transfer from an arbitrary noise

source at the mixer inputs using the same method: HΦ,ΛlΨ
and HΦ,ΛlO

.
Because the front end of the receiver is completely passive, all (voltage)

transfer functions depend on all resistor values and the dimensions and relative
position of the antennas. Although determining these transfers is a matter of
accurate bookkeeping, listing them results in quite lengthy expressions. A
slight simplification can be made by not using the impedance as seen from the
antenna output, but just the antenna self impedance according to Equation 3.14
on Page 17. This means that the em wave traveling from the receiving antenna
to the transmitting antenna and back is ignored. Because the transmitting
antenna is in general far away this effect will be small compared to the self
impedance. Furthermore, in practice, there will probably be reflections close
to the receiving antenna having a much bigger influence.

As the resulting transfer functions share a lot of equal sub-expressions,
they are most compactly listed as block diagrams as shown in Figure 4.5. The
diagram on the left is required for calculating eight equivalent impedances. A
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Figure 4.4: Circuit drawing of the one-antenna receiver with noise sources
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Figure 4.5: Block diagram for calculation of the transfer functions of the one-
antenna system
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plus sign indicates the equivalent impedance of the input impedances of this
block as if they were connected in series. A double slash indicates the equivalent
impedance of the input impedances of this block as if they were connected in
parallel. The equivalent impedance of the antenna and the splitter resistance
in series, Zant is shown at the bottom of the figure. The rest of Figure 4.5 can
be used to calculate the voltage transfer functions. Care must be taken when
implementing these diagrams in a script, to take limits in case some parameters
become zero or infinity, which might be the case if any of the series resistors is
set to zero or any of the parallel resistors is left out in a specific receiver design.

With the voltage transfer functions, the psd transfer functions can be cal-
culated according to Equation 4.26 and Equation 4.27 on Page 48, with the
indices of the noise transfer functions according to the index of the correspond-
ing resistance:

HΦΘ = HΨ,Ξ ·HO,Ξ (4.42)

HΦΛlO
= HΨ,lO ·HO,lO (4.43)

HΦΛcO
= HΨ,cO ·HO,cO (4.44)

HΦΛbO
= HΨ,bO ·HO,bO (4.45)

HΦΛaO
= HΨ,aO

·HO,aO
(4.46)

HΦΛs
= HΨ,s ·HO,s (4.47)

HΦΛaΨ
= HΨ,aΨ

·HO,aΨ
(4.48)

HΦΛbΨ
= HΨ,bΨ ·HO,bΨ (4.49)

HΦΛcΨ
= HΨ,cΨ ·HO,cΨ (4.50)

HΦΛlΨ
= HΨ,lΨ ·HO,lΨ (4.51)

Two-antenna system

The circuit of the two-antenna system with noise sources is shown in Figure 4.6.
Calculating the required transfer functions of the two-antenna system can be
done following the same procedure as with the one-antenna system. The an-
tenna coupling can be expressed by calculating the open terminal voltage of
one antenna with the other two connected to the circuit. This can be done with
Equation 3.39, using 3×3 matrices and taking the limit of the load of the open
terminal to infinity. The resulting transfer functions are shown in Figure 4.7,
together with Equation 4.52 to Equation 4.57. Equations 4.56 and 4.57 differ
from equations 4.54 and 4.55, because in the latter cases the presence of the
transmitting antenna is ignored, just like we did with the one-antenna system.
This means that in the transfer functions between the both antennas of the re-
ceiver (H1,2 and H2,1) all signal paths that pass the antenna of the transmitter,
are ignored. This is done because the direct path between the two antennas
of the receiver generally yields a much stronger signal and in practise nearby
reflections will have a larger influence than the reflection at the antenna of the
transmitter.
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Figure 4.6: Circuit drawing of the two-antenna receiver with noise sources
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Zant 1 !

(

Zm11 −
Z2
m12

Zm22 +RI4 sin
2 (k!2)

)

sin−2 (k!1) (4.52)

Zant 2 !

(

Zm22 −
Z2
m12

Zm11 +RΓ4 sin
2 (k!1)

)

sin−2 (k!2) (4.53)

H1,2 !
sin (k!2)

sin (k!1)
· Zm12

Zm22 +RI4 sin
2 (k!2)

(4.54)

H2,1 !
sin (k!1)

sin (k!2)
· Zm12

Zm11 +RΓ4 sin
2 (k!1)

(4.55)

H1,3 !
sin (k!3)

sin (k!1)
·

Zm13

(

Zm22 +RI4 sin
2 (k!2)

)

− Zm12Zm23
(

Zm22 +RI4 sin
2 (k!2)

) (

Zmm33 + ZΞ sin2 (k!3)
)

− Z2
m23

(4.56)

H2,3 !
sin (k!3)

sin (k!2)
·

Zm23

(

Zm11 +RΓ4 sin
2 (k!1)

)

− Zm12Zm13
(

Zm11 +RΓ4 sin
2 (k!1)

) (

Zm33 + ZΞ sin2 (k!3)
)

− Z2
m13

(4.57)

With the voltage transfer functions, the psd transfer functions can be cal-
culated according to Equation 4.24 and Equation 4.25 on Page 48, with the
indices of the noise transfer functions according to the index of the correspond-
ing resistance:

HΠΘ = HI,Ξ ·HΓ,Ξ (4.58)

HΠΛlΓ
= HI,lΓ ·HΓ,lΓ (4.59)

HΠΛcΓ
= HI,cΓ ·HΓ,cΓ (4.60)

HΠΛbΓ
= HI,bΓ ·HΓ,bΓ (4.61)

HΠΛaΓ
= HI,aΓ

·HΓ,aΓ
(4.62)

HΠΛaI
= HI,aI

·HΓ,aI
(4.63)

HΠΛbI
= HI,bI ·HΓ,bI (4.64)

HΠΛcI
= HI,cI ·HΓ,cI (4.65)

HΠΛlI
= HI,lI ·HΓ,lI (4.66)

4.3 Plots

We have derived equations for the transfer of signal and noise cross power
spectral densities at the mixer inputs of the one-antenna and two-antenna re-
ceiver. We have seen that in case we assume no coupling between both receiver
paths behind the mixers, these cross-psds are proportional to the expectation
of the signal and noise psds as measured by both systems. Unfortunately
from these equations it is not clear how the design parameters of the systems,
like antenna size and positioning and the choice of resistances, affect the mea-
surement. Also the sensitivity of the system with respect to the location and
design of the transmitters is unclear. In the following pages some example
configurations are described of which plots show how both systems compare.
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These examples include a discussion of how certain (design) parameters could
optimize the system design.

In all configurations we have chosen the system of coordinates such that
the plane in which both receiving antennas are, is the plane y = 0. We choose
z in the longitudinal direction of the antennas, such that x is orthogonal to
the antennas and in the plane y = 0. In all configurations the center of the
antenna of the one-antenna system is chosen as the origin. The two antennas of
the two-antenna system are placed symmetrically with respect to the antenna
of the one-antenna system to which it is compared. The parameters with
subscript “one” refer to the receiving antenna of the one-antenna system. The
parameters with subscript “TX” refer to the transmitter. The parameters with
subscripts 1 and 2 refer to the receiving antennas of the two-antenna system.
In all examples a temperature of 300K is assumed.

Please note that the situations we compare are a one antenna system with
some transmitter on one hand and a two antenna system with that same trans-
mitter on the other hand. This means we do not consider a situation with
three receiving antennas at the same time.

Parallel receiving antennas of equal length at different

spacings

We start with a symmetric system with two parallel antennas of equal length
at different spacings, which we compare to a one-antenna system. We assume a
transmitter that is far away, on the perpendicular bisector of the two antennas.
In the receivers we take only one impedance in series with the load impedance
formed by the mixer inputs. The transmitter is assumed to have a conjugate
matching impedance compared to its antenna. The situation is listed below.
Configuration 1:

rx,one ! 0 rx,TX = 0 rx1 = variable rx2 = −rx1

ry,one ! 0 ry,TX = 1000!1 ry1 ! 0 ry2 ! 0

rz,one ! 0 rz,TX = 0 rz1 = 0 rz2 = 0

!one = !1 !TX = !1 !1 = unit !2 = !1

aone = !one/100 aTX = !TX/100 a1 = !1/100 a2 = !2/100

Rs = 0 ZΞ = Z0,TX,TX

RaΨ = 100Ω RaO = 100Ω RaI = 100Ω RaΓ = 100Ω

RbΨ = ∞Ω RbO = ∞Ω RbI = ∞Ω RbΓ = ∞Ω

RcΨ = 0Ω RcO = 0Ω RcI = 0Ω RcΓ = 0Ω

RlΨ = 50Ω RlO = 50Ω RlI = 50Ω RlΓ = 50Ω

In Figure 4.8 the cross-psd is shown due to the thermal noise of the series
resistors RaΨ and RaO or RaI and RaΓ respectively. The antenna separation of
the two-antenna system is taken between 0.2!1 and 1.2!1.

The first thing to notice is that in most cases this cross-psd has a negative
value. A cross-psd can be any complex number, but because of the symmetry
of Configuration 1 we find only real numbers in this case. The negative values
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Figure 4.8: Cross power spectral density of at the mixer inputs due to noisy
resistors in Configuration 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−150

−125

−100

−75

−50

Normalized frequency k!1
π = 2f!1

c = 2!1
λ

S
ig
n
al

tr
an

sf
er

(d
B
)

HΦΘ

HΠΘ rs2 = 0.2!1
HΠΘ rs2 = 0.4!1
HΠΘ rs2 = 0.6!1
HΠΘ rs2 = 0.8!1
HΠΘ rs2 = 1.0!1
HΠΘ rs2 = 1.2!1

Figure 4.9: Signal transfer function to the cross power spectral density at the
mixer inputs in Configuration 1



58
CHAPTER 4. SIGNAL AND NOISE PROPAGATION IN A CROSS

CORRELATION SPECTRUM ANALYSER

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−300

−280

−260

−240

−220

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Normalized frequency k!1
π = 2f!1

c = 2!1
λ

S
(d
B
W

s)

Sone-antena

Stwo-antena rs2 = 0.2!1
Stwo-antena rs2 = 0.4!1
Stwo-antena rs2 = 0.6!1
Stwo-antena rs2 = 0.8!1
Stwo-antena rs2 = 1.0!1
Stwo-antena rs2 = 1.2!1
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indicate that these noisy resistors cause a current in opposite directions through
the load impedances. If we look at the magnitude of the cross-psd, we see that
the one-antenna system suffers from higher thermal noise than the two-antenna
systems that are shown. This confirms the reason for considering a two-antenna
system: reduction of correlated noise.

At frequencies for which the antenna lengths 2! are odd multiples of 0.5λ,
the dipole antennas are known to “work best”: they radiate energy easily.
This causes peaks in Figure 4.8. In case of a one antenna system these are
the frequencies at which a large portion of the noise is radiated, such that a
smaller portion is reflected back into the system, resulting in a lower absolute
noise cross-psd at the mixer inputs. In case of two antennas it is the other way
around: Because at these frequencies a large portion of noise from one branch
of the system is radiated by one antenna and picked up by the other, we get
an increase in absolute noise cross-psd.

As expected, a larger separation of the antennas yields a lower absolute
amount of noise cross-psd. We can see that in case of a larger separation, the
value can be positive. At higher frequencies, the peaks appear to be lower.

We should also look at the transfer of signals. Because of the symmetry in
Configuration 1, we find real values, as shown in Figure 4.9. Even in a decibel
scale we see a large variation in signal reception in every case. This is one of the
reasons why dipole antennas are not suitable for wideband systems. Compared
to these variations the differences between different antenna spacings are almost
imperceptible. Below a normalized frequency of 2, the signal reception appears
to become a few decibels higher at a larger antenna spacing. This can be
specific to the plotted cases, as the antenna spacing determines how well the
receiver impedance is matched to the antennas. Above a normalized frequency
of 2.5 we see that all but the closest two-antenna case result in a higher signal
perception of about 5 dB.

In Figure 4.10 the parameter S, as defined in Equation 4.40 and Equa-
tion 4.41 on Page 51, is plotted. This is the power spectral density for which at
the output of the system, the magnitude of the signal contribution is equal to
the magnitude of the thermal noise of the front end, so a higher value indicates
that the transmitter must have a higher power in order to be still received
by our system. First of all we see that in all plotted cases, the two-antenna
systems have a better performance than the one-antenna system. The closest
spacing yields a slightly worse performance than the other two-antenna cases,
but the other spacings yield comparable results, depending on the frequency.

The most remarkable thing is that the peak at odd values of the normalized
frequency, which is clearly visible in the one-antenna case and which could be
expected from the preceding plots, is gone in all two-antenna cases. This means
that the two-antenna systems can be used close to these frequencies as far as
thermal noise is concerned. We must remember, however, that this effect does
not occur in case of additional sources of coupled noise in the receiver, such as
power lines. Such sources will have a relatively large influence near these odd
normalized frequencies.

In Figure 4.11 we see the magnitude of the transfer function from a noise
source in series with either of the mixers to the cross-psd at the mixer inputs.
Because we only have a series impedance between the antennas and the mixers,
this plot shows almost the same information as Figure 4.8.
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Figure 4.12: Magnitude of the signal transfer function to the cross power spec-
tral density at the mixer inputs in Configuration 2

Configuration 1 shows the expected benefit from using a two-antenna sys-
tem: less coupled noise. The disadvantage of using two antennas is that in
general the signal as received by the antennas is unequal. This does not show
up in Configuration 1, because the transmitter is on the perpendicular bisector
af the two antennas. In Configuration 2 the distance between the antennas is
fixed and the transmitter is chosen at different positions at a quarter circle in
the plane z = 0 at a distance of 1000!1. The other parameters are equal to
Configuration 1.
Configuration 2:

rx,one ! 0 rx,TX = 0 rx1 = 0.5!1 rx2 = −rx1

ry,one ! 0 ry,TX = variable ry1 ! 0 ry2 ! 0

rz,one ! 0 rz,TX = variable rz1 = 0 rz2 = 0

!one = !1 !TX = !1 !1 = unit !2 = !1

aone = !one/100 aTX = !TX/100 a1 = !1/100 a2 = !2/100

Rs = 0 rs,TX = 1000!1 ZΞ = Z0,TX,TX

RaΨ = 100Ω RaO = 100Ω RaI = 100Ω RaΓ = 100Ω

RbΨ = ∞Ω RbO = ∞Ω RbI = ∞Ω RbΓ = ∞Ω

RcΨ = 0Ω RcO = 0Ω RcI = 0Ω RcΓ = 0Ω

RlΨ = 50Ω RlO = 50Ω RlI = 50Ω RlΓ = 50Ω

Because in the calculation of the thermal noise cross-psd, the position of
a far transmitter is ignored, the plots in Figure 4.8 of the one-antenna system
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Figure 4.13: Angle of the signal transfer function to the cross power spectral
density at the mixer inputs in Configuration 2
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Figure 4.14: Power spectral density for which at the output of the system, the
magnitude of the signal contribution is equal to the magnitude of the thermal
noise of the front end in Configuration 2
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Figure 4.15: Cross power spectral density of at the mixer inputs due to noisy
resistors in Configuration 3

and the two-antenna system with an antenna separation of 1.0!1 are valid for
Configuration 2 as well.

Figure 4.12 shows only a small spread. This tells us that the magnitude of
the signal transfer function barely depends on the direction of the transmitter
in the plane z = 0. Figure 4.13 shows this is not the case with the complex
angle of the transfer function. When the distance between the transmitter and
one antenna and the distance between the transmitter and the other antenna,
differs more, the complex angle plot gets steeper. A simple planar wave model
of the situation would suggest a linear relation between the complex angle
and the normalized frequency. However, because the antenna mutual antenna
impedances do not have a constant phase, this relation deviates somewhat from
a linear relation. Because in practice we cannot choose the angle of the incident
wave, the detector that interprets the measurements of a two-antenna receiver,
must be able to deal with a random angle of the incident signal.

In Figure 4.14 we can see again that as far as the magnitude of the signal
compared to the noise is concerned, the direction of the transmitter in the
plane z = 0 barely changes the sensitivity of the two-antenna receiver.
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Parallel receiving antennas of different length

As a possibility to optimize the receiver design for some required frequency
band, one could think of an asymmetric two-antenna receiver. This could
reduce noise coupling or flatten the signal transfer in some frequency band of
interest. One possibility to do so, is using antennas of different lengths.
Configuration 3:

rx,one ! 0 rx,TX = 0 rx1 = 0.5!1 rx2 = −rx1

ry,one ! 0 ry,TX = 1000!1 ry1 ! 0 ry2 ! 0

rz,one ! 0 rz,TX = 0 rz1 = 0 rz2 = 0

!one = variable !TX = !1 !1 = unit !2 = variable

aone = !one/100 aTX = !TX/100 a1 = !1/100 a2 = !2/100

Rs = 0 ZΞ = Z0,TX,TX

RaΨ = 100Ω RaO = 100Ω RaI = 100Ω RaΓ = 100Ω

RbΨ = ∞Ω RbO = ∞Ω RbI = ∞Ω RbΓ = ∞Ω

RcΨ = 0Ω RcO = 0Ω RcI = 0Ω RcΓ = 0Ω

RlΨ = 50Ω RlO = 50Ω RlI = 50Ω RlΓ = 50Ω

In Configuration 3 the length of the antenna of the one-antenna system is
altered as well in such a way that its length is the average between the lengths
of the antennas of the two-antenna system.

The plots in Figure 4.15 show what happens to the thermal noise cross-psd.
In the plots about the one-antenna system we see a horizontal stretch, because
the normalized frequency is linearly dependent on the antenna length. In the
two antenna system the peaks corresponding to both antennas ore shifted (and
stretched) with respect to each other. Therefore the graphs show that in these
cases a more unequal antenna length yields some lower and shifted combined
peaks.

If we take a look at Figure 4.16, we immediately notice the extra zeros
resulting from the second antenna. This comes with the advantage that the
zeros corresponding to the length of the first antenna are smaller in frequency,
compared to the case of equal lengts. This is most clear near the normalized
frequency of 2, where the dip of the equal length case in green is clearly wider
than the dip of the unequal length case plots.

Because the two-antenna system is no longer symmetric, the phase angle
of the signal transfer is no longer zero, even though the transmitter is on
the perpendicular bisector of the two antennas. This phase angle is shown in
Figure 4.17. We see a lot of phase jumps at the zeros of the transfer magnitude.
The reason these jumps do not occur when the antenna lengths are equal is
that in that case both antennas jump at the same frequency, cancelling each
other. A phase inversion is very inconvenient for a detector: If we look at a
transmitter that radiates a signal in a band that happens to be right across
a phase jump in the receiver, a part of the signal will have the opposite sign
compared to the rest of the signal. This causes (partial) self-cancellation in
the measurement, which obviously hinders signal detection. Also, apart from
the jumps, the phase plots are rather steep at some points. This also makes
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Figure 4.16: Magnitude of the signal transfer function to the cross power spec-
tral density at the mixer inputs in Configuration 3
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Figure 4.17: Angle of the signal transfer function to the cross power spectral
density at the mixer inputs in Configuration 3
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Figure 4.18: Power spectral density for which at the output of the system, the
magnitude of the signal contribution is equal to the magnitude of the thermal
noise of the front end in Configuration 3

detection more difficult. Please note that if we were to build any of these
asymmetric systems, we will not know the direction of the transmitter, so the
actual phase plot is unknown. To use such a system, we must use a detector
that can cope with random, steeply varying, phases. This probably requires
measurements with a relatively high frequency resolution.

In Figure 4.18 we can see that it differs from one frequency to another
whether the sensitivity is improved by choosing unequal antenna lengths. For
example between a normalized frequency of 1 and 2, we see that a design with
!2 = 2/3!1 in yellow yields a higher sensitivity than the design with antennas
of equal length in green, provided that the detector can cope with the variation
in phase angle.

Collinear antennas

Another approach to reduce the coupling between the receiving antennas is
to put them in a collinear position. In this way the coupling will be already
quite low at a moderate spacing between the antennas, as we are about to see.
However, if we have to integrate the antennas in a mobile device, the total
length of both antennas and their spacing will have to be smaller than the
length of the device. In case of parallel antennas, both antennas separately
need to be smaller than the length of the device and their spacing needs to be
smaller than the width of the device. This means that in practice the antennas
can be about twice as long in the parallel configuration as in the collinear
configuration.

Because of the circular symmetry, a receiver with two collinear antennas will
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Figure 4.19: Cross power spectral density of at the mixer inputs due to noisy
resistors in Configuration 4

be indifferent to the direction of a transmitter in the plane z = 0, but it will be
sensitive to the elevation angle in the plane y = 0. Especially when the antenna
of the transmitter is collinear with the antennas of the receiver, practically no
signal is received. This is due to the well-known doughnut-shaped (far-field)
antenna pattern of dipole antennas. In Configuration 4 the elevation angle is
varied, while the receiver is fixed.
Configuration 4:

rx,one ! 0 rx,TX = 0 rx1 = 0 rx2 = −rx1

ry,one ! 0 ry,TX = variable ry1 ! 0 ry2 ! 0

rz,one ! 0 rz,TX = variable rz1 = 1.1!1 rz2 = −1.1!1

!one = variable !TX = !1 !1 = unit !2 = !1

aone = !one/100 aTX = !TX/100 a1 = !1/100 a2 = !2/100

Rs = 0
√

r2y ,TX
+ r2z ,TX = 1000!1 ZΞ = Z0,TX,TX

RaΨ = 100Ω RaO = 100Ω RaI = 100Ω RaΓ = 100Ω

RbΨ = ∞Ω RbO = ∞Ω RbI = ∞Ω RbΓ = ∞Ω

RcΨ = 0Ω RcO = 0Ω RcI = 0Ω RcΓ = 0Ω

RlΨ = 50Ω RlO = 50Ω RlI = 50Ω RlΓ = 50Ω

If we compare Figure 4.19 to Figure 4.8 on Page 57, we see that the coupling
of noise in the collinear position at low frequencies, is lower than all plotted
parallel configurations, while the space between the tips of the antennas is only
0.2!1. We could place the antennas even closer in practice, but in that case
our model will probably not be accurate, due to capacitive effects between the
antenna tips that alter the current distribution in the antennas.
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Figure 4.20: Magnitude of the signal transfer function to the cross power spec-
tral density at the mixer inputs in Configuration 4
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Figure 4.22: Power spectral density for which at the output of the system, the
magnitude of the signal contribution is equal to the magnitude of the thermal
noise of the front end in Configuration 4

In Figure 4.20 we see the transfer of signal from a transmitter at different
elevation angles. The first thing we notice is that besides the zeros that corre-
spond to the antenna length, some extra zeros show up. This means that the
receiver will have blind spots, each consisting of a combination of a direction
and a frequency of a transmitter. For example at a normalized frequency just
below 1.5, we see that a transmitter at an elevation angle of π/8RAD has a
transfer that is about -50dB compared to a transmitter that is at an elevation
angle of 0RAD or π/4RAD. The second thing we notice about Figure 4.20 is
that the transfers of the one-antenna system are almost parallel to those of the
two-antenna system. This is because the transmitter at a large distance has
about an equal position with respect to each of the three receiving antennas,
while the coupling between the antennas of the two-antenna system is negli-
gible. This means that the attenuation of the signal at each of the receiving
antennas is about equal and the major difference is the splitter that reduces the
total power measured by the one-antenna system. This tells us that the blind
spots at different elevation angles are not due to the use of dipole antennas,
rather than the collinear positioning.

Because of a different path length between the transmitter and each of the
receivers, there is a phase shift of the signal cross-psd at the mixer inputs, as
shown in Figure 4.21. This phase shift is notably higher than the phase shift
seen at feasible parallel configurations, shown in Figure 4.13 on Page 61.

Figure 4.22 shows what we already suspected from Figure 4.20: The sensi-
tivity of the system varies largely, depending on the elevation angle, but in all
cases the two-antenna system is more sensitive than the one-antenna system.
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Different attenuators

Apart from the antennas, we can also change the attenuator. Please recall that
the input attenuator is part of the design, because an attenuation before the
non-linear parts of the system improves the linearity of the system as a whole,
as a trade-off against snr. [7] In Figure 3.16 on Page 30 it was already seen
that if we enlarge the ohmic load of two dipole antennas, the transfer function
between the two has a flatter, attenuated magnitude and a smoother phase
curve. When we assume we cannot change the input resistances of the mixers
Rl∗, we can increase the load as seen from the antenna terminals by increasing
the series resistances Ra∗. By doing so we increase both the ohmic load of
the antenna and the attenuation, so we increase both the smoothness of the
transfer function and the linearity of the system as a whole, at the cost of a
lowering of the snr.

It seems to be not beneficial to include the parallel resistances Rb∗, for
it will increase the attenuation, but also decrease the load as seen from the
antenna terminals, which is undesired. However, one may want to use Rb∗ in
combination with capacitors or inductors to optimize the receiver for a certain
frequency band. This optimization is out of the scope of this report.

Another reason for including the parallel resistances is that the thermal
noise of the series impedances most of the times have a negative contribution
to the cross-glspsd, whereas the parallel resistances have a positive contribu-
tion. By choosing the resistances carefully it might be possible to bring the
expectation of the thermal noise cross-psd at the mixer inputs closer to zero
at the cost of a larger variance, because of the added noise sources. This pos-
sibility was also suggested by Smeenge [11, Appendix A]. However, this larger
variance makes it more difficult to detect a signal, despite of the zero expec-
tation. After all, we could better subtract any known expectation of the noise
cross-psd from the total measured cross-psd, to obtain a measurement with a
noise expectation of zero without increasing the noise variance.

In this example we choose to leave Rb∗ out. Consequently, Rc∗ cannot be
distinguished from Ra∗, so we can leave it at 0Ω.

Configuration 5:

rx,one ! 0 rx,TX = 1000!1 rx1 = 0.5!1 rx2 = −rx1

ry,one ! 0 ry,TX = 1000!1 ry1 ! 0 ry2 ! 0

rz,one ! 0 rz,TX = 0 rz1 = 0 rz2 = 0

!one = !1 !TX = !1 !1 = unit !2 = !1

aone = !one/100 aTX = !TX/100 a1 = !1/100 a2 = !2/100

Rs = 0 ZΞ = Z0,TX,TX

RaΨ = variable RaO = RaΨ RaI = RaΨ RaΓ = RaΨ

RbΨ = ∞Ω RbO = ∞Ω RbI = ∞Ω RbΓ = ∞Ω

RcΨ = 0Ω RcO = 0Ω RcI = 0Ω RcΓ = 0Ω

RlΨ = 50Ω RlO = 50Ω RlI = 50Ω RlΓ = 50Ω
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Figure 4.23: Cross power spectral density of at the mixer inputs due to noisy
resistors in Configuration 5
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Figure 4.24: Magnitude of the signal transfer function to the cross power spec-
tral density at the mixer inputs in Configuration 5
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Figure 4.25: Angle of the signal transfer function to the cross power spectral
density at the mixer inputs in Configuration 5
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Figure 4.26: Power spectral density for which at the output of the system, the
magnitude of the signal contribution is equal to the magnitude of the thermal
noise of the front end in Configuration 5
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In Figure 4.23 we see that an increase of the series impedance lowers the
absolute noise level of the one-antenna system greatly. We see that the peaks
of the curves belonging to the two-antenna system become lower and wider as
the series impedances increase, such that the curve becomes flatter.

The flattening of the transfer functions can be seen in in Figure 4.24, es-
pecially below a normalized frequency of 1. This is the case for both the one-
antenna system and the two-antenna system. We also see an overall decrease of
the magnitude of the transfer functions, as expected. Because in Configuration
5 the transmitter is placed in the plane z = 0 at an angle of π/4RAD to the
parallel antennas, the signal transfer function has a non-zero phase curve, as
shown in Figure 4.25. We see that an increase of the series impedances tends
to flatten the phase plot, towards a linear decay.

Because both the amount of signal and the amount of noise in the cross-psd
at the mixer inputs is decreased by the series impedance, we have to take a
look at Figure 4.26 to see the overall effect on the sensitivity of the system. For
the two-antenna system the sensitivity appears to be reduced by an increase
of the series resistance, at least in the plotted cases. The sensitivity of the
one-antenna system is barely changed by the larger resistance. A larger series
impedance yields a small increase in sensitivity, but still far worse than the
sensitivity of the two-antenna system.
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4.4 Summary

In this chapter, we have derived expressions for the signal and noise contri-
butions to the expected measurement by both a two-antenna receiver and a
one-antenna receiver.

For this purpose we assumed that there is no coupling between the two
receiver paths after the mixers and that these receiver paths could each be
modelled as linear and time-invariant. We showed that under these assump-
tions, the expectation of the output of the system is linearly dependent on the
cross-psd of the signals that enter the mixers. Because this linear dependency
is the same for both one-antenna receivers and two-antenna receivers, this al-
lowed us to compare these receivers by looking only at their analogue front
ends.

Using the impedance matrix representation of the antenna configuration
and straightforward network theory, the voltage transfer functions from all
noisy resistors in the receiver to both mixer inputs were calculated and listed.
The same was done for the transfer from a signal source. It was show that
there is also a linear psd transfer function from a signal or noise psd to the
cross-psd at the mixer inputs, which can be calculated from the two voltage
transfer functions to the mixer inputs.

Finally, we selected some configurations consisting of a two-antenna receiver
design, a specific transmitter at a known location and a reference one-antenna
system. From this moderate selection of designs, it can be concluded that a
two-antenna receiver has a lower amount of thermal system noise at its output
than a comparable one-antenna receiver. Furthermore, the magnitude of the
signal reception of a two-antenna receiver is in most designs higher or about
equal to the signal reception of a comparable one-antenna receiver, such that
the expectation of a measurement with a two-antenna receiver will have a
higher (real) snr. However, the considered two-antenna systems have a signal
psd transfer function that generally has a non-zero phase, depending on the
direction of the signal source relative to the receiver and the distance between
the antennas. This increases the demands on the digital part of the receiver
and complicates the task of interpreting the measurement results.

Some approaches for optimization of the two-antenna receiver were dis-
cussed. Increasing the spacing between two equal parallel receiving antennas
appeared not to be beneficial in general above a spacing of about a quarter of
the total length of the antennas. Making the system asymmetric by choosing
antennas of different lengths, yields very irregular signal psd transfer functions
and should only be considered for optimization at a certain limited frequency
band. Receivers with collinear antennas have a low coupling of noise, but have
the disadvantage that often the antennas need to be about 50% shorter com-
pared to a parallel configuration, to fit in a casing. Furthermore, measurement
with such receivers will suffer from a large phase dependency on the elevation
angle of the signal source. It was discussed that a pure resistive attenuator
is probably best implemented by means of series resistors only, because it will
make the the signal transfer function more flat.





Chapter 5

Conclusion and recommendations

5.1 Conclusion

The research question “What is the effect of antenna coupling on spectrum
sensing for cognitive radio using a cross-correlation spectrum analyser with
two antennas?”, will be answered by answering the sub-questions.

How can we model antenna coupling?

When antennas are not moving and the medium they are both in is linear, pas-
sive and isotropic, the antenna coupling can be modelled in an electric circuit
as a linear n-port, where n equals the number of antennas. The electric circuit
properties of this linear n-port are fully described by an impedance matrix.
The impedance matrix describing the situation of parallel dipole antennas, can
be approximated according to the induced electromagnetic force method.

How is the propagation of system noise to the output effected

by antenna coupling in a two-antenna xcsa?

The effect of system noise to the output of the considered xcsas in terms of snr
or as a comparison to another xcsa with the same mixers, adcs and digital
part, can be calculated without a need to know the propagation from the mixer
inputs to the system outputs if the branches are uncoupled in this part of the
system. Only in that case the expectation of the output of the system will be
proportional to the cross-psd of the voltages at the mixer inputs.

To find this cross-psd, we need to multiply the noise spectrum of each noise
source with the voltage transfer function to one mixer input times the complex
conjugate of the voltage transfer function to the other mixer input. These
voltage transfer functions were found using circuit theory. If the receiver is
symmetric, the system noise contribution to the output is real-valued, but can
be negative. If the system is asymmetric, the noise contribution to the output
is generally complex-valued.

In case of a two-antenna receiver with dipole antennas of equal total length
2!, the system noise contribution to the output shows peaks around frequencies
for which 2! equals an odd multiple of a half wavelength, because at those
frequencies the antenna coupling has a maximum. In case of a one-antenna
receiver, we find the opposite: At these frequencies a dip is found, because at
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these frequencies the antenna radiates the most system noise power, such that
it cannot contribute to the noise power at the output of the system.

How is the measurement of signals effected by using two

antennas instead of one?

The magnitude of signal reception by a two-antenna xcsa was seen to be usu-
ally higher than the signal reception with a comparable one-antenna receiver.
Relatively small deviations occur due to coupling between the receiving anten-
nas.

When measuring a signal with a two-antenna xcsa, the angle of the received
psd will differ, depending on the direction of the transmitter, the frequency
and the spacing between the antennas. In case of parallel dipole antennas it
was seen that this complex angle is not as linear dependent on the frequency as
far-field models suggest. While spectrum sensing for cr, we do not know the
direction of a transmitter in advance, so when measuring with two antennas a
random phase must be assumed.

Which antenna designs are promising for a two-antenna xcsa

for cognitive radio?

Due to the large number of parameters which do not all have a univocal effect
on the sensitivity of an xcsa, it is impossible to draw unambiguous conclusions
from the limited amount of parameter sweeps that were shown. However, some
design approaches seem more promising than others.

A design with parallel dipole antennas of equal length seems to have an
optimal distance between the antennas around a quarter of the total length of
the antennas. Here “optimal” means the distance for which the ratio between
the magnitude of the contribution of thermal system noise and the magnitude
of the contribution of the received signal, is not further improved by increasing
that distance. Depending on the chosen attenuator, this distance may differ.

A design with dipole antennas of unequal length reduces the noise coupling
compared to a similar design with antennas of equal length, but increases the
number of zeros in the signal transfer and yields a more capricious phase plot
of the measurement result. Such a design seems only suitable for spectrum
sensing on a relatively small band.

A two-antenna receiver with collinear dipole antennas has a real-valued
transfer function for signals from transmitters in the H-plane. Furthermore,
it has a low coupling between the antennas, which reduces the noise. The
only drawbacks of a collinear two-antenna receiver compared to a one-antenna
receiver are the large phase shift for signals from transmitters at an elevation
angle and the length that is required to fit the antennas in a device.
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5.2 Recommendations

Validation

All models in this report are based on calculations. None of the results that
are shown are validated by measurements. It would be wise to do so, to ensure
that the simplifications that are used in the derivations indeed do not have a
large influence on the validity of the model.

Noise variance

In this report we only looked at the expectation of the noise at the output
of the system. However, measurement inaccuracies come from uncertainty of
the noise: both its magnitude and its phase. Knowledge of this uncertainty
is required for designing a good detector that interprets the measurements to
determine whether or not a signal is present.

Direction-tolerant antenna design

Uncertainty of the direction of a transmitter leads to uncertainty of of the
frequency-dependent complex angle of the signal component in the measure-
ment result. This complicates the demands on the detector that interprets the
measurement results. One could also try to find an antenna configuration that
is less sensitive to the direction of the transmitter, while having a sufficiently
small coupling. A possible candidate is a configuration with two orthogonal
dipole antennas of which the centres are aligned.





Appendix A

Correlation

This appendix is a reference for the stochastic signal theory required in this
report. The information is mostly based on [13].

A.1 Stochastic process

The concept of a stochastic process is fundamental to statistical signal process-
ing, but it is often found difficult to understand on first encounter. We will use
an example to explain this concept.

Suppose we have a regular die with each side marked with a different number
of dots between one and six. A die is usually used to obtain a random number
between one and six. Therefore we throw the die and discern between six
possible results, being either side facing upwards. These six results are called
the sample space. To each outcome in the sample space we assign a number,
being the number of dots on the side facing upward. In mathematics this rather
trivial process can be written down as a sample space S = {s1, s2, . . . , s6} with
s1 !“The side with one dot is facing upward” and so on. Next we have a
well-defined process X(s) according to which we assign a number to each event
in the sample space: X(s1) ! 1, X(s2) ! 2 and so on.

Now if instead of a number we would assign a function of time to each event
in the sample space, we get a well-defined process X(t, s) according to which
we assign a function to each event in the sample space S. We could for example
define X(t, s1) ! sin(t), X(t, s2) ! cos(t), X(t, s3) ! 0, or whatever suits our
needs and obtain a function of time by rolling the die. This process X(t, s) is
called a stochastic process.

A.2 Cumulative probability distribution function

The size of the sample space associated with a stochastic process is not nec-
essarily a finite number. It can be infinite or continuous as well. The latter
is the case when we use a stochastic variable to describe the thermal noise of
a resistor, for example. Furthermore the probability for each outcome within
the sample space is not necessarily equal. To describe a stochastic process
mathematically the cumulative probability distribution function is defined for
a fixed instant of time as:
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FX(x1; t1) ! P{X(t1, s) ≤ x1} (A.1)

The cumulative probability distribution function is a monotonically rising
function from lim

x1→−∞
FX(x1; t1) = 0 to lim

x1→∞
FX(x1; t1) = 1. When two ran-

dom values are considered by looking at the same stochastic process at two
instants of time:

FX(x1, x2; t1, t2) ! P{X(t1, s) ≤ x1 ∧X(t2, s) ≤ x2} (A.2)

When two random values are considered by looking at two stochastic pro-
cesses, the joint cumulative probability distribution function is defined as:

FXY (x1; y1; t1; t′1) ! P{X(t1, s) ≤ x1 ∧ Y (t′1, s) ≤ y1} (A.3)

A.3 Probability density function

The (joint) pdf is found by taking the derivative of the (joint) cumulative
probability distribution functions:

fX(x1; t1) !
∂FX(x1; t1)

∂x1
(A.4)

fX(x1, x2; t1, t2) !
∂2FX(x1, x2; t1, t2)

∂x1∂x2
(A.5)

fXY (x1; y1; t1; t′1) !
∂2FXY (x1; y1; t1; t′1)

∂x1∂y1
(A.6)

The pdf fX(x1; t1) describes, roughly speaking, the chance P{X(t1, s) ≈
x1}. This can be shown by:

P{x1 − ε ≤ X(t1, s) ≤ x1 + ε} = P{X(t1, s) ≤ x1 + ε}− P{X(t1, s) ≤ x1 − ε}
= FX{x1 + ε; t1}− FX{x1 − ε; t1}

=

∫ x1+ε

−∞
fX(x; t1) dx−

∫ x1−ε

−∞
fX(x; t1) dx

=

∫ x1+ε

x1−ε
fX(x; t1) dx

≈ 2εfX(x; t1) (A.7)

A.4 Averages

The mean value of a stochastic process is a weighted average of all sample
functions assigned to a possible outcome in the sample space:

E [X(t1; s)] !

∫

xfX(x; t1) dx (A.8)
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The mean value is a function of time, but may be constant. An other kind of
average is the time average:

A [X(t; s1)] ! lim
T→∞

1

2T

T∫

−T

x(t; s1) dt (A.9)

The time average may be different for different sample functions.

A.5 Autocorrelation

The autocorrelation of a real stochastic process is a function of two time para-
meters, defined according to:

RXX(t1, t1 + τ ) ! E [X(t1; s) ·X(t1 + τ ; s)]

=

∫∫

x1x2fX(x1, x2; t1, t1 + τ) dx1 dx2 (A.10)

For many stochastic processes of practical use the autocorrelation does not
depend on the absolute time. In that case it can be written as:

RXX(t, t+ τ ) = RXX(τ ) (A.11)

If furthermore E [X(t1, s)] is independent of t1, the process X is called wide-
sense stationary. A wide sense stationary process is called ergodic if and only
if that process satisfies the following two conditions:

A [X(t; s)] ≡ E [X(t; s)] = constant (A.12)

A [X(t; s)X(t+ τ ; s)] ≡ E [X(t; s)X(t+ τ ; s)] = RXX(τ ) (A.13)

Proving ergodicity of a stochastic process encountered in practice is hard if not
impossible. Usually ergodicity is assumed unless the contrary is evident. In this
report when the autocorrelation is discussed, actually the Fourier transform of
the autocorrelation of an ergodic process is meant:

SXX(ω) !

∞∫

−∞

RXX(τ ) exp (−jωτ) dτ (A.14)

The function SXX(ω) is a measure for the way in which the total power of the
process is spread over the different frequency components. Therefore it is called
the power spectral density (psd) or just the power spectrum of the process X .

A.6 Cross-correlation

The cross-correlation of two real stochastic processes is defined according to:

RXY (t1, t1 + τ) ! E [X(t1; s) · Y (t1 + τ ; s)]

=

∫∫

x1y1fX(x1, y1; t1, t1 + τ) dx1 dy1 (A.15)
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In many cases the cross-correlation of two stochastic processes does not depend
on the absolute time. In that case it can be written as:

RXY (t, t+ τ ) = RXY (τ ) (A.16)

If this is the case and furthermore the stochastic processes X and Y are wide-
sense stationary,X and Y are jointly wide sense stationary. These processes are
called jointly ergodic if and only if both of them are ergodic and furthermore:

A [X(t; s)Y (t+ τ ; s)] ≡ E [X(t; s)Y (t+ τ ; s)] = RXY (τ ) (A.17)

The function RXY (τ ) is related to RYX(τ ) according to:

RYX(τ ) = E [Y (t1; s) ·X(t1 + τ ; s)] = E [X(t1 + τ ; s) · Y (t1; s)]

= E [X(t′1) · Y (t′1 − τ ; s)] = RXY (−τ ) (A.18)

In this report when the cross correlation is discussed, actually the Fourier
transform of the cross-correlation of two jointly ergodic process is meant:

SXY (ω) !

∞∫

−∞

RXY (τ ) exp (−jωτ ) dτ (A.19)

The function SXY (ω) is called the cross-power spectral density or just the
cross-power spectrum. The cross-power spectrum shows up, for example, when
the autocorrelation of the sum of two stochastic processes is calculated:

Z(t, s) ! X(t, s) + Y (t, s) (A.20)

⇒ RZZ(τ ) = RXX(τ ) +RY Y (τ ) +RXY (τ) +RY X(τ ) (A.21)

⇒ SZZ(ω) = SXX(ω) + SY Y (ω) + SXY (ω) + SYX(ω) (A.22)

From this it can be seen (although it is not a complete proof) that the autocor-
relation of a sum of processes is equal to the sum of the autocorrelations of those
processes, if and only if those processes are uncorrelated: if their cross-power
spectrum is zero.

The function SXY (ω) is related to SYX(ω) according to:

SYX(ω) =

∞∫

−∞

RY X(τ ) exp (−jωτ) dτ =

∞∫

−∞

RXY (−τ ) exp (−jωτ ) dτ

=

∞∫

−∞

RXY (τ ′) exp (jωτ ′) dτ ′ =

∞∫

−∞

RXY (τ ′) exp (−jωτ ′) dτ ′

= SXY (ω) (A.23)

When a wide sense stationary stochastic process Z(t, s1) is filtered twice in
parallel, such that X(t, s1) = hZX(t)∗Z(t, s1) and Y (t, s1) = hZY (t)∗Z(t, s1),
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where the symbol ∗ is the convolution operator. the cross correlation yields:

RXY (τ ) = E [X(t; s1) · Y (t+ τ ; s− 1)]

= E
[(

hZX(t) ∗ Z(t, s1)
)

·
(

hY Z(t+ τ ) ∗ Z(t+ τ , s1)
)]

= E





∞∫

−∞

hXZ(θ1) · Z(t− θ1) dθ1 ·
∞∫

−∞

hY Z(θ2) · Z(t+ τ − θ2) dθ2





=

∫∫ ∞

−∞
E [Z(t− θ1) · Z(t+ τ − θ2)] · hXZ(θ1) · hY Z(θ2) dθ1 dθ2

=

∫∫ ∞

−∞
RZZ((τ + θ1)− θ2) · hXZ(θ1) · hY Z(θ2) dθ1 dθ2

=

∫ ∞

−∞

(

RZZ(τ + θ1) ∗ hY Z(τ + θ1)
)

· hXZ(θ1) dθ1

= RZZ(τ ) ∗ hY Z(τ ) ∗ hXZ(−τ ) (A.24)

⇒ SXY (ω) = HXZ(ω) ·HY Z(ω) · SZZ(ω) (A.25)

A.7 Correlation estimator

In this section we will discuss how to estimate a cross-correlation function
in practice. The results are valid for an autocorrelation as well, by choosing
Y = X and consequently y(t) ≡ x(t).

To measure a correlation function in practice, requires knowledge of all
possible functions that can result from a stochastic process as can be seen
from Equation A.10. This is not possible. However when (joint) ergodicity is
assumed the time average can be used instead of the ensemble average:

RXY (τ ) = RXY (t, t+ τ ) by Equation A.16

= E [X(t) · Y (t+ τ)] by Equation A.15

= A [X(t) · Y (t+ τ )] by Equation A.17

= lim
T→∞

1

2T

T∫

−T

x(t) · y(t+ τ ) dt by Equation A.9 (A.26)

This equation can still not be used for measuring, because an infinite amount
of time would be required. However an estimate can be made by taking a
sufficiently long time in the future, resulting in an implementable calculation:

R̂XY (τ , T ) =
1

T

T∫

0

x(t) · y(t+ τ ) dt (A.27)

Having estimated the cross-correlation, any suitable estimator for a Fourier
transform can be used to obtain the cross-power spectrum.

In this report another approach is used, which is found by rewriting the
cross-power spectrum as a function of the Fourier transforms of the input sam-
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ple functions:

SXY (ω) =

∞∫

−∞



 lim
T→∞

1

2T

T∫

−T

x(t) · y(t+ τ) dt



 exp (−jωτ ) dτ

= lim
T→∞

1

2T

T∫

−T

x(t) exp (jωt)





∞∫

−∞

y(t+ τ) exp (−jω(t+ τ)) d(t+ τ)



 dt

= lim
T→∞

1

2T

∞∫

−∞

rect

(
t

2T

)

x(t) exp (−jωt) · Y (ω) dt

= lim
T→∞

1

2T

(

2 sin (ωT )

ω
∗X(ω)

)

· Y (ω)

= lim
T→∞

(
sin (ωT )

ωT
∗X(ω)

)

· Y (ω) (A.28)

with:

rect

(
t

2T

)

!









1 |t| < T
1
2 |t| = T

0 |t| > T

(A.29)

The rect-function and its Fourier transform are found in [19]. The result of
Equation A.28 shows an unexpected asymmetry, as convolution and multipli-
cation are not mutually distributive or associative, so we cannot remove the
brackets. This becomes more clear by using Equation A.23:

SXY (ω) = SYX(ω) = lim
T→∞

(
sin (ωT )

ωT
∗ Y (ω)

)

·X(ω)

= lim
T→∞

(
sin (ωT )

ωT
∗ Y (ω)

)

·X(ω) (A.30)

To give a weak mathematical explanation of why Equation A.28 and Equa-
tion A.30 are equivalent, we need the following limit that represents a nascent
delta function [20]:

lim
T→∞

sin (ωT )

ωπ
= lim

ε→0

1

ωπ
sin
(ω

ε

)

= δ(ω) (A.31)

When applied to either Equation A.28 or Equation A.30 this results in:

SXY (ω) = lim
T→∞

(
π

T

sin (ωπ)

ωT
∗X(ω)

)

· Y (ω)

= lim
T→∞

( π

T
· δ(ω) ∗X(ω)

)

· Y (ω)

= lim
T→∞

π

T
·X(ω) · Y (ω) (A.32)

Although Equation A.32 contains the expected symmetry, the description is not
entirely correct. Because X(ω) and Y (ω) do not depend on the time period T ,
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the limit will either be zero or undefined as:

lim
T→∞

π

T
· δ(ω − ω0) =

{

undefined ω = ω0

0 ω 2= ω0
(A.33)

While:

lim
T→∞

sin (ωT )

ωT
∗ δ(ω − ω0) = lim

T→∞

sin ((ω − ω0)T )

(ω − ω0)T
=

{

1 ω = ω0

0 ω 2= ω0
(A.34)

This means the representation in Equation A.32 can only be used when every
delta peak in X(ω) and Y (ω) is interpreted as:

lim
T→∞

δ(ω) =

{

lim
T→∞

T ω = 0

0 ω 2= 0
(A.35)

Fortunately, when a finite amount of time is used for estimating the cross-psd,
neither T nor the estimation of the delta peak is infinite, so the problem with
an undefined value as in Equation A.33 will not occur. The cross correlation of
two jointly ergodic processes can be estimated by approximating Equation A.32
using a finite amount of measurement time that is not in the past:

ŜXY (ω, T ) =
2π

T
· X̂(ω, T ) · Ŷ (ω, T ) (A.36)

With:

X̂(ω, T ) =

∫ T

0
x(t) exp (−jωt) dt (A.37)

Ŷ (ω, T ) =

∫ T

0
y(t) exp (−jωt) dt (A.38)





Appendix B

Derivation of the self-impedance
of a dipole antenna

This appendix shows how to solve the integral describing the impedance of a
dipole antenna according to the induced emf method as used in Section 3.1 on
Page 15.

4π

η
Zm =

!∫

−!

j sin (k(!− |z|))
(

e−jkR1

R1
+

e−jkR2

R2
− 2 cos (k!)

e−jkr

r

)∣
∣
∣
∣
∣
s=a

dz

(B.1)

with:

r =
√

s2 + z2

R1 !

√

s2 + (z − !)2

R2 !

√

s2 + (z + !)2

Noting the integrand is even symmetric in z = 0:

4π

η
Zm =

!∫

0

(

ejk(!−z) − e−jk(!−z)
)
(

e−jkR1

R1
+

e−jkR2

R2
− 2 cos (k!)

e−jkr

r

)∣
∣
∣
∣
∣
s=a

dz

(B.2)

Substitution of R1, R2 and r, combining all exponentials and splitting the
integral in a sum of integrals, yields:

87
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4π

η
Zm =

∫ +

0

e
jk

(

!−z−
√

a2+(z−!)2
)

√

a2 + (z − !)2
dz +

∫ +

0

e
jk

(

!−z−
√

a2+(z+!)2
)

√

a2 + (z + !)2
dz

+

∫ +

0
−e

jk
(

z−!−
√

a2+(z−!)2
)

√

a2 + (z − !)2
dz +

∫ +

0
−e

jk
(

z−!−
√

a2+(z+!)2
)

√

a2 + (z + !)2
dz

+

∫ +

0
−ejk(2!−z−

√
a2+z2)

√
a2 + z2

− ejk(−z−
√
a2+z2)

√
a2 + z2

dz

+

∫ +

0

ejk(z−
√
a2+z2)

√
a2 + z2

+
ejk(z−2!−

√
a2+z2)

√
a2 + z2

dz

(B.3)

Making a substitution v = z ± ! where applicable, yielding dv = dz, and
rewriting the last two integrals:

4π

η
Zm =

∫ 0

−+

ejk(−v−
√
a2+v2)

√
a2 + v2

dv −
∫ 0

−+

ejk(v−
√
a2+v2)

√
a2 + v2

dv

+ e2jk!
∫ 2+

+

ejk(−v−
√
a2+v2)

√
a2 + v2

dv − e−2jk!
∫ 2+

+

ejk(v−
√
a2+v2)

√
a2 + v2

dv

− (1 + e2jk!)

∫ +

0

ejk(−v−
√
a2+v2)

√
a2 + v2

dv + (1 + e−2jk!)

∫ +

0

ejk(v−
√
a2+v2)

√
a2 + v2

dv

(B.4)

Making a second substitution w = jk(u±
√
a2 + u2), yielding dw = ±w du/

√
a2 + u2,

results in:

4π

η
Zm =

jka∫

jk(
√

a2++2−+)

exp(−w)

w
dw +

jka∫

jk(
√

a2++2++)

exp(−w)

w
dw + e2jk! ·

jk(
√

a2+(2+)2+2+)
∫

jk(
√

a2++2++)

exp(−w)

w
dw

+e−2jk!·

jk(
√

a2+(2+)2−2+)
∫

jk(
√

a2++2−+)

exp(−w)

w
dw−(1+e2jk!)·

jk(
√

a2++2++)∫

jka

exp(−w)

w
dw−(1+e−2jk!)·

jk(
√

a2++2−+)∫

jka

exp(−w)

w
dw

(B.5)

These integrands do not have an an antiderivative that can be expressed in
elementary functions. Instead, the solution can be given in terms of the E1-



89

function:

E1(z) !

∫ ∞

z

exp(−w)

w
dw &(z) ≥ 0 (B.6)

E′
1(a, x) !E1

(

jk(
√

a2 + x2 + x)
)

(B.7)

4π

η
Zm =− exp(2jk!) ·E′

1(a, 2!) + (2 · exp(2jk!) + 2) ·E′
1(a, !)

+ (− exp(2jk!)− exp(−2jk!)− 4) · E′
1(a, 0)

+ (2 · exp(−2jk!) + 2) · E′
1(a,−!)− exp(−2jk!) ·E′

1(a,−2!)

=2E′
1(a, !)− 4E′

1(a, 0) + 2E′
1(a,−!) + cos (2k!)

·
[

− E′
1(a, 2!) + 2E′

1(a, !)− 2E′
1(a, 0) + 2E′

1(a,−!)− E′
1(a,−2!)

]

+ j sin (2k!) ·
[

− E′
1(a, 2!) + 2E′

1(a, !)− 2E′
1(a,−!) + E′

1(a,−2!)
]

(B.8)

As the dipole radius a is in general very small compared to its length 2!, three
values applied to the E1-function are close to zero, resulting in very large num-
bers that are subtracted to obtain a small number. Using numerical evaluation,
this might easily give rise to errors. These errors can be circumvented by using
the following series expansion for the exponential integral to obtain a useful
approximation to Equation B.8 [21]:

E1(z) = −γ − ln (z)−
∞∑

n=1

(−z)n

n · n! (B.9)

with γ ! lim
N→∞

(
N
∑

n=1

n−1 − ln(N)

)

≈ 0.5772 (B.10)

When z is a small positive imaginary number, we can rewrite the series as:

−
∞
∑

n=1

(−jε)n

n · n! =−
∞
∑

n=0

[
ε2(n+1)

2(n+ 1) · (2(n+ 1))!
(−1)n−1

]

− j ·
∞
∑

n=0

[
ε2n+1

(2n+ 1) · (2n+ 1)!
(−1)n−1

]

= jε+
ε2

4
− j

ε3

18
− ε4

96
+ . . . (B.11)

Here, ε is a small positive real number. Using the alternating series estimation
theorem (see: [22]) with the first two terms of both series, we can conclude:











ε2
(

1
4 − ε2

96

)

≤
∣
∣
∣
∣
&
{ ∞∑

n=1

(−jε)n
n·n!

}∣
∣
∣
∣
≤ ε2

(
1
4 + ε2

96

)

ε
(

1− ε2
18

)

≤
∣
∣
∣
∣
)
{ ∞∑

n=1

(−jε)n
n·n!

}∣
∣
∣
∣
≤ ε

(

1 + ε2
18

) (B.12)
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When z is sufficiently close to zero, the series in Equation B.9 can be neglected
compared to the natural logarithm:











∣
∣
∣
∣
&
{ ∞∑

n=1

(−jε)n
n·n!

}∣
∣
∣
∣
≤ ε2

(
1
4 + ε2

96

)

( |& {ln(jε)}| = |ln(ε)|
∣
∣
∣
∣
)
{ ∞∑

n=1

(−jε)n
n·n!

}∣
∣
∣
∣
≤ ε

(

1 + ε2
18

)

( |) {ln(jε)}| = π
2

(B.13)

⇒ E1(jε) ≈ −γ − ln (jε) = −γ − ln (ε)− jπ

2
(B.14)

⇒ lim
a→ε

c0 ·E′
1(a, 0) + c1 ·E′

1(a,−!) + c2 ·E′
1(a,−2!) ≈

− (c0 + c1 + c2) ·
(

γ +
jπ

2

)

+

ln

(

lim
a→ε

(

(ka)c0 · (k(
√

a2 + !2 − !))c1 · (k(
√

a2 + (2!)2 − 2!))c2
))

(B.15)

In these equations γ is the Euler-Mascheroni constant (0.577. . . ). Application
of this approximation to Equation B.8 yields for small antenna radii a:

4π

η
Zm ≈ 2E′

1(a, !) + 2γ + jπ + ln

(

k2a4

(
√

a2 + !2 − !)2

)

+ cos (2k!)






−E′

1(a, 2!) + 2E′
1(a, !) + γ +

jπ

2
+ ln







k

(√

a2 + (2!)2 − 2!

)

a2

(
√

a2 + !2 − !)2













+ j sin (2k!)

[

−E′
1(a, 2!) + 2E′

1(a, !) + γ +
jπ

2
+ ln

(

k(
√

a2 + !2 − !)2
√

a2 + 2!2 − 2!

)]

(B.16)

≈ 2E1(2jk!) + 2γ + jπ + 2 ln (2k!)

+ cos (2k!)

[

−E1(4jk!) + 2E1(2jk!) + γ +
jπ

2
+ ln (k!)

]

+ j sin (2k!)

[

−E1(4jk!) + 2E1(2jk!) + γ +
jπ

2
+ ln

(
ka2

!

)]

(B.17)

The argument to the last natural logarithm in equation B.16 limits to zero,
so the second order Taylor-approximation of this argument is given in equa-
tion B.17 instead, for approximating for small dipole diameters. The real and
imaginary part of Equation B.17 are shown in Equation 3.15 and Equation 3.16
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on Page 18. This result can be found by writing the E1-function as:

E1(jx) =

∫ ∞

jx

exp(−w)

w
dw =

∫ ∞

x

exp(−jv)

v
dv

=

∫ ∞

x

cos (v)

v
− j

sin (v)

v
dv

=

∫ ∞

x

cos (v)

v
du− j

(∫ ∞

0

sin (v)

v
dv −

∫ x

0

sin (v)

v
dv

)

= Ci(x) + j Si(x)− jπ

2
(B.18)

with: Si(x) !

∫ x

0

sin (w)

w
dw Ci(x) !

∫ ∞

x

cos (w)

w
dw
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