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Abstract 
 

Aspect-instantiation policies define the rules how aspect instances are stored, looked-up and 

instantiated. Current aspect-oriented languages implementations are restricted to generating 

bytecode for realizing the semantics of aspect instantiation. Often however, bytecode is not 

expressive enough to support the most efficient optimizations. The ALIA4J framework for 

implementing execution environments with support for aspect-oriented languages allows 

implementing the semantics of language features in terms of bytecode generation and JIT-

compilation. In this thesis a JIT compilation strategy for aspect-instantiation is developed that 

supports a variety of aspect-instantiation policies, ranging from singleton and per-object policies 

to per-multiple-object policies. The compilation strategy is benchmarked and its performance is 

compared to state-of-the-art aspect-oriented language implementations. 
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Chapter   1   
 

Introduction 
In the recent years several new programming languages have been developed that aim to increase 

the separation of concerns. The separation of concerns allows a developer to develop software 

that is logically decomposed and can therefore focus on a single concern instead of focusing on 

everything at once [1]. The new languages are based on the manipulation of dispatch and because 

they go beyond the traditional object-oriented dispatch, they are called advanced dispatching 

languages [2]. Examples of advanced dispatch concepts in these languages are multiple dispatch, 

predicate dispatch and pointcut-advice. The last concept plays a central role in this thesis and for 

convenience reasons we abbreviate it to PA. 

A main responsibility of PA-languages [3], like for instance AspectJ [4] and AspectWerkz [5], is 

how to define an aspect-instantiation policy. The aspect-instantiation policy determines how 

aspects instances are instantiated, stored and looked-up. Since these actions are not under the 

direct control of the client
1
, mechanisms exists that realize at run-time the instantiation, storage 

and look-up. An example of an aspect-instantiation policy in AspectJ is the per-target policy. 

Next chapters will show that there exist more policies and also their exact definition will be 

described.  

The instantiation and look-up of aspect instances is task that must be performed fast. The aspect 

instance serves as the context to run the execution of one or more advices. If advices are executed 

often then aspect instances are also instantiated and/or looked-up that often. Therefore it is 

feasible that these actions must be performed fast since it can take a substantial part of the overall 

execution time if advice is executed often. 

The mechanisms that determine the instantiation, look-up and storage of an aspect-instantiation 

policy form the semantics of the policy. As just mentioned more policies exist and research has 

showed that some policies are closely related to each other [6] [4]. In [7] a generalized model is 

defined that captures the most used aspect-instantiation policies found in mainstream PA-

languages. The generalized model discusses the instantiation, look-up and storage mechanisms of 

each policy in detail. The aspect-instantiation policies that are going to be optimized in this work 

are all captured by the generalized model and this model therefore plays a fundamental role in 

this work and is elaborated in chapter two. 

As stated in the previous paragraph, the instantiation and look-up mechanism should be fast 

because it can affect a substantial part of the overall execution time. In PA-languages like AspectJ 

and AspectWerkz, these mechanisms are compiled to the same intermediate representation as the 

intermediate representation of the base program. For instance, in AspectJ these mechanisms are 

                                                           
1
 A client can be, for example, the programmer working with aspect-oriented program. 
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represented as Java bytecode instructions. In the end, the bytecode instructions of the mechanisms 

plus the bytecode instructions of the base program are woven to a final program. 

In order to execute the final program, the bytecode instructions are compiled straightforward to 

machine code by the JIT-compiler. It is straightforward in the sense that it just compiles the 

bytecode to machine code without knowing that the final program is actually a woven program 

that consists of the mechanisms plus base program. Because the JIT-compiler does not have 

knowledge about these mechanisms it cannot apply optimizations that are based on semantics of 

these mechanisms. This fact introduces a so-called semantic gap [8]. 

The ALIA4J framework [9] provides various solutions for closing the semantic gap. The 

solutions have all in common that the semantic gap is closed by preserving semantics of aspect-

instantiation policies. The difference between the solutions is how the implementation is 

accomplished. There are implementation styles that are based on a high-level of abstraction 

whereby semantics are implemented as plain Java method, but there exist also styles that work on 

a much lower level of abstraction that allows machine code to be generated. In this work the latter 

style is chosen. We mentioned in the first section that aspect instantiation and/or look-up should 

be fast because it can take a substantial part of overall execution time. Since the focus of this 

work is on optimization, the latter style looks most promising in order to achieve the best 

optimizations. The challenge of this work is therefore to come up with a solution whereby 

semantics of the mechanisms are preserved until the latest moment in time so that the JIT-

compiler can produce machine that is optimized according to semantics of the mechanisms. The 

generalized model plays thereby an important role because it captures the most used aspect-

instantiation policies.  

We implement the solution in the Advanced-dispatching Language-Implementation Architecture 

for Java (ALIA4J) framework. ALIA4J provides a foundation for sharing the implementation of 

overlapping advanced dispatching concepts. ALIA4J consist of two major components, LIAM 

and FIAL that work in a well coordinated fashion. LIAM maps advanced dispatching concepts to 

a model that is based on a single meta-model. Once advanced dispatching concepts are mapped to 

a model, it is, together with bytecode that does not use advanced dispatching, compiled to an 

intermediate representation. In order to execute the intermediate representation, it is passed to one 

of ALIA4J’s execution environments. When the meta-model is going to be executed, ALIA4J 

instantiates a FIAL component that processes the model conforming to the single model. Due to 

the clear separation of advanced dispatch concepts and the execution environment, ALIA4J 

provides a foundation to implement the solution in modular way. One part of the solution can be 

implemented in LIAM whereas the other part can be implemented in Steamloom
ALIA

, one of 

ALIA4J execution environments. Furthermore, ALIA4J provides services and modules that can 

be used and/or redefined when implementing the solution. Chapter discusses ALIA4J in more 

detail. 
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The approach that we follow in order to realize the solution is as follows: 

1. We develop a new LIAM entity that contains semantics of the aspect-instantiation 

policies described in [7]. 

2. We adapt the JIT-compiler of Steamloom
ALIA

 that allows the new LIAM entity to 

generate machine code that is based on semantics of aspect-instantiation policies. 

 

The new LIAM entity that is going to be developed inherits from an existing LIAM entity. The 

existing LIAM entity implements the generalized model that in turn models semantics of aspect-

instantiation policies. However, the existing implementation uses the high-level style which 

means that semantics are implemented as plain Java instructions. In chapter four this existing 

LIAM entity is elaborated and it is shown that the high-level approach is good for 

experimentation but not for optimization purposes. The new LIAM entity uses the low-level 

approach and is able to generate machine code. Basically the new LIAM entity becomes a part of 

the JIT-compiler and temporary takes over control of code generation. When it generates machine 

code, it does that according to semantics of the generalized model. The look-up, storage and 

instantiation mechanisms thus work more efficient leading to a better overall execution time. 

In order to assess the effectiveness of the optimizations made we defined a series of experiments. 

A benchmark platform measures the execution time of several aspect-instantiation policies and 

compares them against implementations in AspectJ [4] and Association Aspects [6]. 

The remainder of this thesis is structured as follows:  

 Chapter two presents the generalized model; 

 Chapter three discusses the required technical background on ALIA4J; 

 Chapter four gives an analysis of the problem; 

 Chapter five discusses the implementation; 

 Chapter six provides the experiments; 

 Chapter seven gives the conclusion and provides suggestions for future work. 
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Chapter   2  
 

The Generalized Model 
This chapter discusses the generalized model [7] for aspect-instantiation policies. The purpose of 

an instantiation policy is to define the rules according to which aspects are instantiated. Because 

aspects in mainstream PA-languages are instantiated automatically, instantiation policies are 

inevitable. Instantiation policies manage the rules according to instance storage and look-up, 

instantiation, and restriction.  

 The instance storage and look-up mechanisms take care how aspect instances are stored 

after they have been created and how they can be looked-up next time. 

 

 The instantiation mechanism decides when a new aspect instance must be created or if an 

existing instance must be looked-up. 

 

 The restriction mechanism has the responsibility for restricting aspect instance to 

participate in a selection of aspect instances. 

The first half of this chapter discusses the aspect-instantiation policies that are used in this work. 

We discuss the policies with respect to instance storage and lookup, instantiation, and restriction. 

The second half of this chapter explains how the generalized model is developed. It turns out one 

aspect-instantiation policy forms the basis of the generalized model.  

2.1 Association aspects  
The first instantiation policy is the association aspect policy and is the most general one. The 

other policies, described in the next sections, are all considered to be special cases of this policy. 

The association aspects concept is described by Sakurai et al. [6] and is used to associate an 

aspect instance to a group of objects. This concept therefore supports behavioral relations 

amongst a group of objects. With behavioral relations it is, for instance, possible to keep the state 

between two objects synchronized. The next example gives an illustration. 

Consider a class Bit shown in listing 2.1. A bit object has one instance variable value that 

represents a boolean value and three instance methods set, clear and get, that respectively set the 

value to true, set the value to false and return the value. In a real application it might be the case 

that the state of two bit objects must stay synchronized. For this example it means that setting or 

clearing one bit causes the value of the other bit to be set or cleared. In order to associate two bit 

objects with each other and synchronize their states, Sakurai et al. invented association aspects. 
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1 class Bit { 

2  boolean value = false; 

3   

4  void set()         { value = true;  } 
5 void clear()      { value = false; } 

6 boolean get()  { return value; } 
7 }  

Listing 2-1 – Class Bit 

Association aspects are realized as an extension to AspectJ. Thereby three keywords are added: 1) 

the perobjects modifier, the associate statement and the associated pointcut designator. Listing 

2.2 shows an association aspect called Equality that implements the example. 

The perobjects modifier on line 1 defines that the aspect associates two objects of type Bit. The 

associate statement in the aspect’s constructor on line 6 creates the association. As is visible, two 

objects of type Bit called left and right are associated. The associated pointcut designator on 

line 13 and 19 is used in a pointcut expression to retrieve the aspect instance that is associated 

with the objects that are present in a join point. The retrieved aspect instance is then used as 

context to execute one or more advices. In the example two pointcuts plus their advices are 

defined. Furthermore, the example shows that a pointcut designator supports the use of wildcards. 

This means that for one pointcut multiple aspect instances can be retrieved and that thus multiple 

advices can execute. 

 

For instance, consider that the following three associations are made. The first association 

consists of <b1:Bit, b2:Bit>, the second of <b1:Bit, b3:Bit>, and the third of  

<b2:Bit, b3:Bit>. Then next, a method executes whereby the following join point shadow is 

reached: 

 

b1.set(); 

The join point is matched by the first pointcut (line 11-13). Namely: The pointcut designator on 

line 11 matches the signature of the join point. The target (receiver) object is b1:Bit and is bound 

the formal parameter left. The associate pointcut designator where b1 plays the left-hand side 

object and a wildcard plays the right-hand side object matches two associations. Therefore the 

pointcut retrieves in total two aspect instances and the advice is executed twice. 

The association aspect-instantiation policy manages the rules according to instance storage and 

lookup, instantiation, and restriction as follows: 

The instance storage and lookup mechanism: As the example shows, the aspect instance is 

associated to two objects of type Bit and therefore the aspect instance is stored in a field of both 

objects that participate in an association. This is because the aspect instance can be looked-up via 

both objects. In a case of a lookup via the left object, the right object is checked to see if it exists 

in the association. If so, then the look-up retrieves the associated aspect instance.  In a case of a 

look-up via the right object, the left object is checked and so on.  
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The instantiation mechanism: Association aspects must be instantiated explicitly. This includes 

that a group of objects must be manually associated to an aspect instance. For instance: in order to 

associate objects b1:Bit and b2:Bit to an Equality aspect instance,  one has to call the aspect’s 

constructor like new Equality (b1, b2). 

The restriction mechanism: As explained, association aspects follow an explicit instantiation 

strategy. When no association is made between objects, then no aspect instance will be retrieved. 

Thus, it is restricted in the sense that if no association is made, no aspects instance will be 

retrieved.  

 

1 aspect Equality perobjects(Bit, Bit)  { 

2 Bit left; 
3 Bit right; 

4  
5 Equality(Bit left, Bit right)  { 

6 associate(left, right); 
7 this.left = left; 

8 this.right = right; 

9 } 

10  

11 after(Bit left) : call(void Bit.set())  && 
12 target(left)  && 

13 associated(left, *)  { 
14 // notify the right bit of change 

15 } 
16  

17 after(Bit right)  :  call(void Bit.set())  && 
18 target(right)  && 

19 associated(*, right)  { 
20 // notify the left bit of change 

21 } 
22 }  

Listing 2-2 – Equality aspect in Association Aspects 

 

2.2 Per-object instantiation 
In contrast to the association aspect instantiation policy, the per-object instantiation policy 

associates an aspect instance to only one object. The policy is supported by the mainstream PA-

languages. In AspectJ this policy is subdivided in the per-this instantiation policy and the per-

target instantiation policy. The difference between the policies is that the former one selects the 

caller object when a join point is matched by a pointcut, whereas the latter on selects the callee 

object. 

The per-object aspect-instantiation policy manages the rules according to instance storage and 

look-up, instantiation, and restriction as follows: 
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The instance storage and look-up mechanism: The aspect instance is stored in a field of the object 

that is involved at the join point matched by a pointcut.  The instance can be lookup by referring 

to the field. 

The instantiation mechanism: The per-object instantiation policy follows an implicit instantiation 

strategy. This means that the aspect instance is created and associated the object automatically.   

The restriction mechanism:  There is no restriction for the per-object instantiation policy because 

aspect instances are created automatically on demand. 

 

2.3 Singleton aspects 
The singleton instantiation policy is useful when an aspect instance does not have to be associated 

to any object. Therefore only one aspect instance exist throughout the execution of a program.  

The singleton aspect-instantiation policy manages the rules according to instance storage and 

look-up, instantiation, and restriction as follows: 

The instance storage and look-up mechanism: Because only one aspect instance can exist it does 

not have to be stored in a field of an object. The same applies for look-up. The look-up function 

returns the aspect instance without depending on an object. 

The instantiation mechanism: The per-object instantiation policy follows an implicit instantiation 

strategy. This means that the aspect instance is created automatically.   

The restriction mechanism:  There is no restriction for the per-object instantiation policy because 

aspect instances are created automatically on demand. 
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2.4 Generalized Model 
Based on the three discussed instantiation policies, a generalized model is defined in [7] that 

models the three discussed instantiation policies. Hereby the association aspect policy is taken as 

the base instantiation policy. The association aspect policy, however, has support for explicit 

instantiation only. Since the model must also cover the per-object and singleton instantiation 

policies, support for implicit instantiation is added. Thus, the generalized model is in fact: 

association aspects and optional support for implicit instantiation. 

Next, we discuss how the three aspect-instantiation policies are mapped to the generalized model. 

We characterize each policy in the generalized model through the following four properties: 

1. The arity of the key tuple. 

In general an aspect-instantiation policy establishes a relation between an n-tuple of 

objects to an aspect instance.  The n-tuple of objects is defined as the key-tuple. The arity 

of the key-tuple is specified by the length of the key-tuple. 

 

2. The context values exposed. 

The aspect-instantiation policy determines which context-values are exposed and are 

bound to the key-tuple. The number of context-values exposed equals the arity of the 

key-tuple. 

 

3. Explicit or implicit association strategy. 

The aspect-instantiation policy follows either an explicit or implicit strategy. If an 

implicit strategy is used then aspect instances are created automatically according to the 

rules of the policy. In case of an explicit instantiation strategy, the aspect instance is 

manually created together with a definition when the aspect instance may be used. 

 

4. Wildcards. 

The aspect-instantiation strategy can be configured to use wildcards for the key-tuple.  

If wildcards are used then the key-tuple can result into more than one aspect instantiation.  

 

 

Association Aspect Instantiation Policy: 

The association aspect-instantiation policy directly maps to the model without any adoptions or 

constraints because the model is based on this policy. The following properties apply for the 

association aspects instantiation policy: 

Arity of key-tuple: Any size 

Context exposition: Any context 

Instantiation strategy: Explicit 

Wildcards: Any wildcards 
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Per-Object Instantiation Policy: 

The per-object instantiation policy is mapped to the model with the support for implicit 

instantiation and is characterized as follows: 

Arity of key-tuple: 1 

Context exposition: Caller or Callee 

Instantiation strategy: Implicit 

Wildcards: Not available 

 

Singleton Instantiation Policy: 

The singleton instantiation policy is mapped to the model with the support for implicit 

instantiation and is characterized as follows: 

Arity of key-tuple: 0 

Context exposition: Not available 

Instantiation strategy: Implicit 

Wildcards: Not available 

 

 

2.5 Support for Multi Values & the StoreHandle entity 
The generalized model assumes that at most one aspect instance is associated to key-tuple. The 

association relation is considered to be a function. The function is called the instance storage 

function FS of a given aspect:  

FS : K -> IA 

where K is the key-tuple and IA an aspect instance. 

The storage function of the generalized model does not allow that K results into multiple IA 

values. It is thus a mathematical function whereby the input value is associated with exactly one 

output value.  

We would like that the storage function can support so-called multi values. This means that K 

results in multiple IA values. The next small example shows why the need for multi values is 

feasible: If we would like to associate one key-tuple with two aspect instances (for instance, a 

security aspect and log aspect), then we are forced two deploy two units of dispatch
2
, with each 

unit having its own storage function. The fact that two units of dispatch have to be deployed does 

not contribute to a faster execution of the overall program. The key-tuple has to be given to the 

storage function twice which in turn performs a search twice. 

We have therefore changed the storage function into a storage relation. The storage relation 

allows that one K can result into multiple IA values.    

 

 

                                                           
2
 A unit of dispatch is explained in the next chapter. 
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Each association that is established must be stored at a location that is known to the instance 

storage and look-up mechanisms. The StoreHandle entity is defined as the location where 

associations are stored. One of the first contributions of this work is to have support for multi 

values and as a consequence we adapted the StoreHandle entity accordingly. The StoreHandle 

entity is shown in listing 2.3 and its most two important methods are the add and getMatched 

method to which will be referred in the remainder of this thesis.  The add method establishes an 

association between a key-tuple and aspect instance. The getMatched method is used to retrieve 

an association. 

 

1 public class StoreHandle { 

2  

3 private  MultivalueMap map = new MultivalueMap();  
4  

5 public Object[] getMatched(Object[] tuple) { 
6 // return associated aspect instances 

7 } 
8  

9 public void add(Tuple key, Object value) { 

10 // associate the key (tuple) with value (aspect instance) 

11 } 

12 } 

 

Listing 2-3 – The StoreHandle entity 
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Chapter   3  
 

Background ALIA4J 
This chapter discusses the technical background on ALIA4J. We begin with a global overview of 

ALIA4J in section 3.1. Next, its main components LIAM and FIAL are discussed in section 3.2 

and 3.3 respectively. Finally section 3.4 discusses Steamloom
ALIA

 that is one of ALIA4J’s 

execution environments. 

 

3.1 ALIA4J 
In the introduction we discussed that the solution is going to be implemented in ALIA4J. The 

ALIA4J approach provides a foundation for implementing programming languages with 

advanced dispatching concepts, e.g. aspect-oriented languages, in a way that the implementation 

of overlapping concepts can be shared [9]. With ALIA4J, thus, many advanced dispatching 

concepts of many languages are implemented in one framework. The interesting dispatch concept 

for this thesis is pointcut-and-advice, found in aspect-oriented languages. A global overview of 

the architecture of ALIA4J is given in figure 3.1 whereby two components are depicted with a 

grey background. These components are the main components of ALIA4J. The left component is 

the Language-Independent Advanced-dispatching Meta-model (LIAM) that acts as intermediate 

representation for advanced dispatch declarations, e.g. pointcut-and-advice declarations.  Code of 

the program that is not affected by advanced dispatch is represented as conventional Java 

bytecode. Then at runtime both the program’s model of dispatching declarations and bytecode is 

passed to one of ALIA4J’s execution environments that either interprets or compiles it to final 

machine code. The execution environment contains a concrete FIAL instantiation that derives an 

execution model for each dispatch declaration that is executed by the execution environment. The 

Framework for Implementing Advanced-dispatching Languages (FIAL) is the right component in 

figure 3.1. A brief overview of the approach can be found in [2].  

 

 

Figure 3-1 - Overview of the application life cycle in ALIA4J-based language implementations 
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Besides that the components of ALIA4J are shown in figure 3.1, the compilation and execution 

flow is shown through the use of numbers. The flow starts start by the compiler (1) that processes 

the application’s source code. Next, a dedicated importer (2) adapts the compiler’s output to a 

model for the advanced dispatch declarations in the program (3) based on the refined subclasses 

(4) of the LIAM meta-entities (5). Furthermore, the compiler produces an intermediate 

representation of those parts of the program that are expressible in the base language alone (6). 

Then at runtime: The generated LIAM model containing the advanced dispatch declaration plus 

Java bytecode not using advanced dispatching is called the program specific intermediate 

representation and is marked with a dotted square. The program-specific intermediate 

representation is passed to the FIAL instantiation and subsequently handled by the FIAL 

framework itself.  The FIAL instantiation is embedded into execution environment, i.e., a Java 

virtual machine. The execution environment can be an extension of a virtual machine or a plug-in 

of an existing virtual machine. In either case, the FIAL framework generates an execution model 

for each dispatch site in the application. 

 

3.1.1 LIAM 

LIAM defines categories of concepts relevant for dispatching and how these concepts can 

interact. It therefore uses a model that is shown in figure 3.2. The model consists of ten entities, 

discussed in detail elsewhere [8], that capture the core concepts underlying various dispatch 

mechanisms. Each entity represents a dispatch concept found in high-level languages but at a 

finer granularity; one concrete dispatch concept often maps to a combinations of LIAM entities. 

The ten entities are plain Java classes and can be redefined in case a new dispatch concept is 

modeled.  

 

 

Figure 3-2 – The ten entities of LIAM 

An Attachment entity corresponds to a unit of dispatch. In terms of a PA-language, it roughly 

corresponds to a pointcut-and-advice pair. An Action entity specifies the functionality that may 

be executed as the result of dispatch. In terms of a PA-language, it corresponds to the body of an 

advice. A Specialization entity defines static and dynamic properties on which dispatch 

depends. Static properties are available at compile-time and are defined by Pattern entities. A 

pattern specifies syntactic properties of call sites which are affected by the declared dispatch. 

Dynamic properties are available at runtime and are defined by Predicate entities and 

AtomicPredicate entities. A predicate is a boolean expression of atomic predicate, modeling 
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dynamic properties where a dispatch depends on. In terms of a PA-language, static properties 

correspond to static pointcut designators and dynamic properties correspond to dynamic pointcut 

designators. A Context entity models access to values in the context of a dispatch and exposes 

these as a list of values to an action. Examples of context values are: the calling object (caller), 

the receiving object (callee) or argument values. The ScheduleInfo entity models when 

functionality defined by the action should execute relatively to the dispatch site. In terms of a PA-

language this corresponds to before, after or around. Furthermore there are two entities that model 

the relation between attachments. The PrecedenceRule entity defines the order of execution 

among actions when jointly applicable at a dispatch site. The CompositionRule entity specifies 

which actions must or must not be executed together.  

 

In the introduction we mentioned that a new LIAM entity is going to be developed that 

implements semantics of aspect-instantiation strategies at a low-level of abstraction. The LIAM 

model shown here is therefore going to be extended as follows: we extend an existing Context 

entity that currently implements semantics of aspect-instantiation strategies at a high-level of 

abstractions. In chapter four and five this Context entity is discussed in more detail and is 

explained why it needs to be extended.  

 

3.1.2 FIAL 

FIAL defines several common components required by any execution environment for advanced-

dispatching languages using a LIAM-based intermediate representation. As shown in figure 3.1, 

the intermediate representation at (3) and (6), is passed to the FIAL instantiation to be 

transformed to an execution model.  By transforming advanced dispatching declarations, FIAL 

generates an execution model for each dispatch site in the program. 

Once the execution model is produced it is ready to be processed by either an interpreter of 

compiler. This depends on whether an interpreter-based execution environment is or a 

compilation-based execution environment is used.  Currently there exist several execution 

environments; interpreter-based are for instance NOIRIn and compilation-based are SiRIn and 

Steamloom
ALIA

. 

In this thesis the Steamloom
ALIA

 virtual machine is used as execution environment. The 

Steamloom
ALIA

 virtual is based on the JikesRVM [10] which is an open-source research virtual 

machine and allows us to research sophisticated optimizations for the new Context entity. We 

mentioned earlier in this thesis that the new Context entity is going to generate optimized 

machine code that is based according to semantics of aspect-instantiation policies. Steamloom
ALIA

 

offers support for machine code generation for LIAM entities and can be adapted easily according 

to our optimizations. 

The next section gives a brief introduction on the basic components of Steamloom
ALIA

. When in 

future chapters a component reappears and requires more explanation, we give it in the form of an 

intermezzo. 
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3.2 STEAMLOOMALIA 
Steamloom

ALIA
 [11] is a FIAL-based execution environment built on the Jikes RVM [10]. The 

Jikes RVM is a high performance, open source, research virtual machine that is able to run a Java 

program. The virtual machine itself is also written in Java, a style of implementation that is 

termed meta-circular. The RVM can be divided into the following components: 

 Core Runtime Services: (object model, thread scheduler, class loader, library support, 

verifier, dynamic linking, exception management etc.) This component is responsible for 

managing all the underlying data structures required to execute applications and 

interfacing with libraries. 

 Magic: To support low-level system programming in Java. 

 Compilers: (baseline, optimizing). This component is responsible for generating 

executable code from bytecode. 

 Garbage collector - MMTk: This component is responsible for the allocation and de-

allocation of objects during the executing of an application. 

 Adaptive Optimization System: This component is responsible for profiling and 

executing application and judiciously using the optimizing compiler to improve its 

performance. 

The listed components show that the Steamloom
ALIA

 virtual machine contains the components 

that are also present in regular virtual machines. A major exception is, however, that all 

components are written in Java whereas components used in regular virtual machine are often 

written in a low-language like C or C++.  The fact that components are written in Java allows us 

to seamlessly integrate the optimization strategies in Java self. The components that play a key 

role in this work are: the baseline compiler, the memory manager and the magic part.  The next 

sections give a brief introduction on these subsystems respectively. 

 

3.3.1 Baseline compiler 

The JikesRVM contains two compilers, the baseline compiler and the optimizing compiler. Both 

compilers can be used to compile bytecode to final machine code. The baseline compiler is used 

as an initial compiler to compile bytecode to final machine code.  The baseline compiler is a 

relatively fast compiler and produces relatively simple stack-based machine code.  

When the compiled code is executing for a while, Jikes can decide to enable the adaptive 

optimization system. This system identifies regions of code in which the application spends 

significant execution time. When the execution time passes a certain threshold it can decide to 

recompile the “slow” machine code with the optimizing compiler. The optimizing compiler is a 

relatively slow compiler but produces register-based code. This register-based code executes 

quicker than stack-based code. The adaptive optimization system only recompiles “slow” code if 

calculations indicate that the overall execution time can be improved.  Because recompilation 

occurs at runtime it must make these calculations with great care. In case of a miscalculation the 

recompilation can become the slowest factor and overall execution time degrades.   

Despite that the optimizing compiler produces quicker code than the baseline compiler we restrict 

this thesis to the baseline compiler for the following reasons: The optimizations are built from 

scratch therefore some time was needed to invest these optimizations. The optimizing compiler is 
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more complicated than the baseline compiler and again to time limitations it was not possible to 

map the optimizations to the optimizing compiler. 

3.3.2 Garbage collector - MMTk 

The Memory Management Toolkit (MMTk) handles all memory-related operations within the 

JikesRVM. One responsibility of the MMTk is the division of the heap into various spaces. Every 

space has certain characteristics that determine how objects are allocated and how they are 

garbage collected. In one of the optimization strategies we use a particular heap space for 

optimization purposes. 

3.3.3 Magic 

Most virtual machine components rely on services of the underlying system, such as operating 

system calls, raw machine memory and registers to implement runtime behavior. An example of 

runtime behavior is the creation of an object. When an object is created, the virtual machine has 

to allocate a piece of memory in order to store the object on the heap. Since most virtual 

machines are written in native code (typical C, C++), they call the malloc function to allocate a 

block of memory on the heap. 

 

For the Jikes RVM the allocation of an object is handled different. Because the JikesRVM is 

implemented in Java, it not possible to address system services because Java is designed to be a 

platform-independent language. As such, platform-dependent operations are forbidden. However, 

we stated that the JikesRVM can be seen as regular virtual machine that can execute any Java 

program. 

 

In order to justify this statement, the JikesRVM implements the Magic [12] component. The 

Magic component provides an escape hatch to implement system services. All system services 

and low-level operations that are inexpressible in Java are implemented as empty methods in the 

Magic class. When a method in the JikesRVM needs a system service, like for example object 

allocation, it can call the empty method. As soon as the method is compiled to machine code, the 

compiler filters all calls to the empty Magic methods and substitutes the call with machine code 

that performs the desired system service.    

In chapter five where the implementation is discussed, optimization strategies will make use of 

the Magic class. The optimizations strategies make use of constant object-references, i.e. constant 

pointers. In Java this would be impossible to express but the Magic component allows such a 

concept.   
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Chapter   4  

 

Problem Analysis and Approach  
In the previous chapters we discussed the generalized model, the ALIA4J framework, LIAM and 

FIAL, and the Steamloom
ALIA

 execution environment. In this chapter we analyze and elaborate on 

the problem. We illustrate via an example how a LIAM entity representing the semantics of the 

generalized model currently is implemented within ALIA4J. Then we analyze the presence of the 

LIAM entity in the execution model and how the JIT-compiler generates machine code 

instructions that will execute one the of the aspect instantiation strategies defined in the 

generalized model. 

 

4.1 Problem analysis 
In the introduction we made clear that there is a semantic gap between source and intermediate 

language. The semantic gap that is relevant for this thesis is that the semantics of the generalized 

model cannot directly be expressed as Java bytecode instructions; bytecode instructions do not 

contain instructions that specifically describe the workings and constraints of the generalized 

model. 

We said that, with the ALIA4J framework, this semantic gap can be closed by preserving the 

semantics of the generalized model. Hereby an entity of the meta-model (LIAM) acts as the 

intermediate representation that encodes the generalized model. When the generalized model is 

encoded in a LIAM entity, its semantics are preserved as we will see in the remainder of this 

chapter. ALIA4J enables LIAM entities the ability to implement their semantics at different levels 

of abstractions.  

When the advanced dispatching declarations are transformed, FIAL generates an execution model 

for each join point shadow in the program. The execution model contains several LIAM entities 

that realize advanced dispatching as explained in the previous chapter. One of the LIAM entities 

present in the execution model is the LIAM entity that contains the semantics of the generalized 

model. Recall that this entity is responsible for delivering the aspect instances that serve as the 

context for executing advice. In order to incorporate the semantics of the LIAM entity, 

Steamloom
ALIA

 can generate the corresponding machine code in two different ways. This depends 

on whether a LIAM entity has implemented semantics at high-level of abstraction or a low-level 

of abstraction. The next two sections discuss the two approaches.  

In the current version of ALIA4J there is a LIAM entity that implements the semantics of the 

generalized model at a high-level of abstraction. The term, high-level of abstraction, means that a 

LIAM entity implements a plain Java method realizing semantics in terms of interpretation. In 

order to execute semantics of the LIAM entity, i.e. execute the aspect instantiation strategy, the 

JIT-compiler compiles the plain Java method straightforward to machine code. Then when the 

JIT-compiler compiles the execution model –with the LIAM entity object –it generates machine 
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code instruction that will call the compiled method of the LIAM entity object. The execution of 

the method results in the execution of the aspect instantiation strategy that will deliver the proper 

aspect instances. 

The same LIAM entity can also implement semantics at a much lower level. In order to realize 

this, a so-called generator method is implemented. Opposed to the plain Java method, this 

generator method has the ability to generate machine code instructions that represent semantics. 

When the execution model is compiled by the JIT-compiler, it calls the generator method of the 

LIAM entity that generates machine instructions that will execute the aspect instantiation 

strategy. Because the generator method is a method of the LIAM entity, it can take semantics of 

the generalized model into consideration during machine code generation. How we take the 

semantics into consideration and what benefits it brings, becomes clear in chapter five. 

The difference between the two styles is that the high-level style is intended for language 

designers. They can easily and relatively quickly refine and develop LIAM entities. It is 

considered to be easy because ideas and thoughts can be expresses as a Java solution. As opposed 

to the high-level style, language implementers work on the low-level style. They work on 

machine code level where previously designed solutions can be optimized.  The optimizations 

that are performed at this level are the most effective optimizations because machine code is less 

restricted than Java source code. 

 

4.1.1   The Current PerTupleContext in ALIA4J. 

The current version of ALIA4J contains a LIAM entity that implements the semantics of the 

generalized model in a high-level of abstraction. This LIAM entity is known as the 

PerTupleContext class. The next example shows how the PerTupleContext class is used within a 

dispatch site and how the JIT-compiler compiles the site to machine code. The example shows in 

a detailed way how the high-level approach works. After the example is discussed, we present the 

problem statement. 

 

4.1.2 An Example of the PerTupleContext. 

In the example we would like to advise all calls to Foo.bar(). For every distinct caller object, we 

create an aspect instance that serves as the context for executing the advice, i.e., in the example 

we apply the per-this instantiation strategy. The advice is executed after the Foo.bar() join point. 

We give two implementations of the example, one in AspectJ and one in ALIA4J. The purpose of 

implementing the example twice is to show how the ALIA4J implementation corresponds to the 

AspectJ implementation. Hereby it is assumed that sufficient knowledge about AspectJ is known. 
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1 public aspect Example perthis(pointcut1()) { 

2 . . . 

3 Logger logger = new Logger(); 

4 . . . 

5 . . . 

6 pointcut pointcut1(): 

7 call(public void Foo.bar()); 
8  

9 after(): pointcut1() { 
10 logger.log(); 

11 } 

12 } 

 

Listing 4-1 – The Example aspect in AspectJ 

For AspectJ the example is given in listing 4.1. We defined an Example aspect with the perthis 

modifier to set the correct instantiation strategy. Furthermore we defined a pointcut named 

pointcut1 (line 6-7) that captures method calls to Foo.bar(). The pointcut is associated with 

advice (line 9-10) that runs afterwards. The advice includes a trivial log action, i.e., a log method 

is invoked on a logger object which if of type Logger. The logger object is an instance variable of 

the Example aspect and is created when the aspect is created.  

 

For ALIA4J, we define and deploy an Attachment that is configured as shown in the object 

diagram of figure 4.1 The Attachment object is composed of an Action object, a Specialization 

object and a Schedule object. The action defines that a static method log(Object[] obj) of the 

Example class is called as result of dispatch.  The obj parameter is an array with aspect instances. 

The log method thus receives an object-array of aspect instances. In order to execute the advice 

within the context of an aspect instance, the log method must loop through the array whereby 

each aspect instance is used as context.  

The schedule object defines that the action executes after the join point. The specialization 

object defines static and dynamic properties and defines when and how call sites are advised. The 

static property is defined in the terms of a MethodPattern object specifying that calls to Foo.bar() 

are advised. The dynamic properties are the CallerContext object and the PerTupleContext object 

that provide access to values in the context of a call to Foo.bar(). The CallerContext object 

provides the caller object that is used to form the key-tuple and is given to a PerTupleContext 

object which in turn creates or retrieves the aspect instances. 
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Figure 4-1 – Object diagram of the attachment in ALIA4J  

 

The way of how advices are executed differs between the implementations and is schematically 

shown in figure 4.2. The left-hand side of the figure shows the AspectJ way and illustrates how 

the Example aspect is compiled to a class (Example_AJ) and in particular how the advice 

declaration is transformed to an instance method. The afterAdvice instance method runs directly 

within the context of the aspect instance and can access instance variables as shown.  

The right-hand side shows the ALIA4J way and works slightly different than AspectJ. First of all 

the class that represents the aspect (Example_ALIA4J) is directly declared instead of begin 

compiled. Second, the PerTupleContext does not deliver a single aspect where the afterAdvice 

method can be executed upon, but delivers an array of aspect instances. In order to execute the 

afterAdvice method within the context of an aspect instance the array needs to be processed. 

This is done by the static log method which takes as argument an array. The log method iterates 

through the array and on each aspect instance the afterAdvice method is called. As shown in the 

figure both afterAdvice methods are equal and this makes that in the end both implementations 

have the same advice behavior.  

 

 

Figure 4-2 – On the left-hand side: The AspectJ approach. On the right-hand side: The ALIA4J approach.  

 

  

:MethodCallAction

:Specialization

:Attachment

:PerTupleContext

:CallerContext

:MethodPattern
storehandle = storeHandle

dep. context = callerContext 

type = Example

pattern = “* Foo.bar()”

method=“Example.log(Object[] obj)”

:ScheduleInfo
time=AFTER

class Example_ALIA4J {

  …

  void afterAdvice() {

    logger.log();

  }

  

  static void log(Object[] obj) {

     for(Object o : obj)

       ((Example_ALIA4J) o).afterAdvice(); 

  }  

  ...

}

class Example_AJ {

  …

  void afterAdvice() {

    logger.log();

  }

  ...

}

aspect Example … {

  …

  after(): pointcut1() {

    logger.log();

  }

  ...

}

AspectJ

=>
compiled to class

ALIA4J

====
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We explained how the example is implemented in AspectJ as well as in ALIA4J. The next part of 

the example continues with the ALIA4J implementation. We show how the dispatch site is built 

and how the PerTupleContext object is used within the execution model in order to execute the 

aspect instantiation strategy that retrieves the aspect instances.   

 

Once the attachment of figure 4.1 is deployed, the method callsite is called. 

 

 

1 class CallSiteClass { 

2  

3 private Foo foo = new Foo(); 

4  
5 public void callsite() { 

6  

7 foo.bar(); 
8  

9 } 
10 }  

 

Assume that the method is called for the first time. As a consequence of the call, the bytecode of 

method callsite is processed and compiled. During processing of the bytecode, every join point 

shadow that matches the MethodPattern object is rewritten. The next intermezzo explains this: 

 INTERMEZZO I 
In a normal way –without ALIA4J or AspectJ–, the source code of the callsite would have been compiled to 
following bytecode: 

1 aload_0 
2 getfield < CallSiteClass, foo, Foo > 
3 invokevirtual < Foo, bar, ()V > 
4 return 

 
However, since the invokevirtual < Foo, bar, ()V > join point shadow matches the criterion of the 
MethodPattern object, it needs to be advised. Steamloom

ALIA 
therefore rewrites the join point shadow as 

follows: 
 

1 aload_0 
2 getfield < CallSiteClass, foo, Foo > 
3 invokestatic  < JoinPointSites, callsite$2, (Foo)V > 
4 Return 

 
The original join point shadow is replaced by a call to a static method named callsite$2 which is defined 
in a JoinPointSites class.  For simplicity we call the callsite$2 method just JoinPointSite. The 
JoinPointSite is automatically generated by Steamloom

ALIA
, hence the strange name, and takes as 

argument the receiver object of the join point and has void as result value. The JoinPointSite is a wrapper 
method because it wraps the original join point shadow. Within in the JoinPointSite the join point will be 
executed and Steamloom

ALIA
 will add advice instructions after the join point shadow. The join point 

shadow is wrapped because it can be relatively easy adapted in this way. For the example this means that 
advice instruction can be easily added after the join point shadow.  
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In the last section we explain the JoinPointSite and show how the PerTupleContext object is 

used to regulate aspect instantiation and/or aspect selection. Listing 4.2 shows the JoinPointSite 

that is automatically created by Steamloom
ALIA

. 

The first two instructions represent the original join point shadow. The rest of the instructions are 

responsible for executing the aspect-instantiation policy and advice. 

Instruction 3 retrieves the PerTupleContext object and pushes it onto the stack. It corresponds to 

the PerTupleContext of the object diagram in figure 4.1. The PerTupleContext object is the 

receiver object for the method that is called on line 11.    

 

Instructions 4 – 10 create the key-tuple that is pushed onto the stack. The key-tuple for this 

example contains the caller object because a per-this instantiation strategy was defined. 

In the beginning of this chapter we discussed that a LIAM entity can implement semantics of 

dispatching mechanisms at different levels of abstractions. The existing PerTupleContext entity 

uses a high-level of abstraction style; semantics are thus implemented in a plain Java method. 

This plain Java method is called the getObjectValue method. The eleventh instruction invokes the 

getObjectValue method. Hereby the receiver object is the PerTupleContext object and the key-

tuple is passed as argument. 

The signature of the getObjectValue shows that it requires an object-array as input and outputs an 

object-array as well. The signature corresponds to the workings of the generalized model. Hereby 

a key-tuple (the input object-array) is provided to the model’s most general instantiation strategy, 

i.e. the association aspects strategy, which then returns the associated aspects (the output object-

array). Schematically: 

 
 

Instruction 12 passes the object-array that contains the associated aspect instances to a method 

that then executes the advice. 

input: Object[] output: Object[]

Context values
Aspect instances

PTC

getObjectValue



22 
 

 

 

1 aload 0  wrapped join point 
2 invokevirtual <Foo, bar, ()V > 

3 
retrieve ${perTuple[, resultType=<Logger>,  
boundElements size=1, wildcardPositions size=0]}  Retrieves the  

PerTupleContextNO-OP  

4 sipush 1  array creation to hold 
the key-tuple 5 anewarray new < [Object > 

6 dup   

7 sipush 0   

8 retrieve caller  
retrieves the caller.  9 invokevirtual < CallerContext;, getObjectValue, ()Object > 

10 aastore  stores caller in array 

11 invokevirtual  <PerTupleContext;, getObjectValue, (Object) Object>  retrieve aspect instance 

12 invokestatic <Logger, log, ([Object)V >  execute advice 

13 return   

 

Listing 4-2 – The JoinPointSite method. 

 

4.1.3 Problem statement 

The bytecode of the JoinPointSite is straightforwardly compiled to machine code by the JIT-

compiler. Because Steamloom
ALIA

 knows that the PerTupleContext implements semantics at a 

high-level of abstraction, it generates instructions that call the getObjectValue method of the 

PerTupleContext object. 

The problem that causes this thesis is as follows: When the JIT-compiler compiles the 

getObjectValue method to machine code, it does not take semantics of the generalized model 

into consideration. This is because the JIT-compiler simply does not understand semantics; it only 

understands bytecode instructions.

 

1 public final Object getObjectValue(final Object input) { 
2 final Object[] tuple = (Object[]) input; 
3 Object[] result = this.storeHandle.getMatched(tuple, this.wildcardPositions); 
4 if (result.length == 0 && this.resultType != null) { 
5 assert this.wildcardPositions.length == 0; 
6 Class<?> clazz; 
7 try {   // reflection – instantiate aspect instance 
8 clazz = this.resultType.asClass(); 
9 result = new Object[] { clazz.newInstance() }; 
10 } 
11 catch (Exception) {…} 
12 this.storeHandle.add(new Tuple<Object>(tuple), result[0]); 
13 } 
14 return result; 
15 }  

 Listing 4-3 – The getObjectValue method  

In order to illustrate what we exactly mean with “not understanding semantics”, we show an 

example of how the getObjectValue method is implemented and how it is compiled to machine 

code. 
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Listing 4.3 shows a part of the implementation of the getObjectValue method. We explained that 

the current PerTupleContext class implements semantics of the generalized model at a high level 

of abstraction via the getObjectValue method. When this method is compiled by the JIT-

compiler, it generates corresponding machine code. Once compiled, it can be called from every 

JoinPointSite method. The implementation of the method takes care that it can handle the all the 

aspect-instantiation policies that are defined by the generalized model. Likewise, the generated 

machine code can handle these aspect-instantiation policies. When a JoinPointSite is compiled, 

it retrieves the PerTupleContext (instruction 3 of listing 4.2) object. This object is configured with 

a certain aspect instantiation policy. Because the JIT-compiler does not know about this 

configuration, it cannot create the direct machine code instructions that will execute the proper 

aspect instantiation strategy. Instead, it generates an instruction (instruction 11 of listing 4.2), that 

will execute the getObjectValue method. This method will determine at run-time, which aspect 

instantiation strategy must be executed.  

The central problem is as follows: It can already be determined at compile-time which strategy is 

used, but the JIT-compiler cannot. Therefore it has to generate instructions that will call the 

getObjectValue method. The drawback of this approach is that everytime the getObjectValue 

method executes, it must determine the correct aspect instantiation strategy. This determination 

causes a lot of overhead, and therefore we consider this approach as slow. This slow approach is 

not in line with the statement that was made in the beginning of this chapter. We stated that 

aspect instance retrieval must execute fast because advice executes within the context of an aspect 

instance. As such, we do not want to have overhead. 

The getObjectValue method is thus implemented in a general way in order to support all the 

possible configurations of the PerTupleContext object. For instance, the conditional expression on 

line 4 is evaluated everytime the method executes. This evaluation is unnecessary and causes 

overhead. We illustrate this with an example:  

 

Figure 4.3 shows in the middle a program with two JoinPointSites. When the JIT-compiler 

compiles each JoinPointSite, it generates instructions that at run-time will call the 

getObjectValue method. The receiver object, i.e. PerTupleContext object, that is used for the call 

can differ per JoinPointSite. In the figure we have two different receiver objects. The first 

receiver object, o1, is configured with an implicit instantiation strategy
3
. Therefore, the 

conditional expression of the compiled
4
 getObjectValue method at the right-hand side of figure 

4.3 will at run-time evaluate to true. The second receiver object, o2, is configured with an explicit 

instantiation strategy.  Therefore, the conditional expression will evaluate to false. 

                                                           
3
 If the resultType variable is set to a type, then an implicit instantiation strategy is used. If the variable is 

not set, then an explicit instantiation strategy is used.  
4
 Consider the Java source code as machine code. 
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Figure 4-3 – The current way of executing a JoinPointSite when the PerTupleContext implements semantics 

at a high-level of abstraction 

The problem in this example is that conditional expression of the compiled getObjectValue 

method is unnecessary. When the JIT-compiler compiles the first JoinPointSite, then it knows 

that the resultType is not null and that the conditional expression in the getObjectValue will 

evaluate to true. 

In this section we have shown by one example why the current way of compiling a JoinPointSite 

and getObjectValue method is not the most efficient way. Chapter five discusses in detail more 

situations that cause unnecessary overhead. However, the main purpose of chapter five is the 

optimization of the PerTupleContext class. But before optimizations are discussed, we propose in 

the next section an approach of how we can apply such optimizations. 

 

  

 

 

 

  

JoinPointSite #1  {

Program

. . .

o1 = retrieve PerTupleContext;

. . .

o1.getObjectValue(…);

. . .

JoinPointSite #2  {
. . .

o2 = retrieve PerTupleContext;

. . .

o2.getObjectValue(…);

. . .

Machine code array

o2

o1

resultType = 

Example

Receiver objects

getObjectValue(Object[] input) {

  . . . 

  if(. . . && this.resultType != null) {

     

        // A

   }

   . . .

}
resultType = 

null

}

}
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4.2 Approach 
In order to take semantics of the generalized model into consideration we create a new 

PerTupleContext class. This new class is able to interface with the JIT-compiler, basically, the 

new PerTupleContext class becomes a part of the JIT-compiler. Because the PerTupleContext 

contains semantics of the generalized model, it can generate specific machine code. With specific 

we mean that we can tailor the machine code according to the optimization strategies that are 

described in the next chapter and thereby we have full access to the machine code generator; we 

are thus completely free of Java constraints. 

To become a part of the JIT-compiler, we let the PerTupleContext class implement the 

CompilerSupport interface which is shown in listing 4.4. As such, the JIT-compiler can approach 

a PerTupleContext object as a CompilerSupport object and is then able to call the generateASM 

method. When this method is called, then the JIT-compiler hands over control of code generation 

to the PerTupleContext object.  

 

public interface CompilerSupport { 
 
     public void generateASM(Assembler asm, BaselineCompilerState compilerState);  
 
}  

Listing 4-4 – The CompilerSupport Interface 

 

The fact that the PerTupleContext becomes a part of the JIT-compiler has a consequence on how 

the JoinPointSite is built. Namely as soon as the PerTupleContext generates its own specific 

machine code, then the call to getObjectValue is not needed anymore, likewise the receiver object 

can be discarded.  

Listing 4.5 shows how the JoinPointSite is generated when the PerTupleContext implements the 

CompilerSupport interface. The call to getObjectValue and its receiver object have been omitted. 

 

1 aload 0  wrapped join point 
2 invokevirtual <Foo, bar, ()V > 

    

4 sipush 1  array creation to hold 
the key-tuple 5 anewarray new < [Object > 

6 dup   

7 sipush 0   

8 retrieve caller  
retrieves the caller.  9 invokevirtual < CallerContext;, getObjectValue, ()Object > 

10 aastore  stores caller in array 

    

12 invokestatic <Logger, log, ([Object)V >  execute advice 

13 return   

 

Listing 4-5  – The JoinPointSite when the PerTupleContext implements the CompilerSupport interface. 
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The JIT-compiles now knows how to hand over control of code generation. The next part of the 

approach discusses where in the JoinPointSite this should be done.  

The JIT-compiler of Steamloom
ALIA

 contains an extension point which allows CompilerSupport 

objects temporary take over control of code generation. When such a point is reached, the 

compiler calls the generateASM method to hand over control. Because the JoinPointSite does not 

contain a getObjectValue method call anymore, it seems at first glance that it is not possible to 

know where this point is. However, Steamloom
ALIA

 solves this by generating a marker in the 

JoinPointSite.  The marker is invokestatic instruction that points to a dummy method. As soon 

as it encounters such a marker it calls the generateASM method. The dummy instruction looks as 

follows:  

 
invokestatic <SupportedGetValue;, 2, (Ljava/lang/Object;)Ljava/lang/Object;> 

 

 

 

It is called a dummy instruction because the method name “2” cannot and does not exist.  

However the number 2 is not totally meaningless. As said, in listing 4.4 the receiver object for the 

getObjectValue is omitted because it is not needed anymore within the JoinPointSite. However, 

the JIT-compiler needs this receiver object in order to call the generateASM method. Via the 

method name “2” it can retrieve the correct receiver object, by consulting a global registry that 

maps unique numbers to PerTupleContext objects.  

 

In figure 4.4 we give an overview of the approach. As explained, we hand over control of code 

generation when the invokestatic dummy instruction is reached. Then the JIT-compiler gets the 

correct PerTupleContext object which is the receiver object for method call to generateASM. The 

generateASM produces tailored machine code according to the configuration of the 

PerTupleContext object. 

 

Figure 4-4 – The new approach of executing a JoinPointSite. The semantics of the aspect-instantiation 

policy correspond directly to the generated machine code. 
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Chapter   5  
 

Implementation 
In the second chapter we described the generalized model that covers the three most used aspect-

instantiation policies. The fourth chapter showed how this generalized model is implemented in 

the PerTupleContext. Hereby semantics of the generalized model are implemented at a high level 

of abstraction. Next, the problem statement described that semantics cannot directly be 

understood by the JIT-compiler when an aspect-instantiation policy is compiled to final machine 

code. In this chapter we analyze the semantics of the PerTupleContext in order to derive an 

optimization strategy that is used by the generateASM method when generating machine code that 

represents the aspect-instantiation policy.   

 

This chapter is organized as follows. Section 5.1 discusses how the semantics of the 

PerTupleContext are defined in order to derive eight so-called optimizations strategies. Then we 

discuss in section 5.2 each optimization strategy in detail and explain how the generateASM 

method generates for each optimization strategy the most efficient machine code. 

 

5.1 Defining semantics of the PerTupleContext 
This section analyzes semantics of the PerTupleContext in order to derive eight so-called 

optimization strategies. An optimization strategy is used by the generateASM method when the 

JIT-compiler hands over control of code generation. According to the optimization strategy, the 

most efficient machine code is generated. In order to determine which optimization strategy to 

use, the PerTupleContext object is first initialized. Prior to deployment of an attachment, the 

PerTupleContext is initialized by providing a number of arguments to the constructor which in 

turn configures a number of properties. For each configurable part a corresponding property is 

defined and based on the values these properties, an optimization strategy can be determined.  

There exist two types of properties. The first type of properties is based on semantics of the 

generalized model and is called “derived properties”. The second type of properties is based on 

the added behavior of the StoreHandle entity and is named “additional properties”. After the 

properties have been discussed, the optimization strategies are explained. 
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5.1.1 Derived Properties 

 

Property #1 – Explicit or Implicit Instantiation Strategy  

The first property defines whether the PerTupleContext operates in an implicit instantiation mode 

or explicit instantiation mode. This property corresponds to the third characterization of the 

generalized model (see section 2.4) that defines whether the instantiation strategy is explicit or 

implicit.  

Property #2 – Context Sensitive / Insensitive 

The second property defines whether the PerTupleContext object is sensitive on context values or 

is insensitive on context values. This property corresponds to the first and second 

characterization of the generalized model. This first characterization defined the arity of the key-

tuple. If the arity is zero then no context values are present in the key-tuple and the 

PerTupleContext is insensitive on context values. If the arity is greater than zero then the 

PerTupleContext is sensitive on context values. The third characterization defined which context 

values are exposed to form the key-tuple. However, for optimization purposes it does not matter 

which context values are going to be exposed because every context value is considered as an 

object. 

Property #3 – Exact / Range Query 

The third property defines whether a PerTupleContext object uses a range query or an exact 

query in order to get the associated aspect instances from the StoreHandle entity. This property 

corresponds to fourth characterization of the generalized model that defines if the key-tuple 

contains wildcards. If the key-tuple does contain wildcards then a range query is used to retrieve 

the associated aspect instance, otherwise an exact query is used. 

 

5.1.2 Additional Properties 

 

Property #4 – Fixed Associations 

The fourth property defines whether the StoreHandle entity that is used by the PerTupleContext 

object allows associations to be added or not. Therefore this property is either set to fixed 

associations or not-fixed associations.  
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5.1.3 Overview of the combinations of properties 

 

The legal combinations of values of the properties are shown in table 5.1. In total eight legal 

combinations can be derived whereby each combination is numbered. 

 

Property 1 
Implicit/Explicit 

Property 2 
Sensitive/ Insensitive 

Property 3 
Exact/Range 

Property 4 
Fixed Association 

 
Number 

      

Implicit Instantiation Strategy Context Insensitive Exact False  1 

Implicit Instantiation Strategy Context Sensitive Exact False  2 

      

Explicit Instantiation Strategy Context Insensitive Exact True  3 

Explicit Instantiation Strategy Context Insensitive Exact False  4 

Explicit Instantiation Strategy Context Sensitive Exact True  5 

Explicit Instantiation Strategy Context Sensitive Exact False  6 

Explicit Instantiation Strategy Context Sensitive Range True  7 

Explicit Instantiation Strategy Context Sensitive Range False  8 

      

Table 5-1 – The eight combinations of properties 

 

Note that not all the combination are shown in table 5.1. This is because certain combinations are 

not valid. For example the combination:  [implicit instantiation strategy, context sensitive, exact 

query and fixed association] is not a legal combination. The fixed property is only applicable 

when an explicit instantiation strategy is used because the client can decide that no more 

associations may be added to the StoreHandle entity. In case an implicit instantiation is used, 

association can always be added and thus the fixed property cannot be set to true. Another illegal 

combination is [explicit instantiation strategy, context insensitive and range query and fixed 

associations]. It is not possible to use wildcards when the arity of the key-tuple is zero.  

Table 5.1 gave an overview of the optimization strategies whereby each strategy consists of four 

properties with each property set to a specific value. The next section discusses what each value 

of a property means to the PerTupleContext and what optimization decisions can be made.  
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5.2 The optimization strategies  
This section discusses what each value of a property exactly means to the PerTupleContext. In the 

previous section we already discussed this, but at a global level. In section 5.2.1 each possible 

value of a property is discussed in more detail and provides what kind of optimizations can be 

made. From section 5.2.2 we define for each combination an optimization strategy, whereby the 

accent is thus on the conjunction of the four properties, rather than each individual property. Each 

optimization strategy can generate efficient machine code that only is valid for the combination 

corresponding combination. But before we begin, we explain what goes on before the generation 

of machine code starts. 

The PerTupleContext can generate machine code because it implements the CompilerSupport 

interface (listing 5.1). As explained in the previous chapter, the generateASM method is called by 

the JIT-compiler when it encounters the dummy instruction. 

 

 

1 public interface CompilerSupport { 
2  
3 public void generateASM(Assembler asm, BaselineCompilerState compilerState);  
4  
5 } 

 

Listing 5-1 – The CompilerSupport interface 

The generateASM method contains two arguments, asm and compilerState. The asm variable is of 

type Assembler and allows assembler instructions like MOV, PUSH, POP, ADD, JMP, etc to be generated. 

When such an assembler instruction is generated, the generateASM method directly manipulates 

the array that holds the binary machine code; we operate thus on the lowest abstraction level. The 

variable compilerState holds the state of the compiler.  The state variable represents values like 

indexes and offsets of the machine code array. In the remaining sections it becomes clear how the 

compilerState is used for the generation of machine code. 

As a last thing we mention some general facts that are applicable to all eight optimization 

strategies: 

 The generateASM method is called by the JIT-compiler when it encounters the dummy 

instruction. From that point machine code is generated as was explained in section 4.2. 

When we refer to the generateASM method, we refer thus to the generation of machine 

code instruction for the JoinPointSite. 

 

 Before the generateASM method is called, the machine code for the JoinPointSite is 

already partially generated by the JIT-compiler. The partially generated machine code is 

responsible for the creation of the key-tuple. When it executes, it has as result that a key-

tuple is pushed onto the stack. Every optimization strategy must thus handle the key-tuple 

in a correct way. 

 

 When a program is executed by Steamloom
ALIA

, methods are compiled to machine code 

at run-time by the JIT-compiler. This means that at run-time, before a method can 
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execute, it has to be compiled to machine code. Therefore we sometimes explicitly 

mention if something is performed at compile-time or at run-time. With compile-time is 

meant that the JIT-compiler is currently generating machine code instructions. The 

generated machine code instructions are subsequently executed at run-time. With JIT-

compilation the two times are thus intertwined, this is opposed to a not-JIT-compiler, 

where compile-time is before run-time and the two times are strictly separated.  

 

During the discussion of the implementation of an optimization strategy, sometimes an excerpt of 

generated machine code or bytecode is shown. In order to understand the printed machine code or 

bytecode, we show for both cases an example. Every byte code instruction is shown as in figure 

5.1. The first column, [0], indicates the index of the bytecode instruction in the bytecode array of 

the method being compiled. The second column, sipush 0, gives the name of the instruction. In 

this example an instruction is used that needs an argument, i.e. the 0, but there exist also 

instructions that need no arguments.   

 

Meaning of the Java bytecode instructions: 
 
[0] sipush 0    
 

Figure 5-1 – Example of a Java bytecode instruction. 

 

Figure 5.2 shows how machine code is printed. The first column, 000043, indicates the index in 

the machine code array. The second column, MOV, is the name of the assembler instruction. The 

third column, EDX, shows the destination register and the fourth column 4[ESP] shows the source 

register. 

 

Meaning of the machine code instructions: 

000043 |           MOV                   EDX            4[ESP]  |  
   

Figure 5-2 – Example of a machine code instruction. 
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5.2.1 Properties of the Optimization Strategies 

Property #1 – Instantiation strategy 

 Implicit instantiation strategy 

The PerTupleContext follows an implicit instantiation strategy and has does have control over 

aspect instantiation. The machine code that is generated will at run-time pose the following 

behavior: Either a new aspect instance is created and returned, if for the key-tuple no 

association exists (situation 1). Or an existing aspect instance is returned if for the key-tuple 

an association exists (situation 2).  

As soon as the key-tuple is associated with an aspect instance, the association is stored in the 

StoreHandle entity. After storage the key-tuple is thus associated with an aspect instance. 

This means that situation 1 occurs exactly once and from then on situation 2 always occurs. 

 

 Explicit instantiation strategy 

The PerTupleContext follows an explicit instantiation strategy and this means that the 

creation of aspect instances, establishing and storing associations to StoreHandle entity is not 

done by the PerTupleContext. Instead an external entity, called the client, is responsible for 

performing these actions. The generated machine code has the following behavior when 

executed: Either no aspect instance is returned if for the key-tuple no association was 

established by the client. Or one or more aspect instances are returned if for the key-tuple one 

or more association were established by the client. 

 

Property #2 – Context dependence 

 Context insensitive 

Because the key-tuple is empty, the PerTupleContext can determine at compile-time if a key-

tuple is associated with an aspect instance. Furthermore the PerTupleContext can query the 

StoreHandle entity without providing the key-tuple. The StoreHandle entity then directly 

knows that the key-tuple is empty which result into a faster search. The machine code 

instructions that are generated can therefore ignore and discard the empty key-tuple. Before 

the generateASM method is called, the machine code of the JoinPointSite method is already 

partially generated by the JIT-compiler. Listing 5.2 shows the machine code that is generated 

so far:
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[0] sipush 0 
000036 |           PUSH                    0                    |  
[3] anewarray new < [Ljava/lang/Object; > 
000038 |           PUSH                   44                    | 
00003A |           PUSH                 8255                    |  
00003F |           MOV                   EAX            8[ESP]  |  
000043 |           MOV                   EDX            4[ESP]  |  
000047 |           CALL            [57081464]                  |  
00004D |           PUSH                  EAX                    |  

 

Listing 5-2 – The generated machine code for the first configuration before generateASM is called.  

When the [0] sipush 0 and the [3] anewarray new instructions execute they result into an empty 

array that is pushed onto the stack. Because the empty array is not used it can directly be 

discarded. Via the asm variable the emitPOP method is called that generates machine code 

instructions that at run-time will pop-off the empty array.        

 Context sensitive 

In this case, the key-tuple is not empty and the PerTupleContext cannot determine at compile-

time if a key-tuple is associated with an aspect instance because the context values are not 

known. The PerTupleContext generates machine code that determines at run-time if for a key-

tuple an association exists. Because this determination must happen fast, a caching 

mechanism will be used that caches previous fetched aspect instances. 

Before the generateASM method is called, machine code instructions of the JoinPointSite 

method are already partially generated by the JIT-compiler.  Because the aspect instantiation 

policy is context sensitive, the generated machine code is slightly different than as in the 

context insensitive case. Listing 5.3 shows the machine code that is generated so far: 

 
[0] sipush 1 
00003A|           PUSH                    1                    |   
[3] anewarray new < [Ljava/lang/Object; > 
00003C|           PUSH                   44                    |  
00003E|           PUSH                 8246                    | 
000043|           MOV                   EAX            8[ESP]  |  
000047|           MOV                   EDX            4[ESP]  |  
00004B|           CALL            [57081464]                  |  
000051|           PUSH                  EAX                    |  
[6] dup 
000052|           PUSH                 [ESP]                   |  
[7] sipush 0 
000055|           PUSH                    0                    |  
[10] aload 1 
000057|           PUSH               12[ESP]                   |  
[12] aastore 
…     …  …  …  
…  …  …  … 
…  …  …  …  

Listing 5-3 – The generated machine code for the second configuration before generateASM is called. 
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When the [0] sipush 1 and [3] anewarray instructions execute, they have as result that an 

object-array of size n is created and pushed onto the stack. The n in the code listing 

corresponds to one. This means thus that the aspect instantiation policy depends on one 

context value.  If the PerTupleContext object would have been configured to depend upon 

two context values, the n would correspond to two. The next instructions are used to form the 

key-tuple by filling the object-array with the context value. The [7] sipush 0 has a result that 

the array index is pushed onto the stack, the [10] aload 1 has as result that the context value is 

pushed onto the stack. The exact context value is not important for this illustration although 

we mention it for understanding purposes. The aload 1 instruction refers to the first local 

variable of the JoinPointSite method which in turn thus corresponds to the first argument. 

As explained in chapter four, the argument for the JoinPointSite method is the receiver 

object of the wrapped join point. The [12] aastore instruction stores the context value at the 

first position in the object-array. The [6] dup instruction is needed to duplicate the reference 

of the object-array since the aastore instruction consumes one reference when executed. 

Otherwise the object-array would become unreachable. 

 

Property #3 – Query type 

 Exact query 

The PerTupleContext generates machine code instructions that will query the StoreHandle 

entity with the complete key-tuple. The StoreHandle therefore knows that it can perform an 

exact query.  

 Range query 

The PerTupleContext generates machine code instructions that will query the StoreHandle 

entity with the incomplete key-tuple and wildcards. The StoreHandle therefore knows that it 

can perform a range query. 

 

Property #4 – Associations 

 Fixed associations 

The PerTupleContext generates machine code instructions that will exactly once consult the 

StoreHandle entity and cache the result once. Because the StoreHandle does not change, the 

cached result is always valid and does not need to be invalidated. 

 

 Not-fixed associations 

The PerTupleContext knows that the associations in the StoreHandle entity are not fixed. 

Therefore it generates machine code instructions will consult the StoreHandle entity only if 

the cached result is invalid.  
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5.2.2 Optimization Strategy 1 

The machine code instructions that need to be generated realize the aspect-instantiation policy for 

this optimization strategy. Before the generation of machine code starts, the PerTupleContext 

determines at compile-time if for an empty key-tuple an association exists by querying the 

StoreHandle entity. If no association exists then the first situation is applicable and the following 

strategy is generated that at run-time will have the following behavior: 

 Test if for the empty key-tuple an association exists (1); 

 

If no association exists then: 

o Create the aspect instance (2); 

o Establish and store the association (3); 

 

If an association exists then: 

o Retrieve the association (4); 

 

 Return the associated aspect instances (5). 

 

As soon as the aspect instance is created and the association is established and stored, the test 

instruction (1) prevents that instructions (2) and (3) will execute again. 

 

On the other hand, if the generateASM method determines at compile-time that an association 

exists then it knows that the first situation has occurred and that only the second situation may 

occur. In that case machine code is generated that at run-time behaves as follows: 

 Retrieve the association (4); 

 Return the associated aspect instances (5). 

 

The instructions for the second situation do not have to be protected by a test instruction because 

an association exist and can be retrieved from the StoreHandle entity. When compiling a 

JoinPointSite and the second situation is determined, then the test instruction does not have to be 

generated. This saves at run-time some overhead that otherwise would have been occurred when 

a test instruction was needed.  

The remainder of this section discusses how the machine code for both situations is generated. 

Instruction (2) cannot be executed at compile-time since the creation of aspect instances is 

deferred until the latest moment in time, i.e. lazy instantiation. Likewise instruction (3) cannot be 

executed at compile-time since there is no aspect instance to associate. The generateASM method 

generates thus machine code for the two instructions. At run-time an aspect will be instantiated 

and an association is established and stored. Instruction (1) will therefore evaluate at run-time 

exactly once to true and afterwards always evaluate to false.  

For instruction (4) the generateASM method generates machine code that at run-time consults the 

StoreHandle entity that will fetch the association. 
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The generateASM method generates for instruction (5) machine code that will at run-time create an 

object-array and store the associated aspect instance. The object-array is then returned as result. 

 

For first situation the generateASM method must thus generate machine code that determines at 

run-time if an association exists. If the second situation is applicable then no determination needs 

to be done at run-time. However, with respect to optimization we can make one major 

improvement. The remainder of this section is devoted on this improvement: 

Once the aspect instance is created and the association is established and stored, the key-tuple 

always results into the same association even though the associations in the StoreHandle entity 

are not fixed. This means that instruction (4) will always retrieves the same association and that 

instruction (5) always returns an object-array of size one with the same aspect instance.  

Therefore instruction (5) is executed at compile-time. The object-array is created at compile-time 

and has a size of one in order to hold exactly one aspect instance. This raises the following 

question: What is the benefit of creating an object-array at compile-time over run-time? At first 

glance it looks rather complicated because a compile-time object has to be transformed to a run-

time object. The next intermezzo explains that this object-array is created in the so-called non-

moving space and that there is no form of complication. 

 

 INTERMEZZO II 
The JikesRVM has a module called the Memory Management Toolkit (MMTk).  The MMTk handles all 
memory-related operations within the JikesRVM. One responsibility of the MMTk is the division of the 
heap into various spaces. Every space has certain characteristics that determine how objects are allocated 
and how they are garbage collected [13]. 
 
Each space is used for a different purpose. The boot space stores precompiled classes and data structures 
when the JikesRVM is built. The immortal space stores objects that live forever, and is not garbage 
collected after all. The meta-data space holds temporary memory management-related objects. The non-
moving space stores objects that may never move, but can be garage collected when they are dead 
though. The nursery space is the space where all the application objects are allocated. If this space 
becomes exhausted then the garbage collector is signaled to run. The objects that survive garbage 
collection are moved to the mature space. When the mature space becomes exhausted then the garbage 
collector is informed to garbage collect this space too. 
 
Objects that are created in the non-moving space will never move and thus always have the same 
memory address. An object that is created at compile-time will thus have the same address when that 
object is used at run-time. This allows the use of constant object references since the reference to object 
will always be the same.  During code generation we can make use of constant object references and thus 
emit a constant memory address. The following picture show this:  
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Once the object-array is created in the non-moving space, the generateASM method is able to 

generate machine code that contains a constant reference to the object-array. This also eliminates 

the need to generate instruction (4); the aspect instance can directly be stored in the object-array 

and the StoreHandle entity does not need to be consulted anymore. As we will see in a moment, 

this optimization is particular interesting for the second situation because then machine code 

instructions are generated that only refer to the result.  

The generated machine code for the first situation is shown in figure 5.3. The machine code is 

represented as pseudo-code because otherwise it would result into an abundance of machine code 

instructions which makes it hard to understand.   

 

 

Figure 5-3 – Pseudo machine code instructions for the first optimization strategy 

 

According to the properties of this configuration, exactly one aspect is instantiated and one 

association is established and stored. The machine code at location (2) and (3) correspond to 

instructions (2) and (3) respectively. For instruction (4) no machine code is generated because the 

object-array is used as explained. Instead at location (i) machine code is generated that stores the 

aspect instance in the non-moving array. Machine code at location (5) corresponds to instruction 

(5) and returns an object-array with the aspect instance. The object-array is returned by pushing 

its fixed address on the stack.  

 

 

boot

space

immortal

space

meta-data

space

non-moving

space

mature

space

nursery

space

0x01

runtime

environment

PUSH [0x01]

compiler

environment

Object o = new Object

Machine code for optimization strategy 1

if (!guard.isInstantiated())(1){
   - create aspect instance  (2)

     - establish  and store association (3) 
 

     - store aspect in object-array (i) 

}

- return object-array (5)

 
000071 |           PUSH           1736491644                   |  

Fixed address of 

object-array
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The generated machine code for the second situation is shown in figure 5.4. The object-array is 

returned by pushing its fixed address on the stack.  

 

 

 

Figure 5-4  – Pseudo machine code instructions for the first optimization strategy 

 

The generated machine code of either figure 5.3 or 5.4 executes according to the properties of this 

optimization strategy. This continues until Steamloom
ALIA

 invalidates a JoinPointSite. 

Invalidation of a JoinPointSite occurs when another attachment is deployed or undeployed. The 

next intermezzo exemplifies this: 

 INTERMEZZO III 
Invalidation of JoinPointSites. 
 
Consider the following method x and y. 
 

 
 
Both the SecurityAttachment and LogAttachment advice the joinpoint with before advice, but they 
are deployed at different times. When method y is called for the first time, the SecurityAttachment was 
deployed. The machine code is generated as described and the advice executes accordingly. Because 
ALIA4J supports the dynamic deployment of attachments we can, for example, deploy the LogAttachment 
after method y has returned. The second time method y is called, two attachments have been deployed. 
The dynamic deployment of attachments results in an invalidation of the security JoinPointSite. 

 

When the JoinPointSite gets invalidated it has to be recompiled by the JIT-compiler and 

likewise the generateASM method is called again. If such invalidation occurs, we can benefit from 

this mechanism because if a JoinPointSite contains machine code according to the first situation 

then it will be recompiled according to the second situation. 

 

 

  

- return object array (5)

Machine code for 

optimization strategy 1

Fixed address of 

object-array

 
000071 |           PUSH           1736491644                   |  

public void method x() {

  deploySecurityAttachment();

  y();

  deployLogAttachment();

  y();

}

public void method y() {

  joinpoint();

}
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5.2.2 Optimization Strategy 2 

The second optimization strategy is the same as the first strategy, except that it is sensitive on 

context values. The machine code that is generated must thus not discard the key-tuple but use it 

in order to determine if an association exists. 

The machine code that is generated for the optimization strategy realizes the aspect-instantiation 

policy. In the first optimization strategy the generateASM method could determine at compile-time 

if for the empty key-tuple an association exists. Unfortunately for this optimization strategy the 

generateASM method cannot do this. Every time the JoinPointSite executes, the key-tuple can be 

different and no assumptions about the context value can be made at compile-time. Therefore the 

determination must be done at run-time. The generateASM method generates the flowing 

instructions that at run-time will execute as follows: 

 Test if for the key-tuple an association exists (1); 

 

If this is not the case then: 

o Create the aspect instance (2); 

o Establish and store the association (3); 

 

If this is the case then: 

o Retrieve the association (4); 

 

 Return the associated aspect instances (5). 

 

These instructions are equivalent with the instructions that were described for the previous 

optimization strategy, but the machine code that is generated by the generateASM method is 

different.  

In the previous optimization strategy an object-array could be created in the non-moving space 

and the generated machine code contained a constant reference to address the object-array. 

Because this strategy depends upon a context value that is not known until run-time, such a non-

moving object-array cannot be used. This forces the generated machine code to the consult the 

StoreHandle entity in order to retrieve the associated aspects. 

We defined that querying the StoreHandle entity is slow because it has to search for associated 

aspect instances. This means that every time the JoinPointSite executes the StoreHandle entity is 

queried. Consulting the StoreHandle entity is in fact unnecessary if it is known that for one key-

tuple the same aspect instance will be associated and stays associated. We have therefore defined 

a caching mechanism that operates at machine code level. The caching mechanism caches results 

(associated aspect instances) to belong to an evaluated query (key-tuple).  Although the 

StoreHandle might change over time, it can still be assumed that a key-tuple is always associated 

to one and the same aspect instance. Figure 5.5 shows the generated machine code for this 

optimization strategy: 
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Figure 5-5 – Pseudo machine code instructions for the second optimization strategy 

The generated machine code at location (1) determines at run-time if for a key-tuple a cached 

value (and thus an association) exists and corresponds to instruction point (1). The key-tuple is 

passed to a hash table which returns either null or an object-array. If null is returned then no 

cached result is available and likewise the key-tuple is not associated to an aspect instance. This 

causes that the machine code in the else-section will be executed. On the other hand, if an 

instance of object-array is returned then a cached result is available and likewise the key-tuple is 

associated to an aspect instance. This causes that the if-section will be executed. The following 

paragraphs elaborate on the machine code the two possibilities:  

The machine code that is present in the else-section executes at run-time as follows: at location 

(2) an aspect instance is created and at (3) an association is established and stored.  At location 

(5) an object-array is returned as result. The generated machine code corresponds to the 

instructions that were defined in the beginning of this section. Instruction (4) is not generated 

because the caching mechanism retrieves the association. The rest of the machine code is used to 

implement the caching mechanism. For every key-tuple that gets associated with an aspect 

instance an object-array is created that stores the aspect instance (ii). Because this optimization 

strategy follows an implicit instantiation strategy and thus the PerTupleContext has control over 

aspect instantiation, we can assume that for a given query the result will always be the same. The 

object-array will therefore always be valid as result. The object-array is stored in a hashtable (iii). 

The hash table is global data structures and can be reached from every JoinPointSite. As already 

may be obvious, the key corresponds to the query (the key-tuple) and the value to the object-

value.  

The machine code that is present in the if-section executes when a cached result for a key-tuple is 

available. At location (i) the cached object-array will returned as result.  

 

  

Machine code for optimization strategy 2

Object[] result = hashtable.getValue(keyTuple); (1)

if(result != null) {

  - return result (i)

} else {
      - create aspect instance  (2)
      - establish and store association  (3)
      - store aspect instance in object-array (ii)
      - store object-array in hashtable (iii)

      - return object-array (5)

}



41 
 

5.2.3 Optimization Strategy 3 

Before the generateASM method is called, the machine code of the JoinPointSite method is 

already partially generated by the JIT-compiler. The second property, i.e. sensitive/insensitive on 

context values, of this optimizations strategy is set to context insensitive which means that the 

machine code that need to be generated does not depend upon the empty key-tuple. Therefore the 

empty key-tuple can be discarded as was done in the first optimization strategy. 

The machine code that needs to be generated realizes the aspect instantiation policy for this 

optimization strategy. Before the generation of code starts, the PerTupleContext determines at 

compile-time what aspect instances are associated to the empty key-tuple. In order to retrieve the 

associated aspect instances, an exact query that contains no key-tuple is passed to the StoreHandle 

entity. The associations in the StoreHandle entity are fixed which means that for a given query the 

same set of aspect instances is always returned. The following strategy is generated that at run-

time will have the following behavior: 

 

 Return the associated aspect instances (1). 

 

 

The machine code is generated as follows. First the associated aspect instances are retrieved at 

compile-time. Next an object-array is created in the non-moving space and filled with the 

retrieved aspect instances. The size of the object-array equals the number of associated aspect 

instances. Finally, the generateASM method generates the following machine code, shown in 

figure 5.6: 

 

 

Figure 5-6 – Pseudo machine code instructions for the third optimization strategy 

According to the properties of this configuration, only the result – containing the associated 

aspect instances – is returned. The machine code at location (1) contains a constant object 

reference and corresponds to instruction (1). 

 

  

- return object array (1)

Machine code for 

optimization strategy 3

Fixed address of 

object-array

 
000071 |           PUSH           1736491644                   |  
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5.2.4 Optimization Strategy 4 

This optimization strategy is the same as the third optimization strategy with the exception that 

the associations in the StoreHandle entity are not fixed and can thus change over time. This 

means that the key-tuple can be associated to a different set of aspect instances at any moment. 

The generateASM method therefore generates machine code that passes the key-tuple to the 

StoreHandle entity. The following strategy is generated that at run-time will have the following 

behavior: 

 Retrieve the associations (1); 

 Return the associated aspect instances (2); 

 

When these instructions execute the StoreHandle entity is consulted (1) and the correct associated 

aspect instances are returned (2). 

It might be the case that the associations in the StoreHandle entity do not change very often and 

furthermore we defined that consulting the StoreHandle entity is slow because it has to search for 

the associated aspect instances. We therefore define for this optimization strategy a caching 

mechanism that caches the retrieved aspect instances that belong to a key-tuple. The caching 

mechanism is the same mechanism used for the second optimization strategy, but in order to use 

it for this strategy a modification must be made. In the second optimization strategy the 

PerTupleContext has control over aspect instantiation and it knows that a key-tuple is always 

associated to the same aspect instance. In other words, the cached result is always valid. That 

does not apply for this optimization strategy because the associations in the StoreHandle entity 

can change and thus it cannot be guaranteed that a cached value is valid. 

In order to determine if a cached result is valid, we have extended the caching mechanism with an 

invalidation mechanism. Everytime the cached result is used, the mechanism has to check if a 

result is valid. Because the cached value itself, i.e. the object-array containing the aspect instance, 

cannot be equipped with this mechanism a wrapper class is designed. This wrapper class, or more 

precisely the ResultRef class, wraps the cached results and implements the invalidation 

mechanism that works basically as follows:  The ResultRef class is equipped with a state variable 

that represent whether a cached result is valid or invalid.  To make a cached result invalid, the 

ResultRef is also equipped with a invalidate method that is called when the associations in the 

StoreHandle change. 

The generated machine code for this optimization strategy is shown in figure 5.7. 
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Figure 5-7 – Pseudo machine code instructions for the fourth optimization strategy  

The generated machine code at location (1) corresponds to instruction (1) and retrieves the 

associated aspect instances for the empty key-tuple by consulting the StoreHandle entity. After 

the aspect instances are retrieved, they are returned as object-array at location (2) that 

corresponds to instruction (2). The rest of machine code is responsible for the caching 

mechanism. When the generated machine code at (i) executes, the state of the cached result is 

retrieved. If the state turns out to be valid then the cached result can be returned at (ii). If the state 

is invalid then the cached result needs to be updated. After the associations are retrieved at (1), an 

object-array is created where the associated aspect instances are stored (iii) and this object-array 

is then stored as cached result (iv). As a last action, the machine code at (v) sets the state to valid 

so that next time the cached result can be returned.   

 

 

5.2.5 Optimization Strategy 5 

This optimization strategy equals the second strategy, except that an explicit instantiation is used.  

The key-tuple is used in order to retrieve the associated aspect instances. The generateASM 

method generates the instructions that at run-time will have the following behavior: 

 Retrieve the associations (1); 

 Return the associated aspect instances (2); 

 

When these instructions execute the StoreHandle entity is consulted (1) and the associated aspect 

instances are returned (2). In contrast to the second optimization strategy the number of 

associated aspects depends on the associations in the StoreHandle entity. The associations in the 

StoreHandle entity are fixed which means that for the key-tuple the same number of aspect 

instances is always returned.   

Because consulting the StoreHandle entity is defined as slow, we also implement for this 

optimization strategy a caching mechanism. Figure 5.8 shows the generated machine code for this 

optimization strategy: 

Machine code for optimization strategy 4

int state = resultRef.state (i)

 
if(resultRef.state == VALID) {

  - return resultRef.cachedResult  (ii)

} else {
      -  retrieve the associations;  (1)
      -  store associated aspect instances in object-array; (iii)
      -  store object-array in resultRef; (iv)
      -  make resultRef.state valid; (v)

      -  return object-array; (2)

}
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Figure 5-8 – Pseudo machine code instructions for the fifth optimization strategy 

The generated machine code at location (1) corresponds to instruction (1) and retrieves the 

associated aspect instances by performing an exact query to the StoreHandle entity. After the 

aspect instances are retrieved, they are returned as object-array at location (2) that corresponds to 

instruction (2). The rest of machine code is used for the caching mechanism and executes at run-

time as follows: 

The machine code at location (i) passes the key-tuple to a hashtable that returns either an object-

array containing the cached value, or it returns null and in that case no result is cached. If no 

result is cached then the machine code at (1) executes and retrieves the associated aspect 

instances. Next, machine code at location (iii) stores the associated aspect instances in an object-

array and this object-array is stored into a hashtable at location (iv). In case a result is not null 

then a result is cached and machine code at (ii) executes that returns the cached result. 

 

5.2.6 Optimization Strategy 6 

This optimization strategy equals the fifth strategy, except that the associations in the StoreHandle 

are not fixed. The generateASM method generates the instructions that at run-time will have the 

following behavior: 

 Retrieve the associations (1); 

 Return the associated aspect instances (2); 

 

When these instructions execute the StoreHandle entity is consulted (1) and the associated aspect 

instances are returned (2). The associations in the StoreHandle entity are not fixed and can thus 

change over time. 

It might be the case that the associations in the StoreHandle entity do not change very often and 

furthermore we defined that consulting the StoreHandle entity is slow because it has to search for 

the associated aspect instances. We therefore define a caching mechanism with an invalidation 

mechanism that caches the retrieved aspect instances that belong to a key-tuple.   

 

The generated machine code for this optimization strategy is shown in figure 5.9. 

Machine code for optimization strategy 5

Object[] result = hashtable.getValue(keyTuple); (i)

if(result != null) {

  - return result (ii)

} else {
      - retrieve the associations;  (1)
      - store associated aspect instances in object-array;  (iii)
      - store object-array in hashtable (iv)

      - return object-array (2)

}
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Figure 5-9 – Pseudo machine code instructions for the sixth optimization strategy 

The generated machine code at location (1) corresponds to instruction (1) and retrieves the 

associated aspect instances by performing an exact query to the StoreHandle entity. After the 

aspect instances are retrieved, they are returned as object-array at location (2) that corresponds to 

instruction (2). The rest of machine code is used for the caching mechanism and executes at run-

time as follows: 

When the generated machine code at (i) executes, a key-tuple is passed to a hashtable that either 

returns null or a ResultRef object. If null is returned then no result is cached and the machine 

code in the outer if-section executes. The machine code at (1) retrieves the associated aspect 

instances by consulting the StoreHandle entity. Next, a ResultRef object is created at location (ii). 

The retrieved associated aspect instances are stored in an object-array at (iii) and the object-array 

is stored in the ResultRef object at (iv). The ResultRef object is stored in the hashtable at (v) so 

that next time a cached result is available. Finally the object-array is returned as result at (2).  

If a ResultRef object is returned at (i) then a cached result is available. Because the associations 

in the StoreHandle entity are not fixed it might possible that the cached result is invalid. 

Therefore the state is retrieved at (vi) and checked. If the state is valid then the inner-if section 

executes and the cached result is returned at location (vii). If the state is invalid then the inner-

else section executes that updates the old cached value. At (1) new aspect instances are retrieved 

which then are stored in an object-array at (iii). The object-array is stored in the ResultRef object 

at (iv) whereby thus the old cached value is overwritten. Finally the object-array is returned as 

result at (2). 

 

 

 

Machine code for optimization strategy 6

ResultRef resultRef = hashtable.getValue(keyTuple); (i)

if(resultRef == null) {
      - retrieve the associations; (1)
      - create resultRef; (ii)  
      - store associated aspect intances in object-array; (iii)
      - store object-array in resultRef; (iv)
      - store resultRef in hashtable; (v) 

      - return object-array; (2)

} else {
    

    int state = resultRef.state; (vi)

     

    if(state == VALID) {
    - return resultRef.cachedResult; (vii)    

    } else {
           - retrieve the associations; (1)
           - store associated aspect intances in object-array; (iii)
           - store object-array in resultRef; (iv)

           - return object-array; (2)       

    }   

}
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5.2.7 Optimization Strategy 7 

This optimization strategy equals the fifth optimization strategy except that the StoreHandle entity 

is queried with a range query. 

5.2.8 Optimization Strategy 8 

This optimization strategy equals the sixth optimization strategy except that the StoreHandle 

entity is queried with a range query. 
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5.3 Additional work – Dynamic Linking 
 

Dynamic linking in Java means that classes and methods that form the application are loaded and 

linked on demand during execution [14]. The purpose of dynamic linking is that only the 

necessary parts of the program are loaded and linked. This results into a faster program startup 

and no compilation and linking time is wasted on parts that are not used. 

Before a class or method can be linked into the running program they are first need to be loaded. 

With loading we mean that the machine code of a class or method of a given name is found. The 

compiled machine code cannot be executed yet, because it must first be linked. The linking 

process includes that the machine code is combined into the runtime state of the JikesRVM so 

that it can be executed. Dynamic linking involves three activities: verification, preparation and 

resolution of symbolic references. Here we focus only on the last activity. 

 

For the eight optimizations strategies discussed in previous sections, specific machine code is 

generated that represents the aspect-instantiation policy. The first two optimization strategies 

make use of an implicit instantiation strategy and this means that the generated machine code 

may refer to a class or method that at run-time is not yet loaded or linked. There is thus a chance 

that dynamic liking occurs when the generated machine code executes. Because we let the 

PerTupleContext played a role of JIT-compiler, we also must take care that the generated code 

supports dynamic linking. 

 

The remainder of this section discusses how the generated code support dynamic linking and 

what kind of adaptations were made. We first explain in the next intermezzo how it is supported 

in the JikesRVM: 

 INTERMEZZO IV 
The following code excerpt shows an example when dynamic linking occurs.  In the example the JIT-
compiler is compiling the bytecode of method m to final machine code. When the JIT-compiler encounters 
the call to invokespecial <init>()V on line three, it tries to find where the machine code of the 
<init>()V method is located. The location of the machine code is used by the JIT-compiler in order to 
emit the call instruction.    

 bytecode of method m 
  

1 new Apple 
2 dup 
3 invokespecial <init>()V      <---- method reference 

 
When the invokespecial instruction on line 3 is compiled to final machine code, the location of the 
machine code of the <init>()V method is searched. If the <init>()V method was used earlier then the 
corresponding machine code is prepared to be executed and thus no loading or dynamic linking is needed. 
If, on the other hand, the <init>()V method was never used earlier then it has to be loaded and linked 
before it can be executed.  
 
 
When the Apple class was loaded, its Type Information Block (TIB) is initialized. A TIB contains pointers to 
the compiled method bodies (executable code) for the virtual methods. The pointer to the compiled 
method body of <init>()V points to a so-called method stub. The call that is generated by the JIT-
compiler will therefore try to execute the method stub. Until now, no dynamic linking occurred. 
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As soon as the method-stub is reached dynamic liking will occur and the lazy method invoker is executed.      
The purpose of this lazy method invoker is to update the TIB with the correct executable code for the 
<init>()V method. The pseudo-code for the lazy method invoker is as follows: 
 

 
 
The compilation of the <init>()V method and updating of the TIB occurs at location (2). But before this 
can be done, the resolveDynamicInvocation method is called at (1). In this method a DynamicLink 
object is created and the target method, i.e. the method reference to <init>()V, is set. 
 
In order to find the target method the stack is inspected. At the right-hand side the stack is shown 
according to the situation when the resolveDynamicInvocation method is called. The topmost frame of 
the stack is thus the resolveDynamicInvocation method frame. Then at (3) the calling frame, i.e. 
lazyMethodInvoker method, is retrieved and at (4) its return address is stored. This return address points 
to an instruction of the calling frame of the lazyMethodInvoker method frame. One step further at (5) 
the lazyMethodInvoker method’s calling frame is retrieved which is the frame of method m. Via an id in 
the method frame (not shown), the compiled method is retrieved at (6). The compiled method is an 
internal entity where Jikes stores the method’s machine code and other compilation state data. 
 
At location (7) an offset is calculated between the stored return address and the location of the machine 
code of m. The DynamicLink object is created at (8) and as final action the getDynamicLink method is 
called at (9) whereby two arguments are passed: 1) the DynamicLink object and 2) the offset. 
 
The purpose of the getDynamicLink method is to locate the target method, i.e. the  <init>()V method 
and store it in the DynamicLink object. The target method is located via the offset variable. Namely the 
offset variable points to an instruction in m of where to continue. If it is known where to continue, it can 
also be known what instruction caused the call. Once that instruction is known, the corresponding 
bytecode index is calculated. For this example the bytecode would be index 3 and thus the reference to 
the<init>()V method is retrieved and stored in the DynamicLink object. 

 

The dynamic linking process as described in the intermezzo works perfectly for machine code 

that is generated by the JIT-compiler.  

Once the calling instruction is known the corresponding bytecode instruction is calculated. This 

mechanism works thus perfectly for machine code that was compiled by Jikes’ baseline compiler 

public class DynamicLinker {

  static void lazyMethodInvoker() {
     
    DynamicLink dl = resolveDynamicInvocation(); (1)     
    ...
    // compile dl.targetMethod and update TIB; (2)     
    ...     
  }

   
  static DynamicLink resolveDynamicInvocation() {

    Address callingFrame = getCallerFP(getFP()); (3)
    Address returnAddress = getReturnAddress(callingFrame); (4)
    callingFrame = getCallerFP(callingFrame); (5)

    CompiledMethod cm = getCompiledMethod(callingFrame); (6)
    Offset callingInstructionOffset = cm.getInstructionOffset(returnAddress); (7)  

    DynamicLink dl = new DynamicLink(); (8)
    cm.getDynamicLink(dl, callingInstructionOffset); (9)

    return dl; (10)
  }

}

top of stack

local variables

return address

parameter variables

local variables

return address

parameter variables

local variables

return address

parameter variables

fp

fp

fp

.resolveDynamicInvocation

frame

.lazyMethodInvoker

frame

.m

frame
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because it knows how the machine code is related to the bytecode and a mapping can be easily 

made. This mapping is shown in figure 5.10. 

 

Figure 5-10 – Correct mapping of bytecode instructions to machine code instructions   

If, however, the generateASM method generates machine code then the relation between machine 

code and bytecode is different. Figure 5.11 shows this: 

 

Figure 5-11 – Incorrect mapping of bytecode instructions to machine code instructions   

The machine code instructions that are generated by the generateASM method do not map to a 

corresponding bytecode instruction. Therefore an additional mapping system is designed that sets 

the correct data in the dynamic link object. 

 

 

 

 

 

 

  

bytecode m:

[1] new Apple;
[2] dup;
[3] invokespecial <init>()V

machine code m:

...
compiled machine code for [1]
...
...
...
compiled machine code for [2]
...
...
compiled machine code for [3]
...
...
...

bytecode joinPointSite:

[3] sipush 0;
[4] anewarray new <>;

[5] -

[6] invokestatic <>;
[7] return 

machine code m:

...
compiled machine code for [3]
...
compiled machine code for [4]
...
compiled machine code for [5]
...
  // machine code created by 
  // optimization strategy 
...
compiled machine code for [6]
...
compiled machine code for [7]
...
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Chapter   6  
 

Experiments 
This chapter presents the setup and results of the benchmarks that are performed on aspect-

instantiation policies. We use the three aspect-instantiation policies of the generalized model and 

measure their performance in AspectJ [4], Association Aspects [3] and ALIA4J [8].   

This chapter is organized as follows. Section 6.1 discusses the micro benchmark platform that is 

designed as a separate project within this work. The benchmarking methodology is discussed in 

section 6.2 and describes how the experiments are setup and how the data is analyzed and, finally, 

section 6.3 shows the results of the experiments. 

6.1 Micro Benchmark Platform 
The micro benchmark platform is designed as a separate project within the Steamloom

ALIA
 virtual 

machine that is able to measure the execution time of a part of a method and produces one data 

point per benchmark invocation. Prior to the invocation of the benchmark platform it must be 

notified which class and method are going to be measured. Once the benchmark platform is 

running, an object of the given class is instantiated, the object’s method is called a number of 

times and finally one data point is produced that contains the time that was needed to execute the 

method. In next sections it becomes clear how this data point is retrieved and how these data 

points are analyzed in order get a result. 

At first sight it seems rather trivial to measure the performance of a method, but since non-

determinism at run-time causes the execution of a Java application to differ from run to run, it 

turns out to be complicated [15]. Typical sources of non-determinism are garbage collection, 

thread scheduling, and various other hidden system effects. There exist different methodologies 

on benchmarking applications that deal with non-determinism but as described in [15], these 

methodologies differ from each other in a number of ways. It is shown that certain methodologies 

can be misleading and even can produce incorrect conclusions because the data analysis is not 

statistically rigorous. In this work a methodology is adopted that is statistically rigorous for the 

benchmarks that are going to be performed by the benchmark platform. This methodology is 

described in section 6.2.  

The benchmark platform consists of a central class called MicroBenchmark and implements the 

benchmark harness.  Prior to benchmarking, a MicroBenchmark object is created whereby the 

configuration values, i.e. what class and method are going to be measured, are passed as 

parameters to the constructor. During benchmarking the harness performs the measurements by 

creating an object of the given class and executes the object’s method a number of times until a 

stable result is reached. Finally the result is returned as a data point.  

In order for a class to be acceptable by the benchmark platform, it must implement the 

OperationHarness interface that is described in the next section. Thereafter, the MicroBenchmark 

platform is described in detail and shows how a stable result is retrieved.  
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6.1.1 The OperationHarness Interface  

The OperationHarness interface is shown in listing 6.1. The implementing class implements the 

three methods which then can be called by the platform. The setup method is called once and is 

used to initialize the benchmark, for instance, the deployment of an attachment or configuration 

of an aspect.      

 
1 public interface OperationHarness { 
2  

3 Object setup();  
4 void operation();  

5 void nullOperation(); 
6 }  

Listing 6-1 – The OperationHarness interface 

The purpose of the operation and nullOperation methods is to counterbalance each other in such 

a way that only the instructions of interest in the operation method are measured. In 

Steamloom
ALIA

 the unit of compilation is a method and the same applies for this benchmark 

platform; the unit of measurement is a method. Often a method contains more than just the 

instructions that need to be measured and removing them is not always possible. For example, in 

FIAL the operation method would be executing the machine code that was generated by the 

PerTupleContext, but the machine code can never be executed alone, only during a generic 

function dispatch. As explained in previous chapters, the generated machine code is generated 

within a JoinPointSite method. Before the generated machine code executes, a key-tuple is 

created and afterwards the advice is executed within the JoinPointSite method. When the 

JoinPointSite method is measured, the benchmark platform thus also measures the key-tuple 

creation and advice execution.  

In order to measure the instructions of interest, i.e. the machine code of the aspect-instantiation 

policy, the operation and nullOperation methods must be implemented as follows. The 

operation method is the method that contains the generic function call and the instructions that 

realize the aspect-instantiation policy and advice execution. The nullOperation also contains a 

generic function call, but in contrast to the operation method, no aspect-instantiation policy is 

present.  

The net result of the measurement is then the execution time of the aspect-instantiation policy and 

is calculated by subtracting the execution time of nullOperation method from the operation 

method. The instructions in the nullOperation thus neutralize the instructions in the operation 

method that must not be measured. For every benchmark case we must define what instructions 

have been placed in the operation method and nullOperation method. If the nullOperation 

method is not carefully defined then the benchmarking can lead to false results.  
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6.1.2 The Benchmark harness 

The class MicroBenchmark implements the benchmark harness and can be configured with an 

operation to benchmark. Starting the MicroBenchmark class will be referred to as a virtual machine 

invocation and produces one data point. During benchmarking it repeatedly does the following 

actions until a stable result is reached: 1) record the start time 2) execute the method that needs to 

be measured 3) record the stop time 4) calculate the difference between start en stop time and 5) 

return the result as data point.  

 

Once the MicroBenchmark class has started to run, its benchmark harness begins with the 

benchmarking. The benchmarking process performs three nested loops in order to get one stable 

data point. The inner loop is the so-called measure-iterations-loop and invokes the operation and 

nullOperation method alternately. 

The inner loop and the operation method are shown in listing 6.2. The operation method is 

invoked fifteen times on line 9 – 11. The fifteen invocations reduce the effect of executing the 

loop and the conditional logic and avoid performance problems of tight loops. Just above the 

operation method is the nullOperation method and is also invoked 15 times. 

The constant MEAURE_ITERATIONS is set to 8000 which means that the operation and nullOperation 

methods are invoked 120,000 times everytime the loop runs. The value of the MEAURE_ITERATIONS 

constant and the number of fifteen copies have been determined by trial and error. The variable 

means is used to switch between the operation and nullOperation method.  

 
1 for (long i = 0; i < MicroBenchmark.MEASURE_ITERATIONS; i++) { 
2 if (means == Means.BASELINE) { 

3 // baseline 
4 operationHarness.nullOperation(); 

5 operationHarness.nullOperation(); 
6 // ... 13 more times 

7 } else { 

8 // real measurement 

9 operationHarness.operation(); 

10 operationHarness.operation(); 

11 // .. 13 more times 

12 } 
13 }  

Listing 6-2 – The measure-iterations-loop   

 

The next loop is the means-loop and is shown in listing 6.3.  In this loop the means variable is 

altered (line 1) every time the loop is entered. The statement on line 2 disables the garbage 

collector for the following reasons. The first reason is that garbage collector thread does not run. 

In a normal situation this thread runs in parallel with the program’s main thread and it becomes 

active when a certain threshold of free memory is reached. Because we do not know when this 

thread becomes active it is a source of non-determinism and can pollute the measurement. The 

second reason is that thread-switching is disabled whereby another potential source of non-

determinism is disabled. 
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However, there is still a chance that the operating system decides to change between processes. 

We have no control of this and thus it cannot be guaranteed that a measurement is totally free of 

pollutions. The next loop explains how it can be detected if a measurement is possible polluted by 

a hidden source of non-determinism. After garbage collection has been disabled the current 

system time is stored in variable start on line 4.  The measure-iteration-loop runs on line 6 and 

executes the operation or nullOperation method as explained. Then on line 8 the current system 

time is stored again in variable end. The difference between the start and end gives the times 

spent in the measure-iteration-loop. Because the execution of the nanoTime method is also 

included in the measurement, we measure its execution time and subtract it from the result (line 

10 – 12). Line 14 enables the garbage collector so that the garbage collector gets the opportunity 

to remove dead object that were created during the measurement. The last statements (line 17 – 

20) store the exectionTime of either the operation or nullOperation method in a list. The list is 

used by the next loop which is discussed next. 

 
1 for (Means means : Means.values()) { 
2 VM.disableGC(); // also disables thread switching, must be enabled after measurement 

3  
4 long start = System.nanoTime(); 

5  
6 // execution of the inner loop 

7  

8 long end = System.nanoTime(); 

9  

10 long creation = System.nanoTime(); 

11 long creationTime = creation - end; 

12 long executionTime = end - start - creationTime; 
13  

14 VM.enableGC(); 
15 System.gc(); 

16  

17 if (means == Means.BASELINE) 
18 // store execution time in operationTimesList 

19 else 
20 // store execution time in nullOperationTimesList 

21 }  

Listing 6-3 – The means-loop   

The last loop is the called the outer-loop and is shown in listing 6.4. The outer-loop runs until 

either the iteration variable becomes greater or equal to MAX_ITERTATIONS_PANIC which is set to 

100, or if the measurement results are converging. The measurement results are converging if for 

both the operationTimes list and the nullOperationTimes list, the list’s maximum value divided 

by the list’s minimum value does not exceed a CONVERGENCE_THRESHOLD. Initially the 

CONVERGENCE_THRESHOLD variable is set to 0.05. 

If after MAX_ITERATIONS the measurement results are not converging then the 

CONVERGENCE_THRESHOLD is increased by 5% at the end of the loop iteration (that means that it is 

increased by 5% of its own value not by an absolute value of 5%). Thus if the strict convergence 

rule cannot be met, then it is loosened with iterations.   

 

 



54 
 

When the outer-loop exits we have measured at least 5 times (MicroBenchmark.MIN_ITERATION is 

set to 5), the execution time of the operation and nullOperation method which only differ by 

CONVERGENCE_THRESHOLD * 100%. It can therefore be assumed that the last measurement was no 

peak, since it behaved similar to the last five ones. Therefore, we take the last measurement as the 

data point for this VM invocation.  

 
1 while ((iteration < MicroBenchmark.MIN_ITERATION || 
2 MicroBenchmark.notConverging(nullOperationTimes, operationTimes, false)) 

3 && iteration < MicroBenchmark.MAX_ITERATIONS_PANIC) { 
4  

5 // means-loop 
6  

7 iteration++; 

8  

9 if (MicroBenchmark.notConverging(nullOperationTimes, operationTimes, false) 

10 && iteration > MicroBenchmark.MAX_ITERATIONS) { 

11  

12 MicroBenchmark.CONVERGENCE_THRESHOLD *= 1.05D; 
13 } 

14 }  

Listing 6-4 – The outer-loop   

 

6.2 Methodology 
This section discusses the methodology and consists of an experimental design part and data 

analysis part. 

The experimental design refers to setting up the experiments: the benchmarks were run using a 

machine with an Intel Pentium 4 CPU, running at 2.8 GHz. The operation system was Ubuntu 

Linux using kernel version 2.6.35-24-generic. The version of the JikesRVM was 2.9.3 and the 

heap size was configured to be 2048 Mb.     

Data analysis refers to analyzing the data obtained from the experiments. During the experimental 

design, two types of errors can occur; systematic errors and random errors. Systematic errors, or 

biases, occur because of an experimental mistake or incorrect procedure (for instance, too many 

instruction in the nullOperation). Random errors are unpredictable and non-deterministic and can 

be hard to detect, when a random error occurs it influences the result of a measurement. An 

example of a random error is an external system event and it is impossible to predict when such a 

system event occurs. Because they are invisible and have an influence on the result, a statistical 

model in [15] describes the overall effect of random error on experimental results. The statistical 

model is discussed next.  
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Starting the MicroBenchmark class will be referred to as a virtual machine invocation and produces 

one data point. After x virtual machine invocations, a population of x data points is available. A 

confidence interval for the mean derived from samples then quantifies the range of values that 

have a given probability of including the actual population mean. The way of how confidence 

intervals are built is essentially always the same, but in [16] a distinction is made on the number 

of samples gathered from the underlying population: The number of samples n is large (n >= 30) 

or the number of samples is small (n < 30).   

Since we have control of performing the benchmarks, we choose to have large n; in order to build 

a confidence interval for the mean, we use an approach that is applicable for a large n: 

 

Building the confidence interval requires that we have a number of measurements xi,  

1<= i <= n, from a population with mean μ and variance σ
2
. The mean of the measurements x̄ is 

computed as 

     
   
 
   

 
 

The actual true value of μ is approximated by the mean of measurement x̄ and a range of values 

[c1, c2] around x̄ is computed that defines the confidence interval at given probability. The 

confidence interval [c1, c2] is defined such that the probability of μ being between c1 and c2 

equals 1 – α; α is called the significance level and (1 – α) is called the confidence level. 

The approach we use to compare two measurements is by looking whether the confidence 

intervals overlap. We therefore use a 95% confidence interval that means that there is a 95% 

probability that the actual distribution of the mean of the underlying population, μ, is within the 

confidence interval.  

If the two confidence intervals do overlap, then it cannot be concluded that the differences seen in 

the mean are not due to random fluctuations in the measurements. Or in other words, the 

difference seen in the mean values is possibly due to random effects. If there is no overlap then it 

can be concluded that there is no evidence to suggest that there is not a statistically significant 

difference. 
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6.3 Benchmarks 
This section describes the benchmarks that have been performed on several aspect-instantiation 

policies. The benchmarks are divided into several sections. Section 6.3.1 benchmarks singleton 

policies that are defined as aspect in AspectJ and Association Aspects against singleton policies 

defined as an attachment in ALIA4J. The attachment is configured with the optimized version of 

the PerTupleContext. Section 6.3.2 benchmarks per-object policies that are defined as per-target 

aspect in AspectJ and Association Aspects against per-target policies defined as attachment in 

ALIA4J. Section 6.3.3 benchmarks per-group policies that are defined as aspect in Association 

Aspect against per-group policies defined as attachment in ALIA4J. Finally section 6.3.4 

benchmarks policies defined as attachment configured with the unoptimized version of the 

PerTupleContext against attachments configured with the optimized version of the 

PerTupleContext. 

 

6.3.1 Benchmarking singleton policies 

This section benchmarks the singleton policy. AspectJ and Association Aspects only support 

singleton policies that follow an implicit instantiation strategy and therefore we define exactly 

one aspect for them. With ALIA4J, however, we can either define whether an implicit or explicit 

instantiation strategy is used and likewise two attachments are defined. The following table shows 

how the benchmark is defined and how the four properties are configured to represent the 

singleton policy. 

 benchmark 1 

(AJ) 

benchmark 2 

(AA) 

benchmark 3  

(ALIA4J) 

benchmark 4 

(ALIA4J) 

implicit / explicit implicit implicit implicit explicit 

sensitive / insensitive insensitive insensitive insensitive insensitive 

exact / range exact exact exact exact 

fixed / not-fixed not-fixed not-fixed not-fixed fixed 

 

Benchmark 1 and 2: 

In benchmark 1 and 2 the singleton instantiation policy is measured in AspectJ and Association 

Aspects. The policy is implemented in AspectJ by defining an aspect called AJ_1_1, and is shown 

on the left-hand side of listing 6.5. Because in Association Aspects the singleton policy is 

implemented in the same way, an equivalent aspect called AA_1_1 is shown on the right-hand side. 

The aspect contains one pointcut-and-advice pair. The pointcut matches a call in the operation 

method of the benchmark case. The advice runs afterwards and performs a call to a static advice 

method that increases a trivial counter. 
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Listing 6-5 – Aspect AJ_1_1 and AA_1_1  

 

Listing 6.6 shows on the left-hand side how the operation and nullOperation method are defined 

for the AJ_1_1 aspect. Before the two methods are discussed, we first mention that the instructions 

in both methods are also applicable for the AA_1_1 aspect because it is compiled in the same way 

as the AJ_1_1 aspect. 

The operation method contains the join point shadow x.method_AJ_1_1() and is advised by the 

aspect’s advice. The nullOperation method contains the instructions that neutralize the 

instructions that must not be measured. In order to define which instructions are placed in the 

nullOperation method, we first discuss the corresponding bytecode of the operation method. 

The center of listing 6.6 shows the corresponding bytecode. The bytecode of the operation 

method has six instructions and the instructions that must be neutralized are shown in bold. 

Instructions 1 – 3 correspond to the join point shadow. Instruction 4 retrieves the aspect instance 

and is the receiver object for instruction 5 that executes the advice by a calling the aspect’s 

afterAdvice method. Instruction 6 returns. The instruction that must be measured is the retrieval 

of the aspect instance.      

The instructions that are placed in the nullOperation must thus neutralize all instructions, except 

instruction 4. The following instructions are therefore placed in the nullOperation:  

 Instructions 1 – 3 neutralize the join point shadow. 

 

 Instruction 5 is call to the afterAdvice_No method and neutralizes the call to the afterAdvice method. The 

implementation of the afterAdvice_No method equals the afterAdvice method as shown on the right-hand side. In 

order for the method to execute, a receiver object is needed. This requires that one additional instruction is needed to 

retrieve the receiver. Because this additional instruction must have a minimal impact on the measurement we retrieve the 

receiver object by referring to a global static variable.  

 

Because of the additional instruction, the nullOperation method does not make a perfect 

neutralization. The results of this benchmark are therefore a little bit too low. 

 
1 public aspect AA_1_1 { 
2  
3 pointcut p1():   
4 call(void *.*.method_AA_1_1()); 
5  
6 after(): p1() { 
7 Advice.advice(this); 
8 } 
9 } 

 

1 public aspect AJ_1_1 { 
2  
3 pointcut p1():   
4 call(void *.*.method_AJ_1_1()); 
5  
6 after(): p1() { 
7 Advice.advice(this); 
8 } 
9 } 
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Listing 6-6 – operation and nullOperation methods for the AspectJ/Association Aspects benchmark 

Benchmark 3: 

In order to implement the benchmark in ALIA4J an attachment is deployed. An object diagram of 

the attachment is shown in figure 6.1. The PerTupleContext follows an implicit instantiation 

strategy whereby an object of ALIA_1_1 will be created that represents the aspect instance. The 

pointcut matches a call in the operation method of the benchmark case. The advice runs 

afterwards and performs a call to a static advice method that increases a trivial counter.  

 

Figure 6-1 – Object diagram of the attachment following an implicit instantiation strategy 

Listing 6.7 shows on the left-hand side how the operation and nullOperation method are 

defined. The operation method contains the join point shadow x.method_ALIA_1_1() and when it 

executes it is advised by the advice of the attachment. The nullOperation method contains the 

instructions that neutralize the instructions that must not be measured. In order to define which 

instructions are placed in the nullOperation method, we first discuss the corresponding bytecode 

of the operation method. 

The right-hand side of listing 6.7 shows the corresponding bytecode. The bytecode of the 

operation method contains of two parts. In the first part the join point shadow is replaced with a 

static call to the JoinPointSite method as was explained in intermezzo 1. The bytecode of the 

first part contains six instructions and the instructions in bold must be neutralized.  

The second part contains the JoinPointSite instructions. Instructions 1 – 2 correspond to the join 

point shadow. Instructions 3 – 4 create an array that holds the key-tuple. Instruction 5 contains the 

machine code that was generated by the generateASM method and is the instruction that must be 

measured. Instruction 6 is the call to the advice method whereby an object-array with the 

retrieved aspect instances is passed as parameter. The last instruction returns. 

 

public void operation() { 
x.method_AJ _1_1(); 

} 

[1] aload_0

[2] getfield (x)

[3] invokevirtual < method_AJ_1_1 >

[4] invokestatic  < AJ_1_1;, aspectOf, () AJ_1_1; >

[5] invokevirtual < afterAdvice >

[6] return

[1] aload_0

[2] getfield (x)

[3] invokevirtual < method_No >

[4] getstatic < staticDummy >

[5] invokevirtual < afterAdvice_No >

[6] return 

public void nullOperation() { 
x.method_No(); 
staticDummy.afterAdvice_No(); 

} 

public class AJ_1_1 {

   ...

   public void afterAdvice() {

      Advice.advice(this);

   }

   ...

}

public class Dummy {

   ...

   public void afterAdvice_No() {

      Advice.advice(this);

   }

   ...

}

:MethodCallAction

:Specialization

:Attachment

:PerTupleContext
:MethodPattern

storehandle = storeHandle

type = ALIA_1_1

query = exact

fixed associations = false

pattern = method_ALIA_1_1()

Method = Advice.advice(Object[] obj)

:ScheduleInfo
time = AFTER
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In order to measure the instruction of interest, i.e. instruction 5, we define the nullOperation 

method as follows: 

 Instructions 1 – 4 neutralize the first part of the operation method. Hereby a static call to the 

nullOperationSiteEmulation is made. 

In order to neutralize the second part of the operation method, the following instructions are 

placed in the nullOperationSiteEmulation method.  

 Instructions 1 – 2 neutralize the join point shadow. 

 

 Instructions 3 – 4 neutralize the empty array creation in the JoinPointSite method.  The creation of the empty array is 

not a part of the aspect-instantiation policy. 

  

 Instruction 5 neutralizes the call to the advice method by creating a call to the advice_No method.  Because the advice 

method requires an object-array we use the empty array that was created by instructions 3 – 4 

 

Listing 6-7 – operation and nullOperation methods for the ALIA4J benchmark 

 

Benchmark 4: 

In benchmark 4 the singleton instantiation-policy is measured in ALIA4J. In this benchmark an 

explicit instantiation strategy is used and the associations in the StoreHandle entity are fixed. An 

object diagram of the attachment is shown in figure 6.2.  

 

Figure 6-2 – Object diagram of the attachment that follows an explicit instantiation  

 

public void nullOperation() { 
nullOperationSiteEmulation(x); 

} 

public static void nullOperationSiteEmulation(Object x) { 
x.method_No; 
Advice.advice( new Object[] { }); 

} 

[1] aload_0

[2] getfield < x >

[3] invokestatic < nullOperationSiteEmulation, (Object)V >

[4] return

[1] aload_0

[2] getfield < x >

[3] invokestatic < JoinPointSite, (Object;)V >

[4] return

JoinPointSite:

[1] aload 0

[2] invokevirtual < Object;, method_ALIA_1_1, ()V >

[3] sipush 0

[4] anewarray new < [Object; >

[5] generated machine code

[6] invokestatic < Advice;, advice, ([Object;)V >

[7] return

[1] aload_0

[2] invokevirtual <Object,  method_No, ()V >

[3] iconst_0

[4] anewarray new < [Object; >

[5] invokestatic < Advice;, advice, ([Object;)V >

[6] return

 

public void operation() { 
x.method_ALIA_1_1(); 

} 

:MethodCallAction

:Specialization

:Attachment

:PerTupleContext
:MethodPattern

storehandle = storeHandle

query = exact

fixed associations = true

pattern = method_ALIA_1_2()

Method = Advice.advice(Object[] obj)

:ScheduleInfo
time = AFTER
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The operation and nullOperation methods are not discussed for this benchmark because they 

equal the methods of the first benchmark. The only difference is seen in the operation method 

where generated machine code differs, but this is just what must be measured. 

Figure 6.3 shows the elapsed time for the four benchmark cases. 

 

Figure 6-3 – Mean and confidence interval of the singleton policy benchmark 

Conclusion: ALIA4J_I is on average 2.5 times as fast as AspectJ and on average 1.9 times as fast 

as Association Aspects. The confidence intervals of the results do not overlap and this means that 

there is no evidence to suggest that there is no statistical significant difference
5
.  ALIA4J_E is on 

average 5.2 times as fast as AspectJ and on average 3.8 times as fast as Association Aspects. Also 

here the confidence intervals do not overlap which means that there is no evidence to suggest that 

there is no statistical significant difference. The fact that ALIA4J_E is faster than ALIA4J_I is 

because in ALIA4J_E the result is directly returned without the need to check if an association 

exists. In ALIA4J_I it must be determined whether an association exists and it is therefore bit 

slower than ALIA4J_E.  

 

 

  

                                                           
5
 There is in fact still a probability of 5% that the differences are simply due to random effects. We can 

thus not assure with 100% certainty that there is an actual difference between the measurements.  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Time 
(ns.) 

mean w/ 95% confidence interval 

AJ AA 

  AJ             AA ALIA4J_I ALIA4J_E 
lower 95% confidence limit: 9.79         6.84 3.62 1.66 
mean:   10.02       7.41  3.99 1.94 
upper 95% confidence limit:      10.25       7.97 4.37 2.23 

ALIA4J 
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ALIA4J 
(explicit) 
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6.3.2 Benchmarking per-target policies 

This section benchmarks the par-target policy. AspectJ and Association Aspects only support per-

target policies that follow an implicit instantiation strategy and therefore we define exactly one 

aspect for them. With ALIA4J, however, we can either define whether an implicit or explicit 

instantiation strategy is used and likewise two attachments are defined. The following table shows 

how the benchmark is defined and how the four properties are configured to represent the per-

target policy. 

 benchmark 1  

(AJ) 

benchmark 2 

(AA) 

benchmark 3   

(ALIA4J) 

benchmark 4   

(ALIA4J) 

implicit / explicit implicit implicit implicit explicit 

sensitive / insensitive sensitive sensitive sensitive sensitive 

exact / range exact exact exact exact 

fixed / not-fixed not-fixed not-fixed not-fixed fixed 

 

Benchmark 1 and 2: 

In benchmark 1 and 2 the per-target instantiation policy is measured in AspectJ and Association 

Aspects. In order to implement the per-target policy in AspectJ we have defined an aspect called 

AJ_2_1, shown on the left-hand side of listing 6.8. Because in Association Aspects the per-target 

policy is implemented in a same way, an equivalent aspect called AA_2_1 is shown on the right-

hand side. The aspect contains one pointcut-and-advice pair. The pointcut matches a call in the 

operation method of the benchmark case. The advice runs afterwards and performs a call to a 

static advice method that increases a trivial counter. 

 

Listing 6-8 – Aspect AJ_2_1 and AA_2_1  

Listing 6.9 shows on the left-hand side how the operation and nullOperation method are 

defined. The corresponding bytecode instructions are shown on the right-hand side, the 

instructions in bold must be neutralized. Just as in the previous section, aspect AA_2_1 is compiled 

in same way as AJ_2_1 and therefore the operation and nullOperation method also apply for this 

aspect.  

The instructions in the nullOperation method are as follows:  

 Instructions 1 – 3 neutralize the original join point shadow. 

 

 Instruction 5 is a call to the afterAdviceNo method and neutralizes the call to the afterAdvice method. Again, we 

need a receiver object in order to execute the afterAdviceNo method.  

Because of the additional instruction, the nullOperation method does not make a perfect 

neutralization. The results of this benchmark are therefore a little bit too low.  

 
1 public aspect AJ_2_1 pertarget(p1()) { 
2  
3 pointcut p1():   
4 call(void *.*.method_AJ_2_1()); 
5  
6 after(): p1() { 
7 Advice.advice(this); 
8 } 
9 } 

 
1 public aspect AA_2_1 pertarget(p1()) { 
2  
3 pointcut p1():   
4 call(void *.*.method_AA_2_1()); 
5  
6 after(): p1() { 
7 Advice.advice(this); 
8 } 
9 } 
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Listing 6-9 – operation and nullOperation methods for the AspectJ/Association Aspects benchmark  

 

Benchmark 3: 

In order to implement the benchmark case in ALIA4J an attachment is deployed. The attachment 

is shown in figure 6.4.  The PerTupleContext follows an implicit instantiation strategy whereby 

an object of ALIA_2_1 will created to serve as aspect instance. The pointcut matches a call to join 

point shadow method_ALIA_2_1 that is defined in the operation method of the benchmark harness. 

The advice runs afterwards and performs a call to a static advice method that increases a trivial 

counter. The PerTupleContext depends on the CallerContext. 

 

Figure 6-4 – Object diagram of the attachment following an implicit instantiation strategy  

 

Listing 6.10 shows on the left-hand side how the operation and nullOperation method are 

defined for this benchmark case. The corresponding bytecode instructions are shown on the right-

hand side, the instructions in bold must be neutralized.  

 

public void nullOperation() { 
x.method_No(); 
staticDummy.afterAdvice_No(); 

} 

[1] aload_0

[2] getfield < x >

[3] astore_1

[4] aload_1

[5] invokestatic < AJ_2_1;, perObjectBind, (Object;)V >

[6] aload_1

[7] invokevirtual < Object;, method_AJ_2_1, ()V >

[8] aload_1

[9] invokestatic < AJ2_1;, hasAspect, (Object;)Z >

[10] ifeq [13]

[11] aload_1

[12] invokestatic < AJ_2_1;, aspectOf, (Object;)AJ_2_1; >

[13] invokevirtual < AJ_2_1;, afterAdvice, ()V >

[14] return

[1] aload_0

[2] getfield < x >

[3] invokevirtual < Object;, method_No, ()V >

[4] getstatic < staticDummy >

[5] invokevirtual <  afterAdvice_No ()V >

[6] return

 

public void operation() { 
x.method_AJ_2_1(); 

} 
public class AJ_2_1 {

   ...

   public void afterAdvice() {

      Advice.advice(this);

   }

   ...

}

public class Dummy {

   ...

   public void afterAdvice_No() {

      Advice.advice(this);

   }

   ...

}

:MethodCallAction

:Specialization

:Attachment

:PerTupleContext

:MethodPattern
pattern = method_ALIA_2_1()

Method = Advice.advice(Object[] obj)

:ScheduleInfo
time = AFTER

:CalleeContext

storehandle = storeHandle

dep. context = calleeContext

type = ALIA_2_1

query = exact

fixed associations = false
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Listing 6-10 – operation and nullOperation methods for the ALIA4J benchmark  

 

Benchmark 4: 

In benchmark 4 the policy is measured in ALIA4J whereby the PerTupleContext follows an 

explicit instantiation strategy and the association in the StoreHandle entity are fixed. An object 

diagram of the attachment is shown in figure 6.5.  

 

Figure 6-5 – Object diagram of the attachment following an explicit instantiation strategy  

 

 

 

 

 

 

 

public void nullOperation() { 
nullOperationSiteEmulation(x); 

} 

[1] aload_0

[2] getfield < x >

[3] invokestatic < nullOperationSiteEmulation, (Object;)V >

[4] return

[1] aload_0

[2] getfield < x >

[3] invokestatic < JoinPointSites;, (Object;)V >

[4] return

JoinPointSite:

[1] aload 0

[2] invokevirtual < Object;, method_ALIA_2_1, ()V >

[3] sipush 1

[4] anewarray new < [Object; >

[5] dup

[6] sipush 0

[7] aload 0

[8] aastore

[9] generated machine code

[10] invokestatic < Advice;, advice, ([Object;)V >

[11] return

[1] aload_0

[2] invokevirtual < Object;, method_No, ()V >

[3] iconst_1

[4] anewarray new < [Object; >

[5] dup

[6] iconst_0

[7] aload_0

[8] aastore

[9] invokestatic < Advice;, advice_No, ([Object;)V >

[10] return

 

public void operation() { 
x.method_ALIA_2_1(); 

} 

 

public static void nullOperationSiteEmulation(Object x) { 
x.method(); 
Advice.adviceNo(new Object[] { calleeObject }); 

} 

:MethodCallAction

:Specialization

:Attachment

:PerTupleContext

:MethodPattern
pattern = method_ALIA_2_2()

Method = Advice.advice(Object[] obj)

:ScheduleInfo
time = AFTER

:CalleeContext

storehandle = storeHandle

dep. context = calleeContext

query = exact

fixed associations = true
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Figure 6.6 shows the elapsed time for the four benchmark cases. 

 

Conclusion: ALIA4J_I is on average almost even fast as AspectJ and Association Aspects. 

ALIA4J_E is on average a little bit faster than ALIA4J_I.  The confidence intervals do overlap 

thus it cannot be concluded that the differences seen in the mean values are not due to random 

fluctuation in the measurements. For this benchmark ALIA4J cannot outperform AspectJ and 

Association Aspects. The reason for this is that both implementations depend on context values 

that are used by aspect-instantiation policy to retrieve the aspect instance. Both implementations 

use a different strategy on how those context values are stored. In AspectJ and Association 

Aspects an aspect can only be deployed at compile-time. This allows AspectJ and Association 

Aspects to determine at compile-time which join point shadows are going to be advised. The class 

that contains a join point shadow that is potential being advised is therefore equipped with an 

additional hidden field that can hold an aspect instance. When at run-time a join point shadow is 

reached and advice needs to be invoked, the aspect instance can directly be retrieved by referring 

to the additional field. In ALIA4J attachments are deployed at run-time and thus ALIA4J cannot 

determine at compile-time which classes are affected. No additional field is therefore available 

but instead a hash table is used to determine the aspect instance.    

 

Figure 6-6 – Mean and confidence interval of the per-target policy benchmark  

 

  

50 

60 

70 

80 

Time 
(ns.) 

mean w/ 95% confidence interval 

AJ ALIA4J  
(implicit) 
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lower 95% confidence limit: 74.60       75.03 74.56 72.68 
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6.3.3 Benchmarking association aspect policies 

This section benchmarks the association aspect policy. Listing 6.11 shows aspect AA_3_1 that 

implements this policy in Association Aspects. The following table shows how the benchmark is 

defined and how the four properties are configured to represent the per-group policy. 

 

 benchmark 1 

(AA) 

benchmark 2 

(ALIA4J) 

benchmark 3 

(ALIA4J) 

implicit / explicit explicit explicit explicit 

sensitive / insensitive sensitive sensitive sensitive 

exact / range range range range 

fixed / not-fixed not-fixed not-fixed fixed 

 

The aspect contains a constructor whereby two objects must be provided by the client. The aspect 

creates on line 4 an association between the two objects. Furthermore one pointcut-and-advice 

pair is present. The pointcut is defined on line 7 – 10 and matches a call in the operation method 

of the benchmark case. In addition to earlier discussed aspects, this pointcut binds the target 

object, i.e. the callee object, and requires that an association must exist. The advice runs 

afterwards and performs a call to a static advice method that increases a trivial counter. 

 

Listing 6-11 – Aspect AA_ 3_1   

Listing 6.12 shows on the left-hand side how the operation and nullOperation method are 

defined for this benchmark case. The corresponding bytecode instructions are shown on the right-

hand side, the instructions in bold must be neutralized.  

The instructions in the nullOperation method are as follows:  

 Instructions 1 – 6 neutralize the original join point shadow and store the caller object in a local variable. 

 

 Instruction 7 is a static call to the nullOperationDispatchEmulation method and neutralizes the static call to the 

ajc$aa$dispatch$1 method.  

The instructions in the nullOperationDispatchEmulation method are as follows:  

 Instructions 1 – 3 call the afterAdvice_No method in order to neutralize the call to the afterAdvice method. 

 

 
1 public aspect AA_3_1 perobjects(X, X) { 
2  
3 public AA_3_1(X left, X right) { 
4 associate(left, right); 
5 } 
6  
7 pointcut p1():   
8 call(void *.*.method_AA_3_1()) && 
9 target(target) && 

10 associated(target, *); 
11  
12 after(X target): p1(target) { 
13 Advice.advice(this); 
14 } 
15 } 
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Listing 6-12 – operation and nullOperation methods for the Association Aspect benchmark  

In order to implement the benchmark in ALIA4J two attachments are deployed. In the first 

attachment the StoreHandle entity is fixed whereas in the second attachment the StoreHandle 

entity is not fixed. An object diagram of both attachments is shown in figure 6.7; the first 

attachment is shown at the left-hand side, the second attachment at the right-hand side. 

 

Figure 6-7 – On the left: attachment whereby associations in the StoreHandle entity are not fixed. On the 

right: attachment whereby associations are fixed. 

 

Figure 6.8 shows the elapsed time for the three benchmark cases. 

Conclusion:  ALIA4J_F is on average 12.6 times as fast as Association Aspects.  The confidence 

intervals of the results do not overlap and this means that there is no evidence to suggest that 

there is no statistical difference. ALIA4J_NF is on average 12.3 times as fast as Association 

Aspects. 

 

 

[1] aload_0

[2] getfield (x)

[3] astore_1

[4] aload_1

[5] invokevirtual < method_AA_3_1 >

[6] aload_1

[7] invokestatic < operationHarness, ajc$aa$dispatch$1, (X;) >

[10] return

[1] aload_0

[2] getfield (x)

[3] astore_1

[4] aload_1

[5] invokevirtual < methodNo >

[6] aload_1

[7] invokestatic < nullOperationDispatchEmulation, (X;)V >

[8] return

public class AA_3_1 {

   ...

   public void afterAdvice(X x) {

      Advice.advice(this);

   }

   ...

}

public class Dummy {

   ...

   public void afterAdvice_No(X x) {

      Advice.advice(this);

   }

   ...

}

 

public void operation() { 
x.method_AA_3_1; 

} 

ajc$aa$dispatch$1
...   

… // aspect-instantiation policy bytecode (not shown)

… 

[53] aload_3

[54] aload_0

[55] invokevirtual < AA_3_1;, afterAdvice, (X;)V>

… 

… // aspect-instantiation policy bytecode (not shown)

… 

[73] ireturn

 

public void nullOperation() { 
x.method_No; 
nullOperationDispatchEmulation(x) 

} 

 

public static void  nullOperationDispatchEmulation(X x) { 
x.afterAdviceNull(x); 

} 

[1] aload_0

[2] aload_0

[3] invokevirtual <afterAdvice_No, (X;)V >

[4] return

:MethodCallAction

:Specialization

:Attachment

:PerTupleContext

:MethodPattern
pattern = method_ALIA_3_2()

Method = Advice.advice(Object[] obj)

:ScheduleInfo
time = AFTER

:CalleeContext

storehandle = storeHandle

dep. context = calleeContext

query = range

wildcard position = 1

fixed associations = true

:MethodCallAction

:Specialization

:Attachment

:PerTupleContext

:MethodPattern
pattern = method_ALIA_3_1()

Method = Advice.advice(Object[] obj)

:ScheduleInfo
time = AFTER

:CalleeContext

storehandle = storeHandle

dep. context = calleeContext

query = range

wildcard position = 1

fixed associations = false
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Figure 6-8 – Mean and confidence interval of the association aspect benchmark  

 

 

 

6.3.4 Benchmarking policies in the unoptimized PerTupleContext against policies in 

the optimized PerTupleContext. 

In this section we benchmark all the discussed aspect-instant policies in unoptimized version of 

the PerTupleContext and compare it with the results of the optimized version of the 

PerTupleContext.   Figure 6.9 shows the elapsed time for the six benchmark cases. 
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AA ALIA4J -FIXED ALIA4J - NOT -FIXED 

  AA               ALIA4J-F     ALIA4J-NF 
lower 95% confidence limit: 1072.30      87.94           91.51 
mean:   1153.29      91.22           93.51 
upper 95% confidence limit:      1234.28      94.49           95.51 
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 benchmark 1  benchmark 2  benchmark 3  

implicit / explicit implicit implicit explicit 

sensitive / insensitive insensitive sensitive sensitive 

exact / range exact exact range 

fixed / not-fixed not-fixed not-fixed not-fixed 

 

 

 

 

Figure 6-9 – Mean and confidence interval of the PerTupleContext benchmark  

Note that the Y-axis is logarithmic. Conclusion: As can be seen, the performance of aspect-

instantiation policies in the unoptimized PerTupleContext is poorer than that of policies in the 

optimized PerTupleContext. 
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mean w/ 95% confidence interval 
 
 

b1 no-op b2 no-op b3 no-op b1 op b3 op b2 op 

  b1 no-op b1 op b2 no-op 
  
lower 95% confidence limit:  6235.50 3.62 5682.17  
mean:  6551.24 3.99 5715.28  
upper 95% confidence limit: 6866.98 4.37 5748.39 
 
   
  b2 op b3 no-op b3 op 
 
lower 95% confidence limit:  74.32 5874.23 91.51 
mean:  74.99 5908.48 93.51 
upper 95% confidence limit: 75.66 5942.73 95.51 
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Chapter   7  
 

Conclusions & Future Work 
In this thesis we have researched the optimization of aspect-instantiation strategies in the JIT-

compiler. The aspect-instantiation strategies define the rules how aspect instances are stored, 

looked-up and instantiated.  It is feasible that an aspect-instantiation strategy is fast. This is 

because an aspect instance serves as the context for executing one or more advices just as an 

object serves as context for executing a method. If advice is executed often then the aspect-

instantiation strategy is also executed often. In languages like AspectJ and Association Aspects 

the aspect-instantiation strategies are woven at compile-time with the base program to form one 

final program. When at run-time the bytecode of the program is compiled to machine code by the 

JIT-compiler, it cannot distinguish what part of the program corresponds to the original program 

and what part corresponds to the aspect-instantiation policy. Or in other words: semantics of the 

aspect-instantiation policies are lost and this causes that the JIT-compiler cannot produce machine 

code that is optimized according to semantics of an aspect-instantiation policy. 

In order to preserve semantics we used the ALIA4J approach. The PerTupleContext entity is 

provided as an entity that covers three commonly used instantiation policies.  However, this 

PerTupleContext entity implements semantics of the generalized of at a high-level of abstraction, 

i.e. in the so-called getObjectValue method. The high-level of abstraction approach works 

perfectly for experimentation purposes but not for optimization purposes because no optimized 

machine code can be generated. 

The objective of this thesis is to generate machine code that is optimized according to the aspect-

instantiation policy. We have therefore created a new PerTupleContext entity that inherits from 

the existing PerTupleContext. The difference between two entities is that the former one uses the 

low-level of abstraction style whereas the latter uses the high-level of abstraction style. The new 

PerTupleContext is able to interfere with the JIT-compiler. When the JIT-compiler encounters the 

new PerTupleContext entity then hands over control of machine code generating by calling the 

generateASM method. This method then generates machine code according to the semantics of the 

generalized model. In this way semantics of aspect-instantiation policies are used until the latest 

moment in time resulting into more efficient machine code. 

We have defined eight optimization strategies that are used by the PerTupleContext entity to 

generate machine code that is optimized according to an aspect-instantiation policy. The 

optimization strategy is determined on the values of four properties of the generalized model. The 

generation of machine code occurs at run-time and this allows the PerTupleContext to make use 

of run-time information. 

In order to assess the effectiveness of optimization strategies we have defined a series of 

benchmarks. With a benchmark platform we have benchmarked several aspect-instantiation 

policies and compared them against implementations in AspectJ and Association Aspects. It turns 

out that ALIA4J outperforms AspectJ and Association Aspect with the singleton and per-group 
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instantiation policy but does not perform significantly better with the per-target instantiation 

policy.  

In future work the implementation of the PerTupleContext can be improved. The current 

implementation only supports the baseline compiler of the JikesRVM. An implementation for the 

optimizing compiler could be a next step. Another idea for future work is to incorporate aspect 

instance tables [16] in optimization strategies that are sensitive on context values. Instead of 

referring to an internal hash table, we can modify an object’s TIB or header with a field that can 

hold an aspect instance. 
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