

MASTER THESIS

DECOMPOSITIONS FOR

STOCHASTIC PRODUCT

FORM PETRI NETS

Erik van Ommeren

APPLIED MATHEMATICS
STOCHASTIC OPERATIONS RESSEARCH

EXAMINATION COMMITTEE

Prof. dr. R.J. Boucherie
N. Kortbeek, Msc.
Prof. dr. J.L. Hurink

DOCUMENT NUMBER

 -

17-02-2012

2

Summary

Stochastic Petri nets are used to model many systems in which competition over
resources plays an important part, such as computer systems, telecommunica-
tion networks or hospitals. Composition and decomposition of these stochastic
Petri nets allows for a more efficient analysis and a better understanding of net-
work behavior and performance. In this work we extended existing decomposi-
tion results, which allows us to decompose any SΠ2-net into separate common
input bag classes. Secondly these decomposition results are used to formulate an
algorithm to find the normalising constant and first order performance measures
efficiently.

i

ii

Contents

Summary i

1 Introduction 1

2 Definitions and preliminaries 3
2.1 Definitions . 3
2.2 Finding all decompositions . 8

3 Decomposition by adding bag count places 15

4 Decomposition examples 21

5 Normalising constant and performance measures 27

6 Discussion 45

Bibliography 47

iii

iv

Chapter 1

Introduction

Competition over resources is an important issue in many practical systems.
For example, computer systems, telecommunication networks and hospitals fall
in this category. These systems typically have different flows of items, such as
data packages, customers or patients, that move along stochastic paths through
the system where they require acces to shared resources in order to move along.
Typical questions arising are identification of bottlenecks, achievable throughput
and maximization of resource utilization. Therefore, performance analysis is an
important issue in the design and implementation of such real life systems.

One of the models that can be used to analyze such systems is the stochastic
Petri net. The concept of Petri nets was first published by Carl Adam Petri
in 1962 [12] and is able to explicitly incorporate concurrency and competition
in the system. However, just as for queueing networks, the huge state space
required to describe these systems often makes computing exact solutions for
these models infeasable. Different techniques to overcome these problems have
been developped such as discrete-event simulation, approximate methods or
exact analytical results. The latter approach aims at describing the steady-
state probabilities and other performance measures as functions of a fixed set of
parameters of the states, derived from the model structure. Models for which
such solutions may be developed are said to be product form models, since the
structure of the functions are a product of elementary terms corresponding to
the parameters.

From different angles by several authors ([2, 3, 5, 6, 7]) a subclass of Petri nets
has been identified that allows such a product form solution for the equilibrium
distribution. This means that the equilibrium distribution can be written as
a product of terms, where each term is a function of the marking of one of
the places in the Petri net. This closed form for the equilibrium distribution
completely defines it up to a normalising constant. So in order to completely find
the equilibrium distribution the normalising constant still has to be determined,
which is in general a difficult task. Somewhat efficient algorithms by Coleman
[3] and Coyle et al. [4] are known for a specific subset of product form Petri
nets.

1

Composition and decomposition of closed form results contribute to less com-
putational effort requirements and greater understanding of network behavior
and performance. They allow for studying a system by analyzing the character-
istics of separate components. The first decomposition results of stochastic Petri
nets into seperate common input bag classes were obtained by Kortbeek and
Boucherie, for a more detailed overview of the literature available on product
form stochastic Petri nets the reader is referred to their work [9].

The contribution of this research is twofold. First, we extend the decompo-
sition results of Kortbeek and Boucherie [9] in such a way that every product
form Petri net can be decomposed into seperate common input bags. Secondly
we use this new decomposition to obtain an algorithm to find the normalising
constant and the performance measures of a subset of product form Petri nets
in an efficient way.

The rest of this thesis is organised as follows: in chapter 2 we will give
an overview of the definitions and known results that we will need in order to
establish our own results and we will give an algorithm to find all possible de-
compositions that could be obtained from the results of Kortbeek and Boucherie
[9]. Then, in chapter 3 we will give our own decomposition result. Followed by
several examples to illustrate this result in chapter 4. In chapter 5 we will show
our method to obtain the normalising constant and the performance measures
of a stochastic product form Petri net. Finally, in the last chapter we will give
a discussion of our results and some possible directions for future research.

2

Chapter 2

Definitions and
preliminaries

2.1 Definitions

In this section we give an overview of the definitions and results known from
literature, that we will use in the subsequent sections. For a more extensive
overview of the Petri net concept the reader is referred to the survey of Murata
[11].

First we will introduce the concept of a Petri-net and some of its basic
properties.

Definition 2.1 (Petri net). A Petri net is a 4-tuple (P, T, I, O), where

• P = {p1, . . . , pnp
} is a finite set of places,

• T = {t1, . . . , tnt
} is a finite set of transitions,

• I,O : P×T → N are the input and output functions identifying the relation
between the places and the transitions.

Definition 2.2 (Marking). A marking m = (m(i), i = 1, . . . , np) of a Petri net
is a vector in Nnp

0 , where m(i) represents the number of tokens at place pi.

Definition 2.3 (Marked Petri net). A marked Petri net is a combination of a
Petri net and an initial marking (P, T, I,O,m0)

Definition 2.4 (Input bag and Output bag). The input bag and the output bag
of transition t ∈ T are defined as the vectors I(t) = (I(p1, t), . . . , I(pnp , t)) and
O(t) = (O(p1, t), . . . , O(pnp , t)). They represent the number of tokens consumed
at the places to fire transition t and the number of tokens released to the places
after firing transition t respectively.

3

Definition 2.5 (Transition enabling and firing). A necessary and sufficient
condition for transition t to be enabled in marking m is that m(i) ≥ I(pi, t), i =
1, . . . , np. When transition t fires, then the next state of the Petri net is m′ =
m− I(t) + O(t). Symbolically this is denoted as m |t>m′.

Definition 2.6 (Stochastic Petri net). A stochastic Petri net is a 5-tuple SPN
= (P, T, I,O,Q) where (P, T, I, O) is a Petri net and Q = (q(t1) . . . q(tnt)) is a
set of exponential firing rates of the transitions {t1 . . . tnt

}.

Definition 2.7 (Firing sequence). A finite sequence of transitions σ = tσ1
, tσ2

,
. . . , tσk

is a finite firing sequence of the Petri net if there exists a sequence of
markings m1, . . . ,mk+1 for which mi |tσi > mi+1, i = 1, . . . , k. Symbolically
this will be denoted as m1 |σ>mk+1

Definition 2.8 (Firing count vector). A vector σ̄ is the firing count vector of
the firing sequence σ if σ̄(t) equals the number of times transition t occurs in
the firing sequence σ.

Definition 2.9 (Incidence matrix). The incidence matrix A with entries A(i, j)
= O(pi, tj) − I(pi, tj) describes the change in the number of tokens in place pi
when transition tj fires.

Definition 2.10 (State equation). If m0 |σ > m, then m = m0 + Aσ̄. This
equation is referred to as the state equation for the Petri net.

Definition 2.11 (Reachable marking). A marking m′ is reachable from mark-
ing m0 if there exists a firing sequence σ such that m0 |σ>m′.

Definition 2.12 (Reachability set). The reachability setM(PN ,m0) is the set
of all markings of PN reachable from m0.

Now that we have defined the basic concept of the Petri-net, we will look
at two central concepts of Petri-nets called P -invariants and T -invariants. The
structure of the T -invariants will allow us to identify the subclass of Petri-nets
that allow a product form equilibrium distribution. The T -invariants will also
allow us to identify seperate parts of the Petri-net which will form the basis of
our decomposition results of Section 3.

Definition 2.13 (T -invariant). A vector x ∈ Nnt
0 is a T -invariant if x 6= 0

and Ax = 0. From the state equation we obtain that a T -invariant is the firing
count vector of a potential firing sequence that brings a marking back to itself.

Definition 2.14 (P -invariant). A vector y ∈ Nnp

0 is a P -invariant if x 6= 0 and
yA = 0. A P -invariant represents a weighted sum of the tokens present at the
places that is constant for all reachable markings.

Definition 2.15 (Support). The support of a T -invariant x or a P -invariant
y is the set of transitions or places respectively corresponding to the non-zero
entries of x and y and are denoted by ||x|| and ||y||.

4

Definition 2.16 (Minimal invariant). A T -invariant x is minimal if there is no
other T -invariant x′ such that x′(t) ≤ x(t) for all t ∈ T . A minimal P -invariant
is defined analogously.

Definition 2.17 (Minimal support invariant). A support is minimal if no
proper subset of the support is the support of another invariant. A minimal
support invariant is a minimal invariant with a minimal support. I.e. x is a
minimal support invariant if there is no invariant x′ such that ||x′|| ⊂ ||x|| or
x′(t) ≤ x(t) for all t ∈ T .

Definition 2.18 (Closed set). For T ⊆ T define R(T), the set of input and
output bags for the transitions in T , as R(T) =

⋃
t∈T {I(t)∪O(t)}. T is a closed

set if for all g ∈ R(T) there exist t, t′ ∈ T such that g = I(t) and g = O(t′), that
is if each output bag is also an input bag and each input bag is also an output
bag for a transition in T .

Definition 2.19 (Minimal closed support T -invariant). A minimal closed sup-
port T -invariant is a minimal support T -invariant whose support is a closed set.
Let ClT = {x1, . . . ,xk} be the set of minimal closed support T-invariants.

Result 2.20 (Memmi and Roucairol [10]). Every T -invariant can be written as
a linear combination of minimal support T -invariants.

x =

p∑
i=1

λix
i

where λi ∈ Q, i = 1 . . . p. The equivalent result holds for P -invariants.

Result 2.21 (Boucherie and Sereno [1]). A T -invariant x is a minimal closed
support T -invariant if the firing sequence of x is linear, that is for each t ∈ ||x||
there is a unique t′ ∈ ||x|| such that O(t) = I(t′). Conversely, if the firing
sequence of a T -invariant x is linear, then x is a closed support T -invariant.

Definition 2.22 (Common input bag relation). Let x,x′ ∈ ClT . We say that
x,x′ are in common input bag relation (notation: x CI x′ if there exist t ∈
||x||, t′ ∈ ||x′|| such that I(t) = I(t′). The relation CI∗ is the transitive closure
of CI.

Definition 2.23 (Common input bag classes). The common input bag class
CI(x) is the equivalence class of x ∈ ClT , that is CI(x) = {x′|x CI∗ x′}. Let
{CI1, . . . , CIk} be the set of all common input bag classes and let K = {1, . . . , k}
be the set of all indices of the common input bag classes.

Definition 2.24 (Transition and place set of a CI class). The transition set of
common input bag class CIi, T (CIi), is the set of all transitions belonging to
common input bag class CIi, i.e. T (CIi) = {t ∈ T |∃x ∈ CIi : t ∈ ||x||}.

The place set of common input bag class CIi, P(CIi), is the set of all places
belonging to common input bag class CIi, i.e. P(CIi) = {p ∈ P |∃t ∈ T (CIi) :
I(p, t) > 0}.

5

The T -invariants allow us to define two subclasses of Petri-nets, the first are
the SΠ-nets which are nets that allow a product form equilibrium distribution
over the markings of places if the firing rates satisfy an extra condition [6].
Second are the SΠ2-nets which allow a product form equilibrium distribution
for all firing rates [6].

Definition 2.25 (SΠ-net). A Π-net is a Petri net for which every transition
t ∈ T is covered by a minimal closed support T -invariant. That is for every
t ∈ T there is a minimum closed support T -invariant xi such that t ∈ ||xi||. A
SΠ-net is a stochastic Π-net.

Definition 2.26 (SΠ2-net). A Π2-net is a Π-net such that for every r ∈ R(T),
there is an ar ∈ Qnp such that

arA = br

in which for t = 1, . . . , nt

br(t) =

 −1 if r = I(t),
1 if r = O(t),
0 otherwise

A SΠ2-net is a stochastic Π2-net.

Result 2.27 (Kortbeek en Boucherie [9]). A SΠ-net is a SΠ2-net if and only
if all minimal support T -invariants x are minimal closed support T -invariants.

Definition 2.28 (Routing chain [8]). The routing chain of a stochastic Petri-
net SPN = (P, T, I,O,Q) was defined by Henderson et al. as the markov chain
Y = (Y (t), t ≥ 0) at finite state space S = {I(t)|t ∈ T} with transition rates

qY (I(t), I(t′)) =
∑

{t′′∈T |I(t)=I(t′′),I(t′)=O(t′′)}

q(t′′).

The global balance equations for Y are, for all t ∈ T ,∑
I(t′)∈R(T)

y(I(t))qY (I(t), I(t′))− y(I(t′))qY (I(t′), I(t)) = 0. (2.1)

Result 2.29 (Kortbeek and Boucherie [9]). The equilibrium distribution of a
SΠ2-net SPN is given by

π(m) = B−1
np∏
p=1

fmp
p ,m ∈M(SPN ,m0)

where fp = e−zp for z a solution of zA = C with C ∈ Rnt is a row vector
defined as Ct = log(y(I(t))/y(O(t))), where y(·) is the solution of the routing
chain (2.1) and B is a normalising constant such that

B =
∑

m∈M(SPN ,m0)

np∏
p=1

fmp
p .

6

Finally, for the SΠ2-nets Kortbeek and Boucherie [9] provided a decompo-
sition result in terms of T -invariants by identifying so-called surplus place sets
and conflict places by showing that removing these from the net results in a
decomposition.

Definition 2.30 (Sufficient place set and Surplus place set). A subset of places
Psuf ⊆ P is a sufficient place set if for each initial marking m0, the marking
of the places p ∈ Psuf combined with m0 provides sufficient information to
uniquely define the marking of all places. A subset of places Psur ⊆ P is a
surplus place set if the subset op places P\Psur is a sufficient place set.

Definition 2.31 (Conflict place). Let x1 and x2 be minimal closed support
T -invariants such that x1 and x2 are not in common input bag relation, i.e.
CI(x1) 6= CI(x2). Let p be a place that is an element of both P(CI(x1)) and
P(CI(x2)). Then p is called a conflict place of CI(x1) and CI(x2).

Result 2.32 (Kortbeek and Boucherie [9]). Consider a SΠ2-net and a surplus
place set P sur with corresponding sufficient place set P suf . If there is no tran-
sition for which the complete input bag is contained in the intersection of the
surplus place set and the conflict place set, i.e. P = {p ∈ P |p ∈ (Pcon ∩ P sur)}
and 6 ∃t ∈ T for which {p ∈ P |I(p, t) ≥ 0} ⊆ P, then

• removing all places p ∈ P and all arcs incident to these places yields s
product form SΠ-nets: SPN 1, . . . ,SPN s; each SPN i corresponding to
one or more connected common input bag classes.

• the equilibrium distribution π of SPN is a product over the invariant
measures of the subnets:

π(m) = B

s∏
i=1

πSPN
i

y (mi),m ∈M(SPN ,m0),

where mi is the submarking in places that belong to SPN i and πSPN
i

y (mi)

is the invariant measure of subnet SPN i with

πSPN
i

y (mi) =
∏

{p∈
⋃

j∈Ii P(CIj)\P}

fm(p)
p ,

where CIj, j ∈ Ii ⊂ K, denote the common input bag classes contained
in subnet SPN i, and B is normalising constant such that

B−1 =
∑

m∈M(SPN ,m0)

s∏
i=1

πSPN
i

y (mi)

.

7

2.2 Finding all decompositions

Since a surplus place set is in general not unique, the decomposition according
to result 2.32 is not unique either. Every choice of a surplus place set will remove
a complete input bag, result in a decomposition or keep the net in one piece.
In order to find all possible decompositions, all possible surplus place sets will
have to be identified. To this end lemma 2.33 is presented.

Lemma 2.33. A set of places P ⊆ P from a SΠ-net is a sufficient place set
with corresponding surplus place set P̄ = P\P if and only if all the rows of A
can be written as linear combinations of the rows of A corresponding to places
in P, i.e.

αj =
∑
i∈P

λijαi,∀j ∈ P (2.2)

where αp is the row of A corresponding to place p.

Proof. First we show that this is a sufficient condition. For every reachable
marking m there is a firing sequence σ such that m0|σ > m which means that
m = m0 +Aσ̄. So if condition (2.2) on the rows of A is met then we know

m(j) = m0(j) + αj σ̄ = m0(j) +
∑
i∈P

λijαiσ̄ = m0(j) +
∑
i∈P

λijm(i)

therefore the marking of any place j can be uniquely determined from the mark-
ings of the places in P.

In order to show necessity we first assume that αj , j ∈ P̄ can not be written
as a linear combination of the rows of A corresponding to places in P. Then it
is possible to find a solution x ∈ Qnt to the system of equations

αix = 0,∀i ∈ P
αjx = 1

Because x ∈ Qnt it is possible to find a c ∈ Z/0 such that cx ∈ Znt . Furthermore
because of the definition of a SΠ-net we know that every transition t is covered
by a minimal closed support T-invariant xi, so it is possible to find ci such that
cx +

∑
i cixi ∈ Nnt

+ . Therefore it is possible to construct a firing sequence σ
with a firing count vector σ̄ = cx+

∑
i cixi. For any such firing sequence σ it is

possible to find an initial marking mσ
0 from which σ can be fired to get marking

mσ, i.e. mσ
0 |σ > mσ. The two markings mσ and mσ

0 are different because
mσ(j) = mσ

0 (j)+αj σ̄ = mσ
0 (j)+αj(cx+

∑
i cixi) = mσ

0 (j)+c. However for these
two markings we know that mσ(p) = mσ

0 (p)+αpσ̄ = mσ
0 (p)+αp(cx+

∑
i cixi) =

mσ
0 (p) for all p ∈ P. Therefore, from places p ∈ P it is impossible to tell whether

mσ
0 or mσ is observed and therefore P can not be a a sufficient place set. This

contradicts the initial assumption that P is a sufficient place set. So αj has to
be a linear combination of the rows of A corresponding to the places in P.

8

Next we will present an algorithm to check whether or not a give set is a
surplus place set. After a short example to clarify the given algorithm a lemma
will be formulated to show that this algorithm is indeed correct. The algorithm
will form the basis of the algorithm to generate all possible decompositions
resulting from Theorem 2.32.

Algorithm 2.34 (Checking a surplus place set of a bounded SΠ-net).

Step 1: Consider a structurally bounded SΠ-net SPN and a potential surplus
place set P ∈ P .

Step 2: Obtain the set of minimal closed support P-invariants {y1 . . . yp} and a
basis {ȳ1 . . . ȳr} composed of elements from {y1 . . . yp}. Define the matrix
Y consisting of rows {y1 . . . yp}.

Step 3: Swap the columns of Y such that the columns corresponding to places
p ∈ P are in the front. Denote the obtained matrix by Ỹ.

Step 4: Apply Gauss-Jordan elimination on Ỹ to obtain its reduced row echelon
form rref(Ỹ).

Step 5: If and only if rref(Ỹ) contains leading ones in each of the first |P|
columns, then P is a surplus place set.

Before we show that Algorithm 2.34 is correct, we will first give a small
example to illustrate how the algorithm works.

p1

p2

p3 p4

t3 t1 t2

Figure 2.1: Petri net of Example 2.34

Example 2.35. Consider the Petri-net shown in figure 2.1. We will now use
Algorithm 2.34 to find the surplus place set Psur = {p1, p3}.

Step 2: From the incidence matrix

A =


−1 0 1
−1 0 1
1 −1 0
0 1 −1


we obtain the minimal closed support P-invariants y1 = [1011] and y2 =
[0111]. These are linearly independent so ȳi = yi for i = 1, 2. This gives
us the matrix

Y =

[
1 0 1 1
0 1 1 1

]

9

Step 3: We want to check potential surplus place set P = {p1, p3} so we swap
column 2 and 3 to obtain

Ỹ =

[
1 1 0 1
0 1 1 1

]
Step 4: Applying Gauss-Jordan elimination to Ỹ we obtain

rref(Ỹ) =

[
1 0 −1 0
0 1 1 1

]
Step 5: We see that rref(Ỹ) contains leading ones in the first two rows, so

Psur is indeed a surplus place set.

Observe that αp1 = αp2 and αp3 = −αp2−αp4 . So according to Lemma 2.33,
{p1, p3} is indeed a surplus place set.

Lemma 2.36. Algorithm 2.34 concludes that P is a surplus place set if and
only if P is a surplus place set.

Proof. The theorem is equivalent to the statement that rref(Ỹ) contains lead-
ing ones in the first |P| columns if and only if P is a surplus place set. First we
will show the only if part.

Let Ã be the permutation of A corresponding to the permutation used to
obtain Ỹ. By definition of the P -invariants we know YA = 0, so also ỸÃ = 0
and rref(Ỹ)Ã = 0. Let ỹi be the ith row of rref(Ỹ). Now we know that
rref(Ỹ) has leading ones in the first |P| columns so for every place j ∈ P there
is an i such that ỹi(j) = 1 and ỹi(p) = 0 for all p ∈ P\j. Furthermore ỹiÃ = 0
so αj =

∑
p∈P\P ỹ

i(p)αp and according to Theorem 2.33 P is a surplus place
set.

For the second part, if P is a surplus place set then from Lemma 2.33 and
equation 2.2 we can find a vector zi ∈ Qnp for each i ∈ P such that ziÃ = 0 by
taking zi(i) = 1, zi(p) = 0 for all p ∈ P\i and zi(p) = −λpi for all p ∈ P\P.
SPN is bounded so we know that it is covered by P -invariants. This means
that for every i ∈ P there is a P -invariant y and a scalar c ∈ N+ such that
czi + y is a P -invariant. This means that from Result 2.20 we know that zi ∈
span({y1 . . . yp}) and so zi ∈ rowspanY) = rowspan(Ỹ) = rowspan(rref(Ỹ)).
Now assume that rref(Ỹ) does not have leading ones in the first |P| columns.
Let j be the first column that does not contain a leading one. Then by showing
that the equation

zj = λrref(Ỹ)

has no solution λ ∈ Rr, we obtain the contradiction zj 6∈ rowspan(rref(Ỹ)),

from which we can conclude that rref(Ỹ) must have leading ones in the first |P|
columns. j was the first column that did not have a leading one so zj(i) = 0 for
i < j implies λ(i) = 0. However zj(j) = 1 implies that there must be an i < j

such that lambda(i) 6= 0, because rref(Ỹ) contains only zeros at and below
row j, otherwise it could have been a pivot column during the Gauss-Jordan
elimination. So equation (2.2) does not have a solution.

10

Using Algorithm 2.34 we can make the following algortihm that finds all
possible decompositions of SΠ2-net SPN following from Result 2.32.

Algorithm 2.37. Finding all decompositions

Step 1: Consider a structurally bounded SΠ2-net SPN . Determine from the
set of common input bag classes the set of conflict places Pcon.

Step 2: Obtain the powerset P conall = P(Pcon). Remove from P conall all sets that
contain a complete input bag. Start with an empty set of surplus place sets
that generate a decomposition P surall = ∅.

Step 3: Take an element P ∈ P conall and apply Algorithm 2.34 to check whether
or not P is a surplus place set. If it is then go to step 4 else go to step 5.

Step 4: Remove P and all its subsets from P conall , P conall := P conall /P(P) and add
them to the set of surplus place sets P surall := P surall ∪ P(P). Go to step 6.

Step 5: Remove P and all its supersets from P conall , i.e. P conall := P conall /{P̃|P̃ ∈
P conall ,P ⊆ P̃}.

Step 6: If P conall 6= ∅ then return to step 3 else continue to step 7.

Step 7: Each possible surplus place set Psur ∈ P surall results in a possible de-
composition according to Result 2.32

It should be noted that the efficiency of Algorithm 2.37 heavily depends on
the order in which the potential surplus place sets are tried during step 3. It
may also be possible to save a lot of time by memoization of the intermediate
results of Algorithm 2.34, because if the first few points chosen during two
different runs of Algorithm 2.34 are the same, then the first few steps of the
Gauss Jordan elimination will be exactly the same, so they could be skipped if
the intermediate results were still available. We did not investigate the efficiency
of Algorithm 2.37 in detail, since it is not our main focus. We merely wanted
to show that it is possible to find all possible decompositions.

Example 2.38. In order to illustrate the application of Algorithm 2.37 we will
give an example of a SΠ2-net that can be decomposed in two distinct ways.
Consider the Petri-net in Figure 2.2. From the incidence matrix:

A =



−1 1 0 0 0 0
1 −1 1 −1 0 0
1 −1 0 0 1 −1
0 0 −1 1 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1


,

we obtain the three minimal support T-invariants x1 = [110000], x2 = [001100]
and x3 = [000011] and four minimal support P-invariants y1 = [1101000], y2 =

11

p1

p2 p3

p4

p5

p6

p7

t1

t2

t5

t6

t3

t4

Figure 2.2: Petri net of Example 2.38

[1010010], y3 = [0001100] and y4 = [0000011], which are linearly independent.
As we can see the three minimal support T-invariants are all closed, so the
Petri-net is a SΠ2-net. Furthermore x1, x2 and x3 are not in common input
bag relation so they result in three CI classes, CI1 = {x1}, CI2 = {x2} and
CI3 = {x3}. This results in the conflict place set Pcon = {p2, p3}. This gives
us enough information to perform Algorithm 2.37.

Step 1: The conflict place set is Pcon = {p2, p3}.

Step 2: Therefore Pconall = {{p2}, {p3}, {p2, p3}} from which {p2, p3} is removed
because it contains the whole input bag of transition t2.

Step 3-6: Using Algorithm 2.34 we find that both {p2} and {p3} are surplus
place sets.

Step 7: This gives us two possible decompositions, both of these options decom-
pose the net in two pieces such that

π(m) = BπSPN
1

y (m1)πSPN
2

y (m2),m ∈M(SPN,m0),

where if we use the first surplus place set {p2} we get SPN1 containing
CI1 and CI3 while SPN2 contains CI2 and this results in the following
equilibrium distributions

πSPN
1

y (m1) =

(
µ2

µ1

)m1(p1)(µ6

µ5

)m1(p6)

πSPN
2

y (m2) =

(
µ4

µ3

)m2(p4)

π(m) = B

(
µ2

µ1

)m(p1)(µ6

µ5

)m(p6)(µ4

µ3

)m(p4)

.

12

When we use the second surplus place set {p3} to obtain the decomposition
we get SPN1 containing CI1 and CI2 while SPN2 contains CI3. This
results in the following equilibrium distributions

πSPN
1

y (m1) =

(
µ2

µ1

)m1(p1)(µ4

µ3

)m1(p4)

πSPN
2

y (m2) =

(
µ6

µ5

)m2(p6)

π(m) = B

(
µ2

µ1

)m(p1)(µ4

µ3

)m(p4)(µ6

µ5

)m(p6)

.

13

14

Chapter 3

Decomposition by adding
bag count places

This section will introduce the Bag Count Place Extended Petri-net of a bounded
SΠ2-net (BCPE-SΠ2-net) by defining a set of bag count places and adding these
to the net. The definition of these places is such that the marking of these bag
count places has a one-to-one correspondence to the marking of the original
places of the SΠ2-net, once a choice for the initial marking of these places is
made. This will enable us to decompose the extended SΠ2-net in seperate com-
ponents for each common input bag class. The equilibrium distribution of the
bag count places will provide an equilibrium distribution of the original places,
because of the one-to-one correspondence between the marking of the original
places and the bag count places.

Definition 3.1. BCPE-SΠ2-net
Given a bounded SΠ2-net SPN = (P, T, I, O,Q) define for every bag r ∈

R(T) a bag count place p̃r. Let P̃ = P ∪ {p̃r|r ∈ R(T)} and Ĩ , Õ : P̃ × T → N
where

Ĩ(p, t) =

 I(p, t) if p ∈ P
1 if p = p̃r, r = I(t)
0 otherwise

and

Õ(p, t) =

 O(p, t) if p ∈ P
1 if p = p̃r, r = O(t)
0 otherwise

Now let S̃PN = (P̃ , T, Ĩ, Õ, Q) be the BCPE-SΠ2-net of SPN .

Definition 3.1 defines the structure of the BCPE-SΠ2-net. This net will be
used to analyse the behaviour of the original net. The bag count places, in
particular, will be used to monitor the behaviour of the rest of the net. In order
for this to be possible we first have to show that the addition of these places

15

to form the BCPE-SΠ2-net does not influence the behaviour of the net on the
original places. First, we will show that the BCPE-SΠ2-net is still a SΠ2-net
and second we give two conditions for the initial marking of the BCPE-SΠ2-net
that guarantee that a firing sequence σ can be fired in the original net if and only
if σ can be fired in the BCPE-SΠ2-net. This will guarantee that the behaviour
of both nets on the original places will be exactly the same. In Lemma 3.6 it
will be shown that it is always possible to find an initial marking that satisfies
these conditions.

Lemma 3.2. The BCPE-SΠ2-net S̃PN of a SΠ2-net SPN is a SΠ2-net.

Proof. In order to show that S̃PN is a SΠ2-net we will show that every T -

invariant of S̃PN is also a T -invariant of SPN and every minimal closed sup-

port T -invariant of SPN is a closed support T -invariant of S̃PN . These two

statements combined show that every minimal support T -invariant of S̃PN is

a minimal closed support T -invariant. By Result 2.27 this means that S̃PN is
a SΠ2-net.

Any T -invariant x of S̃PN is a T -invariant of SPN , because by construction
the first |P | rows of the incidence matrix Ã are equal to the rows of A. This
means that Ãx = 0 implies Ax.

Every minimal closed support T -invariant x of SPN is also a T -invariant of

S̃PN , because by Result 2.21 the firing sequence of x is linear. This means that
for any transition t ∈ ||x|| there is a unique t′ ∈ ||x|| such that I(t) = O(t) and
by construction of the BCPE-SΠ2-net this means that α̃p̃I(t)x = 0. For each
input bag r for which there is no transition t ∈ ||x|| such that I(t) = r there is
also no transition t′ ∈ ||x|| such that O(t) = r. So α̃p̃rx = 0 for all r ∈ R(T).

Finally, x is also closed in S̃PN , because by construction if I(t) = O(t) then
also Ĩ(t) = Õ(t)

Lemma 3.3. If the initial marking, m̃0, of the BCPE-SΠ2-net S̃PN , belonging
to the marked SΠ2-net (SPN ,m0), satisfies the following two conditions:

1. m̃0(p) = m0(p) for all p ∈ P

2. m̃(p) > 0, for all p ∈ P̃\P and for each m̃ ∈M(S̃PN , m̃0),

then any firing sequence σ can be fired in SPN from m0 if and only if it can be

fired in S̃PN from m̃0.

Proof. Every firing sequence σ that can be fired from m̃0 in S̃PN can also be
fired from m0 in SPN , because from condition 1 we know that both initial
markings are equal on the original places and any transition t ∈ T consumes
and deposits the same number of tokens from the same original places in both
nets. This means that during any step of the firing sequence the marking on the
original places of both nets will be equal and in SPN there are no other places

to put restrictions on the enabling of any transition, so if σ can be fired in S̃PN

16

it can also be fired in SPN . Conversely, the original places of S̃PN will never
disable a firing sequence that can be fired in SPN , because the marking of the
original places will always be equal in both nets. The bag count places will never
disable a transition, because by construction every transition consumes at most
1 token from a bag count place. So condition 2 ensures that a transition will
never be disabled because of a shortage of tokens on the bag count places.

Now that we know that the behaviour of the SΠ2-net and its BCPE-SΠ2-net
are equal, we will show that there is a one-to-one correspondence between the
marking of the original places and the marking of the bag count places. This
means that the bag count places are a sufficient place set and this will allow us
to apply Result 2.32 to get a new decomposition result in Theorem 3.7.

Lemma 3.4. The marking of the bag count places in the BCPE-SΠ2-net can
be expressed in the marking of the original places as follows

m̃(p̃r)− m̃0(p̃r) = ar(m−m0),

where ar is any vector as given in definition 2.26.

Proof. For every reachable marking m̃ there is a firing sequence σ such that
m̃0|σ > m̃. This means that m̃ − m̃0 = Ãσ̄. For the row belonging to p̃r this
means that m̃(p̃r)− m̃0(p̃r) = α̃p̃r σ̄. From Definition 3.1 it follows that the row
of the incidence matrix belonging to p̃r is equal to the vector br, from Definition
2.26, so α̃p̃r = br = arA. Combining these results gives the following expression:

m̃(p̃r)− m̃0(p̃r) = α̃p̃r σ̄ = arAσ̄ = ar(m−m0).

It should be noted that neither ar nor σ is uniquely defined, however for all
a1r, a

2
r satisfying the conditions in definition 2.26 and all σi such that m0|σi > m

for i ∈ {1, 2} we know that

a1rAσ̄1 = brσ̄1 = a2rAσ̄1 = a2r(m−m0) = a2rAσ̄2.

This means that the marking of the bag count places can be uniquely determined
from the marking of the original places, independent of the choice of ar and firing
sequence σ.

Before stating the next theorem it should be noted that the marking of a
bag count place p̃r changes if and only if a transition fires that either uses r as
its input bag, in this case the marking of p̃r decreases by one, or creates r as
its output bag, in this case the marking of p̃r increases by one. So the marking
of p̃r indicates the number of times bag r is created minus the number of times
bag r is used. This insight immediatly shows how to obtain the marking of the
original places from the marking of the bag count places.

Lemma 3.5. The marking of the original places of the SΠ2-net can be expressed
in the marking of the bag count places of the BCPE Petri net as follows

m−m0 =
∑

r∈R(T)

(m̃(p̃r)− m̃0(p̃r))r.

17

Proof. As stated above for every bag r the marking m̃(p̃r) indicates exactly
how many times bag r is created minus the number of times bag r is used.
This means that the current marking of the petri net can be found by starting
from the initial marking m0 and adding m̃(p̃r) times bag r to it for every bag
r ∈ R(T).

Combining these two results we see that there is a one-to-one correspondence
between the marking of the original places and the marking of the bag count
places. Moreover, the marking of the bag count places is a linear combination of
the marking of the original places. This means that if the original SΠ2-net was
bounded, then the corresponding marking of the bag count places is bounded
and an initial marking m̃0 for the bag count places can be chosen such that
the marking of the bag count places never drops below 1 as is required by the
conditions of Lemma 3.3.

Lemma 3.6. For a structurally bounded SΠ2-net SPN and for every initial
marking m0 an initial marking m̃0 can be chosen such that for any reachable
marking m̃, m̃(p̃r) > 0.

Proof. From theorem 3.4 we know that m̃(p̃r)−m̃0(p̃r) = ar(m−m0) and since
SPN is bounded we know that there is a constant Cp such that 0 ≤ m(p) < Cp
for all p ∈ P . Therefore

C1 =
∑
p∈P

min(0, ar(p)Cp) ≤ arm ≤
∑
p∈P

max(0, ar(p)Cp) = C2,

so taking initial marking m̃0(p̃r) = 1− C1 + ar ·m0, we get

m̃(p̃r) = m̃0(p̃r) + ar(m−m0) = 1− C1 + arm ≥ 1 > 0.

Lemma 3.6 shows that a transition in S̃PN is never disabled due to a short-
age of tokens in one of the bag count places. This means that any firing sequence

that can fire in the original SPN can also fire in the BCPE-SΠ2-net S̃PN and

because SPN and S̃PN behave exactly the same on the original places, any

firing sequence that can not fire in SPN can not fire in S̃PN either. This
means that the two Petri nets behave similar if we only observe the original

places in S̃PN . Moreover by construction none of the bag count places are a
conflict place and from theorem 3.4 we know that the marking of the original
places can be uniquely determined from the bag count places. So the set of bag
count places {pr|r ∈ R(T)} forms a sufficient place set and the set of original

places P a surplus place set. So by Result 2.32 we know that S̃PN can be
decomposed in seperate components for every common input bag class.

Theorem 3.7. Consider a SΠ2-net SPN = (P, T, I,O,Q), its BCPE-SΠ2-net

S̃PN = (P̃ , T, Ĩ, Õ, Q), a set of vectors ar satisfying the conditions of Definition
2.26 and an initial marking m̃0 satisfying the conditions of Definition 3.3. Then,

18

1. removing all original places p ∈ P from S̃PN yields k state machines:
SM1, . . . ,SMk; each SMi corresponding to exactly one common input
bag class.

2. The equilibrium distribution π of SPN is equal to the equilibrium distri-

bution π̃ of S̃PN which is a product of the invariant measures of the state
machines:

π(m) = π̃(m̃) = B

s∏
i=1

πSM
i

y (m̃i),m ∈M(SPN ,m0) (3.1)

where m̃i is the submarking of the bag count places that belong to SMi

and πSM
i

is the invariant measure of subnet SMi with

πSM
i

y (m̃i) =
∏
r

y(r)m̃(p̃r)−m̃0(p̃r) =
∏
r

y(r)ar(m−m0)

where y(·) is the solution of the routing chain of state machine SMi.

Proof. Statement 1 is true by construction of the BCPE-SΠ2-net. Every transi-
tion has exactly one bag count place in its input bag and exactly one bag count
place in its output bag. This means that removing all original places from the
net will yield a state machine. This state machine will consist of k separate
components, because two bag count places p̃1 and p̃2 are connected in this state
machine if and only if there is a CI class CIi such that p̃1, p̃2 ∈ P(CIi).

For statement 2: from Lemma 3.5 we know that P̃\P is a surplus place set
and all conflict places are original places by construction. So from Result 2.32
it follows that the equilibrium distribution can be decomposed as shown.

Remark 3.8. It can be noted that a state machine Petri net is equivalent to
a Jackson network. So the routing chain is equivalent to the well-known traffic
equations from queueing theory.

19

20

Chapter 4

Decomposition examples

This section will illustrate the similarities and differences between Result 2.32
and Theorem 3.7 by giving three examples. The first example is a Petri-net
consisting of two CI classes linked by a single conflict place. This conflict place
will form a surplus place set by itself which means that Result 2.32 already
gives us the means to decompose it into two seperate CI classes. This example
shows that both methods result in the same decomposition, however they follow
a different path to get there. For the second example we will revisit Example
2.38. This example was of a Petri-net which has three CI classes and could be
decomposed in two ways in two parts using Result 2.32 and we will show that
using Theorem 3.7 it will decompose in three parts, exactly one for each CI
class. The third and last example have a Petri-net that has three CI classes,
however all its places will be conflict places. This example will show that even
though the CI classes are tangled very closely together and the product form
over the places does not seem to be able to be decomposed it is still possible to
seperate the different CI classes and look at their behaviour seperately.

Example 4.1. Consider the Petri net shown in Figure 4.1a. From the incidence
matrix

A =


−1 1 0 0
1 −1 0 0
1 −1 1 −1
0 0 −1 1
0 0 −1 1
0 0 1 −1

 ,

we obtain two minimal support T-invariants x1 = [1100] and x2 = [0011] and
five minimal support P-invariants y1 = [110000], y2 = [101100], y3 = [101010],
y4 = [000101] and y5 = [000011] of which the first four are linearly independent.
The two T-invariants are both closed so the net is indeed a SΠ2-net and the T-
invariants are not in common input bag relation so it has two common input bag
classes CI1 = {x1} and CI2 = {x2}. This gives us one conflict place p3 and
using Algorithm 2.34 we find that {p3} is a surplus place set. This means that

21

Figure 4.1: The Petri nets of Example 4.1

(a) The original net

p1

p2 p3

p4 p5

p6

t1

t2

t3

t4

(b) The decomposition

p̃1

p̃2

p̃3

p̃4

t1

t2

t3

t4

22

using {p3} as the surplus place set in Result 2.32, we obtain a decomposition
into SPN1 consisting of places p1 and p2 and transitions t1 and t2 and SPN2

consisting of places p4, p5 and p6 and transitions t3 and t4. This means that

π(m) = BπSPN
1

y (m1)πSPN
2

y (m2)

= B

(
µ2

µ1

)m(p1)(µ4

µ3

)m(p4)

,

where µi is the firing rate of transition ti.
In order to use Theorem 3.7 we need to add the four bag count places,

p̃1, . . . , p̃4, to the net and then remove the original places, p1, . . . , p6. This gives
us the net shown in Figure 4.1b. Which results in the following equilibrium
distribution:

π(m) = BπSM
1

y (m̃1)πSM
2

y (m̃2)

= B

(
µ2

µ1

)m̃(p̃1)(µ4

µ3

)m̃(p̃3)

= B

(
µ2

µ1

)a1m(µ4

µ3

)a3m
.

A possible choice for the vectors ar is aI(t1) = [100000] and aI(t3) = [000100].
Using this choice we see that both decompositions result in the same equilibrium

We can see that this way the net also decomposes in two pieces and the pieces
correspond to the same part of the net as the pieces of the previous decomposi-
tion. However the structure of the pieces is not necessarily the same for both
decompositions. We can see that the part corresponding to CI1 is the same in
both cases, however the part corresponding to CI2 has a different structure.

Example 4.2. Example 2.38 revisited
To illustrate the extra strength of Theorem 3.7 over Result 2.32 we take

another look at the Petri-net of Example 2.38. From Example 2.38 we know
that the net could be decomposed in two parts, either keeping CI1 and CI2

connected or keeping CI1 and CI3 connected. By adding the six bag count
places, p̃1, . . . , p̃6 to the net and then removing all original places, p1, . . . , p7 we
obtain the Petri-net shown in Figure 4.2.

This net allows a simple choice of the ar vectors similar to the previous
example: aI(t1) = [100000], aI(t2) = [−100000], aI(t3) = [0001000], aI(t4) =
[000 − 1000], aI(t5) = [0000010] and aI(t6) = [00000 − 10]. Which gives us the
following equilibrium distribution

π(m) = BπSM
1

y (m̃1)πSM
2

y (m̃2)πSM
3

y (m̃3)

= B

(
µ2

µ1

)m̃(p̃1)(µ4

µ3

)m̃(p̃3)(µ6

µ5

)m̃(p̃5)

= B

(
µ2

µ1

)m(p1)(µ4

µ3

)m(p4)(µ6

µ5

)m(p6)

23

p̃3

p̃4

t3

t4

p̃1

p̃2

t1

t2

p̃5

p̃6

t5

t6

Figure 4.2: Bag count places of the Petri net of Example 4.2

Example 4.3. In this last example we look at the Petri-net with the following
incidence matrix

A =


−1 1 −1 1 −1 1
−1 1 1 −1 1 −1
1 −1 −1 1 1 −1
1 −1 1 −1 −1 1

 .
There are three minimal support T-invariants x1 = [110000], x2 = [001100]
and x3 = [000011] and one minimal support P-invariant y1 = [1111]. All the
T-invariants are closed so it is a SΠ2-net and none of the T-invariants are in
common input bag relation, so there are three CI classes, CI1 = {x1}, CI2 =
{x2} and CI3 = {x3}. All places belong to each of the three CI classes so the
set of conflict places is {p1, p2, p3, p4}. In order to decompose it we first need to
add the six bag count places to the net to get the BCPE-SΠ2-net with incidence
matrix:

Ã =



−1 1 −1 1 −1 1
−1 1 1 −1 1 −1
1 −1 −1 1 1 −1
1 −1 1 −1 −1 1
−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 −1 1 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1


.

Next we require a set of vectors ar, a possible choice is :

aI(t1) = [1
2

1
2 0 0]

aI(t2) = [− 1
2 − 1

2 0 0]
aI(t3) = [1

2 0 1
2 0]

aI(t4) = [− 1
2 0 − 1

2 0]
aI(t5) = [0 − 1

2 − 1
2 0]

aI(t6) = [0 1
2

1
2 0]

24

Figure 4.3: The Petri nets of Example 4.3

(a) The original net

p4

p1 p2

p3

t1

t2

t3 t4
t5

t6

(b) The decomposition

p̃3

p̃4

t3

t4

p̃1

p̃2

t1

t2

p̃5

p̃6

t5

t6

25

Removing the original places from the net we obtain the Petri-net shown in
Figure 4.3b. Which is exactly the same as the net we obtained in Example 4.2.
So we obtain the following equilibrium distribution:

π(m) = BπSM
1

y (m̃1)πSM
2

y (m̃2)πSM
3

y (m̃3)

= B

(
µ2

µ1

)m̃(p̃1)(µ4

µ3

)m̃(p̃3)(µ6

µ5

)m̃(p̃5)

= B

(
µ2

µ1

) 1
2m(p1)+

1
2m(p2)(µ4

µ3

) 1
2m(p1)+

1
2m(p3)(µ5

µ6

) 1
2m(p2)+

1
2m(p3)

=

(
µ2µ4

µ1µ3

) 1
2m(p1)(µ2µ5

µ1µ6

) 1
2m(p2)(µ4µ5

µ3µ6

) 1
2m(p3)

26

Chapter 5

Normalising constant and
performance measures

In this section, we will use the decomposition results from section 3 in order to
formulate an algorithm that gives the marginal distribution of a number of CI
classes, given the equilibrium distribution of all CI classes in isolation. This will
give a method for two different objectives. First, the algorithm can be used to
find the normalising constant of the Petri net. Second, it allows us to find the
first order performance measures, like the average number of tokens present in
a place or the probability that a transition is enabled.

Definition 5.1 (First order performance measures of a set of CI classes). The
first order performance measures of a set of CI classes C(I) = {CIi|i ∈ I ⊆ K}
are the performance measures that can be obtained if you know the marginal
probabilities of finding any marking m1 on the places of the set of common
inputbag classes and the firing rates of all transitions belonging to these common
input bag classes, i.e. if you know for any marking m1 the probability

Pr

[
m(p) = m1(p),∀p ∈

⋃
i∈I
P(CIi)

]
=

∑
m:m(p)=m1(p),∀p∈

⋃
i∈I P(CIi)

π(m).

First, we will give the condition that defines the bag count reachable SΠ2-
nets for which the algorithm can be used. Then, a couple of definitions will
be given that we need for the algorithm. After this the algorithm itself will
be presented and, finally, we will make a start with characterizing the defined
subclass of SΠ2-nets by showing that all P-invariant reachable SΠ2-nets satisfy
the given condition.

Definition 5.2 (Bag Count Reachable SΠ2-net). The Bag Count Reachable
SΠ2-nets (BCR-SΠ2-nets) are all marked SΠ2-nets SPN = (P, T, I, O,Q),

27

Figure 5.1: Two Petri nets to illustrate bag count reachability

(a) BCR for any m0

p1

p2

t2t1

(b) BCR for some m0

p1

p2

t2t1 p3

with initial marking m0, for which the following two statements are equivalent
for every vector m ∈ Znp :

1. m ∈M(SPN ,m0)

2. m ≥ 0,
∑
r∈R(T (CIi)) ar(m−m0) = 0 for all i ∈ K

By recalling the bag count places and Lemma 3.4 we can see that statement 2
of Definition 5.2 is equivalent to

∑
r∈R(T (CIi)) m̃(p̃r)− m̃0(p̃r) = 0. This means

that any marking with the same total number of tokens on the bag count places
of each common inputbag class CIi satisfies this condition. In other words,
there are no markings m that are unreachable, for which there is a positive
integer valued vector σ̄ ∈ Nnt

0 such that m = m0 + Aσ̄.

Whether a SΠ2-net is a BCR-SΠ2-net depends on its initial marking, so it is
a behavioural property. Some SΠ2-nets are bag count reachable for any initial
marking, for example the Petri net in Figure 5.1a. However in some cases it
depends on the chosen initial marking, for instance the Petri net of Figure 5.1b
is bag count reachable with initial marking m0 = [101], however it is not bag
count reachable for intial marking m0 = [100], because then marking m = [010]
is not reachable, however it does satisfy statement 2 of Definition 5.2.

Remark 5.3. It can be noted that for any SΠ2-net statement 1 implies state-
ment 2 of definition 5.2. This is true because, firstly, m ≥ 0 is true for any
marking m and secondly, for any reachable marking m there is a firing sequence
from m0 to m and firing any transition t reduces m̃(p̃I(t)) by one and increases
m̃(p̃O(t)) by one. This means that the total number of tokens on the bag count
places within each common inputbag class remains constant, because I(t) and
O(t) belong to the same common inputbag class. However statement 2 does not
imply statement 1 in general.

In order to introduce the Algorithm of this section we first need to define
three types of place sets concerned with sets of common input bag classes and
a Petri net called the CIclass in isolation.

28

Definition 5.4 (Interior place set). With I ⊂ K, a place p ∈ P is called an
interior place of C(I) = {CIi|i ∈ I}, if there is an i ∈ I such that p ∈ P(CIi)
and there is no j ∈ K\I such that p ∈ P(CIj).

The interior place set of C(I) is the set of all places that are an interior place
of C(I) and is denoted by P Iint, i.e. P Iint =

⋃
i∈I P(CIi)\

⋃
j∈K\I P(CIj).

Definition 5.5 (Boundary place set). With I ⊂ K, a place p ∈ P is called
a boundary place of C(I), if there are an i ∈ I and a j ∈ K\I such that
p ∈ P(CIi) ∩ P(CIj).

The boundary place set of C(I) is the set of all places that are a boundary
place of C(I) and is denoted by P Ibnd, i.e. P Ibnd =

⋃
i∈I P(CIi)∩

⋃
j∈K\I P(CIj).

Definition 5.6 (Exterior place set). With I ⊂ K, a place p ∈ P is called an
exterior place of C(I), if it is neither an interior place nor a boundary place of
C(I).

The exterior place set of C(I) is the set of all places that are an exterior
place of C(I) and is denoted by P Iext, i.e. P Iext = P\(P Iint ∪ P Ibnd)

Definition 5.7 (Common inputbag class in isolation). Common input bag class
CIi in isolation is a Petri net SPN i = (P i, T i, Ii, Oi) where T i = T (CIi) is
the set of all transitions in T that belong to CIi. P i = P(CIi) is the set of all
places from P that belong to CIi. Ii(p, t) = I(p, t) and Oi(p, t) = O(p, t) for all
p ∈ P i, t ∈ T i.

The structure of SPN i is chosen such that it consists of one common in-
putbag class. This means that if we look at the decomposition of this Petri
net according to Theorem 3.7 we see that it remains in one piece consisting
of one statemachine SM which is identical to the statemachine SMi from the
decomposition of the original net SPN . So from Theorem 3.7 we get that
the equilibrium distribution of SPN is equal, up to a constant factor, to the
product of the equilibrium distributions of the state machines SMi, i ∈ K.
I.e. π(m) = B1

∏
i π

SMi

(m̃i), for all m ∈ M(SPN ,m0). In turn, the equi-
librium distribution of these state machines is equal, up to a constant factor,
to the equilibrium distribution of the common input bags in isolation. I.e.
πi(mi) = B2π

SMi

(m̃i), for all mi ∈ M(SPN ,mi
0). Combining these two ob-

servations forms the basis for our algorithm, however in order for us to be able
to use this observation to find the equilibrium distribution of the original net,
we still need to define an initial markings mi

0, for all i ∈ K, such that any
reachable marking m ∈M(SPN ,m0) corresponds to reachable markings mi in
the common inputbag classes in isolation.

In order to show that such an initial marking can be found we first define
a reduced firing sequence and then formally define the conditions on the initial
marking and show that such an initial marking can always be found.

Definition 5.8 (Reduced firing sequence). The reduced firing sequence σi is
obtained from a firing sequence σ by removing all transitions t 6∈ T (CIi).

29

Lemma 5.9. Let SPN i be the common inputbag class CIi in isolation of a
structurally bounded marked SΠ2-net (SPN ,m0). Choosing initial marking mi

0

as mi
0(p) = m0(p) for all p ∈ P iint and mi

0(p) =
∑
t∈T i I(p, t)m̃0(p̃I(t)) for all

p ∈ P ibnd makes sure that: for any firing sequence σ that can be fired in the
original net from m0, the reduced firing sequence σi can be fired from mi

0 in
SPN i.

Proof. In order to prove this lemma we will show that there is no place p ∈ P i
that will prohibit a transition from firing in SPN i that was allowed to fire in
SPN . First, we look at the interior places of CIi, by definition these places only
belong to input bags of transitions t ∈ T (CIi). That means that any transition
in σ that uses these places will also be in σi. Therefore, the marking of these
places will at any step during the firing sequences be equal and if a transition
is disabled in SPN i due to this place, then it is also disabled in SPN .

The marking of the boundary places can be influenced by transitions from
outside the common input bag class. However, we know that the statemachine
SMi is the decomposition of SPN i, so from Lemma 3.5 for every p ∈ P i

(mi(p)−mi
0(p)) =

∑
t∈T i

I(p, t)(m̃(p̃I(t))− m̃0(p̃I(t))).

This means that for any p ∈ P iint, if we take mi
0 as given in this lemma, and

recalling that m̃ ≥ 1 we get:

mi(p) =
∑
t∈T i

I(p, t)m̃(p̃I(t))

≥
∑
t∈T i

I(p, t)

≥ max
t∈T i

I(p, t).

Which means that no transition in σi is every disabled due to a boundary
place.

By now we have defined five different types of Petri-nets derived from a
single SΠ2-net SPN . All of these Petri nets are used in either Theorem 3.7
or Algorithm 5.15. These nets can differ in structure and/or initial marking.
Table 5.1 gives an overview of all of these Petri nets and their notations.

Next we will give a short overview of these nets and some remarks about
their initial marking and the relation between the markings of the different nets.

1. The SΠ2-net SPN is the original net that we would like to analyse. Its
structure and initial marking are given.

2. The BCPE-net S̃PN is obtained from SPN by adding a number of places
called the bag count places as described in Definition 3.1. Its initial mark-
ing m̃0 is equal to the initial marking of the original net on the original

30

Description Petri net equilibrium distribution marking
The SΠ2-net SPN ,m0 π m

BCPE-net S̃PN , m̃0 π̃ m̃

State machines SM i, m̃i
0 πSM

i

m̃i

CI class in isolation SPN i,mi
0 πi mi

SM of CI in isolation SM i, m̂i
0 π̂i m̂i

Table 5.1: Notation for the different Petri-nets

places and is chosen on the new places in such a way that those places will
never disable the firing of a transition that could have been fired in the
original net, a possible choice for the initial marking is given in Lemma
3.6. There is a one to one correspondence between the markings m and m̃
such that m0 and m1 correspond to m̃0 and m̃1 respectively if and only
if for any firing sequence σ, m0|σ > m1 iff m̃0|σ > m̃1, as can be seen in
Lemmata 3.4 and 3.5. Moreover for any reachable marking m of the orig-
inal net its corresponding marking m̃ of the BCPE-net is also reachable
and the converse is also true, because of the choice of the conditions on
the initial marking m̃0.

3. The state machines SM i, i ∈ K, are obtained from the decomposition of
SPN as given in Theorem 3.7 or in other words by removing all original

places from S̃PN . Their initial markings m̃i
0 are equal to the markings of

the corresponding places in m̃0. There is a one to one correspondence be-
tween the marking of the BCPE-net and the marking of all state machines,
because the marking m̃ consists of the marking of all state machines plus
the marking of the original places and there is a one to one correspon-
dence between these two parts. Here it should be noted that a reachable
marking m always corresponds to a set of reachable markings m̃i however
the converse is not guaranteed.

4. The CI classes in isolation SPN i are obtained from the original net by
removing all places and transitions that do not belong to CIi as seen in
Definition 5.7. The initial marking mi

0 is chosen such that for any firing
sequence σ that can be fired from m0 in SPN it is also possible to fire
the reduced firing sequence σi from mi

0, which can be done as shown in
Lemma 5.9.

5. The state machine of the CI class in isolation SM i is the state machine
that is obtained by decomposing SPN i by using Theorem 3.7. The struc-
ture of these state machines is equal to the state machines from point
3. The initial marking m̂i

0 of these state machines may differ from m̃i
0.

However there is a one to one correspondence: m̃i corresponds to m̂i if
m̃i − m̃i

0 = m̂i − m̂i
0. And according to Lemmata 3.4 and 3.5 there is a

one to one correspondence between the markings m̂i and mi.

31

The goal of our algorithm will be to calculate values GI(dmI
c) for increasingly

larger sets of indices I. These values GI will represent all information about
the common input bag classes CIi, i ∈ I, that is needed in order to describe
the behaviour of all other common inputbag classes CIj , j ∈ K/I. Here dmI

c

is a vector of integers for every boundary place p ∈ P Ibnd which represents the
difference from the initial marking resulting from transitions in T (CIi), i ∈ I.
GI(dmI

c) can be thought of as the sum over all reachable markings, that differ
dmI

c(p) from the initial marking m0(p) on the boundary places p ∈ P Ibnd, of the
invariant measure of the states of state machines SM i, i ∈ I.

Definition 5.10. GI(dmI
c)

GI(dmI
c) is defined as follows

GI(dmI
c) =

∑
m̃I :∑

m̃i=
∑
m̃i

0,∀i∈I

m(p)≥0,∀p∈P I
int

mI(p)−mI
0(p)=dm

I
c(p),∀p∈P

I
bnd

∏
i∈I

πSM
i

(m̃i)

Where m̃I is a vector that gives the marking of all bag count places from common
inputbag classes CIi, i ∈ I and mI(p)−mI

0(p) is the change in the marking of
place p as a result of transitions from common inputbag classes CIi, i ∈ I. I.e.
mI(p)−mI

0(p) =
∑
t∈T i(m̃(p̃I(t))− m̃0(p̃I(t)))I(p, t).

Calculating these values GI(dmI
c) will be the goal of our algorithm. First

we will show why these values are interesting by showing how the normalising
constant and first order performance measures can be found using the values
GI(dmI

c). Afterwards, we will show the algorithm itself.

Theorem 5.11. For a BCR-SΠ2-net SPN the equilibrium distribution is given
by equation (3.1) in Theorem 3.7. The normalisation constant B is given by
B−1 = GK(∅).

Proof. B is the normalisation constant so it makes sure that the equilibrium
distribution sums to one. Because SPN is a BCR-SΠ2-net we know that state-
ment 1 and 2 from Definition 5.2 are equivalent, so:

1 =
∑

m∈M(SPN ,m0)

π(m)

=
∑

m∈M(SPN ,m0)

B

s∏
i=1

πSM
i

y (m̃i)

= B
∑
m̃:∑

m̃i=
∑
m̃i

0,∀i∈K

m(p)≥0,∀p∈P

∏
i∈K

πSM
i

y (m̃i)

= BGK(∅)

32

Where the last step can be taken because by definition PKbnd = ∅ and PKint = P .
So GK(∅) = B−1.

In order to find the first order performance measures we need two things. We
need the marginal distribution for the places and the firing rates of the transi-
tions. The firing rates are straightforward, since we use state independent firing
rates. So a transition is either enabled with the known firing rate or it is disabled
and which of these is true in a given state is only dependent on the marking
of the places belonging to the common inputbag class to which this transisiton
belongs. So if we know the marginal distribution of a common inputbag class,
then we also know everything about the firing rates of the transitions belonging
to this common input bag class. Therefore we will now show how to find the
marginal distributions from the values GI .

Theorem 5.12. The marginal probabilty of finding m1(p) tokens on the places
p ∈ P(CIi) is given by

Pr(m(p) = m1(p),∀p ∈ P(CIi))

= B
∑

mi∈M(SPN i,mi
0):

mi(p)−mi
0(p)=

m1(p)−m0(p),∀p∈P i
int

GK/i(dmi
c)π

SMi

y (m̃i),

where dmi
c(p) = m1(p)−m0(p)−mi(p) +mi

0(p) for all p ∈ P ibnd.

Proof. The proof consists of four steps as shown below. The first step (1)
rewrites the marginal probability by using its definition. In the second step (2)
Theorem 3.7 and Definition 5.2 are used to rewrite the sum. In the third step
(3) the sum is split in two parts and finally in the last step (4) Definition 5.10
is used to complete the proof.

Pr
[
m(p) = m1(p),∀p ∈ P(CIi)

]
(1)

=

∑
m∈M(SPN ,m0):

m(p)=m1(p),∀p∈P(CIi)

π(m)

(2)

=

∑
m̃:∑

m̃j=
∑
m̃j

0,∀j∈K

m(p)≥0,∀p 6∈P(CIi)

m(p)=m1(p),∀p∈P(CIi)

B
∏
j∈K

πSM
j

y (m̃j)

33

(3)

=
B

∑
m̃i:∑

m̃i=
∑
m̃i

0

mi(p)=m1(p),∀p∈P i
int

(mi(p)≥0,∀p∈P i
bnd

∑
m̃K/i:∑

m̃j=
∑
m̃j

0,∀j∈K/i

m(p)≥0,∀p∈P i
ext

mK/i(p)−mK/i
0 (p)=

(m1(p)−m0(p))−

(mi(p)−mi
0(p)),∀p∈P

i
bnd

πSM
i

(m̃i)
∏
j∈K/i

πSM
j

y (m̃j)

(4)

=
B

∑
mi∈M(SPN i,mi

0):

mi(p)−mi
0(p)=

m1(p)−m0(p),∀p∈P i
int

GK/i(dmi
c)π

SMi

y (m̃i)

Now that we have established why we would like to calculate the values GI ,
we will show how to find these values in a recursive manner. The algorithm
consists of three steps. The first step is to determine the marginal distribution
of the number of tokens present on the boundary places of all common inputbag
classes in isolation. During the second step, the values GI(dmI

c) will be calcu-
lated using the marginal probabilities, where I are sets consisting of only one
index. The third step is to calculate GI(dmI

c) for increasingly larger sets I by
combining the values of two smaller sets.

First, we need to obtain the marginal distributions of the boundary places
of the common input bag classes in isolation. These can be found using any
known algorithm to find the equilibrium distribution of SΠ2-nets, for instance
by enumerating the whole statespace or if the CIclass in isolation is P -invariant
reachable you could use one of the more efficient algorithms such as the one by
Coleman [3] or Coyle et al. [4]. In general the size of the statespace of the
common input bag classes in isolation will be orders of magnituted smaller than
the statespace of the whole Petri net, since if there are n common input bag
classes each with k possible states, then the size of the statespace of the whole
net will be O(kn). So depending on the number of common input bag classes
and how restrictive the conflict places are, finding the equilibrium distribution
and the marginal distribution of the common input bag classes in isolation
will be significantly easier than finding them for the whole net. The rest of
the algorithm will recombine the common input bag classes by combining the
parts one by one. During each intermediate step we only retain that part of
the information that is relevant for the rest of the Petri-net in order to be as
efficient as possible.

Next, we look at the second step of the algorithm and show how to obtain
the initial values Gi(dmi

c) from the marginal probabilties.

Theorem 5.13. For every i ∈ K and every vector dmi
c we can find Gi(dmi

c)

34

as follows:

Gi(dmi
c) =

πSM
i

y (m̃i
0)

πi(mi
0)

∑
mi∈M(SPN i,mi

0):

mi(p)−mi
0(p)=dm

i
c(p),∀p∈P

i
bnd

πi(mi).

Proof. We know that SM i is the decomposition of SPN i. This means that
from Theorem 3.7 we get

πi(mi) = B1π̂y(m̂i).

Because πSM
i

and π̂i are the equilibrium distributions of two Petri nets that only
differ in initial marking we know that πSM

i

y = π̂iy and since they are in product

form we know that πSM
i

y (m̃i
1 + m̃i

2) = πSM
i

y (m̃i
1)πSM

i

y (m̃i
2). Furthermore, since

we know that the two Petri nets only differ in intial marking we know that
m̃i − m̃i

0 = m̂i − m̂i
0. Combining these statements we get for any mi and

corresponding m̃i and m̂i,

πi(mi) = B1π̂y(m̂i)

= B1π
SMi

y (m̃i − m̃i
0 + m̂i

0)

= B1π
SMi

y (m̂i
0 − m̃i

0)πSM
i

y (m̃i)

= B2π
SMi

y (m̃i).

Here we can find B2 by substituting any pair mi and m̃i for instance the initial
markings. Finally, using the definition of Gi(dmi

c) and the conditions for a
BCR-SΠ2-net we get:

Gi(dmi
c) =

∑
m̃i:∑

m̃i=
∑
m̃i

0

mi(p)≥0,∀p∈P i

mi(p)−mi
0(p)=dm

i
c(p),∀p∈P

i
bnd

πSM
i

y (m̃i)

=
πSM

i

y (m̃i
0)

πi(mi
0)

∑
mi∈M(SPN i,mi

0):

mi(p)−mi
0(p)=dm

i
c(p),∀p∈P

i
bnd

πi(mi).

Now that we have the values Gi(dmi
c) for single indices i, we will now show

how to obtain the values GI(dmI
c) for larger sets I recursively.

Theorem 5.14. For I ⊂ K and J ⊂ K for which I ∩ J = ∅ and IJ = I ∪ J
and any vector dmIJ

c ,

GIJ(dmIJ
c) =

∑
dmI

c ,dm
J
c

GI(dmI
c)G

J(dmJ
c)

35

where the sum is taken over all dmI
c and dmJ

c such that:

1. dmI
c(p) = dmIJ

c (p) for all p ∈ P IJbnd\P Jbnd

2. dmJ
c (p) = dmIJ

c (p) for all p ∈ P IJbnd\P Ibnd

3. dmI
c(p) + dmJ

c (p) ≥ −m0(p) for all p ∈ (P Ibnd ∩ P Jbnd)\P IJbnd

4. dmI
c(p) + dmJ

c (p) = dmIJ
c (p) for all p ∈ (P Ibnd ∩ P Jbnd) ∩ P IJbnd

Proof. First let us name the place sets from the four statements above as follows
and give a short description of where they come from,

1. P 1 = P IJbnd\P Jbnd, this is the set of places that is a boundary place of C(I)
and C(IJ) but not of C(J).

2. P 2 = P IJbnd\P Ibnd, this is the set of places that is a boundary place of C(J)
and C(IJ) but not of C(I).

3. P 3 = (P Ibnd ∩P Jbnd)\P IJbnd, this is the set of places that is a boundary place
of C(I) and C(J) but not of C(IJ).

4. P 4 = (P Ibnd∩P Jbnd)∩P IJbnd, this is the set of places that is a boundary place
of C(I), C(J) and C(IJ).

By definition 5.10 we know

GIJ(dmIJ
c) =

∑
m̃IJ :∑

m̃i=
∑
m̃i

0,∀i∈IJ

m(p)≥0,∀p∈P IJ
int

mIJ (p)−mIJ
0 (p)=dmIJ

c (p),∀p∈P IJ
bnd

∏
i∈IJ

πSM
i

(m̃i) (5.1)

We will split this sum in three parts, one part will only depend on the
common input bag classes C(I), one part will only depend on the common
input bag classes C(J) and the third part sums over the rest.

First, we notice that m̃IJ consists of m̃I and m̃J so in order to split the sum
in Equation 5.1 in two sums over these vectors we have to split the constraints
on m̃IJ as well. The first set of constraints,

∑
mi =

∑
mi

0 for all i ∈ IJ , is
easy to split, because every i belongs to either I or J it is a constraint for only
one of the two sums.

For the second constraint, m(p) ≥ 0 for all p ∈ P IJint, we have P IJint = P Iint ∪
P Jint ∪ P3. For places from P Iint, m(p) is only dependant on m̃I and similarly
for places from P Jint, m(p) is only dependant on m̃J . This is true because from
Lemma 3.5 we know that m(p) =

∑
t I(t, p)m̃(p̃I(t)) and by definition of P Iint we

know that I(t, p) = 0 for all p ∈ P Iint, t ∈ T (CIj) for any j ∈ K\I. For places
p ∈ P3 we have that m(p) −m0(p) = mI(p) −mI

0(p) + mJ(p) −mJ
0 (p). So we

can split the constraint m(p) ≥ 0 into three parts: dmI
c(p) +dmJ

c (p) ≥ −m0(p),
mI(p)−mI

0(p) = dmI
c(p) and mJ(p)−mJ

0 (p) = dmJ
c (p).

36

Finally, for the third constraints, mIJ(p) − mIJ
0 (p) = dmIJ

c (p) for all p ∈
P IJbnd, we have P IJbnd = P1∪P2∪P4. For p ∈ P1 we know that m(p) is independant
of m̃J so mJ(p)−mJ

0 = 0 and similarly for p ∈ P2 we have mI(p)−mI
0 = 0. For

any place p mIJ(p)−mIJ
0 = mI(p)−mI

0(p) +mJ(p)−mJ
0 (p). This means that

the constraints for places in P1 or P2 belong to only one of the two sums, while
the constraints for places from P4 have to be split in three parts: mI(p)−mI

0 =
dmI

c(p), m
J(p)−mJ

0 = dmJ
c (p) and dmI

c(p) + dmJ
c (p) = dmIJ

c (p). This results
in the following way to split the sum

GIJ(dmIJ
c)

=
∑

dmI
c ,dm

J
c :

dmI
c(p)=dm

IJ
c (p),∀p∈P1

dmJ
c (p)=dm

IJ
c (p),∀p∈P2

dmI
c(p)+dm

J
c (p)≥−m0(p),∀p∈P3

dmI
c(p)+dm

J
c (p)=dm

IJ
c (p),∀p∈P4

∑
m̃I :∑

m̃i=
∑
m̃i

0,∀i∈I

m(p)≥0,∀p∈P I
int

mI(p)−mI
0(p)=dm

I
c(p),∀p∈P

I
bnd

∑
m̃J :∑

m̃i=
∑
m̃i

0,∀i∈J

m(p)≥0,∀p∈PJ
int

mJ (p)−mJ
0 (p)=dm

J
c (p),∀p∈P

J
bnd

∏
i∈I

πSM
i

(m̃i)
∏
i∈J

πSM
i

(m̃i)

=
∑

dmI
c ,dm

J
c :

dmI
c(p)=dm

IJ
c (p),∀p∈P1

dmJ
c (p)=dm

IJ
c (p),∀p∈P2

dmI
c(p)+dm

J
c (p)≥−m0(p),∀p∈P3

dmI
c(p)+dm

J
c (p)=dm

IJ
c (p),∀p∈P4

GI(dmI
c)G

J(dmJ
c)

Now we have all the parts of the algorithm available and we can combine
them to get the algorithm shown below.

Algorithm 5.15. Calculating the values GI(dmI
c) for SPN

Step 1: Obtain the BCPE-net S̃PN as given in Definition 3.1 and an initial
marking m̃0 satisfying the conditions in Lemma 3.3, for example by taking
m0 as given in Lemma 3.6.

Step 2: Obtain the common input bag classes in isolation SPN i as given in
Definition 5.7, their initial markings mi as given in Lemma 5.9 and equi-
librium distribution πi in any way, for instance by enumerating the whole
statespace.

37

Step 3: From the equilibrium distributions πi obtain the values Gi(dmi
c) for all

indices i ∈ K and vectors dmi
c as given in Theorem 5.13. Let S be the set

containing of all sets of one index, S =
⋃
i∈I{{i}}.

Step 4: If S contains at least two elements, continue with Step 5, otherwise
you are done.

Step 5: Take two sets I, J ∈ S, I 6= J , and calculate GIJ(dmIJ
c) from GI(dmI

c)
and GJ(dmJ

c) as given in Theorem 5.14. Remove I and J from S and add
IJ to S, S := (S ∪ {IJ})\{I, J}. Go back to step 4.

Example 5.16. Consider the Petri-net shown in Figure 5.2a with initial mark-
ing m0 = [0101001000]T and all firing rates are equal to 1.

From the incidence matrix

A =



−1 0 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
−1 0 1 −1 0 1 −1 0 1


,

we obtain three minimal support T-invariants:

x1 = [111000000]T

x2 = [000111000]T

x3 = [000000111]T ,

all three have closed support so it is a SΠ2-net and they are not in common
input bag relation so we have three common input bag classes.

Step 1: Using Theorem 3.7 we obtain the three statemachines shown in Figure
5.2b, where we take m̃0 = [010100100]T as initial marking.

Step 2: All three common inputbag classes in isolation have the same structure
given by incidence matrix

A =


−1 0 1
1 −1 0
0 1 −1
−1 0 1


and the same solution to the traffic equations which is vr = 1 for all r.
Which gives an invariant measure πiy(mi) = 1 for all mi. From Lemma 5.9
and m̃0 as defined in step 1 we obtain m1

0 = [0100] and m2
0 = m3

0 = [1001].
This gives three possible states in each of the nets, i.e. M(SPN i,mi

0) =
{[1001], [0100], [0010]}. So we have πi(mi) = 1

3 for all i and mi.

38

Figure 5.2: Petri nets of Example 5.16

(a) The original net

p10

p1 p2 p3

p4

p5

p6

p7p8p9

t1

t2 t3

t4

t5

t6

t7

t8t9

(b) The decomposition

p̃1 p̃2 p̃3

t1 t2 t3

CI1

p̃4 p̃5 p̃6

t4 t5 t6

CI2

p̃7 p̃8 p̃9

t7 t8 t9

CI3

39

Step 3: For G1 we have two possible values for dm1
c(p10) = m1(p10)−m1

0(p10),
i.e. 0 and 1. Which gives

G1([0]) =
πSM

1

y (m̃1
0)

π1(m1
0)

∑
m1∈M(SPN 1,m1

0)

m1(p10)=0

π1(m1)

=
1

1/3

[
π1([0100]) + π1([0010])

]
= 2

G1([1]) =
πSM

1

y (m̃1
0)

π1(m1
0)

∑
m1∈M(SPN 1,m1

0)

m1(p10)=1

π1(m1)

=
1

1/3
π1([1001]) = 1

Similarly we find two possible values for dm2
c and dm3

c, i.e. -1 and 0. This
results in the following values of Gi(dmi

c):

i Gi(−1) Gi(0) Gi(1)
1 0 2 1
2 2 1 0
3 2 1 0

Step 4&5: From this we can calculate the values of G23 from G2 and G3. First
we observe that P 23

bnd = {p10}, so dm23
c has one element, dm23

c (p10), which
can take all values that dm2

c + dm3
c can take, i.e. -2, -1 and 0. So we get:

G23([−2]) =
∑

dm2
c,dm

3
c:

dm2
c(p10)+dm

3
c(p10)=−2

G2(dm2
c)G

3(dm3
c)

= G2([−1])G3([−1]) = 4

G23([−1]) =
∑

dm2
c,dm

3
c:

dm2
c(p10)+dm

3
c(p10)=−1

G2(dm2
c)G

3(dm3
c)

= G2([−1])G3([0]) +G2([0])G3([−1]) = 4

G23([0]) =
∑

dm2
c,dm

3
c:

dm2
c(p10)+dm

3
c(p10)=0

G2(dm2
c)G

3(dm3
c)

40

= G2([0])G3([0]) = 1

There are still two sets in S so we do step 4 and 5 once more.

Step4&5: Now we will find G123 by combining G1 and G23. This time we see
that P 123

bnd = ∅, so p10 belongs to P 3 in Theorem 5.14. This gives us:

G123(∅) =
∑

dm1
c,dm

23
c :

dm1
c(p10)+dm

23
c (p10)≥−m(p10)

G1(dm1
c)G

23(dm23
c)

= G1([0])G23([0]) +G1([1])G23([−1]) +G1([1])G23([0])

= 7

Now that we have found these values GI we will use them for two things.
First, we calculate the normalising constant B = G123(∅)−1 = 1

7 . For this small
instance we can easily check this to be correct, because there are only 7 possible
states:

[1001001001] ,

[0101001000] ,

[0011001000] ,

[1000101000] ,

[1000011000] ,

[1001000100] ,

[1001000010]

and πSM
i

y (mi) = 1 for all i and mi. Secondly, we can calculate a performance
measure of CI1 for instance the average number of tokens on place p2. In order
to do this we calculate the following marginal probabilities by using Theorem
5.12. In this case the sum for each marginal probability will have only one term,
because the interior point of CI1 uniquely define the state of common input bag
class CI1 in isolation. This gives us the following marginal probabilities, where
Pr([abcd]) = Pr(m|m(p1) = a,m(p2) = b,m(p3) = c,m(p10) = d):

Pr([1000]) = BπSM
i

y ([100])G23(−1) = 4
7

Pr([1001]) = BπSM
i

y ([100])G23(0) = 1
7

Pr([0100]) = BπSM
i

y ([010])G23(0) = 1
7

Pr([0010]) = BπSM
i

y ([001])G23(0) = 1
7

This gives for the average number of tokens on place p2:

0Pr([1000]) + 0Pr([1001]) + 0Pr([0010]) + 1Pr([0100]) =
1

7

41

From Example 5.16 two important questions arise:

1. How efficient is our algorithm?

2. How do we check whether or not a SΠ2-net is a BCR-SΠ2-net, so we may
apply our algorithm?

We did not analyse either question in detail, as this fell outside the scope of this
research. Analysing the complexity of our algorithm and comparing it to other
known algorithms as well as further characterising the class of BCR-SΠ2-nets
would be an interesting topic for future research. However we did put some
thought into these questions and below you can find our conclusions on them
so far.

Let us look at the efficiency first. Example 5.16 was small enough to be
analysed as a whole and we have seen that its reachable marking set had only
seven elements, while each of the three common input bag classes in isolation
had three which makes a total of nine states that had to be evaluated in the
second step. In general the state space of the original net will be a subset of the
carthesian product of state space of the common input bag classes in isolation.
How large this subset is will depend on the conflict places and how restrictive
they are in the original net. In Example 5.16 the conflict place allowed only
one common input bag class to be active at the same time. This resulted in
only seven reachable markings out of the potential 33 = 27. In general we can
say that step 2 will be significantly faster than analysing the net as a whole if
there are many common input bag classes and the conflict places are not too
restrictive in the original net.

The second time consuming step, is step 5 where the common input bag
classes are recombined. The efficiency of these steps will heavily depend on the
number of conflict places and the order in which the common input bag classes
are recombined. The number of boundary places of C(I), I ⊂ K, will be the
dimension of dmI

c which means that the more boundary places a set I has the
more values GI you have to calculate and store. When combining I and J to
find GIJ the boundary places of IJ will consist of the boundary places of I
and the boundary places of J , however if a place belongs to both I and J it
will be counted only once and if it is not boundary place of K\IJ it is not
counted at all. It will improve the efficiency greatly if the order of recombining
is chosen such that I and J share many boundary places. So the efficiency of
the algorithm is also dependent on the number of conflict places and whether
an order of recombining can be found such that conflict places are eliminated
as soon as possible.

Next, we look at characterising the class of BCR SΠ2-nets. We have not
been able to find a conclusive way to check whether or not a given SΠ2-net is
bag count reachable. However, we do have a sufficient condition, which is not
necessary. First we define P -invariant reachable Petri nets as used by Coleman
[3].

42

Definition 5.17 (P -invariant reachable Petri net). A stochastic Petri net SPN
is P -invariant reachable if, for any two markings m1 and m2, the following two
statements are equivalent:

1. m2 ∈M(SPN ,m1).

2. Ym1 = Ym2.

Where Y is the matrix that has all minimum support P -invariants of SPN as
its rows.

Lemma 5.18. Any P-invariant reachable SΠ2-net is a BCR SΠ2-net for any
initial marking m0.

Proof. Three statements about any marking m are involved in the definitions
of P-invariant reachable and BCR SΠ2-nets:

1. m ∈M(SPN ,m0)

2. m ≥ 0,
∑
r∈R(T (CIi)) ar(m−m0) = 0 for all i ∈ K

3. m ≥ 0, Ym = Ym0.

A Petri net is P -invariant reachable if statement 1 and 3 are equivalent for every
initial marking m0 and bag count reachable for an initial marking m0 if 1 and
2 are equivalent for m0. In Remark 5.3 we have shown that statement 1 implies
statement 2 for any SΠ2-net. We will show that statement 2 implies statement
3 for any SΠ2-net to complete the proof.

From Lemma 3.4 we know ar(m−m0) = m̃−m̃0. This means that statement
2 means that the total number of tokens on the bag count places for each
common input bag class are equal in m̃ and m̃0. By definition of the common
input bag class, for any pair of input bags in the same common input bag class,
r1 and r2, there is a sequence of transitions σ12 that transforms r1 into r2, which
means that r1 + Aσ̄12 = r2. This means that since m̃ and m̃0 have the same
number of tokens on the bag count places in each common input bag class that
by adding many sequences of transitions σij together we can get a sequence of
transitions σ such that m = m0 + Aσ̄ and by definition of the P -invariants we
have that Y A = 0. So statement 2 implies Ym = Ym0 + YAσ = Ym0.

Finally we have one conjecture about a group of Petri nets that belong to
the BCR SΠ2-nets. However we can not prove it at this point.

Conjecture 5.19. For any SΠ2-net for which there is no place p that is part
of at least two input bags in different quantities. I.e. there are no transitions t1
and t2 such that I(p, t1) 6= 0, I(p, t2) 6= 0 and I(p, t+ 1) 6= I(p, t2). Then there
is a marking mmin such that for any initial marking m0 ≥ mmin the marked
SΠ2-net is bag count reachable.

43

44

Chapter 6

Discussion

The results of this research are twofold. First, we have shown that each SΠ2-
net can be decomposed into several smaller SΠ2-nets, where each smaller net
represents one common input bag class of the original net and the equilibrium
distribution of the original net is the product of the equilibrium distributions of
the smaller nets. Second, we have shown an algorithm to find the normalising
constant and first order performance measures of a bag count reachable Petri
net. This algorithm can be applied to more Petri nets than other methods
by Coleman [3] and Coyle et al. [4]. The efficiency of our algorithm has not
been investigated, however for Petri nets with relatively few conflict places it is
expected to perform well.

We see several promising areas for future research. First of all, the current
decomposition results are formulated only for state independent firing rates.
However we think it is possible to formulate these results for state dependent
firing rates, similar to those used by Henderson et al. [7], Boucherie and Sereno
[1] and Haddad et al. [6]. Secondly, we think that it is possible to decompose the
Petri nets even further. We believe that if we replace the condition of sharing
an input bag by sharing a transition in the definition of the common input bag
class, then it is still possible to formulate the decomposition results.

For the results of section 5 there are some more posibilities for future re-
search. Foremost is investigating the efficiency of the algorithm on its own
and how it performs in comparison to other known algorithms. Furthermore,
it would be interesting to see if the set of BCR-SΠ2 could be further charac-
terised. By further investigating Conjecture 5.19. First by proving or disproving
the conjecture and if it turns out to be true, then it would be interesting to see
if a minimal marking mmin can be found.

45

46

Bibliography

[1] R. J. Boucherie and M. Sereno. On closed support T-invariants and the
traffic equations. Journal of Applied Probability, 35(2):pp. 473–481, 1998.

[2] R.J. Boucherie. A characterization of independence for competing Markov
chains with applications to stochastic Petri nets. IEEE Transactions on
Software Engineering, 20:536–544, 1994.

[3] J.L. Coleman. Algorithms for product-form stochastic Petri nets-A new
approach. In Petri Nets and Performance Models, 1993. Proceedings., 5th
International Workshop on, pages 108 –116, oct 1993.

[4] A. J. Coyle, W. Henderson, C. E. M. Pearce, and Peter G. Taylor. A gen-
eral formulation for mean-value analysis in product-form batch-movement
queueing networks. Queueing Syst., pages 363–372, 1994.

[5] S. Donatelli and M. Sereno. On the product form solution for stochastic
Petri nets. Application and Theory of Petri Nets 1992, pages 154–172,
1992.

[6] S. Haddad, P. Moreaux, M. Sereno, and M. Silva. Product-form and
stochastic Petri nets: a structural approach. Performance Evaluation,
59(4):313 – 336, 2005.

[7] W. Henderson and P.G. Taylor. Aggregation methods in exact perfor-
mance analysis of stochastic Petri nets. In Proceedings of the Third Inter-
national Workshop on Petri Nets and Performance Models, pages 12–18.
IEEE, 1989.

[8] W. Henderson and P.G. Taylor. Embedded processes in stochastic Petri
nets. Software Engineering, IEEE Transactions on, 17(2):108 –116, feb
1991.

[9] N. Kortbeek and R. J. Boucherie. A P- and T-invariant characterization
of product form and decomposition in stochastic Petri nets. Memoran-
dum 1939, Department of Applied Mathematics, University of Twente,
Enschede, March 2011.

47

[10] G. Memmi and G. Roucairol. Linear algebra in net theory. Net Theory
and Applications, pages 213–223, 1980.

[11] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541 –580, apr 1989.

[12] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für
instrumentelle Mathematik, Bonn, 1962.

48

