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Abstract

Localization is a problem that has been addressed using a variety of technologies. In this thesis the
use of Bluetooth for indoor localization is studied. The advantage of this technology over others
is that it is pervasively available, is relatively cheap and has a relatively low power consumption.
Especially the fact that Bluetooth is integrated in a wide range of mobile devices, makes its use
attractive. The question being answered by this thesis is which design of a Bluetooth based
localization system works well for indoor environments. The context of the localization system is
that of an office building in which the location of employees is tracked. The main contribution of
this thesis is a practical evaluation of Bluetooth as a technology for indoor localization.

Received Signal Strength in the inquiry phase of the Bluetooth device discovery protocol has
been identified as the most suitable localization measure. This measure, however, has the disadvan-
tage that the sample rate is relatively low. Tests have shown that at least one minute is required to
collect a sufficient number of samples. Because of the relatively low sample rate, accurate location
estimation of moving people is not possible.

To study the localization performance of Bluetooth for indoor environments a number of lo-
calization algorithms were tested. These algorithms include: Ecolocation, calibrated and uncali-
brated Log-Normal Shadowing model based algorithms and fingerprinting based algorithms. For
each algorithm localization accuracy was computed using datasets which were collected in a test
environment. Furthermore, the effect of several controllable and uncontrollable parameters on
localization accuracy was tested for the algorithms. The controllable parameters that were tested
are: number of access points and window size, and the uncontrollable parameters that were tested
are: device orientation, device height, transmitter power level and environment structure. An
analysis of the effects of these parameters shows that the uncalibrated algorithms are less sensitive
to the uncontrollable parameters. These algorithms, however, require more access points to achieve
reasonable localization accuracy.

The main conclusion of this thesis is that the uncalibrated localization algorithms are best
suitable for indoor localization. This is because of the low impact of the uncontrollable parameters
on their localization performance. Which algorithm works the best depends on the number of
access points that can detect a target. For 5 access points or less, Ecolocation appears to yield
the best location estimates. Otherwise, the uncalibrated Log-Normal Shadowing model based
algorithm performs the best.
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Chapter 1

Introduction

Navigation is probably among one of the oldest problems faced by the human species. The early
hunters and gatherers, after having successfully chased their prey, needed to find a way back to
their camp. Those people had acquired some remarkable skills in finding their way through the
wilderness. Such skills have now long been forgotten and only a few people remain that are familiar
with them. One way people were able to navigate was using the orientation of stars on the night
sky. This method has proven to be very successful at night and in the absence of clouds. However,
during the day this method was useless and we are all well aware of the fact that we cannot rely
on clear skies. The invention of the compass was a big improvement, since it allowed people to
navigate at anytime and anywhere.

Nowadays we have the luxury of electronics and the Global Positioning System (GPS) has
become the method of choice for navigation. In fact with our increased mobility navigation is still
one of the tasks we perform regularly. Some even need to do so on a daily basis. GPS has greatly
simplified our navigation problem and its popularity can be seen from the many car navigation
systems that are being used. People using printed maps are becoming rarer every day.

Advances in (computer) electronics and the dynamic nature of the modern societies have also
led to a desire for navigation on a smaller scale. More generally there is an increased interest
in location aware services. Such services adapt their functionality and processes based on their
location. For example one can think of an application running on mobile phones that shows weather
information for the area where the devices are located. While this application does not require a
very fine location estimate, there are a lot of applications and services that would benefit from a
location estimate with sub-meter accuracy. For rescue squats like fire fighters and the police, being
able to locate persons in a building with an accuracy of 1 meter could make a difference between
life or death. But also in less extreme cases would an accurate location estimate be really useful,
for example finding your colleague in a big office building.

This thesis is about localization using Bluetooth technology in indoor environments. Local-
ization can be defined as the process of finding the location of an object or person. Localization
is thus the basis for navigation and other location aware services. Bluetooth is simply one of the
many technologies that could be used for localization.

1.1 Motivation

Localization was earlier defined as the process of finding the location of an object or person. The
location is always relative to some user defined space. For GPS this space is earth and each GPS
coordinate uniquely defines a location on earth. Other localization system operate on a local
space such as a city or building. This thesis focuses on the latter. The reason for that is quite
simple: Bluetooth has a limited range. Using Bluetooth technology for a larger scale would be
cost ineffective and other technologies would be more appropriate. On the other hand localization
technologies that operate on a large scale are not suitable for smaller scale environments like
buildings. GPS for example cannot be used indoor, because a GPS device requires a line of sight
to at least four satellites, which is usually not possible in indoor environments.

Bluetooth is actually not a technology that is designed to be used for object localization.

1
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In fact there are other technologies available which have been explicitly designed for accurate
indoor localization. Some of these technologies are able to achieve high location estimates with a
high degree of accuracy. This raises the question what the advantage is of Bluetooth over other
technologies. Even though this technology is not designed to support object localization it does
have advantages over other technologies, which are:

• Bluetooth is pervasively available. Most mobile devices, like cell phones, PDAs and laptops
are already equipped with a Bluetooth module. People carrying such a device already ‘wear’
all the hardware which is required to localize them. Many other indoor localization systems,
however, require the person or object being localized to wear a special badge. This badge
contains the hardware which interacts with other parts of the localization system to estimate
the location of the target. Using Bluetooth instead of specialized localization technology
thus has the advantage that the person being localized does not need to be equipped with
additional hardware.

• Bluetooth is relatively cheap. The widespread adoption of Bluetooth in a large variety of
devices has resulted in the availability of Bluetooth chips at low prices. Building a localization
system using Bluetooth technology can thus be done using low price, off the shelf hardware.
Also, since the system does not need to use tracking badges the only hardware costs stem
from the Bluetooth sensor network. Commercial localization systems are rather expensive
compared to the costs of building a Bluetooth localization system.

• The power consumption of Bluetooth modules is relatively low. The main purpose of Blue-
tooth is to be a replacement for short distance wired data transfer. Hence, it does not require
a large transmission range and the Bluetooth signals are transmitted at low power levels.
Since Bluetooth is used in a lot of mobile devices, manufacturers have also put effort in pro-
ducing Bluetooth chips with even lower power consumption. As a result Bluetooth puts less
of a penalty on battery life compared to other wireless technologies, like Wi-Fi for example.

Despite the advantages of Bluetooth, there are also some disadvantages. The fact that it
has not been designed for object localization means that it will not be able to achieve the same
accuracy as the technologies that have specifically been designed for localization. We also found
that Bluetooth is not suitable for real time target tracking. Nonetheless, the advantages mentioned
earlier make Bluetooth an interesting technology for indoor localization. Mainly because it can
be realized with simple, off the shelf hardware, at a low cost and without having to bother people
with badges that they should wear.

1.2 Problem

The practical usefulness of a localization system depends on the context in which it will be used.
In this thesis the context is that of indoor environments. More specifically the context is defined
by a use case scenario for an office building, in which we would like to track to location of people
inside the office. To evaluate whether a localization system is useful for a particular context,
5 system properties were identified. These properties are: accuracy, responsiveness, calibration
effort, adaptiveness and operational constraints. A full description of these properties is given in
section 2.4.

The desired accuracy of the localization system in the context of an office building is such
that one would have no trouble finding a particular person in the building. For this context an
accuracy of at most 5 meter is assumed to be required, although in buildings with a clear view
a less accurate system will also suffice. People working in an office will not be moving around
very often so the responsiveness of the system is no big issue. Calibration effort and adaptiveness,
however, are both more important properties. The localization system will be operational for an
extended time period and during this time changes in the environment are bound to occur. Some
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of these changes may negatively affect the accuracy of the localization system. To cope with these
changes the localization system needs to adapt automatically, be recalibrated or both. Ideally the
system adapts fully autonomously so no recalibration is required. If the calibration requires quite
an effort, having to repeat this process over and over, quickly makes the maintenance of the system
too cumbersome. Finally the operational constraints of the system should be such that they do
not hinder the people in their activities.

In short this thesis is about the design of Bluetooth based localization system to track the
location of employees inside an office building. The desired system has at least an accuracy of 5
meters, is able to adapt to changes in the environment, requires minimal calibration effort and does
not constrain the activities of the employees. The system does not need to accurately estimate the
location of moving people, but it does for people who are in a stationary position.

1.3 Research questions

Based on the problem description, presented in the previous section, we would like to answer to
the following main research question:

Which Bluetooth based localization system design works well for indoor environ-
ments?

Note that the term ‘well’ may be a bit ambiguous. What is meant with this term is that the
system is compliant with a set of minimal requirements. These requirements are specified in a
later section. To answer the main question, research has been divided in the following sub ques-
tions:

1. Which localization measures are best suitable within the context?
Bluetooth supports a number of different measures that can be used for localization. Each
of these measures has its own advantages and disadvantages. These advantages and disad-
vantages need to be weighted with respect to the context in which the localization system is
to be applied. This question is answered in section 4.3.

2. What are the parameters that influence localization performance?
Localization performance, primarily accuracy, is affected by several controllable and uncon-
trollable parameters. These parameters need to identified in order to evaluate their impact
on performance. This question is answered in chapter 5.

3. Which localization methods will be evaluated?
Estimating the location of a target can be done using multiple methods. In fact, a huge
number of methods exist, although most of them are variations of one another. However,
each method has its own characteristics and not every method performs equally well under
the same conditions. Therefore a selection needs to be made of different localization meth-
ods, which will be used to evaluate localization performance. This question is answered in
chapter 6.

4. What is the optimal orientation between target device and access point sensors?
All antennas have a specific radiation pattern, meaning that they do not emit signals of
equal strength in all directions. Hence, orientation may have a significant effect on the
observed values of the localization measures. Therefore we wish to know if there is an
optimal orientation between the antennas. This optimal orientation will then be used for
collecting datasets to evaluate the effect of relative orientation of localization accuracy. This
question is answered in section 7.1.
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5. What is the maximum localization accuracy that can be achieved?
The spatial deployment of sensors has influence on the localization results. With this infor-
mation it is possible to compute a lower bound on localization accuracy for the setup used
to evaluate the performance of various localization methods. This question is answered in
section 7.2.2.

6. How do the localization parameters affect localization performance?
There are a number of different parameters which have an influence on the location estimates.
Some of these are controllable, i.e. they can be set manually to a fixed state and are known
to the system. Others are uncontrollable, meaning they are variable and unknown to the
system. To find a system design that works well for indoor localization, the effect of these
parameters on localization performance needs to be evaluated. This question is answered in
section 8 and is divided into the following sub questions for each localization parameter:

(a) To what extent does unknown device orientation affect localization accu-
racy?
In a practical application of the localization system, there is no control over the relative
orientation between target devices and the access point sensors. We therefore would like
to know how this affects localization accuracy, to see if this restricts the applicability of
the system. This question is answered in section 8.2.

(b) To what extent do environmental changes affect localization accuracy?
Within the context of indoor localization, environment changes are expected on a regular
basis. These changes, which can be as simple as closing or opening a door, may affect the
propagation of Bluetooth signals. Consequentially this influences the observed values
of the localization measures and thus also influences location estimates. This question
is answered in section 8.3.

(c) How significant is the effect of unknown device height on localization accu-
racy?
The goal of the system is to find the location of people in an office building. This is
achieved by localizing mobile devices carried by people. Since not people are of equal
height and there are differences in the preferred location where people carry their device,
e.g. trouser or sweater, devices cannot be assumed to be on a specific height. Height
impacts localization estimates, because it changes the distances to the access points and
it also changes relative orientation. This question is answered in section 8.4.

(d) How do varying levels of transmitter power affect localization accuracy?
The strength with which target devices transmit their signals is called the Transmitter
Power Level (TPL). This parameter affects the signals which are received by the sensors
of the localization system and therefore may have an impact on location estimates. In
an environment in which there is no control over the set of target devices, the TPL value
cannot be assumed constant. We therefore need to know the effect of this parameter
on localization accuracy. This question is answered in section 8.5.

(e) What is the minimum required number of access points to achieve reason-
able accuracy?
Localization accuracy is expected to be a function of the number of access points. In-
creasing the number of access points will likely also increase accuracy. However, in
practice the amount of access points should be minimized, to reduce hardware, instal-
lation and maintenance costs. This question is answered in section 8.6.

(f) What is the minimum required window size to achieve reasonable accuracy?
Another way to increase accuracy is to increase the number of samples used for estimat-
ing target locations. Because the sample rate cannot be increased, we need to measure
for a longer period of time to increase the number of samples. This period of time,
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called the window size, is preferably small, so the system is more responsive to changes
of the actual target location. This question is answered in section 8.7.

1.4 Contribution

The main contribution of this study is a practical evaluation of Bluetooth localization for indoor
environments. While most work on localization provides a theoretical basis for controlled environ-
ments, this thesis assesses the consequence if there is no control over certain parameters, which
influence localization performance. Assuming no control over these parameters relates better to
practical situations in which a Bluetooth based localization system is deployed. The effect of these
parameters is evaluated using a number of datasets, which have specifically been collected for the
purpose of testing the influence of certain localization parameters in indoor environments. These
datasets can serve as future reference data to test the performance of localization systems.

1.5 Outline

This thesis can be divided in roughly two parts: a theoretical part (chapters 2 through 6) and
an empirical part (chapters 7 through 9). The first provides background information and lays the
theoretical foundations for the second part. The second part describes the measurements that were
performed and gives an analysis of the resulting data in order to evaluate localization performance
using Bluetooth.

In chapter 2 an introduction to localization is given. Then the context of the Bluetooth based
localization system is described in chapter 3. A description of the Bluetooth technology is given
in chapter 4. Based on the context description a set of controllable and uncontrollable parameters
is identified in chapter 5. Chapter 6 presents the different localization algorithms which were used
for evaluating localization performance with Bluetooth technology. The measurements performed
and the datasets collected are described in chapter 7. A performance analysis for the different
localization algorithms using this data is given in chapter 8. Another performance analysis for a
more realistic localization scenario is given in chapter 9. In chapter 10 the main conclusions of the
thesis are presented, including an answer to the main research question. Possible improvements
and other suggestions for future research are given in chapter 11.

To make the thesis more readable, each chapter begins with a short introduction of the topics
covered by the chapter. Also, at the end of each chapter a short summary is given that presents
the most significant results and information.





Chapter 2

Localization basics

This chapter serves as an introduction to the localization problem. First a formal definition of the
localization problem will be given. Then section 2.2 gives an overview of different methods to solve
the localization problem. In section 2.3 different technologies which can be used for localization are
discussed. This section is followed by a listing of the most important localization system properties
that determine the suitability of a system for a particular context. Finally, the chapter ends with
a discussion of current advances in localization using Bluetooth.

2.1 Localization problem definition

As already mentioned in the introduction, localization can be defined as the process of finding
the location of an object or person. This definition may be a bit narrow, since in reality multiple
objects or persons are often located by the same process at the same time. This also depends on
the perspective, which can be either a single point of view or an external point of view. In the first
case, the localization process is used to estimate the location of the object itself, for example a car
navigation system which estimates the cars’ current location. In the second case, the localization
process is tracking one or more target objects, for example a Radar tower tracking ships near
the coast. The latter thus locates multiple objects in the same localization process. The desired
Bluetooth based localization system in this thesis is also an example of the external point of view.

Formally the localization process can be defined as follows. Let S denote the space in which
objects are localized, consisting of a finite or infinite number of different locations. Given a set
of observations O in a certain time period [ta, tb] and a set of targets T (which may be derived
from O), the localization process is defined as the repetitive evaluation of the following equation
for a sequence of time periods.

X̂ = f(T,O) (2.1)

Here X̂ = (x̂1, x̂2, x̂3, . . . , x̂n) is the set of location estimates for each target. Each x̂i in the set
X̂ satisfies x̂i ∈ S. The function f is called the localization function, which maps a given set of
targets and observations to a set of a location estimates for each target. In addition to parameters
T and O, the localization function may take extra parameters, such as calibration information.
Which additional parameters are required depends on the localization algorithm being used to
calculate the location estimates.

If the set of real locations X = (x1, x2, x3, . . . , xn) for each target in the time period of O is
also known, then mean localization error can be computed as follows:

ē =
1

n

n∑
i=1

|x̂i − xi| (2.2)

Targets do not necessarily remain stationary within the time period of O, so it is not always
possible to identify a single real location for a target. Therefore the average of the ‘real’ location
within the time period [ta, tb] is taken for each target.

With the definition of the mean localization error it becomes possible to quantify the accuracy
of a given localization function f and set of observations O. In the remainder of this thesis, mean

7
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localization error will be used to describe the accuracy for localization. It should be noted that
the mean localization error is not just affected by the localization function, but also by other
factors including: the quality of measurements in the observation set, the number of samples in
the observation set, the quality of the real target location measurements and the quality of the
calibration data. The other properties of a localization system, listed in section 2.4 (responsive-
ness, calibration effort, adaptiveness and operational constraints) cannot be quantified as easily as
accuracy. Therefore a qualitative evaluation of these properties will be given when due.

The localization function is a mathematical model to estimate the location of target objects
for a given set of observations. This is the logical component of a localization system. It is imple-
mented in a program which runs on one or more processing devices. The physical component of a
localization system contains the hardware, such as sensors, network infrastructure and processing
devices. Which localization methods can be used in the logical component depends on the tech-
nology being used, i.e. the physical component. An overview of the different localization methods
are given in the next section. Different localization technologies are discussed in section 2.3.

2.2 Signal based localization methods

Most localization systems rely on signal propagation in some medium, such as air, ground or
water. Some exceptions to signal based localization systems are those that use accelerometer and
gyroscope instruments, which can update a location estimate relatively to its previous position.
These instruments can be found for example in game controllers, such as the Wii Remote [25], and
car navigation systems. For car navigation systems, however, the instruments are used in the case
GPS signals are lost, e.g. when driving into a tunnel. Another exception to signal propagation
based systems is optical localization via cameras, where the video images are processed to detect
and track objects of interest.

Signal propagation based localization systems use information derived from received signals to
localize objects. Information commonly derived from signals is the strength of the signals. The
strength of the signal received by a sensor of localization system is called the Received Signal
Strength (RSS). Since signal strength decays exponentially over distance, RSS values have a func-
tional relation with distance. This functional relation can be used to estimate the distance of
a target object to the sensor. Different approaches for target location estimation using RSS are
discussed next.

2.2.1 Signal strength based methods

Proximity

In proximity based methods the RSS value is used to define a relative ordering between different
sensor nodes. Nodes which receive signals with a higher strength are located closer to the target
device compared to nodes which receive lower strength signals. This information is used define a
relative ordering of nodes based on proximity to the target. Such systems do not try to make an
actual estimate of the distance between the nodes and the target. Instead they rely on the relative
ordering to geometrically define an area in the localization space, which contains the location of
the target (assuming the ordering is correct). After having identified this area, the centroid of the
area is then usually taken as the estimated location of the target.

The simplest proximity based localization method is to select the location of the node with
the highest signal strength. However for this method to achieve high accuracy it requires a dense
deployment of nodes. Other methods may be able to achieve the same accuracy using a smaller
number of nodes. This is the main disadvantage of proximity based localization systems: with the
same amount of sensor nodes other RSS methods can provide better accuracy. The advantage of
these systems, however, is that they do not require calibration. Two other examples of proximity
based localization systems are Ecolocation [29] and ROCRSSI [21].
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Range based methods

Contrary to proximity, range based methods do attempt to estimate the distance between the
sensor nodes and the target. This is done using a model that maps the RSS values to distance.
The most commonly used model is the Log-Normal Shadowing (LNS) model [16], which will be
discussed in section 6.2. A model that defines the relation between RSS and distance generally
needs to be calibrated for the environment in which the system operates. The LNS model, for
example, includes two parameters which depend on the physical structure and properties of the
environment and also on the transmitter strength of the targets. Calibrating the model typically
involves measuring the RSS values at a few known distances and then fitting this data on some
function that defines the relation between RSS and distance.

When the localization system is operational, the model is used to estimate the distance from
each sensor node to the target. Distance estimates are then combined, e.g. via trilateration (see
section 2.2.2), to estimate the location of the target. When properly calibrated, range based
methods outperform proximity based methods in terms of accuracy [4].

Fingerprinting

Both proximity and range based localization methods assume that an increase in RSS corresponds
with a decrease in distance. This is indeed the case if there are no noise factors. In practice,
however, the environment is not free of these noise factors. Noise factors may include interference
from other transmitters, objects partially blocking the signal (shadowing) and multipath prop-
agation. As a result the theoretical relation between RSS and distance is not always accurate.
Fingerprinting approaches do not assume that a relation exists between RSS and distance, but
instead assume that there is relation between RSS and location. This means that at a certain
location the distribution of the RSS values is assumed to remain constant as long as the target
does not move and there are no changes in the environment affecting signal propagation.

Using the assumption that RSS distribution depends on location, a fingerprint can be defined
for each location in the localization space. This fingerprint describes the characteristics of the
signal received by each sensors node for a target at the specified location. Signal characteristics
might be the mean RSS value, the median RSS value or a histogram of the RSS values. All
fingerprints together form a database. When the localization system is operational, finding the
location of a target becomes the problem of selecting a fingerprint from the database that best
matches the characteristics of signals received at that time. Usually the location estimate is the
(weighted) center of the top 3 or 4 best fingerprint matches. This is called “K-nearest neighbour”,
where K is the number of best fingerprint matches which are selected. The reason for selecting
fingerprints with K > 1 is that the real location of the target generally falls between a few of the
fingerprinted locations.

Accuracy of fingerprinting based localization methods depends on the granularity and distribu-
tion of the fingerprinted location. Increasing the number of fingerprints also increases the accuracy.
Eventually however, increasing the number of fingerprints does no longer significantly improve lo-
calization accuracy [2, 17, 20]. With a sufficiently large fingerprint database, fingerprinting based
localization achieves better accuracy compared to proximity and range based localization. This
is especially true for environments which contain a lot of noise factors. A major disadvantage
of fingerprinting is that it requires a large calibration effort, since each fingerprint is created by
measuring the signal characteristics at a specific location.

2.2.2 Time based methods

An alternative to RSS is to measure the Time Of Arrival (TOA) of signals. Signals propagate
at a finite velocity which depends on the signal type and medium. Radio signals, for example,
propagate at the speed of light. Thus for a signal to travel from the source to a sensor it takes
some time. This time is directly proportional to the length of the path which the signal travels.
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If t0 is the time at which the signal was transmitted and ti is the time at which the signal was
received by sensor i, then the length of the path is equal to (ti − t0)v, where v is the velocity of
the signal propagation. With three of such path length estimates the location of the transmitter
can be determined using trilateration, illustrated by figure 2.1.

p

Figure 2.1: Estimated target location p with trilateration.

Localization using TOA requires the clocks of the transmitter and sensors to be synchronized.
In addition the transmitter should be able to communicate the time at which the signal was sent
(t0) to the localization system. Often however the clock of the transmitter cannot be synchronized
or the transmitter cannot send the time of signal emission to the localization system. This is
usually the case if one is not able to control the transmitting device because it is a localization
target. A solution to this problem is to use Time Difference Of Arrival (TDOA), in which the
difference of signal arrival time between pairs of sensors is used. For each pair of sensors the
difference of arrival time defines a hyperboloid in the localization space on which the location of
the transmitter lies. Three pairs of sensors each produce different hyperboloids, which will ideally
intersect in one point: the origin of the signal. Because of noise and errors in the measurements
all hyperboloids seldomly intersect at one point. In this case the location estimation becomes an
optimization problem. Localization using TDOA is called multilateration. TDOA requires at least
4 sensors where TOA requires only 3 sensors.

Although TDOA does not require the clock of transmitter to be synchronized with the clock
of the sensors, it still requires the clocks of the sensors to be synchronized among themselves.
Sometimes even this might not be possible for a localization system. This however can be solved
using Differential Time Difference Of Arrival (DTDOA). DTDOA works the same as TDOA but
eliminates the need for clock synchronization by having a node in the localization system that
transmits a signal which is echoed by the localization target. A sensor receives an echo request at
time t1 from the transmitter node and echo-response at time t2 from the target. The difference of
signal arrival time between two sensors i and j is then equal to (ti,2 − ti,1)− (tj,2 − tj,1) + Ti − Tj ,
where Ti and Tj denote the time required for the signal travel from the transmitter node to sensors
i and j. These values are assumed to be known, as they can simply be computed from the distance
between the transmitter node and the sensors.

2.2.3 Radio interferometric localization

Radio signals behave like waves, so at a certain location two signals create a specific interference
pattern. This pattern depends on the distance between the source and receiver of the signal.
When the signals are transmitted at a slightly different frequency measurements of the resulting
signal at two different locations allow the computation of a linear combination of the distance



2.3. TECHNOLOGIES 11

between nodes. Because a simple description of how these distances are inferred cannot be given,
the interested reader is referred to [23] or [6] for a complete description of radio interferometric
localization.

2.2.4 Event rate based methods

Most signals are used to transmit data from one device to another. To enable effective wireless
data transfer communication protocols are needed. For example both Bluetooth and Wi-Fi are
technologies for wireless data transfer which employ a stack of protocols to enable communication.
Typically these protocols include mechanisms to detect errors in the received data due to signal
corruption. Some localization systems [22, 18] have effectively used the Bit Error Rate (BER)
for localization. The BER appears to increase as the distance between transmitter and receiver
increases. Therefore BER has been used as a substitute for RSS, allowing the localization methods
discussed in section 2.2.1 (proximity, range based and fingerprinting) to be applied.

Apart from the BER other event rate based measures can be derived from some of the com-
munication protocols. For example, the Inquiry Response Rate (IRR) of the Bluetooth device
discovery protocol has been used effectively in [3] to estimate the location of Bluetooth enabled
devices. In section 8.1 the localization accuracy of IRR compared to other localization methods is
reviewed.

2.3 Technologies

Localization systems have been build using a variety of technologies. These technologies can be
divided into two classes, those that have been designed for localization and technologies which
were designed for another purpose but can be used for localization. Technologies in the first class
are called ‘dedicated localization technologies’ and those in the second class are called ‘localization
enabling technologies’. In this section an overview of several different technologies from both
classes will be given.

2.3.1 Dedicated localization technologies

Radar

Radar is an acronym for ‘RAdio Detection And Ranging’. As the name implies, Radar is a
localization system that uses radio waves to determine the location of objects, such as ships,
aircrafts and clouds. A Radar installation is able to locate objects by emitting radio pulses,
which are reflected by objects on the path of pulses. Reflected pulses are received by the radar
installation. The signal power of the received pulses can then be converted to an estimate of the
distance between the Radar installation and the object. Radar installations use directed antennas,
so the location of an object is determined by its distance from the installation and the current
angle of the antenna. Hence a Radar system can localize objects using a single transmitter and
receiver only.

Sonar

Sonar, an acronym for ‘SOund Navigation and Ranging’, is a localization system for locating
objects which are submerged into water such as fish or submarines. Sometimes Sonar is also used
for localization of objects in the air. Like Radar systems, a Sonar localization systems use the
reflection of signal pulses to locate objects. However, instead of using radio signals, sound waves
are generated. Also instead of using reflected signal strength, Sonar systems measure the time
from pulse emission to the moment at which the reflected pulse is received. This time can be
converted to a distance estimate by multiplying it with the propogation velocity of the medium.
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The direction of objects is determined by using multiple receivers and using the difference of arrival
time to find the angle.

GPS

As mentioned in the introduction GPS (Global Positioning System) uses satellites. These satellites
continuously send messages, using radio signals, containing the time at which the messages were
send and the location of the sending satellite. A GPS receiver uses the time at which the message
was received to compute the travelling time of the message from satellite to receiver. The distance
between the receiver and satellite can then be computed by multiplying the travel time times the
speed of light. Since GPS messages also include the position of the satellite, the location of the
GPS receiver can be computed using trilateration. Because GPS receiver clocks are not exactly
synchronized with those of the satellites, distance estimates are very rough. To compensate for
these estimation errors at least 4 satellites should be in range of the GPS receiver.

Active Bat

The technologies discussed so far were all designed to operate in outdoor environments and are
not suitable for indoor localization. However, the Active Bat localization system [15] is meant for
accurate indoor localization. The system works by equipping the objects to be localized with a
badge that emits ultrasound pulses. Receivers mounted overhead measure the time of flight of the
pulses and compute the distance to the target by multiplying the time of flight times the speed
of sound. With at least three estimates the system computes the location of the target using
trilateration.

2.3.2 Localization enabling technologies

GSM

GSM (Global System for Mobile Communications) is a technology for digital cellular networks,
which enables telephony for mobile phones. The technology can, however, also be used to estimate
the location of a mobile phone. Base stations surrounding a mobile phone can measure the strength
of a roaming signal emitted by the phone. With a propagation model of the radio signals emitted
by the phone, the RSS values measured by the base stations surrounding the phone can be used
to estimate the distance to the phone. Trilateration can then be used to estimate the location of
the device.

Wi-Fi

Wi-Fi is the current standard for small scale fast wireless networks. The name is a trademark
for products which use the IEEE 802.11 standards family. Today the technology is usually found
in laptops and smart phones. One of the earliest proposals to use Wi-Fi for localization is the
RADAR system [2] (not to be confused with Radar technology). Localization using Wi-Fi is
possible because Wi-Fi uses radio signals in the 2.4 GHz range and the standard allows software
to query the signal strength of devices in range. This enables the use of RSS based localization
methods (see section 2.2.1) to estimate the location of target devices.

RFID

RFID is an acronym for Radio-frequency identification. The technology uses radio signals to
transfer the identification code of an electronic tag to a receiver. RFID tags typically use the
energy from a transmitted radio signal to send a response message and thus do not need a battery.
The range in which these tags can be scanned is limited. Active tags, those with a battery, can be
read from greater distances. Localization using RFID tags is possible by using the signal strength
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of response messages from the tags. When such information is available, the RSS based localization
methods discussed in section 2.2.1 can be used to estimate the location of an RFID tag.

Bluetooth

In many ways Bluetooth is a technology that is similar to Wi-Fi. It is also a wireless networking
technology, but at smaller scale. Bluetooth transmits radio signals at the same frequencies as
Wi-Fi does, so many of the localization principles for Wi-Fi are also applicable for Bluetooth. An
elaborate discussion of how Bluetooth can used for localization is given in section 4.3.

2.4 System properties

The practical usefulness of a localization system depends on the context in which it will be used.
One of key properties that determines whether a localization system is suitable for a particular
context is its accuracy. For example, it makes no sense to use GPS for tracking the location of ants.
Even if an ant was strong enough to carry a GPS tracking device, the accuracy of the location
estimates would be far to low. If one really wishes to track the location of ants, a localization
system with sub-decimeter accuracy is required. A Bluetooth localization system is expected to
be able to make location estimates somewhere in the range of 1 to 10 meters. Tracking ants is not
a viable option using Bluetooth, but tracking people in an office building might be possible.

The list below gives an overview of the other properties which determine to what degree a
localization system is suitable for a particular context. These properties are used throughout this
thesis as key aspects on which the performance of a localization system will be evaluated.

Accuracy Defined as the average distance between the estimated location and the actual location
of an object, i.e. the mean error in location estimates. Note that when this thesis refers to a
system with ‘high accuracy’, mean error in location estimates is small compared to a system
with ‘low accuracy’. Accuracy is thus inversely proportional to mean estimation error.

Responsiveness The responsiveness determines how quickly the location estimate of a moving
target is updated.

Calibration effort Many localization systems need to be calibrated to make location estimates
with reasonable accuracy. The amount of effort required for the calibration process can have
a big influence on the usefulness of a system, especially if a lot of effort is required. Another
factor of the calibration effort is whether it is a process that needs to be performed only
once or repetitively. If calibration needs to be performed only once a large effort is less of a
problem than if it has to be repeated over time.

Adaptiveness Some changes in the environment may affect the localization system. The ability
of the localization system to cope with these changes is called its adaptiveness. A system
that is able to adapt to environmental changes can provide better localization accuracy than
systems that cannot adapt. An adaptive system can also prevent the need for repeated
calibration.

Operational constraints These define under what circumstances the localization system will
provide location estimates with reasonable accuracy. For example, some localization sys-
tems [15, 10] require a direct line of sight to one or more base stations. Operational con-
straints may thus limit the applicability of a localization system.

An ideal localization system estimates the target location with zero mean error, updates the
target location immediately if the target moves, requires no calibration, adapts automatically to
changes in the environment and has no operational constraints. Unfortunately, such a system does
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not exist. In reality most systems make a trade-off between these properties, giving more weight
the those properties that are important for the localization context. For example requiring high
accuracy usually comes at the cost of increased calibration effort. In section 3.1.1 the minimal
requirements for these properties are listed for the context of a localization system used to estimate
the location of employees in an office building.

2.5 Current advances

The idea of using Bluetooth technology for localization is not new. Because of its widespread
adoption in various mobile devices, Bluetooth has been an attractive technology for unobtrusive
localization. This section presents some of the earlier work on Bluetooth based localization systems
and discusses how this thesis is related to the earlier work

One of the earliest works on Bluetooth based localization is that of Hallberg and Nilsson [14].
They describe, a localization system based on a calibrated Log-Normal Shadowing (LNS) model.
Trilateration is used to estimate target locations, which differs from the approach taken in this
thesis in which the location estimate is determined by finding the position in which the difference
between expected and measured RSS values is minimized. Another difference is that the RSS
values are measured using an active Bluetooth connection. Similar Bluetooth localization systems
are described in [8, 9].

Feldman et al. [8], attempt to describe indoor signal propagation using three different models,
including the LNS model. The other models relate distance to RSS via quadratic and cubic
functions and are given by equations 2.3 and 2.4. With a set of observations the parameters for
these two models and the LNS model are determined. One of these models is then selected based
on the least squared sum of deviations. Evaluation of this method results in a mean error of 2.06
m, which is similar to results from the current study, as will be presented in section 8.1.

y = c0 + c1x+ c2x
2 (2.3)

y = c0 + c1x+ c2x
2 + c3x

3 (2.4)

Fernandez et al. [9] recognize that signal propagation may be affected by changes in the en-
vironment and thus can invalidate calibration data. They propose a localization system that
automatically updates its calibration data using fixed reference devices, similar to the automatic
calibration of the LNS model described in section 6.2.1. Other approaches to cope with changes
in the environment that affect signal propagation are presented in [13, 30]. Although these works
are based on Wi-Fi, the principles also apply for Bluetooth. Haeberlen et al. [13] address the issue
by introducing a linear calibration function that maps observed RSS values in the online phase to
RSS values as they would have been observed in the training phase. To obtain the parameters for
calibration function they use a history of recent observations from which they construct an esti-
mate of the calibration parameters. Yin et al. [30] argue that calibration function used in [13] to
adapt to environmental changes cannot be uniformly performed across all locations. Instead they
present a new algorithm called Location Estimation using Model Trees, that is able to better cope
with the non-uniform nature of the environmental changes. This algorithm is based on learning
mapping functions in the training phase and dynamically computing the expected signal strength
vector spaces in the online phase. The disadvantage of the latter approach is that it still requires
manual recalibration, although the amount of effort is significantly reduced.

A Bluetooth localization system based on DTDOA is described by Fisher et al. in [10]. They
are able to achieve a relative high accuracy with a mean localization error around 1 m. This,
however, requires a direct line of sight from all sensors to the target. When this condition is not
satisfied, accuracy drops rapidly, so for a typical office environment this method is not practical.
Also, to keep the system compliant with the Bluetooth specification, L2CAP echo commands are
used. The drawback of using these commands is that an active connection is required between the
base stations and the target device.
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Machine learning approaches have also been applied for Bluetooth based localization. Mayrhofer
et al. [24] use both Neural Network Approximation and Evolutionary Systems Structure Identi-
fication techniques to infer the relation between RSS and distance. Of these two techniques, the
neural network approximation yields the best results. The authors claim to have achieved a mean
localization error of 0.1 m using this technique with 4 base stations. Their data was obtained using
a dataset for 7x7 grid with 0.5 m cell sizes. While this approach seems promising, the disadvantage
is that it requires a lot of calibration effort. It is also unknown how well this system responds to
variances in the uncontrollable localization parameters (see section 5.2).

Another neural network based localization system is presented by Altini et al. [1]. The fun-
damental difference between the work of Mayrhofer et al. and the work of Altini et al. is that
latter also includes device orientation. This is done by extending the target devices with a compass
module. During the calibration phase of the system 4 different neural networks are created, each
with a different orientation. In the online phase information provided by the compass module is
used to dynamically select one of the 4 networks. Although this approach can provide better loca-
tion estimates in the presence of varying orientations, having to equip target devices with compass
modules is not practical.

The effect of device orientation is addressed by Seshadri et al. [28] by modeling the localiza-
tion problem as a stochastic process in which the location and orientation of a target device are
represented as probability distributions. Estimates of these variables are computed using Bayesian
filtering. For each location in the radio map they collect RSSI fingerprints for a number of different
orientations. This approach is, however, not practical because of the large amount of calibration
effort that is required. The same problem is true for the work of Li et al. [20], which addresses the
orientation issue by averaging the RSS values for different directions. For each fingerprint they
record the RSS values when facing north, west, south and east. The average of these values for
each access point is then used to form a fingerprint.

The main difference between related work and this thesis, is that this study focuses on a prac-
tical application of a Bluetooth based localization system. While some of the related contributions
provide possible solutions to the problems discussed in section 5.2.4, most of them only focus on a
single aspect. The prespective in this thesis is different as it attempts to consider all aspects that
might possibly limit a practical application of the localization system.

Summary

This chapter has given an introduction to the localization problem in general. First a formal
definition of the localization problem has been given. Also a measure for quantifying localization
accuracy has been presented. This measure is the mean error between estimated and real target
locations. In addition to accuracy 4 other localization system properties have been described.
These are: responsiveness, calibration effort, adaptiveness and operational constraints.

This chapter has also given an overview of the different signal based localization methods that
exist. In general the following classes of localization methods can be distinguished: signal strength
based, time of arrival based, event rate based and radio interferometric based methods. For some
of these classes a short description has been given as to how they work.

Finally the chapter also describes different technologies which have been used for localization.
A broad distinction between these classes can be made based on whether they have been explicitly
designed for localization. Those that are, are called dedicated localization systems, while those
that have been designed for another purpose but do support localization in some way are called
localization enabling technologies. Bluetooth falls in the latter category.





Chapter 3

Context

In this chapter the context of the Bluetooth based localization system studied in this thesis is
described. This context is important because it governs some of the choices that were made. A
use case scenario is applied to define the context. For this use case scenario requirements are
set for the localization system properties listed in section 2.4. Also, a set of assumptions for the
use case is given. The chapter ends with an overview of the test environment in which empirical
measurements were performed to study the performance of Bluetooth localization for different
localization methods.

3.1 Use case scenario

The use case scenario for this thesis is a localization system that helps people to find colleagues in
an office building. The localization targets are thus people inside the building. To find the location
of a specific person in the building, the user logs in on the localization system and then queries
the system by either specifying an identifier for that person (the persons name for example) or by
manually searching the floor plan of the building on which the locations of all persons are shown.
For a person to be localized, that person is required to be carrying a device which is equipped with
a Bluetooth module. Also Bluetooth has to be enabled on the device.

3.1.1 Requirements

Based on the use case scenario description several requirements for the localization system can be
defined. These requirements are based on the 5 system properties which were defined in section 2.4.
As a baseline reference office this thesis considers the building in which the Computer Science
department of the University of Twente is situated. This building can be viewed as an example of
a typical office building.

• The localization system is able to estimate the location of a person with reasonable accuracy.
Reasonable accuracy means here that a person should have no trouble finding another person.
Whether the accuracy of the system is reasonable depends on the layout of the building. In
a building in with a relatively large line of sight accuracy does not need to be as high as in
a building in which the line of sight is more restricted. An accuracy of 5 m is assumed to be
sufficient to find someone without problem. Therefore the upper bound on mean localization
error should be 5 m.

• A reasonable location estimate should be obtained for a stationary person within at least 5
minutes. Although this upper bound on the responsiveness of the system is rather weak, it
is sufficient for most office environments. This is because it is assumed that people in an
office building will spend most of their time stationary, e.g. sitting behind a desk or in a
conference room. Stationary is considered here as staying within a circle of small radius,
because nobody remains completely motionless within a period of 5 minutes. When it is the
case that people are moving, the system does not need to estimate with reasonable accuracy.
As an extra feature the system might detect that a target is moving so it can warn users of
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the system that the location estimate for moving persons might be off by a large amount.
This is however not a requirement.

• Calibration effort for the localization system should be minimal. Since calibration effort is
usually a function of surface area and office spaces can be quite large, calibration may be a
tedious task. Repetition of calibration is therefore especially undesirable. It is hard to place
an upper bound on the calibration effort as what is acceptable depends on the particular
situation and may include factors such as accessibility and labour costs. For a typical office
a maximum initial effort of 5 min per 100 m2 is assumed and no repetitive calibration.

• The system needs to automatically adapt to changes in the environment. This is a direct
consequence of the requirement that no repetitive calibration needs to be performed. Changes
like objects being added, removed or repositioned affect signal propagation. If the system
does not account for these changes, localization accuracy will degrade. Over time changes
will accumulate and eventually the localization accuracy may drop below what is reasonable.
Therefore the localization system should be able to cope with these changes.

• There should be no other operational constraints than that people to be localized are required
to wear a device with a Bluetooth module and that Bluetooth is enabled on the device. If
a user does not wear such a device or has Bluetooth disabled, the system will not estimate
the location of the person. The reason for selecting this limited set of constraints is that it
does not burden the employees in the office. Having to carry a device with Bluetooth is for
most people not a burden, because they already do so.

3.1.2 Assumptions

The discussion of localization using Bluetooth in the next chapters makes several assumptions
about the environment. These assumptions are listed below. If one of these assumptions is not true
it may negatively affect localization accuracy or limit the practical application of the localization
system for the target environment. Note that the absence of some assumptions in the list impacts
the design of the localization system. For example the list does not include the assumptions that
sensors have a line of sight to the target devices or that all target devices are of the same type
and model. Some of these absent assumptions are so called uncontrollable parameters of the
localization system, which will be discussed in section 5. The assumptions for the context of the
desired localization system described in this thesis are:

• People are aware that in order for them to be localized they need to wear a device with
Bluetooth capabilities. If they do not wish to be localized they disable Bluetooth on their
device.

• People will spend most of their time stationary.

• In all areas of the building in which the localization system operates it is possible to install
Bluetooth sensors.

• A homogeneous set of sensors can be installed.

• The location of all sensors is known and the location coordinates are defined in the same
reference space.

• The localization system operates on a single floor and will not be affected by Bluetooth
enabled devices on other floors. This assumption simplifies the discussion of the localization
system in the subsequent sections. In practice, however, a localization system is likely to be
required to operate on multiple floors. Extending a localization system from single floor to
multi floor is a problem which will not be addressed in this thesis.
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• It is sufficient to make location estimates in a two dimensional plane, which is parallel to the
floor. This means that estimates are given in x and y coordinates and there is no z (height)
component. For most offices this is a reasonable assumption, since floors usually contain a
single level. An example of an environment in which this might not be sufficient is a large
room which contains balconies.

3.2 Test environment

Ultimately the localization system will be deployed in an office building. Therefore final tests to see
whether a system matches the requirements discussed in section 3.1.1 should be conducted in this
type of environment. Such an environment is however not suitable for initial tests, because of its
size, complexity and organisational demands. Therefore the tests have been performed in a smaller
environment in which most of the parameters which affect localization could be controlled. This
environment is the so called ‘SmartXP lab’ and located next to the Computer Science department
building of the University of Twente. The ‘SmartXP lab’ is a big room with an approximate
dimension of 30 m× 10 m× 10 m (length, width, height). Originally this room was meant to host
various multi-media projects. Currently it is also being used as a presentation and lecture hall. A
photo of the ‘SmartXP lab’ is shown in figure 3.1 and a floor plan is shown in figure 3.2.

Figure 3.1: Photo taken from inside of the SmartXP lab on 19 november 2011.

The ‘SmartXP lab’ contains three metal truss installations of which the height can be adjusted.
There is also a balcony along the length of the room. In all tests the balcony was ignored and
localization was only performed for targets on the ground floor. The room was also filled with
various objects like tables, chairs, computers, screens, curtains and even a car. For most tests,
however, these objects were moved elsewhere to clear the floor.

3.2.1 Hardware and infrastructure

The hardware used for the experiments consisted of Linksys NSLU2 devices. These are small
Network Attached Storage (NAS) devices. The firmware of the NSLU2 devices was re-flashed
with a SlugOS/BE minimal Linux operating system with SSH access. In addition to SlugOS/BE
the BlueZ D-BUS Bluetooth stack was installed on the devices, which provided an API to the
Bluetooth HCI. Each of these devices was equipped with a Sitecom USB Bluetooth dongle, model
CN-512 v2 001. Figure 3.3 shows a picture of both a NSLU2 device and a USB dongle.
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Figure 3.2: Schematic view of the ‘SmartXP lab’ from above.

Figure 3.3: Linksys NSLU2 device and Sitecom CN-512 v2 001 Bluetooth dongle

The NLSU2 devices equipped with Bluetooth dongle could serve a dual function. They could
act either as sensor or as transmitter. In the latter case the device would become localization target.
A device could not serve both functions at the same time. Devices which acted as sensors, which
will be called access points from now on, were connected via an ethernet cable to the university
network. The access points would send their readings to a central server, via UDP datagram
packets. Each packet contained a single tuple consisting of a time stamp, identifier of the access
point, MAC address of the target Bluetooth device and the value of reading itself. The central
server was configured to act as a relay server, which would redistribute received packets to a set of
specified target computers. This allowed for easily performing tests and data analysis from various
computers.

Summary

Within this thesis a use case scenario is applied to describe the context of the localization system.
The use case scenario is that of an office building in which the location of people is tracked. For this
scenario the most important aspect is that localization should be unobtrusive, e.g. it should not
bother people, and should be simple to deploy. The system is therefore required to have no other
operational constraints than the people to be localized need to carry a Bluetooth enabled device.
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Because office buildings typically contain a large surface space that need to be covered by the
localization system, having to calibrate the system is undesirable. In order to maintain a steady
level of localization accuracy, manual recalibration in particular, should be avoided Since changes
in environment structure are expected to occur often in minor scale but also on larger scale (though
less frequent), the localization system should be able to cope with these changes automatically.
People inside an office will spend most of their time stationary, so the minimum requirement for
responsiveness is not that strict. The system should be able to give reasonable location estimates
for stationary people only and do so within 5 minutes. A reasonable accuracy is obtained when one
has no trouble finding another person using the localization system. A minimum mean localization
error of 5 m is sufficient for this requirement. For simplicity it is assumed that the localization
system is deployed on a single floor only and that 2 dimensional location estimates are sufficient.

In addition to the context for the use case scenario, this chapter has also presented the en-
vironment which has been used for testing localization performance for various algorithms using
Bluetooth. This environment is a large rectangular room, which contains three metal truss instal-
lations and a balcony running along the length of the room. The balcony is however ignored in the
localization tests. Used hardware for localization consists of modified Network Attached Storage
devices, which were equipped with Bluetooth dongles. These device could either act as Bluetooth
transmitters or as Bluetooth sensors. In the latter case device were hooked up to the local network
and the readings measured by the sensors were send to a central server.





Chapter 4

Bluetooth

An introduction to the Bluetooth technology is given in this chapter. First a short history overview
is given, followed by a summary of the Bluetooth technology. The chapter concludes with a review
of different localization measures that are available for Bluetooth. These measures are reviewed
with the localization context in mind and one is selected that best fits the requirements listed
in section 3.1.1. Based on this review an answer is formulated to researchquestion 1: ‘Which
localization measures are best suitable within the context? ’.

4.1 History

Bluetooth was originally a codename for a project lead by a Special Interest Group (SIG) consisting
of major companies, like Ericsson, Intel and Nokia. The project was a cooperation between several
companies to define a standard for short range wireless communication. When the SIG was about
to be launched, the official name for the standard was decided to be PAN, an acronym for Personal
Area Networking. However just before the launch, members of the SIG discovered that a trademark
search on the internet for PAN resulted in too many hits. This forced the SIG to continue using
the name “Bluetooth” at the time of the launch. The intention was to change the name later, once
the marketing group had decided on an official name. Bluetooth, however, was picked up quickly
by the press and thus eventually became the official name.

The name Bluetooth was suggested by the Swedish company Ericsson, which was a reference to
king ‘Harald Bluetooth’. King ‘Harald Bluetooth’ was a Danish king living in the 9-th century and
was known for uniting Scandinavia. This latter achievement was the link between the Bluetooth
standard, which intended to unite PCs and mobile devices via a short range wireless link [19].

In 1999 the Bluetooth SIG released the first specification of the Bluetooth standard. Since
then several new versions of the specification have been published. The most recent version of
the specification at time of writing is Bluetooth v4.0. The Bluetooth technology discussed in this
thesis report and used in experiments are based on the Bluetooth v1.2 specification. With the
exception of Bluetooth HS (High Speed), adopted by the Bluetooth SIG in 2009, all Bluetooth
specifications are backwards compatible.

4.2 Technology overview

As mentioned in the previous section, Bluetooth is meant to enable short range wireless communi-
cation between devices. It is therefore mainly a replacement for wired communication. Bluetooth
uses radio signals in the 2.4 GHz range to transmit data between devices. The 2.4 GHz range is
globally license free, which allows the technology to be deployed without additional license costs.
Bluetooth is not targeted for a specific application, but supports a multitude of applications.
Therefore the technology has been adopted by wide variety of devices, including computers, cell
phones, headsets, PDAs and cars.

To support device intercommunication the Bluetooth standard specifies a set of mandatory
protocols which must be implemented for each Bluetooth module. In addition a set of optional
protocols is also specified. Bluetooth enabled devices are able to query other devices for a list of
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their supported protocols. On top of these protocols devices can support one or more Bluetooth
profiles. These profiles are application specific standards that define an interface to which the
devices must conform. Devices can query another device whether it supports a specific profile.
This enables a cell phone for example to connect to a wireless headset and use its features via the
Headset Profile (HSP). Examples of other frequently used profiles are:

• A2DP Advanced Audio Distribution Profile. Supports streaming audio between devices.

• HFP Hands-Free Profile. Commonly used in cars and hands-free kits to allow people to
make hands free calls with their phone.

• HID Human Interface Device Profile. Provides support for input devices like keyboards,
mice and game controllers.

• PAN Personal Area Networking Profile. Allows the encapsulation of network layer 3 packets,
which enables devices to connect different networks using a Bluetooth link.

Bluetooth is designed to support low power wireless communication. Therefore one of its
features is power control. This feature allows a transmitter to adjust its strength based on the
RSSI (see section 4.3) received from another device. With this feature transmission strength can
either be increased or decreased to ensure the received signal strength is within an optimal range
for the receiver. For some Bluetooth devices this may lead to a significant reduction in consumed
power, due to the fact that it does not always need to transmit with maximum power output.
Table 4.1 gives an overview of the different power classes which are defined in the Bluetooth
standard.

Power class Max power output Min power output Power level control

1 100 mW (20 dBm) 1 mW (0 dBm) mandatory

2 2.5 mW (4 dBm) 0.25 mW (-6 dBm) optional

3 1 mW (0 dBm) - optional

Table 4.1: Bluetooth power classes.

4.3 Localization measures

Bluetooth has several possible measures which can be used as input data for localization algorithms.
The first measure discussed is RSSI during inquiry phase, which is the measure used in the rest of
the thesis. Section 4.3.2 reviews alternative localization measures for Bluetooth.

4.3.1 Inquiry process based localization

Devices that want to communicate via a Bluetooth link first need to establish a connection. A
connection is established via a number of steps and is initiated by a device called the master. When
a master device wishes to connect to another device the first step is to discover the devices in range.
To do so the master enters an inquiry state in which it continuously sends inquiry messages at
pseudo-random frequencies. During this period the master sequentially sends inquiry messages at
two different frequencies in a single time slot. In the next time slot the master listens for inquiry
response messages at same frequencies from the previous time slot. This process is repeated for
a specified period of time, usually 10.24 seconds as recommended by the Bluetooth specification
[11], or until the target device has been detected.

Devices which are willing to be discovered (slave devices) are set to the inquiry scan state.
A slave device in this state listens for inquiry messages. The slave also uses pseudo-random



4.3. LOCALIZATION MEASURES 25

frequencies, but switches at a much lower rate to ensure that both master and slave eventually
use the same frequency. Once a slave device receives an inquiry message, it responds after a small
delay with a Frequency Hopping Synchronization (FHS) packet. The FHS packet contains among
others a 48-bit MAC address, which is a unique identifier of the slave device.

Using the inquiry process described above a master device can discover and identify the Blue-
tooth devices in its range. If it wishes to connect to a certain device, the master waits until it
receives a FHS packet with the correct MAC address and then sends an additional message to
synchronize both devices and to setup a connection. Upon the receival of an FHS packet, the
master device also determines a so called Received Signal Strength Indication (RSSI) value, which
depends on the power of the received signal. The Host Command Interface (HCI), an application
layer interface to the Bluetooth hardware controller, allows for querying for both the MAC address
and RSSI value of the last received FHS packet via an event called ‘Inquiry Result with RSSI’.
The Bluetooth specification defines the RSSI value for the ‘Inquiry Result with RSSI’ event as
the signal strength in dBm [11]. It is an 8-bit integer in the range from -127 to +20. Measuring
the RSSI for a specific target device, identified by its MAC address, from various known locations
allows the use of the RSS based localization methods discussed in section 2.2.1 to estimate the
location of the target device.

Figure 4.1 shows an example of measured RSS samples in a 1 minute time period for a stationary
target and two access points. The dataset from which these RSS samples where taken is described in
appendix A. Two observations can be made from this graph. First it displays that for a stationary
target, the RSS samples do not form a smooth flat line but instead show a high variation. For
example the difference between the maximum and minimum RSS value for the red line is 20 dBm.
Secondly it shows that the sample rate is low, about 20 samples per minute. From the complete
dataset described in appendix A the average sample rate was 18.6 samples per minute for each
access point and device pair.
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Figure 4.1: Plot of measured RSS samples for a stationary target and two access points.

The effect of high variation in measurements is that localization accuracy may suffer. Increasing
the number of samples can compensate for this effect. However, since the sample rate is low,
relatively large window sizes are required by the localization algorithms to achieve reasonable
accuracy. Real time target tracking is therefore not possible using the inquiry RSSI measure.
Fortunately the responsiveness requirement for the target context is not that strict, so this is not
an issue.



26 CHAPTER 4. BLUETOOTH

4.3.2 Other measures

The ‘Inquiry Result with RSSI’ event is not the only way to build a Bluetooth localization system.
An overview of other measures that can be used is given in [18]. This overview included: Link
Quality (LQ), RSSI in the connected state and Transmit Power Level (TPL).

The LQ is a 8-bit integer ranging from 0 to 255 which indicates the quality of the connection,
where higher values indicate a better link state. The LQ can be queried via the HCI. Both [18]
and [22] have shown that the LQ is related to the distance between Bluetooth devices. Usually the
LQ is derived from the Bit Error Rate of the received data. The Bluetooth specification, however,
does not specify how the LQ should be measured and leaves this open to the Bluetooth module
manufacturer. Consequently the LQ can only be used for localization with a homogeneous set of
Bluetooth sensors (master devices). Although the slave device also maintains a LQ measure, it
cannot be used for localization, since the set of target devices is not assumed to be homogeneous.

When a connection has been established between two Bluetooth devices, the HCI also allows
for querying the RSSI for the established link. Like the LQ this can be done at both the master
and client device. According to the Bluetooth specification the definition of the RSSI value during
connection state differs from the RSSI value during inquiry state. In the connection state it
is defined as how many dB the RSS is above upper limit or below the lower limit of the Golden
Receive Power Range (GRPR). A value of 0 indicates that the RSS lies within the GRPR. Equation
4.1 shows how the RSSI value can be converted to the power of the received signal in dBm. The
constants Tu and Tl respectively denote the upper and lower limits of the GRPR.

P =


RSSI + Tu if RSSI > 0
RSSI + Tl if RSSI < 0
undefined otherwise

(4.1)

There are three problems with using the RSSI during connection for localization. First, if the
RSS is within the GRPR, the RSSI value will be zero. In that case the RSS lies between the lower
and upper limit of the GRPR but the exact value is unknown. A second problem is that the GRPR
limits are not specified by the Bluetooth standard and are vendor specific. The biggest problem,
however, is that RSSI value can be used by the other device to adjust its transmission strength.
This power control feature of Bluetooth aims to find the optimal transmission power so that the
RSS at receiver lies within the GRPR. A result of this feature is that the RSS at the receiver may
change even if the distance between the devices does not change.

Due to the transmission power control feature the transmission strength during a Bluetooth
connection may change for the device. The transmit power level (TPL) is also a value that can be
queried via the HCI (but only in connected state). In [18] the relation between TPL and distance
was tested, but appeared to be unusable for localization because it remained constant.

All of these measures require an active Bluetooth connection to the target device. The ad-
vantage of having an active Bluetooth connection to a target device is that it allows for a higher
sample rate compared to the sample rate of the RSSI value in the inquiry process. However the
number of connections that can be handled by a single device is limited. Devices supporting only
a single connection are not uncommon. For a localization system this means that only one sensor
may receive samples from a target device, which is not sufficient to estimate the location of the
target. In addition a new Bluetooth connection on a mobile device usually needs to be accepted by
a user. This conflicts with the design goal that the localization system should not bother people.
For these reasons the LQ, TPL and RSSI in connected state are not viable measures for the desired
localization system.

Another measure that uses the inquiry process is the Inquiry Response Rate (IRR), which is the
number of received inquiry responses per interval. In [3] the IRR of a target device for a number
of sensors was used to construct a fingerprint database. Localization accuracy of this approach
will also evaluated in section 8.1.
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This concludes the discussion of the different localization measures that are available for Blue-
tooth and gives an answer to research question 1: ‘Which localization measures are best suitable
within the context? ’ The answer to this question is: ‘The localization measures best suitable within
the context are IRR and RSSI during inquiry phase.’

Summary

This chapter has given an overview of the Bluetooth technology. Its main purpose, however, was
the discussion of different measures which can be used for localization. The first measure is RSSI
value measured during the inquiry phase of the Bluetooth device discovery protocol. According to
the Bluetooth specification this value is the measured signal strength in dBm for inquiry responses
received by master devices. The main disadvantage of this measure is its relative low sample
rate. Other measures are RSSI during connection state, link quality (LQ), transmit power level
(TPL) and inquiry response rate (IRR). The first, RSSI during connection state, is not a practical
measure because of its loose definition in the Bluetooth standard. In addition it requires an active
connection to the target device, which may make Bluetooth on the target device unusable for other
connections. Finally, a target device may adjust its transmission power during the connection. LQ
and TPL also require an active connection to the target device, thereby making them impractical
measures for localization. Little is known about IRR, but earlier work has suggested that it is a
measure that can be used for localization. Therefore RSSI during inquiry phase and IRR are the
most practical localization measures for the context described in chapter 3.





Chapter 5

Localization parameters

The performance of a localization system with respect to the properties discussed in section 2.4
(accuracy, responsiveness, calibration effort, adaptiveness and operational constraints) depend on
a multitude of parameters. First a set of controllable parameters is described. Then, based on the
context description given in section 3, several parameters can be identified which cannot be con-
trolled for the desired localization system. These parameters may affect localization performance,
are variable and unknown to the system. At the end of this chapter a set of fundamental local-
ization problems is derived based on these parameters. This chapter answers research question 2:
‘What are the parameters that influence localization performance? ’.

5.1 Controllable parameters

Some of the localization parameters can be set manually by either the system operator or the system
itself. Either way, the value of these parameters is known to the system or can be predicted. Such
parameters are called controllable parameters. There are three different controllable parameters
for an indoor localization system based on Bluetooth. These parameters are:

Window size The window size is the amount of time in which localization measure samples are
collected for the purpose of target estimation. In general, the larger the window size, the
more samples are available and thus the better the location of a target can be estimated.
On the other hand, the larger the window size, the lower the system responsiveness will be.
Selecting the appropriate window size is thus a trade-off between localization accuracy and
responsiveness.

Number of access points The more access points that can perceive a certain target, the more
information is available for the localization system about the targets location. Therefore
localization accuracy increases with an increasing number of access points. However, because
the range of Bluetooth access points is limited, relatively much of these devices may be
required to cover the entire localization space. In order to make the system cost effective
and to reduce installation and maintenance effort, keeping the number of access points to a
minimum is desirable. This means that the number of access points is a trade-off between
localization accuracy and hardware, installation and maintenance costs.

Access point layout Physical deployment of access points is another parameter that influences
localization performance. If all access points are clustered together the system may be able
to make target location estimates with relatively high accuracy close to the cluster of access
points, but low accuracy estimates for the rest of the localization space. Earlier studies
have shown that the best deployment of access points is a uniform distribution over the
localization space. For this reason access point layout is a parameter which will not be
considered during the evaluation of localization performance. Instead it is ensured that
access points are uniformly distributed in the localization space.
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5.2 Uncontrollable parameters

Uncontrollable parameters are those parameters over which the system and system operators do not
have control; meaning that they are random and unknown to the localization system. Therefore the
system can only make weak assumptions about the possible values for these parameters. Since these
parameters can influence localization accuracy, a localization system is ideally designed to deal with
these parameters in such a way that their impact on localization accuracy is minimized. For this
reason, identifying the uncontrollable parameters is vital for the design of a practical localization
system. This section discusses the uncontrollable parameters for the localization context described
in section 3.

5.2.1 Target device type

Because of today’s large variety of smart phones and other electronic gadgets one cannot assume
that all people in an office environment will carry the same type of target device. There might be
companies that have strict policies about what kind of device is allowed, but in the general case the
set of target devices is heterogeneous. As a result devices may have different Bluetooth modules,
antennas and casings. The effect of these differences is that the radio signal radiation pattern
differs per device. This is because each type of antenna has its own radiation pattern. Also, the
casing may absorb and reflect part of the signal. The amount of absorption and reflection depends
on the shape, structure and materials used for the casing.

Another result of the differences in hardware is devices may transmit their signals at a different
strength. If noise is ignored, a sensor might measure different RSS values for devices which are
at an equal distance from the sensor. For example consider a scenario with two target devices
and a single sensor. Both devices are located at a distance of 5 m from the sensor. Assuming the
devices have a uniform radiation pattern and there is no noise in the measurements, the sensor
might measure an RSS value of 3 dBm for the first device and 13 dBm for the second device. If
the system assumes both devices transmit with equal power, then according to the measured RSS
values, the first device is located further away from the sensor then the second device. Because of
this scenario, the system cannot assume devices transmit with equal power.

5.2.2 Target device location and orientation

The real targets to be localized by the systems are people. Since the system can only estimate the
location of a Bluetooth enabled device, people need to wear such a device. One, however, does not
wish to tell people how these devices should be worn, because this would be unpractical. Some
people might prefer to put the device in the pocket of their trouser whereas other prefer to carry
it in a pocket of a sweater. This means that the location of the device relative to the human body
varies. People also come in difference sizes and shapes. The system will therefore not be able to
assume that devices will be carried at the same height.

Although the localization system does not need to make 3 dimensional location estimates (see
section 3.1.1), the height of the target device does influence the measurement of RSS values.
Consider for example a target at certain location on the floor. If the z component (height) of
location coordinate changes, while the x and y components remain the same, then the distance
between the target and sensors will also change. The change in height thus results in a change in
measured RSS values by the sensors.

Orientation of the target devices also plays a role in the measured RSS values. This is because
the radiation pattern of a device is not expected to be uniform. A non uniform radiation pattern
implies that signal strength is a function of both distance and angle between the signal source
and receiver. Since the orientation of a device carried by a person cannot be controlled, device
orientation is one of the localization parameters.
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5.2.3 Environment structure and layout

Another parameter which influences localization is the structure and layout of the environment in
which the system operates. Radio waves are influenced by the objects they encounter along their
paths. The trajectory of a ‘single wave’ is not just a straight line. Once it hits an object it may be
reflected or bend. This can lead to so called multipath propagation: there might be multiple paths
from a signal transmitter to the receiver. RSS values measured by the receiver are influenced by
multipath propagation, because waves arriving from multiple paths could either amplify or fade
the received signal.

Radio waves can also lose part of their energy when they hit or pass through objects. This
effect is called shadowing. Shadowing can also influence the RSS values measured by a sensor.
Consider for example a radio wave beam which follows a straight path to a sensor. If an object
which absorbs a part of the energy contained in the signal would be placed in this path, then the
signal received by the sensor would be less strong than it was before. As a result the measured
RSS values will also be lower than before.

Both multipath propagation and shadowing influence the propagation of radio signals in the
environment. The exact influence of these fading effects is a complex function of environment
structure and layout. Also the physical properties, like material type and surface structure affect
signal propagation. It is infeasible to construct a model that can predict signal propagation
with exact precision for an office environment. The reason for that is the huge number of input
parameters required for such a model. This model would also need to be updated for each change
in the environment, for example a door being opened or closed.

5.2.4 Localization problems

Based on the localization parameters discussed in the previous sections several problems can be
identified that may negatively effect localization performance. These problems are listed below.
In the next sections the impact of these problems is considered in more detail. An attempt will
also be made to find methods to cope with these problems.

• Unknown device orientation. Each target device may have its own unique radiation pattern.
Because this pattern is not uniform in all directions, the strength of a signal received by a
sensor depends on the orientation of the target device.

• Unknown transmitter strength. Differences in Bluetooth hardware may result in target
devices transmitting their signals at different power levels. RSS samples generated by a
sensor for two different devices can therefore not be related.

• Unknown device height. Since the height of a target device is one of the components that
determines the distance to the Bluetooth sensors, height also influences the measured RSS
values.

• Unknown environment structure. Radio wave propagation is a affected by the structure of
the environment. Without this information and the lack of an exact propagation model, the
relation between measured RSS values and distance can only be estimated using approximate
propagation models.

Summary

To be compliant with the requirements set for the context of localization in an office building, there
are some parameters which cannot be controlled. These parameters are likely to have an effect
on the RSS measurements and thus also on location estimates for target devices. The parameters
which cannot be controlled in the context environment and which have an effect on localization are:
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device orientation, device height, transmitter power level of the target devices and the structure
of the environment. In addition there are two controllable parameters for the localization system.
These parameters are: window size and number of access points.



Chapter 6

Localization algorithms

Each localization method has different characteristics and some will be able to deal with the
localization problems listed in 5.2.4 better than others. To evaluate how different localization
methods perform in the presence of these problems a variety of localization algorithms have been
tested. This chapter answers research question 3: ‘Which localization methods will be evaluated? ’
At least one algorithm has been selected for each RSS based localization method. These methods
are proximity, range based and fingerprinting (see section 2.2.1). In section 6.1 through 6.3 these
algorithms are described. Based on these descriptions a qualitative comparison of these algorithms
is made in section 6.4 with respect to their expected ability to cope with the localization problems
and the requirements discussed in section 3.1.1.

6.1 Ecolocation

Ecolocation was mentioned in section 2.2.1 as an example of a proximity based localization method.
This algorithm was chosen as a candidate localization algorithm because of its simplicity and its
reasonable accuracy. The name Ecolocation is derived from ‘Error COntrolling LOCAlizaTION’,
because the authors found an analogy between the algorithm and error controlling via redundancy.
A complete description of the Ecolocation algorithm is given in [29].

The concept of Ecolocation is based on partitioning the localization space using distance con-
straints. A distance constraint is defined for a location in the localization space and a pair of access
points. Given the location of two access points ai and aj , where i 6= j, and some location x, then
x is either located closer to access point i or closer to access point j. The first case is represented
by the constraint (ai < aj) and the second by the constraint (aj < ai). With a total number of n
access points, n(n− 1)/2 different constraints can be defined for a random location x. Figure 6.1
shows the constraint set for two locations p and q in a localization space with three access points.
The individual partitions for the localization space are marked using different shadings.

The set of constraints for a given location is called C. A given constraint set defines a convex
polygon within the localization space in which every location contained by the polygon has the
same set of constraints. Such a convex polygon forms a partition of the localization space. For n
access points, the number of different constraint sets that can be constructed is 2n(n−1)/2. Since
each constraint set defines a partition of the localization space, the maximum number of partitions
that can be defined is also 2n(n−1)/2. Often, however, the actual number of partitions is less
than this maximum, because for some constraint sets no location exists where all constraints are
satisfied. For example the constraint set [(a1 < a2), (a2 < a3), (a3 < a1)] defines an area which
does not exist in figure 6.1. The total number of partitions is therefore not only a function of n
but also of the spatial distribution of access points.

To estimate the location of a target device Ecolocation matches the RSS measurements against
the constraint set for each partition. The partition for which the most constraints are satisfied is
selected as the area in which the target is located. The location of the target is then estimated by
taking the centroid of this area. If there is more than one partition with the highest number of
satisfied constraints, the union of these partitions is taken.

Given an input set of RSS samples for a specific target, the mean RSS value for each access
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Figure 6.1: Ecolocation space partitioning for 3 access points.

point is computed. Ecolocation then uses the mean RSS value to determine which constraints are
satisfied. A constraint (ai < aj) is satisfied if P̄i > P̄j , where P̄i and P̄j respectively denote the
mean RSS value for access point i and j. This rule is based on the assumption that an increasing
order of mean RSS corresponds with a decreasing order of distance. In most cases this assumption
is valid, because received signal strength will be higher closer to the source then further away from
the source. However, due to multipath propagation and shadowing, this is not always true for
all locations. Nonetheless, if the assumption holds for the majority of the constraints, it is still
possible that the correct partition will be selected.

Although the location estimation part of Ecolocation is straightforward, partitioning the lo-
calization is not. To determine the exact shape of each partition requires iterative splitting of
polygons. While there exists methods to do so, there is a simpler approach. Instead of computing
the exact partition bounds, an arbitrary number of sample points are selected. For each of these
points the constraint set is computed. During the location estimation phase the sample points are
used instead of partitions. This results in an approximation of the partitions.

Note that localization accuracy does not necessarily need to be worse using this approach. With
the polygon approach, the centroid of partitions is selected as the location estimate. But this is
just a guess, the actual location of the target might just as well be in one of the corners. Selecting
the centroid is the best option if the probability of the target being in a certain location is equal for
all locations within the partition. If this is not the case, then the sample point approach location
estimate could actually be better. To achieve reasonable accuracy, the sample point approach
requires a sufficient number of sample points and a uniform distribution of these points.

6.2 Log-Normal Shadowing model

The Log-Normal Shadowing (LNS) model attempts to describe signal propagation via equation 6.1.
In this model the received power P̂ is a function of the distance d between the source and receiver.
According to the model, signal strength decays exponentially over distance with n, which is called
the path loss exponent. The value of n depends on the environment and is affected by multipath
propagation and shadowing. In a vacuum and unbounded space the value of n is equal to 2,
because there are no fading effects. For a typical office building n is expected to be > 2 because
walls will absorb the signals energy, which means signal strength will decay faster compared to
the vacuum and unbounded space. Accurately predicating the value of n is almost impossible for
all but the simplest of environments. Therefore the value of n is usually acquired using empirical
measurements.
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P̂d = P0 − 10n log10

(
d

d0

)
+Xσ (6.1)

Another parameter in the LNS model is P0, which is the signal strength at reference distance d0
(usually 1). The reference RSS parameter, P0, depends among others on the antenna orientation
of both sender and receiver [5] and the strength of the transmitter. This parameter is therefore
typically measured for a specific device type. In an environment with a homogeneous set of target
devices assuming a single value of P0 may be inaccurate.

Finally, the LNS model also assumes that there is a random variable X, which is normally
distributed with 0 mean and a standard deviation of σ. This variable represents the measurement
error in dBm, so the variable follows a log-normal distribution. Note that if the error would not
have 0 mean, this would have been added to the reference RSS parameter P0. A consequence
of the assumption that the error follows a log-normal distribution is that measurement error get
worse with increasing distance.

6.2.1 Calibrated localization

Suppose the parameters P0 and n are known for a specific environment and target device. It then
becomes possible to calculate the expected RSS value at a specific location using equation 6.1. For
each location in the localization space a vector p can be defined which contains the expected RSS
value for each access point. Figure 6.2 shows this vector for location r in an environment with
three access points for a path loss exponent of 2.3 and a reference RSS value of 40 dBm. If the
actually measured RSS values at location i are denoted by yi, then according the LSN model, the
variance of yi − P̂i is equal to σ2.
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Figure 6.2: Expected RSS vector for location r (P0 = 40, n = 2.3).

Given a set of RSS measurements for a specific target device, a vector y can be constructed
which contains the mean RSS value for each access point. The location of the target can be
estimated by finding the location in the localization space for which the expected RSS values best
match the measured RSS values. One way of finding the best match is using the euclidean distance
of the difference between vectors y and p, represented by equation 6.2. Using this approach the
measured and expected RSS values are considered as coordinates in n dimensional space, where n
is the number of access points. The shortest distance between these coordinates is the euclidean
distance. If the measured values are similar to the expected values, then the coordinates are located
closer than if the values do not match well. Hence, the euclidean distance gives an indication of
how well the measured RSS values match the expected RSS values at a certain location.
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x̂ = argmin
x
‖y − px‖ (6.2)

Finding the value of x̂ in equation 6.2 is an optimization problem, which can be solved using
maximum-likelihood estimation [27]. Another approach is to use the same sample point approach
as discussed for Ecolocation. Instead of considering the localization environment as a continuous
space it is converted to a discrete space, consisting of a finite number of sample points. In that
case equation 6.2 still applies, but since the set from which x can be selected is finite, x̂ can be
evaluated by computing ‖y−px‖ for each sample location x. There may be some loss of accuracy
with this approach, but with a sufficient number of sample points and uniform distribution, the
loss in accuracy is negligible.

To be able to calculate the expected RSS vector for a certain location, the parameters P0

and n need to be known. Up until now these are assumed to be known in advance. However,
these parameters depend on the type of target device and environment, and cannot be predicted
with reasonable accuracy. Therefore the only option is to measure them, which is referred to
as calibration of the LNS model. Calibration of the model is performed by collecting sample
measurements at known locations. Parameters P0 and n are estimated by finding the best fit for
equation 6.1 and the measurements. Finding the best fit depends on the minimization criterion
being used. A criterion which is often used is minimizing σ2 (error variance). Minimizing σ2, means
finding the values for P0 and n which result in the minimal variance in error between measured
RSS and expected RSS values. Finding the best fit for parameters P0 and n for this minimization
criterion is expressed by equation 6.3. Here N is the number of sample RSS measurements, yi is
the RSS value for measurement i and di is the distance between access point and transmitter for
measurement i. The values of di are assumed to be known, since during calibration access point
and measurement locations are also known.

(P̂0, n̂) = argmin
P0,n

N∑
i=1

(yi − P0 + 10n log10 di)
2 (6.3)

Equation 6.3 can be evaluated used Ordinary Least Squares (OLS) linear regression. This
is because equation 6.1 can be written in linear form α + βx, where α = P0 , β = n and x =
−10 log10 d. OLS minimizes the sum of squared vertical distances between observed samples and
samples by predicted linear approximation. Since variance is equal to this sum divided by the
number of samples, OLS also minimizes variance. Parameters α and β can be computed efficiently
using OLS for a sample dataset. The order of time complexity of this computation is O(m), where
m is the number of samples. This is what makes the criterion to minimize σ2 attractive. An
analytical method for solving linear regression using OLS is described in appendix B.1.

Figure 6.3 shows a plot of a set of sample RSS measurements and the function which best fits
these data points using the minimized σ2 criterion. The dataset has been collected by measuring
the mean RSS value for each access point at 75 different locations. At each location, RSS samples
were collected during a period of 10 minutes and then averaged. For this test 9 access points were
installed, so the total number of data points is equal to 9 · 75 = 675. More details about this
dataset are given in appendix A.

An alternative minimization criterion is to find a fit that minimizes the average error between
measured RSS and expected RSS values. This minimization criterion is expressed by equation 6.4.
Evaluation of P0 and n for this criterion can be done using Least Absolute Deviations (LAD) linear
regression. Although linear regression based on LAD looks no more difficult than OLS, computing
a solution is not as efficient. This is because no analytical method exists to find a solution and
an iterative approach is therefore required. For this reason, the minimization criterion expressed
by equation 6.4 is seldomly used in localization systems. To see if there is a significant difference
in localization accuracy, both minimization criteria were tested. The Iteratively Reweighted Least



6.2. LOG-NORMAL SHADOWING MODEL 37

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
-78
-76
-74
-72
-70
-68
-66
-64
-62
-60
-58
-56
-54
-52
-50
-48
-46

distance (m)

R
S

S
(d

B
m

)

Figure 6.3: LNS model fit for RSS samples (P0 = −50.2, n = 1.54, σ = 2.90). Red dots show the
measured mean RSS value and the blue line shows the RSS value predicted by the LNS model.

Squares (IRLS) method was used in these tests to solve the LAD linear regression problem. IRLS
is discussed in appendix B.2.

(P̂0, n̂) = argmin
P0,n

N∑
i=1

|yi − P0 + 10n log10 di| (6.4)

Estimating the parameters P0 and n using the minimization criterion from equation 6.3 or
equation 6.4 may not result in the best localization accuracy. This is because accuracy was defined
in terms of mean localization error. Given a dataset of RSS measurements for M different locations,
the optimal values of P0 and n are defined by equation 6.5. This equation states that the optimal
LNS model parameters are such that if they are used to estimate the M locations in the dataset,
mean localization error is minimized. The symbols xoj , ai and P̄i,j in equation 6.5 respectively
denote the actual location j, the location of access point i and the mean RSS value observed by
access point i for location j. Unfortunately no analytical method exists to evaluate this equation.
Equations 6.3 and 6.4 therefore only give an approximation of the optimal values of P0 and n. In
practice this works well, but a different value for P0 or n may sometimes lead to better location
estimates.

(P̂0, n̂) = argmin
P0,n

M∑
j=0

∥∥∥∥∥xoj − argmin
x

N∑
i=0

(
P̄i,j − P0 + 10n log10 ‖x− ai‖

)2∥∥∥∥∥ (6.5)

Obtaining the dataset to find the LNS model parameters for a specific environment is something
which can be done automatically. By placing several reference devices at known locations, the
access points will receive a continuous stream of RSS samples. This stream can then be used
to compute the LNS model parameters using one of the minimization criteria mentioned earlier.
The advantage of this approach is that the parameters will be updated periodically. As a result
localization accuracy does not degrade due to changes in the environment which affect signal
propagation. Auto-calibration, however, comes at the cost of extra hardware requirements.
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6.2.2 Uncalibrated localization

In the previous section a localization method was presented using a calibrated LNS model. While
auto-calibration can cope with an unknown and dynamic environment structure it does not solve
the other problems listed in section 5.2.4 (unknown orientation, unknown device type and unknown
height). If no calibration is required, no assumptions are made about device type and orientation.
Therefore a localization algorithm which does not require calibration will typically be more tolerant
towards variations in device type and orientation. A localization method using the LNS model
which does not require calibration is described in [12]. This method is based on the inclusion of a
location parameter x in equation 6.3. The resulting minimization criterion, given by equation 6.6,
tries to find the combination of location x, reference RSS value P0 and path loss exponent n which
minimizes variance between measured and expected RSS values. In this equation dx,i represents
the distance between the access point for measurement sample i and location x. Once a solution
has been computed, x̂ contains the estimated location of the target device.

(x̂, P̂0, n̂) = argmin
x,P0,n

N∑
i=1

(yi − P0 + 10n log10 dx,i)
2 (6.6)

The difference between equation 6.3 and equation 6.6 is the substitution of di for dx,i, where
dx,i represents the distance between the access point for measurement sample i and location x.
Although the difference is subtle, computing a solution for the equation is not as simple as for
equation 6.3, because an additional parameter x is introduced. In [12] three approaches are given
to find a solution. The simplest of these is a grid-based approach, which is similar to the conversion
of the localization space to a finite set of locations. Suppose the number of locations in the set of
sample locations is M . Then for each location xj (j = 1 . . .M) the parameters P̂0 and n̂ can be
estimated using OLS linear regression. With these estimated parameters the error variance σ2 can
be computed. The location with the lowest value of σ2 is the estimated target location. Figure 6.4
shows an example of how the square root of the error variance (standard deviation) varies with
location. This plot was generated using the RSS samples from one of the sample locations in the
dataset described in appendix A.
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Figure 6.4: Variation of σ over location for the LNS model. The white cross indicates the location
of the target device.

Figure 6.4 reveals an issue with location estimation using equation 6.6. In the plot two blobs
can be observed where σ is relatively low; the two blue areas on the left and right. The blob on
the left contains the lowest value of σ, so the estimated location is not far from the actual target
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device location (∼ 2 m error). However, the blob on the right is not coincidentally: it appears for
all targets located at the left or right side of the localization space. In fact all plots show that the
variation of σ is roughly symmetrical through a vertical line at the center of the localization space.
A problem of this phenomenon is that the mirror blob sometimes contains the minimum value of
σ. When this occurs, the estimated target location is on the wrong side of the localization space
and accuracy is severely decreased. Note that for targets close to the center of the localization
space, this phenomenon is less of an issue, because the mirrored blobs do not lie that far apart.

Fortunately a simple solution exists for this problem. The mirroring effect occurs due to the
fact that measured RSS samples are reversed on the x-axis (distance) for locations at the opposite
side of the localization space. Hence OLS linear regression will be able to fit the data quite
well using a negative value of n. A negative value of n means that signal strengh increases over
distance, which is physically impossible. Adding the restriction that n ≥ 0 to equation 6.6 solves
the problem. Applying this restriction enforces OLS linear regression to use a positive or flat slope.
Figure 6.5 shows the same plot of σ over varying location with the added restriction that n may
not be negative. The plot now contains only a single blob of relative low values of σ.

8 m

0.70 1.68 2.67 3.65 4.63 5.62

σ (dBm)

Figure 6.5: Variation of σ over location for the LNS model with restricted value of n.

6.3 Fingerprinting

The third class of RSS based localization methods is fingerprinting, which is a conceptually simple
approach. Measured RSS samples at a certain location are converted into a fingerprint. This is
done for a number of locations in the localization space and the set of fingerprints is called the
radio map. Construction of the radio map is often referred to as the training phase. When the
localization system is operational, the online phase, fingerprints are again generated using the
measured RSS samples. These generated fingerprints are then matched with the fingerprints in
the radio map. The location of the best matching fingerprint in the radio map is selected as the
estimated location of the target device. If the set of fingerprinted locations is denoted by L then
equation 6.7 gives the estimated target location. In this equation Y is the fingerprint of the target
whose location is to be estimated, Fx is the fingerprint for location x and c is a cost function that
computes the difference between fingerprints.

x̂ = argmin
x∈L

c(Y,Fx) (6.7)

A common extension to fingerprinting is K-nearest neighbour. With this extension the top
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K best fingerprint matches are selected from the radio map. The location estimate is computed
by taking the weighted average of the fingerprint locations. The K-nearest neighbour extension
usually results in better localization accuracy. This is because the actual location of a target falls
between fingerprinted locations in the majority of the cases. Therefore the radio map fingerprints
closest to the actual target location have about the same matching score. Selecting the weighted
average of best K matches thus yields a more accurate location estimation then if only a single
fingerprint is selected.

The method of constructing fingerprints from RSS measurements and matching them against
others depends on the representation of the fingerprint. Several variations are possible for the
fingerprint representations. One of the most commonly used representation is a vector that contains
the mean RSS value measured by each of the access points in the system. Other options are vectors
containing the median RSS value or variation of RSS for each access point. Instead of representing
the fingerprint with a vector they can also be represented by a set of histograms, for example one
histogram for each access point which contains the distribution of measured RSS values. Although
many different fingerprinting approaches have been proposed, empirical measurements [7] show that
there is no single best approach. Therefore it was decided to only test two different approaches:
one with a vector based representation and one with a histogram based representation. In addition
a third approach was included, which is not based on RSS but instead on Inquiry Response Rate
(IRR).

6.3.1 Mean RSS

The localization method described in this section is based on the RADAR localization system [2].
RADAR is one of the first proposed localization methods that uses fingerprinting to estimate target
locations. This method was chosen because of its simplicity.

Localization using mean RSS fingerprinting is conceptually similar to calibrated LNS model
localization described in section 6.2.1. The difference lies in obtaining the vector of expected RSS
values px at a certain location x. For the calibrated LNS model these values are computed using
equation 6.1. With fingerprinting the vector px is obtained directly by measuring the RSS values
for a target at location x. Once the RSS samples have been collected vector px is constructed by
taking the mean RSS value for each access point.

Multiple cost functions exists for matching a fingerprint y during the online phase with those
in the radio map. It was decided to use the euclidean distance, since this is how fingerprints are
compared in the RADAR localization system [2] and because it is also being used for calibrated
LNS model localization algorithm. The cost function c for the euclidean distance is given by
equation 6.8, where N is the number of access points. Note that the square root in this function is
not strictly necessary, but was included so the function accurately represents euclidean distance.

c(a,b) =

√√√√ N∑
i=1

(bi − ai)2 (6.8)

An alternative to the euclidean distance is the sum of the absolute differences in expected and
measured RSS value for each access point. This difference is known as the Manhattan distance
and the corresponding cost function is given by equation 6.9. However, the Manhattan distance
will not be considered in the rest of this thesis.

c(a,b) =

N∑
i=1

|bi − ai| (6.9)
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6.3.2 Jensen-Shannon Divergence

From the RSS samples collected for an access point and target device pair it is possible to construct
a histogram. This is done by creating a bin for each RSS value and counting the number of RSS
samples for each bin. According to the LNS model this should result in a histogram that follows
a normal distribution.

Because the histogram is constructed for an access point and device pair, fingerprints repre-
sented by histograms are vectors that contain N histograms, where N is the number of access
points in the localization system. The cost function c therefore needs to be able to compute the
difference between two vectors of histograms. The first step in doing so is computing the histogram
difference for each access point. One method for measuring difference between histograms is the
Jensen-Shannon divergence. The Jensen-Shannon divergence is a distance measure for two prob-
ability distributions and is based on the Kullback-Leibler divergence. Unlike the Kullback-Leibler
divergence, the Jensen-Shannon divergence has the property that it is symmetrical and bounded.
Equation 6.10 gives the Jensen-Shannon divergence expressed in terms of the Kullback-Leibler
divergence.

JSD(P,Q) =
D(P,M)

2
+
D(Q,M)

2
(6.10)

Here M is the merged probability distribution of P and Q, given by M = (P +Q)/2. Function
D gives the Kullback-Leibler divergence for two probability distributions. This Kullback-Leibler
divergence function is defined by equation 6.11.

D(P,Q) =
∑
i

P (i) log
P (i)

Q(i)
(6.11)

For two probability distributions P and Q which are equal (P = Q) the JSD function returns
0 and for two distributions which are completely different the function returns log 2. Therefore
the range of the JSD function is bounded by the interval [0, log 2]. Because of this property the
Jensen-Shannon divergence can be used as a measure for comparing histogram differences. This
allows the set of histogram differences for two fingerprints to be viewed as an N dimensional vector.
The length of this vector can then be used to compare fingerprints which are composed of set of
histograms, one histogram for each access point. Equation 6.12 gives the cost function for two
histogram composed fingerprints a and b.

c(a,b) =

√√√√ N∑
i=1

JSD(ai,bi)2 (6.12)

6.3.3 Inquiry Response Rate

The third fingerprinting localization algorithm which has been tested is based on Inquiry Response
Rate (IRR). It was decided to include this algorithm to see how its accuracy compares to RSS
based fingerprinting. Location estimation using IRR fingerprints has first been proposed in [3]. In
this work the authors claim to have found a relation between distance and the number of inquiry
responses per interval for the Bluetooth inquiry phase. Since the inquiry phase is used also to
collect RSS samples, computing the IRR is as simple as counting the number of RSS samples that
have been collected and dividing that by the length of the time period in which they were collected.

In the approach described in [3] fingerprints are represented by histograms. A bin is created
in the histograms for each access point and stores the number of inquiry responses received by the
access point. Two fingerprints are then compared by taking the Jensen-Shannon divergence of the
normalized histograms. The cost function is thus given by equation 6.13, where.

c(a,b) = JSD(a,b) (6.13)
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6.4 Comparison

Table 6.1 gives on overview of the expected algorithm performance for the localization properties
listed in section 2.4. Note that the properties responsiveness and operational constraints are not
included. This is because responsiveness is dominated by the rate at which measurement samples
are generated. Since the Bluetooth inquiry phase is used, this rate cannot be controlled and is the
same for all algorithms. Operational constraints are not included because none of the described
algorithms has extra requirements.

Algorithm Accuracy Calibration effort Adaptiveness

Ecolocation • • • • • • •
Calibrated LNS (OLS) • • • • • • •
Calibrated LNS (LAD) • • • • • • •
Uncalibrated LNS • • • • • • • •
Fingerprinting (mean RSS) • • • • •
Fingerprinting (JSD) • • • •
Fingerprinting (IRR) ? • •

• • • = good • • = mediocre • = bad

Table 6.1: Overview of expected algorithm performance with respect to localization system prop-
erties.

Accuracy is generally best for those algorithms which need to be calibrated, since these algo-
rithms have more ‘knowledge’ about signal propagation compared to those depending on calibra-
tion. This signal propagation knowledge is contained in the calibration data, because the data is
collected for a specific environment. For this reason uncalibrated LNS is expected to be a little
less accurate than calibrated LNS. Also, the Jenson-Shannon divergence fingerprint algorithm is
expected to perform a little worse compared to mean RSS fingerprinting, because [13] has shown
that histogram based fingerprinting is less accurate compared to Gaussian based fingerprinting.
Localization accuracy for IRR based fingerprinting is unknown because there are no models that
describe IRR as a function of location and the only empirical measurements in [3] are insufficient
to make any prediction about accuracy.

Calibration effort is best for the Ecolocation and uncalibrated LNS algorithms, because these
do not require any calibration at all. For the fingerprinting algorithms calibration effort is worst.
This is because a large number of fingerprints need to be collected in order to achieve reasonable
accuracy. The calibrated LNS algorithms require measurements at a few locations only, so cali-
bration effort is somewhere in the middle. Note that for these algorithms calibration effort can
be significantly reduced by installing reference devices so the system can perform the calibration
automatically (see section 6.2.1).

Adaptiveness is directly tied to the amount of calibration which is required. Since signal
propagation information is contained within the calibration data, changes in the environment
which affect signal propagation, may cause this data to become invalid. As a result localization
accuracy is expected to drop for algorithms which depend on this data.

The localization algorithms discussed in this chapter can also be rated on their ability to cope
with the localization problems listed in section 5.2.4 (unknown orientation, unknown transmitter
strength, unknown height and unknown environment structure). An overview of the expected
capability of each of the algorithms to cope with these problems is given in table 6.2. Little
information is known about the performance of IRR based localization, so the IRR fingerprinting
algorithm has been excluded from this overview.

In general the ability of an algorithm to cope with these problems is inversely proportional
to the amount of calibration required. Hence, Ecolocation and uncalibrated LNS score the best
and the fingerprinting algorithms receive the lowest score. Unknown target device height is not
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Algorithm Orientation TPL Height Structure

Ecolocation • • • • • • • • • • • •
Calibrated LNS (OLS) • • • • • • •
Calibrated LNS (LAD) • • • • • • •
Uncalibrated LNS • • • • • • • • • • • •
Fingerprinting (mean RSS) • • • • •
Fingerprinting (JSD) • • • • •

• • • = good • • = mediocre • = bad

Table 6.2: Overview of expected algorithm ability to cope with localization problems.

expected to be a major problem, because the range of possible values is limited. Nobody carries
their phone on their head or in their shoes, so target device height has a range of approximately
0.5 to 1.5 meter, taking into account stance, differences in length of people and the location of
the phone relative to the body (e.g. carried in a trouser or sweater pocket). The effect of a 1
meter variation in target device height is that it slightly affects the distance between the device
and access point. Hence measures RSS value will be slightly higher or lower, but this change is
not expected to be of much influence to localization accuracy.

Differences in transmitter power level are a more severe problem for those algorithms which
depend on calibration. This is because the Bluetooth standard defines 3 different power classes,
for which the maximum transmission strength differs by about 20 dBm (see section 4.2). A 20
dBm difference corresponds to a difference in distance by a factor 10, so calibration data for a
certain power class may be inaccurate for Bluetooth devices from another power class.

From the algorithm ratings with respect to localization system properties, table 6.1, and ability
to deal with problems, table 6.2, the uncalibrated LNS algorithm is expected to perform the best.
Its accuracy is not expected to be as high as some of the other algorithms, but it scores well on all
of the other points. In the next chapters the performance of the discussed localization algorithms
is evaluated using empirical measurements.

Summary

In this section a number of different localization algorithms have been described, which could
possibly be used for an indoor Bluetooth based localization system. To get a good representation
from the large number of different localization systems that exist, at least one algorithm from the 3
major signal strength based localization methods was chosen. From the proximity based methods,
Ecolocation has been selected because of its simplicity and relative good accuracy. For the range
based methods, 3 algorithms have been selected that are based on the Log-Normal Shadowing
(LNS) model. This model is widely recognized for its good approximation of signal propagation
in various environments. Two of these LNS model based algorithms require calibration, while the
third does not. Finally 3 algorithms from the class of fingerprinting localization methods have
been selected, one based on mean RSS vectors, one based on RSS histograms and one based on
Inquiry Response Rate (IRR).

For these algorithms best localization accuracy is expected for the calibrated algorithms. How-
ever, the algorithms which do not require calibration are expected to be less sensitive to the
uncontrollable localization parameters.





Chapter 7

Measurements

This chapter describes the measurements which were performed to collect the necessary data for
the performance evaluation of the algorithms presented in the previous chapter. First the mea-
surement results for various antenna orientations are given, which is done to test the significance
of orientation on measured RSS values. Based on these measurements an optimal orientation is
identified to answer research question 4: ‘What is the optimal orientation between target device and
access point sensors? ’ In the second part of this chapter, two datasets are described which have
been used for the evaluation of localization performance. The chapter concludes with an estimate
of expected localization accuracy for these datasets. This answers research question 5: ‘What is
the maximum localization accuracy that can be achieved? ’

7.1 Antenna orientation

The relative orientation between the antennas of a sender and receiver has a direct influence on
the signal strength measured by the receiver [5]. To see how RSS measurements were influenced by
orientation of the Bluetooth dongles used in the data collection setups, RSS measurements were
performed for a number of different orientations. The reason for doing so was twofold. First it
gave an indication of the extent to which orientation had an influence. More importantly however,
it provided data for finding the optimal orientation of the antennas for localization.

a b3 m
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Figure 7.1: Side view of a setup with one access point and two targets.

To see why this is important consider the scenario illustrated by figure 7.1. Two target devices
are located below an access point, one at a 0 degree angle: point a, and one at a 45 degree angle:
point b. If the radiation pattern is non-uniform, then the value of P0 in the LNS model (see
equation 6.1) is a function of the angle between the antennas. Suppose the devices which emit
radio signals at locations a and b have a similar radiation pattern and are aligned parallel to each
other. Also suppose for these devices that P0 is 50 dBm for an angle of 0 degrees and 55 dBm for

45
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an angle of 45 degrees. With a path loss exponent of 2, the access point in figure 7.1 will measure
the following mean RSS values for a and b:

Pa = 50− 10 · 2 · log10 3 ' 40.46 dBm (7.1)

Pb = 55− 10 · 2 · log10
√

32 + 32 ' 42.45 dBm (7.2)

The example shows that even though the target at location b is located further away from
the access point, a higher signal strength is measured by the access point for that target. Such
a situation would lead to inaccurate location estimations. Therefore it is important to know for
which orientation this effect does not occur or is minimal. Another aspect of the optimal orientation
is the maximum received signal strength. The reason for trying to maximize the measured RSS
values is that it increases the range up to which access points can detect target devices.

7.1.1 Measurement setup for orientation

To discover the optimal orientation of the Bluetooth dongles used in the test environment, RSS
values were measured by a single access point for a number of different orientations. This was done
by placing 4 target devices 1 meter away from an access point at different angles. Figure 7.2 shows
a schematic view of the setup. Note that only positive angles were tested. This was because of the
limited material that was available at the time of the experiment. Assuming that target devices
will never be located above access points, the angle between access points and target devices lies
within the range of [−90, 90]. Hence the maximum angle in the setup was 90 degrees.

1
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30◦

60◦

90◦

Figure 7.2: Measurement setup for optimal Bluetooth dongle orientation.

The setup shown in figure 7.2 was repeated for a number of different relative orientations
between the access point and target devices. The relative orientation between the access point and
the target at 0 degrees was defined as the base orientation. For the other target devices at 30, 60
and 90 degrees, Bluetooth dongles were aligned parallel to the dongle of the target at 0 degrees.
Appendix C.1 lists the different base orientations which were tested. To compensate for noise in
measurements, RSS values were collected during a 10 minute time period and then averaged. A
photo of the actual test setup is shown in figure 7.3.

7.1.2 Results

A complete overview of the mean and standard deviation for the measured RSS values is given in
appendix C.2. Figure 7.4 shows the measured mean RSS value per relative orientation and angle.
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Figure 7.3: Photo of the measurement setup used to find the optimal dongle orientation.

It also shows the mean RSS value for each orientation if angle is ignored, i.e. when the data from
the 4 different angles is merged.
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Figure 7.4: Measured mean RSS value for different Bluetooth dongle orientations.

One of the things this graph makes clear is that relative orientation has a big impact on the
measured RSS values. The difference in maximum and minimum mean RSS is about 20 dBm. For
the LNS model a 20 dBm difference corresponds to a large difference in physical distance. For
example, assuming n = 2 and d0 = 1m, then according to the LNS model a 20 dBm decrease in
RSS corresponds with the following distance:

10

 20

10 · 2


= 10 m (7.3)
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This means that a scenario is possible where an access point estimates the distance to a target
to be 10 meter instead of 1 meter. Such a scenario could lead to big errors in location estimates.
Orientation of the Bluetooth dongles is thus something which significantly affects localization
accuracy.

The graph in figure 7.4 also reveals that none of the orientations is optimal with respect to their
relation with angle. In the ideal case the mean RSS value is the same for each angle or decreases
with increasing angle. None of the orientations, however, shows such a relation. Therefore each of
the orientations is prone to the problem that an access point might measure higher RSS values for
targets located further away. Consequentially the best orientation is thus the one which shows the
least variation in mean RSS for the different angles. This appears to be the case for orientation 1,
which also has the highest merged mean RSS value. Orientation 1 was therefore selected as the
one closest to optimal orientation and this orientation was used in subsequent tests. The optimal
dongle orientation is shown in figure 7.5. The left dongle in this figure is that of the access point
and the right one is that of the target device. Through the translucent casing of the Bluetooth
dongles the location of the PCB antenna was visible. This location has been marked in figure 7.5
by the dark area.

Figure 7.5: Optimal dongle orientation.

Interestingly the 30 degree angle resulted in a higher mean RSS value than the 0 degree angle
for all but 2 of the orientations. This gave raise to suspicion that the target devices might have
been transmitting at different power levels. To verify if this was indeed the case, measurements
were repeated for the first orientation using different target devices and a different access point.
This test was repeated 4 times and each time the Bluetooth dongles of the target devices were
rotated. The results of these tests are given in appendix C.3. Each of the test runs, however,
showed the same results for orientation 1 in figure 7.4, so there was no difference in transmission
power of the Bluetooth dongles.

7.2 Calibration and evaluation datasets

To evaluate the performance of the algorithms discussed in section 6, calibration and evaluation
datasets are required. A calibration dataset contains the data which is required to calibrate the
algorithms. The mean RSS fingerprinting algorithm uses this data for example to construct mean
RSS vectors for each location in the calibration dataset. The evaluation datasets contain data
which is used to compute localization accuracy for the algorithms. These datasets contain RSS
measurements for a number of locations. Mean localization error can be computed by comparing
the actual target locations with the locations estimated from the evaluation dataset.

The structure of calibration and evaluation datasets is similar, so they can be used interchange-
ably. Each dataset contains a set of locations and for each location a set of RSS measurement
samples, which can be represented mathematically as: {(x, d, {(t, a, P )})}. The elements of this
set are:

• x - Location of the device.



7.2. CALIBRATION AND EVALUATION DATASETS 49

• d - Identifier of the device.

• t - Time at which the sample was generated.

• a - Identifier of the access point that generated the sample.

• P - RSS value measured by the access point.

In chapter 5 a set of uncontrollable localization parameters was identified. These parameters
were: relative orientation, device height, transmission power and environment structure. In order
to evaluate the impact of each of these parameters on localization performance 5 different evaluation
datasets are needed: 1 dataset in which all of these parameters are fixed and 4 datasets where one
of the parameters is random. Also one calibration dataset is required which needs to be collected
under the same conditions as the evaluation dataset for which all parameters are fixed. The impact
of each parameter can then be evaluated by comparing the localization error for the dataset in
which all parameters are fixed with the dataset where the parameter in question is randomized.
Note that collecting a dataset with random environment structure is not feasible as this requires
constant changes in structure or layout, which is almost impossible to do when RSS measurements
are performed at a large number of locations. A better approach is to just collect the dataset in
the same environment with a fixed but different structure.

Unfortunately it was not possible to collect all of these datasets. This was due to the limited
availability of the test environment, the large amount of time it took to prepare the measurement
setup and to perform the measurements. Another issue was that transmission power could not be
changed on the target devices. For these reasons it was decided to focus on relative orientation.
Evaluating the impact of the other parameters was also possible to some degree. Impact of envi-
ronment structure could be evaluated using an older dataset (see appendix A) that was collected
previously in the same environment. When this older dataset was collected, the layout of the room
was different. Hence it allowed for using this dataset to evaluate impact of environment structure.
The impact of device height has been evaluated by repetitively computing the localization error for
each algorithm using different heights. Finally, the effect of the transmission power level (TPL) has
been tested by creating simulated datasets with different TPL values based on the real datasets.

7.2.1 Measurement setup for dataset collection

Two different datasets were collected for the purpose of evaluating localization performance. For
both datasets device height, transmission power and environment were static. Device orientation
was the only parameter which was different for these datasets. The first dataset was collected
with a fixed device orientation using the optimal orientation identified in section 7.1.2. In the
second dataset device orientation was random at each location for which RSS measurements were
performed.

To collect RSS measurements 10 access points were installed in the test environment. The
locations of the access points are shown in figure 7.7. Access points were mounted in the corners of
truss installations. To reduce interference from the metallic construction of the truss installations
and to increase line of sight, Bluetooth dongles were lowered to about half a meter below the access
point (see figure 7.6). Dongles were fixed into position using pieces of cardboard and tape.

The access points were responsible for collecting RSS measurements and sending them to a
central server where they were stored. RSS samples were generated by recording the signal strength
of inquiry response messages received by the access points. Inquiry response messages originated
from target devices, which were placed at known locations. Each target device was mounted on a
tripod and the Bluetooth dongles for these devices were elevated to 1.10 meter below the sensors
of the access points. Prior to the measurements the floor was marked to indicate the positions at
which the target devices would be placed. These locations formed a grid below each truss with a
1 meter spacing. Figure 7.7 shows the locations at which the target devices were placed.
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Figure 7.6: Photo of a Bluetooth dongle for one of the access points.

8 m = target location
= access point

Figure 7.7: Location of target devices and access points.
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A set of 9 target devices was available, so measurements could be performed at 9 different
locations at once. Therefore a total of 14 measurement runs needed to be performed to sweep the
whole space. To collect enough RSS samples for each location data was recorded during a period of
5 minutes. It was ensured that there was no movement within this period, so RSS measurements
were not influenced by changes in signal propagation.

7.2.2 Performance bounds

The measurement setup described in the previous section provides information which can be used
to give a lower bound on localization accuracy. This can be done using the Cramér-Rao Lower
Bound (CRLB), which gives a lower bound for the variance of an unbiased estimator. For any
unbiased estimator this lower bound is given by equation 7.4, where F is the Fisher Information
Matrix (FIM). This definition of the CRLB thus states that the variance of an unbiased estimator
θ̂ for an unknown parameter θ is at least as high as the trace of the inverse FIM.

var(θ̂) ≥ tr F(θ̂)−1 (7.4)

The CRLB for RSS based localization has been studied in earlier work [26, 12]. For the
localization problem the unknown parameter is target location x and the FIM for estimates of this
parameter is given by equation 7.5 (see [26] for a derivation). Within this equation ai represents
the location of access point i and the subscripts x and y denote the x and y components of a
location. The constant γ is called the channel constant and its definition is given by equation 7.6.

F(x) = γ
N∑
i=1


(xx − ai,x)2

‖x− ai‖4
(xx − ai,x)(xy − ai,y)

‖x− ai‖4
(xx − ai,x)(xy − ai,y)

‖x− ai‖4
(xy − ai,y)2

‖x− ai‖4

 (7.5)

γ =

(
10n

σ log 10

)2

(7.6)

Equations 7.5 and 7.6 show that the CRLB depends on the configuration of access points and
the LNS model parameters n and σ. Since the configuration of access points is the same for both
datasets described in the previous section, estimator variance is similar for both datasets. The
only difference is the magnitude of γ, because this constant depends on n and σ which are different
for the datasets. The channel constant γ thus acts as a scalar factor on the variance lower bound.
Hence the CRLB can be defined for RSS based localization as:

var(x̂) ≥ γ−1f ′(x̂) (7.7)

f ′(x) = tr

(
F(x)

γ

)−1
(7.8)

As can be seen from equation 7.7, the lower bound on variance for a certain environment is
proportionate to γ−1 ∝ σ/n. The lower bound on variance for location estimate x̂ gives an indi-
cation of localization accuracy which can be achieved at that location. Consequentially minimum
localization accuracy for a specific environment depends on the ratio of parameters σ and n. A
practical error measure for the CRLB is the root mean square error (RMSE), which gives the
expected localization error at a certain location. The RMSE is defined by equation 7.9.

RMSE =
√

tr F(x)−1 =
√
γ−1f ′(x) (7.9)

Figure 7.8 shows a plot of the square root of function f ′(x) for the test environment setup
described in section 7.2.1. To get an actual estimate of the localization error, i.e. the RMSE,
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Figure 7.8: Indication of how localization error varies over location for the test setup.

values need to be multiplied by
√
γ−1. In the middle of the test environment access point density

is relatively low, because only two access points are installed in the center truss. Localization error
is thus expected to be to be the highest for this area, which is confirmed by figure 7.8.

The lower localization accuracy in the middle of the test environment is also observed when the
localization errors for the datasets are computed. Figure 7.9 shows the localization error for the
uncalibrated LNS model algorithm applied to the fixed orientation dataset. The other algorithms
show similar spatial error plots for both datasets. To generate the error map shown in figure 7.9
localization errors were interpolated using inverse distance weighting with a distance exponent of
10.

8 m

0.0 2.0 4.0 6.0 8.0 10.0

e (m)

Figure 7.9: Localization error for the uncalibrated LNS model algorithm applied to the fixed
orientation dataset.

Table 7.1 shows the LNS model parameters which were estimated from the two datasets. The
value of γ, the square root of its inverse and the average RMSE value are also listed. The RMSE
values shown in this table have been computed by evaluating equation 7.9 for each tested location
and taking the average. According to these results accuracy of location estimates will be higher
for the second dataset compared to the first dataset. This is because a higher value of γ leads
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to a decrease in the lower bound on estimation error variance. Note that relative orientation is
fixed for the first dataset and randomized for the second. The results are therefore conflicting with
expectations, since localization accuracy is expected to be worse for randomized orientation. The
CRLB for these datasets, however, indicates the opposite.

P0 n σ γ
√
γ−1 RMSE

Dataset 1: fixed orientation -51.16 1.29 5.44 1.07 0.97 4.64

Dataset 2: random orientation -51.21 1.39 5.44 1.24 0.90 4.31

Table 7.1: LNS model parameters and channel constant estimates for both datasets.

Earlier work on the effect of antenna orientation [5] has shown that it impacts the value of P0.
This was, however, tested using omnidirectional antennas. Since the measurements in section 7.1.2
for different orientations indicate that the used antennas are not omnidirectional it is questionable
whether P0 is affected in the same way by orientation. Assuming that it is, then the results in
table 7.1, indicate that the fixed orientation dataset might not have been collected with optimal
orientation. Considering the fact that it was only possible to test orientations with 4 different
angles in a single dimension, the selected orientation might indeed not have been the most optimal
one.

Another indication that this might have been the case is the relative low value of n for the
fixed orientation. Any value of n below 2 indicates that signal strength decays slower than in a
theoretical unbounded vacuum space. For an indoor environment a value below 2 is caused by:

• Multipath propagation.

• A radiation pattern which emits higher power signals at angles for targets located further
away (see section 7.1).

It is therefore likely that the fixed orientation was not optimal for the dataset collected with fixed
orientation.

Summary

The impact of relative orientation on measured RSS values was tested by performing a series of
measurements with different orientations. The results of the measurements show a significant
influence on mean RSS value. From these measurement results one orientation has been identified
as the best option. This orientation has been used for collecting a dataset of RSS measurements at
a large number of locations in the test environment. The same measurements were repeated, but
instead using a random orientation at each location. An initial performance analysis of this data
using the Cramér-Rao Lower Bound (CRLB) indicates that a mean localization error of 4.64 m
and 4.31 m is expected for the fixed and random orientation datasets respectively. The estimation
of the LNS model parameters for both datasets has, however, raised some doubt as to whether the
orientation used for the fixed dataset was indeed optimal. This is because these parameters do not
show the expected behaviour for the difference between fixed and random orientation.





Chapter 8

Performance evaluation

This chapter serves to answer the sub questions of research question 6: ‘How do the localization
parameters affect localization performance? ’ Using the two datasets described in the previous
section, a performance analysis of different localization algorithms was performed. It was decided
to focus the analysis on accuracy, i.e. mean localization error. First a general discussion about
the performance of the algorithms is given. Then the effect of the uncontrollable parameters,
orientations, device height, transmitter power level and environment structure, is discussed. Finally
a performance analysis is given for the controllable parameters: number of access points and
window size.

8.1 General performance

This section presents the general localization accuracy results for each of the algorithms which were
discussed in section 6. With a total of 2 different datasets, 4 different combinations of calibration
and evaluation datasets can be made. Table 8.1 shows the mean localization error and standard
deviation for each algorithm and dataset combination. The lowest value of mean localization error
is marked in a bold font for each of the algorithms.

For the fingerprinting algorithms computing mean localization error only has meaning if the
calibration and evaluation dataset are different. This is because if the same dataset is used for
both, fingerprints can be matched exactly, resulting in a mean error of 0 meter. Therefore only the
two columns with different calibration and evaluation datasets are listed for fingerprinting. For
the algorithms which do not need to be calibrated this is also the case, because these depend only
on the evaluation dataset. Hence the table lists only two columns for these algorithms in order to
avoid repetition.

Calibration dataset fixed fixed random random

Evaluation dataset fixed random fixed random

Algorithm ē σe ē σe ē σe ē σe
Ecolocation - 2.75 2.11 2.57 1.61 -

Calibrated LNS (OLS) 2.12 1.60 2.33 1.74 1.87 1.41 2.13 1.55

Calibrated LNS (LAD) 2.23 1.73 2.50 1.91 1.92 1.47 2.35 1.70

Uncalibrated LNS - 2.40 2.23 2.20 1.69 -

Fingerprinting (mean RSS) - 2.58 2.00 2.30 1.85 -

Fingerprinting (JSD) - 2.64 1.95 2.44 1.95 -

Fingerprinting (IRR) - 8.93 6.06 8.32 5.42 -

Table 8.1: Mean and standard deviation of localization error in meters.

Note that in order to make a fair comparison between the fingerprinting algorithms and the
others, output range for the location estimations was limited to the set of fingerprinted locations.
This was done because the other algorithms can produce an infinite number of different estimates,
while fingerprinting output is restricted to the locations at which fingerprints were collected.

55
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The first thing which is immediately evident from these results is that IRR has a much lower
accuracy compared to the RSS based localization methods. Figure 8.1 shows a plot of the number
of received inquiry responses for the fixed orientation dataset. Although the IRR has a functional
relation with distance according to [3], studying the graph in figure 8.1 reveals no correlation
between IRR and distance. It was therefore decided to discard IRR based fingerprinting from the
rest of the performance analysis.
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Figure 8.1: Plot of IRR over varying distance.

Secondly, the results show that an LNS model which is calibrated using LAD linear regression is
less accurate than using OLS linear regression. For all combinations of calibration and evaluation
datasets, the OLS calibrated LNS model outperforms the LAD variant. Since the difference in mean
error is not that big, LAD will still be considered in the performance analysis of the localization
parameters.

8 m

0.13 0.97 1.81 2.65 3.50 4.34

σ (dBm)

Figure 8.2: Spatial variation of σ for the fixed orientation dataset.

An interesting result is that all algorithms, except for IRR based fingerprinting, were able to
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achieve a mean localization error roughly 2 meter below the mean RMSE predicted by the CRLB
in section 7.2.2. For the fixed and random orientations datasets a mean localization error was
predicted of 4.64 m and 4.31 m respectively. The CRLB is based on the assumption that the LNS
model parameters are independent of location, which is not always true. Consequentially if these
parameters are location dependent, the value of σ can easily be overestimated. Since the RMSE
is proportional to σ/n, an overestimation of this parameter may cause the predicted localization
error to be higher than the actual measured errors. To show that this is actually the case for
the datasets, the LNS model parameters were estimated for each location in the fixed orientation
dataset. Figure 8.2 shows a plot of estimated value of σ as a function of location. The average
value of σ is much lower in this plot than the value of 5.44 dBm which was computed for the
whole localization space. A similar result is obtained if the same plot is generated for the random
orientation dataset. This explains why the algorithms achieved a better accuracy than predicted
by the CRLB.

Another interesting result is that the calibrated LNS model algorithms achieve the best ac-
curacy using the random orientation dataset for calibration and the fixed orientation dataset for
evaluation. It was expected that the best accuracy would be obtained if the same dataset was used
for both calibration and evaluation. This illustrates, however, that estimating the LNS model
parameters using linear regression does not necessarily lead to the lowest mean localization error
as discussed in section 6.2.1. Like the difference between predicted accuracy by the CRLB and
actual accuracy, this appears to be the result of spatial dependency of the LNS model parameters.
By computing global LNS model parameters using linear regression this dependency is ignored. As
such, the estimation may not lead to the optimal values of P0 and n which minimize localization
error. Figure 8.3 shows a plot of mean localization error for varying values of n. This figure con-
firms that the globally estimated values of n for both datasets do not minimize error. According
to figure 8.3 the optimal value of n lies at 1.4 for the fixed orientation dataset and at 1.55 for the
random orientation dataset, while the estimated values using OLS linear regression are 1.29 and
1.39 respectively.
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Figure 8.3: Mean localization error as a function of path loss exponent n.

A similar result is obtained if mean localization error is plotted as a function of reference
power P0. This plot is shown in figure 8.4. Like the path loss exponent parameter n, the estimated
reference power parameter P0 for both datasets is not the optimal one. Figure 8.4 shows that
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the optimal values of P0 lie around -52.5 dBm for both datasets. However, the estimated values
for this parameter using OLS linear regression are -51.16 dBm and -51.21 dBm for the fixed and
random orientation datasets respectively.
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Figure 8.4: Mean localization error as a function of reference power P0.

Note that the localization errors for the non-fingerprinting localization algorithms listed in ta-
ble 8.1 are not realistic. This is because their set of possible output locations has been restricted to
the set of possible locations for the fingerprinting algorithms. While this enables a fair comparison
between the different algorithms, it does represent a realistic scenario as in practice the set of
possible target locations is infinite (though bounded). Therefore the non-fingerprinting algorithms
in reality need to consider a larger set of possible target locations. To see how the increase in
output range impacts localization accuracy, mean error was computed for the algorithms using an
output set defined by a grid with cells of 0.1 by 0.1 meter in the localization space. The results
are listed in table 8.2. For an easy comparison between the mean localization error with limited
output range, the results for the non-fingerprinting algorithms listed in table 8.1 are repeated in
table 8.2 (those algorithms listed without asterisk). Again, lowest mean localization error for each
of the algorithms has been marked in a bold font.

Localization results for a realistic set of output locations, shows an increase of about 25% in
mean localization error compared to the limited set. The decrease in accuracy can be explained by
considering the fact that for the limited output set, algorithms will only be able to select from a
set of locations of which all have exact matches. Because the density of these locations is relatively
low, the algorithms have a better chance of selecting the right location. For the realistic set of
output locations density is much higher, so the algorithms are more likely to miss the actual target
location. This means that the mean localization errors listed in table 8.2 correspond to a more
realistic estimation of localization accuracy for in a practical setting.

8.2 Orientation

Table 8.1 shows that the best localization accuracy for all algorithms is achieved using the random
orientation dataset for calibration and the fixed orientation dataset for evaluation. Note that the
Ecolocation and uncalibrated LNS model algorithm only depend on the evaluation dataset. For the
calibrated LNS model algorithms the fact that the combination of random and fixed dataset results
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Calibration dataset fixed fixed random random

Evaluation dataset fixed random fixed random

Algorithm ē σe ē σe ē σe ē σe
Ecolocation - 2.75 2.11 2.57 1.61 -

Ecolocation * - 3.06 2.19 2.89 1.61 -

Calibrated LNS (OLS) 2.12 1.60 2.33 1.74 1.87 1.41 2.13 1.55

Calibrated LNS (OLS) * 2.46 1.68 3.19 2.03 2.19 1.45 2.54 1.64

Calibrated LNS (LAD) 2.23 1.73 2.50 1.91 1.92 1.47 2.35 1.70

Calibrated LNS (LAD) * 2.75 1.77 3.51 2.02 2.45 1.66 2.99 1.86

Uncalibrated LNS - 2.40 2.23 2.20 1.69 -

Uncalibrated LNS * - 2.77 2.32 2.62 1.78 -

Table 8.2: Mean and standard deviation of localization error in meters. The asterisk indicates
mean error was computed with a realistic output range.

in the best localization accuracy is surprising, as it was expected that using the same dataset for
both calibration and evaluation gives the best location estimates. However, as discussed earlier,
a probable cause is that the LNS model parameters are not location independent. Therefore the
globally estimated parameters using linear regression do not result in the best location estimates.

In general, table 8.1 shows that using the fixed orientation dataset for evaluation yields better
location estimates than if the random orientation dataset is used. This is regardless of which
calibration dataset is used. According to the CRLB analysis of these datasets (see section 7.2.2),
the channel constant for fixed and random orientation is 1.07 and 1.24 respectively. Since the
inverse of the channel constant gives an indication of relative accuracy, the CRLB predicts better
localization performance for the random orientation dataset, which is in conflict with the results.
However, the problem that the LNS model parameters are not location independent is also likely to
be the cause of this difference. This is because the values of n and σ, which determine the magnitude
of the RMSE, are rough estimate for the whole space. The ratio between these parameters just
happens to be more favourable for the random orientation due to chance.

The main conclusion that can be drawn from table 8.1 is that random orientation leads to an
increase in localization error of about 15%, compared to fixed orientation.

8.3 Environment structure

Both datasets described in section 7.2 were collected in a static environment. There were no changes
in layout in between of the measurements. In order to test the effect of environment structure on
localization accuracy, another dataset is needed. Fortunately some measurements were performed
before in the same environment, using roughly the same setup. This dataset, which will referred
to as the old dataset, is described in appendix A. The differences between the old dataset and new
datasets, described in section 7.2, is that in the old dataset only 9 access points were available.
Also the old dataset contains less locations for which RSS measurements were performed. The set
of measurement locations is however a subset of those of the new datasets.

Another difference between the old dataset and the new datasets is that the layout of the
test environment was different at that time. Figure 8.5 shows photos of the environment layout
when RSS measurements for the old and new datasets were performed. These photos were taken
at approximately the same position. The biggest difference between the layouts is the object
configuration in the middle of the room. For the old dataset this area contained tables and chairs
aligned in rows. There was also a thick divider screen running across the middle of the room.
The black curtain which is visible in both photos was wrapped around the center truss in the old
layout while it was wrapped at the left truss for the new layout. Finally the arrangement of objects
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underneath the balcony was different for both layouts.

(a) Layout for old dataset (b) Layout for new datasets

Figure 8.5: Photos of environment layout for the old and new datasets.

To evaluate the impact of the environment structure, localization accuracy has been computed
for both the old and new datasets. Since orientation was fixed for the old dataset, the fixed
orientation dataset from the new datasets was also used as evaluation data. The random orientation
was used as calibration data. This was done to make a fair comparison between the old and
new dataset with fixed orientation. Mean localization error and standard deviation are shown
in table 8.3. Note that the old dataset contained RSS samples for a time period of 10 minutes,
while this time period was 5 minutes for the new datasets. To compensate for this difference,
the old dataset was split in two halves and location estimates were computed for both parts and
then averaged. When the differences in localization error for the individual parts were examined
only minor differences were observed, so the averaging did not have much influence on the mean
localization error.

Calibration dataset random random

Evaluation dataset fixed new fixed old

Algorithm ē σe ē σe
Ecolocation 2.29 1.38 2.17 1.20

Calibrated LNS (OLS) 1.75 1.34 1.75 1.10

Calibrated LNS (LAD) 1.63 1.08 1.79 1.12

Uncalibrated LNS 1.92 1.43 1.65 0.99

Fingerprinting (mean RSS) 2.04 1.66 2.11 1.54

Fingerprinting (JSD) 2.46 2.12 2.05 1.28

Table 8.3: Mean and standard deviation of localization error in meters.

The calibration and evaluation dataset combination ‘random, fixed new’ corresponds with the
combination ‘random, fixed’ listed in section 8.2. Mean localization error is, however, a bit better
because most locations from the center of the test environment were excluded since these are not
available in the old dataset. Localization error is biggest in the center of the test environment (see
section 7.2.2), so excluding these locations results in a lower mean localization error.

The mean localization errors listed in table 8.3 do not display big differences between the two
evaluation datasets. A maximum difference in mean error is found for the JSD fingerprinting
algorithm, which shows a difference of 0.31 m. Neither of the two datasets can be marked as
the one that performs better in terms of accuracy. Consequentially one has to conclude that the
differences in environment layout for both evaluation datasets did not affect signal propagation
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by such a degree that localization accuracy was significantly affected. This conclusion is not that
surprising considering the fact that there were no major changes in the layout, like changes in
line of sight between the access points and target devices. In both datasets all access points had
a direct line of sight to each of the target locations. In a more realistic scenario, such changes
are more likely, because target devices are located closer to the ground than during the collection
of the datasets. When a device is located closer to the ground it also more likely to encounter
obstacles along the path to an access point.

8.4 Device height

So far a 2 dimensional target space has been assumed. While a 2 dimensional space is sufficient to
satisfy the requirements for the localization system that are specified in section 3.1.1, height of the
target devices does affect localization results. This is because height affects relative orientation and
distance to the access points. In turn this affects the RSS values measured by access points. To
test the impact of device height on localization performance a dataset is needed with all parameters
being fixed except for height, which has to be randomized. By comparing the mean localization
error for this dataset with a reference dataset in which all parameters all fixed, the difference in
mean error shows the impact of unknown and variable height. Unfortunately no such dataset is
available.

The impact of unknown height, however, can be tested under the assumption that all devices
are located at the same height. Height can only be included in the LNS model based algorithms.
This is because Ecolocation and the fingerprinting algorithms do not compute the physical distance
between (possible) target locations and the access points. For the LNS model algorithms height
can included by computing distances in 3 dimensional space rather than in 2 dimensional space.
To do so, these algorithms need to know the distance between target devices and access points
along the z axis. During the collection of the datasets used to evaluate localization performance,
the antennas of the target devices were located 1.1 meter below those of the access points. If this
distance is called ∆z, then equation 8.1 gives the distance between a target location x and an
access point a in 3 dimensional space.

d =
√

(xx − ax)2 + (xy − ay)2 + ∆z2 (8.1)

Note that equation 8.1 has been used all along during the evaluation of localization accuracy
in the previous sections with a value of 1.1 for ∆z. In a practical application of the Bluetooth
localization system, ∆z is unknown and different for each target. Assuming, however, that ∆z
is constant for all targets, then it is possible to determine its impact by computing the mean
localization error for various values of this height. This has been done for the uncalibrated and
OLS calibrated LNS model algorithms. The results are shown in figure 8.6. In this graph the
height along the x axis corresponds with the difference between the actual value of ∆z, so 0 means
devices are located 1.1 meter below the access points and 4 means a distance of 4.1 meter.

The graph in figure 8.6 shows that localization accuracy is relatively independent of the value
of ∆z. This can be explained by the fact that height has less influence with increasing distance.
Equation 8.2 gives the difference between distance in 3 dimensional space and distance in 2 di-
mensional space. The average distance between any point in the localization space of the test
environment and the access points is 11.6 m. For a value of 1 m for ∆z, this results in an average
difference of 0.043 m between 3 and 2 dimensional space. This difference is too small to have a
significant effect on localization accuracy. However, if ∆z is increased to 4 m, the average difference
increases to 0.670 m, which is no longer insignificant.

∆d =
√
d2 + ∆z − d (8.2)
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Figure 8.6: Impact of ∆z on mean localization error.

Nonetheless, the uncalibrated LNS model algorithm shows no signs of accuracy loss for higher
values of ∆z. This is because adjusting the distances for height results in a compression of the
linear regression data. While this effects the values of P0 and n, it does not significantly effect
the value of σ, which is minimized by this algorithm. Since the compression is not linear, ∆z will
eventually impact localization accuracy as well, because it breaks the linear relation between the
logarithm of distance and RSS.

The calibrated LNS model is more sensitive to device height as shown in figure 8.6. The reason
that this algorithm is more sensitive is because it does depend on the values of P0 and n, unlike
the uncalibrated model. In practice the calibrated LNS model is even more sensitive to height due
to the fact that height influences relative orientation between target devices and access points.
Since the height of a target devices is not necessary the same as the height of the devices during
calibration, the estimated LNS model parameters P0 and n may be off for the height of the target
device. This is true for all calibrated localization algorithms.

Fortunately the range of possible device heights is limited in practice. An average height of
1 m is expected with a maximum deviation of about 0.5 m. Figure 8.6 shows that localization
accuracy is not significantly affected within the range of [−0.5, 0.5]. In reality the calibrated LNS
model based algorithm will be affected more than is shown in this figure, due to changes in relative
orientation. The uncalibrated LNS model, however, will not be significantly effected by unknown
and varying device height.

8.5 Transmitter Power

Unfortunately it was not possible to collect a dataset with different transmitter power levels (TPL).
However, it was possible to simulate a different TPL for the datasets which have been collected.
This has been accomplished by modifying the RSS samples in the datasets. For example to
simulate a decrease of 5 dBm in TPL, 5 dBm has been subtracted from each of the measured RSS
values in the dataset used for evaluation. With this approach it was possible to study the effects
of the TPL on the accuracy of the localization algorithms. Note that the approach is based on
the assumption that a difference of ∆P in TPL results in the same difference for all measured
RSS values. According the the LNS model, this assumption is correct and the reference power
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parameter P0 can be viewed as the effective TPL value at reference distance d0.

To test the effect of the TPL on the accuracy of the localization algorithms, mean localization
error has been computed for a range of different TPL values. The results of this test are shown in
figure 8.7. Because the actual TPL value of the target devices was not known, the TPL values have
been expressed as the difference to P0 in dBm. For calibration the random orientation dataset was
used and the fixed orientation dataset has been used for evaluation. RSS values were only adjusted
for the evaluation dataset, which was done to simulate a scenario in which the TPL of the target
devices is different from that of the devices used to collect the calibration data. Note that mean
localization error for the histogram based fingerprinting algorithm has only been computed for
integer values of ∆P0. This is because the JSD histogram distance function only supports integer
shifts of the histogram bins. For non-integer shifts the function returns the maximum distance
value log 2.
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Figure 8.7: Impact of ∆P0 on mean localization error.

As expected, figure 8.7 shows that the uncalibrated algorithms are independent of the TPL
value. For Ecolocation this is because the relative ordering between access points is unaffected
when all RSS values are shifted by the same value. The uncalibrated LNS model algorithm is
unaffected by TPL because this value does not influence σ, which is being minimized by the
algorithm to find the best location estimate. For the calibrated algorithms, except the histogram
based fingerprinting algorithm, there appears to be a linear relation between the value of ∆P0 and
mean localization error, with different slopes for the negative and positive values of ∆P0. According
to figure 8.7 there is only a error margin of -2 to 3 dBm in TPL, before the uncalibrated LNS model
algorithm outperforms the calibrated LNS model algorithms. In practice a difference of more than
3 dBm between the TPL of the target devices and that of the calibration data is expected to
be common. This might not only be the case because of differences in TPL, but also because of
differences in the device casing which may absorb the radio signals with varying degree, thereby
influencing the effective value of P0. Consequentially, the uncalibrated LNS model algorithm is
expected to outperform its calibrated counterparts in an environment with a heterogeneous set of
target devices.

The TPL value appears to have to biggest influence on the histogram based fingerprinting
algorithm, which shows an exponential relation between ∆P0 and mean localization error. This
big influence can be explained by considering the effect of ∆P0 on the histogram, which shifts
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the histogram to the left or right. For increasing absolute values of ∆P0, the histogram shifts
further from its original location. The JSD histogram function can be approximated by computing
the overlapping area of two histograms. Since the histograms are normally distributed (according
to the LNS model), small shifts result in relatively large changes in the overlapping area of the
histograms. For larger shifts the change in overlapping area diminishes. Considering the nature
of the histograms and the JSD function, the relation between ∆P0 and ē can be described using a
negated Gaussian function. This is confirmed if the complete graph of the JSD based fingerprint
algorithm is shown (see figure 8.8). Because of the relative big impact of ∆P0 on mean localization
error for this algorithm, it is not a suitable algorithm for a realistic localization scenario.
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Figure 8.8: Impact of ∆P0 on mean localization error for the JSD fingerprinting algorithm.

8.6 Number of access points

The localization parameters considered so far were all uncontrollable parameters. A parameter
which can be controlled is the number of deployed access points in the localization space. Generally
the more access points, the better localization accuracy will be. This is because increasing the
number of access points increases the amount of information that is available for targets, thereby
reducing the impact of noise in the data. To see how significant the number of access points is on
accuracy, mean localization error has been computed for a varying number of access points. This
was done by selectively disabling access points in the datasets. Because the number of different
combinations of disabled access points was too high to compute the mean error for each of these
combinations, subsets of these combinations were tested and then the errors were averaged. The
results are displayed in figure 8.9. The random and fixed orientation datasets were used respectively
for calibration and evaluation.

Figure 8.9 shows that the uncalibrated localization algorithms are more sensitive to the number
of access points. This is as expected, because calibrated algorithms are more informed and therefore
require less information from access points than the algorithms which are not calibrated. An
interesting result is that Ecolocation appears to be more accurate than the uncalibrated LNS
model algorithm for a low number of access points. In a practical application of the localization
system, to cover enough surface the number of access points probably not as high as 10. To optimize
localization accuracy when the use of calibrated algorithms is not a viable option, the localization
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Figure 8.9: Impact of number of access points on mean localization error.

system could dynamically select a localization algorithm based on the number of access points that
can perceive a certain target. For example if only 3 access points detect and generate RSS samples
for a target device, Ecolocation will likely outperform the uncalibrated LNS model algorithm in
terms of accuracy. On the other hand if the number of access points is 7, the uncalibrated LNS
model is more likely to make better location estimates. According to figure 8.9 the threshold lies
at 6 access points.

The other localization algorithms show an approximate linear relation between the number
of access points and mean localization error for the interval N = [3 . . . 10]. Both the calibrated
LNS model algorithms and fingerprinting algorithms show similar behaviour, where none of the
algorithms in their respective classes are favourable above one another with respect to accuracy.

The plot shown in figure 8.9 can also be used to derive the minimum number of access points
that is required to achieve reasonable localization accuracy. In section 3.1.1, reasonable localization
accuracy has been defined as a maximum mean localization error of 5 m. Because the plot in
figure 8.9 was generated using a restricted set of output locations, mean localization error is 25%
higher for a realistic scenario (see section 8.1). This means that the threshold for reasonable
localization accuracy lies at 4 m in figure 8.9. At this threshold it appears that 3 access points are
sufficient for the calibrated localization algorithms. For the uncalibrated algorithms, however, at
least 5 access points are required to obtain reasonable localization accuracy.

8.7 Window size

Window size is another controllable parameter of the localization system. The window size is the
length of the time period in which RSS samples are used to estimate the location of a target device.
For optimal responsiveness the window size should be rather low, in the order of a few seconds.
However, the window size also affects accuracy as the number of RSS samples to be used for target
estimation is a function of the window size. Selecting an appropriate window size is therefore a
trade-off between accuracy and responsiveness. To test the effect on localization accuracy for the
different algorithms, mean localization error has been computed with for a window size ranging
from 5 seconds to 5 minutes. The results are displayed in figure 8.10. Mean localization error was
computed using the random orientation dataset for calibration and fixed orientation dataset for
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evaluation.
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Figure 8.10: Impact of window size ∆t on mean localization error.

Figure 8.10 shows that mean localization error is fairly constant for all algorithms when the
window size is 1 minutes or larger. When window size is decreased below 1 minute, the error
begins to increase exponentially. This leads to the conclusion that a time window of 1 minute is
sufficiently large to make location estimates with reasonable accuracy. A window size of 1 minute
may seem rather high. However, as discussed in section 4.3.1, the sample rate of RSS measurements
is low, about 18.6 samples per target device and access point per minute. For 10 access points this
corresponds to an average of ∼ 223 RSS samples. Note that increasing or decreasing the number
of access points affects the number of RSS samples in the window. To see if the number of access
points has a significant impact on the time at which the mean localization error stabilizes, the
same test has been repeated using 4 access points instead of 10. The results of this test are shown
in figure 8.11.

Comparing the results for 4 access points with the results for 10 access points, it can be seen
that the curves are less smooth and mean localization error lies higher. In general, however, the
graphs show similar behaviour of ē for varying values of ∆t. Also the point at which the error
stabilizes is the same in both graphs. Therefore a 1 minute window size appears to be sufficient
regardless of the number of access points.

With a window size of 1 minute, the localization system complies with the accuracy and
responsiveness requirements set in section 3.1.1. For all algorithms the mean localization error is
below 5 meter (taking a 25% increase in account for a realistic output range), thereby satisfying
the accuracy requirement. The responsiveness requirement states that targets should be localized
with reasonable accuracy within 5 minutes, so a window size of 1 minutes is sufficiently small. In
fact the margin is large enough to increase the window size. For a practical deployment of the
localization system this might be necessary, as the number of access points that will be able to
detect a target device is expected to be less than 10. Therefore a larger window size might be
required to still achieve localization estimates with reasonable accuracy.
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Figure 8.11: Impact of window size ∆t on mean localization error with 4 access points.

Summary

Localization based on IRR has resulted in a very poor performance. When the correlation between
IRR and distance was checked, no relation was found and thus it was decided to ignore this method.

Best localization accuracy was obtained for all algorithms using fixed orientation. When us-
ing a random orientation, mean error increased about 15%. For those algorithms that required
calibration, using the random orientation dataset for calibration has produced the best location
estimates. This is due to the fact that the LNS model parameters were estimated globally, while
these appear to be location dependent. The random calibration dataset, by chance, produces a
better estimate of LNS model parameters on global scale.

Device height appears to be no issue for the LNS model based algorithms. This is because of
the relative small range of possible heights, which therefore has little effect on distance. In practice
height is expected to be of more influence because it changes the relative orientation between the
target and the access points.

Transmitter Power Level (TPL) of the target devices did appear to be an important parameter
for localization accuracy. While the uncalibrated algorithms are independent of this parameter, the
calibrated algorithms are affected by this parameter. Especially the histogram based fingerprinting
algorithm is sensitive to this parameter. The main conclusion that can be drawn is that even for
small deviations (±3 dBm) of the TPL value, the uncalibrated LNS model algorithm yields better
localization accuracy compared to the other algorithms.

The dataset described in appendix A was used to test the impact of changes in environment
layout. Although there were a lot of small layout changes, localization accuracy was not worse
for this dataset. This is likely to be the result of the absence of major changes in environment
structure.

Apart from the uncontrollable parameters two controllable parameters were also tested. The
first of these is the number of access points, which appeared to have the biggest influence on the
accuracy of the uncalibrated algorithms. An interesting result is that if the number of access
points is less than 6, Ecolocation outperforms the uncalibrated LNS model algorithm. However, if
the number of access points is higher than 6, this is the other way around. Furthermore a rough
linear relation was observed for the number of access points and the mean localization error for
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the calibrated algorithms.
The second controllable parameter, window size, has revealed that a 1 minute window contains

a sufficient number of RSS samples to make location estimates with reasonable accuracy. This
threshold appears to be independent of the number of access points. Also increasing the window
size beyond 1 minute does not significantly improve localization accuracy.



Chapter 9

Practical test

The performance evaluation of the localization algorithms in the previous chapter has given insight
in how the localization parameters influence localization accuracy. It should be noted, however,
that this evaluation was performed for controlled environment, i.e. the parameters were selectively
set to fixed or variable values. For the evaluation in chapter 8 at most one parameter was varied.
While the results allow for a rough prediction of localization performance when multiple parameters
are unknown and variable, a more realistic test scenario is missing. Therefore another test was
performed using a mobile phone to more accurately simulate a practical scenario. This chapter
describes the setup of this test and the results.

9.1 Measurement setup

To test localization performance in a setting that more accurately simulates a practical environ-
ment, a mobile phone was used as target device. With this scenario it was possible to vary the
device orientation, device height and transmitter power level parameters from the datasets de-
scribed in section 7.2. First of all because a different device was used, the radiation pattern of the
radio signals was different which results in the same effect as a different orientation. Also the device
was carried in the pocket of a trouser which was at a lower height than the target devices used for
the performance analysis in chapter 8. Finally the transmitter power level might also have been
different for the mobile phone. Whether this was actually the case is not clear, because this value
was unknown for both the mobile phone and the target devices used for collecting the datasets.
Note that because the phone was carried in the pocket of a trouser, there was an additional effect
of the human body absorbing part of the radio signals, which is something that will also happen in
a practical setting. The mobile phone used for these tests was a Nokia 6300, shown in figure 9.1.

Figure 9.1: Nokia 6300 mobile phone.

The test was performed in the same environment as described in section 7.2. Therefore envi-
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ronment structure and access point layout were the same. Because the available time to perform
the measurements was limited, only a few measurements were made. The measurements were
performed with 4 different orientations (facing north, west, south and east) for each location. For
each of the orientations at a certain location, RSS samples were collected during a period of 2
minutes. Measurements were performed in the center of the 3 truss installations, so a total of
12 different sample sets were collected. The location and orientation of the mobile phone in the
trouser pocket was not changed until all measurements had been performed. Figure 9.2 shows the
locations in the test environment for which the RSS measurements were performed as well as the
location of the access points.

8 m = target location
= access point

Figure 9.2: Tested locations with mobile phone and access points locations.

9.2 Results

Using the measurement samples that were collected for each location and orientation the error
between the actual location and estimated location were computed. This was done for each local-
ization algorithm described in chapter 6, except for IRR based fingerprinting. For the algorithms
that required calibration, localization error was computed using both the fixed and random orien-
tation datasets for calibration. The complete results are listed in appendix D. In figure 9.3 mean
localization error is shown for each of the algorithms. This is done using both the fixed and random
orientation dataset for calibration.

The first thing figure 9.3 illustrates is that using the random orientation dataset for calibration
yields better location estimates then if the fixed orientation dataset is used. A similar result was
observed in section 8.1, when mean localization error for the algorithms was compared using the
fixed and random datasets for evaluation. For the calibrated LNS model based algorithms this is
likely to happen because of the same reason as in section 8.1: the LNS model parameters for the
test environment are estimated better using the random orientation dataset. The fingerprinting
based algorithms, however, show much more improvement in accuracy as compared to section 8.1.
Because of the small number of sample sets, it is not clear if this is just a coincidence or an effect
that is structural. If it is, then a possible explanation might be that the radiation pattern of
the mobile phone differs to a large degree from that of the target devices in its fixed orientation.
The random orientation used for the other dataset might therefore have more closely reflected the
radiation pattern of the mobile phone.

Another thing that is shown by figure 9.3 is that the uncalibrated algorithms appear to yield
the best location estimates. This result is in line with expectations, because the uncalibrated algo-
rithms are less sensible to the uncontrollable localization parameters. The calibrated algorithms,
on the other hand, rely on information which was gathered for a specific combination of parameter
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Figure 9.3: Mean localization error for each localization algorithm per calibration dataset.

settings. For the mobile phone measurements, these parameters were different, resulting in lower
localization accuracy. The localization performance test using a mobile phone, thus illustrates that
the algorithms that do not require calibration are preferred over those that do require calibration
in a practical setting for a Bluetooth based localization system.

Figure 9.4 shows a graph of the mean localization error for each of the 3 tested locations. This
graph was generated using the random orientation dataset. From this graph it can be seen that
localization error is the highest for the location in the center truss. This is also predicted by the
CRLB analysis and observed in the performance analysis in chapter 8. The reason for this is that
the density of access points in the middle truss is less than the density of access points for the
other truss installations.

Summary

To get an indication of localization performance in a practical setting, RSS samples were also
collected for a mobile phone. This was done in the same environment as for the datasets described
in section 7.2 and also with the same setup. For 3 different locations, measurements were performed
when the mobile phone was carried by a person in a trouser pocket. Measurements were repeated
4 times for each location with different orientations (facing north, west, south and east). With this
setup the parameters: device orientation, device height and possibly also transmitter power level,
were different than those from the calibration data, resulting a scenario that more closely resembles
a realistic situation. The main result of this test is that the uncalibrated localization algorithms
appear to perform better in such a setting than the algorithms which need to be calibrated. This
is in line with expectations, because the uncalibrated algorithms are less sensible to variations the
localization parameters.
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ē

(m
)

Figure 9.4: Mean localization error for each localization algorithm per location.



Chapter 10

Conclusions

In this thesis the use of Bluetooth for localization in a practical setting was studied. The context
of the localization system is that of an office building in which the location of people is tracked.
To determine whether Bluetooth is a viable localization technology for this application, minimal
requirements for 5 system properties were set. These requirements are:

• Mean localization error should be no higher than 5 m.

• For a stationary person, the system should be able to give a reasonable location estimate
within 5 minutes.

• Initial calibration effort should be minimal and periodic manual recalibration should not be
necessary at all.

• The system should be able to adapt to changes in the environment automatically.

• The only thing people should do in order to be localized is to turn on Bluetooth on their
mobile phone.

Based on these requirements two different measures have been selected for Bluetooth that can
be used to estimate target locations. The first is the Received Signal Strength Indicator (RSSI)
during the inquiry phase of the Bluetooth device discovery protocol and the second is Inquiry
Response Rate (IRR) The results, however, have shown that IRR provides no location information
and thus this measure has been excluded from the performance analysis. Research question 1:
‘Which localization measures are best suitable within the context? ’, can thus be answered with:
‘The localization measure best suitable within the context is RSSI during inquiry phase.’

Also based on the requirements, a set of uncontrollable parameters has been identified that
may possibly have a negative impact on localization accuracy. These parameters are:

• Relative orientation between target devices and the access point antennas.

• Varying levels of transmitter power for different target devices.

• Unknown height of the target devices.

• A dynamic environment structure and layout.

The answer to research question 2: ‘What are the parameters that influence localization perfor-
mance? ’ is therefore: ‘The parameters influencing localization performance are: device orientation,
transmitter power level, device height and environment structure.’

To test the impact of these parameters, a number of localization algorithms were selected on
which the effect of each of these parameters was tested. At least one algorithm from each class
of signal strength based localization methods was chosen. These algorithms form the answer to
research question 3: ‘Which localization methods will be evaluated? ’ The algorithms that were
tested are:

• Ecolocation
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• Log-Normal Shadowing model calibrated using Ordinary Least Squares linear regression.

• Log-Normal Shadowing model calibrated using Least Absolute Deviations linear regression.

• Log-Normal Shadowing model without calibration.

• Fingerprinting using mean RSS vectors.

• Fingerprinting using the Jenson-Shannon Divergence for RSS histograms.

Prior to collecting the datasets for evaluating localization performance, it was first checked
how significant device orientation influenced measured RSS values. This was done by comparing
the average RSS values measured for a number of different orientations. Differences in mean RSS
were found of up to 20 dBm, which corresponds to a large difference in distance. From these
measurements one orientation was selected that appeared to be optimal. This orientation is shown
in figure 7.5 and answers research question 4: ‘What is the optimal orientation between target
device and access point sensors? ’

Next, two datasets in a test environment were collected: one with a fixed optimal orientation
and one with a random orientation of target devices. To answer research question 5: ‘What is
the maximum localization accuracy that can be achieved? ’, a Cramér-Rao Lower Bound (CRLB)
analysis was performed on these datasets. This analysis has resulted in the following answer: ‘A
mean localization error of 4.64 and 4.31 m is expected for the fixed and random orientation datasets
respectively.’ The analysis, however, shed some doubt as to whether the orientation used for the
fixed dataset was indeed optimal.

When mean localization error was computed for the different algorithms it was found that
using a fixed orientation resulted for all algorithms in the best accuracy. This, however, contra-
dicts the expectations from the CRLB. The most probable cause of this discrepancy is that the
CRLB assumes the Log-Normal Shadowing (LNS) model parameters to be location independent,
while this appears not to be the case in the test environment. This idea is reinforced by the fact
that the estimation of LNS model parameters using linear regression did not result in the best
localization accuracy. For instance, better localization results were obtained using the random
orientation dataset for calibration and fixed orientation data set for evaluation as compared to the
case when both the calibration and fixed datasets were the same. Based on an inspection of the
mean localization errors that were computed for various combinations of calibration and evaluation
datasets, random orientation appears to increase localization error with 15% as compared to fixed
orientation, which answers research question 6a: ‘To what extent does unknown device orientation
affect localization accuracy? ’ This answer can be formulated as: ‘Compared to fixed device orien-
tation, mean localization error increases by about 15% when the orientation randomized.’ Despite
the decrease in accuracy for random orientation, all algorithms produced a mean localization error
well below 5 m, which is the minimal requirement for accuracy.

Testing the effect of changes in environment layout with an older dataset, revealed no significant
change in localization accuracy. It should be noted, however, that even though there were lots of
small difference in layout, there were no major differences. In both evaluation datasets all target
devices had a clear line of sight to the access point antennas. Because of this, it is not possible
give a conclusive answer to research question 6b: ‘To what extent do environmental changes affect
localization accuracy? ’

While it was not possible to collect a dataset for random target device height, the influence of
height for the LNS model based algorithms was still tested. This was done on the the assumption
that all devices are located on the same height for both calibration and evaluation data. By
explicitly including the height between the access points and target devices, it was possible to check
the influence if this value would be unknown. The results show that these algorithms are not very
sensible to this height, especially the uncalibrated algorithms. In actual practice height will be of
more influence, due to the fact that height also influences the measured RSS values, which could
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not be simulated. This is, however, only a problem for the calibrated localization algorithms.
An answer to research question 6c: ‘How significant is the effect of unknown device height on
localization accuracy? ’, can thus be formulated as: ‘Device height does not have a significant
effect on localization accuracy for uncalibrated localization methods, but for calibrated localization
methods it does have a negative impact if the height of target devices deviates from the calibrated
device height.’

Since no dataset with varying transmitter power levels (TPL) was available, such a dataset was
simulated by modifying the RSS values of one of the datasets which had been collected. This was
done to answer research question 6d: ‘How do varying levels of transmitter power affect localization
accuracy? ’ The results of the analysis of this parameter using the simulated dataset shows that
the histogram based fingerprinting algorithm is very sensitive to this parameter, thereby making it
impractical for realistic localization environments. The analysis also shows that the uncalibrated
algorithms are not affected by this parameter at all, while there appears to be linear relation for
the calibrated algorithms (except the histogram based one). With a TPL deviation within the
range of -2 to 3 dBm, the calibrated algorithms show the best localization accuracy. Outside
of this range, the uncalibrated LNS model algorithm outperforms the other algorithms. Since
absolute TPL deviations of more than 3 dBm are expected to common in a realistic setting, the
uncalibrated LNS model algorithm seems to be the best choice. In short the answer to research
question 6d is: ‘Transmitter power level has no influence on the accuracy of the uncalibrated
localization algorithms, but the calibrated algorithms, except histogram based fingerprinting, show
a linear relation between transmitter power level and accuracy.’

In addition to the uncontrollable localization parameters, the impact of two controllable pa-
rameters was also tested; those being: the number of access points and the window size. For the
number of access points a roughly linear relation was found with mean localization error for the
algorithms which used calibration. The uncalibrated algorithms were affected to a larger degree
by the number of access points. It appears that for 5 access points or less Ecolocation provides
the best location estimates, while the uncalibrated LNS model algorithm performs better if the
number of access points is 7 or higher. Furthermore, the analysis of the effect of the number of
access points shows that 3 access points are enough for the calibrated algorithms to achieve a rea-
sonable localization accuracy, while 5 access points are required for the uncalibrated localization
algorithms. The answer to research question 6e: ‘What is the minimum required number of access
points to achieve reasonable accuracy? ’ is thus: ‘A target device has to be detected by least 3 access
points for the calibrated localization algorithms and by at least 5 access points for the uncalibrated
algorithms, to estimate the location of the target with reasonable accuracy.’

Testing the influence of window size revealed that roughly 1 minute of RSS sample data is
sufficient for making reasonable location estimates. When less than 1 minute of data is used,
mean localization error becomes unstable and increases exponentially. The answer to research
question 6f: ‘What is the minimum required window size to achieve reasonable accuracy? ’, is thus:
‘A window size of 1 minute is sufficient to achieve location estimates with reasonable accuracy.’

Returning to the main research question ‘Which Bluetooth based localization system design
works well for indoor environments? ’, the conclusion is that for the context of indoor localization
using Bluetooth the best option is to use a combination of two algorithms. If a certain target is
perceived by 5 or less access points, then the best option is to use Ecolocation. Otherwise, if the
number of access points is higher than 5, then the uncalibrated LNS model algorithm is the best
option. These two algorithms are preferable over the other algorithms, because they do not require
any calibration. Therefore these algorithms are less sensitive to changes in environment structure,
transmitter power level, orientation and device height. This conclusion was confirmed when the
localization algorithms were tested with a mobile phone to simulate a more realistic localization
setting. The test showed that the two uncalibrated algorithms performed better with respect to
accuracy as compared to the calibrated algorithms. The results also indicate that the uncalibrated
algorithms conform to all of the minimal requirements set for the localization context.





Chapter 11

Future work

Although it appeared to be possible to find a suitable localization system design for indoor envi-
ronments, thereby answering the main research question, some parts of the performance evaluation
could be improved. Firstly it was only possible to collect 2 datasets, while a total of 6 datasets is
required to do a complete evaluation of the impact of the uncontrollable parameters identified in
chapter 5. These required datasets are:

• A calibration dataset in which all parameters are fixed.

• A control dataset for evaluation, also with all parameters fixed.

• An evaluation dataset with random device orientation.

• An evaluation dataset with random transmission power levels.

• An evaluation dataset with random device heights.

• An evaluation dataset with a changed layout of the test environment.

In this study it was possible to collect one dataset with all parameters fixed and one in which
orientation was randomized. Because of the availability of an older dataset with different different
environment layout, the effect of this parameter could also be tested. The differences were, however,
not significant enough to have clear impact on localization performance. Device height could only
be partially tested and the effect of TPL has been tested using simulations. Therefore collecting
these missing datasets should help to get more insight into the effect of these parameters.

There is also some doubt as to whether the fixed orientation indeed was the most optimal one.
It is worthwhile to repeat the RSS measurements for various orientations. But instead of only
testing a few angles in one dimension, the number of angles should be increased and should be
measured in two dimensions. This will give a more complete picture of the radiation pattern of
antennas in the Bluetooth dongles.

One thing that was not addressed in this thesis is the presence of non line of sight conditions,
which are very common for indoor environments. Most office buildings are divided into rooms
which are separated with concrete, bricks or some other material. The effect of these materials on
signal propagation is likely to affect localization performance. This is therefore something which
needs to be evaluated, because it may lead to such a drop in accuracy for the algorithms identified
that they are no longer practical.
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Appendix A

Old dataset

Before the datasets described in section 7.2 were collected, another dataset had already been
collected. Originally this dataset consisted of two separate datasets, which were intended to be
used for evaluating the localization algorithms. However due to some problems, these datasets
were not suitable for that purpose. The first problem was that the middle of the test environment
was not accessible for collecting a set of RSS measurements at systematically selected locations.
Also, it was not possible to install access points at all of the intended locations. Finally, because
of time constraints only one full dataset could be collected. The second dataset contained only a
small number of locations, which were randomly selected. While these datasets were sufficient for
initial testing of the localization algorithms, they were not suitable for the complete performance
analysis that was to be made (see chapter 8). Later both datasets had been merged into a single
dataset. This was done by taking all locations from the first dataset and 5 locations from the
second dataset. These 5 locations were in the middle of the test environment and had not been
included in the first dataset. Figure A.1 shows the tested locations for the merged dataset as well
as the locations of the access points that were used for collecting the RSS measurements.

8 m = target location
= access point

Figure A.1: Location of target devices and access points.

The setup for this dataset has been almost the same as that of the datasets described in 7.2.
Bluetooth dongles of the access points had been mounted into a fixed orientation using cardboard
and were lowered to about 0.5 m below the metallic structure of the truss installations. All dongles
were aligned in the same direction, i.e. they all had the same orientation, and all were located 2.5 m
above the ground. The target devices were mounted on tripods and the dongles were elevated using
cardboard to a height of 1.07 m below the Bluetooth dongles of the access points. All dongles were
aligned in the same direction, such that the relative orientation between the access points dongles
and target device dongles corresponded to the optimal orientation identified in section 7.1.2. The
setup of target devices is shown in figure A.2

A total of 5 target devices were available at the time of the measurements. With a total
number of 80 locations, 16 runs were needed to collect all of RSS sample sets. Each measurement
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Figure A.2: Target device positioning for dataset collection.

run was performed for a time period of 10 minutes. During the measurements, it was made sure
that there was no movement within the test environment. This was done to ensure that RSS
measurements were not affected due to (temporary) changes in signal propagation. For the same
reason, the layout of the test environment was not altered until all of the measurement runs had
been performed.



Appendix B

Linear regression methods

B.1 Ordinary Least Squares

Ordinary Least Squares (OLS) is a linear regression method that minimizes the variance of the
errors between observed samples in a dataset and samples predicted using linear approximation.
This minimization criterion is expressed by equation B.1.

(α̂, β̂) = argmin
α,β

N∑
i=1

(yi − α− βxi)2 (B.1)

In this equation N is the number of samples in the dataset, yi is the observed value for sample
i and xi is the regressor for sample i. The symbols α and β denote the parameters of the linear
approximation. Equations B.2 and B.3 respectively give the analytical solution for finding the
optimal values of β and α.

β̂ =

N∑
i=1

xiyi −
1

N

N∑
i=1

xi
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i=1

yi

N∑
i=1

x2i −
1

N

(
N∑
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xi

)2 (B.2)

α̂ =
1

N

N∑
i=1

yi − β̂
1

N

N∑
i=1

xi (B.3)

B.2 Iteratively Reweighted Least Squares

Iteratively Reweighted Least Squares (IRLS) is a method for solving Least Absolute Deviations
(LAD) linear regression. LAD linear regression is based on the minimization of the absolute differ-
ences between observed samples in a dataset and the samples predicted using linear approximation.
This minimization criterion is expressed by equation B.4.

(α̂, β̂) = argmin
α,β

N∑
i=1

|yi − α− βxi| (B.4)

Unlike OLS linear regression no analytical solution exists for LAD linear regression. Conse-
quentially equation B.4 needs to be evaluated using an iterative approach. A simple method for
doing so is IRLS. With IRLS the values of α and β are updated iteratively until they converge.
Initially the linear approximation parameters are assigned a random value, e.g. 1 for both α and
β. The values of α and β for each iteration are then defined as:

α̂0 = 1 (B.5)
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β̂0 = 1 (B.6)
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Here wi is defined as:

wi =
1

|yi − αn − βnxi|
(B.9)

After a sufficient number of iterations n, α̂n and β̂n hold the final values of the linear approxi-
mation parameters. The number of iterations is sufficient if the values of α̂ and β̂ for iteration n
do not show a significant change compared to the values for iteration n− 1.



Appendix C

Dongle orientation measurements

C.1 Tested orientations

Figure C.1 shows the different dongle orientations that have been tested. For each of the listed
orientations, the left dongle represents the dongle of the access point and right one represents the
dongle of the target device. The dark areas on the dongles in figure C.1 show the location of the
PCB antenna on the dongles and also serve as way for differentiating between orientations.

Orientation 1 Orientation 2 Orientation 3

Orientation 4 Orientation 5 Orientation 6

Orientation 7 Orientation 8 Orientation 9

Orientation 10 Orientation 11 Orientation 12

Orientation 13 Orientation 14

Figure C.1: Tested dongle orientations.
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C.2 Results

Table C.1 shows the mean and standard deviation for the RSS values measured at different Blue-
tooth dongle orientations. Data is aggregated for a time period of 10 minutes. The ‘Merged’
column shows the mean and standard deviation for the merged RSS samples, i.e. angle is ignored.

Orientation
Merged 0 ◦ 30 ◦ 60 ◦ 90 ◦

µ σ µ σ µ σ µ σ µ σ

1 −46.13 3.25 −46.99 1.47 −43.09 1.99 −48.27 3.84 −45.93 2.29

2 −48.80 4.17 −52.42 5.07 −45.44 1.48 −47.60 3.20 −49.95 2.20

3 −49.38 3.44 −53.31 2.62 −48.22 2.48 −46.75 2.21 −49.17 2.15

4 −50.91 4.68 −49.61 1.76 −46.87 2.37 −54.64 4.11 −52.71 5.21

5 −51.56 4.80 −56.01 3.82 −48.70 1.13 −47.88 2.70 −53.65 4.77

6 −51.72 5.59 −48.61 1.97 −59.75 4.03 −51.56 3.65 −47.41 1.63

7 −52.59 5.74 −50.09 1.71 −49.47 2.66 −57.41 8.04 −53.13 3.66

8 −53.65 7.45 −62.80 7.23 −51.41 5.49 −48.18 2.88 −52.50 3.44

9 −53.65 3.59 −58.07 2.88 −53.94 1.92 −51.45 2.09 −51.31 2.48

10 −54.05 6.58 −56.21 3.92 −57.72 8.92 −53.98 4.52 −48.09 1.61

11 −54.07 5.63 −59.37 3.46 −55.53 3.13 −54.10 4.77 −47.04 1.28

12 −54.74 5.97 −58.99 3.65 −58.05 5.36 −48.88 5.31 −52.36 2.36

13 −55.27 5.19 −60.52 4.20 −55.84 3.29 −53.90 4.48 −50.41 2.35

14 −56.49 7.20 −63.49 5.07 −60.41 5.22 −50.84 4.99 −51.26 2.47

Table C.1: Mean and standard deviation (in dBm) of measured RSS values for different orienta-
tions.

C.3 Consistency test results

To verify whether dongle orientation produces the same results, independently of the individual
dongles being used, measurements for orientation 1 have been repeated. This was done using a
new set of dongles for the access point and target devices. Measurements were collected 4 times,
each time moving dongles one position up to the next angle. The results for each repetition are
shown in table C.2.

Repetition
Merged 0 ◦ 30 ◦ 60 ◦ 90 ◦

µ σ µ σ µ σ µ σ µ σ

1 −48.15 4.60 −47.41 3.44 −45.00 1.73 −52.18 5.78 −47.38 2.11

2 −48.58 4.47 −47.07 3.41 −45.95 1.73 −53.43 5.35 −48.17 2.43

3 −48.96 5.10 −47.75 3.18 −45.41 1.92 −54.94 5.70 −47.77 2.63

4 −48.81 4.64 −47.88 3.45 −45.26 1.69 −53.62 5.28 −48.18 2.22

Table C.2: Measurement results for orientation 1 with dongles rotated each repetition.

A visual comparison of the measured mean RSS values for original and repeated tests of ori-
entation 1 is show in figure C.2. The graph shows similar mean RSS values for each test. Mean
RSS values were a little higher for some angles of the original test. This is caused by the fact
that the measurement setup was rebuild later for the repetitive tests. As a result there were some
differences in positioning, which explain the differences in mean RSS for some angles.
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Figure C.2: Mean RSS for repeated angle tests using dongle orientation 1.





Appendix D

Mobile phone test results

Calibration dataset fixed orientation random orientation

Algorithm N W S E N W S E

Ecolocation 2.22 2.12 2.20 1.92 2.22 2.12 2.20 1.92

Calibrated LNS (OLS) 3.58 2.84 3.15 2.01 3.58 2.84 3.15 2.01

Calibrated LNS (LAD) 3.58 2.84 3.15 2.01 3.58 2.84 3.15 2.01

Uncalibrated LNS 2.22 2.84 1.42 3.09 2.22 2.84 1.42 3.09

Fingerprinting (mean RSS) 3.15 3.03 2.99 1.42 0.98 0.99 0.98 1.02

Fingerprinting (JSD) 3.15 2.27 3.15 3.03 0.98 0.04 0.98 1.02

Table D.1: Location estimation errors in middle of left truss installation.

Calibration dataset fixed orientation random orientation

Algorithm N W S E N W S E

Ecolocation 3.18 7.40 3.10 3.15 3.18 7.40 3.10 3.15

Calibrated LNS (OLS) 11.52 10.55 2.95 9.54 10.51 10.55 2.95 3.55

Calibrated LNS (LAD) 11.52 11.55 11.48 9.54 11.52 10.55 2.95 3.55

Uncalibrated LNS 4.20 7.67 3.53 3.11 4.20 7.67 3.53 3.11

Fingerprinting (mean RSS) 11.38 11.42 3.58 3.55 2.92 10.41 9.51 9.54

Fingerprinting (JSD) 13.31 13.35 13.31 13.35 13.46 13.50 9.51 9.54

Table D.2: Location estimation errors in middle of center truss installation.

Calibration dataset fixed orientation random orientation

Algorithm N W S E N W S E

Ecolocation 2.81 2.57 2.22 2.55 2.81 2.57 2.22 2.55

Calibrated LNS (OLS) 2.20 2.22 2.20 2.95 2.20 2.81 2.20 2.95

Calibrated LNS (LAD) 2.20 2.22 2.20 2.95 2.20 2.22 2.20 2.95

Uncalibrated LNS 2.22 3.15 2.22 2.95 2.22 3.15 2.22 2.95

Fingerprinting (mean RSS) 7.97 9.58 7.97 2.95 2.22 2.23 2.22 2.22

Fingerprinting (JSD) 2.23 2.20 22.70 2.76 2.22 1.97 2.22 2.01

Table D.3: Location estimation errors in middle of right truss installation.
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