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Abstract

This report will use, in order to measure the performance of a (mathematical) system, the L2 norm for systems. For
a BIBO-stable (Bounded Input Bounded Output) and Linear Continuous Time Invariant (LCTI) system usually a
transfer function is defined. Using this transfer function it is possible to calculate the L2 norm of the system.
In the process of sampling and reconstruction of a signal two systems are used: a sampler and a hold. Most of the
time these systems are not LCTI but only linear and h-shift invariant or equivalently Linear Discrete Time Invariant
(LDTI). For this class of systems a way of calculating the L2 system norm is presented. This calculation is based on
the Frequency Power Response (FPR) of a system which is introduced in this report as well. This FPR is for an LDTI
system what the frequency response, e.g. |G(iω)|2 is for an LCTI system.
It has already been shown that the optimal combination of sampler and hold for a given sampling period h is always
LCTI. This means that the L2 norm of the system can be calculated in a classical way. This report shows how to
calculate the L2 norm of the optimal combination of sampler and hold. Also a graphical interpretation is given for
this optimal combination.
Because of the FPR, the L2 norm can now be calculated not only for LCTI systems but for LDTI systems as well. And
it is shown how to determine the optimal hold for a given sampler and sampling period h. Additionally the L2 norm
of the system can be calculated and graphically represented: how good (or how bad) is a certain hold in combination
with the given sampler.
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1 Introduction

1.1 Motivation

In signal processing, sampling and reconstruction of sig-
nals is an important subject. Sampling is nothing more
than the discretization of an analog signal, the device per-
forming this transformation is called a sampler. Sampling
for example can be done by measuring a signal at fixed mo-
ments in time. Reconstruction is exactly the opposite of
sampling; it turns a number of samples into an analog sig-
nal. The device performing this transformation is called a
hold. Reconstruction for example can be done by linearly
interpolating between two samples (connecting the dots).
A reason of sampling is compressing signals or adjusting
signals for storage at for example an CD. When choosing
the right combination of sampler and hold, the sampled-
and-reconstructed signal will look similar to the original
signal. The goal is of course to minimize the difference
between these two signals. In that case the sampling and
reconstruction process is optimal. In order to measure
the performance of a certain sampling and reconstruction
process, a norm is assigned to the process. These norms
are well defined for most processes, but their calculation
is sometimes rather complex.
The goal of this report is to show some ways of calculat-
ing a norm of a sampling and reconstruction process and
how to choose the sampler and/or hold in order to achieve
optimal signal reconstruction.

1.2 History of Sampling

In 2000 Michael Unser wrote an article [6] about the de-
velopment of sampling starting with Shannon because he,
together with Nyquist, can be seen as the godfather of
sampling. Shannon published an article in 1949 where he
stated that a signal containing no frequency higher than
a certain bound, is completely determined by giving its
samples at a series of points spaced h time units apart.
Furthermore he stated that in that case the signal can
be reconstructed uniquely and error-free for which he pre-
sented a formula (based on the samples). Nowadays this is
still referred to as Shannon’s Theorem but he himself has
not claimed the theorem as his own because he said the
idea was already common knowledge in the communica-
tion art. At the present Shannon’s Theorem is still alive
and well. The whole research area was founded by his
theorem and through the years many people have devoted
their research (and life) to this topic. All kinds of differ-
ent subjects are researched: varying time vs. constant time
between samples, undersampling or reconstruction using
weighted samples and splines for example. All of this has
started with Shannon’s Theorem from 1949.
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2 Background Information

2.1 Introduction

The idea behind sampling is to reduce the data quantity
of an (analog) signal or to be able to record the signal in a
way that allows one to reconstruct the signal afterwards.

Example 2.1.1. In order to record music on a CD, the
music is sampled and these samples are recorded on the
CD. When playing the CD, the CD-player reconstructs
an analog signal based on the samples recorded on the
CD.

The device that turns the analog signal u (in Exam-
ple 2.1.1 the music) in discrete samples ū is called a sam-
pler and it is denoted by the symbol S. The device that re-
constructs an analog signal y (in Example 2.1.1 the sound
leaving the speakers) from the samples ū is called a hold
and is denoted by the symbol H. An illustration of this
set-up is shown in Figure 1. Here the device G is called
the signal generator. In the context of Example 2.1.1 this
generator can be seen as the instruments producing the
music.
Of special interest is the error signal e which is the differ-
ence between the original signal u and the sampled-and-
reconstructed signal y. The smaller this signal e, the more
the reconstructed signal looks like to the original signal.

we

ū uy

u

+

−
H S

G

Figure 1: A system with sampler S, hold H, gen-
erator G, generator signal w, input signal u, sam-
pled input signal ū, output signaly and error sig-
nal e

In general a continuous time signal is represented by an
ordinary letter and round brackets, e.g. u(t). Whereas the
representation of a sampled (discrete) signal is a barred
letter and square brackets, e.g. ū[j].

2.1.1 Sampler

The reason for sampling and reconstruction of a signal is
stated above. This subsection will focus on some proper-
ties of samplers. A sampler turns an analog input signal
u(t) into a discrete signal ū[j], see Figure 2.

For a sampler the time between two consecutive samples
is called the sampling period. This sampling period can
be uniform (constant) or it can vary over time. For some
applications it is desirable to use a varying sampling time
whereas in this report the sampling period will be uniform

S

ū[j] u(t)

h

Figure 2: Example of a sampler that takes sam-
ples according to the value of the input function
at multiples of the sampling period h (the ideal
sampler)

and it is denoted by
h.

Besides a uniform sampling period, the samplers S in this
report are assumed to be Linear Discrete Time Invariant
(LDTI), see Definition A.1.8. This means that it is linear
and that a shift of the analog input by a multiple k of
the sampling period h results in a shift of the sampled
(discrete) output by k samples

Sσkh = σ̄kS.

It can be shown [3] that essentially every LDTI sampler
can be written as a convolution

ū = Su : ū [j] =

∫ ∞

−∞

ψ(jh− s)u(s)ds, j ∈ Z (2.1)

for some function ψ(t). This function ψ(t) is called the
sampling function and it defines the sampler, see Defi-
nition A.2.2. The most conventional sampler is the ideal
sampler which can be obtained by taking ψ(t) as the Dirac
delta function δ(t). This results in samples that are just
the values of the input at multiples of the sampling period,
see Figure 2. Of course the class of samplers (2.1) is much
richer than the ideal sampler. For instance, taking

0 h

1
h

ψ(t) = 1
h
1[0,h](t) =

leads to samples that are averages of the input over one
sampling period.
Clearly, sampling throws away an enormous amount of
information since, based purely on the samples one can-
not determine a unique analog input signal. Therefore,
in order to reconstruct the original analog input signal
to a certain extend, one must assume certain properties
of the input signal. For example, if the (ideal) samples
ū[j] := u(jh) are all zero, the input signal might have been
the zero signal u(t) = 0. But it might also have been the
signal

u(t) = sin
(π

h
t
)

which has its zeros in multiples of h. This shows that it is
not clear what the input signal has been considering only
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the information of the samples. For example, information
about the frequency of the signal can be used in order to
reconstruct the signal to a certain extend.
The famous result of Shannon (see Theorem A.2.4) shows
that if the maximal frequency of the analog input signal
u(t) is bounded by the Nyquist frequency ωnyq, defined as

ωnyq :=
π

h

(see Definition A.2.1), then the signal can be constructed
uniquely and error-free. Note that this is an assumption
on the input signal. The ideal sampler

ψ(t) = δ(t).

in combination with the correct hold, which will be men-
tioned shortly in Subsection 2.1.2, will achieve this error-
free reconstruction.

2.1.2 Hold

In this subsection some properties of holds will be re-
viewed. A hold turns a discrete signal ū[j] into an analog
output signal y(t), see Figure 3.

H

y(t) ū[j]

Figure 3: Example of a hold that holds the out-
put constant over one sampling period (zero-
order hold)

The holds H in this report are assumed to be LDTI devices
as are the samplers. In this case this means that it is linear
and that a shift of the discrete input by k samples results in
a shift of the reconstructed (analog) output by a multiple
k of the sampling period h

Hσ̄k = σkhH.

Similar to the sampler it can be shown [3] that essentially
every LDTI hold can be written as a convolution

y = Hū : y(t) =
∑

j∈Z

φ(t− jh)ū [j] , t ∈ R (2.2)

for some function φ(t). This function φ(t) is called the
hold function and it defines the hold, see Definition A.2.3.
Just like for the sampler, the class of holds (2.2) is a rich
class containing numerous holds. For example the zero-
order hold which keeps the analog output signal constant
over each sampling period can be obtained by using the
hold function

0 h

1

φ(t) = 1[0,h](t) =

A schematic representation of this hold is shown in
Figure 3. Another example of a hold is the one that
linearly interpolates between consecutive samples. This
hold is defined by the hold function

0 h−h

1

φ(t) =
(

1 − |t|
h

) 1[−h,h](t) =

and is illustrated in Figure 4.

H

y(t) ū[j]

Figure 4: Example of a hold that linearly inter-
polates between two consecutive samples (first-
order hold)

From these two examples one can see that the quality of
the analog output can vary a lot using different holds.
The zero-order hold only uses the information from one
sample, whereas the first-order hold also uses the infor-
mation from the neighboring samples. As mentioned in
Subsection 2.1.1 Shannon’s theorem (Theorem A.2.4) also
provides the hold function that will reconstruct a signal
error-free and uniquely if the maximum frequency of the
signal is smaller than ωnyq. Shannon’s reconstruction for-
mula reads

f(t) =
∑

k∈Z

sinc (t− kh) f(kh).

Hence the hold function defining this hold (referred to as
the sinc-hold) is the sinc:

sinc (t) :=
sin(πt)

πt
.

So by Shannon’s theorem using the ideal sampler and the
sinc-hold leads to an error-free reconstruction of the analog
input signal if the maximal frequency of the input signal
is smaller than ωnyq. And thus as explained previously
Shannon’s sampler and hold are defined by the functions

ψ(t) = δ(t) (2.3)

φ(t) = sinc (t) . (2.4)

3



2.1.3 Sampler and Hold combination

The combination of sampler and hold sometimes has the
special property of being Linear Continuous Time Invari-
ant (LCTI), see Definition A.1.7, and this has some useful
consequences.
In general both sampler and hold are LDTI which
means that they have certain shift-properties (see Subsec-
tions 2.1.1 and 2.1.2). In addition if a device is LCTI, the
properties are somewhat extended. Sometimes the com-
bination of sampler and hold HS is LCTI whereas both
sampler and hold individually are not. If the combination
HS is LCTI, then by definition it is linear and a shift of
the analog input by any real number τ results in a shift of
the analog output by τ

(HS)στ = στ (HS).

Since systems that are not LCTI have no classic transfer
function (see Subsection 2.3) the individual transfer func-
tions of H and S mostly do not exist (only in the special
case that both H and S are LCTI and stable, see Sub-
section 2.3). Sometimes the combination HS does have a
transfer function. In order to avoid notational confusion,
if HS has a transfer function, its notation is

F (s) := (HS)(s).

In general the combination HS is assumed to be LDTI
and its mapping can be constructed by substituting the
expression for ū[j] (2.1) in the expression for y(t) (2.2).
This results in a mapping from the input u to the out-
put y = HSu

y(t) =
∑

j∈Z

φ(t− jh)

∫ ∞

−∞

ψ(jh− s)u(s) ds.

Since the summation is independent of the variable s it
can be taken inside the integral leading to a product of
the hold- and sampler function

y(t) =

∫ ∞

−∞

∑

j∈Z

φ(t− jh)ψ(jh− s)u(s) ds.

Thus HS is an integral operator of the form

y(t) =

∫ ∞

−∞

κ(t, s)u(s) ds

where κ(t, s) is called the kernel of HS and it equals

κ(t, s) :=
∑

j∈Z

φ(t− jh)ψ(jh− s). (2.5)

Note that this kernel h-shift invariant, i.e. for all l ∈ Z

κ(t+ lh, s+ lh) =
∑

k∈Z

φ(t + lh− jh)ψ(jh− s− lh)

=
∑

k∈Z

φ(t + (l − j)h)ψ((j − l)h− s)

=
∑

k∈Z

φ(t − jh)ψ(jh− s)

= κ(t, s).

2.1.4 Signal Generator

The last device from the setting in Figure 1 is the signal
generator G. This device is assumed to be LCTI (see Defi-
nition A.1.7) and is assumed to have a strictly proper and
stable transfer function G(s) (see Subsection 2.3). It can
be shown [3] that every LCTI generator G can be written
as a convolution

u = Gw : u(t) =

∫ ∞

−∞

g(t− τ)w(τ) dτ, k ∈ Z

for some function g(t). This function g(t) is called the
impulse response and it defines the generator.
In this report the symbol G will also be used as the symbol
for a general (not explicitly specified) system. From the
context it will be clear when G refers to a signal generator
and when to a general system.
It can be shown [3] that a general LDTI system y = Gu is
of the form

y(t) =

∫ ∞

−∞

g(t, s)u(s) ds

where g(t, s) is called the kernel and it is h-shift invariant:

g(t+ h, s+ h) = g(t, s).

2.2 Signals

This subsection will focus on the representation of signals
and some of their properties. Furthermore a way of rep-
resenting a continuous-time signal as a kind of discrete
signal (Lifting) is mentioned.

2.2.1 Laplace transform

In signal processing the most straight forward way to rep-
resent a signal f is the time domain representation, i.e.

f(t), ∀t ∈ R.

However for some applications it is convenient to know
the Laplace transform of a signal. The Laplace transform
F (s) of a signal f(t) is defined as

F (s) :=

∫ ∞

−∞

f(t)e−st dt (2.6)

for those s ∈ C for which this integral exists. This trans-
formation is called the two-sided Laplace transform be-
cause the signal is integrated from −∞ to ∞. The one-
sided Laplace transform is defined as well

F1(s) :=

∫ ∞

0

f(t)e−st dt

for those s ∈ C for which this integral exists. Clearly this
one-sided Laplace transform throws away a lot of infor-
mation about the signal if the signal is non-causal (see
Definition A.1.9). A signal f(t) is said to be causal if

f(t) = 0 ∀t < 0.
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This report will consider non-causal signals as well, there-
fore the two-sided Laplace transform will be used. So from
now on the two-sided Laplace transform (2.6) will be re-
ferred to as the Laplace transform.

2.2.2 Fourier transform

It can be shown [1] that for an absolutely integrable signal
f(t), i.e.

∫ ∞

−∞

|f(t)| dt <∞

the Laplace transform (2.6) exists for all s ∈ C with
Re (s) = 0. This means that the Laplace transform exists
on the entire imaginary axis. Write the complex number
s as σ + iω with σ and ω real numbers and i being the
imaginary unit

√
−1. Now the Laplace transform looks

like

F (σ + iω) =

∫ ∞

−∞

f(t)e−σt−iωt dt

=

∫ ∞

−∞

f(t)e−σte−iωt dt

for σ = 0 which leads to

F (iω) =

∫ ∞

−∞

f(t)e−iωt dt. (2.7)

where ω is the frequency in radians per time unit. This
transform exists for all ω ∈ R and is a special case of the
Laplace transform, it is called the Fourier transform. The
Fourier transform has an inverse given by

f(t) =
1

2π

∫ ∞

−∞

F (iω)eiωt dω. (2.8)

In this report, the Fourier transform F (iω) of a signal
f(t) is always denoted by a capital. Using Equations (2.7)
and (2.8) one can switch between the time domain rep-
resentation and the frequency domain representation of a
signal.
If a signal f(t) is square integrable, i.e. the energy of the
signal Ef is finite

Ef :=

∫ ∞

−∞

|f(t)|2 dt <∞

then the two representations have a special property cap-
tured in Parseval’s theorem (see Theorem A.3.6). This
theorem shows that integrating the signal over all time
equals integrating the signal over all frequencies, except
for a contstant

∫ ∞

−∞

|f(t)|2 dt =
1

2π

∫ ∞

−∞

|F (iω)|2 dω. (2.9)

This means that the energy of the signal equals the energy
of its Fourier transform, except for the constant 2π.

2.2.3 Lifting

Lifting is a technique to represent a continuous time signal
f(t) with t ∈ R on a smaller, finite time interval [0, h). In
fact the signal is cut into an infinite number of intervals,
each of length h, see Definition A.4.1. However this means
that the lifted signal f̆ now is a function of two variables,
i.e. k and τ , and it is defined as

f̆ [k](τ) = f(kh+ τ) k ∈ Z, τ ∈ [0, h).

In other words, with lifting, a signal f on R is considered
as a sequence of functions on the interval [0, h). A positive
aspect of this process is that there is no loss of information.
The process of lifting is illustrated in Figure 5. The idea

−2h −h 0 h 2h t→

f(t) in continuous time

0 h 0 h 0 h 0 h

−2 −1 0 1 k →

{f̆ [k]} in the lifted domain

Figure 5: Lifting the analog signal f(t) = 1 +
cos( π

2h t)

behind this representation is to allow only time shifts that
are multiples of h. This implies that if a continuous-time
system y = Gu (see Subsection 2.3) is h-periodic, then in
lifted representation ŭ = Ğy̆ is shift invariant (i.e. a shift
in k) [3].
It turns out [3] that the Fourier transform of a lifted signal

f̆ exists if the Fourier transform of f itself exists, and it is
given by

F{f̆} = f̆(eiωh; τ) :=
∑

k∈Z

f̆ [k] (τ)e−iωkh

where the frequency ω is 2π-periodic, see Definition A.4.2.
A very useful result [3] is a theorem that shows that
there exists a bijection from the lifted fourier transform
f̆(eiωh; τ) and the classical Fourier transform F (iω), see
Theorem A.4.3. The projection in one direction is given
by

f̆(eiωh; τ) =
1

h

∑

k∈Z

F (iωk)eiωkτ (2.10)

for all τ ∈ [0, h), where ωk = ω+2ωnyqk is the kth aliased
frequency (see Definition A.2.1). And its inverse is given
by

F (iωk) =

∫ h

0

f̆(eiωh; τ)e−iωkτdτ.

This allows to switch between the classical representation
of a signal and its lifted representation using both (the
ordinary and the lifted) Fourier transforms.
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2.3 Systems

This subsection reviews mathematical systems, their prop-
erties and why it is convenient to use systems in signal
reconstruction.
In general a mathematical input-output system is a device
that receives an input signal u and produces a output sig-
nal y based on this input signal. Figure 6 shows a graph-
ical interpretation of an input-output system. Examples
of such systems are samplers, holds and signal generators.
In general the input- and output signals of a system are
multidimensional. This means that the system is multi
input multi output (MIMO). In order to understand the
results derived in this report, using MIMO systems is sim-
ply unnecessarily complicated. Therefore this report will
focus on systems that are single input single output (SISO)
only, but all results can be extended to MIMO systems by
use of matrix operations.

u y
G

Figure 6: A system G with input u, output y

If a system G is LCTI (see Definition A.1.7), then there
exists a convolution (see Definition A.1.10) that obtains
an output y based on the input u

y(t) = (g ∗ u)(t) =

∫ ∞

−∞

g(t− τ)u(τ) dτ. (2.11)

The function g(t) describes the system.
A system G is said to be BIBO-stable (see Definition A.1.2)
if the output is bounded for every bounded input. G is
BIBO-stable iff the infinite integral of |g(t)| is finite:

∫ ∞

−∞

|g(t)| dt <∞

and then the (two sided) Laplace transform of the function
g(t) exists as well on the imaginary axis. If additionally
the in- and output have Laplace transforms, the system
can be written as

Y (s) = G(s)U(s)

often notated as simply

y = G(s)u.

Note that this transfer function can only exist if the sys-
tem is LCTI, if the system is only LDTI it has no classic
transfer function. In general the in- and output signals
can be multidimensional which results in a transfer ma-
trix. The dimensions of the in- and output signals are
denoted by nu and ny respectively. In this report nu and
ny are both one.

If the transfer function G(s) is rational and proper the
transfer function can be written in the form

G(s) = C(sI −A)−1B +D (2.12)

with real matrices A, B, C and D. A rational transfer
function is said to be proper if the degree of the numer-
ator does not exceed the degree of the denominator. If
additionally the transfer function is strictly proper (the
degree of the numerator is smaller than the degree of the
denominator), then D equals zero.
Furthermore, if the system (2.12) is considered causal and
proper, then the impulse response g(t) of (2.12) is

g(t) = CeAtB · 1(t) +Dδ(t). (2.13)

This corresponds to a state space representation
{

ẋ = Ax +Bu
y = Cx+Du

(2.14)

with a new variable x: the internal state of the system.
Figure 7 shows a block-diagram of a proper state space
representation.

u

ẋ x

y
B

1
s C

A

D

+ +

Figure 7: The state space respresentation of sys-
tem (2.14) with input u, output y, real matrices
A, B, C and D and where 1

s denotes a pure in-
tegrator

A common notation for the state space representation of
a transfer function is

G(s) = C(sI−A)−1B+D
s
=

[

A B
C D

]

⇔
{

ẋ = Ax+Bu
y = Cx+Du.

Equations (2.11) and (2.13) combined provide the solution
for the output y

y(t) =

∫ ∞

−∞

g(t− τ)u(τ) dτ

=

∫ ∞

−∞

(

CeA(t−τ)B · 1(t− τ) +Dδ(t− τ)
)

u(τ) dτ

=

∫ t

−∞

CeA(t−τ)Bu(τ) dτ +Du(t).

So, to conclude this subsection, if an LCTI system G is
stable it has a transfer function G(s) for Re (s) = 0. If
additionally the system is causal and the transfer function
is rational and proper, then the system has a state space
representation of the form (2.14).
This report will focus on strictly proper systems, i.e. ma-
trix D is the zero matrix.
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2.4 Norms

In order to decide which of two sampler-and-hold combi-
nations is the best one, some kind of measure will be used
to compare multiple options. Such a measure is called
a norm, see Definition A.3.1. This subsection will show
some examples and applications of norms. Of special inter-
est are the norms suitable for signals and systems. Some
physical interpretations are mentioned as well.
In general, a norm (denoted by ||·||) is measure on a vector
space that assigns a non-negative number to every element
of the space. This number is the size of the element, mea-
sured by this specific norm. One vector space can have
multiple norms with different (physical) interpretations.

Example 2.4.1. In the vector space R3 every element
x ∈ R3 is of the form

x =





x1

x2

x3



 . (2.15)

The Euclidean norm on R3

||x||2 =
√

x2
1 + x2

2 + x2
3

represents the distance of the element x to the origin.
Whereas the norm

||x||∞ = max{x1, x2, x3}

represents the maximum distance in one direction (x1-, x2-
or x3-axis) of the element x to the origin. Both ||·||2 and
||·||∞ are norms on the space R3 but they have different
interpretations.

Example 2.4.1 shows that there exist several norms for
one vector space. The norm that is most convenient for
signals is studied in Subsection 2.4.1. For a system it is
not straight forward how to compute its norm, Subsec-
tion 2.4.2 will show the solution to this problem.

2.4.1 Signal Norms

For signals it is convenient to work with a norm that
represents the energy of the signal. Before introducing
this norm, first the vector space on which the signals live
needs to be introduced. In this report this is the space
L2(R) see Definition A.3.3. The space L2[a, b] consists of
all (Lebesque-integrable) functions f(t) with finite energy
on the interval [a, b]:

∫ b

a

|f(t)|2 dt <∞.

For all elements f(t) in the space L2[a, b] the norm

||f ||L2 :=

√

∫ b

a

|f(t)|2 dt

represents the square root of the signal’s energy. Note that
L2(R) is besides a normed space an inner product space
as well (see Definition A.3.2). The inner product between
two elements in L2(R) is defined as

〈f, g〉 :=

∫ ∞

−∞

f(t)g(t) dt.

By definition of the inner product, two elements are or-
thogonal if their inner product equals zero. Furthermore,
the relation between the inner product and the norm of a
signal is the following: the norm of a signal is the square
root of the inner product of the signal with itself

||f ||L2 =
√

〈f, f〉.

2.4.2 LCTI System Norms

As mentioned in the introduction of this subsection, it is
slightly more complicated to calculate norms of a system.
However, if a system G is stable and LCTI the norm of
the system can be defined in a similar way as the signal
norms. Recall that if G is stable and LCTI the system has
a transfer function G(s) mapping the input on the output.
Define yδ as the response of the system to the Dirac delta
function

yδ := Gδ.

If a system is stable and LCTI, the L2 system norm is the
L2 signal norm of the system’s response to the Dirac delta
function

||G||L2 := ||yδ||L2 =

√

∫ ∞

−∞

|Gδ(t)|2 dt (2.16)

=

√

∫ ∞

−∞

|(g ∗ δ)(t)|2 dt

=

√

∫ ∞

−∞

∣

∣

∣

∣

∫ ∞

−∞

g(t− τ)δ(τ) dτ

∣

∣

∣

∣

2

dt

=

√

∫ ∞

−∞

|g(t)|2 dt

= ||g||L2 .

Note that ||G||L2 is a system norm whereas ||yδ||L2 and
||g||L2 are signal norms. Furthermore, the L2-norm for
systems has an interpretation in terms of stochastic sig-
nals. If the input signal is white noise (see Defini-

tion A.1.11), then the squared norm of the system ||G||2L2

is exactly the variance or power of the output.
Equation (2.16) is the definition of the L2-norm for sys-
tems but it is not straightforward how to calculate this
norm. The following equation shows how to compute the
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system norm in the frequency domain

||G||L2 = ||yδ||L2 =

√

∫ ∞

−∞

|Gδ(t)|2 dt

=

√

∫ ∞

−∞

|(g ∗ δ)(t)|2 dt

=

√

1

2π

∫ ∞

−∞

|G(iω) · 1|2 dω

=

√

1

π

∫ ∞

0

|G(iω)|2 dω (2.17)

where G(iω) is the transfer function G(s) evaluated in the
purely imaginary points iω. The function G(iω) is the
Fourier transform of the impulse response g(t). Note that
|G(iω)| is an even function and that the derivations above
only hold for LCTI systems.
In order to calculate |G(iω)|2 the conjugate of a real trans-
fer matric G∼(s), defined as

G∼(s) := [G(−s)]T (2.18)

will be used. Similar to the scalar case, the squared abso-
lute value of a multidimensional real transfer function is
the function itself times its conjugate

|G(iω)|2 = G∼(iω)G(iω).

This leads to the following expression for the L2 system
norm of an LCTI system G:

||G||L2 =

√

1

π

∫ ∞

0

G∼(iω)G(iω) dω. (2.19)

This is the expression for the L2 system norm for an
LCTI system that will be used in further sections of this
report.

2.4.3 LDTI System Norms

The L2 system norm of an LDTI system G is defined as

||G||L2 :=

√

1

h

∫ h

0

||Gδ(· − t)||2L2 dt (2.20)

which can be seen as the integral over the response of the
system to a series of Dirac delta functions. There does not
exist a nice expression for this norm that is easy to work
with yet.

2.5 Calculation of the L
2 system norm

An expression for the L2 norm for a system was derived in
Subsection 2.4.2 and given by (2.19), still this expression
is not solvable in a clear way. This subsection will provide
an explicit solution for the L2 system norm and it contains
a few examples to show how this norm is calculated.

2.5.1 Classical Calculation

If the matrix A of the transfer function

G(s) = C(sI −A)−1B

is stable (see Definition A.3.8) the L2 system norm of
G (2.19) can be calculated in a classic way [5]. A Ma-
trix A is stable if all its eigenvalues λi lie in the open left
half of the complex plane C:

Re (λi) < 0 ∀i.

If so, the system has a unique solution P of the Lyapunov
equation [5]:

ATP + PA = −CTC. (2.21)

It is a classic result that if A is stable, then the calculation
of the L2 system norm of G can be reduced to

||G||L2 =
√
BTPB. (2.22)

Example 2.5.1. Consider the system G with transfer
function

G(s) =
1

1 + s
.

This corresponds to a state space representation

ẋ = −1x+ 1u
y = 1x

and the squared magnitude of G(iω) looks like

0 w →

1
∣

∣

1
1+iω

∣

∣

2
=

Note that all matrices are only scalars and that thereforeA
has only one eigenvalue, i.e. −1 and thus A is stable. The
Lyapunov equation reduces to a simple, scalar equation

−P − P = −1

which has the solution P = 1
2 . So the L2 system

norm (2.22) equals

||G||L2 =

√

1 · 1

2
· 1

=

√

1

2
. (2.23)
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2.5.2 Alternative Calculation

From Subsection 2.3 it is known that a real, rational and
strictly proper transfer function G(s) can be written in
the form

G(s) = C(sI −A)−1B
s
=

[

A B
C 0

]

.

In combination with (2.18) this gives an expression for the
conjugate G∼(s) of the transfer matrix

G∼(s) =
[

C(−sI −A)−1B
]T

= BT
[

(−sI −A)T
]−1

CT

= −BT (sI +AT )−1CT .

In Equation (2.19) the transfer function G(s) and its con-
jugate G∼(s) form a coupled system G∼G which means
that the output y of G is the input for G∼. Define K as
this coupled system

K(s) := G∼(s)G(s).

K also has a state space representation which will be
shown next [5]. Say, G has input u, output y and state x
whereas G∼ has input y, output z and state q, then the
coupled system can be written as

y = G(s)u

z = G∼(s)y

z = G∼(s)G(s)u

z = K(s)u.

Since both transfer functions G and G∼ are real, rational
and strictly proper, they both have a state space realiza-
tion

y = G(s)u ⇔
{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

z = G∼(s)y ⇔
{

q̇(t) = −AT q(t) − CT y(t)
z(t) = BT q(t).

Combining these two state space realizations and merging
them into one vector notation leads to







ẋ

q̇

z






=







A 0 B

−CTC −AT 0

0 BT 0













x

q

u







which is the state space representation of K(s). Define
the real matrices Ã, B̃ and C̃ as

[

Ã B̃

C̃ 0

]

:=







A 0 B

−CTC −AT 0

0 BT 0






. (2.24)

This means that K(s) can be written as

K(s) = C̃(sI − Ã)−1B̃.

Now, the L2 system norm (2.19) reduces to the integral
over K(s) for which a state space representation exists.
Note that C̃B̃ = 0. It can be shown [5] that if Ã, B̃ and
C̃ are real matrices and if C̃B̃ = 0, then the semi-infinite
integral of K(s) can be determined explicitly:

∫ ∞

0

K(iω) dω = iC̃ log
(

iÃ
)

B̃. (2.25)

This equation only holds as long as Ã has no eigenvalues
λi on the imaginary axis:

Re (λi) 6= 0 ∀i.

Note that this does not mean that Ã has to be stable (see
Definition A.3.8); Ã can have eigenvalues in the entire
complex plane as long as they do not lie on the imaginary
axis.
Equation (2.25) uses the principal logarithm (see Defini-
tion A.3.7) of a matrix. MATLAB R© has a command that
generates the principal logarithm for any square matrix of
which the real eigenvalues are strictly positive.
Equation (2.25) provides that the L2 system norm of a
system G can be written as

||G||L2 =

√

i

π

[

C̃ log
(

iÃ
)

B̃
]

(2.26)

provided that Ã has no eigenvalues on the imaginary axes.

Example 2.5.2. Consider the same system G as in Ex-
ample 2.5.1

G(s) =
1

1 + s

s
=

[

−1 1
1 0

]

.

This example will show how to calculate the L2 system
norm of this system in the way explained in Subsec-
tion 2.5.2

In order to calculate the L2 system norm, first Ã, B̃ and
C̃ are computed:

Ã =

[

−1 0
−1 1

]

B̃ =

[

1
0

]

C̃ =
[

0 1
]

Note that the eigenvalues of Ã are −1 and 1, so Equa-
tion (2.26) can be applied to this system. The principal
logarithm of iÃ is computed using MATLAB R©:

log
(

iÃ
)

=

[

−π
2 i 0

−π
2 i π

2 i

]

.

Now Equation (2.26) can be exploited to determine the L2
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norm of the system G(s) = 1
1+s

||G||L2 =

√

i

π

(

[

0 1
]

[

−π
2 i 0

−π
2 i π

2 i

] [

1
0

])

=

√

− i

π
· πi

2

=

√

1

2
. (2.27)

Of course, the L2 norm of this system can also be de-
termined analytically in order to verify the validation of
Equation (2.26). To do this, Equation (2.17) will be ex-
ploited together with the conjugate

G∼(s) =
1

1 − s

of the transfer function G(s). The squared magnitude of
the transfer function reads (see Equation (2.18))

|G(iω)|2 =
1

1 + iω
· 1

1 − iω

=
1

1 + ω2
.

Now the L2 norm of the system G can be calculated ana-
lytically

||G||L2 =

√

1

π

∫ ∞

0

|G(iω)|2 dω

=

√

1

π

∫ ∞

0

1

1 + ω2
dω

=

√

1

π
lim

ω→∞
arctan(ω)

=

√

1

π
· π
2

=

√

1

2
.

Note that this norm is exactly the same as the one cal-
culated using the principal logarithm (2.27) and the one
calculated using the classical expression (2.23).

In Example 2.5.2 the transfer function is SISO therefore
it is rather easy to calculate the L2 system norm analyt-
ically. Whereas calculating the norm using the principal
logarithm is a more complex calculation. In general, if the
transfer function is MIMO it is a lot more complicated to
calculate the norm analytically. Therefore it is very con-
venient to work with Equation (2.22) or (2.26) in order to
calculate the L2 norm of a system.
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3 Truncated System Norm

3.1 Introduction

The signal- and system norms on the vector space L2

are introduced in Subsections 2.4.1 and 2.4.2 respectively.
This subsection will focus on the concept of frequency
truncated system norms. Figure 1 on page 2 shows the
set up for a sample-and-reconstruction problem, this sys-
tem will be referred to as the error system. The signal w
is the input signal for G that will generate the signal to be
sampled and reconstructed u. The mapping from w to e
reads

e = (I −HS)Gw.
The goal is, given a (fixed) sampling period h, to minimize
the error e in some sense. For instance that the mapping
from w to e is minimized according to the L2 system norm:

min
H,S

||(I −HS)G||L2 . (3.1)

Here the norm is minimized over all stable and LDTI sam-
plers and holds. The interpretations of equation (3.1)
reads that the smaller the norm the more the sampled-
and-reconstructed signal y looks like the original signal u.
It can be shown [5] that if G is LCTI, then the combina-
tion of sampler and hold that minimizes the norm (3.1)
is in fact LCTI and stable as well. This means that the
combination F = HS has a transfer function (see Subsec-
tion 2.1.3):

F (s).

3.2 Monotonically decreasing response

If additionally the system G has a monotonically decreas-
ing magnitude |G(iω)| for positive ω, then the combination
of sampler and hold is the ideal low pass filter:

0 ωnyq

1

ω →
F (iω) = 1[−ωnyq,ωnyq](ω) =

This low-pass filter can be achieved using a low pass fil-
ter in combination with the ideal sampler and sinc-hold
from Shannon’s Theorem, see Equations (2.3) and (2.4)
on page 3.
The system (I −HS) with the minimizing sampler and
hold is in fact an ideal high-pass filter feeding through all
frequencies higher than the Nyquist frequency ωnyq.
So for a fixed sampling period h and an LTCI system
G with monotonically decreasing magnitude |G(iω)|2, the
best one can do is filter out the first Nyquist band N1

consisting of the frequencies [0, ωnyq), from the frequency
response (see Definition A.2.1).
Now the question arrises what the L2 norm of the system
(I −HS)G with optimal sampler-and-hold combination is.
This is in fact the object that was minimized in the first

place, see Equation (3.1). The norm of the error system
can be calculated in the same way as in Subsection 2.5.
Now the optimal sampler-and-hold combination causes the
magnitude |(I − F (iω))G(iω)|2 of the whole system to be
of the form

|(I − F (iω))G(iω)|2 =

{

0 0 < ω ≤ ωnyq

|G(iω)|2 ω > ωnyq

since (I − F )(iω) is a high-pass filter. This leads to the
following expression of the system norm

||(I −HS)G||L2 =

√

1

π

∫ ∞

0

|(I − F (iω))G(iω)|2 dω

=

√

1

π

∫ ∞

ωnyq

|G(iω)|2 dω. (3.2)

Equation (3.2) is called the truncated L2 system norm of
the system G and is denoted by

||G||ωnyq
:=

√

1

π

∫ ∞

ωnyq

|G(iω)|2 dω. (3.3)

Note that Equation (3.3) is in fact not really a norm (see
Definition A.3.1) since ||G||ωnyq

= 0 does not necessarily

imply G(iω) = 0 for all ω ∈ [0,∞].

3.2.1 Unstable matrix A

The truncated L2 system norm (3.3) is almost the same
as the L2 system norm (2.17) on page 8 except that the
integral of the truncated L2 system norm (3.3) starts at
the Nyquist frequency instead of at zero. It turns out that
the truncated L2 system norm (3.3) can be calculated in a
similar way as the oridinary L2 system norm (2.17) using
the state space representation

K(s) = C̃(sI + Ã)−1B̃

as defined in Subsection 2.5. Now the truncated L2 system
of G can be expressed in terms of the real matrices Ã, B̃
and C̃

||G||ωnyq
=

√

1

π

∫ ∞

ωnyq

|G(iω)|2 dω

=

√

1

π

∫ ∞

ωnyq

G∼(iω)G(iω) dω

=

√

1

π

∫ ∞

ωnyq

K(iω) dω.

This is the same derivation as used for Equation (2.17). It
can be shown [5] that the semi-infinite integral of K(iω)
also exists if the lower bound of the integral is larger than
zero:

∫ ∞

ωnyq

K(iω) dω = iC̃ log
(

ωnyqI + iÃ
)

B̃
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provided that ωnyq > ωmax := max |ωk|, where the maxi-

mum is taken over all pure imaginary eigenvalues iωk of Ã.
This leaves a concrete expression for the truncated system
norm

||G||ωnyq
=

√

i

π

[

C̃ log
(

ωnyqI + iÃ
)

B̃
]

(3.4)

which can be used to calculate the truncated L2 system
norm explicitly. So if the sampler-and-hold combination
is optimal, the L2 norm of the error system reduces to

||(I −HS)G||L2 =

√

i

π

[

C̃ log
(

ωnyqI + iÃ
)

B̃
]

. (3.5)

Example 3.2.1. Consider the same system G as in Ex-
ample 2.5.1 with the transfer function

G(s) =
1

1 + s

and sampling period h = 1. The squared magnitude of
the transfer function looks like

0 w →

1

|G(iω)|2 =

Since the magnitude of G is monotonically decreasing, the
optimal hold-and-sampler combination will cut of the first
Nyquist band:

0 w →

1

ωnyq

|(I − F (iω))G(iω)|2 =

The matrices Ã, B̃ and C̃ are the same as in Example 2.5.2
which leads to the calculation of the truncated L2 system
norm using Equation (3.5). In this case the Nyquist fre-
quency ωnyq = π

h equals π

||G||ωnyq
=

√

i

π

(

[

0 1
]

log

([

π − i 0
−i π + i

])[

1
0

])

=

√

i

π
· −0.3082i

= 0.3132.

Again, the norm can be determined analytically. Exam-
ple 2.5.2 already derived the anti-derivative of the inte-

grant

||G||ωnyq
=

√

1

π

∫ ∞

π

1

ω2 + 1
dω

=

√

1

π

(

lim
ω→∞

arctan(ω) − arctan(π)
)

=

√

1

π

(π

2
− 1.2626

)

= 0.3132.

Note that this norm, which is calculated analytically, is
exactly the same as the on calculated using the principle
logarithm.
In order to get an indication how much energy of the origi-
nal system G is preserved by sampling and reconstruction,
the following formula is exploited

||G||2L2 − ||(I −HS)G||2L2

||G||2L2

× 100% =
0.5 − 0.0981

0.5
× 100%

= 80.4%.

In this formula the numerator is the energy of the system
itself minus the energy of the error system. So the nu-
merator consists of thet total energy that is preserved by
sampling and reconstruction. Dividing this by the energy
of the system and multiplying by 100 gives the percentage
of energy that is preserved.
So 80.4% of the system’s energy is preserved by sampling
and reconstruction if a sampling period h = 1 is used in
combination with the optimal sampler and hold combina-
tion.

3.2.2 Stable matrix A

Subsection 3.2.1 showed how to calculate the norm

||(I −HS)G||L2 (3.6)

of the error system for the optimal sampler-and-hold com-
bination

F (iω) = 1[−ωnyq,ωnyq](ω). (3.7)

The system G is assumed to be LCTI and to have a mono-
tonically decreasing magnitude |G(iω)|2, and the sampling
period, h, is fixed.
In this case the L2 norm of the optimal error system
(I −HS)G reduces to the truncated L2 system norm of
only G as shown in Subsection 3.2

||(I −HS)G||L2 = ||G||ωnyq

=

√

i

π

[

C̃ log
(

ωnyqI + iÃ
)

B̃
]

.

However, calculating Ã, B̃ and C̃ requires a lot of the
computational capacity since the dimensions of Ã are twice
as large as of A itself. The computational burden can be
reduced if the matrix A of the transfer function

G(s) = C(sI −A)−1B
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is stable. Subsection 2.5.1 showed that if A is stable the
L2 system norm of G reduces to

||G||L2 =
√
BTPB.

It can be shown [5] that if G is stable, strictly
proper and if G has the state space representation
G(s) = C(sI −A)−1B with real matrices A, B and C and
A is stable, then

||G||ωnyq
=

√

− 2

π
Im (BTP log (ωnyqI + iA)B)

=

√

||G||2L2 −
2

π
Im (BTP log (iωnyqI − iA)B)

where P is the unique solution of the Lyapunov equa-
tion (2.21) on page 8. This provides the possibility to
calculate the L2 norm of the error system (3.6) with the
optimal sampler-and-hold combination (3.7), without the
computational burden of Ã, B̃ and C̃.
So if the matrix A is stable and the sampler-and-hold com-
bination is optimal, the L2 norm of the error system re-
duces to

||(I −HS)G||L2 =

√

− 2

π
Im (BTP log (ωnyqI + iA)B).

(3.8)

Example 3.2.2. This example will show how to calculate
the truncated L2 system norm using the Equation (3.8).
Consider the same system G as in Example 2.5.1 with the
transfer function

G(s) =
1

1 + s

and sampling period h = 1. The cut-off frequency ωnyq is
again π. Matrix P is again 1

2 just as in Example 2.5.1 and
thus the truncated L2 system norm reduces to

||G||ωnyq
=

√

− 2

π
Im

(

1 · 1

2
· log (π − i) · 1

)

=

√

− 2

π
Im

(

1

2
· (1.1930− 0.3082i)

)

=

√

− 2

π
(−0.154)

= 0.3132.

Note that this norm is the same as the one from Exam-
ple 3.2.1.

3.3 Folding

This subsection will discuss how the optimal sampler and
hold combination HS will look when the squared magni-
tude |G(iω)|2 of the system G is not monotonically de-
creasing. Still the goal is to minimize

||(I −HS)G||L2

−3ωnyq −2ωnyq −ωnyq 0 ωnyq 2ωnyq 3ωnyq
ω →

|G(iω)|2

0 ωnyq 2ωnyq 3ωnyq
ω →

|G(iω)|2

0 ωnyq

0 ωnyq

Figure 8: Folding the response of |G(iω)|2

over all stable and LDTI samplers and holds.
The assumption that G is strictly proper still holds, so
eventually there will be a frequency from where on |G(iω)|2
will be monotonically decreasing. This frequency is de-
noted by

ω∗.

It can be shown [4] that the optimal combination HS fil-
ters a finite number of frequency bands out of the response
|G(iω)|2. Though the total length of these frequency bands
equals the length of one Nyquist Band: ωnyq. So the pos-
sibilities of reducing the L2 system norm are limited by
ωnyq and thus by h. The next thing is to find the fre-
quency bands that need to be filtered out, in order to

13



achieve a minimal L2 norm of the error system. It turns
out that to find these frequency bands, one must fold the
response |G(iω)|2 like a harmonica. The response is folded
in multiples of the Nyquist frequency and since |G(iω)|2 is
an even function, this only needs to be done for positive
frequencies. This process is illustrated in Figure 8.
Once the response has been folded, the maximum over the
folded part is determined. In Figure 8 this is just the first
Nyquist band N1 because the response is monotonically
decreasing, but in general the maximum will consist of
several small frequency bands each corresponding to an-
other Nyquist band Nk. This is the case in Figure 9 and
Example 3.3.1.
In order to determine the maximum over the folded func-
tion, all Nyquist bandsNk will be projected on the interval
[0, ωnyq)

hk(ζ) =

{

|G(i ((k − 1)ωnyq + ζ))|2 k = 1, 3, 5, ...
|G(i (kωnyq − ζ))|2 k = 2, 4, 6, ...

with ζ ∈ [0, ωnyq) and k ∈ Z+ the Nyquist band index.
Now for every ζ in the domain the maximum over all func-
tions hk will be determined numerically

max
k

hk(ζ).

Every folded frequency ζm ∈ [0, ωnyq) has a maximum in
one of the Nyquist bands, indicated by the km correspond-
ing to this maximum. So the maximum corresponding to
ζm, lies in the Nyquist band Nkm

. In order to determine
the original frequency corresponding to the maxima, the
km and ζm of every maximum are used to project the
folded frequency back on the original frequency domain
(shown in Figure 9)

ωm =

{

kmωnyq + ζm km = 1, 3, 5, ...
kmωnyq + (ωnyq − ζm) km = 2, 4, 6, ...

Folding does not imply that the frequencies with the
largest peak of the response are filtered out, but it fil-
ters out the maximum of the folded response.
Important for folding is to know from where on the fre-
quency response is monotonically decreasing. Here the
transfer matrix K(s) will be exploited once again, recall

|G(s)|2 = G∼(s)G(s) = K(s) = C̃(sI − Ã)−1B̃.

As stated in the beginning of this subsection, the fre-
quency response will decrease monotonically after ω∗.
This frequency is the largest frequency for which the
derivative of K(iω)

d

diω
K(iω) = −C̃(iωI − Ã)−2B̃

equals zero. By transferring this expression back to a
(MIMO) transfer matrix it is just a matter of equaling the
(multiple) numerator(s) to zero. The largest frequency for

−3ωnyq −2ωnyq −ωnyq 0 ωnyq 2ωnyq 3ωnyq
ω →

|G(iω)|2

0 ωnyq

h1

h2

h3

0 ωnyq 2ωnyq 3ωnyq
ω →

|G(iω)|2

δ1
ǫ1 δ2

|(I − F )G(iω)|2

Figure 9: Unfolding the response of |G(iω)|2 after
determining the maxima (red). In blue the fre-
quencies that will be filtered in order to achieve
a minimal L2 norm of the error system. There is
one unfiltered band [δ1, ǫ1] and the tail [δn,∞),
so in this case n equals 1

which (one of) the numerator(s) equals zero, is ω∗. It is
not difficult to determine in which Nyquist band ω∗ lies.
This Nyquist band is called

Nk∗ .

Folding needs to been done up till Nyquist band Nk∗+1

because this band can still tribute to the maximum due
to folding.
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In the case where |G(iω)|2 is monotonically decreasing, the
calculation of the L2 norm of the error system (3.1) con-
sist of only one integral. Since the optimal combination
of sampler-and-hold HS filters several frequency bands if
the response is not monotonically decreasing, the calcula-
tion is somewhat more complicated. The number of fre-
quency bands that are filtered out is finite, so the num-
ber frequency bands that are unchanged is finite as well
(say n). Additionally the ”tail” of the frequency response
contributes to the norm as well

||(I −HS)G||L2

=

√

√

√

√

1

π

n
∑

k=1

∫ ǫk

δk

|G(iω)|2 dω +
1

π

∫ ∞

δn+1

|G(iω)|2 dω

=

√

√

√

√

1

π

n
∑

k=1

−iC̃ log (Ωk) B̃ + ||G||2δn+1
(3.9)

with

Ωk :=
(

ǫkI + iÃ
)(

δkI + iÃ
)−1

and Ã, B̃ and C̃ as defined in (2.24). Furthermore ǫk and
δk are respectively the under- and lower bound of the unfil-
tered frequency bands. The norm ||G||δn+1

is defined in the

same way as the truncated L2 system norm ||G||ωnyq
(3.3),

only with a lower bound δn+1 instead of ωnyq.
The optimal sampler-and-hold combination HS now looks
like a series concatenated step functions

F (iω) = 1[0,δ1] +

n
∑

k=1

1[ǫk,δk+1]

0

1

F (iω) =

δ1
ǫ1 δ2

ǫ2 δn+1
ω →

where the following holds for ǫk and δk

(δ1 − 0) +

n
∑

k=1

(δk+1 − ǫk) = ωnyq

since the optimal combination HS can only filter multiple
frequency bands with a total length of ωnyq.
Note that the above also holds for negative frequencies
since the function F (iω) is an even function.

Example 3.3.1. Consider the ideal sampler, a sampling
period h = 4 and the system

G(s) =
1

(s+ 0.2)2 + 1
.

This corresponds to a transfer function
G(s) = C(sI −A)−1B with

A =

[

−0.4 −1.04
1 0

]

, B =

[

1
0

]

, C =
[

0 1
]

.

The squared magnitude of the transfer function looks like

1 ω →

|G(iω)|2 =

The matrix Ã (as defined in Equation (2.24) on page 9)
now looks like

Ã =









−0.4 −1.04 0 0
1 0 0 0
0 0 0.4 −1
0 −1 1.04 0









which has the eigenvalues −0.2± i and 0.2± i. This means
that Ã has no pure imaginary eigenvalues, so the L2 sys-
tem norm of G can be calculated using Equation (2.26).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

Figure 10: Frequency Response of G = 1/((s +
0.2)2 + 1). In red the maxima found by folding
and in pink the frequencies that will be filtered
out by the optimal hold-and-sampler combina-
tion
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Figure 10 shows the magnitude of the frequency response
of the system G. In this figure, the dotted lines are mul-
tiples of the Nyquist frequency ωnyq = π

4 . These are the
lines over which the function is folded, similar to Figure 8.
After determining the maxima (in red) the function is
folded back (similar to Figure 9) and the frequencies cor-
responding to the maxima are highlighted in pink. The
L2 norm of the error system corresponding to the optimal
sampler-and-hold combination HS for this specific G can
be calculated using Equation (3.9)

||(I −HS)G||L2 = 0.6487.

In order to get an indication how much energy of the origi-
nal system G is preserved by sampling and reconstruction,
the following formula is exploited

||G||2L2 − ||(I −HS)G||2L2

||G||2L2

× 100%

=
1.2019− 0.4208

1.2019
× 100%

= 65.0.%

This means that 65.0% of the systems energy is preserved
after sampling and reconstruction if a sampling period
h = 4 is used in combination with the optimal sampler
and hold combination.

Intuitively one might think that reducing the sampling
period h leads to better performance of the system. After
all, reducing the sampling period leads to more samples
(more data) and therefore it might be expected that the
sampled-and-reconstructed signal y looks more similar to
the input signal u. Though it turns out that this is not
true. Example 3.3.2 shows that reducing the sampling
period does not automatically lead to a smaller L2 norm
of the error system. Of course, eventually the error will
go to zero but this is only for very small h. Example 3.3.2
shows a lower bound for the L2 norm of the error system
as well.

Example 3.3.2. [4] Consider the same system as in Ex-
ample 3.3.1:

G(s) =
1

(s+ 0.2)2 + 1
.

Now instead of taking the sampling period h fixed and de-
termining the error for this one sample period , the sample
period will vary and hence the norm of the system will be
a function of h. In this example the norm of G is exploited
in three different ways:

m(h) := ||G||2L2

p(h) := ||(I − HS)G||2L2

q(h) := ||G||2L2 −
||G||2L∞

h

where the infinity norm is defined as

||G||L∞ := ess sup
ω∈R

|G(iω)| .

The function q(h) is a lower bound for the L2 norm of the
error system p(h) which can be seen in the proceedings
of the example. For every sampling period h the norm
is based on the corresponding optimal sampler and hold
combination, in the same way as in Example 3.3.1.
In this example the fundamental limit is where q(h) equals
zero, i.e.

hG :=
||G||2L2

||G||2L∞

=
2.52

125/104
= 5.2.

Figure 11 shows the L2-norm, the truncated norm and the
difference between the L2-norm and the scaled L∞-norm
for different sample periods.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 11: In red the L2-norm of G; m(h), in
blue the L2 norm of the error system (I −HS)G;
p(h) and in pink the difference between the L2

norm and the scaled L∞ norm of G; q(h). On
the horizontal axis the sampling period h and
on the vertical axis the size of the norm. Here
it is clear that q(h) is indeed a lower bound for
||(I −HS)G||

To conclude this section, as long as the combination
sampler-and-hold HS is optimal, it is LCTI and has a
transfer function F (s) on the imaginary axis. This means
that the L2 norm of the error system can be calculated in
a nice way for the minimizing combination HS.
For a monotonically decreasing frequency response
|G(iω)|2 of the generator G the minimizing combination
HS filters the first Nyquist band N1. In this case the
norm can be calculated using either Equation (3.5) or
Equation (3.8) depending on whether the matrix A of the
transfer function G(s) is stable or not.
If the response is not monotonically decreasing the op-
timal sampler-and-hold combination can be constructed
by the concept of folding. This will cause HS to filter a
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finite number of frequency bands from the frequency re-
sponse. In this case the norm can be calculated using
Equation (3.9).
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4 Frequency Power Response

4.1 Introduction

This section will study another kind of problem as studied
in Section 3. Instead of minimizing the L2 norm

||(I −HS)G||L2

over the combination of sampler-and-holdHS, the sampler
is always the ideal sampler (thus fixed) and the norm will
be minimized over all possible LDTI and stable holds H.
This means that (almost always) the combination HS is
not LCTI, but only LDTI. Therefore the L2 norm of the
error system

||(I −HS)G||L2 =

√

1

π

∫ ∞

0

|(I − F (iω))G(iω)|2 dω

is defined, but it can not be calculated in this way because
the transfer function F (s) of HS does not exist. In order
to be able to minimize the error system, in this section
another form of the L2 system norm will be derived.

4.2 Frequency Power Response

This subsection will introduce the set up for a possible
new expression of the L2 system norm. This expression
is based on the Frequency Power Response (FPR) of the
system.

Definition 4.2.1. For an LDTI system G the Fre-
quency Power Response (FPR) is defined as

PG(ω) := lim
T→∞

1

2T

∫ T

−T

|Guω(t)|2 dt (4.1)

where uω is defined as the harmonic input

uω(t) := eiωt. (4.2)

The FPR is the LDTI alternative for what |G(iω)|2 is to
an LCTI system G. Note that for an LCTI system G the
the FPR PG equals |G(iω)|2. Before continuing with the
FPR a small remark is in place.

Remark 4.2.2. Note that the response Guω(t) has an
h-periodic magnitude, i.e.

|(Guω)(t+ h)| = |G(eiω(t+h))|
= |G(eiωteiωh)|
= |G(eiωt) · eiωh|
= |G(eiωt)| · |eiωh|
= |(Guω)(t)| · 1.

Remark 4.2.2 implies that the FPR of an LDTI system G
reduces to

PG(ω) =
1

h

∫ h

0

|Guω(t)|2 dt. (4.3)

Equation (4.3) is the formula of the FPR that will be used
in further sections of this report.

Example 4.2.3. This example will show how the FPR
will be used and that its interpretation is the same as
|G(iω)|2 for an LCTI system.
Consider a sampling period h = 1 and the series of func-
tions {fk} defined as

fk(t, s) := e−(s−kh)1[0,∞)(s− kh) · cos

(

2π

h
t

)

for s, t ∈ R. Now define the kernel g(t, s) of the system G
as the concatenation of these functions

g(t, s) := fk(t, s) if t ∈ [kh, (k + 1)h).

Note that g(t+ lh, s+ lh) = g(t, s). The mapping y = Gu
is given by

y(t) =

∫ ∞

−∞

g(t, s)u(s) ds.

Using Equation (4.3), the expression for the FPR of the
LDTI system G can be derived

PG(ω) =
1

h

∫ h

0

∣

∣

∣

∣

∫ ∞

−∞

g(t, s)e−iωs ds

∣

∣

∣

∣

2

dt

=
1

h

∫ h

0

∣

∣

∣

∣

∫ ∞

−∞

f0(t, s)e
−iωs ds

∣

∣

∣

∣

2

dt

=
1

h

∫ h

0

∣

∣

∣

∣

∫ ∞

−∞

e−s1[0,∞)(s) · cos

(

2π

h
t

)

e−iωs ds

∣

∣

∣

∣

2

dt

=
1

h

∫ h

0

∣

∣

∣

∣

cos

(

2π

h
t

)∫ ∞

0

e(−iω−1)s ds

∣

∣

∣

∣

2

dt

=
1

h

∫ h

0

∣

∣

∣

∣

cos

(

2π

h
t

)

1

iω + 1

∣

∣

∣

∣

2

dt

=
1

h

∫ h

0

cos2
(

2π

h
t

)

1

ω2 + 1
dt

=
1

2(ω2 + 1)
.

Figure 12 shows the plot of PG(ω). Note that this plot
looks similar to the one of |G(iω)|2 in Example 3.2.1.

0 w →

1
2PG(ω) =

Figure 12: Plot of PG(ω)
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4.3 FPR Theorem

Before introducing the FPR Theorem first a Lemma is
proven that will be used in the proof of the FPR Theo-
rem. This lemma proves a property of the kernel g(t, s) of
an LDTI system G. In fact it proves that integrating the
kernel over a horizontal strip (−∞,∞) × [0, h] equals inte-
grating the kernel over an vertical strip [0, h]× (−∞,∞).

Lemma 4.3.1. For an LDTI system G that is of the
form

y = Gu y(t) =

∫ ∞

−∞

g(t, s)u(s) ds

with h-shift invariant kernel g(t, s), the following holds

∫ h

0

∫ ∞

−∞

g(t, s) ds dt =

∫ h

0

∫ ∞

−∞

g(s, t) ds dt.

Proof
Recall that the h-shift invariance of the kernel means that

g(t+ kh, s+ kh) = g(t, s)

for every k ∈ Z. And thus

∫ h

0

∫ h

0

g(s+ kh, t+ kh) ds dt =

∫ h

0

∫ h

0

g(s, t) ds dt.

Knowing this gives

∫ h

0

∫ ∞

−∞

g(t, s) ds dt

=
∑

k∈Z

∫ h

0

∫ (k+1)h

kh

g(t, s) ds dt

=
∑

k∈Z

∫ h

0

∫ h

0

g(t, s+ kh) ds dt

=
∑

k∈Z

∫ h

0

∫ h

0

g(t− kh, s+ kh− kh) ds dt

=
∑

k∈Z

∫ h

0

∫ h

0

g(t− kh, s) ds dt

=
∑

k∈Z

∫ (k+1)h

kh

∫ h

0

g(t, s) ds dt

=

∫ ∞

−∞

∫ h

0

g(t, s) ds dt

=

∫ h

0

∫ ∞

−∞

g(s, t) ds dt.

This lemma can be explained intuitively by the fact that
g(t, s) is h-shift invariant. The kernel can be seen as a
large matrix with blocks of h×h. This matrix is constant
over all (sub)diagonals (because of the shift invariance).

All rows of hight h contain all different existing blocks,
as do all columns of width h. Therefore integrating over
one row of hight h is the same as integrating over one
column of width h. This is illustrated in Figure 13 where
the vertical and horizontal strips are indicated in red an
blue respectively. Both strips contain the same blocks.

Figure 13: The kernel κ(t, s) represented as a
matrix. In blue a horizontal strip and in red a
vertical strip

The FPR Theorem links the L2 norm of an LDTI system
G to the Frequency Power Response PG of the system and
is therefore very useful in order to calculate the L2 system
norm of an LDTI system. Recall that the L2 norm for an
LDTI system G was defined as

||G||L2 =

√

1

h

∫ h

0

||Gδ(· − t)||2L2 dt.

where ||Gδ(· − t)||L2 is an L2 signal norm whereas ||G||L2

is an L2 system norm.

Theorem 4.3.2. [Frequency Power Response]
For an LDTI system G that is of the form

y = Gu y(t) =

∫ ∞

−∞

g(t, s)u(s) ds

with h-shift invariant kernel g(t, s), the following holds

||G||2L2 =
1

2π

∫ ∞

−∞

PG(ω)dω. (4.4)

Proof
The system G is LDTI and it is given that

y(τ) =

∫ ∞

−∞

g(τ, s)u(s) ds
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with g(t, s) being the kernel of the system G. This kernel
is h-periodic:

g(t+ lh, s+ lh) = g(t, s)

for all l ∈ Z. For a harmonic input uω the output
yω := Guω has a squared magnitude

|yω(t)|2 =

∣

∣

∣

∣

∫ ∞

−∞

g(t, s)eiωs ds

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫ ∞

−∞

gt(s)e
−iωs ds

∣

∣

∣

∣

2

= |Gt(iω)|2 (4.5)

where gt(s) is the function g(t, s) where t is treated as a
fixed variable (independent of s) and Gt(iω) is its Fourier
transform.
By definition the L2 norm for LDTI systems (see Subsec-

tion 2.4), ||G||2L2 is given by

||G||2L2 =
1

h

∫ h

0

||Gδ(· − t)||2L2 dt.

For y = Gδ(· − t) the following expression exists

y(τ) =

∫ ∞

−∞

g(τ, s)δ(s− t) ds

= g(τ, t).

This means that the L2 system norm can be written as

||Gδ(· − t)||2L2 = ||y||2L2

=

∫ ∞

−∞

|y(τ)|2 dτ

=

∫ ∞

−∞

|g(τ, t)|2 dτ

= ||g(·, t)||2L2 .

And thus reduces the expression for the L2 system norm
of G to

||G||2L2 =
1

h

∫ h

0

||g(·, t)||2L2 dt.

Substituting the definition of the L2 norm for a (non-
causal) signal g(s, t) in this integral gives

||G||2L2 =
1

h

∫ h

0

∫ ∞

−∞

|g(s, t)|2 ds dt.

This can be written in the following form using
Lemma 4.3.1

||G||2L2 =
1

h

∫ h

0

∫ ∞

−∞

|g(t, s)|2 ds dt. (4.6)

The right hand side from the equation in the theorem can
be expressed in terms of the kernel as well

1

2π

∫ ∞

−∞

PG(ω) dω =
1

2π

∫ ∞

−∞

1

h

∫ h

0

|Guω(t)|2 dt dω

=
1

2π

∫ ∞

−∞

1

h

∫ h

0

|yω(t)|2 dt dω

=
1

2π

∫ ∞

−∞

1

h

∫ h

0

|Gt(iω)|2 dt dω

where Equation (4.5) is used. By interchanging the order
of integration, Parseval’s Theorem (2.9) on page 5 can be
applied on gt(s)

1

2π

∫ ∞

−∞

PG(ω) dω =
1

h

∫ h

0

1

2π

∫ ∞

−∞

|Gt(iω)|2 dω dt

=
1

h

∫ h

0

∫ ∞

−∞

|gt(s)|2 ds dt.

This means that the right hand side of the equation in the
theorem can be written like

1

2π

∫ ∞

−∞

PG(ω) dω =
1

h

∫ h

0

∫ ∞

−∞

|g(t, s)|2 ds dt. (4.7)

And thus the left hand side (4.6) of the theorem’s equation
equals the right hand side (4.7)
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5 Construction of Optimal Hold

5.1 Introduction

Just like in Section 4, this section will focus on the mini-
mizing problem where the sampler is always the ideal sam-
pler. This means that the L2 norm of the error system

||(I −HS)G||L2

will be minimized over all LDTI and stable holds H. Sec-
tion 4 already showed that the L2 system norm of an LDTI
system can be expressed in terms of its kernel κ(t, s) using
the Frequency Power Response.

5.2 Harmonic input for HS
In this subsection the input to the system HS is harmonic.
This means that the input u in Figure 1 on page 2 is
harmonic. So the input u of S is as defined in (4.2):

uω(t) = eiωt

for some ω ∈ R. Now the sampled-and-reconstructed sig-
nal y based on the harmonic input uω is defined as

yω(t) := HSeiωt

for some ω ∈ R. The explicit form of yω will be derived in
this subsection.

5.2.1 Sampler

The form of the sampled signal ū will be determined for a
harmonic input, applied to a general LDTI sampler S:

ūω[j] := Suω(t) =

∫ ∞

−∞

ψ(jh− s)uω(s) ds

=

∫ ∞

−∞

ψ(jh− s)eiωs ds.

The expression on the right hand side is almost the same
as the Fourier transform (see Definition A.3.5). The next
derivation shows that it is in fact a special form of the
Fourier transform of ψ(t).

ūω[j] =

∫ ∞

−∞

ψ(jh− s)eiωs+iωjh−iωjh ds

=

∫ ∞

−∞

ψ(jh− s)e−iω(jh−s)+iωjh ds

= eiωjh

∫ ∞

−∞

ψ(jh− s)e−iω(jh−s) ds

= eiωjhΨ(iω).

5.2.2 Hold

The form of the sampled-and-reconstructed signal yω will
be determined based on the sampled input ūω

yω(t) = Hūω[j] =
∑

j∈Z

φ(t− jh)ūω[j]

=
∑

j∈Z

φ(t− jh)eiωjhΨ(iω).

By slightly modifying the equation on the right hand side,
it can be seen as the Fourier transform of the lifted func-
tion φ̆[j](τ) where τ is the residual after dividing t by h
(t = mh+ τ)

yω(t) =
∑

j∈Z

φ(τ + jh)e−iωjhΨ(iω)

=
∑

j∈Z

φ̆[j](τ)e−iωjhΨ(iω)

= φ̆(eiωh; τ)Ψ(iω).

Using the Key Lifting Theorem (2.10) on page 5, this
equation can be expressed in terms of the classical Fourier
transform of ψ(t)

φ̆(eiωh; τ) =
1

h

∑

k∈Z

Φ(iωk)eiωkτ

for all τ ∈ [0, h). This means that if the input to the
system HS is of the form uω, then the sampled-and-
reconstructed output yω is of the form

yω(t) =

(

1

h

∑

k∈Z

Φ(iωk)eiωkτ

)

Ψ(iω). (5.1)

5.3 Calculation of the FPR

Although it has been shown that the L2 norm of an LDTI
system can be expressed using the FPR, it is not clear how
to explicitly calculate the L2 system norm when applying
Theorem 4.3.2. This subsection will provide a solution for
the calculation of the L2 system norm of an LDTI system.
In order to apply the FPR Theorem (4.4) to the problem
of this report, the FPR of the system (I −HS)G needs to
be determined

P(I−HS)G(ω) =
1

h

∫ h

0

|(I −HS)Geiωt|2 dt

=
1

h

∫ h

0

|(I −HS)eiωt|2 · |G(iω)|2 dt

= PI−HS(ω) · |G(iω)|2.

So in fact, only the FPR of the system I −HS needs
to be determined. In the end this will be multiplied with
|G(iω)|2 in order to determine the FPR of the error system.
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By definition, the FPR of I −HS equals

PI−HS(ω) =
1

h

∫ h

0

|(I −HS)eiωt|2 dt

=
1

h

∫ h

0

|eiωt − yω(t)|2 dt

where yω is as in Equation (5.1). Substituting this expres-
sion, dividing the whole equation by eiωt and using the
definition of ωk = ω + 2ωnyqk leaves

PI−HS(ω)

=
1

h

∫ h

0

|eiωt −
(

1

h

∑

k∈Z

Φ(iωk)eiωkt

)

Ψ(iω)|2 dt

=
1

h

∫ h

0

|1 − 1

h

∑

k∈Z

Φ(iωk)ei2πkt/hΨ(iω)|2 dt. (5.2)

The derivation of the FPR of the system I −HS can be
extended which is stated in the following lemma.

Lemma 5.3.1. The FPR of I −HS is of the form

PI−HS(ω)

= 1 − 2

h
Re (Φ(iω)Ψ(iω)) +

1

h2
|Ψ(iω)|2

∑

k∈Z

|Φ(iωk)|2 .

(5.3)

Proof
To simplify the derivation of Equation (5.2) the following
notations are introduced

Bk := Φ(iωk)Ψ(iω)

Ak := Bkei2πkt/h.

This means the the FPR of I −HS reduces to

PI−HS(ω) =
1

h

∫ h

0

|1 − 1

h

∑

k∈Z

Ak|2 dt. (5.4)

The summation of this integral can be written more ex-
plicitly, using the complex conjugate

∣

∣

∣

∣

∣

1 − 1

h

∑

k∈Z

Ak

∣

∣

∣

∣

∣

2

=

(

1 − 1

h

∑

k∈Z

Ak

)(

1 − 1

h

∑

n∈Z

An

)

= 1 − 1

h

∑

k∈Z

Ak − 1

h

∑

n∈Z

An +
1

h2

∑

k∈Z

Ak

∑

n∈Z

An

= 1 − 2

h
Re

(

∑

k∈Z

Ak

)

+
1

h2

∑

k=n

AkAn +
1

h2

∑

k 6=n

AkAn.

Note that the complex conjugate of Ak is

Ak = Bke−i2πkt/h

which means that

AkAk = BkBkei2π(k−n)t/h.

Substituting this in the equation of the FPR (5.4) gives
the somewhat more complicated expression

PI−HS(ω) =
1

h

∫ h

0

1 − 2

h
Re

(

∑

k∈Z

Ak

)

+
1

h2

∑

k=n

AkAn +
1

h2

∑

k 6=n

AkAn dt

(5.5)

nevertheless, this expression can be simplified extensively.
Consider the following integral for all k ∈ Z.
For k 6= 0:

∫ h

0

ei2πkt/h dt =

[

h

i2πk
ei2πkt/h

]h

0

=
h

i2πk

(

ei2πk − e0
)

=
h

i2πk

(

cos (2πk) + i sin (2πk) − e0
)

=
h

i2πk

(

1 − e0
)

= 0.

And for k = 0:
∫ h

0

ei2πkt/h dt =

∫ h

0

e0 dt

= h.

This means that the last term in the integral (5.5) equals
zero. Since in this last term the k−n of the exponential is
always unequal to zero, therefore by the derivation above,
this last term is always zero. In combination with the
expression for Bk the FPR of I −HS now reduces to

PI−HS(ω) =
1

h

∫ h

0

1 − 2

h
Re

(

∑

k∈Z

Ak

)

+
1

h2

∑

k=n

AkAn dt

= 1 − 1

h

∫ h

0

2

h
Re

(

∑

k∈Z

Ak

)

dt+
1

h2

∑

k∈Z

|Bk|2

Now substituting the expression for Ak and adapting the
integration into the summation leaves

PI−HS(ω)

= 1 − 2

h2
Re

(

∫ h

0

∑

k∈Z

Bkei2πkt/h dt

)

+
1

h2

∑

k∈Z

|Bk|2

= 1 − 2

h2
Re

(

∑

k∈Z

∫ h

0

Bkei2πkt/h dt

)

+
1

h2

∑

k∈Z

|Bk|2 .
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The definitions for Ak and Bk as introduced in the be-
ginning of this subsection can be substituted in order to
get an expression in terms of the sampler- and hold func-
tion. In fact not the actual sampler- and hold functions
are used, but their Fourier transforms. Note that ω0 is
simply ω and hence:

PI−HS(ω)

= 1 − 2

h2
Re (hBo) +

1

h2

∑

k∈Z

|Bk|2

= 1 − 2

h
Re (Φ(iω0)Ψ(iω)) +

1

h2

∑

k∈Z

|Φ(iωk)|2 |Ψ(iω)|2

= 1 − 2

h
Re (Φ(iω)Ψ(iω)) +

1

h2
|Ψ(iω)|2

∑

k∈Z

|Φ(iωk)|2 .

5.4 Find the optimal Hold

Recall that the goals is to minimize the L2 norm of the
error system over all stable and LDTI holds:

min
H

||(I −HS)G||L2 (5.6)

Theorem 4.3.2 provides an expression of the L2 norm for
LDTI systems in terms of the FPR (4.4) and Subsec-
tion 5.3 provides the following expression for the FPR of
the error system

P(I−HS)G(ω) = PI−HS(ω) · |G(iω)|2.

These two expressions in combination with Lemma 5.3.1
will be used in this subsection to find the optimal hold for
a given sampler. In this case the sampler is assumed to be
the ideal sampler

ψ(t) = δ(t) ⇔ Ψ(iω) = 1

since this one is used frequently in signal processing. Of
course, the derivation can be performed for a general sam-
pler, but this makes it unnecessarily complicated. The
optimal hold will depend on the generator G.

Theorem 5.4.1. The hold H∗ that minimizes the L2

norm of the error system (5.6) for the ideal sampler
ψ(t) = δ(t), is

Φ∗(iω) =
h |G(iω)|2

∑

k∈Z
|G(iωk)|2 . (5.7)

Proof
First the expression for the L2 norm of the error system
is rewritten

||(I −HS)G||2L2 =
1

2π

∫ ∞

−∞

P(I−HS)G(ω) dω

=
1

2π

∫ ωnyq

−ωnyq

∑

n∈Z

P(I−HS)G(ωn) dω

where ωn is as always defined as

ωn := ω + 2nωnyq

for any given ω. This transformation of the integral is
allowed because in this way the function is still integrated
over all frequencies. For the sake of notational convenience
the following notations are introduced

Φn := Φ(iωn)

Gn := G(iωn).

Using Equation (5.3) the summation over the FPR of the
error system can be written as

∑

n∈Z

P(I−HS)G(ωn)

=
∑

n∈Z

([

1 − 2

h
Re (Φn) +

1

h2

∑

k∈Z

|Φn+k|2
]

|Gn|2
)

. (5.8)

Now a few remarks are in place. First of all, the optimal
hold will be a real function, in fact it will be a positive real
function. If this is not the case, there exists a positive real
function that makes Equation (5.8) smaller. Therefore
some parts can be simplified:

Re (Φn) = Φn

|Φn+k|2 = Φ2
n+k.

Secondly for any fixed n the following holds

∑

k∈Z

Φ2
n+k =

∑

k∈Z

Φ2
k

because it is an infinite sum. This reduces the formula
∑

n∈Z

P(I−HS)G(ωn)

=
∑

n∈Z

([

1 − 2

h
Φn +

1

h2

∑

k∈Z

Φ2
k

]

|Gn|2
)

=
∑

n∈Z

|Gn|2 −
2

h

∑

n∈Z

Φn|Gn|2 +
1

h2

∑

n∈Z

∑

k∈Z

Φ2
k|Gn|2.

(5.9)

Now the optimal hold function for one specific frequency
ωm can be found by differentiating Equation (5.9) with
respect to Φm and equalling this to zero

∂

∂Φm

∑

n∈Z

P(I−HS)G(ωn) = 0

⇔

0 − 2

h
|Gm|2 +

2

h2
Φm

∑

n∈Z

|Gn|2 = 0

⇔

Φm =
h |Gm|2

∑

n∈Z
|Gn|2

.
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This means that the optimal hold H∗ is

Φ∗(iω) =
h |G(iω)|2

∑

k∈Z
|G(iωk)|2 .

This is the same result as shown in [4] but the derivation
is different.

5.5 Comparison with other Holds

The great advantage of the optimal hold (5.7) compared
to standard holds like the zero- or first-order hold, is that
it changes if the generator G changes. This will be demon-
strated by a few examples. To compare the optimal hold,
several frequently used holds are exploited in these exam-
ples. Recall the zero-order hold

φ(t) = 1[0,h](t)

the first-order hold

φ(t) =

(

1 − |t|
h

)1[−h,h](t)

and the sinc hold
φ(t) = sinc(t)

from Subsection 2.1.2.

Example 5.5.1. Consider the same system G as in Ex-
ample 2.5.1 on page 8:

G(s) =
1

s+ 1
.

The L2 system norm of (I −HS)G will be calculated for
different holds using Theorem 4.3.2. The sampler is as-
sumed to be the ideal sampler ψ(t) = δ(t) and the sam-
pling period h equals 1. The optimal hold is compared
with the zero-order hold, the first-order hold and the sinc
hold.
Figure 14 shows plots of P(I−HS)G(ω) for the different
holds. Table 1 shows the L2 norm of the error system for
the different holds.

Hold ||I − HS)G||2L2

Zero-order 0.3655
First-order 0.1572

Sinc 0.1942
Optimal 0.1549

Table 1: L2 norm of the error system for different
holds for the system G(s) = 1

s+1

In order to get an indication how much energy of the origi-
nal system G is preserved by sampling and reconstruction,
the following formula is exploited

||G||2L2 − ||(I −HS)G||2L2

||G||2L2

× 100% =
0.5 − 0.1549

0.5
× 100%

= 69.0%.

So 69.0% of the system’s energy is preserved by sampling
and reconstruction if a sampling period h = 1 in combina-
tion with the optimal hold is used. In Example 3.2.1 the
preserved energy with optimal HS was 80.4% and now
with this fixed sampler 69.0% is the best one can do.
Another explanation of the formula above is that if the
input signal is white noise (see Definition A.1.11) then
69.0% of its power is preserved by sampling and recon-
struction with the optimal hold in combination with this
fixed sampler and a sampling period h = 1.
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Figure 14: Plots of the FPR of (I −HS)G for
G(s) = 1

s+1 , the ideal sampler and different
holds. In blue the zero-order hold, in red the
first-order hold, in green the sinc hold and in
pink the optimal hold

Example 5.5.2. Consider the same system G as in Ex-
ample 3.3.1 on page 15:

G(s) =
1

(s+ 0.2)2 + 1
.

Similar to Example 5.5.1, the L2 system norm of
(I −HS)G will be calculated for different holds using The-
orem 4.3.2. The optimal hold is compared with the same
holds and again the sampler is assumed to be the ideal
sampler. In this example is the sampling period h = 4,
unlike Example 5.5.1.
Figure 15 shows plots of P(I−HS)G(ω) for the different
holds. Table 2 shows the L2 norm of the error system for
the different holds.
In order to get an indication how much energy of the origi-
nal system G is preserved by sampling and reconstruction,
the following formula is exploited

||G||2L2 − ||(I −HS)G||2L2

||G||2L2

× 100% =
1.2019− 0.5492

1.2019
× 100%

= 54.3%.
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Hold ||I − HS)G||2L2

Zero-order 2.2918
First-order 1.0238

Sinc 1.6379
Optimal 0.5492

Table 2: L2 norm of the error system for different
holds for the system G(s) = 1

(s+0.2)2+1

So 54.3% of the system’s energy is preserved by sampling
and reconstruction if a sampling period h = 4 in combina-
tion with the optimal hold is used. In Example 3.3.1 the
preserved energy with optimal HS was 65.0% and now
with this fixed sampler 54.3% is the best one can do.
Another explanation of the formula above is that if the in-
put signal is white noise (see Definition A.1.11) then 54.3%
of its power is preserved by sampling and reconstruction
with the optimal hold in combination with this fixed sam-
pler and a sampling period h = 4.
In this example the L2 norm of the error system for the
sinc hold and the zero-order hold are larger than the L2

norm of the system itself ||G||2L2 = 1.2019. This means
that it is better to take the zero hold φ(t) := 0, ∀t ∈ R be-
cause then the L2 norm of the error system is smaller.
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|G(iw)|2

Figure 15: Plots of the FPR of (I −HS)G for
G(s) = 1

(s+0.2)+1 , the ideal sampler and different

holds. In blue the zero-order hold, in red the
first-order hold, in green the sinc hold, in pink
the optimal hold and in black the response of
the system itself |G(iω)|2
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6 Concluding Remarks

In this report it has been achieved to calculate the L2

norm of the error system for the optimal combination of
sampler and hold for both monotonically decreasing and
non-monotically decreasing frequency response |G(iω)|2.
Furthermore the graphical interpretation of this optimal
combination is presented.
Next the Frequency Power Response is introduced in or-
der to calculate the L2 norm of an LDTI system and it
has been proven that the L2 norm of an LDTI system can
indeed be expressed in terms of this FPR. Using this ex-
pression of the L2 norm of an LDTI system, the optimal
hold is constructed for a given sampler and sampling pe-
riod.
And last, this optimal hold is compared to several other
holds. For different holds the L2 norm of the error system
is calculated and the graphical interpretation (using the
FPR) of the error system for these holds is presented.
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Appendices

A Definitions and Theorems

A.1 Classical system theory

Definition A.1.1. A system is an input/output system if

• the input u is not restricted by the system.

• the ouput y is completely determined by the input u.

Figure 16 is an illustration of an input/output system.

u y
G

Figure 16: A system with input u, output y and
mapping G

Definition A.1.2. A system G is said to be BIBO-stable
if its output y is bounded as long as its input u is bounded
as well:

|u(t)| < M1 ⇒ |y(t)| < M2.

Definition A.1.3. A system has a state space represen-
tation if it can be written in the following form

ẋ = Ax+Bu

y = Cx+Du
(A.1)

where A, B and C are real matrices. Figure 17 shows the
block representation of the state space representation of
the system.

u

ẋ x

y
B

1
s C

A

D

+ +

Figure 17: The state space respresentation of sys-
tem (A.1) with input u, output y, real matrices
A, B, C and D and where 1

s denotes a pure in-
tegrator

Definition A.1.4. Transforming system (A.1) to the
Laplace domain gives a simple set of equations without
derivatives (differentiating in the time domain reduces to
multiplying by s in the Laplace domain):

sX(s) = AX(s) +BU(s)

Y (s) = CX(s) +DU(s).

Substituting the solution of X(s) of the first equation in
the second equation (provided that the inverse of (sI−A)
exists) leads to a transfer function G(s) that maps the
input u on the output y:

Y (s) = [C(sI −A)−1B +D]U(s)

Y (s) = G(s)U(s)

which often has the following notation

y = G(s)u.

Definition A.1.5. For a real transfer matrix G the con-
jugate is defined as:

G∼(s) := [G(−s)]T .

Furthermore this conjugate is used to computate the mag-
nitude of the frequency response of the transfer function:

|G(iω)|2 = G∼(iω)G(iω)

Definition A.1.6. A system G is said to be linear if

G(λ1y1 + λ2y2) = λ1Gy1 + λ2Gy2

for every two inputs y1, y2 and scalars λ1, λ2.

Definition A.1.7. To define continuous time invariance,
first the continuous time shift of a signal στ is defined:

(στ f)(t) := f(τ + t).

A system G is said to be Linear Continuous Time Invari-
ant (LCTI) if it is linear (see Definition A.1.6) and if

G(στ ) = στ (G)

holds for every τ ∈ R.

Definition A.1.8. To define discrete time invariance, the
discrete time shift of a signal σ̄k is defined:

(σ̄kf)(t) := f(kh+ t)

for a fixed h ∈ R.
A system G is said to be Linear Discrete Time Invariant
(LDTI) if it is linear (see Definition A.1.6) and if

G(σ̄k) = σ̄k(G)

holds for every k ∈ Z.

Definition A.1.9. A signal f : R → C is said to be causal
if f(t) = 0 for all t < 0.
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Definition A.1.10. The convolution of two contin-
uous signals f : R → C and g : R → C is the signal
(f ∗ g) : R → C defined as

(f ∗ g)(t) :=

∫ ∞

−∞

f(τ)g(t− τ)dτ.

Definition A.1.11. A signal w(t) is said to be white noise
if its expectation equals zero:

E(w(t)) = 0

and its standard deviation equals σ:

E(w(t)w(s)) = σ2δ(t− s).
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A.2 Sampling theory

Definition A.2.1.

• The Nyquist frequency is defined as

ωnyq :=
π

h

where h is the sampling period of the sampler S.

• The kth Nyquist band is defined as the interval

Nk := [(k − 1)ωnyq; kωnyq) .

• The kth aliased frequency of ω is defined as

ωk := ω + 2ωnyqk

with k ∈ Z.

Definition A.2.2. A sampling device S is assumed to be
an LDTI device transforming a function (or analog signal)
u(t) : R → Cnu into a function ū[j] : Z → Cnū where nu

and nū are the dimensions of the input signal u and the
sampled output signal ū respectively. Assuming that

S(u(· − h)) = (Su)[· − 1]

or equivalently

Sσkh = σ̄kS
which can be seen as Analog/Discrete shift invariance, a
general model for such a device is

ū = Su : ū [j] =

∫ ∞

−∞

ψ(jh− t)u(t)dt, j ∈ Z

for some ψ(t), called the sampling function [3].

Definition A.2.3. A hold device H is assumed to be an
LDTI device transforming a function (or discrete signal)
ū[j] : Z → Cnū into a function y(t) : R → Cny where nū

and ny are the dimensions of the sampled input signal ū
and the output signal y respectively. Assuming that

H(ū[· − 1]) = (Hū)(· − h)

or equivalently
Hσ̄k = σkhH

which can be seen as Discrete/Analog shift invariance, a
general model for such a device is

y = Hū : y(t) =
∑

j∈Z

φ(t− jh)ū [j] , t ∈ R

for some φ(t), called the sampling function [3].

Theorem A.2.4. (Shannon) If a function f(t) con-
tains no frequencies higher than ωN (in radians per time
unit), it is completely determined by giving its samples

f(kh), k ∈ Z at a series of points spaced h time units
apart. The reconstruction formula is

f(t) =
∑

k∈Z

f(kh)sinc

(

t

h
− k

)

(A.2)

=
∑

k∈Z

f(kh)
sin(π( t

h − k))

π( t
h − k)

in which the equidistant samples f(kh) can be seen as co-
efficients of a shifted sinc-function. [6]
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A.3 General mathematics

Definition A.3.1. A real-valued function

||·|| : F → R

is called a norm on a vector space F if it satisfies

1. ||f || ≥ 0 for all f ∈ F , and ||f || = 0 ⇔ f = 0

2. ||λf || = |λ| · ||f || for all λ ∈ R and f ∈ F
3. ||f + g|| ≤ ||f || + ||g|| for all f, g ∈ F .

If all these assumptions hold for all elements of F , then F
is called a vector space.

Definition A.3.2. A complex-valued function

〈·, ·〉 : F × F → C

is called a (complex) inner product on a vector space F if
it satisfies

• 〈f + g, h〉 = 〈f, h〉 + 〈g, h〉 for all f, g, h ∈ F
• 〈λf, g〉 = λ 〈f, g〉 for all λ ∈ R and f, g ∈ F
• 〈f, g〉 = 〈g, f〉 for all f, g ∈ F
• 〈f, f〉 > 0 if f 6= 0, while 〈f, f〉 = 0 for f = 0.

If all these assumptions hold for all elements of F , then F
is called an inner product space.

Note that every inner product space is an normed space
as well; by taking the norm of an element as the square
root of the inner product of the element with itself:

||·|| =
√

〈·, ·〉.
Definition A.3.3. The L2-space is a vector space consist-
ing of all functions f : [a, b] → R for certain a and b ∈ R.
A function f : [a, b] → R is an element of L2[a, b] if

∫ b

a

|f(t)|2 dt <∞.

If additionally a and b equal −∞ and ∞ respectively then
the space is denoted as L2(R).
The standard L2-norm of f ∈ L2[a, b] is the mapping
||·||L2 : L2[a, b] → R defined as

||f ||L2 :=

√

∫ b

a

|f(t)|2 dt.

Definition A.3.4. Another frequently used norm in sig-
nal theory is the L∞-norm.
A function f : R → R is an element of L∞(R) if

ess sup
t∈R

|f(t)| <∞.

The standard L∞-norm of f ∈ L∞(R) is defined as

||f ||L∞ := ess sup
t∈R

|f(t)|.

Definition A.3.5. Let f(t) be an absolutely integrable
function. Then the following Fourier integral:

F (iω) =

∫ ∞

−∞

f(t)e−iωtdt

exists for all ω ∈ R and its inverse is given by

f(t) =
1

2π

∫ ∞

−∞

F (iω)eiωtdω.

The Fourier transform of f(t) is always denoted by a cap-
ital: F (iω).

Theorem A.3.6. (Parseval) Let f(t) be a square inte-
grable function, then

∫ ∞

−∞

|f(t)|2 dt =
1

2π

∫ ∞

−∞

|F (iω)|2 dω. (A.3)

Definition A.3.7. The principal logarithm of a square
matrix A without eigenvalues on the branch cut (the neg-
ative real axis, including zero) is defined as the unique ma-
trix B := log(A) for which eB = A and whose spectrum
lies in the open horizontal strip {z ∈ C|−π < Im (z) < π}
of the complex plane [2, 5].

Definition A.3.8. A matrix A is called stable if it is
square and all its eigenvalues lie in the left open half of
the complex plane C:

Re (λi) < 0 ∀i.
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A.4 Lifting theory

Definition A.4.1. For any signal f : R → C
nf , the lifting

f̆ : Z → {[0, h) → Cnf } is the sequence of functions {f̆ [k]}
defined as [3]

f̆ [k](τ) = f(kh+ τ), k ∈ Z, τ ∈ [0, h).

Definition A.4.2. The (lifted) Fourier transform F{f̆}
of a lifted function f̆ is defined as

F{f̆} = f̆(eiωh; τ) :=
∑

k∈Z

f̆ [k] (τ)e−iωkh

where the frequency ω is 2π-periodic [3].

Theorem A.4.3. (Key lifting formula) Let f ∈ L2(R).
Then the lifted Fourier transform can be determined from
the classic Fourier transform via:

f̆(eiωh; τ) =
1

h

∑

k∈Z

F (iωk)eiωkτ

for all τ ∈ [0, h), where ωk = ω + 2ωNk. And its inverse
is given by [3]

F (iωk) =

∫ h

0

f̆(eiωh; τ)e−iωkτdτ.
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