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ABSTRACT

Lagrangian coherent structures of accumulating inertial particles
in vortex flow on a disk
by
Erwin Zeekant
San Diego State University, 2011

In this study a numerical investigation into the accumulation of inertial particles in
vortex flow on a disk and its Lagrangian Coherent Structures is presented. A numerical
simulation of inertial and gas particles, as in a gas-particle separator with a region of high
vorticity, is performed. The structures can be shown by calculating the Finite-time Lyapunov
Exponent (FTLE) for each grid point. This is a measure for the amount of stretching of
particles at a certain location. By integrating forward in time, the forward FTLE can be
calculated and by integrating backward in the the backward FTLE. Where the forward FTLE
field show repelling Lagrangian Coherent Structures and the back FTLE field the attracting
Lagrangian Coherent Structures.

A MATLAB code is written to solve the equations of motion of the inertial and gas
particles and which immediately calculates the corresponding FTLE fields at that time step.
The code is tested for a simple case and is used to analyse the vortex flow. For low Stokes
numbers the accumulation is very slow, but when this is increased the accumulation becomes
much quicker. Above a critical value of the Stokes number, where the inertial particles will
not accumulate anymore and all will move to the wall. There is no attractor or repeller found
which should lead to the accumulation of the particles in the FTLE fields. The particles follow
the structures that can be seen, but these are not leading to the accumulation.

The results are compared to the results which are obtained by the drift flux model.
With this model it is possible to give an analytical flow field for the inertial particles. For low
Stokes numbers the results show good similarity. When the Stokes number is increased, the
paths of the particles do not match anymore, but still give a good approximation for the
accumulation point. When the Stokes number is too high the accumulation point and the paths
do not show good similarity.
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CHAPTER 1
INTRODUCTION

To separate small particles or small liquid droplets from a gas, gas-particle and
gas-condensate separators can be used. Instead of filters it makes use of vortex separation.
The separators consist of a cylindrical tube which contains a region of high vorticity, which
can be seen as a steady helical vortex filament in the cylinder.

The application of a three dimensional helix filament has already been investigated by
Hardin [3]. If the pitch of the helix is very large compared to the radius of the tube, the three
dimensional effects can be neglected. The flow field for the two dimensional case is described
by Lamb [5]. A point vortex is placed in the circular domain and an image vortex is placed
outside the domain to satisfy the boundary conditions at the wall. Due to the image vortex, the
flow field becomes a steady circular motion. If a co-rotating frame is used, the flow becomes
steady and is described by a time-independent stream function. Further analysis for the two
dimensional case is done by [Jzermans and Hagmeijer [4]. A potential flow is used to describe
the flow field for one or more vortices in the domain. The results show the accumulation of
the inertial particles. The accumulation point of the inertial particles are solved analytically
and show good agreement with the calculations.

In the present study the motion of inertial particles is further analysed using finite-time
Lyapunov exponents (FTLE). With FTLE’s it is possible to show Lagrangian Coherent
Structures (LCS) for a flow. Haller [1] determined transport barriers in the flow field using a
Lagrangian frame. These barriers are lines in two-dimensional flows and surfaces in
three-dimensional flow which the fluid particles can not cross. If the FTLE is computed by
integrating the trajectories of the fluid particles over a time. If the integration is done
backward in time, this will reveal attracting barriers. When the trajectories are integrated
forward in time, this will reveal the repelling barriers. The backward and forward FTLE’s
identify the LCS. Shadden et al. [9] implemented the method of Haller for two dimensional
aperiodic flows. In their study it is shown how the FTLE can be computed. Three examples
are shown for which they computed the LCS. The first example is a simple double-gyre flow,
for which it is obvious to see there is a separatrix which should be leading to a repelling
barrier. The computed FTLE field shows agreement with this expectation.

Sapsis and Haller [8] describe a criteria for the global attraction of finite size inertial
particles. Sapsis and Haller [2] showed earlier that particles with very low Stokes numbers

converge to a slow manifold. Passive tracers are always affected by the FTLE field, but



inertial particles can behave differently. With the criteria it is possible to make a distinction
between areas that are affected by by the FTLE field and areas which are not affected by the
FTLE field. The criteria is depending on the Stokes number of the inertial particles and the
strain-rate tensor in the flow field. For a given steady flow field of the fluid it is only
depending on the Stokes number, because the strain-rate tensor becomes a constant.

For low Stokes numbers the motion and FTLE’s can also be calculated by using the
drift flux model. The relative velocity between the gas particles and inertial particles can be
derived by combining the momentum equations for the mixture and the dispersed phase. This
was done by Manninen et al. [6].

The goal of this study is to compute the Lagrangian coherent structures for a vortex
flow on a disk. With the FTLE fields it could possible to look more in detail to the
accumulation of the inertial particles. To do this the passive tracers and inertial particles are
traced and with these results the FTLE field can be computed. A MATLAB code is written to
solve the equations of motions and immediately compute the corresponding FTLE field at that
time step.

The physical model with its flow field and the used methods are explained in Chapter
2. Different methods are used to trace the particles and the computing of the FTLE field is
described. Furthermore a criteria for global attraction of inertial particles is discussed. In
Chapter 3 some necessary parameters will be determined and the MATLAB code will be
compared to an analytical solution for a simple case. In Chapter 4 the computed FTLE’s will
be shown and the results will be compared to the results from the drift flux model. Chapter 5

contains the final conclusions and the recommendations.



CHAPTER 2
METHODOLOGY

The goal is to obtain the FTLE field for a potential flow. To do so, a MATLAB code is
developed to solve the equations of motion for this potential flow and at each time step in the
calculation the FTLE field can be determined. These calculations can be done for both gas and
inertial particles. The equations of motion of the gas particles are solved using the velocity
field, which is described analytically. The particle tracking of the gas is done using a fourth
order Runge-Kutta method and for the inertial particles, the three steps Adams-Bashforth
method is used. The flow can be calculated using a rotating frame or a co-rotating frame,
where for a co-rotating frame the stream function becomes time-independent.

In this chapter, the physical model and the corresponding flow are described in section
2.1. In section 2.2 the finite-time Lyapunov exponent is explained and it is shown how it can
be calculated. To do this, it is necessary to calculate the final positions of the particles, which
is done by the methods in section 2.3. The FTLE field is not at every point affecting the flow
of the inertial particle. With the criteria described in 2.4, it is possible to distinct areas where

the particles respond to it and where they do not.

2.1 FLow FIELD

The flow field is generated by a point vortex at a point in the circular domain with
radius R. The vortex is not only rotating at one point, but is also moving around the centre of
the domain. The point vortex has a radial position of r, and an angle of 6, (¢). The strength of
the vortex is given by I',,. The physical model is shown in Fig. 2.1. By choosing R? as the
characteristic length and I', as the characteristic circulation, all other variables are made
dimensionless. The dimensionless time can be introduced by the characteristic time scale
R?/T. The dimensionless radial position of the point vortex is 7, = 0.5 in the analysis. To
satisfy the boundary conditions, zero normal velocity at r = 1, it is necessary to place a
counter rotating vortex, with strength T'; = —T',, outside the domain at position (7!, 6,(t))
which was described by Milne-Thomson [7]. Therefore the dimensionless stream function for
this problem consist of a term for the vortex in the cylinder and its mirrored vortex outside the
cylinder:

U(r,0) = Dy (W, (1,0, 74, 0, ()) — Wi(r, 0,74, 6,(1)) @.1)

With the stream function for the point vortex in the domain as:

1
U, (r,0,r,,0,(t) = i In(r? + 12 — 2rr, cos( — 0,(t))) (2.2)
m



Figure 2.1. Circular domain with a point vortex
at (r,, 0,(t)) rotating around the centre of the

domain.
and:
Wi(r,0,7y,0,(t)) = U, (r, 0,7, ", 0,(t)) (2.3)
The position and the angular velocity of vortex rotating around the centre of the domain are
respectivaly:
1 1
= — 24
. 1 1
0, = — 2.5
21 — 1,2 2:5)
The velocity field can be obtained from the stream function using:
10V ov
= - __— 2.6
= or 2.6)
The velocities then become:
»sin(0 — 0,(t »sin(0 — 6,
21 (r2 + 1,2 — 2rrycos(0 — 0,(t))  2n(1 4 r2r,2 — 2rr, COS(G 0,(t))
o (r.0.10,0, (1)) = r — 1y cos(f — 0,(t)) B 172 — 1y cos(0 — 0,(1))
27 (r? + 1,2 = 2rr,cos(6 — 0,(t)) 2w (14 r2r,2 — 2rr, cos(f — 6,(t))
2.7

All the calculations are done in Cartesian coordinates, therefore following relations are used to

compute the velocities in the directions of these coordinates, which are valid for all quadrants.
Uz (1,0, 74, 0,(t)) = u, cos(f) — ug sin(6)

(2.8)
Uy (1, 0,7y, 0,(t)) = u, sin(f) + ug cos()



The calculations can be done using a rotating frame, where the vortex is moving
through the cylinder like in Fig. 2.1. The flow field of the gas becomes time-independent
when the vortex is kept at one point and the cylinder is rotated. This will be named as the
co-rotating frame. It can be realised by introducing ¢ = 6 — 0,(t). The stream function for the

co-rotating frame becomes:

W(r, 6) = W(r,6+0) + 317, 2.9)

For this case the velocities can again be determined using Eq. (2.6). The flow field of the
co-rotating frame gives better insight in the behaviour of the flow. The contour lines of the
stream functions for both frames are shown in Figure 2.2. In the rotating frame the core of the

vortex rotates around the centre of the cylinder.

1 1f”
0.8f q 0.8
0.6 9 0.6
0.4r 1 0.4t
0.2} 9 0.2}
-0.21 9 -0.2
-0.4 -0.4
-0.6 -0.6
-0.81 -0.8
a . T~ a . T~
-1 -0.8 -06 -04 -0.2 0 02 04 06 08 1 -1 -0.8 -06 -04 -0.2 0 02 04 06 08 1
X X
(a) Rotating frame ¢t = 0 (b) Co-rotating frame

Figure 2.2. A comparison of the contour lines of the stream functions for the rotating frame
at t = 0 (a) and corotating frame independent of time (b).

In further analyses all calculations are done using a rotating frame, so where the point

vortex is moving through the domain.

2.2 FINITE-TIME LYAPUNOV EXPONENT
For the Lagrangian coherent structures it is needed to compute finite-time Lyapunov
exponents (FTLE). With an FTLE calculated for each grid point the structures can be plotted.

The FTLE is a scalar 03; (x) which represents the amount of stretching of the fluid at a



location in the domain over a certain time interval. The maxima show the repelling or
attracting barriers for respectively a forward or backward integration time.
The FTLE can be derived by considering two neighbouring particles in a domain. A

particle at x(#o)eD is affected by the flow and therefore gets a new location after time 7.
x = ¢t (x) (2.10)

The neighbouring point will behave similar as x () when it is affected by the same
flow. When the time interval is increased, the distance between the two points will almost
certainly change. The point close to x can be described as y = x + dx(ty), where 0x (%) is a

infinitesimal distance. After a time interval 7', the distance between the two points becomes:

d¢t0+T( )
dx

Because the initial perturbation was infinitesimal, the higher order term O(||dx(to)||*)

0x(to+T) = ¢ (y) — 00" (x) = —=——=0x(to) + O([|6x(t0)I*) 2.11)

can be dropped. The perturbation then becomes:

Aol (x) " dois ™ (x) 5X(t0)>

(2.12)

Jox(ta + 1) = <6x<to> T e

Where M* indicates it is the adjoint matrix M. Here a finite-time version of the Cauchy-Green

deformation tensor can be recognized:

asi " (%) o ()
dx dx

The maximum stretching, between the points x and y, occurs when dx(t) is chosen such that

A=

(2.13)

it is aligned with the eigenvector of the maximum eigenvalue of A.

max |3t +7) = VOX(t0), Aman (A)TX(t0)) = VA lBx(E)| (2.14)

5X to

where 0x({o) is aligned with the eigenvector associated with g, (A). If o (x) is now
defined as: |
ol (x) = ] In \/Aaz (A) (2.15)

Eq. (2.14) can now be rewritten using Eq. (2.15) as:

max|[9x(to + T) = % o I3 (to) | (2.16)

X to

Eq. (2.15) is representing the maximum finite-time Lyapunov exponent at point xe D at time
to. The absolute value is taken for the integration time, because it should able to compute both

the backward and forward FTLE. Eq. (2.15) can be be further rewritten using:

M|y = v/ Anae(M*M) (2.17)



Then Eq. (2.15) becomes:
d¢tO+T( )

1
T
In
dx

03, (x) = ]T\ (2.18)

2
To compute the FTLE it is necessary to have the locations of traced particles at initial

state x(t() and after the integration time x(t, + 7°). With the positions, the gradient of the

flow map can be determined. This gradient is given by:

d¢t°+T( ) Tit1,j(fo+T)—2i—1,;(t0+T)  Zij+1(to+T)—24,5—1(to+T)
_ Zit1,5(to)—zi—1,5(to) Yi,j+1(to)—¥i,5—1(to) (2.19)
dX Yit1,j(to+T)=yi—1,(to+T) i j+1(to+T)—yij—1(to+T) :
X j Zit1,5(to)—wi—1,;j(to) Yi,j+1(to)—Yi,j—1(to)
The points in Eq. (2.19) correspond with the points shown in Figure 2.3.
p q p p g
¢tD+T
fo ( |J+1(tO+T) y|J+1 (tO+T))
1)y, t,+T))
(Xij+1 (to)' Yi j+1(to)) \ ' ( i+1 J(t0+ i+1,j°°0
' ' [
x )y k) @
J A [ ) o
X, (6+T)y,, (t+T)) \(Xij(to+T)’ Y, {t+T))
. . . i-1,j4°0 | 140 ' . .
;1 {E)r Y (E) (i ) Y () X, (T Y, (6+T))
@
x4 )y, 4 (E)

Figure 2.3. Flowmap used for computing the FTLE.

For the flow field of a double-gyre, for which the streamlines are shown in Figure 2.4,
it is obvious that the particles will not cross the barrier between the two gyres. Therefore it is
expected to see a barrier here. The forward FTLE field of this example is shown in Figure 2.5

and meets this expectation.

2.3 PARTICLE TRACKING
To compute the FTLE it is necessary to have the locations of the particles at initial
state x(t() and after the integration time x(to + 7°). To do this, different methods are used for

the passive tracers and inertial particles.

2.3.1 Passive Tracers
A grid of passive tracers is released in the flow. At every point the velocities of the
particles at x(¢) can be determined using the analytical solution. The equation of motion Eq.
(2.20) for the passive tracers is solved using the fourth order Runge-Kutta method.

dx

— = 2.20
i (2.20)
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Figure 2.5. Computed forward FTLE field for a double-gyre.

k; = Atu(t,x)

1 1
k2 = Atu (t + §At, X + 51{1)

X X 2.21)
k3 = Atu t+ _At,X+ —k2

2 2
k4 = AtU(t + At, X+ k3)

1
Xn+1 = Xp, + —(kl —+ 21{2 -+ 2k3 —+ k4) (222)

6
Using Eq. (2.22) the next position can be computed for ¢ + At for each grid point.

This method does not need previous steps, so it is immediately fourth order accurate. This is

important due to the high vorticity near the centre of the vortex.



2.3.2 Inertial Particles
For the inertial particles it is much faster to use the three steps Adams-Bashforth
method. For the Runge-Kutta method, it would be necessary to interpolate four times the
velocities to the different points that are used because there is no analytical solution for the
velocity. The initial velocities of the particles are the velocities of the gas at their positions.
The inertial particles are assumed to only experience Stokes drag, which is only valid for low
Reynolds numbers. The reduced equations Eq. (2.23) of motion that have to be solved are:

dx,
o
(2.23)
duy, 1
DT g(ug —u)
where x,, is the position of the particle, St is the Stokes number defined as St = TI’%—E, u, the

velocity of the gas and u,, the velocity of a inertial particle. Both equations are approximated
by a three steps Adams-Bashforth method, which is given by:

At
X = X + 75 (280, — 16,1 + 5u, ) (2.24)

As can be seen, this method needs two previous values to compute the next one. For
the first step and second step the Euler method Eq. (2.25) and the two step Adams-Bashforth
method Eq. (2.26) are used respectively.

X1 = X, + Atu, (2.25)

3 1
Xp+1 = Xp + §Atun — §Atun_1 (2.26)

2.4 GLOBAL ATTRACTIVITY OF INERTIAL
PARTICLES
Inertial particles are not always affected by the FTLE. If the Stokes number is above a
certain value, the inertial particles are not affected by the flow. A criteria is developed by
Sapsis and Haller [8]. The condition can be tested for each grid point. With this condition it is
now possible to make a distinction between between areas that are affected by the flow and
areas that are not affected by the flow. They used the Maxey-Riley equations for the dynamics

of the particles. They have rewritten the equations of motions to:

dx

@
d
dt

(2.27)
(u, —uy) = —(Vuy + pl)(u, — uy)
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With applying a change of coordinates z = u, — u,, the following system is obtained:

x=ztu (2.28)
z=—(Vu, + ul)z

with p = %
If it is assumed that [x(t), z(¢)] is a solution, this can be substituted in Eq. (2.28).

When the z component is multiplied by z(¢) this will result in:

— (2, [-S(x(t).t) — ul]2) (2.29)
S Amaz[_S(X(t%t) — MIHZF

Where \,,q.(T) is the maximum eigenvalue of the tensor 7'. Also here the rate-of-strain
tensor is introduced: .
S = 5[Vu + (Vu)’] (2.30)

When Eq. (2.29) is integrated, this results in:
[2(1)] < [a(ty)|e” i min S nds (2.31)

The subspace is globally attracting if:

t

lim Amin|L + €S(x(s;20), 5)]ds = 00 (2.32)

t—o0 to

for all x in the domain and where € = 1/p. This is satisfied when:
Amin[I+ €S(x,1)] > ¢ >0 (2.33)
If this is solved for two dimensional incompressible flow it is found to be:
A =2\ + (1 +e*det S(x,t)) =0 (2.34)

Therefore the two dimensional condition becomes:

Amin = 1 — €4/ —det S(x,t) > 0

(2.35)
= — +/|det S(x, )| >0

So when this criteria is satisfied on a location, the inertial particles are affected by the flow at

this location.
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2.5 DRIFT FLUX MODEL
For low Stokes numbers it is possible to derive an algebraic formula for the velocity of

a particle. The slip (relative) velocity is defined as:
Ugp = U, — Uy (2.36)

The velocity of the gas is already described, so to determine u,, it it necessary to
calculate the slip velocity. Manninen et al. [6] derived an algebraic expression for the slip
velocity. A balance equation can be derived from using the momentum equation for the

inertial particles and the mixture. This results in the following equation:

du,,
Fq= VZD(pp - pm) g — (um : v)um - 7 (2.37)

Here V, is the volume of a inertial particle and p, and p,, are the densities of respectively the

inertial particles and the mixture. The formula for the Stokes drag (Fj) is:
Fy = 3nd,pgugp (2.38)

The gravity is neglected and the density of the inertial particles is assumed to be much higher
than the density of the gas. Furthermore the velocity of the mixture is assumed to be the same
as the velocity of the gas, which is a reasonable approximation for low Stokes numbers. The

flow field of the gas particles is steady, so the time derivative can be dropped. This results in:

3rdppgUsiip = Vu(pp — pm)(—(uy - V)uy)

opdy,? (2.39)
- 1%:9 (uy - V)u,

Uslip =

The particle relaxation time for particles in the Stokes regime is Eq. (2.40).

d 2
7, = (2.40)
1811g
The slip velocity can now be written as:
Uy, = —St(u, - V)u, (2.41)

The final algebraic formula for the velocity of the inertial particles therefore becomes:

u, = u, — St(u, - V)u, (2.42)
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CHAPTER 3
VALIDATION

To validate if the code is working properly, a few checks are performed to see if it
behaves like it is expected to be. First the time step is determined, which will be used for all
the simulations. The fluid particles are traced using different time steps and are compared to
the results when a very small time step is used. To determine the FTLE, it is also necessary to
choose an integration length. The code can be compared to an analytical computation of a
FTLE for a simple case.

3.1 TIME STEP
In this section the time step is determined, which will be used for all the simulations.
The fluid particles are traced using different time steps and afterwards compared to the results
when a very small time step is used. These results should converge to a results of where a very
small time step is used. The L, error is shown in Figure 3.1. This figure shows that the error

is of fourth order as expected.

error
3

B

L

107 107 10°

At

Figure 3.1. L1 error of the computed x-position for different
time steps with the fourth order Runge-Kutta method.

To see which time step should be used, the FTLE is compared for the same time steps
that were used for the L, error. It is easy to compare the results when a fixed y-position is
used, then the FTLE is only depending on the x-position. The FTLE for y = 0.0025 is shown

in Figure 3.2. In this figure the area around the vortex is shown. In this area the velocities are
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very high and therefore the time step should be very small to give converging results. The area
around the vortex is not the region of interest, which will be explained in section 4.2.2. The
time step is chosen in a way that the first ridge of the FTLE shows good similarity with the
ridge of the FTLE with a very small time step. This ridge is important for the behaviour of the
particles and should therefore be positioned at the right position. The time step that will be
used is At = 0.025. To see how exact the FTLE is in the rest of the region the FTLE is also

/ \
P’ \ ! --—-01

LI — — —-005
AR N TN 0.025

Figure 3.2. FTLE for different time steps L, error for y = 0.0025.

compared for another y-position y = 0.5038. These results are shown in Figure 3.3. For the

areas with lower velocities all the used time steps are sufficient.

Figure 3.3. FTLE for different time steps L error for y = 0.5038.
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3.2 PARTICLES IN DOMAIN

Due to the high velocities at the centre of the vortex, it is possible that particles leave
the domain when the time step is too large. The gas particles should always stay in the
domain. Particles that leave the domain are programmed to stick to the wall and will stay
there. A row of particles is traced to see of they will stay in the domain or not. The results are
shown in Figure 3.4. At the initial state, fifteen particles are traced in the domain. One particle
is very close to the vortex and one particle is very close to the wall. After one time step there
are only fourteen particles left in the domain. The particle closest to the vortex left the domain
immediately. At¢ = 95 there are still fourteen particles in the domain. These particles keep

making rounds around the centre of the vortex and are not pushed outwards.

3.3 INTEGRATION LENGTH
The integration length for the evaluation of the FTLE is very important. When the
integration length is chosen very small, there are no structures to see. When the integration
length is increased more ridges will be visible. To see if this statement is true for the code, the
FTLE field is determined for various integration lengths which is shown in Figure 3.5. Longer

integration times results in sharper ridges and therefore show more information.

3.4 ANALYTIC FTLE COMPARISON
For very simple flow fields the FTLE can be determined analytically. When the
Cauchy-Green deformation tensor can be described analytically, the FTLE can be computed

analytically too. For the simple case of a strain flow, the flow field can be considered as:

do
it

G 3.1)
a Y

For this case the Cauchy-Green deformation tensor is:

0
y QT] (3.2)

The analytic FTLE can now be calculated using Eq. 2.15. The L, error is now determined
between the analytical solution and the solution computed by the code. The error is shown in

Figure 3.6. Here it is shown again that the error is of fourth order as expected.
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Figure 3.4. Positions of particles in the domain at (a) ¢t = 0,
(b) t = 0.025 and (c) t = 95.
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Figure 3.5. FTLE for different integration lengths for
y = 0.5038.
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Figure 3.6. L, error of the computed FTLE for different
time steps with the fourth order Runge-Kutta method.
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CHAPTER 4
RESULTS

In the chapter the results will be shown for the vortex flow on a disk. First the
accumulation of the inertial particles will be shown and their dependence on the Stokes
number. With all the data, the FTLE field can be determined from the gas fluid particles,
which also can be done for the inertial particles. These results are compared to the results of

the drift flux model, which can also be used for the calculations of the inertial particles.

4.1 PARTICLE ACCUMULATION
The inertial particles will accumulate in a point for a range of Stokes numbers. For
high Stokes numbers, all the inertial particles will move to the wall. When the Stokes number
is very low, it will more behave like the gas. For the pictures it is more convenient to use the
frame where the vortex stays at one point. That calculations are done in the rotating frame, but

the pictures are rotated back using:

& =rcos(0 —0,(t))
n =rsin(d — 0,(t))

4.1)

1
0.8

06

0.4

02

= 0
-0.2
-0.4
-0.6
-0.8

-1

-1 -08 -06-04-02 0 02 04 06 08 1
13

Figure 4.1. Initial positions
of the inertial particles ¢t = 0.

A square grid of 400 x 400 points is used for all the computations. Only the particles
in the circular domain are tracked. The initial positions of the particles are shown in Figure

4.1. The positions of the particles for St = 0.5 and St = 1.5 at different times are shown in



18

Figure 4.2. As can be seen in the figures, the particles accumulate much faster when the
Stokes number is increased. The location of accumulation is also depending on the Stokes
number. The particles which do not accumulate are absorbed by the wall and will stay there.

These results show good similarity with IJzermans and Hagmeijer [4].

-1 -08 -06-04-02 0 02 04 06 08 1 -1 -08 -06-04-02 0 02 04 06 08 1
3 13

(@) St=05,t=5 (b) St=15,t=5

-1 -08-06-04-02 0 02 04 06 08 1 -1 -08-06-04-02 0 02 04 06 08 1
3 13

() St =0.5,t=25 d) St=15,t=25

-1 -08-06-04-02 0 02 04 06 08 1 -1 -08-06-04-02 0 02 04 06 08 1
3 13

(e) St =0.5,t=100 (f) St = 1.5, t = 100

Figure 4.2. Accumulation of inertial particles St = 0.5 and St = 1.5 at
t =5,t = 25and t = 100 in the co-rotating frame.
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4.2 LAGRANGIAN COHERENT STRUCTURES

4.2.1 Periodic FTLE

To calculate the FTLE field it is necessary to use a certain integration length. In this
specific situation the FTLE is periodic with the time it needs for the particles to rotate one
time around the centre. This can be illustrated by Figure 4.3. As can be seen from Figure
2.2(b) the particles in the left half of the cylinder will rotate around a centre. Near this centre
the particles are stretched and squeezed in a periodically. At¢ = 40.1 these particles complete
one lap. For the particles near to the wall this takes longer then the particles in the centre, so
the tail keeps getting longer over time. The corresponding FTLE’s for different integration
lenghts are shown in Figure 4.4. As can be seen from Figure 4.3(c) and 4.3(d) the structure in
the FTLE looks similar. This is the FTLE calculated after two laps around the accumulation
point. The FTLE field looks periodically similar, but is rather different during one period. To
get a better representation of the FTLE it will be averaged over a period. The averaging time
that is used, is the time the when first particles have completed one lap around a centre. These
averaging times for different Stokes numbers are shown in table 4.1 and were determined
using MATLAB.

-1 -08-06-04-02 0 02 04 06 08 1 -1 -08-06-04-02 0 02 04 06 08 1
& 13

(@ t=0 (b) t=10

-1 -08-06-04-02 0 02 04 06 08 1 -1 -08-06-04-02 0 02 04 06 08 1
£ 13

()t =30 (d) t = 40.1

Figure 4.3. Tracing of fluid particles in the left half of the domain at (a) ¢t = 0,
(b)t =10, (c)t = 30 and (d) 7' = 40.1 in the co-rotating frame.



Table 4.1. Averaging times used to
compute the averaged FTLE field.

Stokes number Averaging time

- (Fluid) 40.1
0.05 40.1
0.1 40.125
0.5 40.6
1.5 52.275

-1 -08 -06-04-02 0 02 04 06 08 1 -1 -08 -06 -04-02 0 02 04 06 08 1
g

(@) T=10 (b) T'= 30

-1 -08-06-04-02 0 02 04 06 08 1 -1 -08-06-04-02 0 02 04 06 08 1
3 3

©) T =40.1 d) T = 80.2

Figure 4.4. Computed forward FTLE fields of fluid particles with different
integration lengths (a) 7' = 10, (b) T' = 30, (¢) T' = 40.1 and (d) ¢ = 80.2 in the
co-rotating frame.

20
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4.2.2 FTLE of Fluid Particles
The FTLE is calculated with an integration length of one period 7" = 40.1 and

averaged over this time as described in section 4.2.1. This results in the FTLE field shown in
Figure 4.5. In the left half of the cylinder the values are very low and therefore there are no
real structures in this area where the accumulation point is. The accumulation point is a fixed
point in the co-rotating frame and was calculated by IJzermans and Hagmeijer [4]. This point
is located where uy = 0. Because the flow is steady, the FTLE field is constant over time and
therefore only has to be calculated once. When the FTLE is calculated at the initial time, this
can be used further in time. When the backward FTLE is calculated, the vortex is rotating in
the counter direction and the vortex itself is rotating around the centre of the cylinder in the

counter direction. Then it is obvious to see the backward FTLE field is the mirrored image of
the forward FTLE field.

-1 -08 -06-04-02 0 02 04 06 08 1 -1 -08 -06 -04-02 0 02 04 06 08 1
3

(a) Forward FTLE (b) Backward FTLE

Figure 4.5. Averaged FTLE fields of gas particles with an integration and
averaging time of 7' = 40.1 in the co-rotating frame.

In Figure 4.6 the FTLE field is shown and the inertial particles are plotted on top. The
particles follow the shape of the structures shown in the FTLE field.

For the FTLE the criteria explained in section 2.4, can be plotted on top of the FTLE
to distinguish areas which are affected by the FTLE. This is done in Figure 4.7. As can be
seen from this figure, inertial particles near the core of the vortex are not affected by the FTLE

field. For higher Stokes numbers the area that is not affected, becomes larger.

4.2.3 FTLE of Inertial Particles
The FTLE field can also be determined for the inertial particles. This is done similar

to the gas particles, due to the behaviour of the inertial particles this will result in different
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(a) Forward FTLE (b) Backward FTLE

Figure 4.6. Averaged FTLE fields of gas particles with inertial particles St = 0.5
att = 25.
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3 3

(a) Forward FTLE (b) Backward FTLE

Figure 4.7. Criteria for the distinction of areas which are not affected by the
FTLE fields.

Lagrangian coherent structures. For two different Stokes numbers this is shown in Figure 4.8.
The inertial particles at ¢ = 100 are plotted on top of the FTLE fields. For the higher Stokes
number the area with low FTLE values becomes smaller and the higher FTLE values, which
were found near the wall, can now be found more inward the cylinder. The tail of the
converging particles is cut by a saddle point. Particles will not cross this border, because this
is a repeller. On one side the particles will move to the accumulation point and at the other
side these particles will move to the wall.

The initial velocity of an inertial particle is the gas velocity at that location. To see

what effect the initial velocity has on the results, the same calculations are done for the



23

-1 -08 -06-04-02 0 02 04 06 08 1 -1 -08 -06 -04-02 0 02 04 06 08 1
5 5

(a) Forward FTLE St = 0.5 (b) Backward FTLE St = 0.5
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3 3

(¢) Forward FTLE St = 1.5 (d) Backward FTLE St = 1.5

Figure 4.8. Forward and backward FTLE fields for two different Stokes numbers
plotted with inertial particles at ¢t = 43.75.

inertial particles where the initial velocities are zero. The FTLE field for this situation is
shown in Figure 4.9. This looks similar to the results of Figure 4.8(a) except for the area near
the location of the vortex.

The positions of the inertial particles for the different initial velocities are compared in
Figure 4.10. As can be seen from this figure, the particles will accumulate in the same point

and the structure of the particles looks the same for both initial conditions.

4.3 DRIFT FLUX MODEL
For low Stokes numbers it is possible to use an analytical flow field for the inertial
particles. To show this, the calculations with the drift velocity are compared to the results of
the Adams-Bashforth method. The formulas for these velocities can be found in Appendix B.
When the drift velocity is used for the inertial particles, there appears a source at the position
of the vortex. It is not possible to give a good representation of the backward FTLE field,
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Figure 4.9. Forward FTLE field for inertial particles with
zero initial velocity.
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Figure 4.10. Comparison for the positions of the inertial particles with different
initial velocities at ¢ = 100.

therefore only the forward FTLE’s are compared. For two different Stokes numbers both
methods are compared in Figure 4.11. From the streamlines, two saddle points can be
observed. For low Stokes numbers the FTLE field looks the same. For St = 0.5 the structure
looks similar, but the line going down towards a saddle point does not match anymore.
Ofcourse the FTLE field of the drift flux model matches perfectly with the streamlines of this
model, but the results of the Adams-Bashforth method show no perfect match.

Particles which start in the region around the vortex will not cross the repellers. From
Figure 4.11 it is easy to see which particles will immediately move to the wall and which will
accumulate. To show the separatrix of the backward FTLE, it is possible to trace a particle

which leaves at the saddle point. This is shown in Figure 4.12.
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(a) Drift flux model St = 0.1 (b) Adams-Bashforth St = 0.1
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(¢) Drift flux model St = 0.5 (d) Adams-Bashforth St = 0.5

Figure 4.11. Comparing the FTLE fields calculated by the drift flux model and
Adams-Bashforth with the streamlines of the drift flux model.

To see how well the inertial particles follow the streamlines the drift flux model, two
particles are traced using both methods. This is done for different Stokes numbers and is
shown in Figure 4.13. For low Stokes numbers St << 1 both paths are similar and therefore
should give the same FTLE fields. When the Stokes number is increased the paths are
different, but the accumulation point is still similar. When the Stokes number is further
increased the paths show less similarity and it is possible the streamline is converging and the
inertial particle is absorbed by the wall. The FTLE fields should not be similar anymore for
higher Stokes numbers, which was already seen in the earlier comparison.

Furthermore it is possible to take a look how the drift velocity predicts the
accumulation point. In Figure 4.14 is shown where the accumulation point will be according
to the drift velocity and the inertial particles which were tracked by the Adams-Bashforth

method. As can be seen from the figure the accumulation point of the inertial particles and the
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Figure 4.12. Streamline of a particle which
was traced from the saddle point, representing
a separatrix on the forward FTLE field.

one shown by the streamlines show good agreement for low Stokes numbers. When the
Stokes number is increased, the difference between the two becomes bigger. According to the
streamlines, the particles will not accumulate when St > 1.3. As can be seen from the inertial

particles, they will not accumulate anymore when St > 1.7.
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Figure 4.13. Comparing the results of tracing two particles by using the drift flux
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model and Adams-Bashforth for different Stokes numbers.
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Figure 4.14. Comparing the position of accumulation point according to

Adams-Bashforth and the drift flux model for different Stokes numbers. All at

t = 100.



29

CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

In this chapter the final conclusions will be drawn and some recommendations are
done for possible future work.

Due to the stretching and squeezing of the particles in the converging area of the
cylinder, the FTLE fields of this problem are periodic. The particles keep spinning around a
point, where the particles will accumulate after some time. The resulting FTLE field is
strongly depending on the integration length. When an integration length is used, it is possible
to see some structures but is not a good representation for the FTLE field over time. Therefore
the FTLE is averaged over time to get a better representation. The results are now depending
on the time over which it is averaged, but has much less influence on the final results.

The Lagrangian Coherent Structures of the vortex flow on a disk do not show a
attractor to the observed accumulation point. They do show an attractor and repeller between
two areas. The inertial particles will move along these borders as expected by the LCS.
Because there is no real attractor or repeller towards the accumulation point, it is not possible
to predict the accumulation point with the FTLE fields.

With the LCS of the inertial particles it is possible to see where the saddle points are
located. It is also possible to see which particles will move to the wall and which particles will
move to the accumulation point. The saddle point moves further towards the centre of the
cylinder. When the saddle point moves inwards, there will be more particles moving between
the the wall and this separatrix. This means more particles will move to the wall, when the
Stokes number is increased. The initial velocities have no significant influence on the results.
The particles will behave similar and accumulate to the same point.

The drift flux model shows for St << 1 good similarity with the results of the
Adams-Bashforth method. For higher Stokes numbers the path of the particles become
different, but the accumulation point stays approximately at the same location. When the
Stokes number is further increased St > 1, the paths of the particles are different and the
accumulation point predicted by the drift flux model is different from the accumulation point
calculated with Adams-Bashforth. Therefore the drift flux model can be used for St << 1 to
calculate the FTLE fields and the accumulation point, but when the Stokes number is
increased the FTLE fields do not match. For St < 1, the drift flux model still gives a good

representation of the accumulation point.
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In order to fully understand the accumulation of the particles more research is needed.
The model that is used is very simplified and the use of a two-way coupled model could be
interesting. The flow will not be steady anymore and therefore the FTLE will not be
time-independent anymore. The code can also be used for other cases to compute FTLE’s.
Any other analytical flow field can be inserted into the code and this will solve the equations

of motion and compute the corresponding FTLE fields.
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MATLAB SCRIPT

A.1 GAS PARTICLES

33

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

clear all; clc; close all
$—input—
nx = 400; g$number of gridpoints
ny = 400;
xstart = —1; $domain
xlast = 1;
ystart = 1;
ylast = —1;
dt = 0.025; %$integration time step
write = 0; %1 for writing datafiles
r.j = 0.5; $radius of the point vortex
t_start = 0; %$initial time time
t_end = 100; $end time of the run
d=1; $direction of ftle, forward = 1, backward = —1
if d == 1
direction = 'forward';
elseif d == —
direction = 'backward';
end
name = ['LCS_.' direction '_gas_0025_']; $name of datafile
corotating = 0; %$setting frame, 1 = corotating, 0 = rotating
xcoor = linspace (xstart, xlast, nx); $vectors for meshgrid
ycoor = linspace(ystart, ylast, ny);
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38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

[X0,Y0] = meshgrid(xcoor,
%$defining matrices

Up = zeros (nx,ny);

Vp = zeros (nx,ny);

Upl = zeros (nx,ny);
Vpl = zeros (nx,ny);
Xpl = zeros (nx,ny);
Ypl = zeros (nx,ny);
Xgl = zeros (nx,ny);
Ygl = zeros(nx,ny);
Xg2 = zeros (nx,ny);
Yg2 = zeros (nx,ny);
Ugl = zeros (nx,ny);
Vgl = zeros (nx,ny);
Ug2 = zeros (nx,ny);
Vg2 = zeros (nx,ny);
klx = zeros (nx,ny);
kly = zeros (nx,ny);
k2x = zeros (nx,ny);
k2y = zeros (nx,ny);
k3x = zeros (nx,ny);
k3y = zeros(nx,ny);
kdx = zeros (nx,ny);
kdy = zeros(nx,ny);
sigma = zeros (nx,ny);
domain = zeros (nx,ny);
$boundaryp = zeros (nx,ny);
crit = zeros (nx,ny);

Z =zeros(nx,ny);

for i = l:ny

for j =l:nx

ycoor) ;

34

%$initial positions of particles

if sqrt (X0 (i, J) 2+Y0(i,3)"2) < 1

domain (i, j)

end

1;

(circle with r=1)

%$the particles in the domain

will be traced
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83

84

85

86

87

88

89
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91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

end

end

theta_.j = @(t) (1/(2+pi))*(1/(1—r_372)) ~t; %$angular position of

theta.jt = (1/(2%pi))*(1/(1—r_3°2));

u_r_func = @(r,theta,

)
t
t
t
t
u_theta_func = @(r,thet
t
t
t
t

point vortex
%$angular velocity of

point vortex

(L./r) o+ ((=1./(4.%pl) .*x(2.xr.*r_J.*
JAr. 24 . "2=2. % xr_J .

)—(=1./(4.%pi) .*(2.xr.*xr_j. —1.%

t
sin(theta—theta_j(
cos (theta—theta_j(
(
(

(
sin (theta—theta_j /(. 24 J. " —2—2.xr.xr_J. —1.+*
( )

cos (theta—theta_j

a,t) —((=1./(4.+pi) .* (2. r—2.xr_J.*

cos (theta—theta_j(t))) ./ (r. " 24+r_J.72—2.%r.*xr_J.*

cos (theta—theta_Jj(t))))—(=1./(4.xpl) .x (2. xr—2.xr_j. —1.%

cos (theta—theta_j(t))) ./ (r. " 2+r_J. " —2-2.*r.*«r_j. —1.x

cos (theta—theta_j(t)))));
time = —1; %$resetting time for ftle
[Xg,Yg] = meshgrid(xcoor, ycoor); %gas particles positions
[Xg_.new, Yg_.new] = meshgrid(xcoor, ycoor); %updated positions
boundaryg = zeros (nx,ny);

for

t = t_start:dxdt:t_endxd
time = time+1;

T_span = timexdt;

Xg
Yg = Yg_new;

Xg_new;

[thetag, rg] = cart2pol (Xg,Yqg);

u.r = u.r_func (rg,thetag,t);
u_-theta = u_theta_func(rg,thetag,t);
u = u.r.xcos (thetag)—u_theta.*sin(thetaqg);

Vv = u.r.*xsin(thetag)+u_theta.xcos (thetaqg);

Ug = uxd; %velocity if the gas particles
Vg = vxd;

for 1 = 1l:ny

for j = l:nx
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if domain (i, j) == 1 && boundaryg (i, j) ==
%$calculating k1 for Runge—Kutta

klx (i, j) = dt=xUg(i, J);
kly(i,3J) = dtxVg(i,J);
end
end
end
[thetagl, rgl] = cart2pol (Xg+klx/2,Yg+kly/2);

u.rl = u_.r_func (rgl,thetagl, t+0.5xdt*d);

u_thetal = u_theta_func(rgl,thetagl,t+0.5xdtxd);
ul = u.rl.xcos (thetagl)—u-thetal.*sin(thetagl);
vl = u.rl.+sin(thetagl)+u_thetal.xcos (thetagl);

Ugl = ulxd;
Vgl = v1xd;

for i = l:ny
for j = 1l:nx
if domain(i,j) == 1 && boundaryg(i,j) ==
%$calculating k2 for Runge—Kutta
k2x (i, 3)=dt*Ugl (i, 3);
k2y (i, 3)=dt*Vgl (i, j);
end
end

end

[thetag2, rg2] = cart2pol (Xg+k2x/2,Yg+k2y/2);
u.r2 = u.r_func(rg2,thetag2,t+0.5xdt*d);
u_-theta2 = u_-theta_func(rg2,thetag2,t+0.5xdt*d);
u2 = u.r2.x*cos(thetag2)—u_theta2.xsin(thetag2);
v2 = u.r2.+*sin(thetag2?2)+u_theta2.x*cos(thetag2);

Ug2 u2+d;
Vg2 = v2xd;

for i = 1l:ny
for 7 = 1l:nx
if domain (i, j) == 1 && boundaryg (i, j) ==
$calculating k3 for Runge—Kutta
k3x (i, j)=dt«Ug2 (i, J);
k3y (i, j)=dt*Vvg2 (i, J);
end

end

0

0
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206
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end

[thetag3, rg3] = cart2pol (Xg+k3x,Yg+k3y);

u.r3 = u.r_func (rg3,thetag3, t+dt*d);

u_-theta3 = u_theta_func(rg3,thetag3,t+dt=*d);

u3 = u.r3.x*cos(thetag3)—u_theta3.*sin(thetag3);
v3 = u.r3.+*sin(thetag3)+u_thetal3.xcos (thetag3);

Ug3 = u3=*d;
Vg3 = v3xd;

for i = 1l:ny
for j = l:nx
if domain (i, j) == && boundaryg (i, j) ==
%$calculating k4 for Runge—Kutta
kdx (i, j)=dt*Ug3 (i, J);
kdy (1, 3)=dt+Vg3 (i, J);
end
end
end

for i = l:ny
for j = l:nx
if domain(i, j) == 1 && boundaryg(i,j) == 0
%$new position
Xg_new (i, j)=Xg (i, J) +1/6* (klx (i, j)+
2xk2x (i, 3)+2xk3x (1, 3) +kdx(1,3));
Yg_new (i, j)=Yg (i, J)+1/6* (kly (i, )+
2xk2y (i, 3)+2+k3y (1, ])+kdy (1,3));
end
end

end

[thetagl, rgl] = cart2pol (Xg_new, Yg_new) ;

for i = 1l:ny
for j = 1l:nx
if rgl(i,j) > 1 && domain(i,j) == 1 &&
boundaryg (i, j) ==
$setting the particles which left the domain
%on the wall

Xg-new (i, j) =

lxcos (thetag (i, ) +0.5% (thetagl (i, j)—thetag (i, j))) ;
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223
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229
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233
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248
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Yg_new (i, J)

l+xsin(thetag(i, j)+0.5* (thetagl (i, j)—thetag (i, j)

boundaryg (i, j) = 1;
end
end

end

%$calculating ftle

for i=l:ny
for j=1l:nx
if domain(i,j) == 1
if (J—1)x(J—nx)<0 && (i—1)* (i—ny)<0
All=(Xg (i, j+1)—Xg (i, j—1))/ (xcoor (j+1)
Al2=(Xg(i—-1,3J)—Xg(i+l,3))/ (ycoor (i—1)
A21=(Yg (i, J+1)—Yg (i, j— 1))/(xcoor(j+1)
A22=(Yg(i—-1,J)—Yg(i+1l,J))/ (ycoor (i—1)

A =[All Al2;A21 A22];
sigma (i, j)=log (norm(A))/ (T_span);
else
sigma (i, j)=0;
end
end
end

end

Z = sigma;

if corotating ==
$rotate the frame to watch in the corotating frame
Xgplot = rg.xcos(thetag—theta_-j(t));
Ygplot = rg.*sin(thetag—theta_j(t));
else

Xgplot = Xg;

Ygplot = Yg;
end
if write ==
save ([num2str (name) num2str (txd/dt) '.mat']l, 'Xg',

'ug', 'vg', 'z');

end

if write ==
figure (1)
H=gcf;

—xcoor (j—

—ycoor (i+

—xcoor (j—
(1i+

—ycoor

'Yg',
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250

251

252

253
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255
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257

259
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262
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265

266

267

268

269

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

0 o° o° o° o o° o°

o\

end

end

set (H, 'Position', [200 200 500 5007);
plot (Xgplot (1:5:nx,1:5:ny),Ygplot(l:5:nx,1:5:ny),
text (0.7,0.9,['t = ' num2str(t*d) 's'], 'color',
rectangle ('position', [—-1,—1,2,2], 'curvature',
[1,1], 'LineWidth', 2);

view (2)
shading interp
xlabel ('x");
ylabel ('y");
title('Gas particles');
axis([—1 1 —1 17])
daspect ([1 1 11)
drawnow

hold on

for i = 1:5:nx

for j =1:5:ny
if domain (i, j) == 1
plot (Xgplot (i, j),Ygplot (i, ), 'r.")
end
end

end

figure (2)

H=gcf;

set (H, '"Position', [800 200 500 5001);

surf (X0,Y0, 2)

text (0.7,0.9,['t = ' num2str(txd) 's'], 'color',

rectangle ('position', [-1,-1,2,2], 'curvature',
[1,1], 'LineWidth', 2);

$caxis ([0 0.4])

view (2)

shading interp

xlabel ('x"');

ylabel('y');

title ('FTLE field');

axis([—1 1 —1 11)

daspect ([1 1 11)

drawnow

'k.')
'black');
'black');
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39

40

41

clear all; clc; close all
$—input—
nx = 400; $number of gridpoints
ny = 400;
xstart = —1; $domain
xlast = 1;
ystart = 1;
ylast = —1;
St = 0.5; %$Stokes number of the inertial particles
dt = 0.025; %integration time step
write = 0; %1 for writing datafiles, 0 for plots
without writing
r.j = 0.5; %$radial position of the point vortex
T_start = 0; %$starting time
T_end = 100; %end time of the run
d=1; %direction of ftle, forward = 1, backward =
if == 1
direction = 'forward';
elseif d == —
direction = 'backward';
end
name = ['LCS_.' direction '_0025_']; $name of datafile
corotating = 0; %$setting frame, 1 = corotating, 0 = rotating
xcoor = linspace (xstart, xlast, nx); $vectors for meshgrid
ycoor = linspace(ystart, ylast, ny);
[X0,Y0] = meshgrid(xcoor, ycoor); $initial positions of

particles

-1




42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

[Xp,Yp] = meshgrid(xcoor, ycoor); %positions of inertial
particles

[Xp-new, Yp_-new] = meshgrid(xcoor, ycoor);

[theta, r] = cart2pol (Xp,Yp); %polar coordinates

$defining matrices

Ugp = zeros (ny,nx);
Vgp = zeros (ny,nx);
Ugpl = zeros (ny,nx);
Vgpl = zeros(ny,nx);
Ugp2 = zeros (ny,nx);
Vgp2 = zeros (ny,nx);
Up-new = zeros(ny,nx);
Vp-new = zeros (ny,nx);
Up = zeros(ny,nx);

Vp = zeros(ny,nx);

Up2 = zeros (ny,nx);
Vp2 = zeros (ny,nx);
Upl = zeros (ny,nx);
Vpl = zeros(ny,nx);
Xpl = zeros (ny,nx);
Ypl = zeros(ny,nx);
Xgl = zeros(ny,nx);
Ygl = zeros (ny,nx);
sigma = zeros(ny,nx);
domain = zeros (ny,nx);
boundaryp = zeros (ny,nx);
boundaryg = zeros (ny,nx);
Z = zeros(ny,nx);

for i = l:nx

for 3 =l:ny
if sgrt(X0(i, j) "24+4Y0(i,3J) " 2) < 1
domain (i, j) = 1; %the particles in the
domain (circle with r=1) will be traced
end
end

end
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104
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117
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122

123

124

u_r_func =

u_-theta_func =

time =

for T =

theta.j = @(t) (1/(2xpi))*(1/(1l—r_3°2))«
point vortex
theta_jt = (1/(2*pi))*x(1/(1—r_372));

point vortex

Q(r, theta,

t) (1./xz).*((—
sin (theta—theta_j( (

(

(

(

/(r. " 2+r_7J.
cos (theta—theta_j

( )—(=1./(4.%xpi) .x
sin(theta—theta_j
(

)
£))).
t)))
t)))./(r."2+r_j."
cos (theta—theta_j(t)))));
@(r,theta,t) —((=1./(4.*pi).x*

cos (theta—theta_j(t))). /(r.A

))—(=1./(4.%pi) .*

) .

)

( (£)) 2+r_7j.
cos (theta—theta_j(t))
cos (theta—theta_j(t))

( (t))

0;

cos (theta—theta_j )

4

4

T_start:dtxd:d«T_end
time = time+1; $resetting time for ftle
T_span = timexdt;

Xp = Xp_-new;

Yp = Yp_new;
Up2 = Upl;
Vp2 = Vpl;
Upl = Up;
Vpl = Vp;

Up = Up-new;
Vp = Vp_new;

Ugp2 = Ugpl;

Ugpl = Ugp;

Vgp2 = Vgpl;

Vgpl = Vgp;

[thetap, rp] = cart2pol (Xp, Yp);
u.r = u.r_func (rp,thetap,T);

u_-theta = u_theta_func (rp,thetap,T);

u = u.r.x*cos (thetap)—u_theta.x*sin(thetap);
velocities in x and y directions
v = u.r.+*sin(thetap)+u_theta.*cos (thetap);

1./ (4.%pi) .*
"2=2.xr.*xr_J. %

(2.%r—2.%xr_7.
/ L24r_j. . —2—2.%xr.*r_J.
)

%$angular position of

%$angular velocity of

(2.4%r.xr_J.*

(2.%r.xr_J. —1.x

—2—2.xr.xr_j. —=1l.%

(2.xr—2.%r_J.*
"2=2.xr.xr_J. %

T—1.%
T—1.%

$polar coordinates

%describing the
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Ugp = dxu; $%velocity of the gas at position of the inertial

particles
Vgp = dxv;
if T ==
for i = 1l:ny
for j = 1l:nx
if domain (i, j) == 1
%inertial particles Euler method
Up (i, J) = Ugp(i,J); %$initial velocities
Vp(i,3) = Vgp(i,]);
end
end
end

for i = l:ny
for 3 = 1l:nx
if domain (i, j) == 1 && boundaryp (i, j) == 0
%$inertial particles Euler method
Xp-new (i, 3J) = Xp(i,J)+dtxUp (i, J);
Yp-new (i, j) = Yp(i,J)+dt«Vp (i, ]);

Up_new (i, 3) = Up(i,]) +
dt* (1/St)« (Ugp (i, 3)-Up(i,3));
Vp-new (i,J) = Vp(i,Jj) +
dtx (1/5t) = (Vgp (i, 3)—Vp(i,3));
end
end
end
elseif == dt~*d
for i = l:ny
for j = 1l:nx
if domain (i, j) == 1 && boundaryp (i, j) == 0
$inertial particles two step adams bashforth
Xp_new (i, j)=
Xp(i,3)+1.5%dt+xUp (i, 3J)—0.5xdt*Upl (i, J);
Yp_new (i, j)=
Yp (i, 3)+1.5+xdt*xVp (i, J)—0.5xdt*«Vpl (i, j);

Up_new (i, )=
Up (i, 3)+1.5%xdt* (1/St)* (Ugp (i, J)—Up (i, J))—
0.5+dtx (1/St) » (Ugpl (i, 3)—Upl (i, 3));
Vp-new (i, j)=
Vp (i, J)+1.5%xdt*(1/St) + (Vgp (i, 3)—Vp (i, ]))—
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44

0.5%dtx (1/St) * (Vgpl (i, J)—Vpl (i, J));

end
end
end
else
for i = 1l:ny
for j = 1l:nx
if domain(i, j) == 1 && boundaryp(i, j) == 0
%$heavy particles three step adams bashforth
Xp_new (i, j)=Xp (i, j)+dt* ((23/12)*Up (i, J)—
(4/3) *Upl (i, J) +(5/12) xUp2 (i, 3));
Yp_new (i, J)=Yp (i, j)+dt* ((23/12) *Vp (i, j)—
(4/3) *Vpl (i, J)+(5/12) xVp2 (i, 3));
Up-new (1, j)=Up (i, J) +dt* ((23/12) = ((1/St)
(Ugp (i, 3)—-Up(i,3)))—(4/3)* ((1/St) *
(Ugpl (i, 3)—Upl (i, 3)))+(5/12) = ((1/St)*
(Ugp2 (i, 3)—Up2(i,3))));
Vp_new (i, 3)=Vp (i, J)+dt* ((23/12) » ((1/St) *
(Vgp (1, 3)—=Vp (i, 3)))—(4/3)» ((1/St) *
(Vgpl (i, 3)—Vpl(i,3)))+(5/12) = ((1/St)*
(Vgp2 (i, 3)—Vp2(i,3))));
end
end
end

end

[thetapl, rpl] = cart2pol (Xp_new, Yp_new);

for 1 = 1l:ny
for j = l:nx
if rpl(i,Jj) > 1 && domain(i,j) == 1 &&
boundaryp (i, j) ==
%$setting the particles which left the domain on
the wall
Xp_new (1, J)
lxcos (thetap (i, j)+0.5* (thetapl (i, j)—thetap (i, j)));
Yp_new (i, j)
l+sin(thetap (i, j)+0.5* (thetapl (i, j)—thetap (i, j)));
boundaryp (i, 3) = 1;
end
if boundaryp(i,j) == 1
%$velocities for particles on the wall are zero

Up_new (i, 3) = 0;
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221

222

223

224
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226
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229
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end
end
end

if corotatin

%$rotate the frame to watch in the corotating frame

Xplot = rp.*cos(thetap—theta_j(T));
Yplot = rp.*sin(thetap—theta_j(T));
else
Xplot = Xp;
Yplot = Yp;
end
%$calculating ftle
for i=l:ny
for j=1l:nx
if domain(i,j) == 1
if (J—1)x(J—nx)<0 && (i—1)* (i—ny)<0
All=(Xp (i, j+1)—Xp (i, J—1))/ (xcoor (j+1)
Al2=(Xp(i—1, 3)—Xp(i+1,3))/ (ycoor (i—1)
A21=(Yp(i,J+1)—Y¥Yp (i, J— 1))/(xcoor(j+1)
A22=(Yp(i—1,3)—Yp (i+1, J))/ (ycoor (i—1)
A =[All Al2;A21 A22];
sigma (i, j)=log (norm(A))/ (T_span);
else
sigma (i, j)=0;
end
end
end
end
Z = sigma;
if write == 0
figure (1)
clf(1);

—xcoor (j—
—ycoor (i+
—xcoor (j—
(i+

—ycoor
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set (H, '"Position', [200 200 500 5007);
% hold on
%$only plot the particles in the domain (slower)
for i = 1:5:nx
for j =1:5:ny
if domain (i, j) == 1
plot (Xgplot (i, j),Ygplot (i, j), 'r.")
end
end
end
$plot the whole grid
plot (Xplot (1:5:nx,1:5:ny),Y¥Yplot(1:5:nx,1:5:ny), 'k.")
text (0.7,0.9,['t = ' num2str(T+«d) 's'], 'color', 'black');
rectangle ('position', [—-1,—-1,2,2], 'curvature',
[1,1], 'LineWidth', 2);

caxis ([0 0.2])
view (2)
shading interp
xlabel ('x"'");
ylabel ('x");
title('Inertial particles');
axis([—1 1 —1 11)
daspect ([1 1 1])

drawnow

figure (2)
H=gcf;
set (H, '"Position', [800 200 500 50071);
daspect ([1 1 11])
surf (X0,Y0,7Z)
text (0.7,0.9,['t = " num2str (Txd) 's'], 'color', 'black');
rectangle ('position', [—-1,-1,2,2], 'curvature',
[1,1], 'LineWidth', 2);
caxis ([0 0.2])
view (2)
shading interp
xlabel ('x");
ylabel('y');
title ('FTLE field');
axis([—1 1 —1 11)
daspect ([1 1 1])
drawnow
for i = 1:5:200
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o\°

for j = 1:5:200

o\°

if domain (i, j) ==

o

o\

end

o\

end

o

end

end

if write ==

plot (Xg (i, j),¥Yg (4,

3), 'w.

save ([num2str (name) num2str (Stx10)

lXpl, 'YpV, lUpl, VVPI’
end

end

'7');

")

1

num2str ((d«T) /dt) 1,
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APPENDIX

INERTIAL PARTICLE VELOCITIES
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INERTIAL PARTICLE VELOCITIES

B.1 VELOCITY IN X-DIRECTION

49

1

Up_func = @(x,y,t) —((y*(—((2*sqgrt(x"2 + y~"2) — (2*cos(t/(2+(1 — ...
r_j"2)xpi) — atan2(y,x)))/r_j)/ (4dxpix(r_3°(=2) + x"2 + y"2 — ...
(2*sqrt (x"2 + y~2)*cos(t/ (2« (1 — r_j"2)*pi) — atan2(y,x)))/r_3)))
+ (2*%sgrt(x"2 + y"2) — 2*«r_j*cos(t/(2x(1 — r_372)*pi) — ...
atan2 (y,x)))/ (dxpirx(r_3°2 + x"2 + y"2 — 2*«r_j*sqrt(x"2 + ...
vy 2)xcos(t/ (2% (1 — r_j"2)*pi) — atan2(y,x))))))/sqgrt(x"2 + y~2))
+ (%% (—((sqrt(x"2 + y " 2)*sin(t/(2*x (1 — r_j~2)*pi) — ...
atan2(y,x)))/ (2 r_Jj*pix(r_-j"(—2) + x"2 + y"2 — (2*sqgrt(x"2 +
vy 2)xcos (t/ (2% (1 — r_3"2)xpi) — atan2(y,x)))/r-3))) + ...
(r_jxsqrt (x"2 + y " 2)*sin(t/ (2 (1 — r_j " 2)*pi) — ...
atan2(y,x)))/ (2 pix(r_j°2 + x"2 + y"2 — 2xr_j*sqrt(x"2 + ...
vy 2)xcos(t/ (2+x(1 — r_j3"2)*pi) — atan2(y,x))))))/(x"2 + y~2) — ...
St* (((x*x (—((2xsqrt (x"2 + y72) — (2+cos(t/(2%x(1 — r_j"2)*pi) — ...
atan2 (y,x)))/r_j)/ (4 pi* (r_3J°(=2) + x"2 + y"2 — (2*sqgrt(x"2 + ...
vy 2)xcos(t/ (2+x(1 — r_3"2)*pi) — atan2(y,x)))/r_j))) + (2xsqrt(x"2
+ y72) — 2xr_j*cos(t/ (2%« (1 — r_j"2)xpi) — ...
atan2 (y,x)))/ (dxpix(r_J°2 + x"2 + y™2 — 2xr_J*sqrt(x"2 +

y 2)*xcos(t/ (2« (1 — r_j"2)*pi) — atan2(y,x))))))/sqrt(x"2 + y~2) + ...

(y*x (—((sgrt (x"2 + y " 2)*sin(t/ (2 (1 — r_j"2)+*pi) — ...
atan2(y,x)))/ (2«r_j*pix(r_j"(—2) + x"2 + y"2 — (2*sqgrt (x"2 +
y 2)*cos (t/ (2%« (1 — r_j"2)*pi) — atan2(y,x)))/r_j))) +
(r_jxsqgrt (x"2 + y " 2)*xsin(t/ (2 (1 — r_j"2)*pi) — ...
atan2 (y,x)))/ (2xpix(r_37°2 + x"2 + y"2 — 2%«r_j*sqrt(x"2 + ...
vy 2)xcos(t/ (2+x(1 — r_372)*pi) — atan2(y,x))))))/(x"2 + y~2))*
((y"2%x (— ((2xsgrt(x"2 + y"2) — (2xcos(t/ (2% (1 — r_3°2)*pi) — ...
atan2 (y,x)))/r_j)/ (4 pi (r_3°(=2) + x"2 + y"2 — (2*sqgrt(x"2 + ...
vy 2)xcos(t/ (2« (1 — r_j"2)*pi) — atan2(y,x)))/r_-j))) +
(2*sqrt (x"2 + y~2) — 2*r_j*cos(t/ (2 (1 — r_j " 2)*pi) — ...
atan2(y,x)))/ (4*pix(r_jJ°2 + x"2 + y"2 — 2+xr_j*sqrt(x"2 + ...
y 2)xcos(t/(2x(1 — r_-j"2)xpil) — atan2(y,x))))))/(x"2 + y"2)"(3/2)
— (—((2*sgrt(x"2 + y"2) — (2*cos(t/(2*(1 — r_j3"2)*pi) — ...
atan2 (y,x)))/r_3)/ (dxpix (r_j " (—=2) + x"2 + y~2 — (2#%sqrt(x"2 +
y 2)xcos(t/ (2% (1 — r_j"2)»pi) — atan2(y,x)))/r_-j))) +
(2*sqrt (x"2 + y~2) — 2*r_j*cos(t/ (2x(1 — r_j~2)*pi) — ...
atan2 (y,x)))/ (4 pirx(r_3°2 + x"2 + y"2 — 2*«r_j*sqrt(x"2 + ...
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y"2)*cos(t/(2* (1 — r-j"2)xpi) — atan2(y,x)))))/sart(x"2 + y"2) — ...

(2xx*xy* (— ((sqQrt (x"2 + y " 2)xsin(t/ (2%« (1 — r_3°2)*pi) — ...
atan2(y,x)))/(2xr_Jxpix (r-j"(=2) + x"2 + y"2 — (2xsqrt(x"2 +
y 2)xcos (t/(2x(1 — r.j"2)+pi) — atan2(y,x)))/r-3))) +
(r-J*sqrt(x°2 + y 2)*sin(t/ (2% (1 — r_3°2)*pi) — ...
atan2(y,x)))/ (2xpi*x(r_3°2 + x"2 + y 2 — 2xr_jxsqrt (x°2 + ...

y 2)xcos(t/(2x(1 — r_j"2)xpi) — atan2(y,x))))))/(x"2 + y"2)"2 — ...

(y* (= (((2%y) /sQrt (x°2 + y~2) — (2*x*xsin(t/ (2% (1 — ...

r.3°2)+pi) — atan2(y,x)))/(r_3*(x"2 + y°2)))/ (4+pix (r_3°(=2) + ...

X"2 + y"2 — (2%sqrt(x°2 + y"2)xcos(t/(2x (1 — r_j"2)*pi) — ...
atan2(y,x)))/r-3))) + ((2%y) /sqrt (x"2 + y°2) — ...
(2xr_j*x*xsin(t/ (2« (1 — r-j"2)*pi) — atan2(y,x)))/(x"2 + ...

v 2))/ (4+pix (r_J°2 + x°2 + y 2 — 2+«r_jxsqgrt (x"2 +

y 2)xcos (t/(2x(1 — r_j"2)xpi) — atan2(y,x)))) +

((2%sqrt (x°2 + y°2) — (2%cos(t/ (2% (1 — r_3°2)*pi) — ...
atan2(y,x)))/r-3)*(2xy — (2xy*cos(t/(2*«(1 — r_j 2)*pi) — ...

atan2(y,x)))/(r_j*xsqrt(x"2 + y"2)) — (2*x*xsin(t/ (2%« (1 — ...
r_j"2)*pi) — atan2(y,x)))/ (r_j*sqgrt(x"2 + ...
v©2))))/ (dxpix(r_j " (=2) + x"2 + y™2 — (2*sqgrt(x"2 + ...

y 2)*cos (t/ (2% (1 — r_j"2)*pi) — atan2(y,x)))/r.j)"2) —
((2%xsgrt(x"2 + y"2) — 2%r_jxcos(t/ (2x(1 — r_j"2)«pi) — ...

atan2 (y,x)))* (2xy — (2+«r_jxyxcos (t/ (2x(1 — r_37°2)xpi) — ...
atan2 (y,x)))/sqgrt(x"2 + vy 2) — (2xr_jxx*xsin(t/ (2« (1 — r_j~2)*pi)
— atan2(y,x)))/ Sqrt (x°2 + y°2)))/(4«pix (r.3"2 + x"2
+ Y2 — 2xr_jxsqrt (x"2 + y 2)xcos(t/(2x (1 — r.3"2)*pi) — ...

atan2(y,x)))"2)))/sqrt(x"2 + y~2) + (x* ((x*xcos(t/ (2% (1 — ...
r_j"2)*pi) — atan2(y,x)))/ (2 r_j*pi*sqrt(x"2 + y"2)*(r_j~(=2) + ...

X"2 + y°2 — (2%sqrt (x°2 + y"2)*cos(t/(2%x(1 — r_j 2)*pi) — ...

atan2(y,x)))/r-j)) — (r_jxx*cos (t/ (2%« (1 — r_j 2)*pi) — ...

atan2(y,x)))/ (2*pixsgrt (x"2 + y " 2)*(r_3°2 + x°2 + y"°2 — ...

2xr_jxsqrt (x°2 + y 2)xcos(t/ (2%« (1 — r_j " 2)*pi) — atan2(y,x)))) — ...

(y*sin(t/ (2x (1 — r_j"2)*pi) — ...

atan2 (y,x)))/ (2xr_J*pissqrt (x"2 + y " 2)*(r_.j " (=2) + x°2 + y°2 — ...

(2%sqrt (x72 + y"2)xcos(t/ (2% (1 — r.j"2)+pi) — atan2(y,x)))/r-3))
+ (roj*y*sin(t/ (2% (1 — r_j 2)*pi) — ...
atan2 (y,x)))/ (2*pixsqrt (x"2 + y"2)*(r_j°2 + x°2 + y"2 — ...

2xr_jxsqrt (x°2 + y 2)xcos(t/ (2%« (1 — r_j"2)*pi) — atan2(y,x)))) + ...

(sgrt (x"2 + y"2)*sin(t/ (2% (1 — r_j"2)*pi) — ...
atan2(y,x))*(2xy — (2xy*cos(t/(2+(1 — r-3j"2)*pi) — ...
atan2(y,x)))/ (r_jxsqrt (x°2 + y~2)) — (2xxxsin(t/(2x(1 — ...
r_j"2)xpi) — atan2(y,x)))/(r-jxsqrt(x"2 + y~2))))/ .
(2%r_*pix (r_-37(=2) + x"2 + y 2 — (2%sqrt(x°2 + y"2)cos(t/ (2 (1
— r_j"2)«pi) — atan2(y,x)))/r-3)"2) — (r-jrsqgrt(x°2 + ...

vy 2)*sin(t/ (2« (1 — r_j"2)*pi) — atan2(y,x))* 2%y — ...




(2«r_jxy*xcos(t/(2+x (1 — r_j " 2)*pi) — atan2(y,x)))/sqrt(x"2 + y~2)

— (2xr_j*x*sin(t/ (2%« (1 — r_j 2)*pi) — atan2(y,x)))/sqrt(x"2 + ...
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v©2)))/ (2%xpix(r-j"2 + x"2 + y"2 — 2xr_j*xsqrt(x”2 +

y 2)*xcos(t/ (2« (1 — r_j"2)*pi) — atan2(y x)))“2)))/(xA2 + v"2)) + ...
(—((y*x (= ((2%sgrt (x"2 + y"2) — (2%cos(t/(2+x(1 — r_j 2)xpi) — ...

atan2 (y,x)))/r_3)/ (dxpix (r_j " (—=2) + x"2 4+ y~2 — (2%sqrt(x"2 +

y~2)xcos(t/ (2% (1 — r_j"2)xpi) — atan2(y,x)))/r_-j))) +

(2xsgrt (x"2 + y"2) — 2xr_jxcos(t/ (2« (1 — r_j " 2)*pi) — ...

atan2 (y,x)))/ (dxpix(r_ 372 + x"2 + y"2 — 2%«r_j*sqrt(x"2 + ...

v 2)xcos (t/ (2% (1 — r_37°2)xpi) — atan2( x))))))/sart(x"2 + y~2))
+ (%% (— ((sgrt(x"2 + y~2)*sin(t/ (2 (1 — r_j~2)*pi) — ...
atan2 (y,x)))/ (2 r_J*pi*(r_3j°(=2) + x"2 + y"2 — (2*sqgrt(x"2 +

vy 2)*cos(t/ (2% (1 — r_j"2)xpi) — atan2(y,x)))/r-3))) +
(roj*sgrt(x"2 + y"2)xsin(t/ (2x(1 — r_j"2)*pi) — ...
atan2(y,x)))/ (2 pix(r_j°2 + x"2 + y"2 — 2xr_j*sqrt(x"2 + ...

y 2)xcos(t/ (2% (1 — r_j "2)*pi) — atan2(y,x))))))/(x"2 + y~"2))x
((xxy* (—((2xsgqrt (x"2 + y72) — (2+«cos(t/(2+x(1 — r_j"2)*pi) — ...

atan2 (y,x)))/r_j)/ (4 pi* (r_3°(=2) + x"2 + y"2 — (2*sqgrt(x"2 + ...

vy 2)xcos(t/ (2+x(1 — r_j"2)*pi) — atan2(y,x)))/r_j))) +
(24%sgrt (x"2 + y"2) — 2%xr_jxcos(t/ (2« (1 — r_j"2)+*pi) — ...
atan2 (y x)))/(4*pi*(r 372 + x72 + y°2 — 2xr_jssqrt(x"2 + ...

y~2)*cos (t/( (1 — r_J"2)*pi) — atan2(y,x))))))/(x"2 + y~2)"(3/2)
— (2*x"2% (— ((sqrt(x”"2 + y " 2)*sin(t/ (2x(1 — r_j 2)*pi) — ...

atan2(y,x)))/ (2«r_Jj*pix(r_j"(—2) + x"2 + y~2 — (2*sqgrt(x"2 +
vy 2)*cos(t/ (2%« (1 — r_j"2)xpi) — atan2(y,x)))/r-3))) +
(r_jxsqrt(x"2 + y " 2)*xsin(t/ (2 (1 — r_j"2)*pi) — ...

atan2 (y,x)))/ (2xpix(r_ 372 + x"2 + y"2 — 2%r_j*sqrt(x"2 + ...

vy 2)*cos(t/(2+x(1 — r_j~2)xpi) — atan2(y,x))))))/(x"2 + y"2)"2 + ...

(—((sgrt(x"2 + y " 2)*sin(t/(2* (1 — r_j~2)*pi) — ...
atan2 (y X)))/(Z*r Jxpix(r-3°(=2) + x"2 + y°2 — (2+xsgrt(x"2 +
y~2)*cos (t/( (1 — r_j 2)*pi) — atan2(y,x)))/r_j3))) +
(r-j*sgrt(x"2 + y"2)xsin(t/ (2« (1 — r_372)*pi) — ...
atan2(y,x)))/ (2 pix(r_jJ°2 + x"2 + y°2 — 2+xr_j*sqrt(x"2 + ...
vy 2)*xcos(t/ (2« (1 — r_j"2)*pi) — atan2(y,x)))))/(x"2 + y~2) — ...
(yx (—(((2xx) /sqrt (x"2 + y72) + (2*y*sin(t/ (2x(1 — ...

r_j"2)*pi) — atan2(y,x)))/(r_j*=(x"2 + y"2)))/(4*pi*(r,j“(—2) + ...

x"2 + y°2 — (2*sqgrt(x"2 + y 2)*cos(t/(2x(1 — r_j"2)xpi) — ...
atan2(y,x)))/r_j))) + ((2xx) /sqrt X2 + y"2) + ...
(2xr_jxy*sin(t/ (2« (1 — r_j"2)*pi) — atan2(y,x)))/(x"2 + ...

v 2))/ (d*pi*x(r_3J°2 + x"2 + y"2 — 2+r_j*sqgrt(x"2 +

vy 2)xcos(t/ (2% (1 — r_372)*pi) — atan2(y,x)))) +

((2*sqrt (x"2 + y~2) — (2xcos(t/(2%x(1 — r_372)*pi) — ...

atan2 (y,x)))/r_j)*(2+x — (2+*x*cos(t/ (2 (1 — r_j"2)*pi) — ...
atan2 (y,x)))/(r_jxsqrt (x"2 + y~2)) + (2xy*sin(t/(2*«(1 — ...




r.j"2)*pi) — atan2(y,x)))/ (r_j*sqrt (x°2 + ...
v'2))))/ (4*pi*(r_3"(=2) + x"2 + y 2 — (2xsgrt(x"2 + ...

vy 2)*cos (t/(2x(1 — r_j"2)*xpi) — atan2(y,x)))/r_j)"2) —

((2*sqgrt (x"2 + y72) — 2*r_j*cos(t/(2*(1 — r_j " 2)*pi) — ...

atan2 (y,x))) * (2xx — (2xr_j*xxcos (t/ (2x(1 — r_j"2)xpi) — ...
atan2 (y,x)))/sqrt (x"2 + y°2) + (2+«r_j*y*sin(t/(2* (1 — r_3°2)xpi)
— atan2(y,x)))/ Sqrt (x°2 + y°2)))/ (4xpix(r.3"2 + x°2
+ vy 2 — 2xr_jxsqrt(x°2 + y"2)xcos(t/ (2« (1 — r_j"2)*pi) — ...
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atan2(y,x)))"2)))/sqrt(x"2 + y~2) + (x*x (— ((y*cos(t/(2+x (1 — ...

r.j"2)*pi) — atan2(y,x)))/(2xr_Jjxpixsqrt(x"2 + y"2)x(r_j"(=2) + ...

X"2 + y'2 — (2xsqgrt(x"2 + y 2)xcos(t/(2x(1 — r_j"2)*pi) — ...

atan2(y,x)))/r_3j))) + (r_j*y*cos(t/ (2« (1 — r_j"2)*pi) — ...

atan2 (y,x)))/ (2*pixsqrt (x"2 + y"2)*(r_.j°2 + x"2 + y°2 — ...

2+«r_Jxsqrt (x°2 + y 2)*cos(t/ (2% (1 — r_j"2)*pi) — atan2(y,x)))) — ...

(xxsin(t/(2x(1 — r_j 2)*pi) — ...

atan2(y,x)))/ (2 r_j*pixsqrt(x"2 + vy 2)*(r_j " (=2) + x"2 + y"2 — ...

(24sqrt (x"2 + y~2)xcos (t/ (2% (1 — r_j~2)*pi) — atan2(y,x)))/r-j))
+ (roj*x*xsin(t/ (2% (1 — r_j 2)*pi) — ...
atan2 (y,x)))/ (2xpi*xsqrt (x"2 + y " 2)*(r_3°2 + x"2 + y°2 — ...

2xr_jxsqrt (x°2 + y 2)xcos(t/ (2%« (1 — r_j"2)*pi) — atan2(y,x)))) + ...

(sgrt (x"2 + y"2)*sin(t/ (2« (1 — r_j"2)*pi) — ...
atan2 (y,x)) * (2«x — (2xx*cos(t/(2x(1 — r_3°2)*pi) — ...
atan2 (y,x)))/(r_j*sqrt (x"2 + y~2)) + (2%yxsin(t/(2%(1 — ...
r_j"2)*pi) — atan2(y,x)))/(r_j*sqgrt(x"2 + y~2))))/ )
(2xr_Jxpix(r_-3°(=2) + x"2 + y"2 — (2xsgrt(x"2 + y"2)*cos(t/(2* (1
— r_j"2)xpi) — atan2(y,x)))/r-j) " 2) — (r_j*sqrt(x"2 + ...
y 2)#sin(t/ (2% (1 — r_j"2)»pi) — atan2(y,x))=* (2%x — ...
(2xr_jxxxcos (t/ (2% (1 — r_j 2)+pi) — atan2(y,x)))/sqrt(x"2 + y~2)
+ (2%r_jxy*sin(t/ (2% (1 — r_j~2)+*pi) — atan2(y,x)))/sqrt(x"2 + ...
y©2)))/ (24pi* (r_3°2 + x°2 + y°2 — 2%r_j*sqrt (x"°2 +
y 2)xcos (t/ (2% (1 — r_3"2)+pi) — atan2(y,x)))"2)))/(x°2 + y"2)));

B.2 VELOCITY IN Y-DIRECTION

1

Vp_func = Q@(xX,y,t) (xx(—((2xsqgrt(x"2 + y"2) — (2%cos(t/(2*(1 — ...
r_j"2)*pi) — atan2(y,x)))/r_3)/ (4*pix(r_j°(=2) + x"2 + y"2 — ...
(2xsgrt (x"2 + y " 2)*cos(t/ (2 (1 — r_j3J"2)*pi) — atan2(y,x)))/r_3)))
+  (2%sqrt (x°2 + y°2) — 2xr_jxcos(t/(2x(1l — r_j 2)*pi) — ...
atan2(y,x)))/ (d*pix(r_-jJ°2 + x"2 + y°2 — 2+xr_j*sqrt(x"2 +

vy 2)xcos(t/ (2% (1 — r_372)*pi) — atan2(y,x))))))/sqrt(x"2 + y~2) + ...

(y* (= ((sqrt (x"2 + y"2)*sin(t/ (2x(1 — r_j"2)*pi) — ...
atan2(y,x)))/ (2+xr_j*pi* (r_3°(=2) + x"2 + y"2 — (2%sqrt(x"2 +




y " 2)*cos (t/ (2% (1 — r_j 2>*pi) — atan2(y,x)))/r_-j))) +
(r_j*sqgrt(x"2 + y"2)xsin(t/ (2+x(1 — r_j"2)*pi) — ...
atan2(y,x)))/ (2 pix(r_-jJ°2 + x"2 + y°2 — 2+xr_j*sqrt(x"2 + ...
vy 2)xcos (t/ (2% (1 — r_j"2)xpi) — atan2(y X)))))>/(XA2 + vy 2)
St* (((x*x (—((2xsqrt (x"2 + y~2) — (2*cos(t/( (1 — r_j°2) *pi)
atan2 (y,x)))/r_3)/ (dxpix (r_j " (—=2) + x"2 4+ y~2 — (2%sqrt(x"2 +

vy 2)xcos(t/(2+x(1 — r_j"2)*pi) — atan2(y,x)))/r_j))) +
(2xsgrt (x"2 + y"2) — 2xr_jxcos(t/ (2« (1 — r_j " 2)*pi) — ...
atan2 (y,x)))/ (dxpix(r_ 372 + x"2 + y"2 — 2%«r_j*sqrt(x"2 + ...

vy 2)xcos(t/ (2% (1 — r_372)*pi) — atan2( x))))))/sqrt(x"2 + y72) + ...

(y*(—((sgrt(x"2 + y"2)*sin(t/ (2 (1 — r_j~2)*pi) — ...
atan2 (y,x)))/ (2 r_J*pi*(r_3j°(=2) + x"2 + y"2 — (2*sqgrt(x"2 +
y 2)xcos(t/(2x(1 — r-j "2)xpi) — atan2(y,x)))/r-3))) +
(r_jxsqrt (x"2 + y " 2)*sin(t/ (2 (1 — r_j 2)*pi) — ...
atan2(y,x)))/ (2 pix(r_j°2 + x"2 + y"2 — 2xr_j*sqrt(x"2 + ...
y 2)xcos (t/ (2% (1 — r_3"2)xpi) — atan2(y,x))))))/(x"2 + y~2))~*
(= ((x*y* (= ((2*sgrt (x"2 + y~2) — (2xcos(t/(2x(1 — r_j"2)*pi) —
atan2 (y,x)))/r_j)/ (4 pi* (r_3°(=2) + x"2 + y"2 — (2*sqgrt(x"2 + ...
y 2)*cos(t/ (2% (1 — r_j 2)xpi) — atan2(y,x)))/r_j))) +
(24%sgrt (x"2 + y"2) — 2%xr_jxcos(t/ (2« (1 — r_j"2)+*pi) — ...
atan2 (y x)))/(4*pi*(r 372 + x72 + y°2 — 2xr_jssqrt(x"2 + ...
yA2)*cos (t/ ( (1 — r_J"2)*pi) — atan2(y,x))))))/(x"2 + ...
y©2)°(3/2)) — (2xy 2% (—((sqgrt (x"2 + y 2)*sin(t/ (2« (1 — ...
r,j“2)*pi) — atan2(y,x)))/ (2 r_J*pix(r_j"(=2) + x"2 + y"2 — ...
(2#sqrt (x72 + y "2)*xcos (t/(2x (1 — r_3j"2)xpi) — atan2(y,x)))/r-3)))
+ (r_jxsqrt(x"2 + y " 2)*xsin(t/ (2 (1 — r_j " 2)*pi) — ...
atan2 (y,x)))/ (2xpix(r_ 372 + x"2 + y"2 — 2%r_j*sqrt(x"2 + ...

vy 2)xcos (t/ (2% (1 — r_§°2)*pi) — atan2(y,x))))))/(x°2 + y°2)°2 + ...

(—((sgrt(x"2 + y " 2)*sin(t/(2* (1 — r_j~2)*pi) — ...
atan2 (y X)))/(Z*r Jxpix(r-3°(=2) + x"2 + y°2 — (2+xsgrt(x"2 +
y“2)*cos (t/ (2% (1 — r_j 2)*pi) — atan2(y,x)))/r_-j))) +
(r_j*sqgrt(x"2 + y"2)xsin(t/ (2+x(1 — r_j"2)*pi) — ...
atan2(y,x)))/ (2 pix(r_jJ°2 + x"2 + y°2 — 2+xr_j*sqrt(x"2 + ...
vy 2)xcos(t/ (2% (1 — r_3°2)*pi) — atan2(y,x)))))/(x"2 + y~2) +

(x* (— (((2%y) /sqgrt (x"2 + y"2) — (2*x*sin(t/(2*(1 — ...
r_j"2)*pi) — atan2(y,x)))/(r_j*=(x"2 + y"2)))/(4*pi*(r,j“(—2) + ...
X"2 + y'2 — (2xsqrt(x"2 + y 2)xcos(t/(2x(1 — r_j"2)*pi) — ...
atan2(y,x)))/r-3))) + ((2*y) /Sqrt x"2 + y'2) — ...

(2xr_Jxx*sin(t/ (2« (1 — r_j"2)*pi) — atan2(y,x)))/(x"2 + ...
v 2))/ (d*pi*x(r_3J°2 + x"2 + y"2 — 2+r_j*sqgrt(x"2 +

vy 2)xcos(t/ (2% (1 — r_372)*pi) — atan2(y,x)))) +

((2*sqrt (x"2 + y~2) — (2xcos(t/(2%x(1 — r_372)*pi) — ...
atan2(y,x)))/r_j)*x(2«y — (2xy*cos(t/(2*(1 — r_j " 2)*pi) — ...
atan2 (y,x)))/(r_jxsqrt (x"2 + y~2)) — (2xx*sin(t/ (2« (1 — ...




r_j"2)*pi) — atan2(y,x)))/ (r_j*sqrt (x°2 + ...
Y°2))))/ (4*pix (roj"(=2) + x°2 + y 2 — (2#sqrt(x°2 + ...

vy 2)xcos(t/ (2% (1 — r_j"2)*pi) — atan2(y,x)))/r-j)"2) —

((2%sqrt (x°2 + y"2) — 2#xr_jxcos(t/(2x (1l — r_3°2)*pi) — ...

atan2 (y,x))) x (2xy — (2xr_jxy+cos (t/(2+(1 — r_j 2)*pi) — ...
atan2(y,x)))/sqrt(x"2 + y"2) — (2+r_jxx*sin(t/ (2« (1 — r_j"2)xpi)
— atan2(y,x)))/ Sqrt (x°2 + y°2)))/ (4xpix(r.3"2 + x°2
+ y 2 — 24r_jxsqrt(x"2 + y " 2)xcos(t/(2x(1 — r_j 2)xpi) — ...

atan2(y,x)))"2)))/sqrt(x"2 + y~2) + (y* ((x*xcos(t/(2*(1 — ...
r.j"2)xpi) — atan2(y,x)))/ (2 r. j*pi*sqrt(xAZ + oy 2)x(r_gt(=2) + ...

Xx"2 + y"2 — (2xsqrt(x"2 + y"2)*cos(t/(2*(1 — r_j"2)*pi) — ...

atan2(y,x)))/r-3)) — (r_j*x*cos(t/ (2« (1 — r_j 2)*pi) — ...

atan2 (y,x)))/ (2*pixsqrt (x"2 + y"2)*(r_.j°2 + x"2 + y°2 — ...
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2+«r_Jxsqrt (x°2 + y 2)*cos(t/ (2% (1 — r_j"2)*pi) — atan2(y,x)))) — ...

(y*sin(t/ (2x (1 — r_j"2)*pi) — ...

atan2(y,x)))/ (2 r_j*pixsqrt(x"2 + vy 2)*(r_j " (=2) + x"2 + y"2 — ...

(2+#sqrt (x"2 + y "2)xcos (t/(2x(1 — r_3j "2)xpi) — atan2(y,x)))/r-3))
+ (r_jxyxsin(t/ (2« (1 — r_j"2)*pi) — ...
atan2(y,x)))/ (2 pixsqrt(x"2 + yAZ)*(r 372 4+ X2 + yT2 — ...

2xr_Jxsqrt(x"2 + y 2)xcos(t/ (2 (1 — r_j"2)*pi) — atan2(y,x)))) + ...

(sqrt (x°2 + y "2)*sin(t/ (2x(1 — r_j°2)*pi) — ...
atan2 (y,x))*(2xy — (2*y*cos(t/(2*(1 — r_§°2)+pi) — ...
atan2 (y,x)))/ (r_jxsqrt(x"2 + y~2)) — (2+x*sin(t/(2%x(1 — ...
r_j"2)*pi) — atan2(y,x)))/(r_jxsqrt(x"2 + y~2))))/ .
(2xr_J*xpi*(r_37°(=2) + x"2 + y"2 — (2xsgrt (x"2 + y"2)xcos(t/ (2% (1
- r- jA2>*pi> — atan2(y,x)))/r-3)"2) — (r-j*sqrt(x"2 + ...

vy 2)*sin(t/ (2« (1 — r_j 2)*pi) — atan2(y,x)) * (2%y — ...

(2«r_j*yxcos(t/(2x(1 — r_j"2)*pi) — atan2(y,x)))/sqgrt(x"2 + y~2)

— (2xr_j*x*sin(t/ (2% (1 — r_j~2)*pi) — atan2(y,x)))/sqrt(x"2 + ...

v'2)))/ (2%xpix(r-3°2 + x"2 + y°2 — 2%xr_j*sqrt (x°2 +

vy 2)*«cos (t/ (2« (1 — r_j 2)*pi) — atan2(y,x))) "2)))/(x"2 + y~2)) + ...

(—((y* (= ((2*sgrt (x"2 + y~2) — (2xcos(t/(2x(1 — r_j"2)*pi) — ...
atan2(y,x)))/r_j)/ (4*pix (r_j"(=2) + x"2 + y"2 — (2#sqgrt(x"2 + ...

vy 2)xcos(t/ (2% (1 — r_j"2)*pi) — atan2(y,x)))/r-j))) +

(24%sqrt (x°2 + y"2) — 2xr_jxcos(t/(2x(1 — r_j~2)*pi) — ...
atan2(y,x)))/ (4«pi*(r_3°2 + x°2 + y"2 — 2xr_j*sqrt (x°2 + ...

y 2)xcos(t/(2x(1 — r.j"2)xpi) — atan2(y,x))))))/sqrt(x"2 + y~2))
+ (x#% (= ((sgrt(x"2 + y"2)xsin(t/(2x(1 — r_j"2)*pi) — ...
atan2 (y x)))/(2*r Jxpix (£ (=2) + x°2 + y°2 — (2+sqrt(x°2 +

y " 2)*cos(t/ (2% (1 — r_j 2)*pi) — atan2(y,x)))/r_j))) +
(r_j*sgrt(x"2 + y"2)*sin(t/(2x(1 — r_j"2)*pi) — ...
atan2(y,x)))/ (2 pix(r_-jJ°2 + x"2 + y°2 — 2+xr_j*sqrt(x"2 + ...
y“2)*xcos (t/ (2% (1 — r_-j"2)»pi) — atan2(y X))))))/(XAZ +yt2))

(—((X°2% (= ((2%sqrt (x"2 + y"2) — (2%cos(t/(2+«(1 — r_j"2)*pi) — ...




atan2 (y,x)))/r_j)/ (4 pi*x(r_3J°(=2) + x"2 + y"2 — (2*sqgrt(x"2 + ...

y~2)xcos(t/ (2% (1 — r_j"2)xpi) — atan2(y,x)))/r_-j))) +
(2*sqrt (x"2 + y~2) — 2*r_j*cos(t/ (2x(1 — r_j~2)*pi) — ...
atan2 (y x)))/(4*pi*(r 372 + x72 + y©2 — 2xr_jssqrt(x"2 + ...
yAZ)*cos (t/ (2% (1 — r_372)*pi) — atan2(y,x))))))/(x"2 + ...
vy 2)°(3/2)) + (—((2+xsgrt (x°2 + y~2) — (2%cos(t/(2*(1 — ...
r,j“2)*pi) — atan2(y,x)))/r_3)/ (d*pix (r_3°(=2) + x"2 + y"2 — ...
(2xsgrt (x"2 + y " 2)*cos(t/ (2 (1 — r_j"2)*pi) — atan2(y,x)))/r_3j)

atan2 (y,x)))/ (dxpix(r_ 372 + x"2 + y"2 — 2%r_j*sqrt(x"2 + ...

))
+ (2xsgrt (x"2 + y"2) — 2xr_jxcos(t/ (2« (1 — r_j " 2)*pi) — ...
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vy 2)*cos(t/(2x(1 — r_j "2)*pi) — atan2(y,x)))))/sqrt(x"2 + y°2) — ...

(2%x*xy* (—((sgrt (x"2 + y " 2)xsin(t/ (2« (1 — r_j 2)*pi) — ...

atan2 (y X)))/(Z*r Jxpix(r-3°(=2) + x"2 + y°2 — (2xsgrt(x"2 +
y " 2)*cos(t/ (2% (1 — r_j 2)*pi) — atan2(y,x)))/r_-j))) +
(r_j*sqgrt(x"2 + y"2)xsin(t/ (2+x(1 — r_j"2)*pi) — ...

atan2(y,x)))/ (2% pix(r_-jJ°2 + x"2 + y°2 — 2+xr_j*sqrt(x"2 + ...

vy 2)xcos (t/ (2% (1 — r_3"2)xpi) — atan2(y,x))))))/(x"2 + y"2)"2 + ...

(x%x (— (((2%x) /sqrt (x"2 + y72) + (2*y*sin(t/(2x(1 — ...

r_j"2)*pi) — atan2(y,x)))/(r_j*=(x"2 + y”2)))/(4*pi*(r,j”(—2) + ...

Xx"2 + y"2 — (2xsqgrt(x"2 + y 2)xcos(t/(2x(1 — r_j"2)*pi) — ...
atan2(y,x)))/r-3))) + ((2*x) /Sqrt x"2 +y'2) + ...
(2*r_jxy*sin(t/ (2« (1 — r_j " 2)*pi) — atan2(y,x)))/(x"2 + ...
v©2))/ (d*pi*x(r_jJ°2 + x"2 + y"2 — 2+«r_j*sqrt(x"2 +

y 2)*cos(t/ (2%« (1 — r_j 2)xpi) — atan2( x)))) +

((2*sqgrt (x"2 + y72) — (2xcos(t/(2%x(1 — r_372)*pi) — ...

atan2 (y,x)))/r_j)*(2+x — (2+*x*cos(t/ (2 (1 — r_j"2)*pi) — ...
atan2 (y,x)))/(r_jxsqrt (x"2 + y~2)) + (2xy*sin(t/ (2%« (1 — ...

r_j 2)*pi) — atan2(y,x)))/ (r_jxsqgrt(x"2 + ...

v 2))))/ (Axpix(r_j " (=2) + x"2 + y"2 — (2xsqgrt(x"2 + ...

vy 2)*cos(t/(2+x(1 — r_j"2)xpi) — atan2(y,x)))/r-3)"2) —

((2*sqrt (x"2 + y72) — 2+r_j*cos(t/(2*(1 — r_j " 2)*pi) — ...

atan2 (y,x)))*(2+x — (2xr_j*x*xcos(t/ (2x(1 — r_j~2)*pi) — ...
atan2 (y,x)))/sqrt(x"2 + y7°2) + (2xr_j*y*sin(t/ (2« (1 — r_j72)*pi)
— atan2(y,x)))/ sqrt (x"2 + y72)))/ (d*pi*x(r_-j°2 + x"2
+ Yy 2 — 2xr_jxsqrt(x”"2 + y 2)*cos(t/(2* (1 — r_j " 2)*pi) — ...

atan2(y,x)))"2)))/sqrt(x"2 + y~2) + (y*x (— ((y*cos(t/(2x (1 — ...

r_j 2)*pi) — atan2(y,x)))/ (2xr_j*xpil*sqrt(x"2 + y"2)*x(r_j~(=2) + ...

X2 + y"2 — (2%sqrt(x72 4+ y 2)*cos(t/(2x(1 — r_372)*pi) — ...

atan2(y,x)))/r_3))) + (r_j*y*cos(t/(2«(1 — r_j"2)*pi) — ...

atan2 (y,x)))/ (2xpixsqrt (x"2 + yA2)*(r 372 + xT2 +yT2 — ...

2+«r_J*sqrt (x"2 + y~2)*cos (t/ ( (1 — r_j°2)+*pil) — atan2(y,x)))) — ...

(x*sin(t/ (2x (1 — r_-j~2)*pi) — ...

atan2 (y,x)))/ (2xr_ j*pi*sqrt(xAZ + v 2)*(r_j3J°(=2) + x"2 + y"2 — ...

(2xsgrt (x"2 + y " 2)*cos(t/ (2 (1 — r_jJ"2)*pi) — atan2(y,x)))/r_j))




+ (r_j*x*xsin(t/ (2x(1 — r_j"2)*pi) — ...
atan2(y,x)))/ (2«pixsqrt(x"2 + y " 2)*(r_J°2 + x"2 + y"2 — ...
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2xr_Jxsqrt (x"2 + y 2)xcos(t/ (2« (1 — r_j " 2)*pi) — atan2(y,x)))) + ...

(sart (x"2 + y " 2)xsin(t/ (2« (1 — r_j"2)+pi) — ...
atan2 (y, x) ) * (2xx — (2*x*cos(t/(2+x(1 — r_j"2)*pi) — ...
atan2 (y,x)))/(r_j*xsqrt(x"2 + y"2)) + (2*«y*sin(t/(2*«(1 — ...
r_j"2)*pi) — atan2(y,x)))/(r_j*sqgrt(x°2 + y~2))))/ -
(2xr_Jxpix(r_3°(=2) + X"2 + y"2 — (2+sqgrt(x"2 + y~"2)*cos(t/ (2% (1
— r_j"2)*pi) — atan2(y,x)))/r_-j)"2) — (r_j*sqgrt(x"2 + ...

vy 2)xsin(t/ (2% (1 — r_372)*pi) — atan2(y,x))* (2xx — ...

(2*xr_jxx*cos (t/ (2« (1 — r_j " 2)*pi) — atan2(y,x)))/sqrt(x"2 + y~2)

+ (2«r_j*xy*sin(t/ (2« (1 — r_j"2)*pi) — atan2(y,x)))/sqgrt(x"2 + ...

y©2)))/ (2%pix* (r-3°2 + x°2 + y 2 — 2%xr_j*xsqrt(x°2 +
y 2)*xcos(t/ (2« (1 — r_j"2)*pl) — atan2(y,x))) "2)))/(x"2 + y~2)));




