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Chapter 1

Introduction

This master thesis describes a final project, where two different grid-based
features using different classification settings are compared, in an off-line
supervised human action detection and recognition task. The task consists
of the detecting and recognizing fitness moves performed in an exercise video,
using limited training data acquired from the same video.

The exercise video displays two persons standing side by side perform-
ing movements that belong to the XCO1 workout. The video consist of
multiple scenes and each scene has its own specific theme. Furthermore,
the persons in each scene always consist of a man and a woman. The first
scene “Warming Up” is the only scene that contains some movements that
return in most other scenes and therefore this scene is selected as training
set for the classifier. Not all movements occur with the same frequency in
the training set and therefore only a single occurrence of each movement is
selected as template.

The video must first be processed, before any human action detection
and/or recognition can be performed. A top-down approach to image pro-
cessing technique is taken, which means that the persons in the video are
first detected and the region of interest per person is selected. These regions
of interest are used to extract two features and those are the silhouette and
motion (based on optical flow) descriptor. Both features are subdivided us-
ing a predetermined grid division, which results in two grid-based features:
Histogram of Silhouette (HoS) and Histogram of Flow (HoF). These two
grid-based features are evaluated in combination with a number of different
grid configurations.

An important step in the supervised human action detection and recog-
nition task is the comparison of each templates with a continuous input
stream of features. The chosen metric is a modified version of Dynamic
Time Warping, which allows for the comparison of multi-dimensional time
series. These acquired distances are the input for the classifier, which tem-

1http://www.xco.nl/
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2 CHAPTER 1. INTRODUCTION

porally segments the video and labels one or more action in a segment.
This metric and classifier are kept constant for all different settings being
evaluated.

The findings of this master thesis can be used to say something about
the applicability of both grid-based features: Histogram of Silhouette and
Histogram of Flow, using a coarse grid division instead of the more fine-
grained divisions chosen in most literature, in an action classification task
with only limited training data with varying subjects.

1.1 Document layout

This introduction is followed by Chapter 2, which contains related work
on: feature extraction, and action classification. An overview of the entire
approach taken for the human action detection and recognition is discussed
in Chapter 3 and some details regarding the approach are highlighted further
in Chapters 4 and 5. This is followed up by evaluation plan in Chapter 6,
which introduces all the variables, research questions, and procedures to
answering these research questions. Chapter 7 contains the results of the
evaluation including a discussion per research question. This master thesis
is finalized in Chapter 8 with the conclusions, followed up by ideas for future
research. Remaining chapters are the references list and the appendices.



Chapter 2

Related work

A lot of work has already been done in the field of vision-based human action
recognition, as becomes clear when examining the article by Poppe [22], who
gives quite an elaborate overview of all kinds of different techniques for ac-
tion recognition. Poppe separates action recognition into two steps: “image
representation” and “action classification”. Image representation consists of
techniques that extract features of an image or sequence and action classifi-
cation techniques assign an action label to an image or sequence, according
to the result of comparison between the extracted features and reference
material. A feature or image representation in this master thesis, is an en-
tity that describes a specific characteristic of a video frame or sequence of
frames.

The topics of this chapter match with the two steps mentioned by Poppe.
This chapter starts off with section 2.1 “feature extraction”, which discusses
a small subset of features relevant to the approach taken in this final project.
Followed up by section 2.2 “action classification”, which discusses subjects
regarding temporal segmenting, video indexing, metrics for comparison, and
classification.

2.1 Feature extraction

According to Poppe, image representation techniques can be divided into
two categories: global and local. The primary difference between the two
categories is that global techniques take a top-down approach and a local
techniques take a bottom-up approach to processing an image. The text in
this section primarily discusses global image representations and starts off
with discussing the two features silhouette and motion descriptor in Sec-
tions 2.1.1 and 2.1.2. For both features a number of approaches are men-
tioned for extracting them from video. These two features are discussed,
because they are commonly used as the foundation for a number of deriva-
tive image representations, of which a few are examined in section 2.1.3.

3



4 CHAPTER 2. RELATED WORK

2.1.1 Silhouette descriptor

A silhouette descriptor is a feature that marks the pixels in an image that
belong to a foreground object. The descriptor mostly consists of a binary
(black and white) image in which all foreground objects get the same color
and the background the other color. This approach requires the construction
of a background model, to be able to distinguish between foreground and
background pixels. The pixels that contain a value above a certain threshold
are considered to be foreground pixels and the pixels scoring below the
threshold are considered to be background. This method mostly delivers
good result in a recorded scene where the camera set up and background
remain constant, and the background colors differ from foreground objects.

The simplest approach to acquiring the foreground pixels is by subtract-
ing a background image from each frame. Such a background image can be
extracted from the video itself by selecting a frame containing no foreground
objects, or by manually construction a background image. Both approaches
require manual interference, which is unacceptable for any full automated
task.

The method Least Median of Squares (LMedS) [31] solves this manual
interference problem, but adds an additional requirement, LMedS will only
work with a sequence of images. LMedS is still not an acceptable approach
to most real-life situation, because it requires a rigid scene and a station-
ary camera. Another automatic background modeling technique is that of
Stauffer and Grimson [26], which allows for a complexer background. Their
method models each pixel as a mixture of Gaussians (MoG). According to
Zhang et.al. [36] the MoG approach does not perform well with dynamic
environments and is rather slow. Zivkovic [37] proposes an improvement
to the MoG approach, that reduces the processing time and improves the
segmentation a little. MoG might be improved, but is still not able to deal
with highly dynamic environments.

A more novel approach that is invariant to complex and dynamic envi-
ronments and varying lighting conditions is the method of Chen et. al. [7].
Their approach first divides the image into a grid of patches with a size
of 4x4 pixels and then classifies per patch if it belongs to foreground or
background. A sliding window over the patches of previous frames is used
for this classification process. By faster updating the blocks that are not
specified as foreground, new objects in the scene are absorbed faster into
the background, while non-moving foreground objects are still classified as
foreground. Another approach that is able to handle dynamic backgrounds,
is the approach proposed by Zhang et.al. [36]. The approach of Zhang uses a
technique called Spatio-temporal Local binary pattern (STLBP) and the re-
sults of their experiment show that it adapts quickly to changes in a dynamic
background.

One assumption that is made with all the previous automatic approaches
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is that they all assume the camera is stationary. In most video material
this assumption does not hold and Sheick et.al. [25] propose a solution to
this problem. They solve the problem of a moving camera, by calculating
the trajectories of salient points in an image sequence. They classify these
trajectories as background or outliers (foreground). An assumption made in
their article is that; “the background is the spatially dominant ‘rigid’ entity
in the image.”. This assumption causes their approach to not work with
dynamic backgrounds.

2.1.2 Motion descriptor

Figure 2.1: Example of vi-
sualized motion descriptor
using Lucas-Kanade

A motion descriptor is a feature that uses op-
tical flow to describe 2D motion in a video
recording. Optical flow is the concept of pro-
jecting 3D velocities of objects, surfaces, and
edges onto an imaging surface (see Figure 2.1
for an example). There exist many approaches
for acquiring optical flow and these approaches
can be categorized into differential, energy-
based, and phase-based approaches. Barron
et.al. [2] evaluates a large number of these op-
tical flow approaches and compares them on
accuracy, reliability, and density of the velocity
measurements. The image sequences used in
this evaluation were not severely corrupted by
spatial or temporal aliasing. Barron concluded
that the first-order local differential approach of Lucas and Kanade [20] and
the local phase-based approach of Fleet and Jepson [17] delivered the most
reliable results. The problem with all the phase-based approaches discussed
in the article by Barron et.al. is they all had high computational load.
Overall it seems that the local differential approach of Lucas and Kanade
outperforms the rest in this particular evaluation.

A more recent development is the work of Bruhn et.al. [6], who combines
the local differential approach, least square fit of Lucas and Kanade [20]
with the global differential approach of Horn and Schunck [19]. According
to Bruhn, the combined local-global (CLG) approach; “is highly robust un-
der Gaussian noise while giving dense flow fields.”. An even more recent
study by Sun et.al. [27] looked at the Horn-Schunck algorithm, explaining
and comparing all different proposed optimizations to the Horn-Schunck
algorithm since its introduction. Sun et.al. finds that with certain op-
timizations, the algorithm is quite competitive to other good performing
optical flow approaches, which shows that the Horn-Schunck algorithm has
improved much since the evaluation by Barron et.al. [2].
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2.1.3 Derivative image representation

This subsection discusses the structure and application of a number of differ-
ent derivative image representations, which are all based on the previously
mentioned: silhouette and motion descriptor. The discussed derivative im-
age representations are all introduced in a template-based supervised human
action recognition task. These tasks compare reference material in the form
of templates with inputted observations and the best matching template is
used to determine the label being assigned to the inputted observation.

A very popular template-based approach, often found as a reference in
literature regarding this subject, is the temporal template matching ap-
proach proposed by Bobick and Davis [5]. These temporal templates consist
of two descriptors: the binary motion-energy image (MEI) and the motion-
history image (MHI). Both are built out of a sequence of silhouette descrip-
tors. The MEI indicates where motion occurred and the MHI is a scalar-
valued image, where intensity is a function of recency of motion. According
to Davis and Bobick, their approach will also work when the video frames
are blurred.

Another fairly similar approach to that of Bobick and Davis, is the work
of Wang and Suter [30]. They created two high-level descriptors, the average
motion energy (AME) and the mean motion shape (MMS) image. Accord-
ing to Wang and Suter; “They indirectly encode the motion structure and
characteristics of an action, and save both storage space and computation
complexity.”. Both descriptors describe an entire motion sequence in one
single image. The AME averages over the silhouette descriptors for the en-
tire sequence, the MMS is an average of the contour images. The AME is a
gray-level image and intensity of a pixel depicts the frequency of the motion
that occurred at that pixel. The AME image helps in partially preserving
temporal information, by encoding it in the intensity of the image, which is
a fairly similar to the motion-history image of Bobick and Davis.

The previously mentioned global approaches take the temporal dimen-
sion in consideration. An example of an image representation approach,
which is invariant to temporal effects, is the approach by Weinland and
Boyer [32]. A major disadvantage of such an approach is the loss of the
temporal domain and it becomes impossible to distinguish between inverse
movements, such as “sitting down” and “standing up”.

A global feature based on the motion descriptor, is the feature used by
Efros et.al. [15]. They determine optical flow with the method of Lucas
and Kanade [20], which helps them in classifying actions in sequences of
images. To improve speed and simplify the comparison, each flow line is
first split up in to the horizontal and vertical component (see Figure 2.2)
and both components are half-wave rectified, which results in four channels
(H+,H-,V+, and V-). The resulting four channels represent a single motion
feature, which is used in the comparison process. Using optical flow allows
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for more robust comparison, instead of using silhouette based descriptors.
With a silhouette-based descriptor a property such as the dimensions of the
recorded person could play a role in comparison, which is less the case when
using optical flow.

Figure 2.2: Splitting up a flow vector into its H and V component

A grid-based feature is a global feature that splits up a feature extracted
for each inputted image frame according to a predefined grid. This results
in a multi dimensional global feature, where each grid patch describes a
section of the inputted image frame. The work of Danafar and Gheissari
[11] and of Tran et.al. [29] are examples of approaches that use grid-based
features. Danafar and Gheissari split up an image (so it only contains the
recorded person) into three rows and these rows are divided according to
predetermined heuristics. These heuristics cause the resulting division to
roughly contain the following: the head, the torso and legs. A motion
descriptor per patch is used, which is a similar descriptor to the descriptor
created in the work of Efros et.al. [15]. Combining these descriptors per
patch results in a histogram of flow (HoF) for each image frame. A more
elaborate grid-based approach is the approach proposed by Tran et.al. [29].
They divide each frame into 2x2 or 3x3 patches and for each patch two
high-level descriptor are constructed, a HoF and a histogram of silhouette
(HoS). The histogram of silhouette contains per patch the percentage of
pixels that are occupied by the silhouette. These two high-level descriptors
are combined and extended with motion context, by performing Principal
Component Analysis (PCA) on neighboring frames.

The approach described in this master thesis, is based on the approach
that is proposed by Tran et.al. [29]. The exact approach taken in this re-
search, is elaborated in chapter 3 and chapter 4.

2.2 Action classification

The second important step in action recognition, is the classification of video
segments. There are numerous approaches to classifying video segments,
and they either are supervised or unsupervised. The choice for a suitable
classification approach depends on the structure of the data, the functional
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requirements, and the availability of training data. A simplified example of
a supervised approach is to have a classifier that is trained using a train-
ing set, which classifies the movement in a test set using the knowledge
gained from the training data. This restricted set of actions makes it dif-
ficult to find and classify movements that are not present in this training
set. An unsupervised classification approach is not bound to a training set,
but these approaches mostly lack the accuracy in comparison to the super-
vised approaches and they require complex algorithms for detection motion
boundaries, when applied to a continuous video stream.

The topic of temporally segmenting a continuous video when dealing with
an unsupervised classification approach is discussed in section 2.2.1. Both
sections 2.2.2 and 2.2.3 discuss an unsupervised classification approach and
both do not require the video to be temporally segmented before classifi-
cation. These sections are followed up by section 2.2.4, which discusses a
supervised classification approach using a single key frame to classify seg-
ments containing a movement. This section on key frames is follow up
by section 2.2.5, which discusses a number of different metrics for pattern
matching that are useful for a supervised human action detection and recog-
nition task. Finally, section 2.2.6 discusses two classification approaches.

2.2.1 Temporal Segmentation

An aspect of action recognition, which often is not elaborated in articles
about action recognition, is temporal segmentation. Most approaches pre-
suppose that the video is readily segmented or nothing is mentioned in the
article regarding temporal segmentation at all. However, the approach used
for segmenting a video greatly influences the results acquired through a clas-
sification process. The subject of temporal segmentation therefore deserves
an elaborate discussion.

Scene partitioning

The chosen segmentation technique depends heavily on the requirements
that are set for the resulting segmentation. A topic often found in literature
is the segmentation of a video into scenes. They define a scene as a single
uninterrupted camera shot. The scene segmentation approach by Xiong and
Lee [33] uses optical flow for determining scene transitions. They accomplish
this by determining the dominant camera motions in video shots. To deter-
mine this dominant motion, they process the video frames in a similar way
as is done with the creation of a HoF (Tran et.al. [29]). However, instead of
taking the total sum of each component of each flow line, they calculate the
mean and standard deviation in each patch. Their approach uses a sliding
window that moves over the entire video and performs binary search within
a window to find the scene transition where a significant difference between
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the leftmost and rightmost frame of the window is detected.

Motion segmentation

The work by Xiong and Lee [33] could be adapted to segment a video into
primitive action segments, which is done by Rui and Anandan [24]. Their
approach detects temporal discontinuities in spatial motion patterns and use
that to segment a video. Their approach extracts the optical flow and the
silhouette descriptor for every frame in the video. The two descriptors are
combined with as a result a flow field with only significant flow in the area
that is occupied by the silhouette. This flow field is broken down into coeffi-
cients, using singular value decomposition (SVD) and those coefficients are
analyzed to find discontinuities in their temporal trajectories. These discon-
tinuities are considered to be the boundaries of discrete action primitives.
Rui and Anandan achieve with their approach a correlation of 60% with
the set of manually selected boundaries. This fairly good result makes this
approach an interesting option for the approach taken in this final project.

Ali and Aggarwal [1] temporally segment their motion sequence into
discrete action primitives using key-pose frames. They classify each frame
into one of the two classes: breakpoint or non-breakpoint. All frames be-
tween two breakpoint frames are selected as a single discrete action and this
segmented motion sequence is passed on to the human action classifier.

2.2.2 Periodic motion

Cutler and Davis [10] propose an approach that uses the analysis of peri-
odic motion for recognizing actions. Their approach does not require any
temporal segmentation to be able to recognize actions. They do object seg-
mentation, track the segmented object, and do a time-frequency analysis on
the motion data of the tracked object. This approach works perfectly when
the object displays a constant periodic movement, take for example a human
that is walking. However, when there are too many variances (non-periodic
motion), their approach will not be able to classify the movement.

2.2.3 Event-based video indexing

Zelnik-Manor and Irani [35] propose an approach that is able to find dy-
namic events, “without prior knowledge of the types of events, their models,
or their temporal extent.” and that does not require any temporal segmen-
tation of a continuous video. This forms the basis for a technique they refer
to as event-based video indexing. They describe event-based video index-
ing as finding all similar occurrences of a preselected action, which is fairly
similar to any template matching technique. They construct an empirical
distribution, “where local features at multiple temporal scales are taken as
samples of the stochastic process”, which are used to construct the empirical
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distribution. These empirical distributions are used in the comparison pro-
cess, to find similar segments. They claim that their approach, “allows for
general event-based analysis of video information containing unknown event
types.”. Zelnik-Manor and Irani mention that their approach is “inferior in
accuracy to the more sophisticated (but more restricted) parametric models”,
which is unwanted and a good accuracy is preferable. Furthermore, their
approach uses local intensity gradients, which is not the most informative
feature available.

2.2.4 Key-poses

Supervised human action recognition approaches require reference actions to
be available for comparison with the inputted video material. Weinland and
Boyer [32] use a set of discriminative key-poses (a single frame), which they
match with each inputted observation sequence. The minimum distance for
each key-pose to the inputted observation sequence is saved in a vector and
serves as input for the classifier. They argue that temporal information is
not required for recognizing a movement and they achieve high recognition
rates, with only a small set of key-poses. The consequence of taking such
an approach is, it becomes impossible to find the exact start and end of an
event, when dealing with continuous video material.

2.2.5 Distance algorithms

When a single occurrence of an action is used as template for classifying
motion segments, finding similar occurrences in the input sequence can be
achieved by calculating the distance between the template and set of input
tokens. There are numerous distance algorithm available and each has its
own characteristics. A few distance algorithms are discussed in the para-
graphs below.

Dynamic Time Warping

The non-linear sequence alignment algorithm called Dynamic Time Warp-
ing (DTW) is a distance algorithm, which often is used with success in the
field of speech recognition [18], because it is able to take into account dif-
ferent speeds of utterances of the same phrases and words. According to
Fang [16], “It seeks an optimal mapping from the test signal to the template
signal, meanwhile allowing a non-linear, monotonic distortion (warping) in
the test signal.”. These properties allow for the matching of signals that
have variances in temporal intensity and duration. Standard DTW imple-
mentations place one restriction on the data, they can only be applied to
comparison of 1D time series.
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Continuous Dynamic Time Warping

According to Munich and Perora [21], DTW can be improved by allowing
matching on continuous curves, instead of discrete samples. They name
their improved algorithm, Continuous Dynamic Time Warping (CDTW),
with which they acquire smoother results matching handwritten signatures.
However, their implementation is three-times slower in comparison with the
standard implementation of DTW. Furthermore, the translation of the dis-
crete time-series to a continuous time series is only useful, when the discrete
time-series has a low sampling frequency otherwise its better to use normal
DTW.

Multi-dimensional Dynamic Time Warping

Dynamic Time Warping may be a very suitable metric for determining the
distance between 1D time series. However, according to a number of articles
on DTW comparison of n-dimensional time series [3,28], the standard imple-
mentation of DTW is not suitable as a metric for comparing n-dimensional
time series. Both Holt and Bashir propose a modified multi-dimensional
DTW (MD-DTW) algorithm, which should allow for comparison of uni-
modal n-dimensional time series. The algorithm proposed by Holt is suc-
cessfully implemented by Mello and Gondra [12], who apply it in a texture
image retrieval task. The problem with both proposed MD-DTW algorithms
is, they both sum all dimensions for each time step, which results in an 1D
signal. This causes both approaches to loose information contained within
the dimensionality of the signal being compared.

It is possible to retain the dimensionality of the signal, by altering the
function used by a normal DTW that calculates the signal to signal simi-
larities between all data points of the two signals. By considering each data
point in a time series to be a point in n-dimensional space and use Euclidean
distance to calculate the distance between each point. Donoser et.al. [13]
do something similar, they “use Euclidean distances as measure, where each
signal point is defined by the C-dimensional vector containing the similari-
ties to each of the C prototypes.”. The disadvantage of such the modified
DTW, is that the computational cost increase in comparison with normal
DTW, but this is not an issue with the off-line task.

2.2.6 Classification

The off-line supervised human action detection and recognition task, will
need a supervised classification approach for assigning a label to each un-
classified feature vector. Two popular approaches for solving supervised
classification problems, are: hidden Markov model, and k-nearest neighbor
algorithm. Both approaches are discussed in more detail in the text below.
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Hidden Markov model (HMM)

The definition of a HMM according to Rabiner and Juang [23] is as follows:
“An HMM is a doubly stochastic process with an underlying stochastic pro-
cess that is not observable (it is hidden), but can only be observed through
another set of stochastic processes that produce the sequence of observed
symbols”. An HMM contains three sets of model parameters, which allow
for modeling uncertainty. These parameters can be tuned, too maximize
the probability acquired with the model, given an observation sequence.
They can either be set manually or by a learning algorithm, such as Baum-
Welch [4]. Baum-Welch requires a training set with a fairly large amount of
occurrences of each action to successfully (re)estimate the model parameters,
so that the model best matches a given test set.

Hidden Markov models have often been used in research for solving su-
pervised classification problems. They either create a single HMM for all
actions or a HMM for each action. The two modeling choices require a
different approach, when using HMM for classification purposes. A single
HMM requires to use of Viterbi to determine the path that gives the highest
probability. The classifier deduces from this path, which label should be as-
signed to the observation sequence. With multiple hidden Markov models,
the highest probable model for an inputted observation sequence is used for
determining the label being assigned to the observation sequence.

An example of a human action recognition task using a HMM as clas-
sifier, can be found in the article by Yamato et.al. [34]. Yamato defines a
HMM for each action that must be classified and uses the Forward Algorithm
to determine, which HMM scores the highest probability for a given obser-
vation sequence. They maximize the probability of their model by using
the automatic learning algorithm of Baum-Welch, for which they allocate a
training set that is half of the entire data set. They find that their approach
achieves high recognition rates, when training data en test data stars the
same person.

K-nearest neighbor (k-NN)

Cover and Hart [9] describe the nearest neighbor decision rule, as assign-
ing a label to an unclassified sample point, based on the nearest previously
classified points. Each point can be a n-dimensional vector in n-dimensional
feature space. The previously classified points are a set of feature vectors
that each have the correct class label assigned to it. Furthermore, the k in
k -NN is used to indicate how many nearest neighbors should be taken in
consideration, when classifying an unclassified sample point through a ma-
jority vote of its neighbors. Using a k >= 3 is only useful, when the training
set contains multiple occurrences of each class. A k >= 3 requires the intro-
duction of a weight function for the majority vote. Dudani [14] discusses a
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number of different weight functions, of which he gives the distance-weighted
k -nearest neighbor the most attention.

An example of a human action recognition approach using the k -NN as
classifier, is the approach by Efros et.al. [15]. They have three different data
sets, of which two are classified with k = 5 and the last one is classified with
k = 1. The reason for selecting a certain k for a specific set is not given.
Efros seems to get quite good results using the k -NN classifier, considering
the input data is of very poor quality. Furthermore, the k -NN decision rule
is a fairly simple mechanism, which should make the classification process
simpler and still very effective.

Another example of a recognition approach using the k -NN decision rule,
is the approach by Corradini [8]. He uses Dynamic Time Warping to match
the recorded unclassified feature sequence with the gestures extracted from
the training set. The training set does not contain an infinite set of possible
gestures and therefore a heuristically determined threshold is used to detect
which inputted feature sequences should be classified as unknown. A total
of five gestures with each ten occurrences of multiple persons, were selected
as the training set. The fact that only five gestures are present in the train-
ing set, makes it fairly easy to recognize these movements. Expanding the
amount of classes and test data would greatly influence the recognition rate,
which also is mentioned by Corradini. Furthermore, his current approach
assumes that for each sequences the start and end are known, which is not
the case in continuous streaming data and his current approach cannot han-
dle data being inputted in such fashion. However, this approach shows it
is possible to use DTW as metric in combination k -NN decision rule and
achieve fairly good recognition rates.
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Chapter 3

Approach

As is mentioned in the introduction, this master thesis discusses the com-
parison of two different grid-based features and classification settings, in
an off-line supervised human action detection and recognition task. The
approach is divided into two phases: feature extraction and action classifi-
cation. These phases are executed sequentially and the extracted features
are used as the input for the action classification phase. The features and
the feature extraction algorithm are discussed in section 3.3. The chosen fea-
ture extraction approach depends on the video material being used, which
is discussed in more detail in section 3.1. The choices regarding action clas-
sification are discussed in section 3.4.

3.1 Video material

ID Scenes Left Right

1 Warming up Man Woman 1

2 Lumberjack Man Woman 2

3 Twist Woman 3 Man

4 Shoulder shake Man Woman 3

5 Wave Man Woman 2

Table 3.1: Instructor in each scene

The video material used
for this final project, is
a fitness video contain-
ing two persons perform-
ing an almost identical
repertoire of movements
that belong to the XCO1

workout. The video con-
sists of multiple scenes,
with each scene having a
specific theme. Only the first five scenes are used for this task, because
they all are recorded with an almost static background and a similar cam-
era viewpoint. The lighting conditions used in these scenes cause shadows
to occur and the skin closest to the light source to become very bright. The
background color near those areas are of an almost similar color due to these
lighting conditions. All five scenes are given a name according to their theme

1http://www.xco.nl/
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and each scene contains a man and a woman as instructor (see Table 3.1
for an overview). The movements performed in these five scenes are all in
a straight-up position and contain almost no occlusion. Each scene starts
with the two instructors standing side-by-side in frontal view and most of
the motion performed during a scene consists of upper body movements.

3.2 Preprocessing

Each scene consists of two continuous streams of movement made the in-
structor, which is segmented into discriminative actions. All actions that
contain a similar sequence of motion are given the same unique identifier.
The goal is to choose a motion sequence as action that reoccurs often and
cannot be overlapped by any of the other actions. For example, the instruc-
tor is standing still, facing towards the camera, moves his arm in a horizontal
movement from the left to the right, and this motion sequence takes about
10 frames. It is possible to have two actions similar in motion, but differing
in execution time, to be placed into separate action groups. Each occur-
rence of an action is recorded in the annotation file, which is considered the
ground truth annotation of the video. Table 3.1 shows all sixteen unique
identifiers of the annotated actions occurring in the first scene “Warming
up” and their occurrence in other scenes. The name of each action can be
found in Table B.1 (in the appendices).

Figure 3.1: Amount of occurrences of each action occurring in the warming
up.
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From the table 3.1 it becomes clear that not every action of the “Warm-
ing up” occurs in the other four scenes. Furthermore, the amount of occur-
rences of each action in the first scene itself varies greatly and the fourth
scene contains no occurrences of any actions belonging to the first scene.
Despite these properties, the first scene is the only scene containing actions
that reoccur in the other scenes. The other four scenes have completely no
overlap with each other and therefore the video material of the first scene is
used as training set and the remaining four scenes as the test set.

3.3 Feature extraction

The feature extraction phase itself is split up into two different parts: image
processing and the creation of grid-based features. The primary task of
image processing in this approach, is to extract two commonly used features
(see sections 2.1.1 and 2.1.2), which are the silhouette and the motion
descriptor, from the video material described in the previous section. These
two features are used as the basic ingredients for the two grid-based features
that are evaluated in this final project.

The silhouette descriptor is extracted from each video frame through
background subtraction and all background images are created manually.
A reason for not choosing any automated approach, is because the primary
focus of this master thesis is on the action classification phase and therefore it
is not important how the features are acquired. Furthermore, a problem with
all the mentioned automated approaches in chapter 2 is, they do not perform
well when a foreground object is relatively stationary in the scenery. Most
explored automated approaches require a foreground object to be moving
through the scene or a frame to exist were no foreground object is visible,
otherwise the stationary parts of the foreground object are considered to
be background. Two additional issues with the video material discussed
in section 3.1, are the small changes in camera viewpoint and small zooms
during the video. This creates a lot of noise in most mentioned automated
approaches.

The other feature being extracted per video frame is the motion de-
scriptor. This feature consists of a flow field per frame, which describes
the 2D motion in the video. Such a flow field can be determined using
an optical flow algorithm and a number of different optical flow algorithms
are discussed in subsection 2.1.2. The Horn-Schunck algorithm may have
seen many optimizations over the years, but the Lucas-Kanade algorithm is
still preferred over Horn-Schunck in this final project. The most important
reason is because the standard implementation of Lucas-Kanade is made
available in Matlab.

The two grid-based features deduced from the silhouette and motion de-
scriptor are named: histogram of silhouette (HoS) and histogram of flow
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(HoF). Both features are created by dividing the silhouette and motion fea-
ture up into patches, according to a predefined grid and each patch contains
a summarization of the feature data contained within a single patch. The
main reason for choosing a histogram representation for both descriptors,
is because research by Tran et.al. [29] discussed in subsection 2.1.3 showed
that these grid-based features work quite well when used for recognizing
human actions in video. Furthermore, the HoS feature is more suitable as
generic template, instead of a silhouette descriptor, because it is more robust
when comparing two silhouettes that belong to two different persons. The
silhouette descriptor takes into account the difference in body shape, which
is mostly removed in case of the HoF, by abstracting the silhouette using a
grid representation.

3.4 Action detection and classification

The second phase “action classification” extracts actions from the training
set and uses those actions to detect and recognize similar segments contained
within the test set. The test set consists of a continuous stream of features
and the boundaries of each segment are unknown beforehand. A segment
is a consecutive sequence of frames and a segment is not allowed to contain
any frames that do not have a feature. Probable cause for certain frames to
not contain a feature are because the feature extraction phase was unable to
extract a usable feature from that video frame, due too much occlusion or
background noise. When a segments contains frames missing features, than
these segments are not taken into consideration by the action classification
phase. A combination of the techniques discussed in section 2.2 is chosen to
segment and classify the continuous stream of features.

The chosen combination of techniques for the action classification phase
depends largely on the training set. A large variance in duration of each
occurrence of each action in the training set could cause problems with
certain approaches. It is therefore decided to introduce templates that each
are exactly 41 frames long and contain one or more actions. It is possible
to define these templates, due to the rhythmic component of the motion
performed by the instructor. The templates containing multiple actions
are referred to as composite templates (see figure A.1 for an occurrence of
template 30) and the others as single action templates (see figure A.4 for an
occurrence of template 60). All templates can be grouped into a groups of
similar occurrences as with actions. An overview of all different groups of
templates is given in Table 3.2 and behind each template the actions and
their order per template of that group are displayed. An additional problem
that can be deduced from tables 3.1 and 3.2 is that the training set contains
an unequal amount of occurrences for both actions and templates, which can
vary from only a few to a large amount of occurrences. Training a classifier
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Template Name Actions Occurrences

10 Rowing (looking left) 100 7

11 Rowing (looking right) 101 7

20 Tilting 1 200 201 4

21 Tilting 2 201 200 4

25 Fast Tilting 1 205 206 205 3

26 Fast Tilting 2 206 205 206 3

30 Twist 300 304 15

31 Fast Twist 1 301 302 301 8

32 Fast Twist 2 302 301 302 6

40 Load Swing (long) 400 4

41 Load Swing (short,long) 1 401 4

42 Load Swing (short,long) 2 402 3

50 Solid Push (2x) 500 12

60 Diagonal Lumberjack 1 600 15

61 Diagonal Lumberjack 2 601 15

Table 3.2: Templates

on all occurrences could result in a bias towards actions that occur often.
It is therefore decided to only select a single occurrence that represents the
most average occurrence of each template.

An approach mostly using only a single occurring templates/segment is
video indexing. The basic idea of video indexing is to find all segments in
a video that show similarities to a preselected segment. The human action
detection and recognition task created in this final project, is a kind of video
indexing approach. Each template is compared with all possible segments in
the continuous stream of features. This comparison delivers a matrix with
a distance for each unclassified segment to each template.

The comparison between each template and each unclassified segment is
performed with a modified version of the standard Dynamic Time Warping
metric, which is introduced in subsection 2.2.5 under paragraph “Multi-
dimensional Dynamic Time Warping”. An n-dimensional metric is required
for comparison, because both grid-based features are n-dimensional. Fur-
thermore, the same modification can be done to the “Continuous Dynamic
Time Warping” (CDTW) metric, but Munich and Perora [21] mention that
their metric is three-times slower in comparison to the standard implemen-
tation of DTW. Furthermore, the improvement achieved with CDTW is
only minimal, because the sample rate of video is quite high. It is therefore
decided not to use n-dimensional CDTW and use the n-dimensional DTW
instead.

The best scoring segments per template are selected, merged into a single
set and finally any overlap is removed. The overlap is removed by select-
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ing the best scoring template for each segment and removing all entries
that overlap with better scoring segments. Additional output of the n-
dimensional DTW is the warping path, which represents the most optimal
alignment between two time-series. The exact starting frame of each ac-
tion within a template combined with the alignment information contained
within the warping path, is used to deduce the starting frames of each action
in the selected segment. Each action is labeled separately, which results in
a list of starting frames with action labels assigned to them. These classifi-
cation results are compared with the ground truth annotation of the entire
video, which results in a precision and recall score per template.



Chapter 4

Feature extraction

The basis of every action recognition approach, is to extract one or more
features that describe the video material in a format, which can be utilized
by the action recognition algorithm. These features can either be acquired
directly from the video material or based on other features. The features
extracted with the approach taken in this research, result into two grid-based
features. These two grid-based features are each based on a more common
low-level feature, namely the silhouette and the motion descriptor. The
acquisition of silhouette and motion descriptors is discussed in sections 4.1
and 4.2. The two features used in the classification process are discussed in
section 4.3.

4.1 Silhouette descriptor

Two of the silhouette extraction approaches discussed in section 2.1 are
used for extracting a silhouette descriptor per frame from the video mate-
rial elaborated in section 3.1. These two silhouette extraction approaches are
Mixture of Gaussians (MoG) and background subtraction, both are applied
on the two frames shown as sample in figure 4.1. Both samples acquired
with MoG show that this method does not perform very well with the video
material being used. Furthermore, the large amounts of noise in figure 4.1.3
are caused by small camera movements in preceding video frames. The back-
ground subtraction approach delivers much better results, which is because
this approach is fine tuned to the inputted video material.

A color-based background subtraction approach is used to acquire the
silhouette descriptor. This approach consists of eight steps and starts off
with the creation of a background image, which is subtracted from each
video frame to determine the pixels belonging to a foreground object. Mul-
tiple background images are required, because the camera is occasionally
altered during the recording, which results in slightly different background
images. The second step consists of the actual subtracting of a background
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(4.1.1) Sample 1 Mixture of Gaussian (4.1.2) Sample 1 Background subtrac-
tion

(4.1.3) Sample 2 Mixture of Gaussian (4.1.4) Sample 2 Background subtrac-
tion

Figure 4.1: Sample silhouettes extraction results



4.1. SILHOUETTE DESCRIPTOR 23

image from each frame in the video. The subtraction is done per color chan-
nel, which gives a better result, instead of using the gray scale version of
the frame. The third step divides each subtraction result into predefined
rows with various heights and these rows are specified per background im-
age. Each row is converted separately into a binary image, assigning ones
to foreground and zeros to background. The decision to classify a pixel as
foreground is made according to a predefined threshold for each row. Each
row roughly matches with an area that consists of fairly the same color. The
reason for subdividing the image into rows is, because foreground pixels are
classified according to color difference, which can vary greatly across an im-
age, due to great variance in color in background and foreground. Figure 4.2
displays frame 2000 including the row subdivision used by the feature extrac-
tion phase. This figure clearly shows that each row roughly matches with
an area that differs greatly from the other areas. The second and third row
could have been combined, but the second row is added because the lighting
conditions cause all foreground objects to become very light. The threshold
for row two is a little lower, than the threshold for row three because the
difference between background and foreground is minimal.

Figure 4.2: Frame 2000 of warming up including subdivision

The follow up step consists of merging the binary classified rows into a
single binary image. The consecutive steps that follow, are: erosion, small
blob removal, and finally dilation. The first two steps are taken to remove
most noise still present in the binary image and the third step is taken to fill
up any holes caused by eroding the binary image. Figures 4.1.2 and 4.1.4
show two samples acquired with the previous seven steps. The eight and
final step, is to find the regions of interest that contain a silhouette of a
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foreground object, which in this particular case is a human. These regions
of interest are cropped from the binary image and passed on for further
processing.

4.2 Motion descriptor

For each video frame a single motion descriptor is determined, which is a
flow field determined with an optical flow algorithm. The optical flow algo-
rithm used is the local differential algorithm Lucas-Kanade [20], for which
an implementation is incorporated in Matlab. This implementation allows
for a number of different settings to be configured, the setting “Tempo-
ralGradientFilter” is set to “Derivate of Gaussian”, which means that the
image sequence is smoothed using a spatio-temporal Gaussian filter before
processing. The reason for smoothing with this filter, is to resolve aliasing
occurring in the image sequence. The standard deviation for the spatio-
temporal Gaussian filter is set to five. Furthermore, the setting “DiscardIll-
ConditionedEstimates” is to “true”, which means a normal flow estimate
is discarded when the constraint equation for the spatio-temporal Gaussian
filter is ill-conditioned. The combination of these previously mentioned set-
tings and the default settings, seems to deliver the most suitable result for
further processing.

4.3 Grid-based features

The feature extraction process results in two different grid-based features,
as mentioned earlier in chapter 3, and these are the HoS, and the HoF.
They both split up a selected region of interest into patches according to
a predefined grid and extract features representing each single patch and
merge it into a single feature representing the entire region of interest. The
creation of both grid-based features is discussed in the two subsections that
follow.

4.3.1 Histogram of Silhouette

As mentioned in the subsection 2.1.3 of chapter “Related Work”, a “the
histogram of silhouette contains per patch the percentage of pixels that are
occupied by the silhouette.”. The HoS is constructed by simply dividing each
extracted silhouette descriptor into patches according to a predefined grid
and for each patch count the total amount of foreground pixels and divide
them by the total amount of pixels per patch. These values per patch are
taken together, which results in a vector and this vector is considered to be
the HoS.
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4.3.2 Histogram of Flow

The region of interest selected with the silhouette descriptor is used to select
the same region of interest in the flow field. Any flow line that lies outside
of the pixels classified as foreground, is considered background movement
and is removed by setting the length of the vector to zero. As with the HoS,
the entire region of interest is split up into patches according to a predefined
grid. All flow lines in a patch are split up into their horizontal and vertical
components and are summed together in one of the following categories:
horizontal negative, horizontal positive, vertical negative and vertical pos-
itive direction. The four categories are chosen, because research by Efros
et.al. [15] shows this division is an effective representation of motion made by
a human. An additional step is taken to scale down the values within each
component, by dividing each channel by the total amount of pixels classified
as foreground, which gives the mean motion per patch. These values are
taken together for all patches, which results in the HoF feature.
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Chapter 5

Action classification

This chapter discusses the action classification phase of the human action
detection and recognition task. It starts with the extraction of the tem-
plates from the training set discussed in section 5.1 and follows up with a
description of a video indexing based approach in section 5.2.

5.1 Templates

The decision has been made to create templates with a fixed size of 41 frames,
which are allowed to contain one or more actions. These actions cannot
overlap with each other and are required to be completely contained within
the boundaries of the template. Actions are chosen to be discriminative and
therefore should have no overlap with other actions. The restrictions put
on these templates are enforced through the use of an annotation file, which
defines the start and end frame of each template and each individual action.

All annotated templates are extracted from the training data and similar
templates are grouped together. Two templates are similar, when both
contain exactly the same actions in the same order. See Table 3.2 for an
overview of all template groups. For each group of templates the most
average template is determined. The most average template is selected by
calculating the distance between each template within each group, using n-
dimensional DTW. These distances are summed up to a single distance for
each template and finally selecting the template per group with the lowest
summed distance as the most average template.

5.2 Video indexing

The templates acquired in the previous step are compared with a continuous
stream of features, which can be temporally segmented before comparison.
Various automatic motion boundary detection approaches can be used to
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segment this stream, for example the approach proposed by Ali and Ag-
garwal [1] who use key-poses. Another approach is to combine comparison
and temporal segmentation into a single step, by applying a video indexing
based approach. With video indexing all similar occurrences of a selected
segment are searched for in the rest of the video. This section describes an
approach that resembles video indexing.

A sliding window with a fixed size of 41 frames and a step size of one
frame is used to select all possible segments in the continuous stream of
features. Each segment is compared with each template using the modified
n-dimensional DTW, which allows for variety in the temporal and spatial
domain to exists between the two n-dimensional time-series. Choosing a
fixed window size overcomes issues introduced by variable segment sizes.
Figure 5.1 shows a plot with distance values for two thousand segments
being compared with template 60. The lower the distance, the better a
templates matches with that particular segment.

Figure 5.1: Distance of segments starting at frame 3000 till 5000 compared
with template 60

Figure 5.1 depicts a wave pattern in which the lowest point in each valley
(called local minima) is the best scoring segment, in comparison to segments
represented by all other distance values in the same valley. These local min-
ima are acquired by taking the derivative of the signal and finding all points
in time where an increase from below zero to above zero occurs. A thresh-
old mechanism is used to only select the segments that are considered to
be good matches with a specific template. Each template can have its own
threshold value and determining these threshold values is explained in chap-
ter 6. The resulting sets of segments per template are merged into a single
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set. This single set can contain overlap, which should be removed, because
the actions within a template are discriminative actions. Removing overlap
may cause some well matching segments to be removed, but this approach
will also remove a lot of partial hits. An overlapping segment is removed,
when this segment has a higher distance value than the other segment it
overlaps with. The constant size of each segment and template makes this
way of comparing for overlap removal possible, because smaller time-series
being compared with DTW typically have smaller distance values.

(5.2.1) Warp path example 1 (5.2.2) Warp path example 2

Figure 5.2: Two warping paths outputted by DTW

For each remaining segment the warping path is retrieved, which can be
acquired using DTW. The warping path indicates per frame the frame it
best matches with. Figure 5.2 shows two examples of two segments being
matched with template 20 and 21, which are composite templates. For
both templates the exact starting point of each action contained within the
template is known. The warping path in combination with the starting
frame of an action is used to determine at which frame this action starts in
the segment. This is done for all segments, which results in a list of actions
and their starting frame. This list of actions including their exact starting
frame is the classification result, which is used as input for the evaluation.
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Chapter 6

Evaluation

The evaluation discussed in this chapter evaluates different classification set-
tings. This evaluation is a system evaluation, which means that no human
participants are required for evaluating the system. The different classifica-
tion settings for the task are introduced in the form of variables in section 6.1.
Section 6.2 gives a short introduction into what information retrieval mea-
sures are used to answer all research questions. Each question is stated
in section 6.3 including a brief outline on how to find the answer to each
question.

6.1 Variables

The are a number of different variables that taken into consideration during
this evaluation. Two variables can be deduced from the video material
present in the test set, by examining some of the meta data displayed in
Table 3.1. From this table it is possible to deduce that each scene contains
the same man performing the movements and the other position in each
scene is filled up by three different women. Furthermore, the position of
each person in the scene is indicated and can either be left or right. The two
persons never interchange position and therefore this indication stays valid
for the entire scene. The two variables that are deduced from the test data
are the scene and the person performing the actions. Two other variables
that play a role in this evaluation are actions and templates. All possible
options for actions and templates are displayed in Tables 3.1 and 3.2 and
these templates can be subdivided into two different groups, they are either
a single action template or composite template.

Another variable that plays a role in this evaluation, is the configuration
of the grid of a grid-based feature. In total, four different grid configurations
are introduced for both grid-based features, to be evaluated on performance
in comparison with each other. Each grid configuration specifies how the
region of interest must be divided and all four will divide the region of
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interest into three rows. Two of these grid configurations have an alternative
row division based on a heuristic proposed in the article by Danafar and
Gheissari [11], which is: 1/5 (head), 2/5 (body) and 2/5 (legs). This means
that for example the top row will have a vertical length of 1/5 of the total
height of the region of interest. This heuristic is based on a person standing
straight up, but it looses its advantage when any other type of pose or
motion is executed, for example stooping or lying on the floor. The other
two grid configurations specify that all rows in a grid are to be of an equal
height. For the with and without heuristic grids, two different column sizes
are chosen, namely three or five columns. These two amounts are chosen
because a trade-off is made between specificity and generalization, and the
column sizes of three and five are expected to give the best results.

The final variable that plays a role in this evaluation is the type of
threshold being applied by the classifier. In total three different thresholds
mechanisms are evaluated and these are the following: best scoring 2,5%,
single value threshold, and single offset value threshold. The first threshold
mechanism is based on the assumption that the lowest 2,5 percent of all
local minima segments must be a good matching with a template. This very
simple threshold is expected to perform worse than the other thresholds, but
is included for comparison. The height of the other two thresholds is found
through calibration using a validation set, which consists of the performance
of woman 1 in scene 1. A validation set must contain occurrences of all
action present in the training set, which is not the case with any of the
scenes in the test set. The training set consists of two persons performing a
similar repertoire and is therefore split up into a training and validation set.
A possible issue caused by the chosen validation set, is that the threshold
values are based on a single person, while multiple persons are present in
the test set. The second and third threshold can vary for each combination
of classification settings (template, grid configuration, and grid type).

The calibration of the second threshold is performed using the distance
values and warping paths calculated with DTW for each segment in the
validation set. The local minima are determined in the same way as is elab-
orated in section 5.2 and for each segment (local minimum) the warping
path is used to determine if the starting point of each action in a segment
matches with that of the ground truth annotation. This process delivers
a target list that indicates which segments are considered to be a correct
match. An ROC-curve is determined for each possible combination of set-
tings, an example of an ROC-curve is displayed in Figure 6.1. The most
optimal threshold value for each combination of classification settings is de-
termined, by calculating the f-measure (is explained in section 6.2) per step
in the ROC curve. A threshold is associated with each step in the ROC
curve, this threshold is a value between the lowest distance value and the
highest distance value of all entries used to determine the ROC curve. The
threshold that belongs to the entry with the highest f-score is selected as



6.2. INFORMATION RETRIEVAL MEASURES 33

the value for the single value threshold. The third threshold mechanism is
based on this single value threshold, because its value is the offset between
the best scoring segment and the single value threshold.

Figure 6.1: ROC-curve for template 60, HoF configured with a 3x3 with
heuristic

6.2 Information retrieval measures

Most research questions in this evaluation are answered with the help of
three well-known information retrieval performance measures, which are re-
call, precision, and f-measure. Recall indicates the sensitivity of the clas-
sifier, by indicating the percentage of actual classification entries present
in the predicted classification. Precision, on the other hand, indicates the
percentage of predicted classification entries that are correctly classified.
F-measure uses recall and precision to indicate the accuracy of the result
acquired with the classifier. Recall and precision base their values on the
following variables: true positive, false positive, and false negative. These
three variables are determined for each separate combination of classification
settings.

The information retrieval step in the evaluation compares all predicted
classification entries with the actual classification entries. All predictions
that match with the actual classification are counted as true positive. A
predicted starting frame of an action is not required to match exactly with
the annotation. The annotation of the video is subject to human interpre-
tation, while DTW is much more constant in its findings. It is therefore
decided to introduce a margin of three frames (referred to as the annotation
window), which boils down to a 7.2 milliseconds margin before and after
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each annotation entry to overcome any inaccuracy in the annotation file. A
margin of three frames is chosen, because the smallest occurring action is
seven frames long and choosing a larger margin would could cause overlap
in the margin windows of two consecutive actions.

For each predicted entry that has no corresponding entry in the actual
classification, a rest class is introduced and added to the actual classifica-
tion. These incorrect predicted classification entries are all marked as false
positives and the false negatives are all actual classification entries that are
not found in the predicted classification. It is possible to create a more in-
formative overview of the actual and predicated classification set, which is
called a confusion matrix and is used as a tool for visualizing the actual and
prediction classification. The rows are the actual classes and the columns
the predicted classes. Each ID belongs to an action and this mapping can be
found in table 3.1 and the names of each action can be found in Table B.1.

6.3 Research questions

In total this evaluation tries to answer four research questions. The first two
questions have a similar goal and that is to determine two variables for fur-
ther questions, which are threshold mechanism and grid configuration. The
following abbreviations are used often in this section and section that follow,
namely TP (true positive), FP (false positive), and FN (false negative).

6.3.1 Question one

Which of the three threshold mechanisms delivers the best result?

Take all TP, FP, and FN calculated for each template and group them
per combination of grid configuration, grid type and threshold mechanism.
Calculate the f-measure per combination using these three value. Group
all calculated f-scores into two groups based on grid type and create a box
plot for each. The variables in each box plot are the threshold mechanisms,
which result into three boxes that contain four f-scores. The best scoring
threshold mechanism is the one with the highest median and if these are
equal the highest third quartile. Per box plot (HoS or HoF) the best scoring
threshold mechanism is selected and is fixated for all further questions.

6.3.2 Question two

Which of the four different grid configurations can be considered the best
choice for the HoS and which one for the HoF?

As with question one, take all TP, FP, and FN calculated for each tem-
plate and group them per combination of grid configuration and grid type.
Calculate per combination recall, precision, and f-measure. Display recall,
precision, and f-measure in a table per grid type or a single combined table.
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Deduce from this table or tables, which grid configuration is the best choice
for a grid type. The best scoring grid configuration per grid-based feature
is fixated for all further questions.

6.3.3 Question three

Which grid-based features scores better (HoS or HoF), using only video
footage of the male subject?

The first step taken to answer this question is to create an overview of
all f-measures per action. This information can be displayed in a table per
grid type or a single table containing both grid types. All actions that do
not occur in the test data are removed from this overview (see table 3.1),
because the precision, recall, and f-scores are all zero. The following step is
to examine each scene separately and check per scene the confusion matrix
for each grid type and individual classification results. Deduce from this in
depth information per scene and the overview the answer to question three.

6.3.4 Question four

How well do both grid-based features perform when another subject is used
for testing?

Gather all information for the second person in each scene two till five,
which are woman 2 and woman 3 (see Table 3.1). The second person in
each scene has a fairly similar repertoire in comparison to the first person
(man). Therefore it is possible to compare most of the acquired f-scores per
action between the man and one of the two woman. This comparison and
the previous information gathered in the other questions should be sufficient
to answer question five.
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Chapter 7

Results and Discussion

7.1 Threshold selection

Which of the three threshold mechanisms delivers the best result?

The two box plots in Figure 7.1 each represent a grid type and the boxes
in both box plots represent the distribution of the f-scores per threshold
mechanism. From these two box plots it possible to deduce that the single
value (second) threshold mechanism delivers the best results, with both the
HoS and the HoF grid-based feature.

Figure 7.1: Box plot

The 2,5% threshold seems to
be the worst scoring threshold of
the three thresholds, which was
expected beforehand. The 2,5%
threshold is based on the heuris-
tic that the best scoring 2,5 per-
cent of all occurrences in the video
must be a correct prediction. How-
ever, when a video contains no oc-
currence or too many of a particu-
lar action, this threshold will intro-
duce a large number of false posi-
tives or negatives. The single value
offset threshold is a value that in-
dicates the height of the thresh-
old relative to the best scoring seg-
ment. This threshold is based on
the heuristic that the best scoring
segment must be an occurrence of
that action. This threshold fails
when no occurrence of an action is
present in the video. which results

37
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in a lot of false positives to be in-
cluded. A disadvantage of the selected threshold is that its height is based on
its data set, which means that it must be calibrated every time a completely
different data set is introduced.
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7.2 Grid configuration selection

Which of the four different grid configurations can be considered the best
choice for the HoS and which one for the HoF?

From Table 7.1 it is possible to deduce that both recall and precision in-
crease for HoS, when the amount of columns in the grid increases. Therefore
the possibility exists that choosing an even larger grid size in both rows and
columns will result in even better results. The possibility exists that an in-
creased grid size could introduce overfitting for the subject “Man”, because
the feature becomes more specific and detailed. Furthermore, the without
heuristic grids seem to be scoring better for HoS, than their with heuristic
counter parts. This could point to the fact that the recall and precision
decreases when the patch size increases. It is therefore decided to choose
the 3x5 without heuristic grid as the grid configuration for the HoS feature
for further research questions.

3x3 WH 3x3 WhH 3x5 WH 3x5 WhH

HoS
recall 0.1746 0.2156 0.2275 0.2421
precision 0.2762 0.2860 0.2811 0.3321
f-score 0.2139 0.2459 0.2515 0.2800

HoF
recall 0.1773 0.1005 0.1085 0.1151
precision 0.2351 0.1929 0.4767 0.4163
f-score 0.2021 0.1322 0.1767 0.1803

Table 7.1: Score per grid configuration

The highest f-score with HoF is achieved using 3x3 with heuristic as grid
configuration. The values in Table 7.1 show that the precision increases
dramatically when increasing the amount of columns. The recall on the
other hand scores badly with any of the tested grid configurations and only
grid configuration 3x3 with heuristic achieves an acceptable value for recall.
The heuristic does not seem to have any influence on the recall, but precision
scores better with both with heuristic configurations.

7.3 Comparing both grid-based features (Man)

Which grid-based features scores better (HoS or HoF), using only video
footage of the male subject?

The first step consists of comparing recall, precision and f-score per ac-
tion per grid type. The only actions that are shown in the overview (Ta-
ble 7.2) of HoS and HoF are actions 200, 201, 205, 206, 300, 301, 302, 304,
600, and 601. The other actions are not included into the analysis, because
they do not occur in the test data.
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Actions 200 and 201 seem to get recognized better with HoF as feature,
but the amount of false positives also increases. As with actions 200 and
201, HoF achieves a higher recall for both actions 600 and 601, but a lower
precision. An extremely large amount of false positives is found for action
600, while action 601 has only a few false positives. The threshold calibrated
for action 600 is on 10.1265, while the threshold for action 601 is on 7.5182.
These two actions are fairly similar, but it seems that badly scoring true
positives in the validation set caused the score to increase dramatically.
The thresholds for both actions using other grid configurations are much
closer together, which could point to a few bad performances marked as
true positive in the validation set. Template 30 consists of actions 300 and
304 and both achieve higher f-scores with HoF, because the precision with
HoS is very low. Action 302, on the other hand, achieves a slightly higher
f-score with HoS, because the high recall makes up for the large amount of
false positives.

HoS HoF

Recall 0.3122 0.2831

Precision 0.3440 0.5323

F-measure 0.3273 0.3696

Table 7.3: Scores Man

All TP, FP, and FN shown in Table 7.2
are summed up per grid type and per grid
type recall, precision and f-measure are
calculated (see Table 7.3 for the results).
Purely looking at these values, HoF is the
better grid-based feature to use with this
video material and this subset of actions.
The height of these two f-scores is primar-
ily determined by actions 300, 301, 302 and 304, because they occur more
often. These actions also have a large influence on the accumulated f-scores
calculated in the previous two questions. To get a better insight into the
actual performance per scene, it is decided to examine all scenes separately,
before giving a more definitive answer to question 3.

7.3.1 Scene 2: Lumberjack

First off, two confusion matrices for HoS and HoF (see Figure 7.2) are ex-
amined. The rows are the actual classes present in the scene according to
annotation and the columns represent the predicted classes by the classifier.

The confusion matrix for the HoS feature contains a large number of
false positives in the remainder class, especially actions 300, 301, 302, 304,
and 500 seem to score well with a large number of segments in scene 2. Most
of the segments marked as false positives for action 500 visually resemble
this action, which makes the introduction of a new template necessary to
decline the amount of false positives for action 500. To be able to explain
the other false positives on actions 300, 301, 302 and 304, a more in-depth
examination is required.

Frame 2639, frame of a segment matched with template 30 (consists of
actions 300 and 304), is compared with its corresponding frame of template
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(7.2.1) HoS 3x5, threshold 2, Scene 2 (7.2.2) HoF 3x3(h), threshold 2, Scene 2

Figure 7.2: Confusion matrices scene 2

30 (see first two figures in Figure 7.3). When visually comparing both HoS
features, it is clear that both have almost exactly the same shape and pose of
the legs and torso. The only major difference between the two, is the arm on
the right side and the patch that contains the head. The threshold for tem-
plate 30 is calibrated at 18.1610, while the DTW distance between template
30 and segment 2636 is 13.6179 and therefore this segment is matched with
template 30. This threshold is far above the distance calculated for segment
2636, which could be an indication that this threshold is too general or the
template is too general. A possible reason for this fairly high threshold,
is because all thresholds are calibrated using footage of a different person
(Woman 1). It could be that the difference between the two subjects influ-
ences the height of the calibrated threshold to much. Frame 1220 is a frame
of a segment marked as a true positive in the validation set. This frame is
displayed in Figure 7.3.3 and the other two are displayed in Figures 7.3.1
and 7.3.2. Calculating the euclidean distance using HoS as feature results
in a distance of 0.4802 between frame 4153 and 2639 and an euclidean dis-
tance of 0.5314 between frame 4153 and 1220. The other subject (Woman
1) clearly causes the euclidean distance to be slightly higher, which can also
be deduced from visually inspecting these frames. The slight difference in
body shape and pose is present in the entire frame, which causes all patches
to differ, instead of only a few patches as with frame 2639.

When examining all silhouette descriptors for all three segments in Fig-
ures A.1 to A.3 (in the appendices), a difference per frame and in the over-
all performance between template 30 and segment 1217 can be observed.
Woman 1 seems to have a delay of two/three frames in comparison to tem-
plate 30, which would be a problem when euclidean distance was used to
compare segments with templates, but DTW should be able to warp the seg-
ment. It can be concluded that the silhouettes used as template for action
300 and 304 are not discriminative enough and together with the calibrated
threshold this template will match easily with a large number of segments
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(7.3.1) Template 30 (4153) (7.3.2) Seg. 2636 (2639) (7.3.3) Seg. 1217 (1220)

Figure 7.3: HoS grid-based feature for the fourth frame of three different
segments

in most scenes. The false positives found for actions 301 and 302 suffer from
the same kind of issue, because the same kind of movement is performed at
a different speed.

Half of all the occurrences for action 600 and 601 are found using HoS as
feature. Both actions occur mostly in pairs of two of the same action and the
first entry never seems to get predicted, while the second entry always gets
predicted by the classifier. Looking at the video material itself, it shows that
the transition from another movement into the first action of each pair has a
significant influence on the manner it is performed. Furthermore, comparing
the silhouette descriptors of action 600 with a FN (see Figures A.4 and A.5)
shows a few differences in the pose: the FN segment seems contain a subject
that bends over a little to the left, has his arm closer to his head and misses
his right foot in some of the frames. Three of the false positives for action
600 and the single FP for action 601 are all part of a slower version of these
two actions.

The confusion matrix (see Figure 7.2.2) also shows a fairly large amount
of false positives in the remainder class for actions 100 and 500. Both actions
consist mostly of motion in the vertical component and many of the false
positives display a similar kind of motion, which is the most probable cause
for these segments to be predicted as one these two actions. A portion of the
false positives for action 100 does not match with this action, which could
point to a threshold that is calibrated too high.

7.3.2 Scene 3: Twist

From the confusion matrices it can be deduced that a large amount of occur-
rences of actions 300, 301, 302, and 304 are not found with both grid-based
features. This scene also has three false positives with HoF and one FP with
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(7.4.1) HoS 3x5, threshold 2, Scene 3 (7.4.2) HoF 3x3(h), threshold 2, Scene 3

Figure 7.4: Confusion matrices scene 3

HoS, which are annotated as actions 300 and 304, but predicted to be ac-
tions 600 or 601. After inspecting all four false positives no real resemblance
can be found in shape or motion between each segment and the predicted
actions. This scene is contains a large amount of performances of actions
300, 301, 302 and 304, which increases the chance that a FP matches with
an annotated entry instead of the remainder class.

Furthermore, a large number of false positives found with HoS for actions
300 and 304 are caused by a minor mismatch in execution speed between
the annotated actions and the template. Only a part of the template is
predicted successfully, while the other action(s) just falls one or two frames
outside the annotation window. The course of action taken to solve the
mismatch in speed is to use the warping path and find the actual starting
frame inside a segment. It seems however that no sensible warping path can
be deduced by DTW when using HoS as feature, which was also the case
with the previous scene.

Every segment that is matched with either template 31 or 32 (containing
actions 301 and 302) has at least a single FP. The difference in execution
speed between actual and template performance is also present for these
templates. Both templates 31 and 32 consist out of three actions, but the
big difference in execution speed causes the segments found by the classifier
to contain four or five actions. These segments can contain four or five
actions, because most occurrences of actions 301 and 302 occur in large
consecutive sequences (see Table 7.4 for a small sample). In most cases only
two actions are predicted correctly and the sample of the classification below
illustrates the cause for most false positives and a few of the false negatives
found for actions 301 and 302.

Two segments fall inside the range of the sample from the annotation file
(displayed in Table 7.4). The first segment starts at frame 1800 and ends at
frame 1840, it is matched with template 31. The second segment starts at
frame 1847 and ends at frame 1887, this segment was successfully matched
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Start End Action

1769 1785 300
1787 1802 304
1817 1826 302
1827 1835 301
1836 1844 302
1845 1853 301
1854 1863 302
1864 1872 301
1873 1881 302
1882 1890 301
1891 1899 302

Table 7.4: Sample annotation of scene 2

with template 32. Templates 31 and 32 are both composite templates and
therefore each action has a different starting point within the segment. The
actions for the first segment start at 1800 (301), 1818 (302) and 1826 (301)
and for the second segment at 1847 (302), 1864 (301), and 1874 (302). The
annotation contains a total of three entries 1817 (302), 1827 (301), and
1836 (302) that fall inside the range of the first segment. The range starts
at first frame of the segment minus the annotation window and ends at
the last frame of the segment plus the annotation window. The first two
annotation entries are predicted by the last two actions in the segment,
but no annotation entry can be found for 1800 and therefore is marked as
false positive. The annotation entries that fall inside the range for the second
segment are: 1845 (301), 1854 (302), 1864 (301), 1873 (302), and 1882 (301).
Actions starting at 1864 and 1874 are successfully predicted, while action
302 predicted to start at 1847 is matched with an action 301 that actually
starts at 1845. The other two annotation entries 1854 and 1882 have become
unreachable for any other segment, because no overlap between segments is
allowed. This a general problem when using composite templates that allow
overlap, while the classifier does not allow overlap.

Action 302 predicted at 1847 should have been matched with action
302 annotated to start at 1854, but the difference in speed caused it to
mismatch. The warping path calculated by the DTW should have solved this
false positive, but apparently no usable warping path can be deduced when
comparing time-series of HoS features. Furthermore, the overlap between
templates in combination with overlapping removal causes many of the false
negatives for scene three. The matched templates are not in consecutive
sequence, instead gaps are left between matched segment and these gaps
are too small to contain an additional segment. However, these gaps span
annotated entries, which causes a large number of false positives.
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The amount of false positives found with HoF is much less in comparison
to the results acquired with HoS as feature. Especially actions 300 and 304
seem to be predicted precisely as they are annotated and in some cases the
warping path deduced with DTW is used to solve any issues that occur
due to difference in speed between a segment and the template. A usable
warping path could not be deduced when using HoS as feature, but with
HoF this problem does not seem to exist. Overall it seems that HoF has
less false positives, but is not able eliminate all false positives using DTW.

7.3.3 Scene 4: Shoulder shake

Scene 4 is the only scene that does not have any occurrence annotated for
any of the templates used by the classifier, which means the classifier should
not find any segments matching its classes. The confusion matrix for HoS
only displays seven false positives for action 101. HoF on the other hand
seems to generate a lot more false positives, especially action 100 seems to
match with a lot of segments.

(7.5.1) HoS 3x5, threshold 2, Scene 4 (7.5.2) HoF 3x3(h), threshold 2, Scene 4

Figure 7.5: Confusion matrices scene 4

All false positives found using HoS visually resemble the action per-
formed in the template. The performance speed, the camera angle, and
position of the hands during the entire performance almost match entirely.
A slight difference is visible in the starting position of the hands, instead of
behind (left of) the body as with the template, they are right next too the
body. This difference seems to be insignificant enough for these segments to
match with action 101.

Some of the false positives with HoF for action 100 resemble the move-
ment, but most segment contains movements that do not resemble the tem-
plate. The high amounts of false positives for action 100 in this scene and
the previous ones could indicate to a threshold that is too high. Action 101
is similar to action 100 in motion and differs mostly in orientation. The
difference in threshold between these two action is significant (action 100:
9.5543; action 101: 7.8219), which is most likely the cause for the large
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amount of false positives. Furthermore, all false positives found for action
500 contain motion that is very similar to the motion of this action. Most of
the other false positives found using HoF do not resemble the action there
matched with. Most of these predictions are caused by effects of motion by
body parts, such as a feet/leg that wobble on the rhythm of the music or
an arm that is used to give instructions.

7.3.4 Scene 5: Wave

Templates 20, 21, 25, and 26 actually occur in scene 5. These templates
consist of actions 200, 201, 205, and 206. The exact composition of each
template can be found in Table 3.2 and the confusion matrices can be found
in Figure 7.6.

(7.6.1) HoS 3x5, threshold 2, Scene 5 (7.6.2) HoF 3x3 (heuristic), threshold 2,
Scene 5

Figure 7.6: Confusion matrices scene 5

A large amount of the occurrences for actions 200 and 201 are not pre-
dicted by the classifier. After close inspection it is clear that the video
material never contains a complete performance of 200 followed by a 201
or the other way around. All occurrences are grouped in three subsequent
actions, either – 200,201,200 – or – 201,200,201 – are recorded in the anno-
tation file. However, the first and the last action always stops halfway. In
most cases this halfway performance causes the distance value to be above
the threshold. The best solution would be modify actions 200 and 201, by
letting the new action 200 start halfway the original 200 and end halfway
the original 201 and for the new action 201 the other way around. These
actions would better fit the test data and increase amount of true positives.
Furthermore, it seems as with scene 3 that overall the classifier using HoS
as a feature is much stricter than the annotator.

Scene 5 seems to contain a lot of segments that match well with various
other actions, when HoF is used as feature. Most false positives are scored on
actions 100, 301, 302, 500, and 600. Visual inspection of these false positives
shows that action 500 matches with movements which are fairly similar.
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Action 600 has a total of twenty false positives for all male footage according
to Table 7.2 and seven of these false positives are present in this scene.
A movement that resembles template 20, which contains the two actions
200 and 201, seems to be the most common appearance in the segments
predicted to be action 600. The biggest difference is that instead of having
its hands before his body, they are now above his head. This movement
does not resemble action 600 at all, but still gets predicted by the classifier.
The reason that these segments are classified as action 600, is elaborated in
Section 7.3.5. Furthermore, actions 301 and 302 do not resemble their false
positive segments, but most matches are caused by insignificant movements
by body parts that wobble.

7.3.5 Action 600

The exact reason for the large amount of false positives for action 600 can-
not be deduced from the in depth examination of each scene. Therefore,
all predicted occurrences of this action, including their distance value are
collected. All these entries are compared with each each other and with the
calibrated threshold. This comparison confirms that the calibrated thresh-
old is far above the highest scoring true positive and putting the threshold
just above this true positive would result in a total of seven false positives,
which is far less than 20 it is currently at. The version of action 600 used
as template has only minimal head movement at the start, while almost all
entries in the validation set consist of the Woman 1 doing the same move-
ment including a lot of head movements. Action 601, which is similar to
action 600, has also got entries in the validation set with the same kind of
head movement, but the template used for comparison also contains them.
The threshold for action 601 is much lower than the threshold for 600, which
indicates the difference in head movement has a significant influence on the
calibration process.

7.3.6 Conclusion question three

The easiest way to answer question three is to take the f-scores for HoS
and HoF from Table 7.2 and deduce from those scores that HoF performs
slightly better with this particular video. However, it is difficult to support
this answer, because there are a large number of factors that influence the
performance achieved with these two grid-based features. The biggest two
factors besides the chosen feature that have a big influence on the classifica-
tion result, are the chosen template for an action and its calibrated thresh-
old. Choosing a different occurrence of an action as template could cause
a dramatic difference in acquired results, especially when these occurrences
show differences amongst each other. For example, the threshold calibrated
for actions 100, 600 using HoF are too high, because the occurrences in the
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calibration set differ too much. Choosing a different occurrence from the
training set that matches better with the calibration set would decrease the
threshold and this would dramatically decrease the amount of false positives
and in turn improve the total f-score acquired with HoF.

Close inspection shows that both features have their advantages over the
other feature and with particular actions they outperform the other feature.
Two big advantage of using HoF as feature, is that it is more discriminative
and is less influenced by body size. The content of a patch with HoS is a
simple value that indicates the percentage of the patch occupied by the sil-
houette, which stays the same for any shape that occupies the same amount
of pixels in a patch. The HoF feature on the other hand contains per patch
four different values indicating the total amount of optical flow in one of the
four directions. The fact that this feature is more discriminative is the rea-
son why the Dynamic Time Warping metric is able to deduce usable warping
paths when dealing with comparisons of time-series of HoF features and not
with time-series of HoS features.

I would conclude that both features perform almost equally well, because
both have their benefits and work well with certain action. When recall
is more important than precision, than I would recommend to use HoS as
feature. In all other cases I would recommend to use HoF as feature, because
it contains more discriminative information.

7.4 Comparing both grid-based features (Woman
2/3)

How well do both grid-based features perform when another subject is used
for testing?

There are two different subjects (Woman 2 and 3) and the appearance
of these subjects in every scene can be found in Table 3.1. The recall,
precision and f-scores for each subject and for both combined are displayed
in Table 7.5. The data shows that HoF performs well with Woman 2, while
the recall for footage containing Woman 3 is very low. The actions performed
by subject Woman 3 are predicted quite well with HoS as feature, but none
of the entries for Woman 2 are predicted. This could be caused by a large
difference in body shape between the subject Man and the subject Woman
2.

Table 7.6 gives insight how each action scored in comparison with the
footage of the subject Man. Actions 205 and 206 are removed from this
overview, because both actions do not occur in any of the performances by
the female subjects. This is because the repertoire of the both subjects in
each scene is not exactly the same. Its clear from the comparison table that
actions 200, 201, 600, and 601 give no sensible results with HoS as feature,
which could also be concluded from Table 7.5. Remarkable is that action
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Combined Woman 2 Woman 3

HoS
recall 0.1720 0.0000 0.1917
precision 0.4140 0.0000 0.5039
f1-score 0.2430 0.0000 0.2778

HoF
recall 0.0714 0.4359 0.0295
precision 0.3034 0.2931 0.3226
f1-score 0.1156 0.3505 0.0541

Table 7.5: Performance of other subjects

304 achieves a higher f1-score with Woman 3 than the Man. A similar
situation as with action 600 for HoF occurs with template 30 containing
actions 300 and 304. The calibrated threshold lies far above the distance
values calculated for the true positives and most false positives lie between
the true positives and the threshold. With Woman 3 these false positives
disappear because the calculated distance values are much closer to the
calibrated threshold and therefore the precision increases and in turn this
increases the f1-score.

Using HoF as feature seems to deliver a more constant result, because
there are no actions that are not recognized. However, the results for actions
performed by Woman 3 are very bad in comparison with the results acquired
with HoS as feature. As with HoS there is an action that scores better
with footage of the Female, than the subject Man. Both recall (0.4167)
and precision (0,8333) are higher with action 201 and visual inspection of
individual cases of 201 show that these predicted actions match very well.

As with the footage of subject Man a lot of false positives are found
for actions 100, 101, 300, 301, 302, 304 and 500 using HoF as feature (see
Figures B.1.2 and B.1.4). The amount of false positives in comparison with
footage of the Man is lower, but still significant amounts are found with
both subjects (Woman 2 and 3).

It can be concluded that HoF is a grid-based feature that is less influ-
enced by difference in body shape, which plays a very big role with HoS. The
introduction of a grid for the silhouette descriptor should have solved this
issue, but apparently this feature still suffers a lot from differences in body
type. However, both features suffer greatly when trying to classify actions
performed by another subject than the reference actions. HoF seems to be
a more robust feature and is therefore preferred as feature for comparison
between two different subjects.
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Chapter 8

Conclusion and Future work

This master thesis describes the comparison of grid-based features and classi-
fication settings, in an off-line supervised human action detection and recog-
nition task with a limited training set. The training data for the classifier
consists of single occurrences of discriminative templates and each template
consists of a movement performed in the XCO video. It can be concluded
from the results in section 7 that increasing the grid size for the Histogram
of Silhouette feature improves its results, which could be an indication that
this feature prefers more fine-grained grid sizes. The best grid configura-
tion for Histogram of Flow was the 3x3 with heuristic grid. This finding
indicates that choosing a coarse-grained grid size for Histogram of Flow is
a good choice, because with limited training data the feature must not be-
come too specific, otherwise it is impossible to recognize action performed
by other subjects. The Histogram of Silhouette seems to perform quite well
with motion sequences that are performed by the same subject as is present
in the training data, but with other subjects the results are bad. Histogram
of Flow on the other hand proves to be a more general feature, because it
is less influenced by differences in body shape of subjects. Furthermore,
Histogram of Flow features allow for usable warping paths to be deduced
when comparing time-series of these features, which seems not be working
for Histogram of Silhouette because this feature is less discriminative.

The conclusions that are drawn from the results are greatly influenced
by imperfections in the classification task. The height of each threshold,
used by the classification task, proved to be very sensitive to small differ-
ence in performance between template and occurrences of this template in
the validation set. The single occurrence per template is chosen, to avoid
biases towards templates that occur more often (see Table 3.2). In some
cases this caused a feature to perform worse than expected. For example,
the occurrence of action 600 chosen as template slightly differs from the
occurrences in the validation set, which results in high threshold and in
turn causes many false positives. I would recommend to slightly increase
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the amount of occurrences per template in future research. The concept of
having a limited training set is kept intact, but increasing the amount of
occurrences per template requires the classification approach to be adapted.
A possibility is to use a k -Nearest Neighbor classifier, because it is a simple
and effective classification approach that is applicable to tasks that only
have limited training data.

In future research it may be an idea to examine the effect of a wide
range of grid configurations for both features and see what these different
grid sizes have as effect on different kinds of classification tasks with differ-
ent training set sizes. For example increasing the amount of patches for the
Histogram of Silhouette feature may help to increase the recall and preci-
sion with the action detection and recognition task discussed in this master
thesis. However, increasing the grid size too much for HoS may cause some
actions to become overfitted for the subject similar to the one present in
the training data. With classification tasks that use large training sets, such
as a classifier using a Hidden Markov model, may benefit from choosing a
small grid size for HoF. Another interesting expansion of the work done in
this final project, is to examine the performance of a feature that combines
the HoS and HoF. Tran et.al. [29] do something similar in their research, by
combining the silhouette and motion information as channels of each patch
into a single grid-based feature. They subdivide each patch using a radial
division, which basically boils down to additional subdivision of an already
subdivided region interest, but another kind of division is used. It could be
interesting to examine the difference between grids using with and without
radial division.

With the current approach a window with a fixed size is slided over each
scene and the scene is segmented according to the distance scores acquired
for each template. Instead the scene could also be temporally segmented
using key frames as is done by Ali and Aggarwal [1] or using the approach by
Rui and Anandan [24]. It would be recommended to take such an approach
in the future for segmenting the scene, because with the current approach
a large number of false negatives are caused by gaps introduced due to
overlap in the templates. Furthermore, it will become easier to compare
slower movements with faster movements and the other way around and may
also diminish the need for equally sized templates. An alternative approach
is to (partially) allow overlap to exists, which should improve the results,
because the mismatch between template and classifier policy on overlap does
not exist anymore. Furthermore, I would recommend for future research to
use multiple publicly available video sets, instead of video material selected
from a private collection. This increases the comparability of the approach
to other published approaches, which is not the case in this final project.
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Appendix A

Silhouette descriptor samples

(A.1.1) (A.1.2) (A.1.3) (A.1.4) (A.1.5) (A.1.6) (A.1.7) (A.1.8)

(A.1.9) (A.1.10) (A.1.11) (A.1.12) (A.1.13) (A.1.14) (A.1.15) (A.1.16)

(A.1.17) (A.1.18) (A.1.19) (A.1.20) (A.1.21) (A.1.22) (A.1.23) (A.1.24)

(A.1.25) (A.1.26) (A.1.27) (A.1.28) (A.1.29) (A.1.30) (A.1.31) (A.1.32)

(A.1.33) (A.1.34) (A.1.35) (A.1.36) (A.1.37) (A.1.38) (A.1.39) (A.1.40)

(A.1.41)

Figure A.1: Scene: 1, Person: Man, Template 30 (Actions 300, 304)
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(A.2.1) (A.2.2) (A.2.3) (A.2.4) (A.2.5) (A.2.6) (A.2.7) (A.2.8)

(A.2.9) (A.2.10) (A.2.11) (A.2.12) (A.2.13) (A.2.14) (A.2.15) (A.2.16)

(A.2.17) (A.2.18) (A.2.19) (A.2.20) (A.2.21) (A.2.22) (A.2.23) (A.2.24)

(A.2.25) (A.2.26) (A.2.27) (A.2.28) (A.2.29) (A.2.30) (A.2.31) (A.2.32)

(A.2.33) (A.2.34) (A.2.35) (A.2.36) (A.2.37) (A.2.38) (A.2.39) (A.2.40)

(A.2.41)

Figure A.2: Scene: 1, Person: Woman 1, Segment 1217
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(A.3.1) (A.3.2) (A.3.3) (A.3.4) (A.3.5) (A.3.6) (A.3.7) (A.3.8)

(A.3.9) (A.3.10) (A.3.11) (A.3.12) (A.3.13) (A.3.14) (A.3.15) (A.3.16)

(A.3.17) (A.3.18) (A.3.19) (A.3.20) (A.3.21) (A.3.22) (A.3.23) (A.3.24)

(A.3.25) (A.3.26) (A.3.27) (A.3.28) (A.3.29) (A.3.30) (A.3.31) (A.3.32)

(A.3.33) (A.3.34) (A.3.35) (A.3.36) (A.3.37) (A.3.38) (A.3.39) (A.3.40)

(A.3.41)

Figure A.3: Scene: 2, Person: Man, Segment 2636
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(A.4.1) (A.4.2) (A.4.3) (A.4.4) (A.4.5) (A.4.6) (A.4.7) (A.4.8)

(A.4.9) (A.4.10) (A.4.11) (A.4.12) (A.4.13) (A.4.14) (A.4.15) (A.4.16)

(A.4.17) (A.4.18) (A.4.19) (A.4.20) (A.4.21) (A.4.22) (A.4.23) (A.4.24)

(A.4.25) (A.4.26) (A.4.27) (A.4.28) (A.4.29) (A.4.30) (A.4.31) (A.4.32)

(A.4.33) (A.4.34) (A.4.35) (A.4.36) (A.4.37) (A.4.38) (A.4.39) (A.4.40)

(A.4.41)

Figure A.4: Scene: 1, Person: Man, Template 60 (Action 600)
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(A.5.1) (A.5.2) (A.5.3) (A.5.4) (A.5.5) (A.5.6) (A.5.7) (A.5.8)

(A.5.9) (A.5.10) (A.5.11) (A.5.12) (A.5.13) (A.5.14) (A.5.15) (A.5.16)

(A.5.17) (A.5.18) (A.5.19) (A.5.20) (A.5.21) (A.5.22) (A.5.23) (A.5.24)

(A.5.25) (A.5.26) (A.5.27) (A.5.28) (A.5.29) (A.5.30) (A.5.31) (A.5.32)

(A.5.33) (A.5.34) (A.5.35) (A.5.36) (A.5.37) (A.5.38) (A.5.39) (A.5.40)

(A.5.41)

Figure A.5: Scene: 2, Person: Man, Segment 3913
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Appendix B

Confusion matrices

Table B.1 contains all the names that belong to each action.

ID Name

100 Rowing (Looking left)

101 Rowing (Looking right)

200 Kantellen (L->R)

201 Kantellen (R->L)

205 Kantellen Snel (R->L)

206 Kantellen Snel (L->R)

300 Twist (R->L)

301 Twist Snel (R->L)

302 Twist Snel (L->R)

304 Twist (L->R)

400 Load swing (L,R)

401 Load swing (short and starts Left)

402 Load swing (short and starts Right)

500 Solid push (2x)

600 Lumberjack (Top L -> Bottom R and Bottom R -> Top L)

601 Lumberjack (Top R -> Bottom L and Bottom L -> Top R)

1000 Remainder class

Table B.1: Description for each ID in the confusion matrix
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B.1 Subjects Woman 2/3

The confusion matrices in Figure B.1.4 for HoS are generated for combi-
nation of classification setting: 3x5 without heuristic grid and single value
threshold. For HoF the 3x3 with heuristic grid is used.

(B.1.1) Woman 2 (HoS) (B.1.2) Woman 2 (HoF)

(B.1.3) Woman 3 (HoS) (B.1.4) Woman 3 (HoF)


