
Thesis submitted to the
University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science
chair for Design and Analysis of Communication Systems
in partial fulfillment of the requirements for the degree of

Master of Science
in

Telematics

Secure Access Control to Personal Sensor
Information in Federations of Personal Networks

J.W.C. Beusink
July 12, 2012

Supervising committee
Dr. Ir. G. Karagiannis?

Dr. Ir. G.J. Heijenk?

Dr. H. Benz??

Prof. Dr. Ir. S. Heemstra de Groot??

?
University of Twente,
Faculty of EEMCS,
DACS chair,
P.O. Box 217,
7500 AE Enschede,
The Netherlands.

??
Twente Institute for

Wireless and Mobile Communications B.V.,
Business & Science Park,

Institutenweg 30,
7521 PK Enschede,
The Netherlands.

Any intelligent fool can make things
bigger and more complex. . . It takes a
touch of genius - and a lot of courage
to move in the opposite direction.

— Albert Einstein (1879-1955)

Abstract

This thesis provides a secure access control architecture for personal sensor
information in Federated Personal Networks (FedNets) applied to the context
of the VITRUVIUS project. To that end suitable authentication protocols,
cipher suites, credential providers and policy languages are analyzed. We
provide and test a prototype of our proposed architecture.

Security in this context entails more than the usual suspects being au-
thentication, authorization, non-repudiation, data integrity and confidential-
ity. Due to the nature of a PN, confidentiality is notably complex. Privacy
in this context consists of user and component identity confidentiality, user
location confidentiality and user untraceability. Mobile devices are also sus-
ceptible to depletion attacks, aimed at draining the battery.

We found EAP-IKEv2 the best suitable authentication protocol based
applicable security requirements we adopted from several fields of study.

We recommend a ciphersuite consisting of ECDH, ECDSA, AES and
SHA-2 based upon keystrength, governmental and institutional recommen-
dations and the wireless nature of PNs and FedNets.

We recommend WebDAV as credential provider as its usage allows for
more efficient revocation checking.

We recommend PERMIS as reasoning engine along with its policy lan-
guage.

Our prototype shows that the suggested security framework can be run
on a resource constrained device though further performance improvements
to the authentication and the authorization engine are needed.

iii

Dedication

This thesis is dedicated, in loving memory, to my father Johan Willem (Joop)
Beusink, who passed away on June 7, 2012, during the final stages of my
thesis. I know you were worried about me graduating and wanted to be there
at my graduation. Thank you for everything you have shown me, done for
me, and inspiring me to be a better man.

v

Acknowledgements

I would like to express gratitude to my supervisors, Dr. Ir. G. Karagiannis,
Dr. Ir. G.J. Heijenk, Dr. H. Benz and Prof. Dr. Ir. S. Heemstra de Groot,
without whom this thesis would not have been made possible.

I would also like to thank experts in the field for creating and making the
software available that is the basis on which our prototype was developed
and for providing answers to questions on the inner workings of this software.
For strongSwan they are Tobias Brunner; Martin Willi; and Prof. Andreas
Steffen, HSR University of Applied Sciences Rapperswil, Switzerland. For
PrivilEge and Role Management Infrastructure Standards (PERMIS) they
are Prof. BSc. PhD. David W. Chadwick, University of Kent, United King-
dom; Dr. Stijn Lievens, University of Kent, United Kingdom.

For their patience and financial support I thank Everett NL B.V.
Special thanks to Dr. Ing. Bianca Beusink and BSc. Achiel van der

Mandele for reviewing drafts and providing usefull feedback.
Last but not least I would like to thank my friends and family for their

support and giving me the strength to finish this thesis.

vii

Contents

Abstract iii

Dedication v

Acknowledgements vii

1 Introduction 1
1.1 Context/Motivation . 1
1.2 Specific Problem . 3
1.3 Research Questions . 3
1.4 Approach . 4
1.5 Structure . 4

2 Personal Networks 5
2.1 Requirements . 6
2.2 Overall Architecture . 9

2.2.1 Connectivity Level Abstraction 9
2.2.2 Network Level Abstraction 9
2.2.3 Service Abstraction Level 11

2.3 Network Components . 13
2.3.1 Personalization . 13
2.3.2 Cluster Formation . 14
2.3.3 Intra-Cluster Routing 14
2.3.4 Inter-Cluster Routing and Tunneling 14
2.3.5 Foreign Communication 15
2.3.6 Radio Resource Management and Link Layers 15

2.4 Service Components . 15
2.4.1 PN Administration Integrity Service 16
2.4.2 User Agent & Authentication 16
2.4.3 Service & Content Discovery 16
2.4.4 Access Control . 17

ix

x Contents.

2.4.5 Service Context Service 17
2.4.6 Federation Management 17
2.4.7 Service & Content Management 17
2.4.8 Management Consoles 18

2.5 Summary . 18

3 FedNets 19
3.1 FedNet Types . 20
3.2 The FedNet Lifecycle . 22

3.2.1 Initial Phase . 22
3.2.2 Formation Phase . 23
3.2.3 Operation Phase . 23
3.2.4 Dissolution Phase . 25

3.3 Architecture . 26
3.3.1 Architectural Components 26
3.3.2 FedNet Manager . 27
3.3.3 FedNet Agent . 28
3.3.4 Gateway . 29
3.3.5 Service Proxy . 29
3.3.6 Service Management Node 30
3.3.7 A FedNet Service . 30
3.3.8 A FedNet Client . 30
3.3.9 Service Discovery . 30
3.3.10 FedNet Access Control Policies 30
3.3.11 Service Access Control Policies 30
3.3.12 FedNet Services . 31

3.4 Summary . 31

4 Access Control Architectures 33
4.1 Security Threats . 33
4.2 Security Definitions . 36
4.3 Security Access Control Architectures That Can Be Applied

in FedNets . 38
4.3.1 AAA . 39
4.3.2 IEEE 802.1X . 45
4.3.3 IMS Security ACA . 46
4.3.4 Kerberos . 48
4.3.5 Security Architectures That Are Described in Virtual

Organizations . 49
4.3.6 Security Access Control Architectures (ACAs) That

Are Described in Past or Ongoing FedNet Projects. . . 51
4.4 Selection Criteria . 55

4.4.1 Use Case . 55
4.4.2 Assumptions . 55

Contents xi

4.4.3 Requirements . 55
4.5 Evaluation of Security ACAs in FedNets 57
4.6 Selection of a Suitable FedNet Security ACA 60
4.7 Summary . 60

5 The Authentication Protocol 61
5.1 Available Authentication Methods 61

5.1.1 RSA Public Key Authentication 62
5.1.2 EAP-TLS . 62
5.1.3 EAP-TTLS . 62
5.1.4 PEAP . 63
5.1.5 MAKE . 64
5.1.6 EAP-FAST . 64
5.1.7 EAP-IKEv2 . 65
5.1.8 EAP-PSK . 65

5.2 Authentication Protocol Requirements 65
5.3 Comparison of Authentication Methods 67
5.4 Authentication Protocol Recommendation 69
5.5 Summary . 69

6 The Ciphersuite 71
6.1 Keys . 71

6.1.1 Key Derivation . 72
6.1.2 Key Strength . 72

6.2 Cipher Suites . 73
6.2.1 Cipher Suite Assumptions 73
6.2.2 Cipher Suite Requirements 74
6.2.3 Broken Ciphers . 74
6.2.4 Security and Encryption Recommendations 75

6.3 Summary . 75

7 The Credential Provider 77
7.1 Credential Providers . 77
7.2 Requirements . 80
7.3 Comparison and Selection . 81
7.4 Summary . 82

8 The Policy Language 83
8.1 Basic Terms . 83
8.2 Assumptions . 84
8.3 Storage . 84
8.4 Summary . 84

xii Contents.

9 Design and Implementation 85
9.1 Assumptions . 85
9.2 System Architecture . 86

9.2.1 Harry’s BSK . 86
9.2.2 The Gymnasium . 86
9.2.3 Harry’s Coach . 87
9.2.4 Trouble Sleeping . 87
9.2.5 The FedNet View . 90
9.2.6 Putting It All Together 90
9.2.7 AAA Server Placement 93

9.3 Proposed Architecture . 94
9.4 Prototype . 97
9.5 Summary . 101

10 Prototype Evaluation 103
10.1 Functional Testing . 103

10.1.1 Authentication . 103
10.1.2 Authorization . 104
10.1.3 Certificate Revocation 104

10.2 Prototype Performance . 105
10.2.1 General Experiment Setup 106
10.2.2 Experiment 1: Baseline (Non-Modified) System Total

Latency . 108
10.2.3 Experiment 2: Authentication, Authorization, and Cer-

tificate Revocation of Modified System. 111
10.2.4 Experiment 3: The Impact of Different Hardware . . . 118

10.3 Extendability . 119
10.4 New Applications . 119
10.5 Summary . 119

11 Conclusions and Further Work 121
11.1 Conclusions . 121
11.2 Further Work . 122

A Acronyms 125

B Reproducing the Results 133
B.1 Environment Setup . 133

B.1.1 Ubuntu . 133
B.1.2 OpenWrt . 134
B.1.3 Java . 135

B.2 Creating the OpenWrtImage 135
B.3 Application Installation . 136

B.3.1 OpenWrt . 137

Contents xiii

B.3.2 WebDAV . 138
B.3.3 Java . 138
B.3.4 strongSwan . 138

B.4 Configuration . 140
B.4.1 strongSwan . 140
B.4.2 HTTPD/Apache/WebDAV 141
B.4.3 PERMIS . 141

B.5 Running the Code . 143
B.5.1 OpenWrt . 143
B.5.2 Java . 144
B.5.3 Experiments . 145

C Used hardware 153

D Confidence Intervals 155
D.1 Experiment 1: Average Total Latency for Baseline (non-modified)

system . 155
D.2 Experiment 2: Authentication, Authorization and Certificate

Revocation of Modified System 156
D.2.1 Experiment 2.1: Authentication Latency 156
D.2.2 Experiment 2.2: Authorization Latency 158
D.2.3 Experiment 2.3: Certificate Revocation Check Latency 158
D.2.4 Experiment 2.4: Total Latency 160

D.3 Experiment 3: The Impact of Different Hardware 161

E Java Code 163
E.1 Policy Files . 163
E.2 PERMIS . 173
E.3 Confidence Intervals . 182

F Diff Files 189
F.1 Our Modifications . 189
F.2 Tobias’ Patch . 203

Chapter 1
Introduction

This thesis provides a secure access control framework for personal sensor in-
formation in Federated Personal Networks (FedNets) applied in the context
of the Versatile Interface for TRUstworthy VItal User (oriented) Services
(VITRUVIUS) project. The VITRUVIUS projects takes a top-down ap-
proach. The work presented in this thesis is an elaboration of this approach.

1.1 Context/Motivation

The VITRUVIUS project [133] aims to provide a system architecture for
a Body Sensor Network (BSN) that can be used simultaneously for enter-
tainment, lifestyle and social services. The BSN consists of wireless sensors
applied to a person and a body hub, a device — e.g., a Personal Digital As-
sistant (PDA) — that communicates with the sensors and the outside world.
The body hub can process, store and relay sensor information. It may be
configured to being reactive and proactive in relaying sensor information,
depending on the available connection and the derived urgency determined
by a reasoning engine. A large boost for acceptance of this concept can be
achieved by standardizing the architecture so that service providers need not
roll out their own body sensor hardware.

The concept of a BSN has striking similarities with the concept of a
FedNet. A FedNet is a collaboration of two or more Personal Networks
(PNs) sharing one or more (personal) resources to achieve a common goal.
Examples of resources are files, such as pictures and services, such as printing
[96].

A PN is an ubiquitous network of personal devices that communicate in-
dependently from their geographical location, is context aware, self-organizing
and it provides secure connectivity [97]. In other words it is a set of devices
owned by a particular user that communicates securely regardless of where
the devices are located. The best way to communicate is automatically de-

1

2 Chapter 1. Introduction.

termined based on the resources available at each device.
A BSN could be integrated in a PN, thereby the FedNet framework se-

cures the communication of external entities to the BSN. Obviously sensitive
medical data needs to be handled in a secure way.

The following story illustrates such a FedNet that incorporates a BSN.
The case is taken and adapted from [61].

Harry is a sportive individual with a liking for triathlon. To improve
his training results, he obtains a Sports Body Sensor Kit (BSK) for Runners
consisting of a set of wireless sensors and a small box that connects wirelessly
to his iPhone.1 Harry connects it with a few clicks and thereby integrates it
into his Personal Network. With this kit, Harry buys some ‘off-the-shelf ’
service from a service provider that provides him with various visualizations,
evaluations and training suggestions based on his sensor data.

Harry also discovers that a particular gymnasium supports the BSK.
When he is training there now, the devices he works with provide additional
sensor readings (speed of the treadmill etc.). For a small fee, the gymnasium
offers additional training service software that is more refined and specialized
for this type of training. When Harry signs up for the gymnasiums service,
he authorizes them to access parts of his BSK. This federates his PN with
the network of the gymnasium for these particular services during the time
he is there. When he subsequently enters the gymnasium , their software
automatically uploads to his computer and is flushed when he leaves. Thus
the gymnasium can only access Harry’s sensor data when he is present in the
gymnasium. The training service of the gymnasium can provide Harry with
useful hints using his iPhone and control training parameters of the devices
he uses.

Later in his sports career, Harry moves to a professional triathlon coach,
who provides him with much more sophisticated sensors (larger number of
high-resolution high-sensitive accelerometers that can be worn under water
etc.). His coach also has access to a suitable high-grade motion and training
analysis services software. As before, a few clicks on Harry’s phone federate
his BSK with the service provider of his coach. In order to integrate Harry’s
general daily activity pattern into the training, he grants the coaching soft-
ware access to a few types of sensor data throughout the day.

At some moment, the stress at his work gets to Harry and he develops
a sleeping disorder. This brings him to a specialized medical center where
they routinely monitor patients using the very same BSK, but some different
sensor (sleep disorder patient monitoring). Monitoring a person’s sleep at
home allows the center to treat more patients faster because they do not need
to be hospitalized and thus do not require the accommodation period to the

1Sensors come packaged in wireless, easy-to-wear fabrics with for instance accelerom-
eters, skin sensors for temperature, resistance, heart rate, blood pressure, blood oxy-
genation. The small box also connects to other hype-products like iPod, PlayStation
Portable (PSP), or a regular PDA. It may also come integrated in special PDAs.

1.2. Specific Problem 3

strange environment. Doctors can directly express decision rules graphically
using a decision support system, for instance based on real-time monitored
parameters such as heart beat, leg motions, sound patterns (e.g., snoring).
The service can control, for instance, lights and acoustic devices at Harry’s
home to guide his sleep. Within a few weeks and without any need for hos-
pitalization Harry is cured.

1.2 Specific Problem

Information is, in the right context, very valuable. Consider Harry’s heart
rate and blood pressure monitor. In the gymnasium this provides useful in-
formation aiding Harry in his training. When applying for health insurance,
Harry does not want the insurance company to pick up on his slightly higher
blood pressure. More importantly, consider the case where a burglar were
to be able to deduct from sensor readings when Harry is in the most deep
phase of his sleep or even home at all. Security is needed to protect Harry
from unwanted access to such information.

Access control is an important aspect in security. It specifies who is al-
lowed to access exactly what. In computer security, access control relies on
several other procedures such as authentication and policies. Which imple-
mentations of these procedures are required in the context of the VITRUVIUS
project FedNets needs to be determined.

In this thesis, we provide a security architecture for a FedNet that can
be applied to the VITRUVIUS project.

1.3 Research Questions

The main research goal of this thesis is:

• Specification, design and implementation of a scalable and refined ac-
cess control architecture for a federation of personal networks that
provides a high degree of security and privacy.

The main research objectives are:

• Refine a suitable authentication protocol to work in the suggested
framework.

• Investigate and select suitable cipher suites to be used within the sug-
gested framework.

• Refine a credential provider to work within the suggested framework.

• Refine a suitable policy language to work in the suggested framework.

• Develop an experimental system (prototype) that demonstrates the
basic principles.

4 Chapter 1. Introduction.

• Study the scalability of the solution taking into account:

– the role of security and access control mechanisms

– extensions of the platform with new components such as sensors,
actuator and personal devices

– new applications

1.4 Approach

We will first introduce the concepts of PNs, FedNets and Access Control
Architectures (ACAs) to provide a clear context in which the research ques-
tions are to be answered. Next we will go into each of the research objectives.
Then we will combine the outcomes of the research objectives to propose a
architecture. We will then translate this architecture into a prototype and
evaluate its performance.

1.5 Structure

The structure of this thesis is as follows. In Chapter 2 the concept of a PN
will be explained and in 3 the concept of a FedNet. In Chapter 4 the concept
of an ACA will be explained. In Chapter 5 a comparison of authentication
protocols will be presented and a suitable one will be selected. In Chapter
6 keys are presented and a suitable ciphersuite will be selected. In Chapter
7 several credential providers will be presented and a suitable one will be
selected. In Chapter 8 several policy languages will be presented and a
suitable one will be selected. In Chapter 9 an architecture for use in the
context of VITRUVIUS will be proposed along with a prototype. In Chapter
10 the prototype will be evaluated. In Chapter 11 we present our conclusions
and discuss further work.

In Appendix A we present the acronyms used in this Thesis. In Appendix
B we give instructions on how to reproduce our results. In Appendix C we
give detailed specifications of the used hardware. In Appendix D we present
the confidence intervals that we calculated in tabular form.

In Appendix E we present the java code that we have written. In Ap-
pendix F we present diff files, the modifications that we made to other pro-
grams.

Chapter 2
Personal Networks

Harry just obtained the BSK. The BSK needs to know that
it is part of Harry’s PN, i.e., the BSK needs to be personalized.
He therefore initializes the BSK for use in his PN. Having ob-
tained the right credentials along with configuration parameters,
the BSK can set up security associations and communicate with
other personal devices in the vicinity.

This chapter explains the concept and working of a PN. A PN is a ubiq-
uitous network of devices all having the same owner. More and more devices
come equipped with communication capabilities. Letting these devices com-
municate with each other and making their services available independently
of their geographical location can be of use to the owner. By providing ubiq-
uitous connectivity and mobility support, a user can access all content and
services regardless of the device or location.

PN-communication-capable devices, called nodes, together create a net-
work. Much like the typical Local Area Network (LAN) found in many
homes. Like a Personal Area Network (PAN), the concept of a PN allows for
an ad-hoc network consisting of wired and wireless nodes around you. For
security reasons a PN, unlike a PAN, only allows devices owned by you to
communicate directly to each other. Thus creating a Private PAN (P-PAN),
acting as a LAN being shielded from the internet by a firewall.

All nodes that are able to communicate with each other without the
need of a supportive third party infrastructure together are called a cluster.
By definition a PAN moves around with you, as it is a network in your
vicinity. The cluster that in effect is a P-PAN is called the local cluster. A
cluster in general, unlike a PAN, is not restricted to being in your vicinity.
Your nodes at home can also combine in a cluster even if you are not there.
This cluster is called a home cluster, as it resides in your home. A PN can
consist of many clusters, such as local cluster, a home cluster, a car cluster
and an office cluster. Each cluster should at least contain one node with

5

6 Chapter 2. Personal Networks.

communication capabilities to other clusters and nodes that are not part of
its PN. All clusters owned by a single person combined are called together
a PN. Figure 2.1 depicts an example of a PN containing several clusters.

Figure 2.1: Example of a PN. Figure reproduced from [55] with permission
from the authors.

The concept of a PN has been extensively studied by the Personal Net-
work Pilot 2008 (PNP2008) project [102] and the My personal Adaptive
Global NET (MAGNET)[82] and MAGNET Beyond[83] projects. This chap-
ter is largely based on PNP2008 and references [44, 52, 54, 55, 68, 69, 96,
97, 139].

2.1 Requirements

Functionality can be specified in terms of requirements. In order to promote
PN implementation instead of stating requirements PN developers have used
concerns. Concerns are issues that should be addressed in a full fledged PN.
This allows for a gradual increasing maturity of the implementation. A
developer may choose to implement, thereby only a particular concern, thus
not having to address all concerns simultaneously, in which it has expertise.
The concerns [65] are stated below.

1. Ubiquitous Connectivity with Mobility Support
A PN should be able to connect via an infrastructure-based network as

2.1. Requirements 7

well as an ad-hoc network, keeping connectivity whilst being mobile.
This means universally identifiable and reachable devices. Addressing
support is therefore needed. In light of future technologies it should
support IPv6 as well as IPv4.

2. Trust Relationships and Authentication
Trust relationships must be supported in order to have authentication
and authorization. A universal trust model is needed, because users
need to use different services and connections provided by a multitude
of parties, such as their own nodes, foreign nodes, a service provider,
other third parties, etc. This model should be efficient and work well
within a PN as well as between PNs. Login procedures should be easy
to use from a users point of view. For instance, instead of entering a
personal key a personal digital assistant might use its camera to identify
the user using facial recognition. Obviously the false acceptance and
rejectance rate issues should be addressed when using a technique such
as facial recognition.

3. Context Awareness
[65] uses the definition stated in [7]: “Context is any information that
can be used to characterize the situation of an entity". Using this
information a PN is capable of offering better services. For example,
when you are driving in your car, you might be interested in traffic
jams, weather conditions, etc. PN Nodes should gather and efficiently
distribute relevant context information.

4. Content Management
PNs need to support smart content management. Storing a file re-
motely in a PN should work, from the users point of view, the same
as storing it locally. Content should be accessible from all relevant de-
vices in a PN at any given time. Automatic data backup could assist
in data integrity and data availability in case of a unreachable cluster.
A PN should provide unified data management, P2P communication,
transcoding (to deliver content in an optimal way) and DRM.

5. Service and Application Concerns
A PN should improve the mobile experience of the user in order to
provide added value. It can do so by offering services such as, automatic
backing up of data, or unrestricted ocation / time accessibility.

6. Auto Configuration and Self-organization
A PN should improve the mobile experience of the user in order to
provide auto configuration and self-organization at both the network
and service levels. Clusters may be geographically dispersed and de-
vices should be able to enter and leave clusters at any moment. The
user should not be bothered with this. For example, a PN user comes

8 Chapter 2. Personal Networks.

home from work and his local cluster merges with his home cluster,
which has a faster internet connection.

7. Quality of Service and Reliability
A PN should be supportive of QoS to enable a user to robustly use
multimedia applications such as VoIP and streaming video. As dif-
ferent network technologies may use different metrics in routing and
handover — such as bandwidth, bit error rate and acceptable latency
— these metrics should be taken into account in a PN. Other reliabil-
ities should also be taken into account in routing and handover. Such
reliabilities include the fact that mobile devices could join or leave a
cluster at any time, because a mobile device moves out of range, a
device may run out of batteries or the device might be switched on or
off by the user.

8. Seamless integration of Heterogeneous Devices, Services and
Technologies
Devices in a PN may have different communication capabilities, such as
Ethernet, Zigbee, WLAN, Bluetooth and UMTS and must be able to
communicate with each other. Possibly via other devices, as is the case
with multi-hop ad-hoc networking. Capacities for different devices can
vary significantly, such as processing power, battery life and storage
capacities. The needs of services can also differ greatly, a file sharing
program needs lots of cheap bandwidth, a medical application needs
reliable communication and a VoIP call has QoS needs. All these
different aspects need to be supported.

9. PN Management
[65] defines the concern of PN management as:

Network management functionality typically deals with non-
real-time management functions, such as fault-, configura-
tion-, performance- and security management. Actions that
people and/or organizations are required to do for PN man-
agement should be brought to a minimal level. However the
user must still remain in control of his PN and may therefore
need to be able to perform certain management tasks. The
user must be able to manage his devices, services, content,
settings (connections, security, ...) anywhere and anytime
trough intuitive user interfaces on all relevant personal de-
vices. At the same time, the PN must not be intrusive and
instead support certain tasks instead of taking tasks over.

It should be possible to outsource PN management to a third party,
called a PN provider. The provider facilitates PN management for

2.2. Overall Architecture 9

multiple users and optimizes the availability of the resources to the
managed PNs.

10. Usable Security and Privacy
A PN should ensure that only with consent of the owner its data,
services, PN-related content and devices in a PN can be accessed. A
PN must also preserve user privacy and interwork with other security
solutions. In order to protect against corruption of, or unauthorized
access to, traffic and control, a PN should include expanded encryption
techniques and user authentication.

11. Scalability
A PN should therefore be scalable, as a PN might need to handle a large
number of devices, services and applications. These may be numerous,
affecting addressing schemes, service discovery and resource discovery.
Some of these devices will be running on battery power and must be
able to cope with this load for a reasonable amount of time.

2.2 Overall Architecture

A PN can be seen from different views, the service level, networking level
and the connectivity level, each performing its own tasks. This section goes
into more detail on what each level does. Figure 2.2 depicts the abstraction
levels.

At the connectivity abstraction level, nodes are organized in (radio) do-
mains with communication links between them. This is discussed in Section
2.2.1. At the networking level, Personal Nodes form Clusters and Clusters
form PNs enabling user-centric networking. This is discussed in Section
2.2.2. On the service level, the applications, content and services are made
available to the nodes in the PN. This is discussed in Section 2.2.3.

2.2.1 Connectivity Level Abstraction

The connectivity-level abstraction consists of the basic wired and wireless
networks and protocols. It addresses concerns such as link levels, Medium
Access Control, the physical link and their interrelationships. Because a
lot of technologies, such as WLAN and Bluetooth, share the same radio
frequency — e.g., the 2.4GHz ISM band— resource sharing and management
should be handled in this level. As a PN is built upon such connections, the
exact workings of the connectivity level are out of scope of this document.

2.2.2 Network Level Abstraction

The network-level-abstraction deals with how the nodes are distributed and
how they communicate with each other. The network level has to operate

10 Chapter 2. Personal Networks.

Figure 2.2: Architectural artifact concerning PNs. Figure reproduced from
[65].

as independent as possible from the connectivity level so that current and
future (wireless) communication technologies can be supported.

The network level addresses the network-related aspects of the following
concerns:

• Ubiquitous connectivity and mobility support (see Point 1 in Section
2.1)

• Trust relationships and authentication (see Point 2 in Section 2.1)

• Auto configuration and self-organization (see Point 6 in Section 2.1)

• Seamless integration of heterogeneous devices and technologies (see
Point 8 in Section 2.1)

• Security and privacy (see Point 10 in Section 2.1)

Cluster formation is purely based on physical connectivity and trust,
being a local process this formation process does not need support from an
infrastructure. As clusters work as LANs they need their own local routing,
addressing, self-configuration and other internal mechanisms. The network
level should separate communication of PN-nodes from other (foreign) nodes.

2.2. Overall Architecture 11

This allows for protection on a local scale for communication routing and
other self-organizing mechanisms.

Cluster management in such as routing, gateway node selection and local
Service Discovery (SD) is restricted to actors inside a cluster. The gateway
node can connect to another cluster via an interconnecting structure, such
as foreign nodes. It is the task of the gateway node to look for opportunities
to establish and create a interconnecting communication, such as a tunnel.
Full intra-PN communication can take place after a tunnel has been set up.

To ensure security, intra-cluster communication should be encrypted and
have an addressing scheme in such a way that foreign communication can be
easily detected and discarded without wasting resources on trying to process
the package. To this end, a device needs to be configured to be part of
a particular PN. This process, called personalization, provides the device
with an attribute for a long-term trust relationship. Personalization will be
explained in more detail in Section 2.3.1.

Security is present in each of the abstraction levels. On the network level
it needs secure cluster formation and secure inter-cluster communication.
Security mechanisms are also needed to access services outside the PN and
for providing access to foreign nodes and services. A device has a single
owner, however might have multiple users that each have their own PN.
Through personalization a device gets (long-term) credentials by which it
can authenticate itself and establish security associations with other personal
nodes belonging to the owner. An example of a device that might have
multiple users is a photo camera used by members of a family. This device
then needs to be able to get security credentials for each of these PNs. In
order to provide protection against unwanted adoption of a device into a PN
the owner must authenticate itself before new security credentials of other
users are to be accepted. An example of a device that is part of two PNs is
depicted in Figure 2.3.

Devices that implement the PN networking level, i.e., run software im-
plementing a PN Node, are called PN-capable devices. Devices that can
be part of multiple PNs are called multi-PN-capable devices. This device
must ensure that the several PN nodes running on the device are securely
separated, both service- and content-wise.

2.2.3 Service Abstraction Level

The service abstraction level deals with the availability and quality of services
and content. It also provides management support of the PN.

This level addresses the service-related aspects of the following concerns:

• Context awareness (see Point 3 in Section 2.1)

• Content management (see Point 4 in Section 2.1)

12 Chapter 2. Personal Networks.

Figure 2.3: Services connected by PNs. Figure reproduced from [65].

• Service and application concerns (see Point 5 in Section 2.1)

• Auto configuration and self-organization (see Point 6 in Section 2.1)

• QoS and reliability (see Point 7 in Section 2.1)

• Seamless integration of heterogeneous devices and technologies (see
Point 8 in Section 2.1)

• PN management (see Point 9 in Section 2.1)

A device can have a User Agent (UA) service, which recognizes the user
and acts on its behalf. Allowing for multiple persons to use a single device
to access their own PNs whilst maintaining separate security domains, is
described in [65] as follows.

The UA communicates with a physical person that it can identify.
To this person, the UA is a private ’window to the PN’ from
which Applications can be started and used. To the PN, a UA
is the service that ’electronically impersonates’ its PN User. All
context information that the UA keeps track of, is called a PN
User Session, which includes an identifier for the party fulfilling
the role of User and Customer, a link to the UA Service instance
it is associated with and much more. UAs may have multiple
PN User Sessions, which they may switch between depending on
whom they identify as being their current user.

All applications are initialized by the UA (on behalf of a person) or by
another application. The UA itself is the only exception as this application
is initialized by a person.

2.3. Network Components 13

Managing all the settings could become cumbersome if the network con-
sists of a lot of entities. The responsibility of the management and admin-
istration tasks can be outsourced to a third party, which is called a PN
Provisioning Party (PNPP). The PNPP maintains an administration called
a PN Provisioning Administration (PNPA). This administration contains
registrations of all Device, Nodes, PNs, FedNets, Services, Applications and
Content that the PNPP provisions. All of these entities will list an owner and
entity-related attributes. The administration also contains all constraints
that apply.

The PNPP can provide management consoles to different parties playing
different roles. In essence supplying them with party-centric views. A PNPA
is functionally centralized. A PN, however, is dynamic, so the realization is
likely to be distributed. A means of local availability and synchronization is
therefore necessary.

2.3 Network Components

The network abstraction level (discussed in the previous section) is formed by
the networking components. The network components are depicted in Figure
2.4 and will be individually discussed in this section. Service components
are discussed in Section 2.4.

Figure 2.4: Functional decomposition of the Network Abstraction Level.
Figure reproduced from [65].

2.3.1 Personalization

The purpose of personalization is to initialize a node for use in a PN. Called
imprinting, the new device gets security credentials, such as keys and certifi-

14 Chapter 2. Personal Networks.

cates, which it needs to establish a security association with the PN. This
is needed to be able to get incorporated in (get access to) the PN. A device
can be part of more than one PN, imprinting then has to be repeated for
each new PN. By default the first imprinter is determined as the owner. For
every next imprint the owner must be authenticated. If so set up by the
first imprint, this authentication might be done by specified other imprints
on the device.

2.3.2 Cluster Formation

A cluster is a set of personal nodes within communication reach of each other
without the need of an infrastructure. The task of the cluster formation
component is to detect neighboring personal nodes, authenticate them and
establish secure connections between them. Not all nodes necessarily have a
direct connection to each other, thus a cluster might be a multi-hop network.
To optimize routing, this component also handles Link Quality Assessment
(LQA).

2.3.3 Intra-Cluster Routing

A cluster might be a multi-hop mesh network consisting of several different
communication capabilities. Due to the dynamic nature of a PN, nodes
should cooperate in an ad hoc manner to provide the network, security,
routing and gateway functionality. A PN network is multi-hop IP based,
providing addressing and routing functionality for efficient and secure intra-
cluster communication. This component also takes care of gateway node
discovery, cluster wide and PN-wide broadcasting [65].

[65] proposes Personal Network Clustering Protocol (PNCP) [50] to be
used for clustering the nodes in a PN.

2.3.4 Inter-Cluster Routing and Tunneling

The inter-cluster routing and tunneling component connects disperse clusters
into one PN. This enables transparent and secure communication between
all the personal nodes of a PN.

Nodes in a cluster need to be able to access nodes in other clusters and
perhaps even nodes that are not part of the PN. A node therefore need a way
to communicate outside its own cluster. Gateway nodes provide this func-
tionality. These gateway nodes can communicate with foreign nodes. There-
fore, gateway nodes must be PN-internally addressable as well as external
(world wide addressable). This allows for the gateway node to differentiate
between internal and external traffic and for external nodes to connect to
the gateway node.

To let clusters find each other, thus forming a PN, the PN-agent is in-
troduced. Much like the Home Location Register (HLR) in GSM and the

2.4. Service Components 15

home agent in mobile IP. This agent keeps track of where the clusters are,
or in other words: how to reach them. The clusters keep the Agent registry
up to date with the clusters’ connections to the interconnecting structures.
The PN agent can therefore be consulted to determine the gateway-node ad-
dress of another cluster. Figure 2.5 provides an example for such a situation.
The PN-agent may also aid in the inter-cluster communication when both
clusters are behind a NAT using techniques such as STUN [113] or TURN
[111].

Figure 2.5: Intra-cluster communication with use of a PN Agent. Figure
reproduced from [65].

2.3.5 Foreign Communication

This component enables communication with other nodes than those within
the PN. These nodes may be part of another PN or be non PN-capable
devices. Communication with a foreign node must go via the gateway node.

2.3.6 Radio Resource Management and Link Layers

Although the PN does not really concern itself with the connectivity abstrac-
tion level, A PN should support as much link layer technologies as possible
and be able to adapt new technologies quickly. Coordination between link
layers, such as radio resource management should increase cooperation and
performance.

2.4 Service Components

The service abstraction level (discussed in Section 2.2) is formed by the
service components. The service components are depicted in Figure 2.6 and
will be individually discussed in this section.

16 Chapter 2. Personal Networks.

Figure 2.6: Functional decomposition of the service abstraction level. Figure
reproduced from [65].

2.4.1 PN Administration Integrity Service

The PN administration integrity service enables PN services to rely on the
availability and integrity of the data maintained in the, possibly unreachable,
PNPA. In the case where the PNPA resides in a distributed database, the
PN administration integrity sees to the distribution and integrity of the data.

2.4.2 User Agent & Authentication

The user agent & authentication functional component performs the follow-
ing five tasks:

1. Interact with the PN User

2. Provide and maintain the context within which applications can run

3. Provide messaging authentication services

4. Spawn applications upon request of the PN user

5. Create multiple PN users sessions and switch between them

These tasks ensure that the user of a device is the PN owner and that
only those PN services are accessed by those that are allowed to.

2.4.3 Service & Content Discovery

This component facilitates “the dynamic (runtime) construction of service
collaborations that provide the functionality of a given application in a spe-
cific context, by locating appropriate services an content and selecting the
ones to be called" [65].

Once it has found applicable services or content it hands them over to the
access control component which determines authorization. This component
may be absent in a very simple PN-configuration.

2.4. Service Components 17

2.4.4 Access Control

This component prevents illegitimate use of (application) services and con-
tent in the PN. It retrieves a set of services and or content from the service
& content discovery components and determines which subset is allowed in
the context of the current application session.

Simple forms are Access Control Lists (ACLs) and DAC. More mature
implementations are based on RBAC.

2.4.5 Service Context Service

The Service Context Service (SCS) component enables services to perform
better or more accurate by providing information based on the context in
which the service is running. Three purposes of the SCS can be defined:

1. Generic enhancement of services

2. Enhancement of PN operations

3. Enhancement of application operations

This component may be absent in a very simple PN-configuration.

2.4.6 Federation Management

The concept of FedNets is discussed in whole in the next chapter, includ-
ing its management component. From a PNs perspective this component
takes care of all connection and security issues to participate in and secure
a FedNet.

2.4.7 Service & Content Management

According to [65], the purpose and task of the Service & Content Manage-
ment functional component is “to optimize the availability and usability of
Service instances that can be called as well as Content that can be used seam-
lessly from everywhere within a PN. Since configuration data can also be
considered Content, the Service & Content Management component can also
be used for the optimization of the availability and usability of configuration
data, including the PNPA”.

This component may be absent in a very simple PN-configuration. Con-
tent is then located where it is stored. Very matured PNs may have their
service instances and content moved/cached as to enhance their availability.
Service instances and content may also be converted allowing services and/or
content to be used in a different environment than originally intended.

18 Chapter 2. Personal Networks.

2.4.8 Management Consoles

The management-consoles component provides user interfaces to authorized
parties and allows them to manage the PN Entities that they have dealings
with, from a variety of perspectives, or views and such that they will only
see whatever is relevant to them [65].

This component may be absent in very simple PN-configurations.

2.5 Summary

A PN is an ubiquitous network of devices that have the same owner.
Rather than basing, on a strict requirement analysis, [65] based a PN on

concerns. These concerns may lead to multiple sets of requirements which
can in turn be validated. By defining a PN in concerns gradual development
is made easier.

The PN architecture can be viewed on three levels: the connectivity,
network and service level. The functionality in each level is divided into
components that take care of a specific functionality.

The exact working of the connectivity level is considered to be out of
scope for the functionality of a PN and is therefore not addressed in detail.

The network level takes care of the formation of clusters and the PN,
providing secure connectivity. The functional components of the network
level are depicted in Figure 2.4 .

The service level takes care of the interactions with the user providing
authentication and management functionality. The functional components
of the service level are depicted in Figure 2.6.

More information on PNs can be found in [65, 66].

Chapter 3
FedNets

Harry signs up at the gymnasium and wishes to use the addi-
tional training service software. He needs to authorize the gym-
nasium to use the sensor data. He takes out his iPhone and opens
the FedNet discovery program. The program allows him to search
for available FedNets. He selects that he wishes to search for a
FedNet in his proximity. His phone offers several options, as the
gymnasium clerk created one for Harry that is easily identifiable
(e.g., contains Harry’s name) and Harry chooses the right one.
By accepting the proposed configuration Harry is all set to use
the software.

In the previous chapter we introduced the concept of a PN. A Federated
Personal Network (FedNet) is a federation of PNs in which content and/or
services are shared. Consider a picture taken with a camera belonging to a
PN that is to be shared with (the user of) another PN. Temporarily allowing
access to a node from the outside the PN imposes certain security risks. For
example, the picture is to be shared with a specific other and not everyone
connected to the internet. Also the other allowed to access the picture might
not be allowed to access other pictures on the camera. A FedNet therefore
needs an ACA to ensure that only those resources and services that are
allowed to be used can be accessed by the appropriate user and no one else.
Figure 3.1 gives an example of a FedNet. ACAs are discussed in the next
chapter.

In this document we use the term FedNet. The terms ‘PN Federation’
and ‘PN-F’ used elsewhere in literature mean the same and are kept when
quoted.

The remainder of this chapter is organized as follows. First types of
FedNets are given by example. Next the lifecycle of a FedNet is given, fol-
lowed by the functional components. Finally interactions during the lifecycle
are given.

19

20 Chapter 3. FedNets.

Figure 3.1: Example of a FedNet. Figure Reproduced from [55] with Per-
mission from the Authors.

3.1 FedNet Types

There are many types of FedNets. Type-naming is based on the aspects and
properties of the FedNet. Table 3.1 gives a few examples.

Table 3.1: Examples of FedNets.

Criteria Type of FedNet Explanation
Composition Ad hoc The FedNet is established without the use

of an supportive infrastructure, e.g., car-
to-car communication.

Infrastructure-
supported

The FedNet is established trough an in-
terconnecting network, e.g., via an access
point of the office.

Membership Static FedNets that rarely change, e.g., a family
network.

Dynamic FedNets that have changing members,
e.g., wireless community networks and
emergency networks.

Distribution Localized When federating clusters are close to-
gether, e.g., in the same room.

Distributed When the participating clusters are far
apart, e.g., one is at home and the other
resides at the office.

Initiation Provider-enabled The FedNet is created by a third party
such as a provider or game host.

User-enabled The FedNet is (spontaneously) created on
the initiative of a PN.

Continued on Next Page. . .

3.1. FedNet Types 21

Table 3.1: (continued)

Criteria Type of FedNet Explanation
Changeability Static A FedNet that has requirements and char-

acteristics that remain the same through-
out its functioning.

Dynamic A FedNet that has requirements and
characteristics that change throughout its
functioning.

Creation tim-
ing

Proactive A FedNet that is created on forehand.

Reactive A FedNet that is created as need arises.
Accessibility Public A FedNet that is open for everyone to join.

Private A FedNet that is restricted to certain
members.

Duration of
FedNet func-
tioning

Long-term A FedNet that exists for a long time before
being disbanded. Not to be mistaken for
a permanent FedNet

Short-term A FedNet that is around for a relative
short amount of time.

Duration of
member’s
cooperation

Temporal A FedNet that only have one evolution cy-
cle during its lifecycle. The lifecycle is ex-
plained in the next section. An example
is an car-to-car network.

Permanent A FedNet that has members that last for
more than one lifecycle.

On-purpose or
on-opportunity
formation

Purpose-driven A FedNet created to achieve a certain
goal.

Opportunity-
driven

A FedNet created when interesting sce-
nario arose.

Visibility of
member list

Anonymous A FedNet in which members are unaware
of each others identity.

Transparent A FedNet in which members are, or can
be, aware of each others participation and
identity and contributions.

Keeping his-
tory of previ-
ous events

Stateful A FedNet that keep track of previous ac-
tivities, experiences of the members, trust
and reputation ratings.

Stateless A FedNet that does not keep state infor-
mation.

Application
type

Entertainment A FedNet created to support some form of
entertainment.

Educational A FedNet created to support education.
Business A FedNet created to support a business.
Scientific A FedNet created to support scientific

work.

22 Chapter 3. FedNets.

3.2 The FedNet Lifecycle

Harry’s coach has some time between training sessions and
turns on her laptop. She connects to Harry’s body hub to get in-
formation on his training activities, while he is at work. Having
looked at the data, she writes Harry a message about his im-
provements. She also updates Harries training exercises to better
suit his training improvements. The next time Harry looks at the
scheduled exercises he sees that the adjustments have already been
Incorporated. Just as the coach stated in her message.

According to [56] a FedNet lifecycle consists of four phases: the initial,
formation, operation and dissolution phase. These phases and its transitions
are depicted in Figure 3.2.

Figure 3.2: The FedNet Lifecycle. Figure Reproduced from [56].

The basic entities that take part in forming a FedNet are the FedNet
Agent (FA) and FedNet Manager (FM), which we will explain in more detail
in the next section. In this section we go into detail on the interactions on
the formation, evolution, service access and dissolution phases.

3.2.1 Initial Phase

In the initial phase, a PN creates membership profile containing all relevant
data. The PN preforms a discovery process to find at least one other FedNet
to join whereas from a FedNet point of view discovery is the detection of a
new member for the FedNet. After discovery, a joining event on one of the
found FMs triggers the formation phase.

3.2. The FedNet Lifecycle 23

3.2.2 Formation Phase

In the formation phase first-level authentication and authorization processes
take place. When the members (at least two) are authenticated and the
necessary credentials and tokens are exchanged a FedNet enters its operation
phase.

The initialization phase and the formation phase of the lifecycle are com-
bined into interactions, shown in Figure 3.3. All steps and substeps must be
performed, except for Finding step in which only one substep needs to be
successful. Though all three means of finding must be supported.

Figure 3.3: Interaction Steps at FedNet Formation. Figure Reproduced from
[56].

3.2.3 Operation Phase

In the operation phase a FedNet is in use. This means that a connection has
been established and that resources and services are shared and can be used
between the FedNet members. The process of members joining and leaving
is called evolution and makes a FedNet dynamic.

The operation phase is divided in two interaction overviews: the evolution
and service access, this corresponds to first level and second level access
control respectively.

3.2.3.1 Evolution

In the evolution stage a member can be added to the FedNet by the steps
depicted in Figure 3.4. Except from the Finding step, all steps and substeps

24 Chapter 3. FedNets.

must be performed. In the Finding step only one means of successfully
finding each other will suffice, although all three means must be supported.

Figure 3.4: Interaction Steps at FedNet Evolution. First Level Access Con-
trol Steps. Figure Reproduced from [56].

It is also possible for a member of a FedNet to disband from the FedNet
it is taking part in by taking the steps depicted in Figure 3.5.

Figure 3.5: Interaction Steps at FedNet Evolution. Figure Reproduced from
[56].

The administrative processing by the FM and FA can consist of account-
ing, archiving and reward/punishment. After these, if applicable, have been
handled, all concerning security associations must be flushed. If a member

3.2. The FedNet Lifecycle 25

leaving a FedNet causes the FedNet to fail one of its constraints, such as con-
sisting of at least two PNs a dissolution process takes place. The dissolution
interactions will be discussed after the next interaction overview.

3.2.3.2 Service Access

When the FedNet is operational the services that are offered in the FedNet
are searchable. The FM relays information on the offered services such as
realtime availability and relevant connection settings. With this information
the shared service can be used. At which point the requestor enters the
second level of access control ensuring that the relevant policies are applied.

These steps are depicted in Figure 3.6. All steps and substeps must be
performed.

Figure 3.6: Second Level Access Control Steps. Figure Reproduced from [55]
with Permission of the Authors.

3.2.4 Dissolution Phase

In the dissolution phase the FedNet is terminated. Triggered by a dissolving
event, there are three types of dissolution: graceful, forced and abrupt. The
first takes place when the objective of the FedNet has been met. The second
takes place when requirements are no longer met —e.g., not enough members,
impossible to reach objective, insufficient resources. The last one, abrupt
dissolution, is the only one that happens without prior notification and can
occur when, for example, the network connectivity is lost and the policy is
such that it does not allow for an evolution iteration.

The steps are depicted in Figure 3.7. The administrative processing by
the FM and FA can consist of accounting, archiving and reward/punishment.
After these have been handled, all concerning security associations must be
flushed.

26 Chapter 3. FedNets.

Figure 3.7: Interaction Steps at FedNet Dissolution. Figure Reproduced
from [56].

3.3 Architecture

This section states the architectural components and what they do for a
proxy based FedNet as defined by [55] and the the PNP2008 project [56].

Subsection 3.3.1 provides an overview of the components and data sets.
The following subsections go into detail on each of these.

3.3.1 Architectural Components

To be able to federate, PNs need to have the following functional components:

• FedNet Manager (FM, one per FedNet);

• FedNet Agent (FA, one per PN);

• Gateway (GW, one or more per PN);

• Service Proxy;

• Service Management Node (SMN, one per cluster);

• Service Discovery (SD, one per FedNet);

• FedNet services (a set of PN services);

Also the following data sets needs to be stored:

• FedNet Access Policys (FAP, one per FedNet);

• Service Access Policys (SAP, one per PN);

3.3. Architecture 27

Figure 3.8: Basic Proxy-Based-Architecture of a FedNet with an External
FM. Figure Reproduced from [55] with Permission from the Authors.

The functional components listed above are depicted in Figure 3.8) in a
FedNet using an external FM.

In principle FedNet members are equal peers, however, the amount of
shared data and services may be asymmetrical. It stands to reason to group
above components and data sets that have similar occurrence. Such as the
FM, SD (including FedNet services) and FedNet Access Policy (FAP). As
well as the FA, GW (including service proxy) and Service Access Policy
(SAP).

3.3.2 FedNet Manager

We use the definition of a FM as defined by [65]:

“The FM is a central functionality in authentication and access
control process within the PN-F. Its main tasks are PN-F man-
agement, authentication and access control within the PN-F do-
main. It manages access control decisions to the PN-F the reg-
istering new members, managing the member lists, provides the
directory service to the PN-F members. This includes also main-
taining the list of services in the PN-F. The FM component
is located in the Owner’s PN. As an Owner, this functionality
is required to initially authenticate prospective members and in
their admittance to the federation. Another role of the FM is to
construct and manage the profile of the PN-F."

The FM performs the following three functions:

1. Management function
Which function is “to create FedNet profile and advertisements; to

28 Chapter 3. FedNets.

manage the formation, evolution and dissolution of a FedNet, to main-
tain the list of FedNet members and their contributions, experiences
during the FedNet operation" [55].

2. Service directory look-up function
Which function is “to create FedNet profile and advertisements; to
manage the formation, evolution and dissolution of a FedNet, to main-
tain the list of FedNet members and their contributions, experiences
during the FedNet operation" [55].

3. FedNet Access control function
Which function is “to produce decisions on the access control to the
FedNet; to issue membership credentials for FedNet members" [55].

The FM can either be located outside the architecture of the PN (external
FM, see Figure 3.8) at a third party such as an PN provider or inside a PN
(internal FM, see Figure 3.9). Useful in cases such as on-line gaming or very
large FedNets requiring dedicated managing.

Figure 3.9: Basic Proxy-Based Architecture of a FedNet with an Internal
FM. Figure Reproduced from [55] with Permission from the Authors.

3.3.3 FedNet Agent

We use the defintion for FA stated in [65]:

“Attached to the Cluster Gateway Node is the FedNet Agent
(FA), which is used for all the management needs of the PN while
registering with and participating in, a federation. The predomi-
nant role of the FA is in authentication and access control to the
Services and Content of the PN. As a PN, the FA’s functional-
ity is also used to authenticate the owner of the federation and
during the member association procedure is used in the authenti-
cation of the other federation members and in the configuration

3.3. Architecture 29

of its Service Proxy for that particular member. Another role of
the FA is to construct and manage the PN-F membership profile
for the member used in the federation.” [65]

The FA resides inside each individual PN and performs the following
three functions [55]:

1. Management function
Which function is “coordinating PN services to which a PN can grant
a temporal access within a FedNet, managing the participation of a
PN in a FedNet, creating a participation profile, joining and leaving a
FedNet".

2. Service access control function
Which function is “to produce access control decisions to PN services".

3. Service proxy configuration function
Which function is “to configure a requested service proxy to a particular
member in a FedNet".

3.3.4 Gateway

The gateway node is a device inside a PN capable of communicating with for-
eign nodes and performs translating services to its internal nodes for external
communication. Therefore it has a publicly addressable interface besides its
internal address.

3.3.5 Service Proxy

“The PNs also need a way to offer and use Services and thereby also a mech-
anism to enforce the authentication and access control. For this usage, they
rely on a Service Proxy (SP), which is a functional component located at the
Gateway Node of a Cluster of a PN participating in a federation. Its role is
to restrict access to other federation members who have properly associated
themselves to the owner of the SP. They also maintain the perception to the
PN that it is only handling Intra-PN services while in fact offering services to
and utilizing the services of, other PNs in the federation. This is achieved by
using service handlers located at the SP. These service handlers are appli-
cations that mimic the client/server functionality of the required service. At
minimal functionality, the handlers would just forward the received message,
however the handlers could be made more complex to overcome possible in-
teroperability issues between certain client and servers. The main advantage
of the service proxy though, is the fact that the security of the PN Clusters is
located at the border of the Clusters, allowing the internal Nodes of the PN
to operate in a federation without the need for any additional functionality.”
[65]

30 Chapter 3. FedNets.

The service proxy functional component mimics the behavior of a service
and acts as an intermediary between client and service. This enables a
separate security domain within a FedNet security domain, preventing alien
traffic inside the PN. Using a service proxy enables more lightweight PN
nodes, because only gateway nodes need extra access control functionality
[55].

3.3.6 Service Management Node

The Service Management Node (SMN) is a centralized service discovery and
management entity providing a specific cluster with information on the avail-
able services in the PN combined with the location of the handling service
proxy. The SMNs communicate on a P2P basis to the SMNs of other clusters
in the PN. [55]

3.3.7 A FedNet Service

This component contains the (subsets) of services offered to share with other
PNs. There is a distinction between a common and a specific service. The
common service can be accessed by any member of the FedNet upon provid-
ing membership credentials. The specific service requires a specific access
control procedure [55].

3.3.8 A FedNet Client

A client is a process, application or personal node requesting a FedNet service
[55].

3.3.9 Service Discovery

Information regarding the participating FedNet members and their offered
services are listed in the Service Discovery [55].

3.3.10 FedNet Access Control Policies

Information on the network-level (first-level) access control is stored in the
FedNet access policies data set. The FM evaluates these when a new member
wishes to join the FedNet. These policies contain the rules, constraints and
statements on the access to the FedNet and are defined by the initiator of
the FedNet [55].

3.3.11 Service Access Control Policies

Information on the service-level (second-level) access control is stored in the
service access control data set. The FA evaluates these when a service is

3.4. Summary 31

accessed. These policies contain the rules, constraints and statements on the
access to PN services and are defined by the owner of the service [55].

3.3.12 FedNet Services

FedNet services are the subset of all PN services that are shared in a FedNet.
They are divided in two classifications: common and specific services. A com-
mon service needs only FedNet membership credentials, whereas a specific
service needs additional (second level) access control. Thus, both type of
services need FedNet access control and only specific services need service
access control. The owner defines to which type a service belongs. Examples
of common services are a forwarding service, a display service, a printing ser-
vice, internet access, storage facilities, etc. An example of a specific service
is file sharing [55].

3.4 Summary

Having a lifecycle of four phases — the initial, formation, operation and
dissolution phase — a FedNet is a collaboration of PNs that share content
and/or services in order to achieve a common goal. In Section 3.3.1 the
following functional components needed to form a FedNet are introduced:
the FM, FA, GW, SP, SMN, SD and FedNet services. Datasets containing
the FAP and SAP are also needed.

Chapter 4
Access Control Architectures

At the medical center, Harry is getting his new sensor. Sleep
deprived as he is, he worries about his privacy. He informs the
doctor that he would not like his boss to know he is having trou-
ble sleeping. The doctor kindly explains that the sensor is quite
sophisticated and has all the security features to ensure privacy.
Harry personalizes the sensor and joins the FedNet, thereby al-
lowing the medical staff to monitor his sleep.

“In the context of network security, access control is the ability to limit
and control the access to host systems and applications via communication
links. To achieve this, each entity trying to gain access must first be identi-
fied, or authenticated, so that access rights can be tailored to the individual".
[121]

In order to compare ACAs it helps to understand why there is need for
them. To that end, Section 4.1 is dedicated on security threats and Section
4.2 on security definitions. The reader is assumed to be familiar with the
basic concepts of access control. Access control itself will not be covered in
depth, the aim of the next section is to provide a short outline. Next a study
of available security ACAs that might be applied in FedNets is provided in
Section 4.3. Section 4.4 states selection criteria for selection of a suitable
architecture in FedNets. Section 4.5 evaluates the different architectures.
Section 4.6 discusses which of the evaluated architectures is most suitable.
And finally Section 4.7 summarizes this chapter.

4.1 Security Threats

Data being sent over any communication means are susceptible to a number
of threats. In the previous chapters we discussed several security require-
ments that relate to the PN and FedNet concept. In this section we provide

33

34 Chapter 4. Access Control Architectures.

an overview of the security threats that apply to data communications in
general.

Some of these attacks have been applied to computer networks since the
time of ARPANET — one of the first well documented attacks is described
in [127]). Over the years, more and more attacks occurred, this eventually
led to well documented specifications of security. For instance [62, 6].

1. Passive attack
The passive attack, also known as the eavesdropping or sniffing, is an
attack where the adversary learns the contents of the message someone
(specific) is sending. Confidential and or personal information might
fall into the wrong hands. Depending on the contents, all kinds of
malicious events might happen, such as an adversary learning your
username and password that you sent over the network to log in some-
where. Data confidentiality protects against a passive attack.

2. Active attack
By altering the data being sent (modification), applications might per-
form a different behavior then intended. A bank transaction suddenly
being sent to the different account number, probably one controlled
by the adversary, is also clearly unwanted. An adversary capturing
your bank transfer assignment and offering it again to the bank, a so-
called replay attack, ending up in a lower outstanding balance is clearly
unwanted. Data integrity takes care of active attacks.

3. Identity theft
The adversary could perhaps lie to the bank, claiming to be you and
issue a bank transfer, effectively giving him access to your funds. Using
authentication this can be avoided. By proving to have knowledge of
some secret that is only shared between you and the bank, the bank
can determine whether it is communicating with the person he claims
to be. However, if the authentication mechanism is compromised, be-
cause of a sniffed username/password combination this will not help.
Authentication is therefore often combined with data confidentiality.

4. Traffic analysis
Traffic analysis is a kind of passive attack where not the contents of
the message itself is compromised, but the routing information in the
message. This can be viewed as the mail man needing to read the
destination address in order to deliver it, however perhaps learning
that the package was sent from a particular sender or deducting what
the contents of the package are (e.g., by size and weight). One can
see how this is a problem if one is burglarized the next day and the
shipped goods are gone. One can generally trust the mailman. The risk

4.1. Security Threats 35

increases however, when others can also look at the package and the
data associated with it — as is the case with wireless communications.

For IP these include source and destination address and other headers,
such as — in the case of TCP or UDP — source and destination port
[104].

5. Privacy
When carrying a device capable of wireless communication, one might
not want one’s personal identity unknowingly being revealed to other
parties. Many devices are equipped with a unique identifier, such as a
MAC address, which is needed in order to address messages to them.
This identifier might be correlated to an identity. [143] proposes the
use of random addresses by devices. This of course generates more
overhead. It is clear however, that authentication protocols need to be
in place that do not leak identity of the user to an eavesdropper. Nor
should the identity be provided to an anonymous service.

Identification privacy and location privacy are usually not an issue in
computer security, as the connection is static and an adversary needs
to put significant effort in obtaining ones exact location or monitor
traffic. For example a court order is usually needed to obtain the actual
identity/location information from an ISP and one has to dig up a
cable in order to start sniffing. In any kind of mobile communications
however, everybody that obtains the right equipment can sniff data
that is being transmitted nearby. Combine this with the fact that a
PN is user centric and it is clear that identification and location privacy
is an issue.

[143] derives four requirements for identification and location privacy:

(a) User identity confidentiality:
• the property that the user identity of a user to whom

a service is delivered cannot be eavesdropped on the
radio access link.

• the property that the user identity of a user to whom
a service is delivered will not be given to the PAN
[Personal Area Network] component acting as server
for the user requests in the case of anonymous ser-
vice access.

(b) Component identity confidentiality:
In the context of a PAN, many components are expected
to have integrated a hardware identification. . . By means
of correlation between user and PAN components, such
a component identity could be used to identify its user

36 Chapter 4. Access Control Architectures.

if not protected appropriately. Component identity con-
fidentiality includes:

• the property that the identity of a PAN compo-
nent to whom a service is delivered cannot be eaves-
dropped on the radio access link

• the property that the identity of a PAN component
to whom a service is delivered will not be given to
the PAN component acting as server for the user
requests in the case of anonymous service access.

(c) User location confidentiality:
• the property that the presence or the arrival of a par-

ticular user in a certain area cannot be determined
by eavesdropping the communication on the radio
access link. However, sometimes a user may wish to
inform the other components of her arrival. In such
a case, user location confidentiality might not be re-
quired and user or component identity information
might be sent on the user’s request.

(d) User untraceability:
• the property that an intruder cannot deduce whether

different services are delivered to the same user by
eavesdropping on the radio access link.

6. Depletion attack
A depletion attack is a kind of denial-of-service attack that aims to
drains the battery of a mobile device. While this is certainly impor-
tant in military sensor networks, operation of most devices used by
the public are not as critical. Some however are critical — e.g., a
pacemaker — and need to be withstand depletion attacks.

7. Costs
There is always a tradeoff between (usable) security and cost. In gen-
eral, costs increase with better security. A user naturally wishes to
have (good) security, however in some cases the cost of the added se-
curity makes a product to costly to purchase. The balance depends on
the context and the preferences of the user (e.g., [140] shows a signif-
icant percentage of unencrypted and poorly encrypted WEP WLAN
access point). For recommendations on key sizes and their strength
see [94, 34].

4.2 Security Definitions

In the previous section, several security threats have been introduced. In
this section we will discuss general techniques to counter these threats.

4.2. Security Definitions 37

Security encompasses more than verifying ones identity stating what ac-
cess rights that identity has. For example, for a spy it is important that
others do not learn his identity when he communicates with his agency, also
he may wish that the contents of the communication are not to be learned
by others as it is sensitive information and the content might lead to expo-
sure of his identity. These are forms of confidentiality, both on identity and
data. However, the agency needs to verify that it is communicating with its
spy and the spy needs to be able to authenticate himself without leaking its
identity.

For the bank it is important that the customer cannot claim not to have
send a transfer order executed on his behalf. Non-repudiation guarantees
that the order is sent and/or received by the claimed identity.

The following subsections will go into more details on the techniques used
for the above.

1. Keys
Keys are used for the techniques listed below. That makes them an
important part in security.

There are many encryption methods, roughly dividable in two groups.
The first are based on a symmetric key, i.e., the key to encrypt the data
is the same as the key to decrypt the data. The second group is based
on asymmetric keys, whereby two keys reverse each others encryption.
Usually one of these keys is made public, the other is kept private.

We will discuss keys, key distribution and key derivation in more detail
in Chapters 6 and 7.

2. Authentication
Authentication is defined by [6] as “the act of verifying a claimed iden-
tity, in the form of a pre-existing label from a mutually known name
space, as the originator of a message (message authentication) or as
the end-point of a channel (entity authentication)".

3. Access control
Access control — also referred to as authorization — is defined by [6]
as “the act of determining if a particular right, such as access to some
resource, can be granted to the presenter of a particular credential".

4. Confidentiality
Confidentiality provides privacy. Data confidentiality is defined by [62]
as “the property that information is not made available or disclosed to
unauthorized individuals, entities, or processes". User identity confi-
dentiality is defined by [143] as “the property that the user identity of
a user to whom a service is delivered cannot be eavesdropped on the
radio access link". Confidentiality is sometimes referred to as privacy.

38 Chapter 4. Access Control Architectures.

To ensure confidentiality communications are encrypted. Encryption,
or encipherment, is the cryptographic transformation of data to pro-
duce ciphertext [62] that is not readable by anyone except those pos-
sessing a key. This key is used to decipher or decrypt the ciphertext
to the original data.

A secret-handshake-mechanism can be used to establish a connection
without yielding ones identity. Proof of knowledge of a secret key
is given before the actual identities are exchanged and thus revealed.
Secret-handshake-mechanisms are provided in [11, 12]. Component-
identity-confidentiality might be achieved by using temporary identi-
fiers such as a MAC address.

5. Data integrity
Data integrity assures that messages are received as sent, with no du-
plication, insertion, modification, reordering, or replays [121, Section
1.4]. In connectionless systems only modification can be guaranteed.
Integrity is provided by adding a digest to the data that is send. The
digest is the result of a cipher that takes the data and a key as input
and calculates a x-byte value, x depending on the cipher used. The
cipher is sometimes referred to as a hash function.

The receiving party can check for modification by performing the same
calculation over the received data and compare his results with the
digest send with the data. An adversary does not have the required
key to calculate the corresponding digest to go with the altered data.
A thorough analysis of integrity ciphers, fall out of scope of this Thesis.
However, we state several requirements in Section 6.2.2.

6. Non-repudiation
Non-repudiation ensures proof of delivery and sending. Neither sending
or receiving party can deny the transmission of the message. Non-
repudiation is based on asymmetric cryptography. The private key,
which is believed to be only known by one user, is used to digitally
sign the message. Like a normal signed document, the text itself is
readable, but proof of identity is added. Therefore a hash generated
over the data (document) is encrypted using the private key. Note that
the hash function itself does not rely on a key [121, Section 1.4].

4.3 Security Access Control Architectures That Can
Be Applied in FedNets

In this section we will discuss several ACAs that might be suitable for use
in the context of PNs and FedNets.

4.3. Security Access Control Architectures That Can Be Applied in
FedNets 39

4.3.1 AAA

In computer science AAA stands for Authentication, Authorization and Ac-
counting. Authentication, Authorization and Accounting (AAA) is some-
times combined with Auditing and is then accordingly named AAAA. The
AAA architecture provides a generic framework for authentication authoriza-
tion and accounting. An AAA server evaluates and where necessary propa-
gates access control requests, using policy and event repositories, Application
Specific Modules (ASMs) and other AAA servers [29].

The AAA authorization framework discussed in [134] focuses solely on
the authorization (access control) in AAA. It defines message sequences for
use in a single domain case, roaming and distributed services. There are three
different sequences: the agent, pull and push sequence. Each shall be dis-
cussed shortly. When the organization that authorizes and authenticates the
user is different from the organization providing the service — i.e., roaming.
— the home user organization needs to be consulted. In distributed systems,
multiple organizations provide a part of the functionality (e.g., QoS over a
multi-organizational connection). In a distributed system each participating
organization must properly set up their own service equipment by using its
own message sequence (one organization might use a pull sequence whilst
another uses an agent sequence).

In the agent sequence the AAA server functions as an agent between the
user and the service (see Figure 4.1 and 4.2).

Figure 4.1: Agent Sequence in Single Domain, Figure Reproduced from [134]

In the pull sequence the service equipment acts as agent and forwards
the request to the AAA server which replies the appropriate response to the
service equipment (see Figure 4.3 and 4.4).

In the push sequence a ticket or certificate verifying access to a particular
service is obtained by the user directly from an AAA server (see Figure 4.5).
The ticket or certificate gets relayed by the user to the service equipment

40 Chapter 4. Access Control Architectures.

Figure 4.2: Agent Sequence with Roaming, Figure Reproduced from [134]

Figure 4.3: Pull Sequence in Single Domain, Figure Reproduced from [134]

that can now grant access based on the provided ticket or certificate.
According to [134], one view of an authorization is that it is the result

of evaluating policies of each organization that has an interest in the autho-
rization decision. Each organization may have his own administration style.
Each independent policy must be retrieved, evaluated and enforced.

Policies are stored in a policy repository by or on behalf of the organiza-
tion that requires them. The retrieval is typically done by the administration
that defines the policy of an agent acting on its behalf. In order to evalu-

4.3. Security Access Control Architectures That Can Be Applied in
FedNets 41

Figure 4.4: Pull Sequence when Roaming, Figure Reproduced from [134]

Figure 4.5: Push Sequence in Single Domain, Figure Reproduced from [134]

ate the policy, information referred to in the policy must be available. If
the needed information does not reside locally in the organization evaluating
the policy, a remote administration must be queried for the needed informa-
tion or the policy has to be forwarded and the remote administration must
perform the actual evaluation.

Enforcement is typically done by the service provider on the service equip-
ment (being the target of the policy). The service equipment that gets a
policy from an AAA server should be set up to “enforce” the policy or, if

42 Chapter 4. Access Control Architectures.

Figure 4.6: Push Sequence when Roaming, Figure Reproduced from [134]

Figure 4.7: Distributed Message Sequence, Figure Reproduced from [134]

not able to enforce, reject the request. A policy is retrieved at a Policy
Retrieval Point (PRP) from a Policy Repository, evaluated at a Policy Deci-
sion Point (PDP) or Policy Consumer and enforced at a Policy Enforcement
Point (PEP) or Policy Target. Information against which policy conditions
are evaluated are accessible at Policy Information Points (PIPs) [134].

4.3. Security Access Control Architectures That Can Be Applied in
FedNets 43

Figure 4.8: Possible Distributed Message Sequence, Figure Reproduced from
[134]

4.3.1.1 RADIUS

Remote Authentication Dial In User Service (RADIUS) is a AAA protocol
for carrying authentication, authorization and configuration information be-
tween a Network Access Server (NAS) that wishes to authenticate its links
and a shared authentication server. RADIUS incorporates the client-server
model in which a NAS operates as a client of RADIUS. The RADIUS server
authenticates the user and returns all configuration information required. A
RADIUS server can act as a proxy-server to other RADIUS servers, enabling
roaming capability (see Figure 4.10). A variety of user authentication meth-
ods are supported by the RADIUS server (e.g., provided with the user name
and original password given by the user, it can support PPP Password Au-
thentication Protocol (PAP) or Challenge-Handshake Authentication Proto-
col (CHAP), UNIX login and other authentication mechanisms) [108]. Figure
4.9 provides an example of a RADIUS server.

Although transactions between a client and RADIUS server are authenti-
cated using a shared secret that is never send over the network [108], the user
credentials is send using an MD5 hashing algorithm to obfuscate passwords.
As MD5 is no longer considered secure [105] it is wise to send RADIUS
data over an encrypted channel, such as a tunnel that utilizes a more secure
encryption technique.

RADIUS supports the Extensible Authentication Protocol (EAP) (see
[5]), allowing several authentication protocols to be used in conjunction with
RADIUS. RADIUS also support accounting, which is explained in [107].
RADIUS runs in the application layer basing its connectivity on UDP.

44 Chapter 4. Access Control Architectures.

Figure 4.9: An Example of RADIUS Use in an Enterprise. Figure Repro-
duced from [110].

Figure 4.10: An Example of RADIUS Roaming. Figure Reproduced from
[110].

4.3.1.2 Diameter

The Diameter base protocol [21] is intended to provide an AAA framework
for new access technologies. These access technologies, including wireless,
DSL, Mobile IP and Ethernet, routers and NAS, have increased in complexity
and density, putting new demands on AAA protocols which were not taken
into account when RADIUS was initially deployed. Like RADIUS, Diameter
supports EAP [5].

Diameter provides failover, transmission-level security, reliable trans-
port (by using TCP), agent support, server-initiated messages, auditabil-

4.3. Security Access Control Architectures That Can Be Applied in
FedNets 45

ity, transition support, capability negotiation, roaming support and peer
discovery and configuration. Diameter also facilitates delivery of Attribute
Value Pairs (AVPs), capabilities negotiation, error notification, extensibility
(through addition of new commands and AVPs) and basic services necessary
for applications (such as handling of user sessions or accounting). Diameter
AVPs carry specific authentication, accounting, authorization, routing and
security information as well as configuration details for the request and reply
[21].

All data delivered by the protocol is in the form of an AVP. Some of these
AVP values are used by the Diameter protocol itself, while others deliver
data associated with particular applications that employ Diameter. AVPs
are used by the base Diameter protocol to support the following features
[21]:

• Transporting of user authentication information, for the purposes of
enabling the Diameter server to authenticate the user.

• Transporting of service-specific authorization information, between client
and servers, allowing the peers to decide whether a user’s access request
should be granted.

• Exchanging resource usage information, which MAY be used for ac-
counting purposes, capacity planning, etc.

• Relaying, proxying and redirecting of Diameter messages through a
server hierarchy.

4.3.2 IEEE 802.1X

The Institute of Electrical and Electronics Engineers (Institute of Electrical
& Electronics Engineers (IEEE)) 802.1X is an IEEE standard for port-based
network access control. It uses the physical access characteristics of IEEE
802 LAN infrastructures in order to provide a means of authenticating and
authorizing devices attached to a LAN port that has point-to-point connec-
tion characteristics and of preventing access to that port in cases in which
the authentication and authorization process fails. A port in this context is
a single point of attachment to the LAN infrastructure [58].

Only when authenticated and authorized will the client (supplicant) be
able to connect to servers and services on the internet (and the rest of the
LAN or Wide Area Network (WAN)). Figure 4.11 depicts an example of a
802.1X setting in combination with a wireless access point.

IEEE 802.1X does not require a centralized authentication server and
can be deployed in stand-alone access points. Based on EAP it supports
authentication schemes including, smart cards, Kerberos, public key encryp-
tion, one-time passwords and others. IEEE 802.1X is designed to be fully

46 Chapter 4. Access Control Architectures.

Figure 4.11: An Example of 802.1X Use with a Wireless Access Point [128].

compatible with AAA, making IEEE 802.1X usable as AAA client. This also
enables the use of IEEE 802.1X with a central authentication and accounting
server [26, 58].

4.3.3 IMS Security ACA

The IP Multimedia Subsystem (IMS) was developed to provide QoS to
narrow- and broadband access to real time internet multimedia services such
as streaming audio, video and multimedia conferences. First intended to
provide QoS and inter-operator roaming in mobile systems, it now also has
support for WLAN and fixed access types [103].

The focus of IMS security is on authentication, authorization, integrity,
confidentiality and availability. IMS users must be authenticated and au-
thorized in order to use IMS services. Authentication and authorization
functions reside, along with other user information, on a smart card that
is inserted in the user equipment. The smart card is known as Universal
Integrated Circuit Card (UICC). UICC can hold different applications:
Subscriber Identity Module (SIM), Universal Subscriber Identity Module
(USIM) or IP Multimedia Services Identity Module (ISIM) [103].

There are five different security associations and different needs for secu-
rity protection of IMS [103, 39] and they are numbered 1 to 5 in Figure 4.12
where:

1. Provides mutual authentication between the User Equipment (UE) and
the IMS Core Network Subsystem (IM CN SS). The The Home Sub-
scriber Server (HSS) is responsible for generating keys and challenges
while the authentication is carried out by the Serving CSCF (S-CSCF).

2. Provides a secure link and a security association between the UE and
the Proxy CSCF (P-CSCF) with authentication of data origin.

4.3. Security Access Control Architectures That Can Be Applied in
FedNets 47

Figure 4.12: The IMS Security Architecture. Figure Reproduced from [103].

3. Provides security within the network domain internally for the Cx-
interface.

4. Provides security between different networks for Session Initiation Pro-
tocol (SIP) capable nodes. This security association is applicable when
the roaming UE is in a visited network.

5. Provides security within the network internally between SIP capable
nodes. This security association is applicable when the UE is located
in his own home network.

The following security features are included in IMS access security [103].

• Authentication of the subscriber and the network, allowing the net-
work and the user to authenticate each other (see security association
number 1 in Figure 4.12).

• Confidentiality and Integrity protection of the IMS signaling (see se-
curity association number 2 in Figure 4.12).

• Policy control system, which allows the network to control the traffic
to and from the UE.

IMS uses SIP (see [112]) as the signalling protocol for creating and
terminating multimedia sessions [39]. For Authentication and Key Agree-
ment (AKA) IMS uses a scheme called IMS AKA that achieves mutual au-
thentication between the ISIM and the Home Network (HN). IMS AKA
is basically the 3G UMTS AKA protocol that is integrated into HTTP Di-
gest protocol [103]. The technical specification on IMS security features and
mechanisms is given in [39].

48 Chapter 4. Access Control Architectures.

4.3.4 Kerberos

Kerberos is an authentication protocol, based on tickets and symmetric keys
for use in a distributed environment. Kerberos, by itself, does not provide
authorization. However it can make use of separate authorization procedure
and put its findings in a Service Granting Ticket (SGT) [95]. It requires a
centralized Authentication Server (AS) which contains user credentials and
a Ticket Granting Server (TGS) that maintains security associations with
all entities.

Figure 4.13: Kerberos Explained Visually. Figure Taken from www.xml-dev.
org.

As depicted in Figure 4.13, a user can ask the AS for a Ticket Grant-
ing Ticket (TGT) and a session key (between the TGS and the client) which
enables him to request access to services. The user can decrypt this informa-
tion based on his own password. So only the user can decrypt the TGT and
use it and the password itself is never sent over the network. When the user
wishes to access a service, it requests a service granting ticket for this service
at the TGS. Using the TGT the user needs not enter his credentials again
for this request (single sing-on). The TGT is encrypted using the key shared
between TGS an AS and contains the session key for use between client and
TGS. The service granting ticket is encrypted using the key shared between
the TGS and the service provider (server) and contains a session key for use

www.xml-dev.org
www.xml-dev.org

4.3. Security Access Control Architectures That Can Be Applied in
FedNets 49

between client and server [121, Section 4.1].
The usage of Kerberos comes with a few down sides:

• The Kerberos server is a single point of failure.

• Due to timestamping clock synchronization is an issue.

• The administration protocol is not standardized.

• Since the secret keys for all users are stored on the central server, a
compromise of that server will compromise all users’ secret keys.

• A compromised client will compromise the user’s password.

Version five of Kerberos is explained in total in [95] and is updated by
[148, 72]. In [147] Elliptic Curve Cryptography (ECC) support in Kerberos
is explained.

4.3.5 Security Architectures That Are Described in Virtual
Organizations

Although grids were initially designed for sharing access to High Performance
Computing (HPC) resources with widely distributed but a mostly static
user-base, the concept of a Virtual Organization (VO) is more compatible
with the dynamic nature of large user groups and distributed management.
Shibboleth and PrivilEge and Role Management Infrastructure Standards
(PERMIS) are often found in VOs and are discussed next.

4.3.5.1 Shibboleth

The Shibboleth system [1] is a middleware application that enables organiza-
tions to federate to extent their identity-management services. It is used to
secure user access web-based resources by means of attribute-based autho-
rization. Providing controls to protect the privacy of personal information
[88]. At a request for a protected content the user is redirected to a login site
from the organization he is registered with. After login the user is returned
to the original service provider with a handle, a temporary identifier known
to the home organization. The service provider connects to the home orga-
nization and using the handle it can retrieve (anonymous) attributes based
on which the source provider grants access to the protected content.

4.3.5.2 PERMIS

PrivilEge and Role Management Infrastructure Standards (PERMIS) sup-
ports delegation of authority, decentralizing credential management. The

50 Chapter 4. Access Control Architectures.

PERMIS authorization infrastructure provides facilities for policy manage-
ment, credential management, credential validation and access control de-
cision making. PERMIS has a credential validation service, that verifies a
user’s credentials prior to access control decisions and enables distributed
management of credentials. Applications need to intercept users’ requests
and ask PERMIS to validate the user’s credentials and make an access con-
trol decision. PERMIS supports hierarchical RBAC, where role hierarchies
apply to organizational roles and any attribute that has natural precedence
in attribute values. PERMIS also supports enhanced Attribute Based Ac-
cess Control (ABAC) [25]. The PERMIS infrastructure is depicted in Figure
4.14.

Figure 4.14: High Level Conceptual Model of the PERMIS Authorization
Infrastructure. Figure Reproduced from [25].

Figure 4.14 is explained by [25] as follows.

Step 0 is the initialization step for the infrastructure, when
the policies are created and stored in the various components.
Each subject may possess a set of credentials from many differ-
ent Attribute Authoritys (AAs), that may be pre-issued, long
lived and stored in a repository or short lived and issued on de-
mand, according to their Credential Issuing Policies. The Subject
Source of Authority (SOA) dictates which of these credentials can

4.3. Security Access Control Architectures That Can Be Applied in
FedNets 51

leave the subject domain for each target domain. When a subject
issues an application request (step 1), the application indepen-
dent PDP informs the application’s PEP which credentials to in-
clude with the user’s request (steps 3-4). These are then collected
from the Credential Issuing Service (CIS) or Attribute Repository
by the PEP (steps 5-6). The user’s request is transferred to the
target site (step 7) where the target SOA has already initialized
the Credential Validation Policy that says which credentials from
which issuing AAs are trusted by the target site and the Access
Control policy that says which privileges are given to which at-
tributes. The user’s credentials are first validated (step 8). This
may require the CVS to pull additional credentials from an AA’s
repository or issuing service (step 10). The valid attributes are
returned to the PEP (step 9), combined with any environmental
information, such as current date and time (step 11) and then
passed on to the PDP for an access control decision (step 12). If
the decision is granted the user’s request is allowed by the PEP
(step 14), otherwise it is rejected. In either case, the PDP may
also return a set of obligations, which are actions that the PEP
must enforce along with the access control decision (step 13). An
obligations service is the functional component that is responsi-
ble for enacting these obligations. In more sophisticated systems
there may be a chain of PDPs that are called by a master PDP,
with each PDP in the chain holding a different policy possibly
written by a different SOA and possibly written in a different
policy language. In this case the master PDP needs to hold a
policy combining policy written by the target SOA, which deter-
mines the ultimate response to give to the PEP based on the set
of granted, denied or don’t know responses returned by the chain
of PDPs. Application PEPs however should be shielded from
needing to know about this more sophisticated functionality.

PERMIS is a modular concept as shown in Figure 4.15, its modules allow
for a solid base that can be applied in many situations.

4.3.6 Security ACAs That Are Described in Past or Ongoing
FedNet Projects.

4.3.6.1 MAGNET Beyond

In the MAGNET Beyond project, the Context Aware Security Manager
(CASM), that is part of the Secure Context Management Framework (SCMF),
assures security and privacy of context information inside the PN and FedNet.
The CASM controls the requests that are coming in and are going out of
nodes. This ensures that all information and request messages are authenti-

52 Chapter 4. Access Control Architectures.

Figure 4.15: The PERMIS Authorization Decision Engine. Figure Repro-
duced from [25].

cated, authorized and that information going out from a node is ensured to
fulfill the security and privacy requirements of the owner of the device [122].

The CASM is designed by integrating AAA module functionalities and
is explained in detail in [75].

4.3.6.2 Freeband PNP2008

PNP2008 takes a two-level approach FedNet access control [56]. At the first
level, access control takes place when a new member joins a FedNet. This is
carried out by the FM.

Figure 3.2 on page 22 depicts the two access control levels in the lifecycle
of a FedNet. At the first level three actions occur:

1. Mutual authentication on FA and FM

2. Authorization of a PN to become a member, checking whether the
services offered by the PN are suitable for this FedNet.

3. Issuing a membership token for the accepted FedNet member, which
the member can use to prove his membership to a PN.

4.3. Security Access Control Architectures That Can Be Applied in
FedNets 53

The interactions between FA and FM are depicted in Figure 3.4.
At the second level, access control takes place when a FedNet member

requests a FedNet service. This is carried out by the FA. In this level the
following actions occur at the FA of the PN offering the service:

1. Mutual authentication between the PN that requests a service and the
PN that provides this service.

2. Authorization of a service requesting PN, verifying its membership
token and granting a particular access to the requested service.

3. Service proxy configuration, which is a process of configuring a re-
quested service proxy to a particular member in a FedNet.

PNP2008 provides an Access Control and Management Framework (ACM)
consisting of the FM and FA component, as discussed in Subsection 3.3.2
and 3.3.3 and a FedNet management protocol enabling PNs to communi-
cate initiate and join a FedNet. The protocol also allows for exchanging
authorization messages and manage formation, operation and dissolution of
the FedNet. The framework is depicted in Figure 4.16. The inter-actions
between FA and FM are depicted in Figure 3.6.

Figure 4.16: The ACM Framework. Figure Reproduced from [56].

4.3.6.3 IST SHAMAN

The main goal of the SHAMAN project is to provide a comprehensive se-
curity framework for a distributed terminal. Its security architecture should
provide both a common language as well as with the basic models and real-
world scenarios needed for future development. [143] provides a detailed
description on PAN security.

The security aspects that they consider in their security architecture are:

1. Trust model for components and users of components

2. Creation of security associations between different components defined
in the trust model

54 Chapter 4. Access Control Architectures.

3. Distribution of the keys needed to create the security associations

4. Authentication of components and users

5. User identity and location privacy

6. Secure communication between components

7. Communication security policies and management of the policies

8. Secure installation of executables on certain components within the
PAN

9. Intra-PAN authorization

10. Access control of local and distributed resources

11. Access control policies and management of the policies

12. Delegated authorization

The main objectives are:

1. A simple and practical trust model

2. Low complexity security configuration mechanisms (e.g., semi-automatic
key management)

3. High level of cryptographic strength (using state-of-the-art, generally
accepted cryptosystems)

4. High quality and flexible security protocols

5. Usability

6. Mechanisms and principles that can be easily analyzed and evaluated
and open to public scrutiny

7. Low complexity implementations for devices with limited resources

8. Use of standard solutions whenever possible

On access security SHAMAN compares three methods: ACL, (encrypted)
PAN ticket and (encrypted) PAN certificate. Based on their comparison
they recommend use of ACL whereby access control records are stored on
the component that acts as service provider and authentication is based on
established SAs.

4.4. Selection Criteria 55

4.4 Selection Criteria

4.4.1 Use Case

In the introductions of the previous chapters, several use cases based on the
storyline in Chapter 1 are given.

4.4.2 Assumptions

We make the following assumptions:

• The basic PN architecture is that provided in the PNP2008 project.

• The communication channels are considered out of scope in the frame-
work.

• Due to the mobile environment, communication (overhead) should be
kept to a minimum.

• Medical data is sensitive personal information.

4.4.3 Requirements

In this section the requirements for a security architecture that supports the
use cases in this thesis are given. The requirements are derived based on the
described use cases, the given assumptions, literature research and discussion
with TI-WMC experts.

The requirements are divided in points of view of the stakeholders. Some
of these requirements are applicable to multiple points of view, to avoid
repetition of requirements they are denoted incrementally.

• From Harry’s point of view, the following requirements are derived.

1. The framework must support mutual authentication. As the BSK
must not communicate with systems it does not trust.

2. The framework must support end-to-end confidentiality and in-
tegrity. Credentials need to be protected.

3. The framework must support fine grained access control configu-
ration. Harry needs to be able to define who may access what.

4. The framework must be context aware; that is, the framework
must support context access restrictions such as time of day, lo-
cation and concurrent logins.

5. The framework should be easy to manage.
6. The framework should be scalable in terms of devices and FedNets.

Harry’s PN could consist of hundreds of devices and Harry might
participate in dozens of FedNets. These devices and FedNets
could be added at any time.

56 Chapter 4. Access Control Architectures.

7. The framework should be able to incorporate multiple encryption
technologies. Harry should not need to install a completely new
platform when, for example, a new device or service is introduced
that requires a different — possibly new — encryption scheme.

8. The framework should be able to incorporate future authentica-
tion technologies. Analog to the reason stated in Requirement
7.

• From the gym’s point of view, the following requirements are added.

9. The framework must be configurable in the sense that only active
members with a valid subscription to the service can use it. A fee
might, for example, only grant access to the service for a period
of six months.

10. The framework should be configurable in the sense of protocols
allowed and disallowed. The gymnasium might specify how users
can connect in an access control configuration.

• From Harry’s coach point of view, the following requirements are added.

11. The framework must support access control on the aggregated
sensor readings.

• From the medical centers point of view, the following requirements are
added.

12. The framework must be robust against replay attacks.

13. The framework must be scalable in the sense that it must support
thousands of FedNets between as many patients and hundreds of
medical staff.

14. The framework must support management based on roles. A new
doctor needs to be able to check on a patient assigned to him,
without the patient needing to come to the medical center for
new credentials.

15. The framework must support authentication based on public key
certificates. This is a requirement of the VITRUVIUS project.

• From a technical point of view, the following requirements are added.

16. The framework should minimize overhead because wireless com-
munication drains the battery of mobile devices. This is also
needed because it effects the efficiency of communications due to
the limited bandwidth of wireless channels.

17. The framework must support infrastructure-based FedNets.

4.5. Evaluation of Security ACAs in FedNets 57

18. The framework must support access control on the network level.
This is needed to prevent direct connections to sensors (nodes)
before network-level-authorization.

19. The framework must support access control on the service level.
This is needed to control which services are accessed on the node.

20. The framework must support distributed access control config-
urations. These configurations might reside in different storage
entities located in different security domains. Each participating
entity in a FedNet can have their own configuration(s).

21. The framework must support re-authentication. This is needed
in case of temporary connection loss.

22. The framework must support re-authorization. This is needed
when configurations are changed dynamically.

23. The framework must support data origin authentication. This is
needed when devices change their network point of attachment.

4.5 Evaluation of Security ACAs in FedNets

This section evaluates the architectures stated in Section 4.3 against the
requirements stated in Section 4.4. These requirements are set out against
the frameworks in Table 4.1. Requirements that the frameworkmust support
are in bold font, requirements that it should support are not. ‘√’ marks
a requirement that the framework can (not necessarily must) support, ‘×’
marks an unsupported requirement, ‘$’ marks a partially support for the
requirement and ‘u’ marks when support for the requirement is unknown.

58 Chapter 4. Access Control Architectures.

Table 4.1: Comparison of ACA’s.

Requirement A
A
A

IE
E
E

80
2.
1X

IM
S

K
er
be

ro
s

Sh
ib
bo

le
th

P
E
R
M
IS

M
ag
ne
t
B
ey
on

d

Fr
ee
ba

nd
P
N
P
20
08

1: Mutual authentication
√ √ √ √ √1 ×2 √ √

2: End-to-end confidentiality and
integrity

√ √3 √ √
$4 $4 √5 √

3: Fine grained Access Control
√

-6 -7
√

$8 √ √ √

4: Context aware configurable
√ √

$
√9 √10 √ √ √

5: Easy management
√

p11 ×
√

$8 √ √ √

6: Scalable (services)
√ √

$12 √ √ √ √ √

7: Extensible types of encryption
√13 √14 ×

√ √13 √2 √15 √15

8: Extensible types of authentication
√14 √14 × ×

√ √2 √15 √15

9: Configurable Access Control
√ √ √ √9 $16 √ √ √

10: Configurable protocols
√13 × $17 √ ×

√ √15 √

11: Access control on aggregated
data

-18 × ×
√9 √13 √ √ √

12: Robust against replay attack
√ √19 √20 √ √13 √2 √ √13

13: Scalable user pool
√ √ √ √ √ √ √ √

14: RBAC
√

× ×
√9 √21 √ ×

√

15: Public Key Certificate support
√22 √22 √ √

-23
√ √ √

16: Minimize overheadtnotextn:x
√13 √ ×

√25 × $26 u u
17: Support infrastructure based

√ √ √ √ √ √ √ √

18: Network level Access Control
√ √ √

× × ×
√

×
19: Service level Access Control

√ √ √ √ √ √ √ √

20: Distributed Access Control
√

× -27
√ √ √ √ √

21: Re-authentication support
√14 √14 √ × ×

√2 √
×

22: Re-authorization support
√

× × × ×
√28 × $29

23: Data origin authentication
√ √ √ √

× ×
√ √30

Continued on Next Page. . .

4.5. Evaluation of Security ACAs in FedNets 59

Table 4.1: (continued)

1 When combined with TLS.
2 Actually, the PERMIS Application Programming Interface (API) is authentica-
tion agnostic. It does not itself support any authentication, only authorization.
However, PERMIS can be integrated with any authentication service.

3 Based on ESP.
4 Based on signed X.509 certificates, integrity is provided but confidentiality is
not.

5 Using either IP security (IPsec) or TLS.
6 Actually the service provider can limit, to extent, the resources. However in
this context, Harry is both uses a service and provides a service (sensor data).
802.1X does not allow Harry to adjust his settings.

7 IMS does not support two-way configuration as meant by this requirement.
Several privacy options are configurable.

8 The user cannot control which of his user attributes are made available, the
identity provider can configure fine-grained control of information release.

9 Kerberos does not provide authorization, but supports the passing of authoriza-
tion information generated by other services.

10 Shibboleth allows for each site to specify its own access control services.
11 Harry can not manage at all, however the service provider can configure the
system based on pre-defined options.

12 Only IPMultimedia applications.
13 Depending on implementation.
14 Based on EAP.
15 Based on IPsec.
16 The service provider can specify which attributes are needed, but only the home
organization can assign them to a user.

17 Very limited support.
18 The AAA framework is designed to provide authorization to internet services
and recourses. Application specific attributes can be enforced.

19 Based on IEEE 802.11i.
20 Based on the GIBA Security Mechanism.
21 Based on attributes.
22 Using EAP-TLS or TTLS.
23 The user is redirected to a web-login, the service providers are likely to use a
PKI amongst themselves.

24 [90] shows that Abstract Syntax Notation One (ASN.1) outperforms eXtensible
Markup Language (XML).

25 Kerberos provides single-sign-on, reusable SGTs and uses ASN.1.
26 PERMIS uses X.509 attribute certificates over SAML, thus ASN.1 over XML,
however policies are denoted in XML.

27 Actually a distributed home subscriber server is supported, however, this does
not conform to the requirement.

28 Note that this is pull based, each time a user makes a request to an application
to perform a task the PDP is consulted.

29 Currently not supported, however it should be in a future version of the com-
pliance assurance component.

30 Based on tunnels between gateways.

60 Chapter 4. Access Control Architectures.

4.6 Selection of a Suitable FedNet Security ACA

In the previous section, Table 4.1 clearly shows that an AAA framework
is most suitable. AAA can provide, in principle, all but one requirement:
access control on aggregated data. Individual implementations of the AAA
framework might lack a few requirements.

The AAA framework is designed to provide authentication, authorization
and accounting. PERMIS only provides authorization. PERMIS can how-
ever be integrated with any authentication application. We find PERMIS to
be more suitable for authorizing in a FedNet environment.

AAA implementations typically provide (network) access control, whereas
PERMIS provides an extensive authorization mechanism that can be used
for each and every action a user performs while connected. PERMIS has
a richer format for denoting such access control parameters — AAA uses
attribute pairs, PERMIS supports several policy languages to denote para-
meters. PERMIS provides hierarchies of roles, distributed management of
attributes, policy controlled decisions based on evaluated conditions and the
ability to validate credentials and delegation chains. Also PERMIS supports
history based decision making and multi-session separation of duties [25].

Therefore we suggest usage of the AAA framework in combination with
PERMIS for use in a FedNet.

4.7 Summary

In Section 4.1 we discussed security threats. In Section 4.2 we discussed tech-
niques that counter these threats. They are: authentication, authorization,
data integrity, confidentiality — both of data and identity — and non repu-
diation. These techniques rely heavily on keys. In Section 4.3 we discussed
several existing ACAs. In Section 4.4 we discussed selection criteria for a
ACA in the context of a FedNet. These are derived on the described use
case, assumptions, literature research and discussion with TI-WMC experts.
In Section 4.5 we set out the criteria against the available ACAs, allowing
us to select a suitable one in Section 4.6. AAA enhanced with PERMIS
for authorization is suggested as the best candidate for a secure ACA for
FedNets

Chapter 5
The Authentication Protocol

Before authorization can take place, the identity of the user needs to be ver-
ified — i.e., authenticated. Because authorization is based on the identity of
a user, authentication needs to be performed in a secure way. In our previous
work [15] we showed that Diameter is a suitable authorization framework for
use in a FedNet. Diameter implementations can incorporate authentication
methods based on AVPs. Diameter also supports EAP, this enables diame-
ter to incorporate new EAP-based authentication methods without need for
a new Diameter application [21].

EAP [3] typically runs over data links layers such as PPP or IEEE
802 networks, without requiring IP. EAP can be used on dedicated links,
switched circuits, wired links and wireless links. EAP finds its use in hosts
and routers that connect via switched circuits or dial-up lines using PPP
[118]. It also finds use in switches and ACs using IEEE 802. EAP encapsu-
lation on IEEE wired media is described in [58] and encapsulation on IEEE
wireless LANs in [57].

As Diameter is not the only application using EAP, many authentication
methods have been made compatible with EAP. Examples are EAP-TLS
[117], EAP-IKEv2 [132] and EAP-AKA [10].

5.1 Available Authentication Methods

We limit our evaluation of authentication methods to those that are EAP
compatible for the reasons stated above. The IANA keeps a registry of
assigned identifiers for method types. At the time of writing, IANA has
fifty-one [53] registered EAP type-values. A comparison of all fifty-one goes
beyond the scope of this Thesis. Therefore, based on requirements from
preliminary research [15], only those that support public keys and certifi-
cates will be compared in this Thesis. Undocumented, possibly proprietary,
protocols are also omitted.

61

62 Chapter 5. The Authentication Protocol.

5.1.1 RSA Public Key Authentication

Ron Rivest, Adi Shamir and Leonard Adleman (RSA) public key authentica-
tion is documented in an (expired) IETF internet draft [141] and is a patented
method. It authenticates based on public key certificates, exchanges a session
key and is integrity protected by public keys.

The latest IETF internet draft, version four [141], is publicly available
on the internet. According to [114], there is a patented method of the PPP
EAP RSA Public Key Authentication Protocol. We have found mention of
a version seven in of the internet draft mentioned in [141]. We were unable
to obtain this version seven of the internet draft.

RSA has IANA EAP type 9 [53]. Due to the patented method and poor
documentation we decided not to examine RSA any further.

5.1.2 EAP-TLS

Extensible Authentication Protocol (EAP) Transport Layer Security (TLS)
provides certificate-based mutual authentication and key derivation. It uses
protected cipher suite negotiation, mutual authentication and key manage-
ment capabilities of the TLS protocol version 1.1 ([31]) [117]. EAP-TLS
was first defined in [4] which was obsoleted by [117]. The latter specifies a
fully backward compatible, extended and enhanced version of the protocol.
Both [4, 117] dictate the use of TLS version 1.0 [30] or higher — currently
version 1.1 [31] and version 1.2 [32] are also available. When using TLSv1.2,
EAP-TLS provides key derivation function negotiation [117].

EAP-TLS has IANA EAP type 13 [53].

5.1.3 EAP-TTLS

(EAP-TTLS) allows legacy — e.g., password-based — authentication proto-
cols to be used against existing authentication databases, while protecting
the security of these legacy protocols against eavesdropping, negotiating-
down, man-in-the-middle and other attacks [45].

There exists a version 0 a and version 1 of the protocol, both have IANA
EAP type 21 [53].

• EAP-TTLSv0
When EAP-TTLS is mentioned, EAP-TTLSv0 is meant, which is doc-
umented in [45]. EAP-TTLSv0 consists of two phases, in the first —
the handshake phase — the server is authenticated using standard TLS
procedures. During this phase keying material is generated and a cryp-
tographically secure tunnel for information exchange in the subsequent
phase — the data phase– is set up. Instead of server authentication,
mutual authentication might be performed in the first phase. However,
client authentication is usually performed in the second (data) phase.

5.1. Available Authentication Methods 63

During the data phase the client is authenticated to the server using
an arbitrary authentication mechanism encapsulated within the secure
tunnel. Again, mutual authentication might be performed during this
phase instead of client authentication only. The data phase may also
be used for additional, arbitrary data exchange [45].

TLS1.0-1.2 [30, 31, 32] state: “The negotiation of a shared secret is
secure: the negotiated secret is unavailable to eavesdroppers and for
any authenticated connection the secret cannot be obtained, even by
an attacker who can place himself in the middle of the connection.“

• EAP-TTLSv1
EAP-TTLSv1 uses as underlying protocol TLS with the Inner Appli-
cation extension (TLS/IA). In TLS/IA, the TLS handshake is followed
by an exchange of messages with record type "InnerApplication", in
which an arbitrary exchange of messages between client and server is
conducted under the confidentiality and integrity protection afforded
by the TLS handshake. In contrast to version 0, version 1 provides
cryptographic binding and (optionally) channel binding. Version 1
also provides stronger key strength.

EAP-TTLSv1 is documented in the expired internet draft [46].

5.1.4 PEAP

Protected Extensible Authentication Protocol (PEAP), pronounced ‘peep’,
“is a joint proposal by Cisco Systems, Microsoft and RSA Security as an open
standard. It is already widely available in products and provides very good
security. It is similar in design to EAP-TTLS, requiring only a server-side
PKI certificate to create a secure TLS tunnel to protect user authentication.”
PEAP has IANA EAP type 25 [53].

• PEAPv0/EAP-MSCHAPv2
“PEAPv0/EAP-MSCHAPv2 is the technical term for what people most
commonly refer to as "PEAP". Whenever the word PEAP is used, it
almost always refers to this form of PEAP since most people have no
idea there are so many different versions of PEAP. Behind EAP-TLS,
PEAPv0/EAP-MSCHAPv2 is the second most widely supported EAP
standard in the world.”

PEAPv0 [89] is basically an outer TLS session based on a server certifi-
cate, with a inner EAP protocol — usually MS-CHAPv2 — to authen-
ticate the client. The aim is to prevent the rollout of an infrastructure
requiring clients to have certificates. Note that it MUST implement
TLS version 1.0 [4], although version 1.1 [31] and 1.2 [32] have been
defined [89].

64 Chapter 5. The Authentication Protocol.

• PEAPv1/EAP-GTC
“PEAPv1/EAP-GTC was created by Cisco as an alternative to PEAPv0/
EAP-MSCHAPv2. It allows the use of an inner authentication proto-
col other than Microsoft’s MSCHAPv2. EAP-GTC is defined in RFC
3748. It carries a text challenge from the authentication server and a
reply which is assumed to be generated by a security token. EAP-GTC
does not protect the authentication data in any way.” [wikipedia]

Because PEAPv1 is based on a token card, it falls out of the scope of
this thesis and therefore will not be examined any further.

• PEAPv2
Protected Extensible Authentication Protocol (PEAP)v2 is documented
in an expired (April 2005) internet draft [100]. It is unclear why
PEAPv2 did not make it to full RFC, nor why there are hardly any
implementations of the draft. Lack of in the field deployment makes
this method unsuitable, because it has not been rigorously tested.

PEAPv2 provides identity protection, dictionary attack resistance, pro-
tected negotiation, header protection, protected termination, fragmen-
tation and reassembly, fast reconnect, standard key establishment, se-
quencing of multiple EAP methods, protected exchange of arbitrary
parameters, credential provisioning, optimization for light weight de-
vices and server unauthenticated tunnel provisioning mode [100].

5.1.5 MAKE

Mutual Authentication with Key Exchange (MAKE) provides as the name
suggest mutual authentication. It also supports certificates. Based on the
little information we could find [13], several requirements are not met. Be-
cause of its scarce documentation we will omit this authentication method
from further investigation.

The MAKE protocol has IANA EAP type 27 [53].

5.1.6 EAP-FAST

EAP-Flexible Authentication via Secure Tunneling (EAP-FAST) [22] is an-
other tunneling protocol based on TLS. It aims to provide security to net-
work access solutions that require user friendly and easily deployable secure
authentication mechanisms. These are often based on user credentials. User
credentials typically are weaker than (strong) mutual authentication proto-
cols, such as certificate-based authentication protocols. EAP-FAST secures
these weaker mechanisms by first setting up a more secure tunnel based on
TLS.

The EAP-FAST protocol has IANA EAP type 43 [53].

5.2. Authentication Protocol Requirements 65

5.1.7 EAP-IKEv2

EAP-Internet Key Exchange Protocol version 2 (EAP-IKEv2) [132] is based
upon Internet Key Exchange (IKE)v2 [73]. EAP-IKEv2 provides mutual au-
thentication and session key establishment supporting authentication tech-
niques based on passwords, high-entropy shared keys (symmetric keys) and
public key certificates (asymmetric keys). EAP-IKEv2 further provides sup-
port for cryptographic cipher suite negotiation, hash function agility, iden-
tity confidentiality (in certain modes of operation), fragmentation and an
optional "fast reconnect" mode. EAP-IKEv2 provides similar functionality
as, for example, EAP-TLS. However, EAP-IKEv2 does not tunnel other
EAP methods [132].

The EAP-IKEv2 method has IANA EAP type 49 [53].

5.1.8 EAP-PSK

EAP-Pre-Shared Key Extensible Authentication Protocol (EAP-PSK)[14] is
based on an key shared in advance that is only known to the authenticator
and user. A concept also know as PSK. We take this method into account,
even though it lacks support for certificates, as an informative reference.
EAP-PSK is light-weight and can be used to provide mutual authentication,
integrity protection, replay protection, key derivation, dictionary attack re-
sistance and session Independence with the ease of not having to set up a
key-distribution-mechanism. It has been adopted by WiMAX[78].

As a design choice for the sake of simplicity EAP-PSK only supports a
single cryptographic primitive, Advanced Encryption Standard (AES)-128.
This prevents the use of (protected) cipher negotiation and the support of
features such identity protection (confidentiality). In particular, EAP-PSK
does not provide fast reconnect, fragmentation, cryptographic binding, per-
fect forward secrecy and channel binding.

The EAP-PSK protocol has IANA EAP type 47 [53]. As EAP-PSK does
not support certificates, we omit this method from further examination.

5.2 Authentication Protocol Requirements

The risks involved in authenticating over a wireless medium are consider-
ably higher than over a wired medium [46]. Because of this, we adopt the
requirements from [123] for use in a FedNet. [123] specifies EAP method
requirements for WLANs, from which the following MUST requirements are
taken:

1. Generation of keying material. “Key derivation” as defined in [3, Sec-
tion 7.2.1].

66 Chapter 5. The Authentication Protocol.

2. 128-bits of effective key strength, as defined in [3, Section 7.2.1.]1.

3. Key derivation exports a Master Session Key (MSK) of at least 64
octets.

4. Key derivation exports a Extended Master Session Key (EMSK) of at
least 64 octets.

5. Mutual authentication support. “Mutual authentication” as defined in
[3, Section 7.2.1].

6. Shared state equivalence. “The shared EAP method state of the EAP
peer and server must be equivalent when the EAP method is success-
fully completed on both sides. This includes the internal state of the
authentication protocol but not the state external to the EAP method,
such as the negotiation occurring prior to initiation of the EAPmethod.
The exact state attributes that are shared may vary from method to
method, but typically include the method version number, the creden-
tials presented and accepted by both parties, the cryptographic keys
shared and the EAP method specific attributes negotiated, such as
cipher suites and limitations of usage on all protocol state. Both par-
ties must be able to distinguish this instance of the protocol from all
other instances of the protocol and they must share the same view
regarding which state attributes are public and which are private to
the two parties alone. The server must obtain the authenticated peer
name and the peer must obtain the authenticated server name (if the
authenticated server name is available). ”[123]

7. Resistance to dictionary attacks. “Dictionary attack resistance” as de-
fined in [3, Section 7.2.1].

8. Protection against man-in-the-middle attacks. This corresponds to
“Cryptographic binding”, “Integrity protection”, “Replay protection”
and “Session independence” security claims as defined in [3, Section
7.2.1].

9. Protected cipher suite negotiation. When the method negotiates a
cipher suite to protect the EAP conversation, then it MUST support
the “Protected cipher suite negotiation”2 as defined in [3, Section 7.2.1].

Additionally [123] specifies the following SHOULD requirements.

1We base key strength on the comparison by the National Institute of Standards and
Technology (NIST) of the USA documented in [94].

2This refers to the ability of an EAP method to negotiate the cipher suite used to
protect the EAP conversation, as well as to integrity protect the negotiation. It does not
refer to the ability to negotiate the cipher suite used to protect data.

5.3. Comparison of Authentication Methods 67

10. Fragmentation. “Fragmentation” as defined in [3, Section 7.2.1].

11. End-user identity hiding. “Confidentiality” as defined in [3, Section
7.2.1].

Finally [123] specifies the following MAY requirements.

12. Channel binding. “Channel binding” as defined in [3, Section 7.2.1].

13. Fast reconnect. “Fast reconnect” as defined in [3, Section 7.2.1].

The client/peer must establish a connection to the authenticator in this case,
a wireless connection. An important requirement is the secure channel be-
tween the authenticator and the EAP server. This is vital because the spec-
ification does not indicate how this is established, but it requires one. Based
on requirements listed in Section 4.4.3, the following must requirements are
derived in the context of an authentication protocol.

14. Seamless handover (data origin authentication). The session needs to
be resumable when the user is roaming to another Access Point (AP)

15. Public Key Certificate. The method supports certificates based on
asymmetric keys.

16. Re-authentication. Server initiated re-authenticate request.

17. Cipher suite negotiation. Enforce use of cipher suite negotiation, to
optimally protect the transmitted data.

18. The authentication protocol is interoperable with the authorization
framework.

19. The protocol has been tested and proven in the field.

5.3 Comparison of Authentication Methods

In this section, the listed methods in Section 5.1 are set out against the
requirements listed in Section 5.2 in Table 5.1. The must requirements are
denoted in a bold font, the should in an italic font and the may requirements
in a normal font. Denotation: √ means requirement supported although it
might need to be configured, × means requirement not met, $ means has
partial support for this requirement, ¬ means does not apply and ? means
that we were not able to verify this requirement.

The client/peer must establish a connection to the authenticator — in
this case, a wireless connection. An important requirement is the secure
channel between the authenticator and the EAP server. This is vital because
the specification does not indicate how this is established, but it requires one.

68 Chapter 5. The Authentication Protocol.

Table 5.1: Evaluation of authentication protocols.

Requirement E
A
P
-T

L
S
[1
17
]

E
A
P
-T

T
L
Sv

0
[4
5]

E
A
P
-T

T
L
Sv

1
[4
6]

P
E
A
P
v0

[8
9]

P
E
A
P
v2

[1
00
]

E
A
P
-F
A
ST

[2
2]

E
A
P
-I
K
E
v2

[1
32
]

1 Key generation
√ √ √ √ √ √ √

2 ≥ 128 bits effective key strength
√ √ √

×3 √ √ √

3 ≥ 64 octet MSK key derivation ×4 ×4 √
×4 √ √ √

4 ≥ 64 octet EMSK key derivation ×4 ×4 × ×4 √ √ √

5 Mutual authentication
√ √ √ √ √ √ √

6 Shared state equivalence ? ? ? ?
√

? ?
7 Dictionary-attack resistance

√ √ √ √ √ √ √

8 Man-in-the-middle protection
√

$5 √ √ √ √ √6

Cryptographic binding ¬ ×
√ √ √ √

¬
Integrity protection

√ √ √ √ √ √ √

Replay protection
√ √ √ √ √ √ √

Session independence
√ √ √

?
√ √ √

9 Protected cipher suite negotiation7 √ √ √ √ √ √ √

10 Fragmentation
√ √

? ?
√ √

?
11 End-user identity hiding

√ √ √ √ √ √ √

12 Channel binding ¬ ×
√

? ?8 × ¬
13 Fast reconnect

√ √ √ √ √ √ √

14 Seamless handover
√9 √9 √9 √9 √9 √9 √

15 Public Key Certificate
√ √ √ √ √ √ √

16 Re-authentication ? $10 ? ? $11 ? $12

17 Cipher suite negotiation (must)
√ √ √ √ √ √ √

18 Authentication-authorization interoper-
ability13

√ √ √ √ √ √ √

19 Method is proven in the field14 √ √ √ √
×

√ √

3The PEAP tunnel uses a 60 octet key.
4TLS negotiates a 48 byte master key.
5Strong mutual authentication implementations (certificate or unique pre-shared

based) are not vulnerable to this attack.
6The man-in-the-middle attack is possible when legacy authentication with EAP is

used.
7This refers to the ability of an EAP method to negotiate the cipher suite used to

protect the EAP conversation, as well as to integrity protect the negotiation. It does not
refer to the ability to negotiate the cipher suite used to protect data.

8has connection-binding though
9TLS version 1.0, 1.1 and 1.2 all specify the ‘session identifier’ as “An arbitrary byte

sequence chosen by the server to identify an active or resumable session state.” [30, 31, 32].
10Based on predefined session time outs.
11Re-authentication based on TLS session resumption.
12Based on authentication lifetime as defined in [98]
13Perhaps trivial as it is implied by the use of EAP
14Mocana’s® NanoEAP™ [92] actually incorporates all methods

5.4. Authentication Protocol Recommendation 69

Noteworthy, we discovered that all the methods do not support server
initiated re-authentication. There are some workarounds, such as a session
lifetime by which the server sets a limit, however this is not the same as
the intended re-authentication after a policy change. A server could always
disconnect/terminate the session, leaving it to the client to re-connect.

5.4 Authentication Protocol Recommendation

In Section 5.1 we looked at a number of EAP compatible authentication
methods and were able to eliminate several candidates based due to patents,
scarcely available documentation and lack of certification support.

Based on Table 5.1 EAP-TLS and EAP-IKEv2 are the most eligible pro-
tocols. We recommend the EAP-IKEv2 protocol based key derivation sup-
port that EAP-TLS lacks. The EAP-IKEv2 protocol can be combined with
other EAP implementations, supports most of the requirements and does
not need other authentication protocols to run over it for authentication,
thus reducing the amount of messages needed.

5.5 Summary

In Section 5.1 we discussed several authentication protocols. In Section 5.2
we stated the requirements for such a protocol in the context of FedNets.
In Section 5.3 we provided an overview of the authentication protocols that
might be applicable and their conformance to the requirements.

Finally we recommended the EAP-IKEv2 protocol in Section 5.4.

Chapter 6
The Ciphersuite

A cryptographic cipher is an algorithm for encryption and/or decryption of
data. Depending on the cipher it provides a certain type of security. In
Chapter 4 we introduced several security threats and techniques to counter
them. A ciphersuite is a specific collection of such algorithms that together
provide a certain set of security measures. In Chapter 5 we proposed a suit-
able authentication method, one of the needed algorithms in a ciphersuite.

In this chapter we will explain how keys withstand known attacks with
their computational strength, what a ciphers is and how it selects other
algorithms to provide the necessary security.

6.1 Keys

Ciphers are usually based on (secret) keys. These keys need to be distributed
to the using end systems. One way to do this, is to generate a symmetric
key and transport this key trough a separate channel to the using entities.
This could be written on paper, put on a pendrive or some other secured
method. This approach is suitable for small systems.

This approach is also applicable in large systems if there is a central
authority that possesses all the keys. As each entity has a shared key with the
authority — called a Security Association (SA) — and all the entities trust
the authority, the central authority can generate key pairs for use between
entities that do not have a SA with each other. This approach is taken by
the Kerberos system [95].

For very large systems, this method is not feasible as for each tuple of
entities there needs to be a shared key, generating an exponential need for
keys. The central authority, that has to generate a key each time a secure
communication needs to be set up, is a single point of failure. Asymmetric
encryption provides us with a solution. When a message needs to be send
encrypted, the message can be encrypted using the public key of the recipient

71

72 Chapter 6. The Ciphersuite.

that is publicly available. Only the intended recipient has the corresponding
private key to decrypt the message. If the recipient wishes to reply, he
cannot encrypt the reply with his own private key as the public key — that
everybody can obtain — decrypts the message. Instead he needs to obtain
the public key of the initiator of the conversation and encrypt the message
using that key to communicate securely. As entities need to be able to obtain
other entities public keys, this approach needs some kind of mechanism to
make these keys publicly available. Such a mechanism is usually referred to
as a Public Key Infrastructure (PKI). In the next chapter we will go into
more detail about key-distribution-mechanisms.

6.1.1 Key Derivation

Asymmetric encryption requires more computational resources than sym-
metric encryption. When large amounts of data need to be sent, it is often
useful to set up a secure connection using asymmetric keys and derive a key
and agreed cipher for symmetric encryption in the process.

When two entities willing to enter secured communication both have a
asymmetric key, a symmetric key can be derived. RSA and Diffie Hellman
(DH) are two well known schemes for this. We shall not investigate the exact
workings of these schemes in this thesis.

DH is susceptible to man-in-the-middle attack [64]. Though combining
DH with digital certificates prevents such an attack.

A variant of the traditional DH scheme is the Elliptic Curve Diffie-
Hellman (ECDH) scheme. This is in effect the same scheme, however it
uses ECC instead of Integer Factorization Cryptography (IFC).

6.1.2 Key Strength

Due to the nature of ciphers and known attacks, the key length itself is not
a comparable unit for security. Therefore we set out the key sizes in Elliptic
Curve Cryptography (ECC), Integer Factorization Cryptography (IFC) and
Finite Field Cryptography (FFC) ciphers against their corresponding key
strength in Table 6.1. We also included Tripple-DES (3DES), SHA-1 and
SHA-2 for comparison as they have been the recommendation for years and
are still widely in use.

Based on the comparable keystrength given in Table 6.1, implementations
must not use 3DES or SHA-1, must not use ECC lower than prime-256 and
must not use IFC or FFC with a key size under 3072.

6.2. Cipher Suites 73

Table 6.1: Key size comparison.

Bits of security (O(2bits)) 52 80 112 128 192 256
Equivalent symmetric key size 1 52 80 112 128 192 256-
3DES 1682 1683 - - -
AES - - - 128 192 256
ECC (e.g., ECDH)1 f = - 160- 224- 256 384- 512+

223 255 383 511
IFC (e.g., RSA)1 k = - 1024 2048 3072 7680 15360
FFC (e.g., DSA)1 N = - 160 224 256 384 512
L = - 1024 2048 3072 7680 15360
SHA-1 1604 - - - - -
SHA-2 - - - 2565 3845 5125

[145] shows that the use of a symmetric encryption cipher takes less
power consumption than asymmetric encryption. [137] state that symmetric
encryption based schemes do not scale well for large (sensor) networks and
that their asymmetric scheme is a factor 80 more expensive compared to
the symmetric scheme. Therefore we recommend the use of asymmetric
encryption for authentication — allowing for non repudiation and symmetric
encryption of data exchange.

ECC requires less computation power than IFC and FFC [74]. Using
ECC thus saves battery life, communication overhead and time as evidenced
in research such as [84, 80, 16, 51, 79, 130, 136, 145]. Therefore we recom-
mend the use of ECC.

6.2 Cipher Suites

Cipher suites define a combination of acceptable key derivation-, identity
provision-, authentication- and encryption algorithm as well as a MAC. For
example: “TLS_DH_DSS_WITH_AES_128_CBC_SHA” identifies the
TLS authentication method, using the DH key exchange and a Digital Signa-
ture Standard (DSS) signature to set up the connection and the symmetric
cipher AES to encrypt data protected using the SHA Message Authentica-
tion Code (MAC).

6.2.1 Cipher Suite Assumptions

With regard to the cipher suite we assume the following:

1Based on [94]
2Based on Two key Triple DES (2TDEA)[94] — i.e., key1 = key3 6= key2
3Based on Three key Triple-DES (3TDEA)[94] — i.e., key1 6= key2 6= key3 6= key1
4Based on [85]
5Based on [59]

74 Chapter 6. The Ciphersuite.

• The PN takes care of intra-cluster and inter-cluster — i.e. intra-PN
— network-layer security.

• We focus on the federation of networks either via a third party infras-
tructure (i.e., the internet) or directly (i.e., ad hoc) through wireless
technology.

• The data being communicated between the FedNet members is top
secure, such as it is sensitive medical data.

• The FedNet has access to the Certificate Authority (CA).

6.2.2 Cipher Suite Requirements

In order to determine a suitable cipher suite we need to determine which
ciphers to use with the proposed authentication protocol (see Section 5.4).
Some cipher suites specify one or more of encompassed methods to be “null”
— i.e., not used. This provides some security threats. To ensure au-
thentication a signature is needed. To ensure confidentiality a encryption
method needs to be specified. To ensure integrity a Message Authentica-
tion Code (MAC) needs to be specified. All of these need to have sufficient
cryptographic strength. In Section 6.1.2 we will compare the cryptographic
strength of various ciphers.

Based on the above, Section4.4.3 and [3] we derive the following require-
ments in regard to cipher suites.

A suitable cipher has the following requirements.

• Ciphers used in the suite are not broken.

• The cipher has been proven in the field.

• Secure key derivation.

• The suite provides authentication.

• The suite provides data confidentiality.

• The suite provides data integrity.

• Cipher has at least the equivalent strength of a 128-bit-symmetric-key
encryption as defined in [3, Section 7.2.1.].

6.2.3 Broken Ciphers

Over the centuries many encryption ciphers and other cryptographic tech-
niques have been invented and broken. It goes beyond the scope of this
thesis to cover all of them and therefore we only look at the most popular
ciphers that were recently used in computer science. The following methods

6.3. Summary 75

are considered broken and insecure [105]: RC4, RC5, Message Digest Algo-
rithm 4 (MD4), MD5, One-Way Hashing Algorithm with Variable Length
of Output (HAVAL) and Race Integrity Primitives Evaluation Message Di-
gest (RIPEMD). A feasible (hardware enabled) brute force attempt in 1998
was successful performed against DES, making it insecure [121, Section 2.2].
According to [121, Section 3.2], SHA-0 and SHA-1 should not be used in
newly developed applications and be phased out by 2010. Studies [138, 85]
have shown SHA-1 to be more likely to have collisions as was intended dur-
ing design. Therefore implementations must not use RC4, RC5, MD4, MD5,
HAVAL, RIPEMD, DES, SHA-0 and SHA-1.

6.2.4 Security and Encryption Recommendations

Based on requirements stated in Section 5.2, equivalent key sizes given in
Section 6.1.2, and the authentication protocol selected in the previous chap-
ter we recommend cipher suites that:

• base key-exchange on ECDH with a (minimum of) 256-bit prime mod-
uli key using the EAP-IKEv2 protocol; and

• base digital signatures on Elliptic Curve Digital Signature Algorithm
(ECDSA) with a (minimum of) 256-bit prime moduli key; and

• base encryption of data on AES with a minimal key size of 128 bits;
and

• base MAC on SHA-2 with a minimum of 256 bits.

These protocols are in line with the NSA suite B recommendations [99],
with the exception of the authentication protocol as authentication is not
part of the recommendations. All these method are available as open stan-
dard, or relevant patents are either expired or royalty free.

6.3 Summary

A cipher suite is a combination of key derivation, identity provision, encryp-
tion algorithm and MAC for use with a given authentication protocol. We
recommend use of a security suite that uses ECDH, ECDSA, AES and SHA-
2. All using key strength with 128 or more bits of security (O(2bits)). These
recommendations are in line with NSA suite B recommendations [99].

Chapter 7
The Credential Provider

In this chapter we select a suitable credential provider for use in a FedNet.
A credential provider is a mechanism for providing certificates and status
information. We will first introduce several credential providers in Section
7.1. Next we will look at requirements in Section 7.2. Compare credential
providers and select a suitable one in Section 7.3 and finally summarize in
Section 7.4.

7.1 Credential Providers

As we will use Public Key Certificates (PKCs) we need to have certificates
and be able to validate them. A certificate is a digitally signed statement
binding the key holder’s (principals’s) name to a public key and various
other attributes. The signer — i.e., the issuer — is commonly called a
Certificate Authority (CA) [48]. [27] documents the Internet X.509 Public
Key Infrastructure Certificate and the Certificate Revocation List (CRL)
Profile. As X.509v3 certificates are de facto standard [131, 47] we base our
system on X.509.

Many papers have been written on the subject of certificate revocation.
[142, 35, 146, 48] discuss and compare different revocation methods, [106]
discusses certificate revocation in vehicular networks.

Originally certificates were validated using a Certificate Revocation List
(CRL)[27]. This is not ideal in the FedNet context as it does not allow for
realtime state information [48] and can create a lot of overhead [35, 24].
Therefore we propose to retrieve the status of a certificate upon presenta-
tion, using an online retrieval system. [48] points out that an online system
provides a heavy burden on the revocation server as it needs to digitally
sign each status request. Thus online over CRL mechanisms increases CPU
cost and decrease bandwidth cost. It is a well accepted fact that in wireless
(sensor) networks computational cost is preferred over communication cost.

77

78 Chapter 7. The Credential Provider.

Not only do the individual certificates need to be validated, the whole
trust-chain needs to be verified. If the chain contains certificates that are
not known to the authenticator and are not provided by the authenticatee
these certificates need also be retrieved.

We will look at the following options and explain them in limited detail:

1. File system

2. CRL

3. Certificate Revocation Status

4. OCSP

5. LDAP

6. WebDAV

7. SAML

8. AAA server

9. Tickets

10. Domain Name System (DNS)

11. PERMIS

1. File system
One simple solution is to store credentials in the (local) file system.
This is the case for many password based UNIX systems that use stores
user information in the ‘passwd’ file and their corresponding hashed
passwords in the ‘shadow’ file. This is feasible if all entities connect to
the same system. When the entities need to authenticate each other
this is not possible. Kerberos [95] provides a solution in the latter case
as the central Kerberos server maintains a security association with
all entities, providing new keys when entities need to communicate
between each other.

As we use certificates in a dynamic environment, storing all the nec-
essary certificates on all the local filesystems would create the same
problems for symmetric keys stated in [137] — i.e., the scalability is-
sue, the storage issue, re-deployment issue and key distribution issue.
Using Kerberos would create a single point of failure effectively dis-
abling new communications when the Kerberos server is unavailable.
For these reasons we omit the file system as a feasible option.

7.1. Credential Providers 79

2. CRL
The main advantage of a CRL is that the list can be stored in an
untrusted directory. Due to the signature of the CA that revoked the
individual certificates over the whole list, the directory cannot withhold
an individual certificate revocation [86].

However, CRL comes with a few downsides. Such as delay between
publications of revocations and the necessity for retrieval of the whole
list [24, 109, 48]. Despite the introduction of ∆-CRL to limit the
amount of data transferred by providing an incremental set of revoca-
tions since the latest full CRL, a delay remains between the revocation
updates. [146] also points out the risk for CRL request implosion —
i.e., at or near CRL publication time a burst of requests for the updated
CRL may occur as clients wish to limit the window of vulnerability.

3. Certificate Revocation Status
[49, 146] Micali introduced Certificate Revocation Status (CRS) in
1995, improved 1996. further improved in 2002 as NOVOMODO. Re-
quires multiple hashing which is computationally intensive (however
less costly than signing) and increases transmission cost.

4. OCSP
Online Certificate Status Protocol (OCSP)[91] solves the distribution
issue of CRL, allowing for on demand verification of certificates. OCSP
does not resolve the delay issue of CRL and it does not scale well as it
computes a digitally signature for each query [49, 146].

5. LDAP
The LDAP [116] provides access to distributed directory services that
act in accordance with X.500 data and service models. There are many
LDAP based implementations of directory services [77]. LDAP can
store X.509 certificates and CRLs. LDAP uses ASN.1[63] enabling
storage of certificates in Basic Encoding Rules (BER) [135].

6. WebDAV
WebDAV[33] is a set of extensions to the HTTP/1.1 protocol [43] which
allows users to collaboratively edit and manage files on remote web
servers. WebDAV can be used to connect to the server via HyperText
Transfer Protocol Secure (HTTPS) and then check for availability of
the certificate. When this fails, it should abort authentication.

[24] proposes a method that uses WebDAV to improve certificate revo-
cation and publication addressing both, the delay and overhead issue
of CRL. Using this method, (the expensive) signature verification is
not needed. This requires the retrieval of the certificate and a bitwise
comparison. This might be beneficial in certain situations where com-

80 Chapter 7. The Credential Provider.

putation power is limited and the retrieval of the certificate is either
faster or less power consuming.

7. SAML
SAML[38] specifies syntax and semantics for XML-encoded assertions
about authentication, attributes and authorization and for the proto-
cols that convey this information. SAML does not specify how the au-
thentication, attributes and authorization information is to be stored,
this therefore depends on the implementation.

8. AAA
AAA conforming protocols, such as radius and diameter have a back-
end server that stores credentials. These credentials are often in the
form of an identifier — e.g., username — and a password which are
stored in a database. When auditing is in place these same protocols
are sometimes called Authentication, Authorization, Accounting and
Auditing (AAAA)

9. Tickets
Tickets can provide credentials. However, the ticket needs to be issued
by some trusted entity, e.g. Kerberos system. As stated in Section 4.3
this creates a single point of failure and is therefore not suitable to our
needs. This is one of the reasons why certificates were mandated as a
requirement.

10. DNS
DNS based revocation lists are prone to a spoofing attack and are
therefore not suitable for our needs.

11. PERMIS
PrivilEge and Role Management Infrastructure Standards (PERMIS)
can be considered a credential provider as the framework allows for
creating and storing credentials. However, the main focus of PERMIS
is to provide a reasoning engine. As such it is capable with several
credential providers — e.g., local file system and LDAP. The PERMIS
framework does facilitate in the creation and storage of credentials. As
PERMIS relies on — rather than supplies — a credential providers, we
will not consider PERMIS an individual credential provider.

7.2 Requirements

To select a suitable credential provider we derive the following requirements.
The credential provider:

1. can store X.509 certificates

7.3. Comparison and Selection 81

2. can store certificates revocations

3. provides realtime updates of revocations

4. is able to provide selective information (as not to download the entire
certificate or CRL)

5. keeps overhead (transmission cost) to a minimum — i.e. ASN.1 is
preferred over XML

6. is computational efficient.

7.3 Comparison and Selection

In Table 7.1 we set out the requirements against the credential providers
mentioned in Section 7.1 that have not already been eliminated. Denotation:
√ means requirement supported although it might need to be configured,
× means requirement not met and $ means has partial support for this
requirement.

Table 7.1: Evaluation of authentication protocols.

Requirement LD
A
P

(C
R
L)

SA
M
L

W
eb
D
A
V

O
C
SP

F
ile
sy
st
em

1 Certificate storage
√

×
√

×
√

2 Certificate revocation
√

$1 √ √
$2

3 Realtime updating $3 √ √
× $

4 Selective retrieval $
√ √ √ √

5 Overhead minimization
√4 ×5 √ √6 ×7

6 Computational efficient
√

$
√

× $8

Table 7.1 clearly shows that the WebDAV approach as described in [24]
is best suited for credential provisioning.

1SAML could assert whether a certificate is valid or not.
2In a distributed environment, distribution needs to be taken care of.
3Although LDAP supports realtime updating, the used CRL is based on intervals.
4Based on ASN.1 BER.
5SAML is based on XML which is bulky by nature.
6Based on ASN.1 Distinguished Encoding Rules (DER).
7All the revocations need to be distributed
8Depending on the distribution mechanism

82 Chapter 7. The Credential Provider.

7.4 Summary

WebDAV is the most suitable for storing and retrieving certificate status.

Chapter 8
The Policy Language

In Chapter 4 we opted for AAA in combinations with PERMIS. PERMIS has
its own policy language, however PERMIS is modular and can be adapted
to use any policy language. [25] states that PERMIS’ own policy language
is more advanced than the de facto standard [81] eXtensible Access Con-
trol Markup Language (XACML). We intended to compare and select a
suitable policy for use in the FedNet context, however in light of the research
presented in [25] we instead will focus on the storage and retrieval of the
policies in conjunction with PERMIS in this chapter.

8.1 Basic Terms

We use the following definitions taken from [126]:

• Authorization policy: A set of rules, part of an access control policy,
by which access by security subjects to security objects is granted or
denied. An authorization policy may be defined in terms of access
control lists, capabilities, or attributes assigned to security subjects,
security objects, or both.

• Access control policy: A set of rules, part of a security policy, by which
human users, or their representatives, are authenticated and by which
access by these users to applications and other services and security
objects is granted or denied.

• Security policy: A general term covering both access control policies
and authorization policies.’

Thus, in essence a policy states who — or which principal — is allowed to
do what.

83

84 Chapter 8. The Policy Language.

A privacy policy describe the data practices of (usually) a company. That
is, it specifies what information about a user is retained, for which purposes
and how the data is used [28, 87].

8.2 Assumptions

The way users can efficiently and comprehensively specify a policy such as
discussed in [60, 23, 18] is out of scope of this research. Note that PERMIS
comes with a policy manager, a GUI to set policies. Given that PERMIS is
considered more advanced in specifying access policies than the de facto stan-
dard XACML [25, 81], we assume PERMIS’ policy language is sufficiently
capable to denote fine grained policies.

8.3 Storage

PERMIS has out-of-the-box support for policies retrieval via a local file store,
LDAP and WebDAV. These options have been discussed in Chapter 7.

PERMIS policies are XML based, which is bulky by nature, making the
local file store option preferable. LDAP and WebDAV will generate more
traffic, consuming more resources. As local file storage could be out of sync
and thus creating possible security issues we drop it as viable option. As
WebDAV has been selected as the most suitable protocol for storing and
retrieving certificate status in Chapter 7, we decide to reuse this functionality
rather than adding LDAP to the mix.

PERMIS uses RBAC, which is preferable over DAC and Mandatory Ac-
cess Control (MAC) [42, 41, 115]. These roles are stored in attribute certifi-
cates, which are are X.509 based and are as such implemented using ASN.1
syntax — the preferred format, as pointed out in Section 7.2.

As for the bulky XML, we suggest that this text based format is saved
in a compressed form to save power consumption of the transfer. Further
we suggest local caching of these policies as the HTTP protocol on which
WebDAV is build can save on the needed data exchange. This caching should
be flushable and caching duration should be configurable via a policy.

8.4 Summary

PERMIS has its own policy language that supports RBAC and is more
sophisticated than the de facto standard XACML. A detailed analysis of
different policies is therefore omitted. PERMIS supports several retrieval
methods for the policies, under which WebDAV. Compression of these XML-
based-policies is recommended to save power on the transfer of these policies.

Chapter 9
Design and Implementation

This chapter specifies a suitable ACA for FedNets based on the previous
chapters. The architecture ensures a high degree of security and privacy to
a FedNet.

In this chapter we will first discuss the assumptions and requirements for
the architecture, followed by the architecture itself. Next we will discuss the
prototype architecture and its components.

9.1 Assumptions

In order to define the architecture, we assume the following:

• The basic PN architecture is provided in the PNP2008 project.

• All PN related tasks and services other than federation management
— i.e.,the FM and FA — as defined in the PNP2008 project [56] are
considered in place and working. These include but are not limited
to: service & content discovery, link layer security and management
consoles.

• Within the PN data is ubiquitous — i.e., either data is stored centrally
and universally available or a distributed database is in place.

• Medical data is sensitive personal information, which requires high
security.

• Due to the mobile environment, communication (overhead) should be
kept to a minimum.

• FedNets are assumed to be precreated — i.e., the FedNet setup is not
part of the topotype.

85

86 Chapter 9. Design and Implementation.

• At least for non-commercial applications — privacy policies are at this
point unnecessary.

9.2 System Architecture

We introduce the architecture gradually in the following sections by following
the examples in the case given in Section 1.1.

9.2.1 Harry’s BSK

Harry first purchases a BSK. Harry’s personal cluster contains several sen-
sors and his smartphone. His smartphone automatically switches from using
WLAN at home to using the mobile phone infrastructure when needed. The
Gateway (GW) acts as a NAS and can perform NAT. This GW connects to
the AAA server that contains the relevant data to grant both network level
access and service level access.

These physical components are depicted in Figure 9.1.

Figure 9.1: Harry’s BSK.

9.2.2 The Gymnasium

When Harry goes to the Gymnasium he first needs to sign up, in the process
he joins a federation that allows him to use the sensors of the Gymnasium.
Harry himself talks to the clerk, while his smartphone communicates directly
to the computer of the clerk. Through an out of bounds authentication

9.2. System Architecture 87

mechanism they are able to make sure that Harry’s smartphone communi-
cates securely with the computer of the clerk, allowing them to securely set
up the federation between Harry and the Gymnasium. Figure 9.2 gives an
impression on how this looks.

Figure 9.2: Harry Signs Up at the Gymnasium.

After signing up Harry is able to connect to the network of the Gym-
nasium, when he is on the premises., thereby getting access to sensors and
internet connectivity. When Harry uses these facilities of the Gymnasium,
the involved physical components are connected differently. This situation
is depicted in Figure 9.3

9.2.3 Harry’s Coach

After Harry sets up a federation with his professional coach his coach can
access Harry’s devices via the internet. This might be via a mobile commu-
nications network or via a modem connected to an ISP that uses a wired
medium. His coach provides Harry with additional high grade sensors. One
of these replaces Harry’s hart rate measuring device. This situation is de-
picted in Figure 9.4.

9.2.4 Trouble Sleeping

Harry’s sleeping disorder brings him to a specialized medical center. Here
he is supplied with extra sensors and starts a federation. At this time his
personal cluster and home cluster are disjoined. Nevertheless he is able to set
up the FedNet like he did at the gymnasium. An example of this situation
is given in Figure 9.5.

88 Chapter 9. Design and Implementation.

Figure 9.3: Harry Trains at the Gymnasium.

Figure 9.4: Harry and His Professional Coach.

At night, when Harry is sleeping, another doctor in the hospital can
monitor the sensors in Harrys PN and read up on relevant medical dossiers
stored in an EPD. Even when Harry’s modem is down due to maintenance at
the ISP the doctor can still connect via Harry’s smartphone. This situation
is depicted in Figure 9.6.

9.2. System Architecture 89

Figure 9.5: Harry Signs Up at the Hospital.

Harry

WAP

gui
guiDoctor

EPD

Harry’s home

Medical center

Home and

personal

cluster

combined

GMS/UMTS/

GPRS/HSPA

www

AAA

server
Service provider

Modem

router router

WLAN

Figure 9.6: Harry Is Sleeping at Night.

90 Chapter 9. Design and Implementation.

9.2.5 The FedNet View

Having introduced all the physical entities we now look at the components
from the FedNet view. We start with an simplified overview in which two
persons wish to share a service with each other. This is depicted in Figure
9.7.

Figure 9.7: High Level Architecture.

Next we look at the logical components involved in this situation. The
gateway functionality is performed by strongSwan, taking care of the re-
quired NAS, NAT and routing functionality. The persons in this federation
can set policies and configure access control rights via their GUI, the func-
tionality is taken care of by the FedNet Agent (FA). The FA relays this infor-
mation — provided with a digital signature — to the FedNet Manager (FM)
which then stores this information in the WebDAV database. The informa-
tion in the WebDAV database is used by the AAA server to determine access
control. Communication between the PNs is protected by an IPsec tunnel
between the PNs gateways. This tunnel is set up by strongSwan through the
EAP-IKEv2 protocol. The strongSwan gateway, acting as a Network Access
Server (NAS), communicates with the the AAA server using the Diameter
protocol. As required in [21] the communication is secured using IPsec or
TLS. The communication between the FA and FM is also handled over a
secure channel. This process is depicted in Figure 9.8.

9.2.6 Putting It All Together

We have combined all of the above into one figure, Figure 9.9. In this figure
the home cluster is merged with Harry’s personal cluster, two doctors that
have helped Harry are displayed, the clerk at the gymnasium is omitted. A
third party service provider provides the AAA server and FM functionality.

9.2. System Architecture 91

Figure 9.8: Detailed Functional Component Architecture.

92 Chapter 9. Design and Implementation.

Figure 9.9: The Use Case as a Whole.

9.2. System Architecture 93

9.2.7 AAA Server Placement

In the previous subsections we described the AAA server as a central external
entity. However, [55, Section 4.2] describes two scenario’s for the location of
the FM: the FM being located either external to both PNs, as depicted in
Figure 9.10, or internal to one of the PNs, as depicted in Figure 9.11. [55]
states that each PN must have a FA component.

Figure 9.10: Basic Proxy-Based-Architecture of a FedNet with an External
FM. Figure Reproduced from [55] with Permission from the Authors.

Figure 9.11: Basic Proxy-Based-Architecture of a FedNet with an Internal
FM. Figure Reproduced from [55] with Permission from the Authors.

Based on the above we derive five distinct architectural solutions. In all
cases each PN has at least the FA functionality.

1. The FM functionality is provided by a third party. As described in
Figure 9.10.

94 Chapter 9. Design and Implementation.

2. Each PN has both the FA and FM functionality. No third party or
central authority is used. As described in the left part of Figure 9.11.
Which PN’s FM is used is based on which of the PNs is considered the
manager of the FedNet.

3. One of the PNs has FM functionality whereas the other does not. No
third party or central authority is used.

4. Each PN has a FM integrated and a third party provider exists.

5. Each PN has a minimum of the FA functionality and might have the
FM functionality. A third party FM is needed to facilitate FedNets
that are managed by the FA that does not have its own FM.

Table 9.1: Architecture Option Comparison.

Solution 1 2 3 4 5
Supports ad-hoc FedNets ×

√ √ √ √

Supports third party infrastructure based hosting
√

× ×
√ √

Allows for ’light’ PN implementations without FM
√

×
√

×
√

Table 9.1 compares relevant requirements against these 5 architectural
solution for FM placement. Table 9.1 clearly shows solution 5 is the most
suitable as it is the only option that meets all the requirements.

Solution 5 provides the most flexibility. Therefore we consider this ar-
chitecture the most suitable to implement. It allows for a PN design that
supports federating yet does not necessarily have the FM functionality in-
tegrated, allowing for lighter implementations in early systems and resource
constrained devices. It has the disadvantage that, in the case of having no
internal FM, the PN cannot start and manage its own FedNet without an
infrastructure and a third party provider. Another disadvantage is that in
the ad-hoc-scenario the PN cannot federate unless the other PN has a FM.
In this case the other PN automatically is the manager of the FedNet.

9.3 Proposed Architecture

We reason that both the FM and FA have similar functionality and therefore
opt to integrate their implementation.

The functions of the FM are [55]:

• Management function - to create FedNet profile and advertisements; to
manage the formation, evolution and dissolution of a FedNet, to main-
tain the list of FedNet members and their contributions, experiences
during the FedNet operation.

9.3. Proposed Architecture 95

• Service directory look up function - to provide the directory service to
FedNet members, to maintain the updated list of members and services
in the FedNet.

• FedNet access control function - to produce decisions on the access
control to the FedNet; to issue membership credentials for FedNet
members.

The functions of the FA are [55]:

• Management function - coordinating PN services to which a PN can
grant a temporal access within a FedNet, managing the participation of
a PN in a FedNet, creating a participation profile, joining and leaving
a FedNet.

• Service access control function - to produce access control decisions to
PN services.

• Service proxy configuration function - to configure a requested service
proxy to a particular member in a FedNet.

The management function: can be implemented as a GUI to define, sign
and store policies and to create and sign certificates. The access control
function can be implemented using the PERMIS authorization engine in
combination with certificate based authentication. We reason that without
an actual proxy this can be implemented as a policy stating who may access
what. As stated in the beginning of this chapter, we assume PN-internal
(intra-PN) routing and look-up are in place. Implementations are suggested
in for example [67] and [68].

[55] defines the GW as follows: "The Gateway (GW) is a device with mul-
tiple network interfaces. A PN communicates with other PNs of the FedNet
through this gateway, by making one of its interfaces publicly addressable."

We implement the GW using strongSwan, without implementing a proxy.
We reason that a proxy might still be integrated into our design if required
and that the accessed service of a personal node could implement security
by using the PERMIS reasoning engine. The node need not derive access
control decisions, instead it relies on PERMIS for these. This might be
integrated into the operating system of the node so that the shared service
itself need not be adopted nor will there be the need for developing a proxy
for each application.

Based on [69] we reason that our proposed architecture can be used, if
properly adapted, for inter-cluster security as well. As each cluster will have
its own engine, we recommend that the security agent [8, 69] be integrated
into our architecture.

Finally we reason that an external FM as described in [55] could be
implemented as a third party PN with an internal FM, thus making the
choice for architecture based on a internal FM even more logical.

96 Chapter 9. Design and Implementation.

We add that for revocation status and storage we propose the use WebDAV
for certificates as described in [24]. Policies will be stored in WebDAV as
well.

Concluding we propose an architecture with:

1. An FM component internal of a PN.

2. Each FM is a CA, which can be either selfsigned, based on a PKI or
reputation based.

3. The FM and FA be implemented using the same software (PERMIS
engine and policies, certificates).

4. Policies, revocation status and certificates are stored using WebDAV.

5. The GW being implemented using strongSwan.

This slimmed-down-architecture is depicted in Figure 9.12.

Figure 9.12: Proposed Architecture.

At first glance the architecture depicted in Figure 9.12 might look com-
pletely different from the architecture depicted in Figure 9.8, however the
alterations are quite straightforward. First the (common) AAA server is
moved from outside the PN to inside each PN. Second, the FM and FA
are integrated. Third, the AAA server is replaced by PERMIS. Fourth and
finally, the GUI has been reduced to a command line interface. We envision
each cluster having a AAA/PERMIS engine with the database either being
distributed throughout the PN’s clusters or centralized in the home cluster.

This approach comes with some drawbacks. The location of the PERMIS
engine might change, making it more difficult for FedNet members to con-
nect to the managing entity of the relevant FedNet. This problem can be

9.4. Prototype 97

mitigated by making the service stationary, e.g. in the home cluster. An-
other approach could be to make the home cluster take care of redirecting to
the current location of the service. Also a PN could incorporate a PERMIS
engine in each cluster, using a distributed (WebDAV) database to store the
relevant policies and certificates.

This approach also comes with benefits. Functional components can be
grouped together and run on the same physical machine. This will decrease
energy consumption, as the communication between the functional compo-
nents does not have to be transmitted. In Figure 9.13 the most communi-
cating entities are grouped together in the overlapping section of the circle
and ellipse. The GUI has been omitted from this grouping as it runs per
definition where the user is.

Figure 9.13: Grouped Components of the Proposed Architecture.

Also services can directly query the PERMIS reasoning engine wether a
certain action is allowed or not. The questioning can be done either by a
process running on a shared service or a service proxy.

9.4 Prototype

Implementing the whole architecture proposed in the previous section is out
of scope of this thesis. The prototype we will provide is slimmed down
architecture that proofs the concept.

In this section we discuss the functional components used in the proto-
type.

1. Shared Service
A shared service can be any kind of resource (i.e., photos and videos)

98 Chapter 9. Design and Implementation.

or service (i.e., printing services, internet connectivity, displays) that
has been configured to be shared.

2. GUI
Trough the GUI the user — i.e., owner — , can configure which of his
resources and services are to be shared with whom under what circum-
stances. The GUI acts as a front-end for the FM. In our prototype we
will minimize effort on the GUI as we contribute a GUI to usability,
not security.

3. FedNet Manager
The FM processes the input the user provided via the GUI concerning
FedNets. During this process the FM can generate and sign policies
and certificates. The FM can retrieve, update and store these policies
and certificates in the WebDAV repository. The FM in the prototype
incorporates the FM and FA functionality as described in Section 9.2.7.
Whereas the FM should provide automated management, we will mock
its behaviour in the prototype. We will manually configure and place
the FedNet certificates and policies on the relevant local file systems.

4. WebDAV
We have chosen WebDAV to store and retrieve certificates and policies.
A distributed WebDAV implementation in a FedNet might look like
Figure 9.14.

Figure 9.14: Distributed WebDAV Repository.

WebDAV is an extension to the HyperText Transfer Protocol (HTTP)
1.1 protocol. On the server side WebDAV can be enabled by simply
adding the module to the webserver, which is available for several web-
servers. A client does not need the extension to retrieve information

9.4. Prototype 99

for the server, it is only needed to write something to the server. The
automated and secure storage on a WebDAV server is removed from
the prototype in favor of other components’ implementation as our
time is limited.

When retrieval fails the returned error code can be used to determine
how to proceed.

5. PERMIS
In Section 4.6 PERMIS was chosen for its extensive authorization
mechanisms that can be used for each end every action a user performs.
In our prototype we will use PERMIS in a simple sharing setting to
test PERMIS usability in FedNets.

PERMIS is opensource and at the time of writing it has been integrated
with several applications. In fact for some applications there is no need
to write any code as PERMIS is already embedded in them. All you
need to do is download and install PERMIS along with [101]::

• Globus Toolkit (v3.3 onwards); PERMIS authorization can con-
trol access to Grid Services.

• Apache; PERMIS authorization can protect web sites.

• Shibboleth;. PERMIS authorization can be combined with Shib-
boleth’s Single Sign-On to provide policy driven fine grained role
based access controls within federations.

• .Net; PERMIS authorization can be combined with Microsoft .Net
to authorize web services.

• Python; PERMIS authorization can be called from Python to
provide the access controls for Python programs.

As we want to use PERMIS in conjunction with strongSwan we will
have to integrate these applications.

We installed openjdk-6-jdk in order to be able to compile and run java
classes.

6. strongSwan
strongSwan performs the gateway functionality. In Chapter 5 we de-
cided to use the EAP-IKEv2 protocol, but did not choose which imple-
mentation to use. StrongSwan is our implementation of choice. It is
open source and is actively maintained. At the time of writing the avail-
able version is compatible with: the IKEv2 [73] protocol, the Mobility
and Multihoming Protocol (MOBIKE)[36] protocol, strong AES en-
cryption, ECDH and ECDSA protocols [76], relaying EAP messages to
AAA servers, multiple IKEv2 authentication exchanges [37], X.509 cer-
tificate based authentication, group policies based on X.509 attribute

100 Chapter 9. Design and Implementation.

certificates [40], OCSP[91], retrieval and local caching of CRLs via
HTTP or LDAP and much more [2]. In other words it has almost all
of what we need.
Most importantly strongSwan lacks support of EAP-IKEv2. This is
mitigated by the lack of available AAA servers that support EAP-IKEv2
and the usage of PERMIS instead of an AAA server. Therefore we will
use the IKEv2 protocol instead. The authentication is not longer done
by the AAA server, yet performed by the gateway. PERMIS will still
perform the authorization.
We adapt strongSwan to be able to perform certificate status request
using a WebDAV server and to perform a PERMIS check.

7. AAA
In the end we have chosen AAA as the ACA to base our solution
on. When we started our work there was no AAA implementation
available to support EAP-IKEv2. We omit the AAA architecture in
our prototype in favor of proving that our suggested additions and
criteria can work together.

8. Prototype
Our prototype consists of one system running strongSwan PERMIS
and Apache and one running strongSwan only. Both systems run a
SSH deamon for test setup automation. Each strongSwan instance
has the necessary signed certificates to establish a connection, the cor-
responding keys and configuration in its own directory on the local
filesystem in directory X. Permis has the policy file and the attribute
certificates in its own directory on the local filesystem in a different di-
rectory Y. WebDAV is not actually used, as Apache impersonates the
WebDAV server and all the files are created before testing and stored
in the local file system. For proof of concept the retrieval without mak-
ing use of the WebDAV protocol in a seperate directory Z. Figure 9.15
depicts these prototype components. The GUI, FM, AAA and shared
service components are ommitted in the prototype.

Figure 9.15: Prototype components.

Aside from the ommited components, compared to Figure 9.14 the pro-
totype consolidates several sevices on one host. the components that
haGUI, FM, AAA and shared service components are ommitted in the
prototype.

9.5. Summary 101

9.5 Summary

In this chapter we combined the conclusions of the previous chapters and
proposed a framework for secure access control in the context of a FedNet
and have shown how this matches to the FedNet architecture.

We also provided our prototype architecture. For the prototype we omit
an AAA implementation, adapt strongSwan so that it can perform the im-
proved certificate revocation check and use PERMIS for authorization. The
policy editor that comes with PERMIS is used as GUI and certificates will
be generated via command line. In the prototype there is no automated FM
that provides these files, instead these files will be manually put on local file
systems.

Chapter 10
Prototype Evaluation

This chapter presents analysis of the prototype.
Section 10.1 discussed functional testing. Section 10.2 presents perfor-

mance measurements of our prototype. Section 10.3 reflects on extensions
of the platform with new components such as sensors, actuator and personal
devices. Section 10.4 reflects on scalability with regard to new applications.
Finally, we summarize our findings in Section 10.5.

10.1 Functional Testing

This section presents the functionality testing of the prototype. The func-
tionality tests will accomplish to test the functionality of the components in-
troduced in Section 9.4. Authentication (strongSwan), authorization (PERMIS)
and certificate revocation (WebDAV) are presented in Sections 10.1.1, 10.1.2
and 10.1.3 respectively.

10.1.1 Authentication

With regard to the impact of our modifications to strongSwan on the func-
tionality of the authentication of strongSwan, we looked at how the prototype
behaves in the following cases:

• Compatibility with non adapted strongSwan, i.e. do the changes made
to strongSwan result in unexpected behavior.

Due to time limitation we omitted testing:

• Changing IP (mobike).

We verified that a modified version of strongSwan works in conjunction
with a unmodified one.

103

104 Chapter 10. Prototype Evaluation.

10.1.2 Authorization

With regard to the impact of our modifications to strongSwan for autho-
rization on the functionality of strongSwan, we looked at how the prototype
behaves in the following cases:

• Compatibility with non adapted strongSwan, i.e. do the changes made
to strongSwan result in unexpected behavior.

• Check wether certificates are susceptible to different order of argu-
ments, case sensitive, spaces.

• Check wether it accepts valid certificates and reject invalid ones.

Due to time limitation we omitted testing:

• Changing IP (mobike).

• Delegated authorization (chained certificate).

We found that a server that incorporates our modifications is compatible
with a non adapted client. The extra messages that are introduced will
be displayed as a number instead of a the human readable version that a
modified strongSwan will show.

We found that an invalid certificate results in the expected error mes-
sage during connection setup. After the IKE_SA_INIT phase, during the
IKE_AUTH phase and before the CREATE_CHILD_SA phase of the con-
nection setup, an authentication failed message will be send and the connec-
tion will be terminated. No child security association will be created.

10.1.3 Certificate Revocation

With regard to the impact of our modifications to strongSwan on the func-
tionality of the certificate revocation checking, we examined the following:

• Compatibility with non adapted strongSwan, i.e. do the changes made
to strongSwan result in unexpected behavior.

• Check how strongSwan handles the OCSP WebDAV handle when it
cannot connect (connection denied)

• Check how strongSwan handles the OCSP WebDAV handle when it
should be OK

• Check how strongSwan handles the OCSPWebDAV handle when wrong
server is set (retrieved trivial reply)

• Check how strongSwan handles the OCSP WebDAV handle when the
certificate is revoked

10.2. Prototype Performance 105

• Changing IP (mobike)

The introduced WebDAV revocation check only works for those systems that
have the modification. strongSwan systems that do not have the modifica-
tion, or configured it to not perform WebDAV, will parse the certificate and
attempt to perform a regular OCSP status request. When no OCSP server
is registered at the Uniform Resource Locator (URL), strongSwan falls back
to normal certificate checking as were there no OCSP info available.

When the WebDAV modification is available and turned on and the cer-
tificate is valid, we found that if the WebDAV server is unavailable for any
reason, strongSwan returns an authorization failed error to the initiator and
terminates the connection.

When the WebDAV modification is available and turned on and the cer-
tificate is valid, we found that when the WebDAV grants authorization,
strongSwan returns a authentication granted reply as designed.

We found that when the certificate is revoked, strongSwan does not per-
form a WebDAV authorization check. As the certificate is invalid, the pro-
cess of setting up a connection is terminated before it gets to the point of
WebDAV checking.

10.2 Prototype Performance

This section presents the performance testing of our prototype. The goal
of this section is to provide an insight of the performance behavior of our
prototype. To this end several experiments are conducted and presented.

To simulate the resource scarce environment in which the architecture is
to be used, a resource constrained device is used possessing less performance
then that of a PDA such as described in scenario 1.1. As this device turned
out to be too resource-constrained to perform all experiments we were forced
to perform some of the experiments on the more resourceful system only.

Our main interest lies in the performance in terms of latency. We de-
termine the impact on this performance measures by examining the influ-
ence that the AAA subprocesses, background load, used hardware and used
communication medium have. To that end we conducted and present the
following experiments:

1. Provide a baseline using unmodified strongSwan clients. This experi-
ment is presented in Section 10.2.2.

2. The impact of authentication, authorization and certificate revocation
status checking on latency. How do the different elements of our pro-
totype affect the performance? This experiment is presented in Sub-
section 10.2.3.

106 Chapter 10. Prototype Evaluation.

3. The impact of server hardware on latency. How will performance of
the prototype be effected when different server hardware is used. This
experiment is presented in Subsection 10.2.4.

10.2.1 General Experiment Setup

All experiments are run on two devices: a client that initiates the connection
and a server that is the responder to the connection request.

To this end, we have three devices at our disposal.

1. A wireless router, a Linksys WRTGSv1.0, running at 200 MHz (Broad-
com BCM4712 RISC), 8 MB flash and 32 MB RAM. We use this as
our resource constrained device.

2. Host A, a quad core system running at 2.8 GHz (Intel Core i7 860), 8
GB RAM and a 320 GB HDD. The resource rich device.

3. Host B, a single core system, running at 2.2 GHz (AMD 3200+), 512
MB RAM and a 640 GB HDD. An average resourceful system.

More detailed descriptions of the systems with regard to hardware and run-
ning processes are presented in Appendix C.

For all experiments a wired LAN connection is used to minimize potential
interference. In all experiments we used a prefabricated 50 centimeter long
category 5e UTP cable.

Figure 10.1: Example Test Setup

Figure 10.1 portraits a example setup where host A is connected to the
WAN-port of the wireless router by means of a network cable. The wireless
connection of the router is not used.

10.2.1.1 Assumptions

The following assumptions apply for all experiments. It is assumed that:

• Federations are provided beforehand — I.e., the necessary certificates
and policies are already in place.

10.2. Prototype Performance 107

• All connections attempts should be accepted by the prototype.

• Requests are generated based on a Poisson process. Therefore inter-
generation time follows an exponential distribution.

• The wireless router is a PDA like device qua performance.

• The NIC is set to run fast ethernet (IEEE 802.3u, 100BASE-TX) or
gigabit ethernet (IEEE 802.3ab, 1000BASE-T) in full duplex mode
(IEEE 802.3x).

10.2.1.2 Performance Parameters

The following performance parameters apply for all experiments:

• Working threads: By default, strongSwan is configured to use 16 work-
ing threads. We configured strongSwan to use 64 threads as our vig-
orous testing proved too much for strongSwan1.

• Connection medium: a 50 centimeter long prefabricated category 5e
UTP cable.

• Load: The amount of requests generated on average per second.

• Background server load: The percentage of CPU utilization on the
server that is not related to activities under test.

• Authorization: Authorization checking can be configured in our proto-
type.

• OCSP: Certificate status checking can be configured in our prototype.

• CRLs: strongSwanwill have no CRLs to check against.

10.2.1.3 Performance Measures

We define the following performance measures:

• Latency: The time it takes for a client request to be accepted, as seen
by the client from the moment of request initiation. This latency in-
cludes authentication and depending on the experiment might include
authorization and / or a certificate revocation status check.

• Total latency: When the Latency described above includes authenti-
cation, authorization and certificate revocation status checking we use
the term Total Latency.

1Tobias Brunner kindly provided a patch that made vigorous testing possible at all.

108 Chapter 10. Prototype Evaluation.

• Authentication latency: The time it takes for a client for a request to be
accepted, as seen by the client from the moment of request initiation.
The request only entails an authentication check; authorization and
certificate revocation checking is omitted.

• Authorization latency: The time it takes for a client for a request to
be accepted, as seen by the client from the moment of request initia-
tion. This request is checked by the server for both authentication and
authorization. As the authentication cannot be omitted, the measure-
ment of authentication alone is subtracted from the measurement of
authentication and authorization combined to derive the added latency
due to authorization.

• Combined Authentication and Revocation latency: The time it takes
for a client for a request to be accepted, as seen by the client from the
moment of request initiation. This request is checked by the server for
both authentication and certificate revocation status check.

10.2.2 Experiment 1: Baseline (Non-Modified) System Total
Latency

The goal of this set of experiments is to provide a baseline for comparison
to the modified version of strongSwan.

Setup and Common Settings In Section 10.2.1 we presented assump-
tions that apply to all the experiments as well as performance parameters
and performance measures. This section states the setup and the additional
performance parameters that apply to experiment 1.

The authentication latency is measured by using a strongSwanversion
that is as pure as possible.

Performance Parameters Additional to the performance parameters pre-
sented in Section 10.2.1 the following parameters apply for the experiments
in this section:

• Host A is used as client.

• Host B is used as server.

• The background load of both client and server is minimized.

• Experiments are performed under different amounts of load.

To minimize interference the used devices are only connected to each
other. Figure 10.2 displays the setup of experiment 1.

10.2. Prototype Performance 109

Figure 10.2: Experiment 1 Setup

Performance Measures The following performance measures apply for
this subexperiment:

• Total latency as described in Section 10.2.1.3

Approach We compile strongSwan with none of the additional modifica-
tions, except for the patch provided by Tobias Brunner2 We compile using a
minimal set of compile options in which openssl is included for ECC support.

We will use the same certificates as for the other experiments, meaning
that the certificates contain a reference to an OCSP server — Host B. As
there is no actual OCSP service running on Host B, the verification attempts
will fail and strongSwan will default to normal certificate validation checking
using CRLs.

In order to get representative results the latency is measured by repeating
the following steps:

1. Increase the load.

2. Restart the involved programs, strongSwan, Apache and or PERMIS,
on both systems.

3. For a amount of time, being six minutes, do:

(a) Based on the load initiate requests. The intervals between the re-
quest are generated using a exponential time distribution. These
requests are in essence federations and are chosen every time in
the same order from the set of preconfigured federations to allow
for better comparison.

(b) Each of these initiated connections is measured using the Portable
Operating-System Interface (POSIX) ‘time’ command at the ini-
tiating client.

2During our experiments we found that our rigorous testing caused a deadlock by
starvation. Tobias Brunner kindly supplied a patch allowing for configuration of the
relevant resource.

110 Chapter 10. Prototype Evaluation.

(c) Save the results for later analysis.

We choose a 360 second duration for testing to allow for a warmup phase
of 120 seconds, getting enough results to analyze and limit the total test
time. Even with the limited duration of 360 seconds and taking any other
factors out of the picture, such as human configuration error, performing all
the tests in this Chapter result in about a week of lead time.

Results Of each load — i.e. number of initiated connection request per
second on average, exponentially distributed — we calculate the average
connection time. To this end we disregard any connections initiated in the
first two minutes to allow the system to warm up. The connections that have
been initiated but are not connected yet are disregarded too. This average
is calculated over each of the ten reruns of this experiment. As these ten
reruns have a different seed for the exponential distribution generation we
can calculate a confidence interval over these averages, which are presented
in Appendix D.1. Figure 10.3 shows the average total latency results versus
load (number of initiated connections per second) when the baseline (non-
modified) system was used.

Figure 10.3: Experiment 1: Average Total Latency for Baseline (non-
Modified) System

Figure 10.3 shows a significant increase in latency time starting at 4 con-
nections per second, meaning that at around four connections per second
the system starts to overload. For the experiment using 256 bits certificates
33741 connections were successfully initiated in the allotted timeframe and
none timed out. For the experiment using 521 bits certificates 33158 con-
nections were successfully initiated in the allotted timeframe and 232 timed
out. Upon further inspection of the test results we discovered that all these
timeouts occurred at five initiated connections per second.

10.2. Prototype Performance 111

10.2.3 Experiment 2: Authentication, Authorization, and
Certificate Revocation of Modified System.

The goal of this set of experiments is to determine the impact on the la-
tency by the authentication, authorization, revocation functionalities and
used keystrenght on the prototype. To that end four subexperiments are
performed. Section 10.2.3 presents the setup and common setting for all
the subexperiments. Section 10.2.3.1 presents the authentication latency
subexperiment. Section 10.2.3.2 presents the authorization latency subex-
periment. Section 10.2.3.3 presents the certificate revocation latency subex-
periment. Finally Section 10.2.3.4 presents the total latency and different
keystrenghts.

Setup and Common Settings In Section 10.2.1 we presented assump-
tions that apply to all the experiments as well as performance parameters and
performance measures. This section states the setup and the performance
parameters that apply to the set of experiments in Section 10.2.3.

Performance Parameters Additional to the performance parameters pre-
sented in Section 10.2.1 the following parameters apply for all the experi-
ments presented in Section 10.2.3:

• Host A is used as client.

• Host B is used as server.

• The background load of both client and server is minimized.

• Experiments are performed under different amounts of load.

To minimize interference the used devices are only connected to each
other. This experiment uses the same setup as experiment 1, see Figure
10.2.

10.2.3.1 Experiment 2.1: Authentication Latency

Our modifications to strongSwan are configurable and can be turned of.
By configuring the server not to perform authorization and not to check for
certificate revocation status, it only performs authentication — which cannot
be turned off . We use this to measure authentication latency.

Performance Measures The following performance measures apply for
this subexperiment:

• Authentication latency as described in Section 10.2.1.3

112 Chapter 10. Prototype Evaluation.

Approach This subexperiment will use the same approach as experiment
1, presented in the Section 10.2.2.

Results Of each load — i.e. number of initiated connection request per
second on average, exponentially distributed — we calculate the average
connection time. To this end we disregard any connections initiated in the
first two minutes to allow the system to warm up. The connections that have
been initiated but are not connected yet are disregarded too. This average
is calculated over each of the ten reruns of this experiment. As these ten
reruns have a different seed for the exponential distribution generation we
can calculate a confidence interval over these averages, which are presented
in Appendix D.2.1. Figure 10.4 shows the average authentication latency
results versus load (number of initiated connections per second) when the
modified system was used.

Figure 10.4: Experiment 2.1: Average Authentication Latency for Modified
System

Like in the previous experiment, Figure 10.4 shows a significant increase
in latency time starting at 4 connections per second.

For the experiment using 256 bits certificates 33368 connections were
successfully initiated in the allotted timeframe and 142 timed out. For the
experiment using 521 bits certificates 32819 connections were successfully
initiated in the allotted timeframe and 671 timed out. Upon further investi-
gation we found that all these timeouts occurred at five initiated connections
per second.

10.2.3.2 Experiment 2.2: Authorization Latency

In our prototype, the authorization process takes place during the authen-
tication handshake. Therefore the impact of the authorization can only be

10.2. Prototype Performance 113

determined by subtracting the previously measured authentication latency
from the combined latency of the authentication and authorization processes.

Performance Measures The following performance measures apply for
this subexperiment:

• Authorization latency as described in Section 10.2.1.3

Approach The server is configured to perform authorization and not to
perform certificate revocation status checking. It therefore performs authen-
tication and authorization without revocation checking. measurements are
taken using the same approach as stated in Section 10.2.2. The differenti-
ation of this measurement with the previous one, measuring authentication
latency, is used to determine the impact of the authorization.

Results We intended to run this experiment using one to five initiating
connections per second, however the resulting system overload forced us to
use different values. As a result we limited this experiment to go to two
initiating connections per second, using smaller intervals.

Of each load — i.e. number of initiated connection request per second
on average, exponentially distributed — we calculate the average connection
time. To this end we disregard any connections initiated in the first two
minutes to allow the system to warm up. The connections that have been
initiated but are not connected yet are disregarded too. This average is
calculated over each of the ten reruns of this experiment. As these ten
reruns have a different seed for the exponential distribution generation we
can calculate a confidence interval over these averages, which are presented
in Appendix D.2.2.

Figure 10.5 shows the average Authorization latency results versus load
(number of initiated connections per second) for the situation that the en-
cryption algorithm uses 256 bits long certificates and when the Modified
system is used. The curve labelled as authent-author-ecc256 shows the mea-
sured average values of the composed authentication + authorization latency
for the situation that the encryption algorithm uses 256 bits long certificates.
The curve labelled as authent-ecc256 shows the measured average values of
the authentication latency for the situation that the encryption algorithm
uses 256 bits long certificates. The curve author-ecc256 depicts the difference
between the curve authent-author-ecc256 and the curve authent-ecc256.

Figure 10.6 shows the average authorization latency results versus load
(number of initiated connections per second) for the situation that the en-
cryption algorithm uses 521 bits long certificates and when the modified
system is used. The curve labelled as authent-author-ecc521 shows the mea-
sured average values of the composed authentication + authorization latency
for the situation that the encryption algorithm uses 521 bits long certificates.

114 Chapter 10. Prototype Evaluation.

Figure 10.5: Experiment 2.2: Average Authorization Latency for Modified
System when 256 Bits Certificates Are Used

The curve labelled as authent-ecc521 shows the measured average values of
the Authentication latency for the situation that the encryption algorithm
uses 521 bits long certificates. The curve author-ecc521 depicts the difference
between the curve authent-author-ecc521 and the curve authent-ecc521.

Figure 10.6: Experiment 2.2: Average Authorization Latency for Modified
System when 521 Bits Certificates Are Used

Figure 10.7 shows the average Authorization latency results versus load
(number of initiated connections per second) when the Modified system is
used.

Figure 10.7 shows a significant increase in latency time starting at around
1.75 connections per second. The added authorization results in a system in
overload at two connections per seconds comparable to five connections per
second without authorization. Meaning that the modification for improved

10.2. Prototype Performance 115

Figure 10.7: Experiment 2.2: Average Authorization Latency for Modified
System

authorization has significant impact on performance. For the experiment us-
ing 256 bits certificates 20607 connections were successfully initiated in the
allotted timeframe and 1 timed out. For the experiment using 521 bits certifi-
cates 20521 connections were successfully initiated in the allotted timeframe
and 101 timed out. Upon further inspection of the test results we discovered
that all these timeouts occurred at two initiated connections per second.

We intended to set out the results from this experiment against those
of Section 10.2.3.1. Due to the significant impact on the performance we
were forced to change the parameters for this experiment and rerun Expe-
riment 2.1 to be able to compare the measurements in order to derive the
authorization latency.

10.2.3.3 Experiment 2.3: Combined Authentication and Revoca-
tion Latency

In the prototype the certificate revocation status check takes place during
the authorization and replaces part of strongSwan’s code. Therefore, unlike
Experiment 10.2.3.2, the impact of the certificate revocation checking latency
alone cannot be determined by comparing the combined latency for authen-
tication and revocation with the latency for authentication only obtained in
Experiment 10.2.3.1.

Performance Measures The following performance measures apply for
this subexperiment:

• Revocation latency as described in Section 10.2.1.3

116 Chapter 10. Prototype Evaluation.

Approach The server is configured to perform certificate revocation check-
ing and not to perform authorization. It therefore performs authentication
and certificate revocation checking without authorization. We measure this
using the same approach as stated in Section 10.2.3.1. The differentiation of
these measurements with the previous measurements of the authentication
latency is used to determine the impact of the certificate revocation check.

For this experiment we use the same approach as stated in Section 10.2.2.

Results Of each load — i.e. number of initiated connection request per
second on average, exponentially distributed — we calculate the average
connection time. To this end we disregard any connections initiated in the
first two minutes to allow the system to warm up. The connections that have
been initiated but are not connected yet are disregarded too. This average
is calculated over each of the ten reruns of this experiment. As these ten
reruns have a different seed for the exponential distribution generation we
can calculate a confidence interval over these averages, which are presented
in Appendix D.2.2.

Figure 10.8 shows the average combined authentication and revocation
latency results versus load (number of initiated connections per second) when
the modified system is used. The curve labelled as authent-revocation-ecc256
shows the measured average values of the combined authentication + revo-
cation check latency for the situation that the encryption algorithm uses
256 bits long certificates. The curve labelled as authent-revocation-ecc521
shows the measured average values of the of the composed Authentication
+ Revocation check latency for the situation that the encryption algorithm
uses 521 bits long certificates.

Figure 10.8: Experiment 2.3: Average Combined Authentication and Revo-
cation Latency for Modified System

Figure 10.8 shows that at five initiated connections per second, the la-

10.2. Prototype Performance 117

tency does not increase as much as is the case in Experiment 1 and 2.1.
This suggests that the improved certification checking actually decreases the
connection latency.

In this experiment using 256 bits certificates 35166 connections were suc-
cessfully initiated in the allotted timeframe and none timed out. Using 521
bits certificates 35159 connections were successfully initiated in the allotted
timeframe and none timed out.

10.2.3.4 Experiment 2.4: Total latency

The total latency is determined by measuring whilst the prototype performs
authentication, authorization and certificate revocation status checking.

Performance Measures The following performance measures apply for
this subexperiment:

• Total latency as described in Section 10.2.1.3

Approach The server is configured to perform authorization and certifi-
cate revocation checking. It therefore performs authentication, authoriza-
tion and certificate revocation checking. We measure this using the same
approach as stated in Section 10.2.3.1. Also we perform the experiment for
different key strengths. Again the WebDAV plug-in does not use SSL.

Results Of each load — i.e. number of initiated connection request per
second on average, exponentially distributed — we calculate the average
connection time. To this end we disregard any connections initiated in the
first two minutes to allow the system to warm up. The connections that have
been initiated but are not connected yet are disregarded too. This average
is calculated over each of the ten reruns of this experiment. As these ten
reruns have a different seed for the exponential distribution generation we
can calculate a confidence interval over these averages, which are presented
in Appendix D.2.4.

Figure 10.9 compares the average Total latency results versus load (num-
ber of initiated connections per second) when (1) the Basic (non-modified)
and the Modified systems are used and (2) the encryption uses 256 and 521
bits long certificates.

Experiment 2.2 showed that the authorization has a significant increase
on the latency. As this effect outweighs the performance benefit of the revo-
cation checking improvement, we again had to adjust our testing parameters.

Figure 10.9 shows a significant increase in latency time starting at 1.5
connections per second. Meaning that the modification for improved autho-
rization has significant impact on performance. In this experiment, using 256
bits certificates 20620, connections were successfully initiated in the allotted

118 Chapter 10. Prototype Evaluation.

Figure 10.9: Experiment 2.4: Average Total Latency for Basic and Modified
Systems

timeframe and 32 timed out. Using 521 bits certificates, 20555 connections
were successfully initiated in the allotted timeframe and 117 timed out.

All the times out connections were at two initiated connections per sec-
ond, when the system was overloaded.

10.2.3.5 Throughput

Throughput, or the amount of connections the system handles per second is,
is another performance measure. At the performance ceiling of this measure,
the point where more connections are initiated than can be handled by the
system, the average latency increases as the strongSwan client retries con-
necting to the server. Therefore Figure 10.9 gives a strong indication on the
performance ceiling — or if you will, maximum throughput — of the baseline
and modified version. For the unmodified version the maximum throughput
is somewhere between four and five connections per second. For the mod-
ified version the maximum throughput is between 1.5 and 1.75 connection
per second. The previous sections have shown that the extra authorization is
to blame for this significant decrease in performance as the revocation status
checking actually improved the throughput.

10.2.4 Experiment 3: The Impact of Different Hardware

The goal of this experiment is to determine in which way the used hardware
influences performance of the prototype. Like Experiment 2.4 this experi-
ment only focuses on the total latency.

We intended to run both the WebDAV and PERMIS server on the WRT
device. Due to time limitations and resource constraints that proved to strict
for this, we opted to omit these.

10.3. Extendability 119

10.3 Extendability

Other devices can make use of the PERMIS engine as long as they are able
to connect to the reasoning engine and support querying it. The policies
can be enriched to incorporate such devices. We opt for this approach over a
proxy that evaluates actions. First and foremost because our approach allows
for gradual improvement of fine-grained and context aware authorization.
Secondly a proxy would require extra communications due of the intended
actions, which is undesirable in a wireless environment.

10.4 New Applications

New applications that integrated in our framework need to be adapted in
order to be able to enforce the policy. In its simplest form the gateway allows
or disallows connectivity, providing no extra fine-grained authorization in the
application. In the next maturity level the application needs to query the
PERMIS engine for those actions that it cannot resolve itself. Even more
mature would be an application that contains a (partial) PERMIS engine.

10.5 Summary

Our prototype showed that the modifications had impact on the performance
of strongSwan. When turned off, these modifications had a slight adverse
affect on performance compared to an unmodified version. The PERMIS
modification proved to have a significant negative effect on the performance.
The improved revocation checking had a significant positive effect on the per-
formance. The negative effect on PERMIS outweighs that of the WebDAV-
based revocation checking, though this is based on retrieval via HTTP rather
than HTTPS.

At some experiments connections unexpectedly timed out. These were
caused by the system being in an overloaded state.

Chapter 11
Conclusions and Further Work

We present our conclusions in regard to the research questions and present
further work next.

11.1 Conclusions

Our main research goal of this thesis is Specification, design and implemen-
tation of a scalable and refined access control architecture for a federation of
personal networks that provides a high degree of security and privacy. We
have specified, designed and prototyped a security architecture that is, has
a refined access control mechanism and is applicable in the field of Personal
Networks, though is not scalable. To that end we first refined a suitable
authentication protocol in Chapter 5 and have shown that the EAP-IKEv2
protocol is the best suitable authentication protocol to fit this context. For
lack of an AAA implementation supporting EAP-IKEv2 we used the IKEv2
protocol without an AAA implementation in our prototype. We investigated
possible ciphersuites and have shown that ECDH, ECDSA, AES and SHA-2
combine the best suitable ciphersuite in Chapter 6. We looked at suitable
credential providers in Chapter 7 and recommend WebDAV. We looked at
several policy languages in Chapter 8 and found that PERMIS is up to the
task. We combined these into one architecture in Chapter 9 and derived a
prototype. In Chapter 10 we evaluated this prototype and concluded that
PERMIS has a drastic negative effect on performance that outweigh the
benefits of the improved revocation checking.

In regard to the research question Refine a suitable authentication proto-
col to work in the suggested framework, we looked at eight EAP compatible
protocols and based on 19 criteria we concluded that the EAP-IKEv2 pro-
tocol suits best. Noteworthy is that non of the protocols met one criteria:
true server-initiated re-authentication.

In regard to the research question Investigate and select suitable cipher

121

122 Chapter 11. Conclusions and Further Work.

suites to be used within the suggested framework, we stated requirements,
compared relative key strengths and mentioned broken ciphers. Taking these
security requirements and resource constrained devices into account , we
found ECDH, ECDSA, AES and SHA-2 to be best suitable. These are in
line with the NSA suite B recommendations.

In regard to the research question Refine a credential provider to work
within the suggested framework, we looked at 11 ways to store and retrieve
certificates. After first examination five of these were set out against six
requirements that we set out. Of these five WebDAV proved best suitable.

In regard to the research question Refine a suitable policy language to
work in the suggested framework, we found literature on this topic which led
us to PERMIS.

In regard to the research question Develop an experimental system (pro-
totype) that demonstrates the basic principles, we have used and adapted
strongSwan to work in conjunction with PERMIS and perform the improved
revocation status check. We have determined that the strongSwan can run on
a resource constraint device and by during this process gave the strongSwan
integration on the OpenWrt platform a boost.

In regard to Study the scalability of the solution taking into account, we
analyzed performance of our prototype using different parameters. Autho-
rization had a drastic negative impact on performance. The improved revo-
cation checking mechanism had a positive impact on performance. We have
successfully tested our prototype on a resource constrained device, proving
that our framework can work in resource constrained environments. During
which we discovered that CPU performance has significant impact on con-
nection set up time. We found that strongSwan does not scale very well in
our baseline. Note though, that we did not use the high availability mode
of strongSwan. A newer version of strongSwan, tweaking options or using a
different IKEv2 engine might increase performance. Also the used PERMIS
solution did not scale well. As this is programmed in Java, a port might
increase performance. Our solutions allows for gradual implementation of
components and applications, allowing the maturity level to be incremental.

11.2 Further Work

We created a prototype to prove several concepts. A prototype by definition
is not mature enough for daily needs, and therefore needs to be enhanced.
We note the following

Retesting. Our test setup introduced unforeseen anomalies into our test
results, i.e. connection failures. These issue need to be addressed after which
the prototype should be retested. Adding experiments that using a wireless
medium would be interesting to look at, as would experiments in a congested
network.

11.2. Further Work 123

Privacy policies. Privacy in this work is focused on identity privacy.
However when the concept of FedNets becomes widespread with commercial
applications, such as third party service providers, it becomes necessary to
state the purposes of collecting data, the intent of data requesters and any
additional enterprise customized data subjects’ constraints [87].

Context awareness. The concept of FedNets allows for a context aware
environment. To fully use the context awareness, access control needs to in-
corporate context – such as location – into its decision making [144]. Keeping
privacy in mind [120, 119, 70]. [9] describes such a Location-Based Access
Control (LBAC) using GSM/Third Generation (3G) technologies.

Security levels. We assumed only one security level. Literature, such
as [93], suggests multiple levels of security. This, along with better context
awareness should be added to the prototype.

EAP-IKEv2. For our prototype we used IKEv2 instead of EAP-IKEv2.
To use EAP-IKEv2 as specified in our architecture strongSwan and RADIUS
or Diameter need to be adapted to support EAP-IKEv2.

AAA. A EAP-IKEv2 supporting AAA implementation needs to be made
that supports PERMIS for authorization.

strongSwan. Although strongSwan does support EAP to work with
RADIUS, strongSwan needs to be adapted to facilitate EAP-IKEv2 in con-
junction with either RADIUS or Diameter. strongSwan did not scale well in
our experiments. strongSwan is being actively developed, using a newer ver-
sion or fiddling with strongSwan’s configuration parameters might provide
better scalability.

Alternative IKEv2 engine As strongSwan did not scale well in our proto-
type. Wether other engines perform better in the context given in this thesis
is unclear.

WebDAV. strongSwan pulls the certificate from the WebDAV server us-
ing plain HTTP. A method that has proved to be more faster than regular
certificate checking. How retrieval using HTTPS affects performance has yet
to be determined.
Our prototype does not provide a mechanism that creates the certificates and
stores those on a WebDAV server as suggested in the architecture we pro-
posed. Ideally, to prevent collisions on a highly populated WebDAV server,
the referring URL should be in the form of http://urlbase/c=<countrycode>
/o=<orgname>/cn=<commonname>/serialNumber=<number>.extension. This
requires adaptation of the prototype.

PERMIS. In our prototype, the PERMIS engine uses the local filesystem
to store its ACs. PERMIS is also capable of using LDAP and WebDAV for
storing and retrieval of the ACs. PERMIS showed to have significant impact
on the performance of the prototype. Optimization of PERMIS, such as
compiling to a more efficient language then Java, should be investigated
further before PERMIS can be considered inadequate for the task.

Performance optimization. Our prototype has been build as proof of

http://urlbase/c=<countrycode>/o=<org name>/cn=<common name>/serialNumber=<number>.extension
http://urlbase/c=<countrycode>/o=<org name>/cn=<common name>/serialNumber=<number>.extension

124 Chapter 11. Conclusions and Further Work.

concept. Thus the code that we have written could very well be optimized
for better performance.

Algorithms. Algorithms that are more lightweight and still secure could
be integrated in our architecture as they arise and deemed proven in the field.
More so when hardware-encryption-support in wireless portable devices be-
comes more widespread. [17] could be a possible candidate to replace AES
in that case.

Android. Smartphones have become increasingly popular and powerful.
There are even models available that have a dual core CPU running up to
1.5GHz. As strongSwan has been ported to Android, an OS for smartphones
and the like, adapting our prototype to run on Android would bring it closer
to the intended usage.

Appendix A
Acronyms

In this document the following acronyms were used:

2TDEA Two key Triple DES

3DES Tripple-DES a.k.a. TDEA

3G Third Generation

3TDEA Three key Triple-DES

AA Attribute Authority

AAA Authentication, Authorization and Accounting

AAAA Authentication, Authorization, Accounting and Auditing

ABAC Attribute Based Access Control

AC Access Control

ACA Access Control Architecture

ACL Access Control List

ACM Access Control and Management Framework

AES Advanced Encryption Standard

AKA Authentication and Key Agreement

AP Access Point

API Application Programming Interface

ARPANET Advanced Research Projects Agency NETwork

125

126 Appendix A. Acronyms.

AS Authentication Server

ASM Application Specific Module

ASN.1 Abstract Syntax Notation One

AVP Attribute Value Pair

BER Basic Encoding Rules

BSK Body Sensor Kit

BSN Body Sensor Network

CA Certificate Authority

CASM Context Aware Security Manager

CPU Central Processing Unit

CHAP Challenge-Handshake Authentication Protocol

CI Confidence Interval

CIS Credential Issuing Service

CRL Certificate Revocation List

CRS Certificate Revocation Status

CSCF Serving Call Session Control Function

DAC Discretionary Access Control

DACS Design and Analysis of Communication Systems

DDR Double Data Rate

DER Distinguished Encoding Rules

DES Data Encryption Standard

DH Diffie Hellman

DNS Domain Name System

DRM Digital Rights Management

DSS Digital Signature Standard

EAP Extensible Authentication Protocol

127

EAP-AKA EAP-Method for 3rd Generation Authentication and Key
Agreement

EAP-IKEv2 EAP-Internet Key Exchange Protocol version 2

EAP-FAST EAP-Flexible Authentication via Secure Tunneling

EAP-GTC EAP-(Generic Token Card

EAP-MSCHAP EAP-MicroSoft Challenge Handshake Authentication
Protocol

EAP-PSK EAP-Pre-Shared Key Extensible Authentication Protocol

EAP-TLS EAP-Transport Layer Security

EAP-TTLS EAP-Tunneled Transport Layer Security

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EEMCS Electrical Engineering, Mathematics and Computer Science

EIST Enhanced Intel SpeedStep Technology

EMSK Extended Master Session Key

EPD Electronic Patient Dossier

FA FedNet Agent

FAP FedNet Access Policy

FedNet Federated Personal Network

FFC Finite Field Cryptography

FM FedNet Manager

FSB Front Side Bus

GNU GNU’s Not Unix!

GSM Global Sytem for Mobile Communications

GUI Graphical User Interface

GW Gateway

128 Appendix A. Acronyms.

HAVAL One-Way Hashing Algorithm with Variable Length of Output

HDD Hard Disk Drive

HN Home Network

HPC High Performance Computing

HLR Home Location Register

HSS The Home Subscriber Server

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

IEEE Institute of Electrical & Electronics Engineers

IETF Internet Engineering Task Force

IFC Integer Factorization Cryptography

IKE Internet Key Exchange

IMS IP Multimedia Subsystem

IP Internet Protocol

IPsec IP security

ISIM IP Multimedia Services Identity Module

ISM Industrial, Scientific and Medical

ISP Internet Service Provider

JDK Java Development Kit

JRE Java Runtime Environment

LAN Local Area Network

LBAC Location-Based Access Control

LDAP Lightweight Directory Access Protocol

LQA Link Quality Assessment

MAC Mandatory Access Control

MAC Medium Access Control

129

MAC Message Authentication Code

MAGNET My personal Adaptive Global NET

MAKE Mutual Authentication with Key Exchange

MD4 Message Digest Algorithm 4

MD5 Message Digest Algorithm 5

MIPS Microprocessor without Interlocked Pipeline Stages

MOBIKE Mobility and Multihoming Protocol

MSCHAP MicroSoft Challenge Handshake Authentication Protocol

MSK Master Session Key

NAS Network Access Server

NAT Network Address Translation

NIC Network Interface Card

NIST National Institute of Standards and Technology

NSA National Security Agency

OCSP Online Certificate Status Protocol

OS Operating System

P2P Peer-to-Peer

PAN Personal Area Network

PAP Password Authentication Protocol

PDA Personal Digital Assistant

PDP Policy Decision Point

PEAP Protected Extensible Authentication Protocol

PEP Policy Enforcement Point

PIP Policy Information Point

PERMIS PrivilEge and Role Management Infrastructure Standards

PKC Public Key Certificate

PKI Public Key Infrastructure

130 Appendix A. Acronyms.

PN Personal Network

PN-F Personal Network Federation

PNP2008 Personal Network Pilot 2008

PNCP Personal Network Clustering Protocol

PNPA PN Provisioning Administration

PNPP PN Provisioning Party

POSIX Portable Operating-System Interface

PPP Point to Point Protocol

PRP Policy Retrieval Point

PSK Pre-Shared Key

PSP PlayStation Portable

P-PAN Private Personal Area Network

QoS Quality of Service

RADIUS Remote Authentication Dial In User Service

RAM Random Access Memory

RBAC Role Based Access Control

RC4 Ron’s Code 4

RC5 Rivest Cipher 5

RIPEMD Race Integrity Primitives Evaluation Message Digest

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RSA Ron Rivest, Adi Shamir and Leonard Adleman

SA Security Association

SAML Security Assertions Markup Language

SAP Service Access Policy

SATA Serial Advanced Technology Attachment

SCMF Secure Context Management Framework

131

SCS Service Context Service

SD Service Discovery

SDRAM Synchronous Dynamic Random Access Memory

SGT Service Granting Ticket

SHA Secure Hash Algorithm

SIM Subscriber Identity Module

SIP Session Initiation Protocol

SMN Service Management Node

SOA Source of Authority

SP Service Proxy

SSH Secure Shell

SSL Secure Socket Layer

S-CSCF Serving CSCF

TCP Transmission Control Protocol

TDEA Triple Data Encryption Algorithm a.k.a. 3DES

TGS Ticket Granting Server

TGT Ticket Granting Ticket

TLS Transport Layer Security

TTLS Tunneled Transport Layer Security

UA User Agent

UDP User Datagram Protocol

UE User Equipment

UICC Universal Integrated Circuit Card

UMTS Universal Mobile Telecommunications System

URL Uniform Resource Locator

USA United States of America

USIM Universal Subscriber Identity Module

132 Appendix A. Acronyms.

UTP Unshielded Twisted Pair

VITRUVIUS Versatile Interface for TRUstworthy VItal User (oriented)
Services

VO Virtual Organization

VoIP Voice over IP

VPN Virtual Private Network

WAN Wide Area Network

WebDAV Web-based Distributed Authoring and Versioning

WEP Wired Equivalent Privacy

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

TI-WMC Twente Institute for Wireless and Mobile Communications
B.V.

WRT Wireless Receiver/Transmitter

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

Appendix B
Reproducing the Results

This chapter guides one trough the necessary steps to recreate our results.
Section B.1 states the steps needed to create a platform from which the

results can be recreated. Section B.2 describes how to create a WRT image.
In Section B.3 application installation Section B.4 relevant configuration files
of the applications are given. In Section B.5 we give instructions on how to
run the code.

B.1 Environment Setup

This section states the necessary steps we had to perform after installing a
clean Ubuntu 10.04 machine in order to get the software we need to compile
and run the various tasks.

B.1.1 Ubuntu

We use Ubuntu as a platform for cross compiling. Also our test setup con-
tains computers running on Ubuntu. Explanation on the installation of
Ubuntu is beyond the scope of this document. Ubuntu has an active com-
munity that might prove helpful if any problems are encountered during base
installation.

Note that we used Ubuntu 10.04.3 LTS. To upgrade to the latest distri-
bution first run:

sudo apt-get update
sudo apt-get upgrade-distro

To update applications on the system:

sudo apt-get update
sudo apt-get upgrade

133

134 Appendix B. Reproducing the Results.

B.1.2 OpenWrt

This subsection explains the necessary steps to be able to crosscompile an
image for a wireless router.

We need subversion to download OpenWrt with the OpenWrt build en-
vironment as we need to make changes to the default settings.

sudo apt-get install subversion

We create and subsequently enter a directory in which we are going to
store and run the crosscompile platform. We use openwrt/trunk in the users
home directory in this example.

mkdir ~/openwrt
cd ~/openwrt
mkdir trunk
cd trunk

Next we retrieve the platform:

svn co svn://svn.openwrt.org/openwrt/trunk/ .

Now we can run

make menuconfig

and the make script checks for its requirements and reports back if any are
missing, in our case:

Build dependency: Please install the GNU C Compiler (gcc).
Build dependency: Please install the GNU C++ Compiler (g++).
Build dependency: Please install ncurses. (Missing libncurses.so
or ncurses.h)

Build dependency: Please install zlib. (Missing libz.so or zlib.h)
Build dependency: Please install GNU awk.
Build dependency: Please install flex.
Build dependency: Please install unzip.

To install the missing software one can use to following commands:

sudo apt-get install gcc
sudo apt-get install g++
sudo apt-get install libncurses-dev
sudo apt-get install zlib1g-dev
sudo apt-get install gawk
sudo apt-get install flex
sudo apt-get install unzip

B.2. Creating the OpenWrtImage 135

B.1.3 Java

Java is needed to run the PERMIS reasoning engine. A Java Runtime En-
vironment (JRE) will suffice for this purpose. To compile self written java
source code to java classes a Java Development Kit (JDK) is needed instead.

To install the JRE on Gentoo run:

sudo apt-get install gcj-jre

To install the JDK on Gentoo run:

sudo apt-get install sun-java6-jdk

Note that the JRE jamvm that can be used to run java on OpenWrt does
not support the sun java classes, use the GNU Compiler for java instead:

sudo apt-get install gcj-jdk

B.2 Creating the OpenWrtImage

In S ection B.1 we have prepared a system for crosscompiling. In this section
we state the necessary steps and configurations to recreate our crosscompiled
wireless router image.

We enter the the crosscompile directory and check for any updates:

cd ~/openwrt/trunk
svn co svn://svn.openwrt.org/openwrt/trunk/ .

For reproducing our build, use

svn co -r 28611 svn://svn.openwrt.org/openwrt/trunk/ .’

instead. Now we have the latest crosscompiling platform ready to use. How-
ever these do not include the most recent changed packages created for this
platform. To update these we run the command:

scripts/feeds update

Next we install several packages we need:

scripts/feeds install openssl
scripts/feeds install ntpclient
scripts/feeds install libcurl
scripts/feeds install lighttpd-mod-webdav
scripts/feeds install libpcre

136 Appendix B. Reproducing the Results.

We have created our own strongSwan package. Although our work has
been integrated and is available as a package via OpenWrt’s platform, this
might be different than our version. To recreate our results use the package
provided in Appendix F.1.

We create a symbolic link in the crosscompile platform. This makes the
package available for the platform:

cd ~/openwrt/trunk/package
ln -s ./../../package_strongswan-4.5.3-beus

To minimize its footprint the openssl package provided does not include
Elliptic Curve Cryptography (ECC). To enable ECC we need to configure
the openssl Makefile by removing the ’no-ec’ option. The following com-
mands will do this, however will break the Makefile if the option is not
encountered:

cd ~/openwrt/trunk/package/openssl
vi Makefile
/no-ec
3dw
:wq

We need to configure the makefile using for the cross compilation. This
is done using a Graphical User Interface (GUI) provided with the platform.
To start the GUI run:

cd ~/openwrt/trunk
make menuconfig

Select the correct Target System, we used ’Broadcom BCM947xx/953xx’.
Be sure not to select a 2.4 variant as our prototype depends on a 2.6 kernel.

Next Select Image configuration and set ’LAN IP Address’ to a value that
works for you, e.g. 192.168.2.1. Go back to the main menu. Enter Network
and in that, VPN, enter ’strongswan 4’ and select strongswan4-beus. This
will automatically select several needed options.

To create the actual WRT image run:

cd ~/openwrt/trunk
make

This will take some time. More so the first time, when it has compile
the entire build environment. As indication, we advice lunch over a cup of
coffee at this point. . .

B.3 Application Installation

This section installation of the used components.

B.3. Application Installation 137

B.3.1 OpenWrt

To install the created WRT image we on the wireless router the following
steps need to be performed.

The needed image depends on wether the device is running the original
stock software or a custom firmware such as we intend to install now. The
’ /trunk/bin/brcm47xx/’ directory contains several images. The image to
use depends on wether the router is running stock or non-stock firmware.
The only .trx file can be used when the router is already running OpenWrt.
When the router is still running stock the .bin file corresponding to the
routers make and model needs to be used.

There are several ways to flash the new image to the router. The first and
most simple method is to use the web-interface of the router and perform a
firmware upgrade.

The second method is less straightforward. This usually does not work
by default on stock ROM, however it does by default on OpenWrt images.
Note the username you are currently working with and the IP address of
the machine you build the image. Open a terminal connection to the router
using either telnet or SSH. If a password had not yet been set you can only
login using telnet. If a password has been set, login as root using a SSH
client.

Using this terminal Copy the image to the router:

scp USERNAME@WORKSTATION_IP:/home/USERNAME/trunk/bin/brcm47xx/\
openwrt-brcm47xx-squashfs.trx /tmp

Flash the router using the image:

mtd -r write /tmp/openwrt-brcm47xx-squashfs.trx linux

If mtd has not been installed you can do so using the commands:

opkg update
opkg install mtd

The router will reboot automatically. SSH might not work afterwards. This
can be resolved by using telnet and setting a password.

To make the compiled packages available to the router copy the /home-
/USER/trunk/bin/brcm47xx/packages directory to a HTTP server accessi-
ble by the router. E.g. http://192.168.1.134/packages

We again open a terminal session to the router. Next we run the following
commands to install several packages:

mkdir /etc/opkg
echo "src my-pkgs http://192.168.1.134/packages" >> /etc/opkg.conf
opkg update
opkg install ntpclient
ntpclient -h 0.openwrt.pool.ntp.org -p 123 -s

138 Appendix B. Reproducing the Results.

Depending on which packages to install on the router the following commands
are neccesarry:

opkg install strongswan

B.3.2 WebDAV

How to install WebDAV on unix systems is widely documented online, e.g.
[129]. This section explains how to install WebDAV on OpenWrt.

To make sure that the latest version is available we update the repository:

opkg update

Next lighttpd and the WebDAV module gets installed by running the
command:

opkg install lighttpd-mod-webdav

B.3.3 Java

In Appendix B.1.3 we explained how to install Java on Ubuntu. This section
explains how to install Java on OpenWrt.

To load the available packages and to check for any updates we update
the repository:

opkg update

Next we install the lightweight Java engine jamvm:

opkg install jamvm

We used jamvm version 1.5.4. Note that this is based on GNU classpath
Java class library and Java 1.5.

Jamvm depends on the classpath java library. Our wireless router proved
to resource constrained to be able to store this. As workarounds for this
problem would defeat our purpose of running java on this device. Therefor
we choose not to pursue this further and run java on a regular system in
our tests instead. [71] provides useful steps to trim down the classpath base
print, effectively cutting down on (unnecessary) functionality, if one is to
attempt to run jamvm on an OpenWrt device.

B.3.4 strongSwan

During generation of the router image strongSwan is included. However
strongSwan can run on any Unix system. This subsection explains how to
compile strongSwan for such systems.

First retrieve the tarball from http://download.strongswan.org, e.g.
based on version 4.5.3:

http://download.strongswan.org

B.3. Application Installation 139

wget http://download.strongswan.org/strongswan-4.5.3.tar.bz2

Next extract the tarball:

tar -xvvf strongswan-4.5.3.tar.bz2

Enter the directory gerenerated during this process:

cd strongswan-4.5.3

At this point patches can be applied to make any necessary changes
before compilation. For example, to apply the changes of our prototype on
the 4.5.3 build of strongSwan run the following command:

patch -p1 -i /PATH/TO/205-strongswan-conf-4.5.3-mod-beus-v04.patch

Note that this patch is likely incompatible with other strongSwan versions
and break the functionality of that version!

Configure the options. For all the options consult [125]. For experiment
one we used the following options:

./configure --enable-openssl

For experiment two we used the following options:

./configure --build=i486-linux-gnu --disable-nls\
--disable-ipv6 --with-random-device=/dev/random\
--with-urandom-device=/dev/urandom --enable\
-curl --disable-aes --disable-des --disable-md5 \
--disable-sha1 --disable-sha2 --disable-fips-prf \
--disable-gmp --disable-pubkey --disable-pluto \
--disable-tools --enable-openssl --with-routing-\
table-prio=220 --with-routing-table=220 --disable-static

Compile the source with these options by running the command:

make

If any dependencies are missing make will report this. Installing the
package(s) as in Section B.1 will solve this. In addition we needed the fol-
lowing:

sudo apt-get install libcurl4-openssl-dev

After make successfully compiles we can install strongSwan using the
following command:

sudo make install

Removing the package from the system is performed likewise, simply run
from the same directory:

sudo make uninstall

140 Appendix B. Reproducing the Results.

B.4 Configuration

This section details configurations for the used applications.

B.4.1 strongSwan

The configuration of strongSwan itself is stored in /etc/strongswan.conf on
OpenWrt and /usr/local/etc/strongswan.conf on Ubuntu. This file contains
global strongSwan options only, the individual connections are stored in a
different configuration file.

On OpenWrt we configure strongSwan to perform authorization and cer-
tificate revocation:

Listing B.1: strongswan.conf
/etc/strongswan.conf - strongSwan configuration file

charon {
reuse_ikesa = no
threads = 64
block_threshold = 100
cookie_threshold = 100
half_open_timeout = 165

plugins {
stroke {

max_concurrent = 16
}
permis {

enable = TRUE
servername = 192.168.1.134
port = 5010

}
webdav {

enable = TRUE
timeout = 5

}
}

}

The load command specifies which plugins strongSwan should start. Un-
commenting this will cause strongSwan to try to load all plugins.

Change the servername value to the machine on which the local PERMIS
server is running. Note that this config file is very strict on white space usage
and that any unmodified version of PERMIS will ignore these settings.

On the initiating side, one would check for authorization to connect to
another PN before attempting the connection. Therefore our prototype only
checks for WebDAV authorization when being the responding entity. Al-
though it would make sense for the initiating entity to check the responders
certificate revocation status, we omit this so that compatibility with a nor-
mal strongSwan installation can be determined. We configure the initiator
side of strongSwan not to perform authorization and revocation checking:

B.4. Configuration 141

Listing B.2: stronfswan.conf
/etc/strongswan.conf - strongSwan configuration file

charon {
reuse_ikesa = no
threads = 64
block_threshold = 100
cookie_threshold = 100
half_open_timeout = 165

plugins {
stroke {

max_concurrent = 16
}
permis {

enable = FALSE
servername = 192.168.1.134
port = 5010

}
webdav {

enable = FALSE
timeout = 5

}
}

}

For more configuration options see [124].

B.4.2 HTTPD/Apache/WebDAV

We did not use WebDAV functionality in our prototype. For retrieval, an
out-of-the-box HTTP server will suffice.

B.4.3 PERMIS

We provide the policy we created using the GUI provided with PERMIS.

Listing B.3: policy.xml
<?xml version="1.0" encoding="UTF -8"?>
<X.509 _PMI_RBAC_Policy OID="test01">

<SubjectPolicy >
<SubjectDomainSpec ID="Anywhere">

<Include LDAPDN=""/>
</SubjectDomainSpec >

</SubjectPolicy >
<RoleHierarchyPolicy >

<RoleSpec OID="1.2.826.0.1.3344810.1.1.14" Type="permisRole">
<SupRole Value="a">

<SubRole Value="b"/>
</SupRole >
<SupRole Value="b">

<SubRole Value="c"/>
</SupRole >
<SupRole Value="c"/>

</RoleSpec >
</RoleHierarchyPolicy >
<SOAPolicy >

<SOASpec ID="Anyone" LDAPDN=""/>

142 Appendix B. Reproducing the Results.

</SOAPolicy >
<RoleAssignmentPolicy >

<RoleAssignment ID="RoleAssignment1">
<SubjectDomain ID="Anywhere"/>
<RoleList >

<Role Type="permisRole"/>
</RoleList >
<Delegate Depth="0"/>
<SOA ID="Anyone"/>
<Validity/>

</RoleAssignment >
</RoleAssignmentPolicy >
<TargetPolicy >

<TargetDomainSpec ID="http ://www.test.com/test01">
<Include URL="http ://www.test.com/test01"/>

</TargetDomainSpec >
<TargetDomainSpec ID="http ://www.test.com/test02">

<Include URL="http ://www.test.com/test02"/>
</TargetDomainSpec >
<TargetDomainSpec ID="http ://www.test.com/test03">

<Include URL="http ://www.test.com/test03"/>
</TargetDomainSpec >

</TargetPolicy >
<ActionPolicy >

<Action Name="OPTIONS" ID="OPTIONS"/>
<Action Name="GET" ID="GET"/>
<Action Name="HEAD" ID="HEAD"/>
<Action Name="POST" ID="POST"/>
<Action Name="PUT" ID="PUT"/>
<Action Name="DELETE" ID="DELETE"/>
<Action Name="TRACE" ID="TRACE"/>
<Action Name="CONNECT" ID="CONNECT"/>

</ActionPolicy >
<TargetAccessPolicy >

<TargetAccess ID="TargetAccess1">
<RoleList >

<Role Type="permisRole" Value="b"/>
</RoleList >
<TargetList >

<Target >
<TargetDomain ID="http ://www.test.com/test01"/>
<AllowedAction ID="CONNECT"/>

</Target >
</TargetList >
<IF>

<AND >
<GT>

<Environment Parameter="time" Type="Time"/>
<Constant Type="Time" Value="*-*-*T12 :00:00"/>

</GT>
</AND >

</IF>
</TargetAccess >
<TargetAccess ID="TargetAccess2">

<RoleList >
<Role Type="permisRole" Value="c"/>

</RoleList >
<TargetList >

<Target >
<TargetDomain ID="http ://www.test.com/test01"/>
<AllowedAction ID="CONNECT"/>

</Target >

B.5. Running the Code 143

</TargetList >
<IF>

<AND >
<LT>

<Environment Parameter="time" Type="Time"/>
<Constant Type="Time" Value="*-*-*T12 :00:00"/>

</LT>
</AND >

</IF>
</TargetAccess >
<TargetAccess ID="TargetAccess3">

<RoleList >
<Role Type="permisRole" Value="a"/>

</RoleList >
<TargetList >

<Target >
<TargetDomain ID="http ://www.test.com/test01"/>
<AllowedAction ID="CONNECT"/>

</Target >
</TargetList >
<IF>

<AND >
<GT>

<Environment Parameter="time" Type="Time"/>
<Constant Type="Time" Value="*-*-*T12 :00:00"/>

</GT>
</AND >

</IF>
</TargetAccess >

</TargetAccessPolicy >
</X.509 _PMI_RBAC_Policy >

B.5 Running the Code

This section explains how to start the components of our prototype.

B.5.1 OpenWrt

We explained how to create a OpenWrt image file in Section B.2, how to
install this image in and strongSwan in Section B.3 and how to configure
strongSwan in Section B.4. Before we start strongSwan we need to perform
one more step.

By default the OpenWrt software implements a firewall that blocks all
incoming traffic on the WAN connection. The IKE protocol implemented
in strongSwan makes use of UDP port 500 and 4500 and these need to be
let trough in order for strongSwan to work properly. We open the SSH port
also, allowing our test script to access the router remotely.

echo "
allow ssh from wan, needed for experiment.
config rule

option src wan
option dest_port 22

144 Appendix B. Reproducing the Results.

option target ACCEPT
option proto tcp

allow IPsec/ESP and ISAKMP
config rule

option src wan
option protocol esp
option target ACCEPT

allow ike
config rule

option src wan
option dest_port 500
option proto udp
option target ACCEPT

">> /etc/config/firewall

/etc/init.d/firewall restart

Next we can start, as user root, strongSwan by running the command:

ipsec start

strongSwan is now ready to be used on this host.

B.5.2 Java

Assuming a JRE is set up correctly and PERMIS has attribute certificates
along with the policy in place, we can start the PERMIS server.

To start the PERMIS server run the following command:

java -cp .:pba5_0_1.jar:include/* PermisServer

To run the Java PERMIS server on the OpenWrt machine run it with
the command:

jamvm -cp .:pba5_0_1.jar:include/* PermisServer

Note that this will not work if classpath is not installed properly on the
OpenWrt machine.

It might be necessary to compile the server java class using a different
JDK. To compile the PermisServer from Java source run the following on a
Ubuntu machine set up as described in Section B.1.3:

javac -cp pba5_0_1.jar PermisServer.java

Depending on the used JDK the command may differ.

B.5. Running the Code 145

B.5.3 Experiments

For the exponential generator, one might first need to run the following
command:

sudo apt-get install gsl-bin

We used the script given in Listings B.4, B.5 and B.6.

Listing B.4: performScriptSet.script
#!/ bin/bash

if [[$# -ne 1]]
then

echo "Usage: ‘basename $0‘ {arg}"
echo "where arg is the integer value of the test to perform"
exit

fi

#general settings
testID=$1
seconds =200
confidence_times =10
forStrength="256 521"
clientIP="192.168.1.134"
serverIP="192.168.1.135"

client=A
server=B
webdavHost=althor
clientHost=althor
permisHost=althor
prefix =/usr/local

if [[$testID == 1]] #baseline pc-pc
then

subTests =1
load=8
denominator =1
serverHost=beus
serverEth =3
count =1000 # number of certificates

elif [[$testID == 2]] # 1: baseline with mod , 2: permis , no webdav , 3:
no permis , webdav , 4: permis and webdav

then
subTests="1 2 3 4"
load =10
denominator =1
serverHost=beus
serverEth =3
count =1000 # number of certificates

elif [[$testID == 3]] # wrt device
then

subTests="1 2 3 4"
load =10
denominator =2
serverHost=wrt
serverEth =0

else
echo "test $testID not found , quitting .."

146 Appendix B. Reproducing the Results.

exit
fi

echo client:
ssh root@$clientHost "uname -a; ps aux; ifconfig; ethtool eth0"
echo server:
ssh root@$serverHost "uname -a; ps aux; ifconfig; ethtool eth${serverEth}"

for subtest in $subTests
do

#exception to the rule
#if [[$testID == 3]]
#then

#withouth patch 10 seconds is too short for wrt device to load all
certs

src/starter/invokecharon.c
#seconds =8
#load=4
#if [[$subtest == 2]] || [[$subtest == 4]]
#then
load=4
#fi

#fi
if [[($testID == 2) || ($testID == 3)]]
then

if [[($subtest == 2) || ($subtest == 4)]] #account for permis
delay

then
denominator=$((denominator * 2))

fi
fi

for strength in $forStrength
do

echo "##### Performing set -up for test ’${testID}’, for strength ’
${strength}’. #####"

#clear local conf
ssh root@$clientHost "rm ${prefix }/etc/ipsec.d/cacerts /* ;rm ${

prefix }/etc/ipsec.d/certs/* ;rm ${prefix }/etc/ipsec.d/private
/*;rm ${prefix }/etc/ipsec.conf;rm ${prefix }/etc/ipsec.secrets;
 rm ${prefix }/etc/strongswan.conf"

#clear remote conf
ssh root@$serverHost "rm ${prefix }/etc/ipsec.d/cacerts /* ;rm ${

prefix }/etc/ipsec.d/certs/* ;rm ${prefix }/etc/ipsec.d/private
/*;rm ${prefix }/etc/ipsec.conf;rm ${prefix }/etc/ipsec.secrets;
 rm ${prefix }/etc/strongswan.conf"

#clear webdav cache
if [$webdavHost = wrt]
then

ssh root@$webdavHost "rm /www/webdav/C\=NL/O\=WMC/*"
else

ssh root@$webdavHost "rm /var/www/webdav/C\=NL/O\=WMC/*"
fi

#copy certs and keys , wget is not secure , but faster than scp for
large numbers.

echo "WGETing certs and keys for host ${client }..."
ssh root@$clientHost "rm wget.in; for i in \$(seq 1 1 $count); do

echo http :// althor/tmp/host${client}_${strength}-\${i}_Key.pem

B.5. Running the Code 147

 >> wget.in; done ; wget --input -file=wget.in --directory -
prefix=${prefix }/etc/ipsec.d/private -q"

ssh root@$clientHost "rm wget.in; for i in \$(seq 1 1 $count); do
echo http :// althor/tmp/host${client}_SIGNED_BY_${server}
Cert${strength}-\${i}.der >> wget.in; done ; wget --input -
file=wget.in --directory -prefix=${prefix }/etc/ipsec.d/certs -q
"

echo "WGETing certs and keys for host ${server }..."
ssh root@$serverHost "rm wget.in; for i in \$(seq 1 1 $count); do

echo http :// althor/tmp/host${server}_${strength}-\${i}_Key.pem
 >> wget.in; done; wget --input -file=wget.in --directory -
prefix=${prefix }/etc/ipsec.d/private -q"

ssh root@$serverHost "rm wget.in; for i in \$(seq 1 1 $count);
do echo http :// althor/tmp/host${server}_SIGNED_BY_${client}
Cert${strength}-\${i}.der >> wget.in; done ; wget --input -
file=wget.in --directory -prefix=${prefix }/etc/ipsec.d/certs
-q"

#copy certs to webdav store
echo "copying certs into WebDAV store on host: ${webdavHost }..."
if [$webdavHost = wrt]
then # store @ althor

ssh root@$webdavHost "for y in ${strength };do for i in \$(
seq 1 1 $count); do wget http :// althor/tmp/host${
client}_SIGNED_BY_${server}_Cert_\${y}-\${i}.der -O /
www/webdav/C\=NL/O\=WMC/CN\=host${client }\${y}-\${i} -
q ;done;done"

else # wrt device uses different base dir
ssh root@$webdavHost "for y in ${strength };do for i in \$(

seq 1 1 $count); do wget http :// althor/tmp/host${
client}_SIGNED_BY_${server}_Cert_\${y}-\${i}.der -O /
var/www/webdav/C\=NL/O\=WMC/CN\=host${client }\${y}-\${
i} -q ;done;done"

fi

echo "installing root CA for client (host: ${client })..."
scp root@althor :/temp/host${client}_CA_${strength}_Key.pem root@${

clientHost }:${prefix }/etc/ipsec.d/private
scp root@althor :/temp/host${client}_CA_${strength}_Cert.der root@$

{clientHost }:${prefix }/etc/ipsec.d/cacerts
echo "installing root CA for server (host: ${server })..."
scp root@althor :/temp/host${server}_CA_${strength}_Key.pem root@${

serverHost }:${prefix }/etc/ipsec.d/private
scp root@althor :/temp/host${server}_CA_${strength}_Cert.der root@$

{serverHost }:${prefix }/etc/ipsec.d/cacerts

echo "generate and install client keyfile ..."
./ genIpsecSecrets.useArgs.script $client $strength $count > ipsec.

secrets
scp ./ipsec.secrets root@${clientHost }:${prefix }/etc/ipsec.secrets
cp ./ipsec.secrets ./log/ipsec.secrets.${testID}\-${client}${

strength}

echo "generate and install client ipsec.conf ..."
./ genIpsecConf.useArgs.script $client $strength $count $clientIP

$serverIP > ipsec.conf
scp ./ipsec.conf root@${clientHost }:${prefix }/etc/ipsec.conf
cp ./ipsec.conf ./log/ipsec.conf.${testID}\-${client}${strength}

echo "generate and install server keyfile ..."
./ genIpsecSecrets.useArgs.script $server $strength $count > ipsec.

secrets

148 Appendix B. Reproducing the Results.

scp ./ipsec.secrets root@${serverHost }:${prefix }/etc/ipsec.secrets
cp ./ipsec.secrets ./log/ipsec.secrets.${testID}\-${server}${

strength}

echo "generate and install server ipsec.conf ..."
./ genIpsecConf.useArgs.script $server $strength $count $clientIP

$serverIP > ipsec.conf
scp ./ipsec.conf root@${serverHost }:${prefix }/etc/ipsec.conf
cp ./ipsec.conf ./log/ipsec.conf.${testID}\-${server}${strength}

echo "installing client and server strongswan.conf ..."
scp ./ strongswan.conf.$testID.$subtest root@${serverHost }:${prefix

}/etc/strongswan.conf
scp ./ strongswan.conf.$testID.$subtest root@${clientHost }:${prefix

}/etc/strongswan.conf

logfile =./log/results.exp${testID }. sub$subtest.$strength
#do the test
echo "##### Running script test ’${testID}’, for strength ’${

strength}’, using ${count} certs/keys. #####"

1st arg: keystrength , i.e. 256, 384, 521
2nd arg: perform how many times , i.e. confidence level
3rd arg: seconds to run
4th arg: max load (connections per second)
5th arg: divider (actual tested load = 1/divider , 2/divder ,...

load)
6th arg: testID
7th arg: peer_host

echo time ./exp.useArgs.script $strength $confidence_times $seconds $load
$denominator exp${testID }.${subtest} $serverHost $webdavHost

$permisHost;

{ time ./exp.useArgs.script $strength $confidence_times $seconds
$load $denominator exp${testID }.${subtest} $serverHost
$webdavHost $permisHost; } > $logfile 2>&1

done
done

Listing B.5: exp.useArgs.script
#!/bin/bash

1st arg: keystrength , i.e. 256, 384, 521
2nd arg: perform how many times , i.e. confidence level
3rd arg: seconds to run
4th arg: max load (connections per second)
5th arg: denominator (actual tested load = 1/ denominator , 2/ denominator

,... load)
6th arg: testID
7th arg: peer_host
8th arg: webdavHost
9th arg: permisHost

confidence_times=$2
seconds_to_run=$3
denominator=$5
max_load=$[$4 * $denominator]
id=$6.
peer_host=$7
webdav_host=$8

B.5. Running the Code 149

permis_host=$9
base_conn_name="ecc"$1

sleepSecs =30

maxcount =1000
if [[testID :0:4 == exp3]] #router
then
maxcount =100
sleepSecs =60

fi

echo "This script requires password free access to root on"
echo "both the host and client machine to restart services."
echo "Be sure to have keys in place to allow for this."
echo
echo "This script expects configuration and certificates to be"
echo "in place. Parameters can be set by editing this script."
echo
echo "Running script with the following parameters:"
echo "- Iterate $confidence_times times for confidence interval."
echo "- Run each test for $seconds_to_run seconds."
echo "- Increase the load up to $max_load connections per second."
echo "- Remote peer host FQDN/ip = $peer_host."
echo "- certificate revocation host (webdav) = $webdav_host."
echo "- Strongswan is configured for connections $base_conn_name -#."
echo

--- initiate array of certs/federations ---
for ((i=1; i <= maxcount; i++))
do

connection[i]= $base_conn_name -$i
done

#running the actual test
for ((s=1; s <= confidence_times ; s++))
do

echo
echo "##### confidence run: $s #####"
echo maxload=$max_load
for ((load=1 ; load <= max_load ; load +=1))
do

actualLoad=$(echo "scale =8; $load/$denominator" | bc)

echo "### testing with load: $actualLoad ###"

echo "restarting java reasoning engine Permis , local
strongSwan , remote strongSwan and remote Apache
servers (in background)..."

ssh -n -f root@${permis_host} "sh -c \" killall java; sleep
 1; cd /home/beus/permis/sw4 .5.3 -10; nohup java -cp .:
pba5_0_1.jar:include /* PermisServer > /dev/null 2>&1
&\""

echo "# Restarting local strongSwan deamon ... "
ssh root@localhost "ipsec stop; sleep 3 ; killall -9

starter; killall -9 charon; sleep 1 ; rm -f /var/run/
starter.pid /var/run/charon.pid ; ipsec start"

echo "# Restarting remote strongSwan deamon ... "

150 Appendix B. Reproducing the Results.

ssh root@$peer_host "ipsec stop; sleep 3 ; killall -9
starter; killall -9 charon; sleep 1 ; rm -f /var/run/
starter.pid /var/run/charon.pid ; ipsec start"

echo "# Restarting webdav apache server ... "
if [$webdav_host = wrt]
then

ssh root@$webdav_host "/etc/init.d/lighttpd
restart"

else
ssh root@$webdav_host "/etc/init.d/apache2 restart

"
fi

#echo -n "(Re)shuffeling for randomness ..."
#note: see shuf man page on how to reproduce the results

of an earlier invocation
#connection =($(echo ${connection[@]} | tr " " "\n" | shuf

))
#echo " done."

echo -n "flushing caches."
ssh root@localhost "sync; echo 3 > /proc/sys/vm/

drop_caches"
echo -n .
ssh root@$webdav_host "sync; echo 3 > /proc/sys/vm/

drop_caches"
echo -n .
ssh root@$peer_host "sync; echo 3 > /proc/sys/vm/

drop_caches"
echo " done."

echo -n "jolting permis in background ..."
ssh -n -f root@$permis_host "cd /home/beus/permis /; java

TestServer \"C=NL, O=WMC , CN=hostA256 -999\" localhost;
 java TestServer \"CN=Jan Willem Beusink ,OU=student ,O=
WMC ,C=NL\" localhost > /dev/null"

#give ipsec some time to load all the certs and keys
echo "started in background"
echo "Waiting $sleepSecs seconds to allow for strongswan

to read the keys and certificates."
sleep $sleepSecs
echo "done sleeping"

mu=$(echo "scale =8;1/ $actualLoad" | bc)
i=0
echo "Starting launch of connections"
timeOffsetBase=$(date +"%s%N")
for interval in $(gsl -randist $s $(echo "scale =8; $load*

$seconds_to_run/$denominator"| bc) exponential $mu)
do

echo "sleeping: $interval"
sleep $interval
#launch initiation in background yet time it.
./ timeJob $id $s $actualLoad $i ipsec up ${

connection[$((i%maxcount +1))]}
$timeOffsetBase &

i=$(expr $i + 1)
done

B.5. Running the Code 151

wait #waiting for connections setups that run in
background to be done ...

done
done

echo
echo --- DONE ---
exit 0

Listing B.6: timeJob
#!/ bin/bash
#param1 = parent script name
#param2 = confidence run
#param3 = load (connections/second)
#param4 = the n’th -1 started job in this run
#param5 = command
#param6 = command arg 1
#param7 = command arg 2 (expected to be the identifier)
#param8 = time in ’date "%s%N"’ format when the very fist job started , i.e

. when this load cycle was initiated.
#param9 = background transfer speed kbit/s
echo "performing: $5 $6 $7"
a=$(date +"%s%N")
time $5 $6 $7 2>&1 > log/$1conf_run$2 -load$3 -conn$4 -$7
b=$(date +"%s%N")
c=‘expr $b - $a‘

#determine success status
found=$(ipsec status | grep $7{ | wc -l)
active=$(ps aux | grep timeJob | wc -l)
charonMem=$(ps aux | grep charon | grep use -syslog | awk ’{print $4}’)
#bring it down
time $5 down $7 2>&1 >> log/$1conf_run$2 -load$3 -conn$4 -$7

startedAfterNanosec=‘expr $a - $8‘

echo -e "script:$1\trun:$2\tload(conn/sec):$3\tjob #$4\tidentifier:$7\
tstarted after\t$startedAfterNanosec\tjob took:\t$c\tnanosec\tfound:
$found\tactive :\ t$active\tcharonMem% $charonMem"

Appendix C
Used hardware

This Appendix states the hardware used in our experiments. Table C.1 lists
the specifications of these machines.

Table C.1: Hardware used

Wireless router Host A Host B
CPU model Broadcom BCM4712 Intel Core i7-860 AMD Athlon 64

BCM3300 v0.7 3200+
CPU architecture MIPS32 Intel 64 (x86-64) AMD 64 (x86-64)
CPU cores 1 4 1
CPU threads 1 8 1
CPU speed 200 MHz 2.8 GHz 2.2 GHz

3.46 GHz (Turbo)
1.2 GHz (EIST)

CPU Bogomips 197.63 5596/core 4423
RAM type N/A DDR3-1333 SDRAM DDR1-400 SDRAM
RAM model N/A 2x Corsair XMS3 PQI DDR 400

N/A TW3X4G1333C9
RAM size 32 MB 8 GB 512 MB
RAM clock speed N/A 666.2 MHz (DDR) 201 MHz (DDR)
RAM configuration N/A Dual channel Single channel

4 banks occupied 1 bank occupied
Mainboard Linksys Gigabyte MSI K8N Neo3-F

WRT54GS v1.1 GA-P55M-UD4 (MS-7135 ver. 1)
BIOS: F11 BIOS: V1.7

FSB speed unknown 133 MHz 200 MHz
Storage type Flash memory SATA HDD SATA HDD
Storage model Intel TE28F640 Maxtor 6V320F0 Samsung HD642JJ
Storage quantity 8 MB 320 GB 640 GB
Network chip ADMtek 6996L RTL8111D NICs nVidia CK804 rev a3
Network speed 100 Mbit 1 Gbit 1 Gbit
OS OpenWrt Kubuntu Ubuntu Server Ed.
kernel version 3.0.3 2.6.32-37-generic 2.6.32-37-server
OS version trunk, rev 28611 10.04 10.04

packages: rev 28713

153

Appendix D
Confidence Intervals

This appendix presents confidence intervals corresponding to the means pre-
sented in Chapter 10.

These are based on 10 reruns using different seeds. Each run lasted 6
minutes of which the first 2 are disregarded. Connection attempts that timed
out after 47 seconds or had not finished at the time we stopped initiating
new requests are also disregarded in the calculations.

D.1 Experiment 1: Average Total Latency for Base-
line (non-modified) system

This section presents the confidence intervals corresponding with the means
presented in Subection 10.2.2.

Table D.1: Experiment 1.1: Confidence Intervals of Total
Latency when Using ECC256 Certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

1.00000000 0.294 0.0050 0.288 0.299
2.00000000 0.378 0.012 0.366 0.391
3.00000000 0.522 0.034 0.487 0.556
4.00000000 1.095 0.136 0.959 1.231
5.00000000 19.125 4.04 15.085 23.165

0 of 33741 connections during measurement window timed out.

155

156 Appendix D. Confidence Intervals.

Table D.2: Experiment 1.1: Confidence Intervals of Total
Latency when Using ECC521 Certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

1.00000000 0.318 0.0060 0.312 0.324
2.00000000 0.419 0.016 0.403 0.435
3.00000000 0.595 0.042 0.554 0.637
4.00000000 1.517 0.325 1.192 1.843
5.00000000 26.162 3.379 22.783 29.54

232 of 33158 connections during measurement window timed out.

D.2 Experiment 2: Authentication, Authorization
and Certificate Revocation of Modified System

This section presents the confidence intervals corresponding with the means
presented in Subection 10.2.3.

D.2.1 Experiment 2.1: Authentication Latency

Table D.3: Experiment 2.1: Average Authentication Latency
for Modified System when Using ECC256 Certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

1.00000000 0.306 0.0050 0.301 0.311
2.00000000 0.398 0.013 0.385 0.412
3.00000000 0.56 0.039 0.522 0.599
4.00000000 1.355 0.248 1.108 1.603
5.00000000 23.626 3.965 19.662 27.591

142 of 33368 connections during measurement window timed out.

Table D.4: Experiment 2.1: Average Authentication Latency
for Modified System when Using ECC521 Certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

1.00000000 0.336 0.0060 0.33 0.343
2.00000000 0.445 0.017 0.428 0.462
3.00000000 0.642 0.047 0.595 0.689
4.00000000 2.083 0.899 1.184 2.982
Continued on Next Page. . .

D.2. Experiment 2: Authentication, Authorization and Certificate
Revocation of Modified System 157

Table D.4: (continued)

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

5.00000000 29.609 2.748 26.862 32.357

671 of 32819 connections during measurement window timed out.
The experiment was rerun using smaller increments in load for compari-

son with other experiments. These results with confidence intervals are given
in table D.5 and D.6

Table D.5: Experiment 2.1: Average Authentication Latency
for Modified System when Using ECC256 Certificates and
Using Smaller Increments in Load.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

.25000000 0.194 0.0040 0.19 0.197

.50000000 0.198 0.0040 0.194 0.203

.75000000 0.204 0.0040 0.2 0.208
1.00000000 0.21 0.0030 0.206 0.213
1.25000000 0.219 0.0030 0.216 0.222
1.50000000 0.229 0.0040 0.224 0.233
1.75000000 0.239 0.0050 0.235 0.244
2.00000000 0.25 0.0050 0.245 0.256

0 of 21019 connections during measurement window timed out.

Table D.6: Experiment 2.1: Average Authentication Latency
for Modified System when Using ECC521 Certificates and
Using Smaller Increments in Load.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

.25000000 0.213 0.0030 0.21 0.215

.50000000 0.22 0.0050 0.215 0.224

.75000000 0.227 0.0030 0.224 0.231
1.00000000 0.233 0.0030 0.229 0.236
1.25000000 0.244 0.0040 0.24 0.248
1.50000000 0.257 0.0060 0.251 0.262
1.75000000 0.267 0.0070 0.261 0.274
2.00000000 0.282 0.0080 0.274 0.29

0 of 21016 connections during measurement window timed out.
Noteworthy is the difference between the values of Table D.3 and D.5,

and between Table D.4 and D.6. We expected a slight diffence due to the

158 Appendix D. Confidence Intervals.

randomness of the intervals, however not in the order of tens of procents. We
were unable to determine the cause, however note that the turbo property
of the CPU might be to blame.

D.2.2 Experiment 2.2: Authorization Latency

Table D.7: Experiment 2.2: Average Authorization Latency
for Modified System Using ECC256 Certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

.25000000 0.591 0.02 0.571 0.612

.50000000 0.667 0.033 0.634 0.7

.75000000 0.773 0.057 0.715 0.83
1.00000000 0.907 0.105 0.801 1.012
1.25000000 1.183 0.071 1.112 1.253
1.50000000 1.851 0.291 1.56 2.142
1.75000000 5.935 3.876 2.059 9.811
2.00000000 22.216 4.896 17.32 27.113

1 of 20607 connections during measurement window timed out.

Table D.8: Experiment 2.2: Average Authorization Latency
for Modified System Using ECC521 Certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

.25000000 0.608 0.021 0.587 0.628

.50000000 0.69 0.036 0.654 0.727

.75000000 0.802 0.068 0.734 0.87
1.00000000 0.938 0.107 0.832 1.045
1.25000000 1.241 0.07 1.171 1.311
1.50000000 2.12 0.613 1.507 2.732
1.75000000 6.984 3.907 3.077 10.892
2.00000000 24.847 4.687 20.161 29.534

1010 of 20521 connections during measurement window timed out.

D.2.3 Experiment 2.3: Certificate Revocation Check Latency

D.2. Experiment 2: Authentication, Authorization and Certificate
Revocation of Modified System 159

Table D.9: Experiment 2.3: Average Revocation Check La-
tency for Modified System using ECC256 certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

1.00000000 0.18 0.0030 0.177 0.182
2.00000000 0.204 0.0040 0.2 0.208
3.00000000 0.233 0.0070 0.226 0.24
4.00000000 0.283 0.012 0.272 0.295
5.00000000 0.371 0.026 0.345 0.397

0 of 35166 connections during measurement window timed out.

Table D.10: Experiment 2.3: Average Combined Authenti-
cation and Revocation Latency for Modified System Using
ECC521 Certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

1.00000000 0.2 0.0040 0.195 0.204
2.00000000 0.228 0.0040 0.225 0.232
3.00000000 0.267 0.0080 0.258 0.275
4.00000000 0.331 0.014 0.317 0.345
5.00000000 0.449 0.035 0.414 0.484

0 of 35149 connections during measurement window timed out.

Table D.11: Experiment 2.3: Average Combined Authenti-
cation and Revocation Latency for Modified System Using
ECC256 Certificates and Using Smaller Increments in Load.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

.25000000 0.167 0.0030 0.164 0.17

.50000000 0.171 0.0050 0.166 0.175

.75000000 0.175 0.0040 0.171 0.179
1.00000000 0.178 0.0030 0.176 0.181
1.25000000 0.183 0.0020 0.181 0.185
1.50000000 0.19 0.0030 0.187 0.193
1.75000000 0.195 0.0030 0.192 0.198
2.00000000 0.2 0.0030 0.198 0.203

0 of 21021 connections during measurement window timed out.

160 Appendix D. Confidence Intervals.

Table D.12: Experiment 2.3: Average Combined Authenti-
cation and Revocation Latency for Modified System Using
ECC521 Certificates and Using Smaller Increments in Load.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

.25000000 0.186 0.0030 0.183 0.189

.50000000 0.192 0.0040 0.188 0.195

.75000000 0.196 0.0020 0.193 0.198
1.00000000 0.2 0.0040 0.196 0.204
1.25000000 0.208 0.0030 0.205 0.211
1.50000000 0.215 0.0040 0.211 0.218
1.75000000 0.223 0.0050 0.218 0.228
2.00000000 0.23 0.0040 0.226 0.234

0 of 21020 connections during measurement window timed out.
Unlike Experiment 2.1 the results presented in Table D.9 and D.11, and

Table D.10 and D.12 are within the expected range of deviation due to the
used randomness of the experiments.

D.2.4 Experiment 2.4: Total Latency

Table D.13: Experiment 2.4: Average Total Latency for Mod-
ified System Using ECC256 Certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

.25000000 0.504 0.02 0.483 0.524

.50000000 0.574 0.034 0.54 0.608

.75000000 0.658 0.054 0.605 0.712
1.00000000 0.782 0.103 0.678 0.885
1.25000000 1.032 0.059 0.973 1.091
1.50000000 1.685 0.346 1.339 2.031
1.75000000 5.51 3.751 1.76 9.261
2.00000000 22.949 5.072 17.876 28.021

32 of 20620 connections during measurement window timed out.

Table D.14: Experiment 2.4: Average Total Latency for Mod-
ified System Using ECC521 Certificates.

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

.25000000 0.52 0.021 0.499 0.541
Continued on Next Page. . .

D.3. Experiment 3: The Impact of Different Hardware 161

Table D.14: (continued)

Load sample mean x̄ c s√
n

x̄− c s√
n

x̄ + c s√
n

.50000000 0.59 0.033 0.557 0.623

.75000000 0.688 0.06 0.628 0.748
1.00000000 0.811 0.104 0.707 0.915
1.25000000 1.079 0.068 1.012 1.147
1.50000000 1.894 0.452 1.443 2.346
1.75000000 7.423 4.268 3.155 11.692
2.00000000 24.84 4.817 20.024 29.657

117 of 20555 connections during measurement window timed out.

D.3 Experiment 3: The Impact of Different Hard-
ware

This section presents the confidence intervals corresponding with the means
presented in Subsection 10.2.4.

Omitted due to reasons stated in Subsection 10.2.4

Appendix E
Java Code

This appendix contains the java code we have written for the experiments.
This includes vital functionality of the prototype as well as tools automating
the setup and analisys of the experiments.

E.1 Policy Files

The PERMIS engine attribute certificates in conjunction with policies. Open
PERMIS supplies a GUI to generate such attribute certificates and a policy
editor to generate such policies. As we needed to use large numbers of such
attribute certificate we wrote a java program to facilitate command line
generation of these.

Note that this java file relies on severall packages that require a licence.
These are available free of charge for educational purposes.

Listing E.1: SignAttributeCertifice.java
/*
* Copyright (c) 2006-7, University of Kent
* All rights reserved.
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions are

met:
*
* Redistributions of source code must retain the above copyright notice ,

this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice

,
* this list of conditions and the following disclaimer in the

documentation
* and/or other materials provided with the distribution.
*
* 1. Neither the name of the University of Kent nor the names of its
* contributors may be used to endorse or promote products derived from

this

163

164 Appendix E. Java Code.

* software without specific prior written permission.
*
* 2. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "

AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO

,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.
*
* 3. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR
* CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE , DATA , OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
* CONTRACT , STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF

THE
* POSSIBILITY OF SUCH DAMAGE.
*
* 4. YOU AGREE THAT THE EXCLUSIONS IN PARAGRAPHS 2 AND 3 ABOVE ARE

REASONABLE
* IN THE CIRCUMSTANCES. IN PARTICULAR , YOU ACKNOWLEDGE (1) THAT THIS
* SOFTWARE HAS BEEN MADE AVAILABLE TO YOU FREE OF CHARGE , (2) THAT THIS
* SOFTWARE IS NOT "PRODUCT" QUALITY , BUT HAS BEEN PRODUCED BY A RESEARCH
* GROUP WHO DESIRE TO MAKE THIS SOFTWARE FREELY AVAILABLE TO PEOPLE WHO

WISH
* TO USE IT, AND (3) THAT BECAUSE THIS SOFTWARE IS NOT OF "PRODUCT"

QUALITY
* IT IS INEVITABLE THAT THERE WILL BE BUGS AND ERRORS , AND POSSIBLY MORE
* SERIOUS FAULTS , IN THIS SOFTWARE.
*
* 5. This license is governed , except to the extent that local laws
* necessarily apply , by the laws of England and Wales.
*/

import iaik.asn1.BIT_STRING;
import iaik.asn1.CodingException;
import iaik.asn1.DerCoder;
import iaik.asn1.ObjectID;
import iaik.asn1.structures.AlgorithmID;
import iaik.asn1.structures.Name;
import iaik.utils.RFC2253NameParser;
import iaik.utils.RFC2253NameParserException;
import iaik.x509.X509Certificate;

import issrg.ac.ACCreationException;
import issrg.ac.AttCertIssuer;
import issrg.ac.AttCertValidityPeriod;
import issrg.ac.AttCertVersion;
import issrg.ac.Attribute;
import issrg.ac.AttributeCertificate;
import issrg.ac.AttributeCertificateInfo;
import issrg.ac.AttributeValue;
import issrg.ac.Extension;
import issrg.ac.Extensions;
import issrg.ac.Generalized_Time;
import issrg.ac.Holder;
import issrg.ac.IssuerSerial;
import issrg.ac.ObjectDigestInfo;
import issrg.ac.Util;
import issrg.ac.V2Form;
import issrg.ac.attributes.PermisRole;

E.1. Policy Files 165

import issrg.ac.extensions.AttributeAuthorityInformationAccess;
import issrg.ac.extensions.AuthorityInformationAccess;
import issrg.ac.extensions.NoRevocation;
import issrg.acm.IllegalInputException;
import issrg.acm.SigningUtility;
import issrg.security.DefaultSecurity;
import issrg.security.PKCS12Security;
import issrg.security.SecurityException;
import issrg.utils.CreateAAIALocation;

import java.io.*;
import java.math.BigInteger;
import java.util .*;

import javax.security.auth.login.LoginException;

public class SignAttributeCertificate {

/**
* Simplified and stripped command line utility variant of the

Permis Attribute Certifate Manager.
* This will create a singned attribute certificate containing a

permisRole
*
* @param args [0] The pkcs12 file to sign the Attribute

Certificate
* @param args [1] The password of the pkcs12 file
* @param args [2] The subjects DN.
* @param args [3] Save AC as "".ace.
* @param args [4] = serialNumber
* @param args [5] = permisRole values separated by a comma
*/

public static void main(String args[]){
//debug
if (args.length == 1 && "test".equalsIgnoreCase(args [0])){

args = new String [6];
args [0]="/Users/jbeusink/Documents/workspace/afstudeerproject/

include/acm_5_0_1/permis.p12";
args [1]="l3tM3InNow";
args [2]="CN=hostB123 ,O=WMC ,C=NL";
args [3]="testAceFile";
args [4]="12345";
args [5]="a,c";

}
if (args.length != 6){

System.out.print("Usage: java -cp .:/acm.jar:./ include /*
SignAttributeCertificate " +
"signUsingFile.p12 p12Password subjectDN saveAsBaseName

serialnumber\n\n"+
"This class depends on the Permis acm library (which

uses the IAIK -jce library).\n"+
"Be sure to have downloaded these with the appropriate

licenses.");
System.exit (0);

}

new SignAttributeCertificate(args);
System.exit (0);

}

166 Appendix E. Java Code.

/**
* Class to create a simple attribute certificate

* @param args [0] The pkcs12 file to sign the Attribute Certificate
* @param args [1] The password of the pkcs12 file
* @param args [2] The subjects DN.
* @param args [3] Save AC as "".ace.
* @param args [4] = serialNumber
* @param args [5] = permisRole values separated by a comma

*/
public SignAttributeCertificate(String args []){

// Initialize
vars = new Hashtable ();
vars.put("AC.Version", AttCertVersion.V2.toString ());
// Holder Name
vars.put("AC.Holder.Name", args [2]);
// Serial number
vars.put("AC.SerialNumber", args [4]);
// Save to:
String saveTo = (args [3]. endsWith(".ace") ? args [3] : args [3] + ".

ace");
vars.put("AC.Save.FileName", saveTo);

// Validity Period From - To -- save as string.
Date validFrom = new Date(); // i.e. nowcalendar.getTime ();
calendar = new GregorianCalendar(TimeZone.getTimeZone("GMT"));
calendar.setTime(validFrom);
calendarFrom = (GregorianCalendar)calendar.clone();
calendar.add(Calendar.YEAR , 1);
calendarTo = (GregorianCalendar)calendar.clone();
Date validTo = calendar.getTime ();

String vt = "";
calendar.setTime(validFrom);
vt = Util.timeToString(calendar);
vt = (new StringBuilder(String.valueOf(vt))).append(";").toString

();
calendar.setTime(validTo);
vt = (new StringBuilder(String.valueOf(vt))).append(calendar).

toString ();
vars.put("AC.ValidityPeriod", vt);
//\\ end validity period

//Gui options:
vars.put("Build Version 2 AC", true);
jIssuerNameCheckBox = true;
jIssuerBCIDCheckBox = false;
chkWebdav = false;

// set attribute(s) ?stripped createASN1 call:
Vector attributes = new Vector ();

PermisRole role = new PermisRole(args [5]);

/* Class PrivilegeEditor
* public abstract String getOID ();
* public abstract String getName ();
* public abstract ASN1Type run(Frame frame , Map map , ASN1Type

asn1type , Registry registry)
* throws ACCreationException;
*/

// Instead of above; quick and dirty hack , hard coded OID:

E.1. Policy Files 167

try {
/* This would be the place to parse args [5] into separate roles

if more than one was being provided
* for example using a comma separated string. e.g.*/

String [] roles = args [5]. split(",");
for (int x = 0; x < roles.length; x++){

attributes.add(new Attribute("1.2.826.0.1.3344810.1.1.14",
new AttributeValue ((new PermisRole(roles[x])).

toASN1Object ())));
}

} catch (CodingException e1) {
System.err.println("error adding attribute , failed to convert

to ASN1Object");
e1.printStackTrace ();

}

vars.put("AC.Attributes", attributes);
// set extensions
//... none

// Issuer
vars.put("DefaultSecurity.LastFile",args [0]);
char [][] pws = new char [1][args [1]. length ()];
for (int i = 0 ; i < args [1]. length ();i++){

pws [0][i] = args [1]. charAt(i);
}
pws[0] = args [1]. toCharArray ();
vars.put("Passwords",pws);

//generate , sign and save:
try{

save(generateAC ());
}
catch(ACCreationException acce)
{

System.out.println("Errors saving: " + acce.getMessage ());
} catch (SecurityException e) {

// Auto -generated catch block
e.printStackTrace ();

} catch (LoginException e) {
// Login in to signingUtility (PKCS12Security) failed.
e.printStackTrace ();
System.err.println("Failed to log in: " + e.getMessage ().

toString ());

} catch (CodingException e) {
// Auto -generated catch block
e.printStackTrace ();

}

}

protected byte[] generateAC ()
throws ACCreationException , SecurityException , LoginException ,

CodingException
{

boolean v2wanted;
BigInteger ACSerialNumber;

168 Appendix E. Java Code.

AttCertValidityPeriod validity_period;
Vector attributes;
Holder holder;
RFC2253NameParser.register("SERIALNUMBER", ObjectID.serialNumber);
boolean v2allowed = true;
Object o;
v2wanted = (o = vars.get("Build Version 2 AC")) != null ? ((

Boolean)o).booleanValue () : false;
try
{

ACSerialNumber = new BigInteger ((String)vars.get("AC.
SerialNumber"), 16);

}
catch(NumberFormatException nfe)
{

try
{

ACSerialNumber = new BigInteger ((String)vars.get("AC.
SerialNumber"));

}
catch(NumberFormatException e)
{

throw new IllegalInputException("AC Serial Number must be
a valid Integer value");

}
}

ACSerialNumber = ACSerialNumber.abs();
if((String)vars.get("AC.Holder.Name") == "" && vars.get("AC.Holder

.ObjectDigestInfo") == null)
throw new IllegalInputException("Please specify one of the

optional parameters for the Holder");
if(! jIssuerNameCheckBox && !jIssuerBCIDCheckBox && v2allowed)

throw new IllegalInputException("Please select one of the
optional parameters for the Issuer for inclusion");

if(! jIssuerNameCheckBox && !v2allowed)
throw new IllegalInputException("Please select the name for

the Issuer for inclusion :\ nVersion 1 AC is enforced");

validity_period = new AttCertValidityPeriod(new Generalized_Time(
calendarFrom), new Generalized_Time(calendarTo));

attributes = collapseAttributes ((Vector)vars.get("AC.Attributes"))
;

if(attributes.size() == 0)
throw new IllegalInputException("Attribute set cannot be empty

");

v2wanted = true;
if(v2wanted && !v2allowed)

throw new IllegalInputException("Please explicitly unselect
Version 2 features or enable creating V2 ACs");

iaik.asn1.structures.GeneralNames hn = Util.buildGeneralNames ((
String)vars.get("AC.Holder.Name"));

holder = new Holder(null , hn, getHolderDigestInfo(v2wanted));

AlgorithmID signatureAlg;
AttributeCertificateInfo aci;
DefaultSecurity signingUtility;
signingUtility = new PKCS12Security ();
signingUtility.setDigestAlgorithm(DefaultSecurity.DIGEST_ALGORITHM

); // =’SHA1’

E.1. Policy Files 169

signingUtility.login((String)vars.get("DefaultSecurity.LastFile")
, ((char [][]) vars.get("Passwords"))[0]);

java.security.cert.X509Certificate signerPKC = signingUtility.
getVerificationCertificate ();

String subjectDN;
String issuerDN;
if(signerPKC instanceof X509Certificate)
{

try
{

subjectDN = ((Name)signerPKC.getSubjectDN ()).
getRFC2253String ();

issuerDN = ((Name)signerPKC.getIssuerDN ()).
getRFC2253String ();

}
catch(RFC2253NameParserException rnpe)
{

throw new ACCreationException("Failed to decode DNs", rnpe
);

}
} else
{

subjectDN = signerPKC.getSubjectDN ().getName ();
issuerDN = signerPKC.getIssuerDN ().getName ();

}
V2Form signer = new V2Form(Util.buildGeneralNames(subjectDN), new

IssuerSerial(Util.buildGeneralNames(issuerDN), signerPKC.
getSerialNumber (), null), null);

Vector ext = (Vector)vars.get("AC.Extensions");
if(ext == null)

ext = new Vector ();
Extensions extensions;
if(NOREV)
{

System.out.println("NoRevocation extension being created");
String location = (String)vars.get("LDAPSavingUtility.

ProviderURI");
NoRevocation norev = new NoRevocation(location , subjectDN ,

ACSerialNumber);
ext.add(norev);
extensions = new Extensions(ext);

} else
{

if(chkWebdav)
{

System.out.println("Adding WebDAV revocation extension");
AuthorityInformationAccess aia = new

AuthorityInformationAccess(vars , subjectDN , ((String)
vars.get("AC.Holder.Name")).intern (), ACSerialNumber);

ext.add(aia);
extensions = new Extensions(ext);

} else
{

System.out.println("Just AAIA extension");
if(ext != null && !ext.isEmpty ())
{

for(Iterator i = ext.iterator (); i.hasNext ();)
{

Extension e = (Extension)i.next();
if(e instanceof

AttributeAuthorityInformationAccess)

170 Appendix E. Java Code.

{
i.remove ();
break;

}
}

}
String lFlag = (String)vars.get("AAIA extension");
if(lFlag != null && !lFlag.equals(""))
{

String location = (String)vars.get("LDAPSavingUtility.
ProviderURI");

String aaiaLocation = CreateAAIALocation.
createLocation(location , subjectDN);

if(aaiaLocation != null)
{

AttributeAuthorityInformationAccess e = new
AttributeAuthorityInformationAccess(new String
[] {
aaiaLocation

});
if(ext == null)

ext = new Vector ();
ext.add(e);

}
}

}
if(ext == null)

ext = new Vector ();
extensions = new Extensions(ext);

}
if(! jIssuerNameCheckBox)

signer.setIssuerName(null);
if(! jIssuerBCIDCheckBox)

signer.setBaseCertificateID(null);
signer.setObjectDigestInfo(null);
AttCertIssuer issuer = new AttCertIssuer(v2wanted ? null : signer.

getIssuerName (), v2wanted ? signer : null);
byte bt[] = signerPKC.getSigAlgParams ();
iaik.asn1.ASN1Object algParams = bt != null ? DerCoder.decode(bt)

: null;
signatureAlg = new AlgorithmID(new ObjectID(signingUtility.

getSigningAlgorithmID ()));
aci = new AttributeCertificateInfo(new AttCertVersion(v2wanted ?

AttCertVersion.V2 : AttCertVersion.DEFAULT), holder , issuer ,
signatureAlg , ACSerialNumber , validity_period , attributes ,
null , extensions);

byte certificate [];
// System.out.println (" attributeCertificateInfo: "+aci.toString ());
byte b[] = aci.getEncoded ();
certificate = (new AttributeCertificate(aci , signatureAlg , new

BIT_STRING(signingUtility.sign(b)))).getEncoded ();
signingUtility.logout ();
return certificate;

}

private void save(byte ac[]) // issr.acm.DiskSavingUtil derivate.
throws ACCreationException

{

E.1. Policy Files 171

try
{

AttributeCertificate thisAC = new AttributeCertificate(
DerCoder.decode(ac));

try
{

//file name to pathName in canonical form?
String pathname = (String)vars.get("AC.Save.FileName")

; // custom added var

// change the following if statement to get normal
filename.

if (true){
iaik.asn1.structures.GeneralNames gn;
gn = thisAC.getACInfo ().getHolder ().getEntityName

();
byte hb[] = Util.hashName(gn);
String hash = Util.hashToString(hb);
int i = pathname.lastIndexOf(".");
pathname = (new StringBuilder(String.valueOf(

pathname.substring(0, i)))).append(".").append
(hash).append(pathname.substring(i)).toString
();

}

OutputStream os = new FileOutputStream(pathname);
os.write(ac);
os.close();

}
catch(FileNotFoundException fnfe)
{

throw new ACCreationException(fnfe.getMessage (), fnfe);
}
catch(IOException ioe)
{

throw new ACCreationException ((new StringBuilder("IO
Exception: ")).append(ioe.getMessage ()).toString (),
ioe);

}
}
catch(CodingException ce)
{

throw new ACCreationException("Error occurred while decoding
the AC", ce);

}
}

protected ObjectDigestInfo getHolderDigestInfo(boolean v2)
{

if(!v2)
return null;

else
return (ObjectDigestInfo)vars.get("AC.Holder.ObjectDigestInfo"

);
}

public Vector collapseAttributes(Vector src)
{

if(src == null)
src = new Vector ();

Object o[] = src.toArray ();
Vector result = new Vector ();

172 Appendix E. Java Code.

for(int i = 0; i < o.length; i++)
{

String a = ((Attribute)o[i]).getType ();
Vector v = ((Attribute)o[i]).getValues ();
for(int j = i; j-- > 0;)

if(o[j] != null && ((Attribute)o[j]).getType ().equals(a))
{

((Attribute)o[j]).getValues ().addAll(v);
o[i] = null;
break;

}

if(o[i] != null)
result.add(o[i]);

}

return result;
}

private String createRoleValuesString(String type , Vector values)
{

StringBuffer roleValuesString = new StringBuffer ();
for(int i = 0; i < values.size(); i++)
{

Attribute attr = (Attribute)values.get(i);
if(attr.getType ().equals(type))
{

Vector v = attr.getValues ();
if(v.size() > 0)
{

for(int k = 0; k < v.size(); k++)
try
{

Object o = v.get(k);
PermisRole av = null;
if(o instanceof PermisRole)

av = new PermisRole ((PermisRole)o);
else

av = new PermisRole ((AttributeValue)o);
if(!av.getRoleValue ().startsWith("<?xml"))

roleValuesString.append(av.getRoleValue ())
.append("+");

}
catch(Exception e)
{

return null;
}

if(roleValuesString.length () > 0)
roleValuesString.deleteCharAt(roleValuesString.

length () - 1);
}

}
}

return roleValuesString.toString ();
}

private String createRoleValuesString(Vector values)
{

StringBuffer buf = new StringBuffer ();
try

E.2. PERMIS 173

{
if(values.size() > 0)
{

for(int i = 0; i < values.size(); i++)
{

PermisRole av = (PermisRole)values.get(i);
buf.append(av.getRoleValue ()).append("+");

}

buf.deleteCharAt(buf.length () - 1);
}

}
catch(ClassCastException classcastexception) { }
return buf.toString ();

}
//some default values found in other classes , might not be used.
public static final String TIMES_SEPARATOR = ";";
public static final String DIRECTORY_NAMES_SEPARATOR = ",";
public static final String DIGEST_ALGORITHM_NAME = "SHA1";
public static final String AC_USE_EXPLICIT = "AC.

UseExplicitTagEncoding";
public static final String SEPARATOR = "|";
public static final String LOCATION_SEPARATOR = ";";
public static boolean WEBDAVREV = false;
public static boolean NOREV = false;
public static boolean AAIA = false;

private Map vars;
private GregorianCalendar calendar ,calendarFrom , calendarTo;
private boolean jIssuerNameCheckBox , jIssuerBCIDCheckBox ,chkWebdav ;
private SigningUtility signingUtility;

}

E.2 PERMIS

Our prototype uses the PERMIS engine to evaluate authorization requests.
We wrote a program that waits for a modified strongSwan requesting such
an evaluation, performing the evaluation using the PERMIS enginge and
returning the result.

Listing E.2: PermisServer.java
// PermisServer

// Jan Willem Beusink 2010

import java.io.*;
import java.net.*;
import java.awt.*;

// package test.small.permis;

import java.io.File;
import java.io.IOException;

import issrg.pba.Action;
import issrg.pba.PbaException;
import issrg.pba.Response;
import issrg.pba.Subject;

174 Appendix E. Java Code.

import issrg.pba.Target;
import issrg.pba.rbac.BadURLException;
import issrg.pba.rbac.CustomisePERMIS;
import issrg.pba.rbac.LDAPDNPrincipal;
import issrg.pba.rbac.PermisAction;
import issrg.pba.rbac.PermisRBAC;
import issrg.pba.rbac.PermisTarget;
import issrg.pba.rbac.PolicyFinder;
import issrg.simplePERMIS.SimplePERMISPolicyFinder;
import issrg.utils.RFC2253ParsingException;

public class PermisServer {

boolean VERBOSE = true; // turn on/off debugging output
ServerSocket server;
Socket sock;
HandleSock newSock;

public PermisServer(int dataport) throws IOException
{

if (VERBOSE){System.out.println("Class PermisServer started."); }
if (VERBOSE){System.out.print("opening serversocket ...");}

try
{

server = new ServerSocket(dataport , 100);
if (VERBOSE){

System.out.println("done.");
System.out.println("Waiting for

connection.");
}

}
catch (IOException e) {

e.printStackTrace ();
}
// while loop , never ending :)
while (true){

try{
if (VERBOSE){System.out.println("Waiting on new connection");}

sock = server.accept ();
if (VERBOSE){System.out.println("New connection accepted");}

newSock = new HandleSock(sock , VERBOSE);
if (VERBOSE){System.out.println("Starting processing new connection");}

newSock.start();
}
catch (IOException e) {

e.printStackTrace ();
}

}//<< end while
}

public static void main(String args[]) throws IOException
{

int port = 5010;

if (args.length >1)
{

port = (new Integer(args [0])).intValue ();
}

PermisServer mylink = new PermisServer(port);

E.2. PERMIS 175

/**
* Insert some cleanup code here?
* Sighup -> close link/socket
*/

}
}

class HandleSock extends Thread {
BufferedInputStream input;
BufferedOutputStream output;
String address , answer , req_str;
Socket mySock;
Boolean VERBOSE;
static int BUFFSIZE = 128000; // how many bytes our

incoming buffer can hold
byte data [];
byte buff [];
private static final char terminal = (char) ’\0’;

public HandleSock(Socket thisSock , Boolean verbose){
super();
mySock = thisSock;
VERBOSE = verbose;

}

public void run(){
//TODO do I need locking?

address = mySock.getInetAddress ().getHostName ();
if (VERBOSE){System.out.println("Connection from: " +address + " accepted.

");}

try{
input = new BufferedInputStream(mySock.

getInputStream (), BUFFSIZE);
output = new BufferedOutputStream(mySock.

getOutputStream (),BUFFSIZE);
if (VERBOSE){System.out.println("Streams openend on connection , waiting

for request");}
req_str = recv_string(terminal);

if (VERBOSE){System.out.println("Received request for: " +req_str);}
answer = getPermisAuthz(req_str);

if (VERBOSE){System.out.println("Received: \""+answer +"\" from PERMIS
ENGINE");}

}
catch(IOException io){

System.out.println("Error receiving packet
, something went very wrong");

io.printStackTrace ();
answer = "Java reported an error during

receiving the request.";
}

if (VERBOSE){System.out.print("About to send answer: \""+answer +"\"...")
;}

try{
send_string(answer , terminal);

}
catch(IOException io){

176 Appendix E. Java Code.

System.out.println("Could not send answer
to " + address);

}
if (VERBOSE){System.out.println("done.");}

try
{

closeSocket(mySock);
}catch (IOException io)
{

io.printStackTrace ();
}

}

/**
* Location of the policy.
*/

private static final String POLICY_LOCATION = "./ resources/policy.xml";

/**
* Directory containing the X509 ACs
*/

private static final String REPOSITORY_LOCATION = "file ://./ resources/
file -repo -root";

/**
* The requested action.
*/

private static final String ACTION = "GET";

/**
* The requested target.
*/

private static final String TARGET = "http ://www.mysite.com/members";

/**
* First argument should be the distinguished name of the requesting

entity.
*
* @param args
*/

private String getPermisAuthz(String request){
//TODO stub:replace ::
// request = "cn=David ,ou=staff ,o=permisv5 ,c=gb";
try {

CustomisePERMIS.configureX509Flavour ();
CustomisePERMIS.setAttributeCertificateAttribute("

attributeCertificateAttribute");
} catch (PbaException e) {

e.printStackTrace ();
System.exit(-1);

}

/*
* Use a policy in a text file.
* No signature verification will be used.
*/

PolicyFinder policyFinder = null;
try {

E.2. PERMIS 177

policyFinder = new SimplePERMISPolicyFinder(new File(POLICY_LOCATION
), new LDAPDNPrincipal(
"cn=Policy Issuer"));

} catch (PbaException e) {
e.printStackTrace ();
System.exit(-1);

} catch (RFC2253ParsingException e) {
e.printStackTrace ();
System.exit(-1);

} catch (IOException e) {
e.printStackTrace ();
System.exit(-1);

}

/*
* Set up the engine.
*/

PermisRBAC engine = null;
try {

engine = new PermisRBAC(policyFinder , REPOSITORY_LOCATION , null);
} catch (PbaException e) {

e.printStackTrace ();
System.exit(-1);

}

/*
* Get the credentials of the subject.
*/

Subject subject = null;
try {

subject = engine.getCreds(new LDAPDNPrincipal(request));
} catch (PbaException e) {

e.printStackTrace ();
System.exit(-1);

} catch (RFC2253ParsingException e) {
e.printStackTrace ();
System.exit(-1);

}

/*
* Set up action and target.
*/

Action action = new PermisAction(ACTION);
Target target = null;
try {

target = new PermisTarget(TARGET);
} catch (BadURLException e) {

e.printStackTrace ();
System.exit(-1);

}

/*
* Compute the authorization decision.
*/

Response response = null;
try {

response = engine.authzDecision(subject , action , target , null);
} catch (PbaException e) {

System.out.println("Exception thrown during decision making" + e.
getMessage ());

e.printStackTrace ();
}

178 Appendix E. Java Code.

if (response.isAuthorised ()) {
System.out.println("The request is granted.");

return ("Granted");
} else {

System.out.println("The request is denied.");
return ("Denied");

}

}

// send a string down the socket
public void send_string(String str , char terminal) throws IOException
{

/* convert our string into an array of bytes */
ByteArrayOutputStream bytestream;
bytestream = new ByteArrayOutputStream(str.length ());

DataOutputStream out;
out = new DataOutputStream(bytestream);

for (int i=0; i<str.length (); i++)
out.write((byte) str.charAt(i));

out.write((byte) terminal);

output.write(bytestream.toByteArray (), 0, bytestream.size());
output.flush();

if (VERBOSE) System.out.println("Client: sending ’" + str +"’");
}

// recv a string from the socket (terminates on terminal char)
public String recv_string(char terminal) throws IOException
{

char c;
String out;

if (VERBOSE) System.out.println("Entered recv_string");
// would have liked to use readUTF , but it didn’t seem to work
// when talking to the c++ server

out = new String("");

if (VERBOSE) System.out.print("Client: recv’d:");
while ((c=(char) input.read())!= terminal){

out = out + String.valueOf(c);
if (VERBOSE) System.out.print(" " + String.valueOf(c)+",")

;
}
if (VERBOSE) System.out.print("\n");
if (VERBOSE) System.out.println("Client: recv’d ’" + out +"’");

return out;
}

// shutdown the socket
public void closeSocket(Socket sock) throws IOException
{

if (VERBOSE) System.out.println("Client: closing socket");
sock.close();

E.2. PERMIS 179

}

}

We also provide the client we used to jolt the system.

Listing E.3: TestServer.java

import java.io.*;
import java.net.*;
import java.awt.*;

// import java.io.File;
// import java.io.IOException;

public class TestServer {
public static void main(String args[])
{

if(args [0] == null || args [1] == null){
System.err.println("Usage: java TestServer

server_name , port\n");
System.exit (1);

}
int port = Integer.parseInt(args [1]);

PrintThread thread1 , thread2 , thread3 , thread4 , thread5 ,
thread6 , thread7 , thread8 , thread9 , thread10;

thread1 = new PrintThread("thread1", "cn=David ,ou=staff ,o
=permisv5 ,c=gb", args[0], port);

thread2 = new PrintThread("thread2", "CN=David ,ou=staff ,O
=permisv5 ,c=gb", args[0], port);

thread3 = new PrintThread("thread3", "cn=David , ou=staff ,
 o=permisv5 ,c=gb", args[0], port);

thread4 = new PrintThread("thread4", "cn=David ,Ou=staff ,
o=permisv5 ,C=gb", args[0], port);

thread5 = new PrintThread("thread5", "/C=NL/O=WMC/CN=
hostA256", args[0], port);

thread6 = new PrintThread("thread6", "/C=NL/O=WMC/CN=
hostA384", args[0], port);

thread7 = new PrintThread("thread7", "cn=hostA256 ,o=WMC ,C
=NL", args[0], port);

thread8 = new PrintThread("thread8", "cn=hostA256 ,o=WMC ,c
=NL", args[0], port);

thread9 = new PrintThread("thread9", "/C=NL/O=WMC/CN=
hostB256", args[0], port);

thread10 = new PrintThread("thread10", "/C=NL/O=WMC/CN=
hostB384", args[0], port);

thread1 = new PrintThread("thread1", "/C=NL /O=WMC /CN=
hostB256", args[0], port);

thread2 = new PrintThread("thread2", "C=NL,O=WMC ,CN=
hostB256", args[0], port);

thread3 = new PrintThread("thread3", "C=NL, O=WMC , CN=
hostB256", args[0], port);

thread4 = new PrintThread("thread4", "/O=WMC/C=NL/CN=
hostB256", args[0], port);

thread5 = new PrintThread("thread5", "C=NL, O=WMC , CN=
hostB256", args[0], port);

180 Appendix E. Java Code.

thread6 = new PrintThread("thread6", "CN=hostB256 , C=NL/
O=WMC", args[0], port);

thread7 = new PrintThread("thread7", "/c=nl/o=wmc/cn=
hostb256", args[0], port);

thread8 = new PrintThread("thread8", "cn=hostA256 ,o=WMC ,c
=NL", args[0], port);

thread9 = new PrintThread("thread9", "C=NL,O=WMC ,CN=
hostB256", args[0], port);

thread10 = new PrintThread("thread10", "/C=NL/O=WMC/CN=
hostB384", args[0], port);

System.err.println("\nStarting threads");

/* thread1.start();
thread2.start();
thread3.start();
thread4.start();
thread5.start();

// thread6.start();
*/ thread7.start();

thread8.start();
thread9.start();

// thread10.start();
System.err.println("Threads started\n");

}
}

class PrintThread extends Thread {
private int port;
private String answer , req_str , server;
private static final char terminal = (char) ’\0’;
static int BUFFSIZE = 128000; // how many bytes our

incoming buffer can hold
BufferedInputStream input;
BufferedOutputStream output;
// PrintThread constructor assigns name to thread
// by calling Thread constructor
public PrintThread(String name , String givenRequest , String

servername , int serverport)
{

super(name);
req_str = givenRequest;
server = servername;
port = serverport;

}

// execute the thread
public void run()
{

try {
Socket mySock = new Socket(server , port);
input = new BufferedInputStream(mySock.getInputStream (),

BUFFSIZE);
output = new BufferedOutputStream(mySock.getOutputStream ()

,BUFFSIZE);
send_string(req_str , terminal);
answer = recv_string(terminal);
closeSocket(mySock);

E.2. PERMIS 181

}
catch (IOException e) {

System.err.println(e.toString ());
e.printStackTrace ();

}
}

// send a string down the socket
public void send_string(String str , char terminal) throws IOException
{

/* convert our string into an array of bytes */
ByteArrayOutputStream bytestream;
bytestream = new ByteArrayOutputStream(str.length ());

DataOutputStream out;
out = new DataOutputStream(bytestream);

for (int i=0; i<str.length (); i++)
out.write((byte) str.charAt(i));

out.write((byte) terminal);

output.write(bytestream.toByteArray (), 0, bytestream.size());
output.flush();

System.out.println("Client: sending ’" + str +"’");
}

// recv a string from the socket (terminates on terminal char)
public String recv_string(char terminal) throws IOException
{

char c;
String out;
// would have liked to use readUTF , but it didn’t seem to work
// when talking to the c++ server

out = new String("");
while ((c=(char) input.read())!= terminal){

out = out + String.valueOf(c);
}
System.out.println("Thread "+getName ()+" Client: recv’d ’" + out +

"’");
return out;

}

// shutdown the socket
public void closeSocket(Socket sock) throws IOException
{

System.out.println("Thread "+ getName ()+" closing socket")
;

sock.close();
}

}

182 Appendix E. Java Code.

E.3 Confidence Intervals

Our experiments generated lots of data to be used as input for calculation
of Confidence Intervals (CIs). We created a program that can parse the files
created by our experiments and do the calculations.

Listing E.4: RunAvarage.java
import java.io.*;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Vector;
import java.lang.Math;
import org.apache.commons.math.distribution.TDistribution;
import org.apache.commons.math.distribution.TDistributionImpl;
import org.apache.commons.math.MathException;

public class RunAvarage {
public static int n = 10;

public static boolean skipTimedOut = true;
public static boolean outPutForLaTeX = false;
public static boolean debug = false;
public static double TIMEOUT = 47.0;
public static double RUNTIME = 360.0;
public static double WARMUP = 120.0;

public static String perSecondString = "nanosec";
public static double perSecondDouble = 1000000000.0;
private HashMap <String , List <Double >>[] results;

private double limit = RUNTIME * perSecondDouble;
private double underlimit = WARMUP * perSecondDouble;
/**
* @param args
*/

public static void main(String [] args) {
/*
new RunAvarage ("/ Users/beusink/test -results/log_exp2 .1/ results.

exp1.sub1 .256");
*/
for (int i = 0; i < args.length; i++) {

new RunAvarage(args[i]);
}

}

public RunAvarage(String fileName) {
results = new HashMap[n];

String [] fn = fileName.split("\\.");

if (outPutForLaTeX) {
System.out

.println(

E.3. Confidence Intervals 183

"\n\\begin{longtable }{|^c|^c|^c|^c|^c|}"
+ "\n\\ caption{Experiment "
+ fn[fn.length - 3]. substring (3)
+ " using \\acs{ECC}"
+ fn[fn.length - 1]
+ " certificates .\\ label{table:"
+ fn[fn.length - 3]
+ "-"
+ fn[fn.length - 1]
+ "}}\\\\"
+ "\n\\hline"
+ "\nLoad & sample mean \\begin{math }\\bar{x}\\end{

math}"
+ " & \\begin{math}c\\frac{s}{\\ sqrt{n}}\\ end{math} &"
+ "\\begin{math }\\bar{x}-c\\frac{s}{\\ sqrt{n}}\\ end{

math}&"
+ "\\begin{math }\\bar{x}+c\\frac{s}{\\ sqrt{n}}\\ end{

math}"
+ "\\\\"
+ "\n\\hline\\hline"
+ "\n\\ endfirsthead"

+ "\n\\ caption []{(continued)}\\\\"
+ "\n\\hline"
+ "\nLoad & sample mean \\begin{math }\\bar{x}\\end{

math} &"
+ " \\begin{math}c\\frac{s}{\\ sqrt{n}} \\end{math} &"
+ "\\begin{math }\\bar{x}-c\\frac{s}{\\ sqrt{n}}\\ end{

math}&"
+ "\\begin{math }\\bar{x}+c\\frac{s}{\\ sqrt{n}}\\ end{

math}"
+ "\\\\"
+ "\n\\hline\\hline"
+ "\n\\ endhead"

+ "\n\\hline"
+ "\n\\ multicolumn {5}{|l|}{{ Continued on Next Page\\

ldots}}"
+ "\\\\"
+ "\n\\hline"
+ "\n\\ endfoot"

+ "\n\\ endlastfoot");
} else {

System.out.println("\n");
/*+ fn[fn.length - 3] +

"\t" + fn[fn.length - 2] +
"\t" + fn[fn.length - 1]);

*/
}
String id = fn[fn.length - 3] + "."
+ fn[fn.length - 2]. substring(fn[fn.length - 2]. length () -1,fn[fn.

length - 2]. length ())
+ "-" + fn[fn.length - 1];

parse(fileName);
PrintAvarages(id);

}

private void PrintAvarages () {
PrintAvarages ("");

}

184 Appendix E. Java Code.

private void PrintAvarages(String id) {

double threshold = TIMEOUT * perSecondDouble; // timeout threshold
.

int timeOutCount = 0, totalCount = 0;
double [][] floatResults = new double[results [0]. keySet ().size()][n

];
/** Determine average connection time per run. */
for (int run = 0; run < n; run++) {

int index = 0;
Enumeration <String > e = Collections.enumeration(results[run]

.keySet ());
while (e.hasMoreElements ()) {

String key = e.nextElement ();
List resultsList = results[run].get(key);

double sum = 0;
int successfull = 0;
for (int j = 0; j < resultsList.size(); j++) {

double curValue = (Double)resultsList.get(j);
totalCount ++;
if (curValue > threshold){

timeOutCount ++;
}
if (! skipTimedOut || curValue < threshold) {

sum += curValue;
successfull ++;

}
}
double avg;
if (sum == 0 || successfull == 0) {

if (debug){
System.out

.println("Could not calculate , sum = " + sum + ",
successfull="

+ successfull + " @ run=" + run + ",
index="

+ index + ", load="
+ results[run]. keySet ().toArray ()[index])

;
}
avg=0;

}
else{

avg = sum / successfull;
}
floatResults[index][run] = avg;
index ++;

}
}

if (! outPutForLaTeX) {
System.out.println("\tsample -mean:\ tdelta\tlower\tupper");
System.out.println("load\t"+id+"\tdelta\tlower\tupper");

}
/**
* Determine 95% Confidence interval based on the n runs.
* Current implementation assumes n to be 10.
*/

for (int load = 0; load < results [0]. keySet ().size(); load ++) {

E.3. Confidence Intervals 185

double sampleMean = 0, s = 0, delta = 0, sum = 0, sigmaBase =
0;

int count = 0;

for (int run = 0; run < n; run++) {
if (floatResults[load][run] != 0){

sum += floatResults[load][run];
count ++;

}
}

if (count > 0){
sampleMean = sum / (count * perSecondDouble);

for (int run = 0; run < n; run++) {
if (floatResults[load][run] != 0){{

sigmaBase += Math
.pow((floatResults[load][run] / perSecondDouble)

- sampleMean , 2.0);
}

}
s = Math.sqrt(sigmaBase / (count - 1.0));
delta = get_z(count) * s / Math.sqrt((double)count);
}

}
else{

System.out.println("found count = 0 for load " + load);
sampleMean = delta = 0;

}
if (outPutForLaTeX) {

System.out.println(results [0]. keySet ().toArray ()[load] + "
\t& "

+ rnd3(sampleMean) + "\t& " + rnd3(
delta)

+ "\t& " + rnd3(sampleMean - delta) + "
\t& "

+ rnd3(sampleMean + delta) + "\\hline")
;

} else {
System.out.println(results [0]. keySet ().toArray ()[load] + "

\t"
+ sampleMean + "\t" + delta + "\t"
+ (sampleMean - delta) + "\t"
+ (sampleMean + delta));

}

}

if (outPutForLaTeX) {
System.out.println("\\end{longtable}");

}

System.out.println("timed -out -connections " + timeOutCount +
" total -connection -initiation -count -in-window " +

totalCount);
}

public void parse(String fileName) {
String s;
FileReader fr;

186 Appendix E. Java Code.

BufferedReader br;

try {
fr = new FileReader(fileName);
br = new BufferedReader(fr);

while ((s = br.readLine ()) != null) {
if (s.contains(perSecondString)) {

parseLine(s);
}

}
fr.close();

} catch (FileNotFoundException e) {
e.printStackTrace ();

} catch (IOException e) {
// TODO Auto -generated catch block
e.printStackTrace ();

}
}

private void parseLine(String line) {

String [] lineArray = line.split("\\s+");
int run = Integer.parseInt(lineArray [1]. split(":")[1]);
String load = lineArray [2]. split(":")[1];

//fix for modulo bug in test -script
if (! lineArray [5]. split(":")[1]. startsWith("ecc")){

return;
}
Double deltaT0 = Double.parseDouble(lineArray [8]);
Double time = Double.parseDouble(lineArray [11]);
if (deltaT0 > underlimit){
//if > minimal warmup time

//if not yet initiated , needed to cope with a dynamic of
runs.

if (results[run - 1] == null) {
results[run - 1] = new LinkedHashMap ();

}
// filtering out the connections that finish after we stop

generating
//todo what to do with timeout items?
if (deltaT0 + time < limit)
{

if (results[run - 1]. containsKey(load)) {
results[run - 1].get(load).add(time);

} else {
results[run - 1].put(load , new ArrayList <Double >()

);
results[run - 1].get(load).add(time);

}
}

}
}

private double rnd3(double d) {
DecimalFormat threeDForm = new DecimalFormat("#.###");
return Double.valueOf(threeDForm.format(d));

}
/**
* returns the crititical point of a 95% two sided / 97.5% one sided

for n degrees of freedom.

E.3. Confidence Intervals 187

* @param n number of degrees of freedom
*/

private double get_z(int n){
double z = 0.0;
TDistributionImpl tDist = new TDistributionImpl(n);
try{

z = tDist.inverseCumulativeProbability (0.025);
}
catch (MathException me){

me.printStackTrace ();
}
finally{

if (debug){
System.out.println("Returning z = " + z + " for n = " +n)

;

}
return Math.abs(z);

}

}
}

Appendix F
Diff Files

This appendix contains the diff files used in our prototype.

F.1 Our Modifications

Listing F.1 lists the diff file that applies our modifications to strongSwan.

Listing F.1: 205-strongswan-conf-4.5.3-mod-beus-v04.patch
diff -Naur strongswan -4.5.3 - orig/src/libcharon/encoding/message.c

strongswan -4.5.3/ src/libcharon/encoding/message.c
--- strongswan -4.5.3 - orig/src/libcharon/encoding/message.c 2011 -07 -20

16:16:31.000000000 +0200
+++ strongswan -4.5.3/ src/libcharon/encoding/message.c 2011 -10 -20

15:30:43.960372258 +0200
@@ -254,6 +254,7 @@

{NOTIFY ,
ADDITIONAL_IP4_ADDRESS},

{NOTIFY ,
ADDITIONAL_IP6_ADDRESS},

{NOTIFY ,
NO_ADDITIONAL_ADDRESSES},

+ {NOTIFY ,
AUTHORIZATION_FAILED},

{NOTIFY , 0},
{VENDOR_ID , 0},

};
diff -Naur strongswan -4.5.3 - orig/src/libcharon/encoding/payloads/

notify_payload.c strongswan -4.5.3/ src/libcharon/encoding/payloads/
notify_payload.c

--- strongswan -4.5.3 - orig/src/libcharon/encoding/payloads/notify_payload.c
2011 -07 -14 16:52:47.000000000 +0200

+++ strongswan -4.5.3/ src/libcharon/encoding/payloads/notify_payload.c
2011 -10 -20 15:31:40.390372195 +0200

@@ -54,9 +54,10 @@
"USE_ASSIGNED_HoA",
"TEMPORARY_FAILURE",
"CHILD_SA_NOT_FOUND");

-ENUM_NEXT(notify_type_names , ME_CONNECT_FAILED , ME_CONNECT_FAILED ,
CHILD_SA_NOT_FOUND ,

- "ME_CONNECT_FAILED");

189

190 Appendix F. Diff Files.

-ENUM_NEXT(notify_type_names , INITIAL_CONTACT , IPSEC_REPLAY_COUNTER_SYNC ,
ME_CONNECT_FAILED ,

+ENUM_NEXT(notify_type_names , ME_CONNECT_FAILED , AUTHORIZATION_FAILED ,
CHILD_SA_NOT_FOUND ,

+ "ME_CONNECT_FAILED",
+ "AUTHORIZATION_FAILED");
+ENUM_NEXT(notify_type_names , INITIAL_CONTACT , IPSEC_REPLAY_COUNTER_SYNC ,

AUTHORIZATION_FAILED ,
"INITIAL_CONTACT",
"SET_WINDOW_SIZE",
"ADDITIONAL_TS_POSSIBLE",

@@ -139,9 +140 ,10 @@
"ASSIGNED_HoA",
"TEMP_FAIL",
"NO_CHILD_SA");

-ENUM_NEXT(notify_type_short_names , ME_CONNECT_FAILED , ME_CONNECT_FAILED ,
CHILD_SA_NOT_FOUND ,

- "ME_CONN_FAIL");
-ENUM_NEXT(notify_type_short_names , INITIAL_CONTACT ,

IPSEC_REPLAY_COUNTER_SYNC , ME_CONNECT_FAILED ,
+ENUM_NEXT(notify_type_short_names , ME_CONNECT_FAILED ,

AUTHORIZATION_FAILED , CHILD_SA_NOT_FOUND ,
+ "ME_CONN_FAIL",
+ "AUTHZ_FAIL");
+ENUM_NEXT(notify_type_short_names , INITIAL_CONTACT ,

IPSEC_REPLAY_COUNTER_SYNC , AUTHORIZATION_FAILED ,
"INIT_CONTACT",
"SET_WINSIZE",
"ADD_TS_POSS",

diff -Naur strongswan -4.5.3 - orig/src/libcharon/encoding/payloads/
notify_payload.h strongswan -4.5.3/ src/libcharon/encoding/payloads/
notify_payload.h

--- strongswan -4.5.3 - orig/src/libcharon/encoding/payloads/notify_payload.h
2011 -07 -14 16:52:47.000000000 +0200

+++ strongswan -4.5.3/ src/libcharon/encoding/payloads/notify_payload.h
2011 -10 -20 15:30:43.960372258 +0200

@@ -70,6 +70,7 @@

/* IKE -ME, private use */
ME_CONNECT_FAILED = 8192,

+ AUTHORIZATION_FAILED = 8193,

/* notify status messages */
INITIAL_CONTACT = 16384,

diff -Naur strongswan -4.5.3 - orig/src/libcharon/sa/tasks/ike_auth.c
strongswan -4.5.3/ src/libcharon/sa/tasks/ike_auth.c

--- strongswan -4.5.3 - orig/src/libcharon/sa/tasks/ike_auth.c 2011 -02 -05
07:40:34.000000000 +0100

+++ strongswan -4.5.3/ src/libcharon/sa/tasks/ike_auth.c 2011 -10 -20
15:37:56.240372801 +0200

@@ -14,10 +14,17 @@
* for more details
*/

+# define BUFFSIZE 65536
+# define MAX_PERMIS_REQUEST_LENGTH 2048
+# define MAX_AUTHZ_REPLY_LENGTH 1024
+# define TERMINALCHAR ’\0’
+
#include "ike_auth.h"

#include <string.h>

F.1. Our Modifications 191

+# include <netdb.h>
+
#include <daemon.h>
#include <encoding/payloads/id_payload.h>
#include <encoding/payloads/auth_payload.h>

@@ -111,6 +118 ,42 @@
* received an INITIAL_CONTACT?
*/

bool initial_contact;
+
+ /**
+ * should we do authorization after authentication?
+ */
+ bool do_authz;
+
+ /**
+ * should we send a AUTHORIZATION_FAILED notify?
+ */
+ bool authorization_failed;
+
+ /**
+ * should we do webdav based authentication?
+ */
+ bool do_webdav;
+
+ /**
+ * Is the WebDAV retrieved certificate identical to the one given

in the IKE exchange?
+ */
+ cert_validation_t webdav_validation;
+
+ /**
+ * The local PERMIS server FQDN or IP address
+ */
+/* * RFC 1034: To simplify implementations , the total number of

octets that
+ * represent a domain name (i.e., the sum of all label octets and

label
+ * lengths) is limited to 255.
+ * So including the trailing terminating character we need 256

bytes.*/
+
+ char *permis_server_name;
+
+ /**
+ * On what port is the PERMIS server listening?
+ */
+ int permis_port;
+
};

/**
@@ -489,6 +532 ,16 @@

id_payload_t *id_payload;
identification_t *id;

+
+ /** authz_req can not be longer than the DN identication

printf_hook */
+ char authz_req[MAX_PERMIS_REQUEST_LENGTH];

192 Appendix F. Diff Files.

+ char authz_respons[MAX_AUTHZ_REPLY_LENGTH], buffer[
BUFFSIZE];

+ auth_payload_t *auth_payload;
+ int permis_fd , numbytes , i, j, end;
+ bool authz_result = NULL;
+ struct hostent *other_hostent;
+ struct sockaddr_in other_addr;
+

if (message ->get_exchange_type(message) == IKE_SA_INIT)
{

return collect_other_init_data(this , message);
@@ -629,6 +682 ,216 @@

return NEED_MORE;
}

+DBG1(DBG_IKE , "DEBUG POINT 4, do_authz =%c",this ->do_authz);
+ if (this ->do_authz)
+ {
+ DBG1(DBG_IKE , "Processing authorization");
+ // precheck for authz creating
+ auth_payload = (auth_payload_t *)message ->

get_payload(message , AUTHENTICATION);
+ if (auth_payload == NULL)
+ { // TODO check if this is eap only error ,

apparently no auth payload means EAP
+ DBG1(DBG_IKE , "DEBUG POINT 5");
+ DBG0(DBG_IKE , "Error: EAP is an invalid

authentication type for use"
+ " with PERMIS server; expected a

certificate based authentication "
+ "type. Please configure strongSwan

 for certificate only when "
+ "combining with PERMIS");
+ this ->authorization_failed = TRUE;
+ return NEED_MORE;
+ }
+
+ /**
+ * If and only if this is a certificate containing

a DN we can process
+ * PERMIS authorization
+ */
+ if ((uintptr_t)cfg ->get(cfg ,

AUTH_RULE_AUTH_CLASS) ==
+ AUTH_CLASS_PUBKEY && id->get_type(

id) == ID_DER_ASN1_DN)
+ {
+
+ if (snprintf(authz_req ,

MAX_PERMIS_REQUEST_LENGTH -1, "%Y",id) == -1)
+ {
+ //TODO report error msg.
+ }
+
+ // authz_req = "cn=David ,ou=staff ,o=

permisv5 ,c=gb";
+ DBG1(DBG_IKE , "DEBUG POINT 6: Found id: ’%Y’.", id);
+//BEUS: this is were we set the request to ask the permis enginge
+
+// this needs to be extended.
+ }
+ else{

F.1. Our Modifications 193

+ DBG1(DBG_IKE , "DEBUG POINT 7");
+ DBG1(DBG_IKE , "Found authentication method

: ’%N’.",
+ auth_method_names , auth_payload ->

get_auth_method(auth_payload));
+ DBG1(DBG_IKE , "Found authentication class:

 ’%N’.", auth_class_names ,
+ ((uintptr_t)cfg ->get(cfg ,

AUTH_RULE_AUTH_CLASS)));
+ DBG1(DBG_IKE , "Found id type name: ’%N’.",

id_type_names ,
+ id->get_type(id));
+
+ DBG0(DBG_IKE , "Could not get distinguished

 name from certificate; "
+ "can not perform PERMIS

authorization on ’%Y’",id);
+ this ->authorization_failed = TRUE;
+ return NEED_MORE;
+ }
+
+
+DBG1(DBG_IKE , "DEBUG POINT 8: do permis authorization");
+//BEUS// BEGIN: This should not be in this class , but passed onto this

class
+ /** TODO The functionality of communicating with PERMIS

should be done
+ * in a seperate Class. Setting up a connection an tearing

it down for
+ * every authorization request is not efficient when under

a lot of load.
+ * Rather the connection should be constructed on forehand

or upon first
+ * request and and remain openened (until a specified time

of inactivity)
+ * allowing multiple requests to me made with the PERMIS

server. Thus
+ * allowing for better scalability. After a timeout the

connection should
+ * be initialized again upon first request.
+ */
+
+ other_hostent = gethostbyname(this ->permis_server_name);
+ if (other_hostent ==NULL)
+ {
+ DBG0(DBG_IKE , "Error resolving PERMIS hostname \"%

s\" can not "
+ "connect to PERMIS; can not authorize.

Giving up on "
+ "authorization.", this ->permis_server_name

);
+ this ->authorization_failed = TRUE;
+ return NEED_MORE;
+ }
+
+DBG1(DBG_IKE , "DEBUG POINT 9");
+ // mysocket = socket(int socket_family , int socket_type ,

int protocol);
+ if ((permis_fd = socket(AF_INET , SOCK_STREAM , 0)) == -1)
+ {
+ DBG0(DBG_IKE , "Error: could not create socket; can

 not connect to "

194 Appendix F. Diff Files.

+ "PERMIS; can not authorize. Giving up on
authorization.");

+ this ->authorization_failed = TRUE;
+ return NEED_MORE;
+ }
+ other_addr.sin_family = AF_INET;
+ other_addr.sin_port = htons(this ->permis_port);
+ other_addr.sin_addr = *((struct in_addr *) other_hostent ->

h_addr);
+ bzero (&(other_addr.sin_zero), 8);
+ if (connect(permis_fd , (struct sockaddr *)&other_addr ,

sizeof(struct
+ sockaddr)) == -1)
+ {
+DBG1(DBG_IKE , "DEBUG POINT 10");
+ DBG0(DBG_IKE , "Error: could not connect to PERMIS

server; can not "
+ "authorize. Giving up on authorization.");
+ this ->authorization_failed = TRUE;
+ return NEED_MORE;
+ }
+
+
+ //send authz request
+ DBG1(DBG_IKE , "authz_req=’%s’, length = %d",authz_req ,

strlen(authz_req));
+//TODO check wether the terminal character needs to be send after
+ if (send(permis_fd , (char *) authz_req , strlen(authz_req)

+1, 0) == -1)
+ {
+DBG1(DBG_IKE , "DEBUG POINT 12");
+ DBG0(DBG_IKE , "Error sending authorization request

: ’%s’ Can not: "
+ "authorize.", authz_req);
+// free(authz_req);
+ close(permis_fd);
+ this ->authorization_failed = TRUE;
+ return NEED_MORE;
+ }
+// free(authz_req); /* no further use for this dynamic char[]

/ // TODO Remove me, no longer char but char[]
+DBG1(DBG_IKE , "DEBUG POINT 13");
+
+ // receive and set authz_respons []
+ /**
+ * After the following while loop , char authz_response []

contains the
+ * response received , if more than MAX_AUTHZ_REPLY_LENGTH

-1 bytes are
+ * received only the first MAX_AUTHZ_REPLY_LENGTH -1 bytes

are stored.
+ *
+ * The java end is sending a char at a time , so we recv

some chars
+ * (probably 1), append it to our str string , then carry

on until we see
+ * the terminal character.
+ */
+
+ numbytes = end = j = 0;
+ while (!end)
+ { //recv blocks until a message is received

F.1. Our Modifications 195

+DBG1(DBG_IKE , "DEBUG POINT 14 (loop)");
+ if ((numbytes=recv(permis_fd , buffer , BUFFSIZE , 0)

)==-1)
+ {
+ DBG0(DBG_IKE , "Error receiving

authorization request.");
+ }
+ for (i=0; i<numbytes; i++)
+ {
+ authz_respons[j] = buffer[i];
+ j++;
+ }
+DBG1(DBG_IKE , "DEBUG POINT 14 (loop): received %d bytes:’%s’",numbytes ,

buffer);
+ if ((buffer[i-1]== TERMINALCHAR) || (j==

MAX_AUTHZ_REPLY_LENGTH -1))
+ {
+ end = 1;
+ }
+ }
+DBG1(DBG_IKE , "DEBUG POINT 15");
+ authz_respons[j] = ’\0’; // append terminal char just to be

sure
+
+//TODO closing the socket , including opening it should be done in calling

class
+ close(permis_fd);
+
+ /**
+ * From Implementing Role Based Access Controls using X.509

Privilege
+ * Management - the PERMIS Authorisation Infrastructure.
+ * DW Chadwick and A Otenko
+ * In Borka Jerman -Blazic , Wolfgang Schneider , and Tomaz Klobucar ,

editors ,
+ * Security and Privacy in Advanced Networking Technologies , NATO

Science
+ * Series , pages 26-39. IOS Press , 2004 Proceedings of the NATO

Advanced
+ * Networking Workshop on Advanced Security Technologies in

Networking ,
+ * Bled , Slovenia , 15-18 September 2003.
+ * http ://www.cs.kent.ac.uk/pubs /2004/2279
+ *
+ * Once the user has been successfully authenticated he will

attempt to
+ * perform actions on the target. At each attempt , the AEF passes

the
+ * subject object , the target name , and the attempted action along

with its
+ * parameters , to the ADF via a call to Decision. Decision checks

if the
+ * action is allowed for the roles that the user has , taking into

account
+ * all the conditions specified in the TargetAccessPolicy. If the

action is
+ * allowed , Decision returns Granted , if it is not allowed it

returns Denied
+ * .
+ */
+DBG1(DBG_IKE , "DEBUG POINT 16");
+ if (strcmp(authz_respons ,"Granted")==0)

196 Appendix F. Diff Files.

+ {
+ authz_result = TRUE;
+ DBG1(DBG_IKE , "Received an Authorization granted

message from "
+ "PERMIS server.");
+ }
+ else if (strcmp(authz_respons , "Denied")==0)
+ {
+ authz_result = FALSE;
+ DBG1(DBG_IKE , "Received an Authorization Denied

message from PERMIS"
+ " server.");
+ }
+ else
+ {
+ authz_result = FALSE;
+ DBG0(DBG_IKE , "Received an unexpected answer from

PERMIS server: "
+ "’%s’. Can not perform authorization",

authz_respons);
+ }
+DBG1(DBG_IKE , "DEBUG POINT 17");
+ switch (authz_result)
+ {
+ case TRUE:
+ DBG1(DBG_IKE , "Authorization granted.");
+ this ->authorization_failed = FALSE;
+ break;
+ case FALSE:
+ DBG1(DBG_IKE , "Authorization denied.");
+ this ->authorization_failed = TRUE;
+ return NEED_MORE;
+ default:
+ DBG0(DBG_IKE , "Authorization process

produced unexpected reply."
+ " Authorization failed.");
+ return FAILED;
+ }
+ }
+
+
+DBG1(DBG_IKE , "DEBUG POINT 20, beus’ code ends here");
+

/* store authentication information */
cfg = auth_cfg_create ();
cfg ->merge(cfg , this ->ike_sa ->get_auth_cfg(this ->ike_sa , FALSE),

FALSE);
@@ -673,6 +936 ,13 @@

return FAILED;
}

+/* todo when is peer_cfg set? should this message be inserted here? */
+ if (this ->authorization_failed)
+ {
+ message ->add_notify(message , TRUE , AUTHORIZATION_FAILED ,

chunk_empty);
+ return FAILED;
+ }
+

if (this ->my_auth == NULL && this ->do_another_auth)
{

identification_t *id, *id_cfg;

F.1. Our Modifications 197

@@ -1047,6 +1317 ,8 @@
this ->do_another_auth = TRUE;
this ->expect_another_auth = TRUE;
this ->authentication_failed = FALSE;

+/* todo; check if a this ->authorization_failed = ... is needed;*/
+/* todo; check if a this ->do_authz = ... is needed;*/

this ->candidates = linked_list_create ();
}

@@ -1064,6 +1336 ,9 @@
free(this);

}

+
+
+
/*
* Described in header.
*/

@@ -1086,6 +1361 ,11 @@
.candidates = linked_list_create (),
.do_another_auth = TRUE ,
.expect_another_auth = TRUE ,

+ .do_webdav = lib ->settings ->get_bool(lib ->settings , "
charon.plugins.webdav.enable", FALSE),

+ .do_authz = lib ->settings ->get_bool(lib ->settings , "
charon.plugins.permis.enable", FALSE),

+ .permis_server_name = lib ->settings ->get_str(lib ->settings
, "charon.plugins.permis.servername","127.0.0.1"),

+ .permis_port = lib ->settings ->get_int(lib ->settings ,"
charon.plugins.permis.port" ,5010),

+
);
if (initiator)
{

diff -Naur strongswan -4.5.3 - orig/src/libstrongswan/plugins/curl/
curl_fetcher.c strongswan -4.5.3/ src/libstrongswan/plugins/curl/
curl_fetcher.c

--- strongswan -4.5.3 - orig/src/libstrongswan/plugins/curl/curl_fetcher.c
2011 -04 -08 07:50:20.000000000 +0200

+++ strongswan -4.5.3/ src/libstrongswan/plugins/curl/curl_fetcher.c
2011 -10 -20 15:30:43.960372258 +0200

@@ -111,6 +111,9 @@
case CURLE_OK:

status = SUCCESS;
break;

+ case CURLE_REMOTE_FILE_NOT_FOUND:
+ status = NOT_FOUND;
+ break;

default:
DBG1(DBG_LIB , "libcurl http request failed: %s",

error);
status = FAILED;

diff -Naur strongswan -4.5.3 - orig/src/libstrongswan/plugins/revocation/
revocation_validator.c strongswan -4.5.3/ src/libstrongswan/plugins/
revocation/revocation_validator.c

--- strongswan -4.5.3 - orig/src/libstrongswan/plugins/revocation/
revocation_validator.c 2011 -02 -10 15:54:26.000000000 +0100

+++ strongswan -4.5.3/ src/libstrongswan/plugins/revocation/
revocation_validator.c 2011 -10 -20 15:30:43.960372258 +0200

@@ -25,6 +25,10 @@
#include <credentials/sets/ocsp_response_wrapper.h>

198 Appendix F. Diff Files.

#include <selectors/traffic_selector.h>

+# include <ctype.h>
+# define DEFAULT_TIMEOUT 10
+# define MAX_WEBDAV_REQUEST_LENGTH 2048
+
typedef struct private_revocation_validator_t

private_revocation_validator_t;

/**
@@ -206,8 +210 ,259 @@

return best;
}

+
+
+/* Converts an integer value to its hex character */
+static char to_hex(char code) {
+ static char hex[] = "0123456789 abcdef";
+ return hex[code & 15];
+}
+
+/* Returns a url -encoded version of str */
+/* IMPORTANT: be sure to free() the returned string after use */
+static char *url_encode(char *str) {
+ char *pstr = str , *buf = malloc(strlen(str) * 3 + 1), *pbuf = buf;
+ while (*pstr) {
+ if (isalnum (*pstr) || *pstr == ’-’ || *pstr == ’_’ || *pstr == ’.’ ||

*pstr == ’~’)
+ *pbuf++ = *pstr;
+ else if (*pstr == ’ ’)
+ *pbuf++ = ’+’;
+ else
+ *pbuf++ = ’%’, *pbuf++ = to_hex (*pstr >> 4), *pbuf++ = to_hex (*pstr

& 15);
+ pstr ++;
+ }
+ *pbuf = ’\0’;
+ return buf;
+}
+
+
+
+/**
+ * Returns a *char[] containg the full URL -encoded URL for retrieving id’

s
+ * certificate(s) from a WebDAV server or NULL if the request including

the
+ * trailing null character exceeded MAX_WEBDAV_REQUEST_LENGTH
+ * Be sure to free the returned *char after use.
+ */
+static char *get_webdav_url(char *base_url , identification_t *subject)
+{
+//TODO this function is overflow save , but does not yet report it. report

overflow.
+
+ char *result , dn[MAX_WEBDAV_REQUEST_LENGTH], *dn_ptr , *encoded;
+
+ if (snprintf(dn, MAX_WEBDAV_REQUEST_LENGTH -1, "%Y", subject) ==

-1)
+ {
+ return NULL;

F.1. Our Modifications 199

+ }
+ /* replace ", " with ’/’ */
+ dn_ptr = dn;
+ while (dn_ptr)
+ {
+ dn_ptr = strstr(dn_ptr , ", ");
+ if (dn_ptr)
+ {
+ *dn_ptr ++ = ’/’;
+ /* remove space */
+ strcpy(dn_ptr , ++ dn_ptr);
+ }
+ }
+ /* replace ’,’ with ’/’ */
+ dn_ptr = dn;
+ while (dn_ptr)
+ {
+ dn_ptr = strchr(dn_ptr ,’,’);
+ if (dn_ptr)
+ {
+ *dn_ptr ++ = ’/’;
+ }
+ }
+
+ result = malloc(MAX_WEBDAV_REQUEST_LENGTH);
+ if(strlen(result)+strlen(base_url) < MAX_WEBDAV_REQUEST_LENGTH -1)
+ {
+ strncpy(result , base_url , MAX_WEBDAV_REQUEST_LENGTH -1);
+ }
+ else
+ {
+ return NULL;
+ }
+ /* removing possible double / */
+
+ if ((result[strlen(result)] == dn[0]) == ’/’)
+ {
+ /* remove traling ’/’ of result by replacing it with a

null char */
+ result[strlen(result)] = ’\0’;
+ }
+ if(strlen(result)+strlen(dn) < MAX_WEBDAV_REQUEST_LENGTH -1)
+ {
+ strncat(result , dn, MAX_WEBDAV_REQUEST_LENGTH - strlen(

result) -1);
+ }
+ else
+ {
+ return NULL;
+ }
+
+ /* Make it URL encoded */
+ encoded = url_encode(result);
+ if(strlen(result)+strlen(encoded) < MAX_WEBDAV_REQUEST_LENGTH -1)
+ {
+ strncpy (result , encoded , MAX_WEBDAV_REQUEST_LENGTH -1);
+ }
+ else
+ {
+ result = NULL;
+ }
+ free(encoded);

200 Appendix F. Diff Files.

+ return result;
+}
+
+
+/**
+ * Do a WebDAV request
+ */
+static status_t fetch_webdav(char *url , certificate_t *subject ,

certificate_t *issuer , chunk_t *receive)
+{
+ char *full_url;
+ status_t response;
+ int timeout;
+
+ full_url = get_webdav_url(url , subject ->get_subject(subject));
+ timeout = lib ->settings ->get_int(
+ lib ->settings , "charon.plugins.webdav.timeout",

DEFAULT_TIMEOUT);
+ if (! full_url){
+ DBG0(DBG_CFG , " could not fetch WebDAV status for ’%Y’

from ’%s’; The "
+ "request size is too large

.",
+ subject ->get_subject(

subject), url);
+ }
+
+DBG0(DBG_CFG , " requesting WebDAV status for ’%Y’ at ’%s’ using URI:’%s

’...",
+ subject ->get_subject(subject), url , full_url);
+
+ DBG3(DBG_CFG , " requesting WebDAV status from ’%s’ ...", url);
+ response = lib ->fetcher ->fetch(lib ->fetcher , full_url , receive ,
+ FETCH_REQUEST_TYPE

, "application/http -request",
+ FETCH_TIMEOUT ,

timeout , FETCH_END);
+ if (response != SUCCESS)
+ {
+ DBG3(DBG_CFG , " fetcher returned status type %N when "
+ "requesting WebDAV status

from ’%s’ ...",
+ status_names ,response ,

url);
+ }
+ free(full_url);
+
+ if (! response)
+ {
+ DBG1(DBG_CFG , "parsing WebDAV response failed");
+ return FAILED;
+ }
+ return response;
+}
+
+
+
+/**
+ * validate a x509 certificate using WebDAV
+ */
+static cert_validation_t check_webdav(x509_t *subject , x509_t *issuer ,
+ auth_cfg_t *auth)

F.1. Our Modifications 201

+{
+ enumerator_t *enumerator;
+ cert_validation_t valid = VALIDATION_SKIPPED;
+ status_t result;
+ char *uri = NULL;
+ chunk_t *retrieved_chunk = NULL;
+ x509_t *retrieved_cert;
+
+
+ /* lookup cache for valid WebDAV responses */
+ //TODO
+ // if (cached_as_revoked)
+ // {
+ // valid = VALIDATION_REVOKED;
+ // }
+
+ /* fallback to URL fetching from subject certificate ’s URIs */
+ if (valid != VALIDATION_REVOKED)
+ {
+ enumerator = subject ->create_ocsp_uri_enumerator(subject);
+ while (enumerator ->enumerate(enumerator , &uri))
+ {
+ result = fetch_webdav(uri , &subject ->interface ,
+ &issuer ->interface ,

retrieved_chunk);
+ DBG3(DBG_CFG , " fetcher returned status type %N

when requesting "
+ "WebDAV status

from ’%s’ ...", status_names ,
+ result , uri);
+ if (result == SUCCESS)
+ {
+ retrieved_cert = lib ->creds ->create(lib ->

creds , CRED_CERTIFICATE ,
+ CERT_X509 , BUILD_BLOB_ASN1_DER ,

retrieved_chunk , BUILD_END);
+
+ /**
+ * if the certificate retrieved from the

uri protected in the
+ * subject certificate is a bitwise match

it is validated ,
+ * otherwise validation check failed.
+ */
+DBG0(DBG_CFG , "About to compare certificates webdav style");
+ valid = ((&subject ->interface)->equals (&

subject ->interface , &retrieved_cert ->interface) ? VALIDATION_GOOD :
VALIDATION_FAILED);

+DBG0(DBG_CFG , "Comparing certificates found: %N",cert_validation_names ,
valid);

+ break; /* no need to check other URI’s */
+ }
+ if (result == NOT_FOUND)
+ {
+ /**
+ * If the certificate could not be

retrieved from the uri
+ * protected in the subject certificate

but connection to uri
+ * succeeded , i.e. 404 error , validation

is considered revoked.
+ */

202 Appendix F. Diff Files.

+ valid = VALIDATION_REVOKED;
+ //TODO cache the revocation
+ break; /* no need to check other URI’s */
+ }
+// if(result == PARSE_ERROR)
+// {
+// /**
+// * Apparently the certificate could not be

correctly retrieved
+// * from the uri in the subject certificate

but connection to uri
+// * succeeded , assuming bad configured

server of malformed
+// * subject certificate. Validation is

considered failed.
+// */
+// valid = VALIDATION_FAILED;
+// }
+ if(result == NOT_SUPPORTED || FAILED)
+ {
+ DBG0(DBG_CFG , " fetcher returned status

type %N when "
+ "requesting WebDAV

 status from ’%s’ ... check "
+ "configuration ",

status_names , result , uri);
+ valid = VALIDATION_STALE;
+ continue;
+ }
+ }
+ enumerator ->destroy(enumerator);
+ }
+
+
+ /* an uri was found , but no result. switch validation state to

failed */
+ if (valid == VALIDATION_SKIPPED && uri)
+ {
+ valid = VALIDATION_FAILED;
+ }
+//TODO check
+// if (auth)
+// {
+// auth ->add(auth , AUTH_RULE_OCSP_VALIDATION , valid);
+// if (valid == VALIDATION_GOOD)
+// { /* successful OCSP check fulfills also CRL

constraint */
+// auth ->add(auth , AUTH_RULE_CRL_VALIDATION ,

VALIDATION_GOOD);
+// }
+// }
+// DESTROY_IF(best);
+
+ return valid;
+}
+
/**
* validate a x509 certificate using OCSP

+ * Currently WebDAV is implemented using a OCSP related field in the
+ * certificate. If WebDAV is enabled return WebDAV validation status

instead.
*/

F.2. Tobias’ Patch 203

static cert_validation_t check_ocsp(x509_t *subject , x509_t *issuer ,
auth_cfg_t

*
auth
)

@@ -220,6 +475 ,13 @@
chunk_t chunk;
char *uri = NULL;

+ if (lib ->settings ->get_bool(lib ->settings ,
+ "charon.plugins.webdav.enabled",FALSE))
+ {
+ DBG3(DBG_CFG , "Performing WebDAV validation instead of

normal OCSP");
+ return check_webdav(subject , issuer , auth);
+ }
+

/** lookup cache for valid OCSP responses */
enumerator = lib ->credmgr ->create_cert_enumerator(lib ->credmgr ,

CERT_X509_OCSP_RESPONSE
,
KEY_ANY
, NULL
,
FALSE)
;

F.2 Tobias’ Patch

Listing F.2 and F.3 list the patch supplied by Tobias Brunner [19, 20].

Listing F.2: tobias-patch1.diff
--- a/src/libcharon/plugins/stroke/stroke_socket.c
+++ b/src/libcharon/plugins/stroke/stroke_socket.c
@@ -1,4 +1,5 @@
/*

+ * Copyright (C) 2011 Tobias Brunner
* Copyright (C) 2008 Martin Willi
* Hochschule fuer Technik Rapperswil
*

@@ -25,7 +26,10 @@

#include <hydra.h>
#include <daemon.h>

+# include <threading/mutex.h>
#include <threading/thread.h>

+# include <threading/condvar.h>
+# include <utils/linked_list.h>
#include <processing/jobs/callback_job.h>

#include "stroke_config.h"
@@ -35,6 +39,12 @@
#include "stroke_attribute.h"
#include "stroke_list.h"

+/**

204 Appendix F. Diff Files.

+ * To avoid clogging the thread pool with (blocking) jobs , we limit the
number

+ * of concurrently handled stroke commands.
+ */
+# define MAX_CONCURRENT 4
+
typedef struct stroke_job_context_t stroke_job_context_t;
typedef struct private_stroke_socket_t private_stroke_socket_t;

@@ -56,7 +66,32 @@ struct private_stroke_socket_t {
/**
* job accepting stroke messages
*/

- callback_job_t *job;
+ callback_job_t *receiver;
+
+ /**
+ * job handling stroke messages
+ */
+ callback_job_t *handler;
+
+ /**
+ * queued stroke commands
+ */
+ linked_list_t *commands;
+
+ /**
+ * lock for command list
+ */
+ mutex_t *mutex;
+
+ /**
+ * condvar to signal the arrival or completion of commands
+ */
+ condvar_t *condvar;
+
+ /**
+ * the number of currently handled commands
+ */
+ u_int handling;

/**
* configuration backend

@@ -84,7 +119,7 @@ struct private_stroke_socket_t {
stroke_ca_t *ca;

/**
- * Status information logging
+ * status information logging

*/
stroke_list_t *list;

};
@@ -489,6 +524 ,18 @@ static void stroke_job_context_destroy(

stroke_job_context_t *this)
}

/**
+ * called to signal the completion of a command
+ */
+static inline job_requeue_t job_processed(private_stroke_socket_t *this)
+{
+ this ->mutex ->lock(this ->mutex);

F.2. Tobias’ Patch 205

+ this ->handling --;
+ this ->condvar ->signal(this ->condvar);
+ this ->mutex ->unlock(this ->mutex);
+ return JOB_REQUEUE_NONE;
+}
+
+/**

* process a stroke request from the socket pointed by "fd"
*/

static job_requeue_t process(stroke_job_context_t *ctx)
@@ -506,7 +553,7 @@ static job_requeue_t process(stroke_job_context_t *ctx

)
{

DBG1(DBG_CFG , "reading length of stroke message failed: %s
",

strerror(errno));
- return JOB_REQUEUE_NONE;
+ return job_processed(this);

}

/* read message */
@@ -515,14 +562 ,14 @@ static job_requeue_t process(stroke_job_context_t *

ctx)
if (bytes_read != msg_length)
{

DBG1(DBG_CFG , "reading stroke message failed: %s",
strerror(errno));

- return JOB_REQUEUE_NONE;
+ return job_processed(this);

}

out = fdopen(strokefd , "w+");
if (out == NULL)
{

DBG1(DBG_CFG , "opening stroke output channel failed: %s",
strerror(errno));

- return JOB_REQUEUE_NONE;
+ return job_processed(this);

}

DBG3(DBG_CFG , "stroke message %b", (void*)msg , msg_length);
@@ -599,11 +646 ,38 @@ static job_requeue_t process(stroke_job_context_t *

ctx)
fclose(out);
/* fclose () closes underlying FD */
ctx ->fd = 0;

- return JOB_REQUEUE_NONE;
+ return job_processed(this);
}

/**
- * Implementation of private_stroke_socket_t.stroke_receive.
+ * Handle queued stroke commands
+ */
+static job_requeue_t handle(private_stroke_socket_t *this)
+{
+ stroke_job_context_t *ctx;
+ callback_job_t *job;
+ bool oldstate;
+
+ this ->mutex ->lock(this ->mutex);

206 Appendix F. Diff Files.

+ thread_cleanup_push ((thread_cleanup_t)this ->mutex ->unlock , this ->
mutex);

+ oldstate = thread_cancelability(TRUE);
+ while (this ->commands ->get_count(this ->commands) == 0 ||
+ this ->handling >= MAX_CONCURRENT)
+ {
+ this ->condvar ->wait(this ->condvar , this ->mutex);
+ }
+ thread_cancelability(oldstate);
+ this ->commands ->remove_first(this ->commands , (void **)&ctx);
+ this ->handling ++;
+ thread_cleanup_pop(TRUE);
+ job = callback_job_create_with_prio ((callback_job_cb_t)process ,

ctx ,
+ (void*) stroke_job_context_destroy , this ->handler ,

JOB_PRIO_HIGH);
+ lib ->processor ->queue_job(lib ->processor , (job_t*)job);
+ return JOB_REQUEUE_DIRECT;
+}
+
+/**
+ * Accept stroke commands and queue them to be handled

*/
static job_requeue_t receive(private_stroke_socket_t *this)
{

@@ -611,7 +685,6 @@ static job_requeue_t receive(private_stroke_socket_t *
this)

int strokeaddrlen = sizeof(strokeaddr);
int strokefd;
bool oldstate;

- callback_job_t *job;
stroke_job_context_t *ctx;

oldstate = thread_cancelability(TRUE);
@@ -624,17 +697 ,18 @@ static job_requeue_t receive(private_stroke_socket_t

*this)
return JOB_REQUEUE_FAIR;

}

- ctx = malloc_thing(stroke_job_context_t);
- ctx ->fd = strokefd;
- ctx ->this = this;
- job = callback_job_create_with_prio ((callback_job_cb_t)process ,
- ctx , (void*) stroke_job_context_destroy , this ->job ,

JOB_PRIO_HIGH);
- lib ->processor ->queue_job(lib ->processor , (job_t*)job);
+ INIT(ctx ,
+ .fd = strokefd ,
+ .this = this ,
+);
+ this ->mutex ->lock(this ->mutex);
+ this ->commands ->insert_last(this ->commands , ctx);
+ this ->condvar ->signal(this ->condvar);
+ this ->mutex ->unlock(this ->mutex);

return JOB_REQUEUE_FAIR;
}

-
/**
* initialize and open stroke socket
*/

F.2. Tobias’ Patch 207

@@ -682,7 +756 ,11 @@ static bool open_socket(private_stroke_socket_t *this
)

METHOD(stroke_socket_t , destroy , void ,
private_stroke_socket_t *this)

{
- this ->job ->cancel(this ->job);
+ this ->handler ->cancel(this ->handler);
+ this ->receiver ->cancel(this ->receiver);
+ this ->commands ->destroy_function(this ->commands , (void*)

stroke_job_context_destroy);
+ this ->condvar ->destroy(this ->condvar);
+ this ->mutex ->destroy(this ->mutex);

lib ->credmgr ->remove_set(lib ->credmgr , &this ->ca->set);
lib ->credmgr ->remove_set(lib ->credmgr , &this ->cred ->set);
charon ->backends ->remove_backend(charon ->backends , &this ->config ->

backend);
@@ -722,14 +800 ,22 @@ stroke_socket_t *stroke_socket_create ()

this ->control = stroke_control_create ();
this ->list = stroke_list_create(this ->attribute);

+ this ->mutex = mutex_create(MUTEX_TYPE_DEFAULT);
+ this ->condvar = condvar_create(CONDVAR_TYPE_DEFAULT);
+ this ->commands = linked_list_create ();
+

lib ->credmgr ->add_set(lib ->credmgr , &this ->ca->set);
lib ->credmgr ->add_set(lib ->credmgr , &this ->cred ->set);
charon ->backends ->add_backend(charon ->backends , &this ->config ->

backend);
hydra ->attributes ->add_provider(hydra ->attributes , &this ->

attribute ->provider);

- this ->job = callback_job_create_with_prio ((callback_job_cb_t)
receive ,

+ this ->receiver = callback_job_create_with_prio ((callback_job_cb_t)
receive ,

+

this , NULL , NULL , JOB_PRIO_CRITICAL);
+ lib ->processor ->queue_job(lib ->processor , (job_t*)this ->receiver);
+
+ this ->handler = callback_job_create_with_prio ((callback_job_cb_t)

handle ,
this

,

NULL
,

NULL
,

JOB_PRIO_CRITICAL
)
;

- lib ->processor ->queue_job(lib ->processor , (job_t*)this ->job);
+ lib ->processor ->queue_job(lib ->processor , (job_t*)this ->handler);

return &this ->public;
}

208 Appendix F. Diff Files.

Listing F.3: tobias-patch2.diff
--- a/src/libcharon/plugins/stroke/stroke_socket.c
+++ b/src/libcharon/plugins/stroke/stroke_socket.c
@@ -43,7 +43,7 @@

* To avoid clogging the thread pool with (blocking) jobs , we limit the
number

* of concurrently handled stroke commands.
*/

-#define MAX_CONCURRENT 4
+# define MAX_CONCURRENT_DEFAULT 4

typedef struct stroke_job_context_t stroke_job_context_t;
typedef struct private_stroke_socket_t private_stroke_socket_t;

@@ -94,6 +94,11 @@ struct private_stroke_socket_t {
u_int handling;

/**
+ * the maximum number of concurrently handled commands
+ */
+ u_int max_concurrent;
+
+ /**

* configuration backend
*/

stroke_config_t *config;
@@ -662,7 +667,7 @@ static job_requeue_t handle(private_stroke_socket_t *

this)
thread_cleanup_push ((thread_cleanup_t)this ->mutex ->unlock , this ->

mutex);
oldstate = thread_cancelability(TRUE);
while (this ->commands ->get_count(this ->commands) == 0 ||

- this ->handling >= MAX_CONCURRENT)
+ this ->handling >= this ->max_concurrent)

{
this ->condvar ->wait(this ->condvar , this ->mutex);

}
@@ -803,6 +808,8 @@ stroke_socket_t *stroke_socket_create ()

this ->mutex = mutex_create(MUTEX_TYPE_DEFAULT);
this ->condvar = condvar_create(CONDVAR_TYPE_DEFAULT);
this ->commands = linked_list_create ();

+ this ->max_concurrent = lib ->settings ->get_int(lib ->settings ,
+ "charon.plugins.stroke.max_concurrent",

MAX_CONCURRENT_DEFAULT);

lib ->credmgr ->add_set(lib ->credmgr , &this ->ca->set);
lib ->credmgr ->add_set(lib ->credmgr , &this ->cred ->set);

Bibliography

[1] Shiboleth. http://shibboleth.internet2.edu/ retrieved May 05,
2009.

[2] strongSwan, the OpenSource IPsec-based VPN Solution. Website.
Available at http://strongswan.org/. Retrieved November 05, 2009.
Last modified September 27, 2009.

[3] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Ex-
tensible Authentication Protocol (EAP). RFC 3748 (Proposed Stan-
dard), June 2004. Updated by RFC 5247.

[4] B. Aboba and D. Simon. PPP EAP TLS Authentication Protocol.
RFC 2716 (Experimental), October 1999. Obsoleted by RFC 5216.

[5] B. Aboba, D. Simon, and P. Eronen. Extensible Authentication Proto-
col (EAP) Key Management Framework. RFC 5247 (Proposed Stan-
dard), August 2008.

[6] B. Aboba and J. Wood. Authentication, Authorization and Accounting
(AAA) Transport Profile. RFC 3539 (Proposed Standard), June 2003.

[7] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context
and context-awareness. In HUC ’99: Proceedings of the 1st interna-
tional symposium on Handheld and Ubiquitous Computing, pages 304–
307, London, UK, 1999. Springer-Verlag.

[8] Puri N. Anggraeni, Neeli R. Prasad, and R. Prasad. Secure personal
network. In PIMRC, pages 1–5. IEEE, 2008.

[9] Claudio A. Ardagna, Marco Cremonini, Ernesto Damiani, Sabrina
De Capitani di Vimercati, and Pierangela Samarati. Supporting
location-based conditions in access control policies. In ASIACCS ’06:
Proceedings of the 2006 ACM Symposium on Information, computer

209

http://shibboleth.internet2.edu/
http://strongswan.org/

210 Bibliography.

and communications security, pages 212–222, New York, NY, USA,
2006. ACM.

[10] J. Arkko and H. Haverinen. Extensible Authentication Protocol
Method for 3rd Generation Authentication and Key Agreement (EAP-
AKA). RFC 4187 (Informational), January 2006.

[11] Giuseppe Ateniese, Marina Blanton, and Jonathan Kirsch. Secret
handshakes with dynamic and fuzzy matching. In Network and Dis-
tributed System Security Symposuim, pages 159–177. The Internet So-
ciety, February 2007.

[12] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana Smetters, Jes-
sica Staddon, and Hao-Chi Wong. Secret handshakes from pairing-
based key agreements. In SP ’03: Proceedings of the 2003 IEEE Sym-
posium on Security and Privacy, page 180, Washington, DC, USA,
2003. IEEE Computer Society.

[13] Romain Berrendonner and Herve Chabanne. Ppp eap make mutual
authentication protocol, November 2001. draft-berrendo-chabanne-
pppext-eapmake-01.txt.

[14] F. Bersani and H. Tschofenig. The EAP-PSK Protocol: A Pre-Shared
Key Extensible Authentication Protocol (EAP) Method. RFC 4764
(Experimental), January 2007.

[15] Jan Willem Christiaan Beusink. Investigation and selection of a suit-
able security architecture that can be applied in federated personal
networks. Deliverable of the course Research Topics, 2009.

[16] Wen bi Rao and Quan Gan. The performance analysis of two digi-
tal signature schemes based on secure charging protocol. In Wireless
Communications, Networking and Mobile Computing, 2005. Proceed-
ings. 2005 International Conference on, volume 2, pages 1180–1182,
Sept. 2005.

[17] A. Bogdanov, L. R. Knudsen, G. Le, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight
block cipher. In the proceedings of CHES 2007. Springer, 2007.

[18] Carolyn A. Brodie, Clare-Marie Karat, and John Karat. An empirical
study of natural language parsing of privacy policy rules using the
sparcle policy workbench. In SOUPS ’06: Proceedings of the second
symposium on Usable privacy and security, pages 8–19, New York, NY,
USA, 2006. ACM.

Bibliography 211

[19] Tobias Brunner. Make number of concurrently handled stroke messages
configurable. Website. Available at http://git.strongswan.org/?p=
strongswan.git;a=commitdiff;h=7c0c2349. Retrieved January 02,
2012. Last modified December 29, 2011.

[20] Tobias Brunner. This avoids clogging the thread pool with potentially
blocking jobs. Website. Available at http://git.strongswan.org/?p=
strongswan.git;a=commitdiff;h=8ff513a8. Retrieved January 02,
2012. Last modified December 29, 2011.

[21] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. Di-
ameter Base Protocol. RFC 3588 (Proposed Standard), September
2003.

[22] N. Cam-Winget, D. McGrew, J. Salowey, and H. Zhou. The Flexible
Authentication via Secure Tunneling Extensible Authentication Pro-
tocol Method (EAP-FAST). RFC 4851 (Informational), May 2007.

[23] Xiang Cao and Lee Iverson. Intentional access management: making
access control usable for end-users. In SOUPS ’06: Proceedings of the
second symposium on Usable privacy and security, pages 20–31, New
York, NY, USA, 2006. ACM.

[24] David Chadwick and Sean Anthony. Using WebDAV for Improved
Certificate Revocation and Publication. In LNCS 4582. Public Key
Infrastructure, Proceedings of 4th European PKI Workshop, Palma de
Mallorca, Spain, pages 265–279, June 2007.

[25] David W Chadwick, Gansen Zhao, Sassa Otenko, Romain Laborde,
Linying Su, and Tuan Anh Nguyen. PERMIS: a modular authoriza-
tion infrastructure. Concurrency and Computation: Practice and Ex-
perience, 20(11):1341–1357, August 2008. Online ISSN: 1532-0634.

[26] P. Congdon, B. Aboba, A. Smith, G. Zorn, and J. Roese. IEEE 802.1X
Remote Authentication Dial In User Service (RADIUS) Usage Guide-
lines. RFC 3580 (Informational), September 2003.

[27] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280 (Proposed Stan-
dard), May 2008.

[28] Lorrie Faith Cranor and Lawrence Lessig. Web Privacy with P3P.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.

[29] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence.
Generic AAA Architecture. RFC 2903 (Experimental), August 2000.

http://git.strongswan.org/?p=strongswan.git;a=commitdiff;h=7c0c2349
http://git.strongswan.org/?p=strongswan.git;a=commitdiff;h=7c0c2349
http://git.strongswan.org/?p=strongswan.git;a=commitdiff;h=8ff513a8
http://git.strongswan.org/?p=strongswan.git;a=commitdiff;h=8ff513a8

212 Bibliography.

[30] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246
(Proposed Standard), January 1999. Obsoleted by RFC 4346, updated
by RFC 3546.

[31] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted
by RFC 5246, updated by RFCs 4366, 4680, 4681.

[32] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Pro-
tocol Version 1.2. RFC 5246 (Proposed Standard), August 2008.

[33] L. Dusseault. HTTP Extensions for Web Distributed Authoring and
Versioning (WebDAV). RFC 4918 (Proposed Standard), June 2007.

[34] ECRYPT. Ecrypt final report on algorithms and key lengths (2008),
July 2008. Yearly Report on Algorithms and Keysizes (2007-2008),
D.SPA.28 Rev. 1.1, IST-2002-507932 ECRYPT.

[35] Stephan Eichler and Bernd Muller-Rathgeber. Performance analysis
of scalable certificate revocation schemes for ad hoc networks. In LCN
’05: Proceedings of the The IEEE Conference on Local Computer Net-
works 30th Anniversary, pages 382–391, Washington, DC, USA, 2005.
IEEE Computer Society.

[36] P. Eronen. IKEv2 Mobility and Multihoming Protocol (MOBIKE).
RFC 4555 (Proposed Standard), June 2006.

[37] P. Eronen and J. Korhonen. Multiple Authentication Exchanges in the
Internet Key Exchange (IKEv2) Protocol. RFC 4739 (Experimental),
November 2006.

[38] S. Cantor et al. Assertions and protocols for the oasis security as-
sertion markup language (saml) v2.0. Standard 2.0, OASIS (the
Organization for the Advancement of Structured Information Stan-
dards), March 2005. Obtainable from http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf.

[39] 3g security; access security for ip-based services. Technical Report
3GPP TS 33.203 version 8.5.0 release 8, European Telecommunications
Standards Institute (ETSI), 2009.

[40] S. Farrell and R. Housley. An Internet Attribute Certificate Profile for
Authorization. RFC 3281 (Proposed Standard), April 2002.

[41] David Ferraiolo, Janet Cugini, and Richard Kuhn. Role-based access
control (rbac): Features and motivations. In In Proceedings of 11th An-
nual Computer Security Application Conference, pages 241–248, 1995.

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

Bibliography 213

[42] David Ferraiolo and Richard Kuhn. Role-based access control. In In
15th NIST-NCSC National Computer Security Conference, pages 554–
563, 1992.

[43] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC
2616 (Draft Standard), June 1999. Updated by RFC 2817.

[44] E. R. Fledderus, O. D. Rietkerk, F. T. Hartog, I. G. Niemegeers, and
S. M. Groot. Towards viable personal networks and fednets – a value-
web perspective. Wirel. Pers. Commun., 38(1):103–115, 2006.

[45] P. Funk and S. Blake-Wilson. Extensible Authentication Protocol
Tunneled Transport Layer Security Authenticated Protocol Version 0
(EAP-TTLSv0). RFC 5281 (Informational), August 2008.

[46] Paul Funk and Simon Blake-Wilson. Eap tunneled tls authentication
protocol version 1 (eap-ttlsv1), March 2006. http://tools.ietf.org/
html/draft-funk-eap-ttls-v1-01.

[47] Ed Gerck. Overview of certification systems: X.509, pkix, ca, pgp &
skip. do you understand digital certificates? do you know what they
warrant? published by the MCG 1997-2000, July 2000. at http:
//www.thebell.net/papers/certover.pdf.

[48] Vipul Goyal. Certificate revocation lists or online mechanisms. In Ed-
uardo Fernández-Medina, Julio César Hernández Castro, and L. Javier
García-Villalba, editors, WOSIS, pages 261–268. INSTICC Press,
2004.

[49] Vipul Goyal. Certificate revocation using fine grained certificate space
partitioning. In Sven Dietrich and Rachna Dhamija, editors, Finan-
cial Cryptography, volume 4886 of Lecture Notes in Computer Science,
pages 247–259. Springer, 2007.

[50] Yanying Gu, Weidong Lu, R. V. Prasad, and Ignas Niemegeers. Clus-
tering in ad hoc personal network formation. In ICCS ’07: Proceedings
of the 7th international conference on Computational Science, Part IV,
pages 312–319, Berlin, Heidelberg, 2007. Springer-Verlag.

[51] Vipul Gupta, Sumit Gupta, Sheueling Chang, and Douglas Stebila.
Performance analysis of elliptic curve cryptography for ssl. In WiSE
’02: Proceedings of the 1st ACM workshop on Wireless security, pages
87–94, New York, NY, USA, 2002. ACM.

[52] Jeroen Hoebeke, Gerry Holderbeke, Ingrid Moerman, Martin Jacobs-
son, Venkatesha Prasad, N.I. Cempaka Wangi, Ignas Niemegeers, and

http://tools.ietf.org/html/draft-funk-eap-ttls-v1-01
http://tools.ietf.org/html/draft-funk-eap-ttls-v1-01
http://www.thebell.net/papers/certover.pdf
http://www.thebell.net/papers/certover.pdf

214 Bibliography.

Sonia Heemstra de Groot. Personal network federations. In proceedings
of the 15th IST Mobile & Wireless Communications Summit, June 4-8,
2006.

[53] Extensible authentication protocol (eap) registry. Retrieved from
http://www.iana.org/assignments/eap-numbers on the 28th of May
2009, at which time it was last updated 2009-05-22.

[54] Malohat Ibrohimovna and Sonia Heemstra de Groot. Sharing resources
in group-oriented networks fednet and related paradigms. In Mo-
bile Ubiquitous Computing, Systems, Services and Technologies, 2008.
UBICOMM ’08. The Second International Conference on, pages 430–
437, Washington, DC, USA, 29 2008-Oct. 4 2008. IEEE Computer
Society.

[55] Malohat Ibrohimovna and Sonia Heemstra de Groot. Proxy-based
fednets for sharing personal services in distributed environments. In
Wireless and Mobile Communications, 2008. ICWMC ’08. The Fourth
International Conference on, pages 150–157, 27 2008-Aug. 1 2008.

[56] Malohat Ibrohimovna, Sonia Heemstra de Groot, Jasper Goseling,
Hartmut Benz, and Jan Stoter. Federations of Personal Networks.
Freeband, v1.0 edition, 19 December 2008. Project reference: PNP2008
Delivarable A.2.5.

[57] Ieee standard for information technology – telecommunications and
information exchange between systems – local and metropolitan area
networks – specific requirements; part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications; amendment 6:
Medium access control (mac) security enhancements. Technical report,
June 2004.

[58] Ieee standard for local and metropolitan area networks – port-based
network access control. IEEE Std 802.1X-2004 (Revision of IEEE Std
802.1X-2001), pages 1–169, November 2004.

[59] ECRYPT II. Yearly report on algorithms and keysizes (2008-2009),
July 2009. Yearly Report on Algorithms and Keysizes (2008-2009),
D.SPA.7 Rev. 1.0, ICT-2007-216676 ECRYPT II, 07/2009.

[60] Philip Inglesant, M. Angela Sasse, David Chadwick, and Lei Lei Shi.
Expressions of expertness: the virtuous circle of natural language for
access control policy specification. In SOUPS ’08: Proceedings of the
4th symposium on Usable privacy and security, pages 77–88, New York,
NY, USA, 2008. ACM.

[61] IOP GenCom. VITRUVIUS – Versatile Interface for TRUstworthy
VItal User (oriented) Services, April 2008. projectplan.

http://www.iana.org/assignments/eap-numbers

Bibliography 215

[62] International Telecommunication Union (ITU). Security architecture
for open systems interconnection for ccitt applications, 1991. ITU-
T Recommendation X.800/ISO 7498-2, obtainable from http://www.
itu.int/rec/T-REC-X.800/en.

[63] ITU-T. Information technology - ASN.1 encoding rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER). Recommendation X.690,
International Telecommunication Union, June 1994.

[64] David P. Jablon. Strong password-only authenticated key exchange.
SIGCOMM Comput. Commun. Rev., 26:5–26, October 1996.

[65] Martin Jacobsson, Weidong Lu, Anthony Lo, Venkatesha Prasad, Mal-
ohat Kamilova, Ertan Onur, Edsger Jager, Rieks Joosten, Martin
Werf, van der, Ben Hillen, Sonia Heemstra de Groot, Jan Stoter, Neill
Whillians, and Jasper Goseling. PN Architectures Final Version. Free-
band, v1.0 edition, December 2008. Project reference: PNP2008 Deli-
varable A.1.3.

[66] Martin E. Jacobsson. Personal Networks – An Architecture for Self-
Organized Personal Wireless Communications. PhD thesis, Delft
University of Technology, 2008. available on http://www.wmc.ewi.
tudelft.nl/~martin/thesis/.

[67] Usman Javaid, Djamal-Eddine Meddour, Tinku Mohamed Rasheed,
and Toufik Ahmed. Personal network routing protocol (pnrp) for per-
sonal ubiquitous environments. In ICC, pages 3100–3107. IEEE, 2007.

[68] Assed Jehangir and Sonia M. Heemstra de Groot. A security archi-
tecture for personal networks. Mobile and Ubiquitous Systems - Work-
shops, 2006. 3rd Annual International Conference on, pages 1–8, July
2006.

[69] Assed Jehangir and Sonia M. Heemstra de Groot. Securing personal
network clusters. In Security and Privacy in Communications Net-
works and the Workshops, 2007. SecureComm 2007. Third Interna-
tional Conference on, pages 320–329, Sept. 2007.

[70] Xiaodong Jiang and James A. Landay. Modeling privacy control in
context-aware systems. IEEE Pervasive Computing, 1(3):59–63, 2002.

[71] Jon_Senior. Jamvm + gnu classpath on kamikaze (+ wiki question).
Webforum. Available at https://forum.openwrt.org/viewtopic.php?
pid=71500#p71500. Retrieved November 30, 2010. Last modified July
21, 2008.

http://www.itu.int/rec/T-REC-X.800/en
http://www.itu.int/rec/T-REC-X.800/en
http://www.wmc.ewi.tudelft.nl/~martin/thesis/
http://www.wmc.ewi.tudelft.nl/~martin/thesis/
https://forum.openwrt.org/viewtopic.php?pid=71500#p71500
https://forum.openwrt.org/viewtopic.php?pid=71500#p71500

216 Bibliography.

[72] S. Josefsson. Extended Kerberos Version 5 Key Distribution Center
(KDC) Exchanges over TCP. RFC 5021 (Proposed Standard), August
2007.

[73] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306
(Proposed Standard), December 2005. Updated by RFC 5282.

[74] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computa-
tion, 48(177):203–209, 1987.

[75] D. M. Kyriazanos, H. Olesen, A. Hammershøj, E. Heinze, S. Bessler,
J. Zeiss, C. Patrikakis, G. Nikolakopoulos, S. Amundsen, H. Thu-
vesson, A. Cimmino, P. Novelli, R. Olsen, N. Prasad, M. Bauer,
F. Armknecht, A. Pashalidis, K. Masmoudi, M. Girod Genet, and
I. Moerman. Specification of user profile, identity and role man-
agement for PNs and integration to the PN platform. Techni-
cal report, EU FP6 IST Project My Personal Adaptive Global
Net (MAGNET) Beyond, March 2007. Document number: MAG-
NET/B/WP4.3/NTUA/D4.3.2/R/PU/001/28.03.2007.

[76] L. Law and J. Solinas. Suite B Cryptographic Suites for IPsec. RFC
4869 (Informational), May 2007.

[77] List of ldap software. Wikipedia online encyclopedia. Available at from
http://en.wikipedia.org/wiki/List_of_LDAP_software, last modi-
fied on 7 June 2009, retrieved June 22, 2009.

[78] Jun Lei, Xiaoming Fu, Dieter Hogrefe, and Jianrong Tan. Comparative
studies on authentication and key exchange methods for 802.11 wireless
lan. Computers & Security, 26(5):401–409, 2007.

[79] A. Levi and E. Savas. Performance evaluation of public-key cryptosys-
tem operations in wtls protocol. In Computers and Communication,
2003. (ISCC 2003). Proceedings. Eighth IEEE International Sympo-
sium on, pages 1245–1250 vol.2, June-3 July 2003.

[80] Albert Levi and Erkay Savas. Performance evaluation of public-key
cryptosystem operations in wtls protocol. In ISCC ’03: Proceedings
of the Eighth IEEE International Symposium on Computers and Com-
munications, page 1245, Washington, DC, USA, 2003. IEEE Computer
Society.

[81] Gabriel López, Oscar Cánovas, Antonio F. Gómez, Jesús D. Jiménez,
and Rafael Marín. A network access control approach based on the
aaa architecture and authorization attributes. J. Netw. Comput. Appl.,
30(3):900–919, 2007.

http://en.wikipedia.org/wiki/List_of_LDAP_software

Bibliography 217

[82] Magnet, my personal adaptive global net. http://www.telecom.ece.
ntua.gr/magnet/index.html retrieved March 13, 2009.

[83] Magnet, my personal adaptive global net. http://magnet.aau.dk re-
trieved 13-3-09.

[84] Khamish Malhotra, Stephen Gardner, and Will Mepham. A novel im-
plementation of signature, encryption and authentication (sea) pro-
tocol on mobile patient monitoring devices. Technol. Health Care,
16(4):261–272, 2008.

[85] Cameron McDonald, Philip Hawkes, and Josef Pieprzyk. Differential
path for sha-1 with complexity o(252). Cryptology ePrint Archive,
Report 2009/259, 2009. http://eprint.iacr.org/.

[86] Silvio Micali. Efficient certificate revocation. Technical report, Cam-
bridge, MA, USA, 1996.

[87] Marco Casassa Mont and Robert Thyne. A systemic approach to au-
tomate privacy policy enforcement in enterprises. In George Danezis
and Philippe Golle, editors, Privacy Enhancing Technologies, volume
4258 of Lecture Notes in Computer Science, pages 118–134. Springer,
2006.

[88] R L B Morgan. Federated security: The shibboleth approach. EDU-
CAUSE Quarterly, (2004):12–17, 2004.

[89] Ms-peap: Protected extensible authentication protocol (peap) specifi-
cation. Technical report, Microsoft Corporation, May 2009.

[90] Darren Mundy and David W. Chadwick. An xml alternative for per-
formance and security: Asn.1. IT Professional, 6(1):30–36, 2004.

[91] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol
- OCSP. RFC 2560 (Proposed Standard), June 1999.

[92] Nanoeap™ – mocana’s open standards based, full featured rfc compliant
embedded eap solution. Product data sheet, February 2009. Retrieved
from http://www.mocana.com/NanoEAP.html on July 06, 2009.

[93] National Institute of Standards and Technology. SECURITY RE-
QUIREMENTS FOR CRYPTOGRAPHIC MODULES, May 2001.
FIPS PUB 140-2.

[94] National Institute of Standards and Technology. Recommendation for
Key Management – Part 1: General (Revised), March 2007. FIPS PUB
Special Publication 800-57, part 1.

http://www.telecom.ece.ntua.gr/magnet/index.html
http://www.telecom.ece.ntua.gr/magnet/index.html
http://magnet.aau.dk
http://eprint.iacr.org/
http://www.mocana.com/NanoEAP.html

218 Bibliography.

[95] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Net-
work Authentication Service (V5). RFC 4120 (Proposed Standard),
July 2005. Updated by RFCs 4537, 5021.

[96] I. G. Niemegeers and S. M. Groot. Fednets: Context-aware ad-hoc
network federations. Wirel. Pers. Commun., 33(3-4):305–318, 2005.

[97] I. G. Niemegeers and S. M. Heemstra De Groot. From personal area
networks to personal networks: A user oriented approach. Wirel. Pers.
Commun., 22(2):175–186, 2002.

[98] Y. Nir. Repeated Authentication in Internet Key Exchange (IKEv2)
Protocol. RFC 4478 (Experimental), April 2006.

[99] NSA suite B cryptography. Website. Available at http://www.nsa.
gov/ia/programs/suiteb_cryptography/index.shtml. Retrieved Jun
04, 2009. Last modified Jan 15, 2009.

[100] Protected eap protocol (peap) version 2. IETF internet-
draft. available at http://tools.ietf.org/html/
draft-josefsson-pppext-eap-tls-eap-10.

[101] PERMIS. Website. Available at http://sec.cs.kent.ac.uk/permis/.
Retrieved November 06, 2009. Last modified Feb 19, 2007.

[102] Personal network pilot 2008. http://www.freeband.nl/.

[103] Dubravko Priselac and Miljenko Mikuc. Security risks of pre-ims aka
access security solutions, 2008. retrieved from http://www.ericsson.
com/hr/about/events/mipro_2008/papers.shtml.

[104] J. Quittek, T. Zseby, B. Claise, and S. Zander. Requirements for IP
Flow Information Export (IPFIX). RFC 3917 (Informational), October
2004.

[105] James Randall and Michael Szydlo. Collisions for sha0, md5, haval,
md4, and ripemd, but sha1 still secure, August 2004.

[106] Maxim Raya, Daniel Jungels, Panos Papadimitratos, Imad Aad, and
Jean-Pierre Hubaux. Certificate Revocation in Vehicular Networks.
Technical report, Laboratory for computer Communications and Ap-
plications, 2006.

[107] C. Rigney. RADIUS Accounting. RFC 2866 (Informational), June
2000. Updated by RFCs 2867, 5080.

[108] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authen-
tication Dial In User Service (RADIUS). RFC 2865 (Draft Standard),
June 2000. Updated by RFCs 2868, 3575, 5080.

http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://tools.ietf.org/html/draft-josefsson-pppext-eap-tls-eap-10
http://tools.ietf.org/html/draft-josefsson-pppext-eap-tls-eap-10
http://sec.cs.kent.ac.uk/permis/
http://www.freeband.nl/
http://www.ericsson.com/hr/about/events/mipro_2008/papers.shtml
http://www.ericsson.com/hr/about/events/mipro_2008/papers.shtml

Bibliography 219

[109] Ronald Rivest. Can we eliminate certificate revocation lists? In In
Financial Cryptography, pages 178–183. Springer-Verlag, 1998.

[110] Konrad Roeder. Obtained from http://en.wikipedia.org/wiki/
RADIUS under the Creative Commons Attribution-Share Alike 3.0 Un-
ported License.

[111] J. Rosenberg, R. Mahy, and J. Mathews. Traversal using relays around
nat (turn): Relay extensions to session traversal utilities for nat (stun),
February 2009.

[112] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Pro-
tocol. RFC 3261 (Proposed Standard), June 2002. Updated by RFCs
3265, 3853, 4320, 4916, 5393.

[113] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN -
Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs). RFC 3489 (Proposed Standard), March
2003. Obsoleted by RFC 5389.

[114] PPP EAP RSA Public Key Authentication Protocol. Intellectual Prop-
erty Rigths declaration. available at https://datatracker.ietf.org/
ipr/15 retrieved June 09, 2009.

[115] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. Computer, 29(2):38–47,
1996.

[116] J. Sermersheim. Lightweight Directory Access Protocol (LDAP): The
Protocol. RFC 4511 (Proposed Standard), June 2006.

[117] D. Simon, B. Aboba, and R. Hurst. The EAP-TLS Authentication
Protocol. RFC 5216 (Proposed Standard), March 2008.

[118] W. Simpson. The Point-to-Point Protocol (PPP). RFC 1661 (Stan-
dard), July 1994. Updated by RFC 2153.

[119] A. Smailagic and D. Kogan. Location sensing and privacy in a context-
aware computing environment. Wireless Communications, IEEE,
9(5):10–17, Oct. 2002.

[120] Asim Smailagic, Daniel P. Siewiorek, Joshua Anhalt, David Kogan,
and Yang Wang. Location sensing and privacy in a context aware
computing environment. IEEE Wireless Communications, 9:10–17,
2001.

http://en.wikipedia.org/wiki/RADIUS
http://en.wikipedia.org/wiki/RADIUS
https://datatracker.ietf.org/ipr/15
https://datatracker.ietf.org/ipr/15

220 Bibliography.

[121] William Stallings. Network Security Essentials: Applications and Stan-
dards. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 3rd edition,
2006.

[122] Antonietta Stango, Neeli Prasad, and Jordi Jaen Pallares. Analysis,
verification and evaluation. Technical report, EU FP6 IST Project
My Personal Adaptive Global Net (MAGNET) Beyond, July 2008.
Document number: MAGNET_B_WP4_D4_4_2_PU_R_1.0.doc.

[123] D. Stanley, J. Walker, and B. Aboba. Extensible Authentication Pro-
tocol (EAP) Method Requirements for Wireless LANs. RFC 4017
(Informational), March 2005.

[124] Andreas Steffen and Tobias Brunner. strongswan.conf. Website. Avail-
able at http://wiki.strongswan.org/projects/strongswan/wiki/
StrongswanConf. Retrieved November 30, 2010. Last modified Octo-
ber 11, 2010.

[125] Andreas Steffen, Martin Willi, and Tobias Brunner. Auto-
conf options for strongSwan 4.3 releases. Website. Avail-
able at http://wiki.strongswan.org/projects/strongswan/wiki/
Autoconf. Retrieved October 11, 2010. Last modified September 02,
2010.

[126] E. Stokes, D. Byrne, B. Blakley, and P. Behera. Access Control Re-
quirements for LDAP. RFC 2820 (Informational), May 2000.

[127] Clifford Stoll. Stalking the wily hacker. Commun. ACM, 31(5):484–
497, 1988.

[128] Lars Strand. Obtained from http://en.wikipedia.org/wiki/802.1x
under the terms of the GNU Free Documentation License.

[129] Falko Timme. How To Set Up WebDAV With Apache2 On
Ubuntu 9.04. Website. Available at http://www.howtoforge.com/
how-to-set-up-webdav-with-apache2-on-ubuntu-9.04. Retrieved
October 11, 2010. Last modified October 19, 2010.

[130] P. Trakadas, T. Zahariadis, H.C. Leligou, S. Voliotis, and K. Pa-
padopoulos. Analyzing energy and time overhead of security mecha-
nisms in wireless sensor networks. In Systems, Signals and Image Pro-
cessing, 2008. IWSSIP 2008. 15th International Conference on, pages
137–140, June 2008.

[131] Axel Tressel and Jorg Keller. A system for secure ip telephone con-
ferences. In NCA ’06: Proceedings of the Fifth IEEE International
Symposium on Network Computing and Applications, pages 231–234,
Washington, DC, USA, 2006. IEEE Computer Society.

http://wiki.strongswan.org/projects/strongswan/wiki/StrongswanConf
http://wiki.strongswan.org/projects/strongswan/wiki/StrongswanConf
http://wiki.strongswan.org/projects/strongswan/wiki/Autoconf
http://wiki.strongswan.org/projects/strongswan/wiki/Autoconf
http://en.wikipedia.org/wiki/802.1x
http://www.howtoforge.com/how-to-set-up-webdav-with-apache2-on-ubuntu-9.04
http://www.howtoforge.com/how-to-set-up-webdav-with-apache2-on-ubuntu-9.04

Bibliography 221

[132] H. Tschofenig, D. Kroeselberg, A. Pashalidis, Y. Ohba, and F. Bersani.
The Extensible Authentication Protocol-Internet Key Exchange Proto-
col version 2 (EAP-IKEv2) Method. RFC 5106 (Experimental), Febru-
ary 2008.

[133] Vitruvius project. www.vitruvius-project.com retrieved February 15,
2009.

[134] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross,
B. de Bruijn, C. de Laat, M. Holdrege, and D. Spence. AAA Au-
thorization Framework. RFC 2904 (Informational), August 2000.

[135] M. Wahl, A. Coulbeck, T. Howes, and S. Kille. Lightweight Direc-
tory Access Protocol (v3): Attribute Syntax Definitions. RFC 2252
(Proposed Standard), December 1997. Obsoleted by RFCs 4510, 4517,
4523, 4512, updated by RFC 3377.

[136] Arvinderpal S. Wander, Nils Gura, Hans Eberle, Vipul Gupta, and
Sheueling Chang Shantz. Energy analysis of public-key cryptogra-
phy for wireless sensor networks. In PERCOM ’05: Proceedings of
the Third IEEE International Conference on Pervasive Computing and
Communications, pages 324–328, Washington, DC, USA, 2005. IEEE
Computer Society.

[137] Haodong Wang, Bo Sheng, and Qun Li. Elliptic curve cryptogra-
phy-based access control in sensor networks. Int. J. Secur. Netw.,
1(3/4):127–137, 2006.

[138] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions
in the full sha-1. In Advances in Cryptology – CRYPTO 2005, vol-
ume 3621/2005 of Lecture Notes in Computer Science, pages 17–36.
Springer Berlin / Heidelberg, 2005.

[139] N.I.C. Wangi, R.V. Prasad, I. Niemegeers, and S.H. de Groot. Ad hoc
federation of networks (fednets) - mechanisms and requirements. Com-
munication Systems Software and Middleware, 2007. COMSWARE
2007. 2nd International Conference on, pages 1–6, January 2007.

[140] Report on war driving survey 2008, February 2009. obtainable at http:
//www.safewifi.hk/security.html.

[141] William T. Whelan. Ppp eap rsa public key authentication proto-
col, February 1997. retrieved from http://tools.ietf.org/html/
draft-ietf-pppext-eaprsa-04.

[142] Petra Wohlmacher. Digital certificates: a survey of revocation meth-
ods. In MULTIMEDIA ’00: Proceedings of the 2000 ACM workshops
on Multimedia, pages 111–114, New York, NY, USA, 2000. ACM.

www.vitruvius-project.com
http://www.safewifi.hk/security.html
http://www.safewifi.hk/security.html
http://tools.ietf.org/html/draft-ietf-pppext-eaprsa-04
http://tools.ietf.org/html/draft-ietf-pppext-eaprsa-04

222 Bibliography.

[143] Timothy Wright, Pubudu Chandrasiri, Ozgur Gurleyen, Micael
da Costa, Christian Gehrmann, András Méhes, Stefan Goeman,
Thomas Kuhn, Christian Günter, Kaisa Nyberg, Sampo Sovio, and
Peter Windirsch. Final technical report – Specification of a security
architecture for distributed terminals. Information Society Technolo-
gies, v1.0 edition, November 2002.

[144] Hanbing Yao, Heping Hu, Baohua Huang, and Ruixuan Li. Dynamic
role and context-based access control for grid applications. In PDCAT
’05: Proceedings of the Sixth International Conference on Parallel and
Distributed Computing Applications and Technologies, pages 404–406,
Washington, DC, USA, 2005. IEEE Computer Society.

[145] Yuanyuan Zhang and Dawu Gu. Performance analysis of pair-wise
key establishment protocols for sensor networks. In Wireless Com-
munications, Networking and Mobile Computing, 2007. WiCom 2007.
International Conference on, pages 2637–2641, Sept. 2007.

[146] Peifang Zheng. Tradeoffs in certificate revocation schemes. SIGCOMM
Comput. Commun. Rev., 33(2):103–112, 2003.

[147] L. Zhu, K. Jaganathan, and K. Lauter. Elliptic Curve Cryptography
(ECC) Support for Public Key Cryptography for Initial Authentication
in Kerberos (PKINIT). RFC 5349 (Informational), September 2008.

[148] L. Zhu, P. Leach, and K. Jaganathan. Kerberos Cryptosystem Nego-
tiation Extension. RFC 4537 (Proposed Standard), June 2006.

	Abstract
	Dedication
	Acknowledgements
	Introduction
	Context/Motivation
	Specific Problem
	Research Questions
	Approach
	Structure

	Personal Networks
	Requirements
	Overall Architecture
	Connectivity Level Abstraction
	Network Level Abstraction
	Service Abstraction Level

	Network Components
	Personalization
	Cluster Formation
	Intra-Cluster Routing
	Inter-Cluster Routing and Tunneling
	Foreign Communication
	Radio Resource Management and Link Layers

	Service Components
	PN Administration Integrity Service
	User Agent & Authentication
	Service & Content Discovery
	Access Control
	Service Context Service
	Federation Management
	Service & Content Management
	Management Consoles

	Summary

	FedNets
	FedNet Types
	The FedNet Lifecycle
	Initial Phase
	Formation Phase
	Operation Phase
	Dissolution Phase

	Architecture
	Architectural Components
	FedNet Manager
	FedNet Agent
	Gateway
	Service Proxy
	Service Management Node
	A FedNet Service
	A FedNet Client
	Service Discovery
	FedNet Access Control Policies
	Service Access Control Policies
	FedNet Services

	Summary

	Access Control Architectures
	Security Threats
	Security Definitions
	Security Access Control Architectures That Can Be Applied in FedNets
	AAA
	IEEE 802.1X
	IMS Security ACA
	Kerberos
	Security Architectures That Are Described in Virtual Organizations
	Security ACAs That Are Described in Past or Ongoing FedNet Projects.

	Selection Criteria
	Use Case
	Assumptions
	Requirements

	Evaluation of Security ACAs in FedNets
	Selection of a Suitable FedNet Security ACA
	Summary

	The Authentication Protocol
	Available Authentication Methods
	RSA Public Key Authentication
	EAP-TLS
	EAP-TTLS
	PEAP
	MAKE
	EAP-FAST
	EAP-IKEv2
	EAP-PSK

	Authentication Protocol Requirements
	Comparison of Authentication Methods
	Authentication Protocol Recommendation
	Summary

	The Ciphersuite
	Keys
	Key Derivation
	Key Strength

	Cipher Suites
	Cipher Suite Assumptions
	Cipher Suite Requirements
	Broken Ciphers
	Security and Encryption Recommendations

	Summary

	The Credential Provider
	Credential Providers
	Requirements
	Comparison and Selection
	Summary

	The Policy Language
	Basic Terms
	Assumptions
	Storage
	Summary

	Design and Implementation
	Assumptions
	System Architecture
	Harry's BSK
	The Gymnasium
	Harry's Coach
	Trouble Sleeping
	The FedNet View
	Putting It All Together
	AAA Server Placement

	Proposed Architecture
	Prototype
	Summary

	Prototype Evaluation
	Functional Testing
	Authentication
	Authorization
	Certificate Revocation

	Prototype Performance
	General Experiment Setup
	Experiment 1: Baseline (Non-Modified) System Total Latency
	Experiment 2: Authentication, Authorization, and Certificate Revocation of Modified System.
	Experiment 3: The Impact of Different Hardware

	Extendability
	New Applications
	Summary

	Conclusions and Further Work
	Conclusions
	Further Work

	Acronyms
	Reproducing the Results
	Environment Setup
	Ubuntu
	OpenWrt
	Java

	Creating the OpenWrtImage
	Application Installation
	OpenWrt
	WebDAV
	Java
	strongSwan

	Configuration
	strongSwan
	HTTPD/Apache/WebDAV
	PERMIS

	Running the Code
	OpenWrt
	Java
	Experiments

	Used hardware
	Confidence Intervals
	Experiment 1: Average Total Latency for Baseline (non-modified) system
	Experiment 2: Authentication, Authorization and Certificate Revocation of Modified System
	Experiment 2.1: Authentication Latency
	Experiment 2.2: Authorization Latency
	Experiment 2.3: Certificate Revocation Check Latency
	Experiment 2.4: Total Latency

	Experiment 3: The Impact of Different Hardware

	Java Code
	Policy Files
	PERMIS
	Confidence Intervals

	Diff Files
	Our Modifications
	Tobias' Patch

