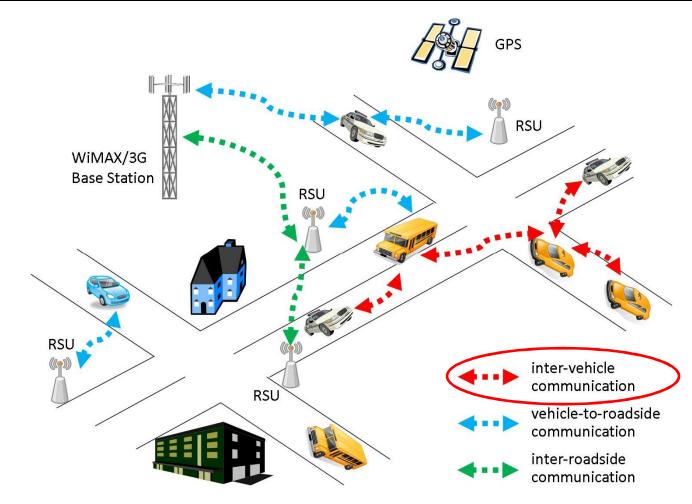
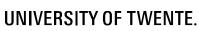

UNIVERSITY OF TWENTE.

Secure and Privacy-Preserving Broadcast Authentication for IVC

Liting Huang

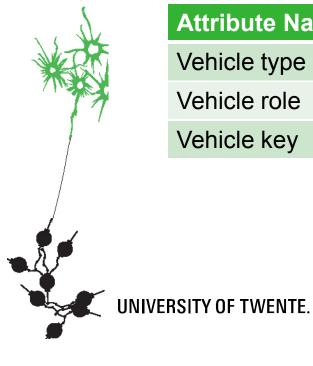


IVC / VANET (Vehicular Ad-hoc Network)



Motivation

- Why Broadcast Authentication needed?
- Why Privacy Protection needed?
 - TrackingProblem



Ultimate Privacy Protection - Attribute Authentication

- Attribute Authentication
 - No Identity, No Pseudonym
 - Show an attribute or several attributes
- What is Attribute?

Attribute Name	Attribute Value
Vehicle type	{Car, bus, motor-cycle}
Vehicle role	{Public, private, emergency, police}
Vehicle key	200-bit integer

Requirements For "Secure and Privacy-Preserving Broadcast Authentication" Protocols

Basic Requirements

Message
Authentication
Without Originator
Verification

Attribute Authentication

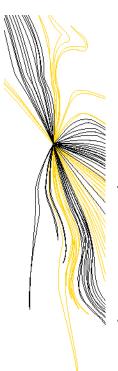
Privacy Protection

Strong Unlinkability

One-hop
Broadcast
Authentication

Small Size

Low Computation Overhead


Independent Authentication

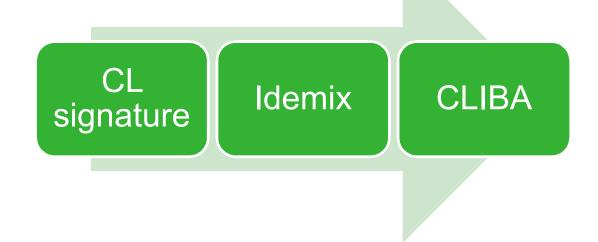
How Previous Solutions Fulfill the Requirements

Junio	Schemes	Message Authentication Without Originator Verification	Attribute Authentication	Privacy Protection	Unlinkability	One-hop Broadcast Authentication	Independent Authentication
	PKI+	•			Flexible	•	
	ECPP				Flexible		
	Hybrid		0		Flexible	•	
	SeVeCom		0		Flexible		
	V-tokens				Flexible		
	Sun's IDB				Flexible		
	Kamat's IDB				Flexible		
	SRAAC				Flexible		
	GSIS				High		

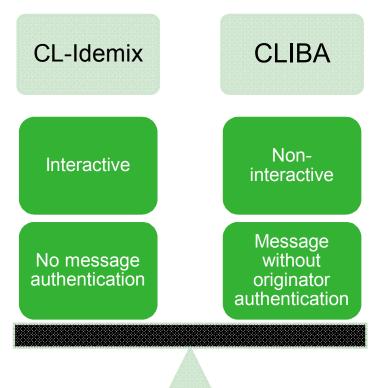
How Previous Solutions Fulfill the Requirements

How about performance?

Generally speaking, the size of the authentication information is less than 200 bytes. The computation time is less than 50 ms on a low efficiency machine (with CPU clock frequency less than 1.6 GHZ and single core)


	Low Computation Overhead
All Schemes	

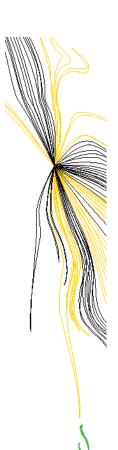
CLIBA (Our Scheme)


CLIBA: "CL-Idemix based Broadcast Authentication"

CLIBA

The changes from CL-Idemix to CLIBA

Preliminaries (Ctd.)


Safe prime p, q p = 2p' + 1, q = 2q' + 1, p' and q' are also primes

Special RSA modulusn=pq, with p, q safe primes

$$\phi(n) = 4p'q'$$

• Consider the set of quadratic residues modulo n, $QR_n \subseteq Z_n^*$, the size of the set is $\frac{1}{4}\phi(n) = p'q'$

CL Signature

private key: p, q

• public key: $\{a, b, c\} \in QR_n$, n

Signature generation

For message m, choose a prime e, a random number v, and compute

$$A = (a^m b^v c)^{e^{-1} mod p'q'} mod n$$

The signature is (A, e, s)

Signature verificationCheck that

$$A^e = a^m b^s c$$

■ For many messages m₁, ..., m_{L,}

$$A^e = \mathbf{a}_1^{m_1} \dots \mathbf{a}_L^{m_L} b^v c$$

Idemix

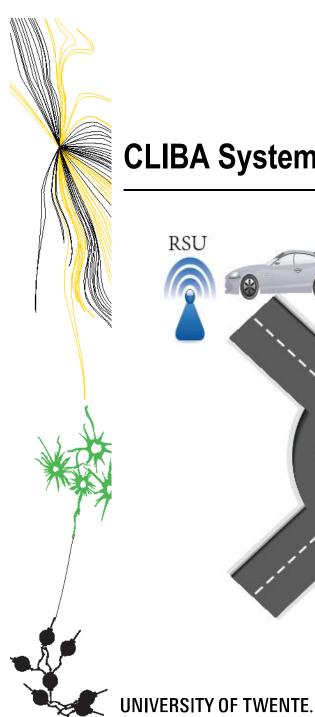
- Attributes are the messages m₁, ..., m_L in CL signature
- The certificate (A, e, v)

$$A^e = \frac{Z}{a_1^{m_1} a_2^{m_2} \dots a_l^{m_l} b^v}$$

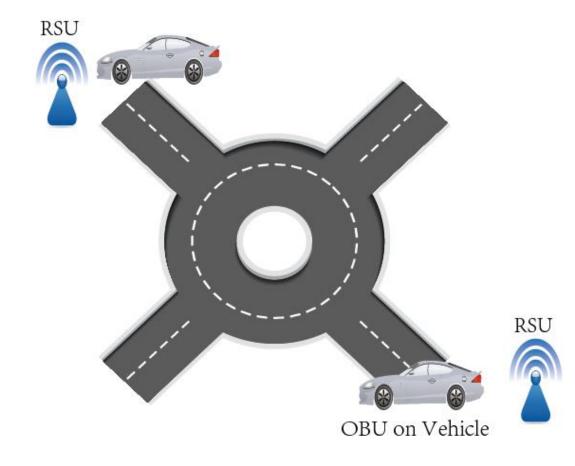
$$(CL: A^e = a_1^{m_1} \dots a_L^{m_L} b^v c)$$

Preliminaries: Schnorr's Identification Scheme

- Non-interactive Schnorr's Identification
- ➤ Step1 . P->V :

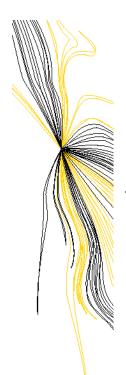

$$c = H(g^r), \qquad s = r + cm$$

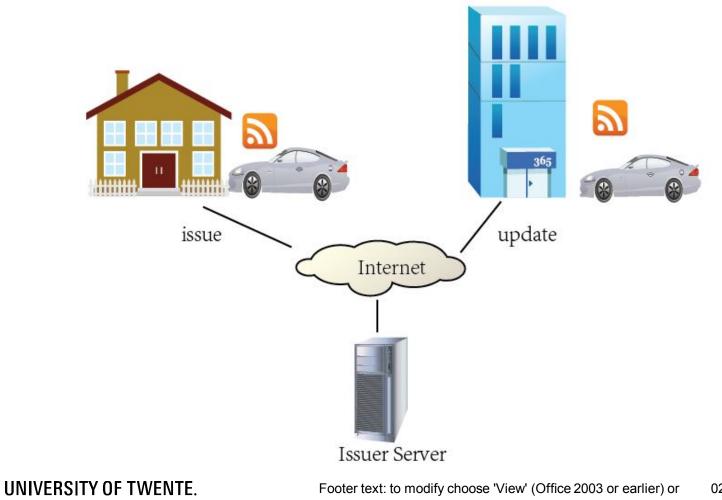
➤ Step2. V:


$$t = g^s y^{-c},$$

verify H(t) == c

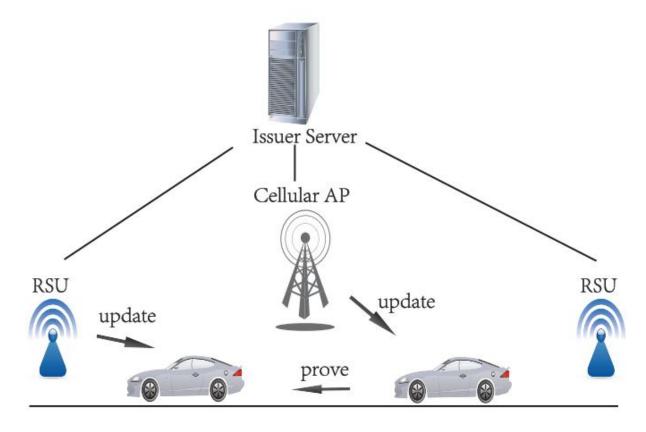
CLIBA System Structure


Issuer Server


CLIBA Phases – System Setup

- The issuer generate system parameters randomly
- The issuer select random keys for the underlying CL-Idemix system

CLIBA Phases - Issuance



Footer text: to modify choose 'View' (Office 2003 or earlier) or 'Insert' (Office 2007 or later) then 'Header & Footer'

CLIBA Phases - Issuance

Issue Without Wifi

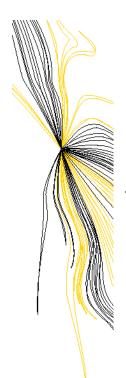
CLIBA Phases - Issuance

• Known attributes (A_k) vs Hidden attributes (A_h)

 A_k

 $\left\{ \begin{array}{c} \cdot \\ \cdot \end{array} \right]$

vehicle type = car


• vehicle role = private

 A_h

• Signing key = 0xABCDEF0134590234580ED05803200

EXAMPLE

CLIBA Phases - Verification

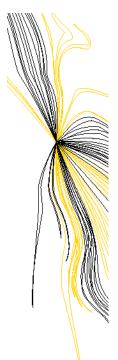
Attribute authentication -- Collective show of attribute values

• Vehicle type: car

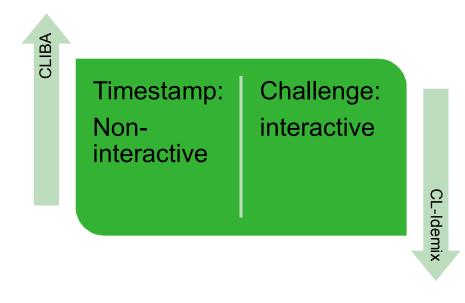
Vehicle role: public

Vehicle type: carVehicle role: private

CLIBA Phases - Verification


message format

• The message signature $\delta = M^{m_s}$


M = { Msg, Timestamp }

 m_s : signing key of the vehicle

Verification – Make the Verification Non-interactive

Verification - How to Integrate Message Authentication


For Prover

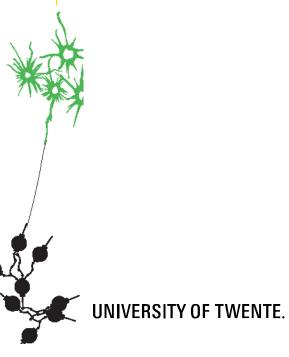
Create a signature on message M: $\delta = M^{m_S}$

Compute $t_M = M^{r_{m_S}}$ Bind t_M in Schnorr's Identification proof

Send δ with proof

Verification - How to Integrate Message Authentication

For Verifier


Re-compute t_M from δ and proof

See if t_M is bound in proof

CLIBA Demo

Live demo

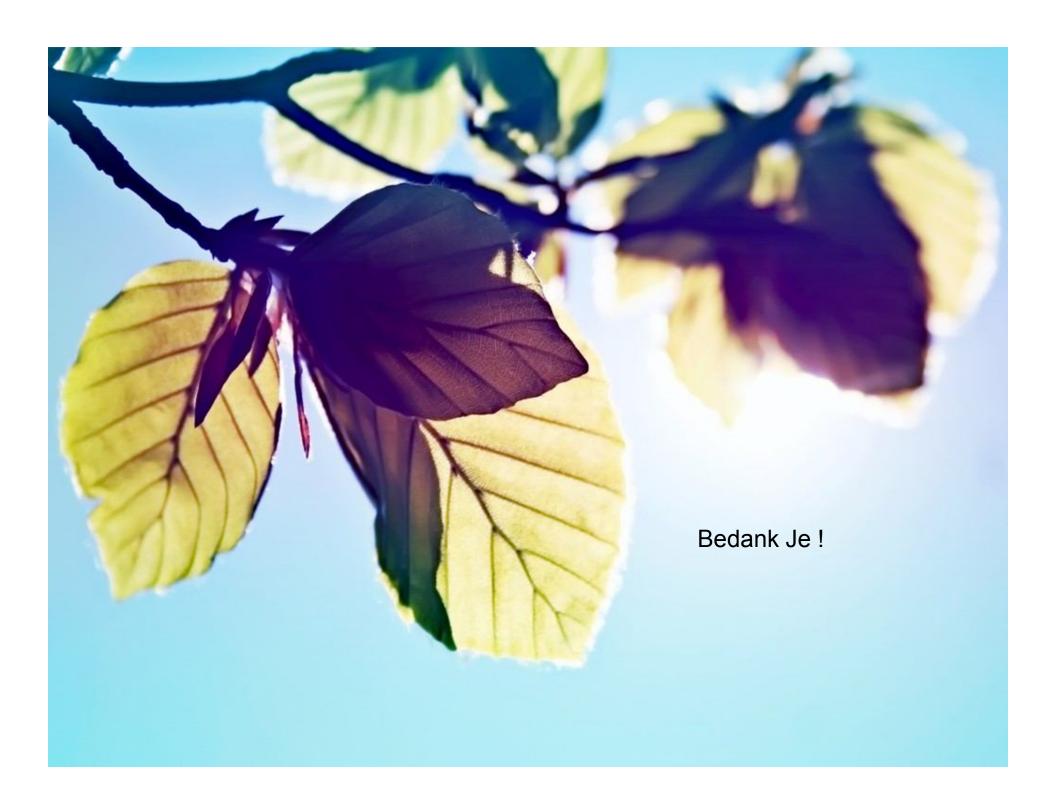
Performance Issues

Machine: PC with Core i3 CPU (frequency of 2.13 GHz), and 4GB RAM

Scenario	Number of Bases in Credential	Process	Average Time	Authentication Information Size
1	2	Sign	64.5ms	1800B
1	2	Verify	45.8ms	-
2	7	Sign	71.5ms	2070B
2	7	Verify	52.4ms	-

CLIBA Conclusion

- Fulfills all basic requirements except the computation time and information size
- Computation time only satisfies signing
- Information size unacceptable


02/07/2012

CLIBA Conclusion – Future Work

- Verification speed up
- Authentication information size reduction

