
Flow-Based Monitoring of
GTP Traffic in Cellular Networks

Master of Science Thesis

by

E.H.T.B. Brands

Date: July 20, 2012
Committee: dr. ir. Aiko Pras

Rick Hofstede, M.Sc.
dr. ir. Georgios Karagiannis

Institution: University of Twente, Enschede, The Netherlands
Faculty: Electrical Engineering, Mathematics and Computer Science (EWI)
Chair: Design and Analysis of Communication Systems (DACS)

Acknowledgements

First of all I would like to thank Paolo Lucente, founder and developer of
the PMACCT project [1], for his time and effort he put into implementing
my developed extension into the PMACCT source code. Thanks to his help,
we managed to set up a successful proof of concept.

Special thanks thanks to my supervisors at KPN: Paul Schilperoort and
Rene Soutjesdijk for their guidance during this project. They helped me
organize things and provided me the resources needed to make this research
a success.

Finally I would like to thank my daily supervisor at the University of
Twente, Rick Hofstede, for his guidance and feedback during the whole
project. I also would like to thank the other members of my graduation
committee, Aiko Pras and Georgios Karagiannis, for their feedback on this
report.

Erik Brands
Enschede, July 2012

Abstract

Network monitoring is becoming more important for network operators, due
to increased interest in user traffic profiling. Traditionally all these monitor-
ing activities were performed in a packet-based manner, often using Deep
Packet Inspection (DPI). Due to the introduction of new laws that forbid
the use of DPI, these packet-based techniques are currently at stake. This is
one of the reasons why currently a shift is taking place from packet-based to
flow-based measurement techniques. This work proposes a flow-based solu-
tion for monitoring packet-switched roaming traffic, which is characterized
by the GPRS Tunneling Protocol (GTP). The proposed solution is able
to monitor both GTP v.0 and GTP v.1 traffic in as well the control plane
as the user plane and uses IPFIX for the export of flow information. To
demonstrate the feasibility of our solution we set up a proof of concept by
developing an extension to the existing flow-based monitoring application
PMACCT. The proposed solution was validated in the testcenter of Dutch
mobile operator KPN.

Contents

1 Introduction 5

2 Background 7
2.1 GPRS . 7

2.1.1 The GPRS Core Network 7
2.1.2 GPRS Tunneling Protocol (GTP) 9
2.1.3 PDP Contexts . 10

2.2 IPFIX . 13

3 Requirements Analysis 16
3.1 General . 16
3.2 GTP-C . 17
3.3 GTP-U . 19

4 Existing Solutions 20
4.1 Packet-Based Monitoring Solutions 20
4.2 Flow-Based Monitoring Solutions 21

5 GTP Packet Analysis 22
5.1 GTP Header . 23
5.2 GTP Payload . 25

6 Flow-Based Architecture 29
6.1 Metering Process . 29
6.2 Exporting Process . 32
6.3 Collecting Process . 39

7 Implementation and Validation 40
7.1 Proof of Concept . 40
7.2 Test Environment . 42

1

CONTENTS 2

7.3 Validation . 45

8 Data Analysis 48
8.1 Cacti Configuration . 49
8.2 Example Graphs . 50

9 Conclusions and Future Work 53

A Cacti Templates 58

List of Acronyms

APN Access Point Name

AS Autonomous System

ASN Autonomous System Number

CDF Charging Data Function

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

DTLS Datagram Transport Layer Security

ISP Internet Service Provider

GERAN GSM EDGE Radio Access Network

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

GRX GPRS Roaming Exchange

GSN GPRS Support Node

GTP GPRS Tunneling Protocol

IE Information Element

ISP Internet Service Provider

IPFIX IP Flow Information Export

LTE Long Term Evolution

3

CONTENTS 4

MCC Mobile Country Code

MNC Mobile Network Code

MS Mobile Station

MVNO Mobile Virtual Network Operator

NSAPI Network Layer Service Access Point Identifier

PEN Private Enterprise Number

PDN Packet Data Network

PDP Packet Data Protocol

PLMN Public Land Mobile Network

QoS Quality of Service

RAN Radio Access Network

RAT Radio Access Technology

RRD Round Robin Database

SGSN Serving GPRS Support Node

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SMS Short Message Service

TFT Traffic Flow Template

TLS Transport Layer Security

UTRAN UMTS Terrestrial Radio Access Network

Chapter 1

Introduction

The area of Internet traffic measurements has advanced greatly in recent
years. One of the main reasons is the increasing interest of Internet Ser-
vice Providers (ISPs) in user traffic profiles. An accurate user profile, can
help ISPs in better serving their customers, e.g, by capacity planning. ISPs
realize that measuring traffic to and from the customer is essential in un-
derstanding the user’s behavior.

Besides this increased interest in traffic measurements, we also see a
shift taking place from packet-based to flow-based measurements. There
is an ongoing discussion about legal issues when performing packet-based
monitoring, especially when the payload of packets is inspected. On 8 May
2012, the Dutch government accepted a new telecommunication law, which
should provide net-neutrality in the Netherlands [2]. Since this new law
also restricts the use of Deep Packet Inspection (DPI), certain packet-based
monitoring solutions are at stake. Flow-based monitoring techniques aggre-
gate traffic into flows, which implies only summaries of the actual traffic
are exported. This also makes flow-based monitoring techniques much more
scalable than packet-based solutions, which will become an important as-
pect of monitoring, with the forecasted data-growth that comes with the
introduction of LTE. These two arguments increase the interest of service
providers to look for flow-based solutions to monitor their traffic. This re-
search was performed in collaboration with Dutch service provider KPN [3],
in order to research the possibilities of monitoring packet-switched roam-
ing traffic, which is essentially GPRS Tunneling Protocol (GTP) traffic, in a
flow-based manner. By the time of writing, there are no flow-based monitor-
ing solutions available that fully support the parsing of GTP traffic. Some
flow-based monitoring solutions claim to support the monitoring of GTP

5

CHAPTER 1. INTRODUCTION 6

traffic, but further analysis showed this monitoring is limited to identifying
tunneled data in the user-plane.

The goal of this work is to develop a flow-based solution for monitoring
GTP traffic in cellular networks using IP Flow Information Export (IPFIX),
which is an IETF proposed standard for exporting information about traffic
flows. This solution can serve as an alternative to packet-based solutions,
that are currently deployed. In order to achieve this goal the following
research questions have been defined:

1. Which properties of packet-switched roaming traffic are relevant for
monitoring by mobile operators?

2. How can these properties be measured using IPFIX?

3. How can the received Flow Records be analyzed using a data analysis
application?

In order to answer these research questions we started with performing
a requirements analysis at KPN. After having defined a clear set of require-
ments, we analyzed several packet-traces from the live network of KPN to
get insight into the structure and semantics of the GTP traffic. Parallel
to analyzing these traces, we also researched the 3GPP standards on GTP
[4][5][6] to find out how the required information could be extracted from
the GTP traffic. After researching serveral RFC’s from the IPFIX Working
Group [7], we defined how the relevant fields inside the GTP traffic could
be exported using IPFIX. We set up a proof of concept by developing an
extension to the existing flow-based monitoring application PMACCT [1].
We validated our solution using the proof of concept by setting up a test en-
vironment at the KPN test-center. In the end we used the network graphing
tool Cacti [8] to demonstrate how the acquired results can be visualized.

The structure of this work is as follows. Chapter 2 provides background
information on GPRS and IPFIX. In Chapter 3 we defined the requirements
of KPN that are posed on a flow-based solution for monitoring GTP traffic.
Chapter 4 describes the existing solutions in the area of monitoring GTP
traffic and explains why these solutions do not satisfy our requirements.
Chapter 5 shows how the required information can be extracted from the
GTP messages. In Chapter 6 the complete IPFIX architecture of the pro-
posed solution is described. Chapter 7 describes the implementation and
validation of our solution using the proof of concept. In Chapter 8 we give
an example of a data analysis application that can be used to visualize the
results. Conclusions are drawn in the final chapter of this work, where also
suggestions for future work are provided.

Chapter 2

Background

2.1 GPRS

General Packet Radio Service (GPRS) is defined as the packet bearer service
for GSM (2G), UMTS (3G) and WCDMA mobile networks to transmit IP
packets to external Packet Data Networks (PDNs), such as the Internet.
Although GSM and UMTS networks use different Radio Access Networks
(RANs), respectively GERAN and UTRAN, they rely on the same packet-
switched core network.This common core network, together with these Radio
Access Networks, provides GPRS services. The core network is designed to
support several Quality of Service levels to allow efficient transfer of both
real-time traffic (e.g. voice, video) and non real-time traffic. Applications
based on standard data protocols and SMS are supported, and inter-working
with IP networks is defined [9].

2.1.1 The GPRS Core Network

The GPRS core network provides mobility management, session manage-
ment, and transport for IP packet services. Besides that, it also provides
support for additional functionalities such as billing and lawful interception
[10]. The GPRS core network consists of a number of network elements,
which are interconnected by various logical interfaces. Figure 2.1 gives an
overview of the GPRS logical architecture. This figure is a simplified version
of Figure 1 in the the 3GPP 29.060 standard [5]. Figure 2.1 will be used as
a reference in the remainder of this chapter.

The GPRS core network functionality is logically implemented on two
network nodes, namely the Serving GPRS Support Node (SGSN) and the
Gateway GPRS Support Node (GGSN). SGSN and GGSN are commonly

7

CHAPTER 2. BACKGROUND 8

Figure 2.1: Simplified overview of the GPRS logical architecture.

known as GSNs. The interface between the SGSN and the GGSN is called
the Gn interface in case both GSNs are in the same Public Land Mobile
Network (PLMN). When SGSN and GGSN are in different PLMNs, which
is commonly referred to as roaming, the interface between the two network
elements is called the Gp interface. The Gp interface provides the function-
ality of the Gn interface, plus security functionality required for inter-PLMN
communication. This security functionality is based on mutual agreements
between operators [9]. The difference between Gn and Gp interface is illus-
trated in Figure 2.1.

The Gateway GPRS Support Node (GGSN) provides interworking with
other Packet Data Networks (PDNs), such as the Internet, and is connected
to various other core network nodes in the same PLMN via an IP-based
backbone network. The GGSN contains the routing information for packet-
switched-attached users, which is used to tunnel data packets to the SGSN,
the user is currently attached to [9].

The Serving GPRS Support Node (SGSN) is connected to the GERAN
or to the UTRAN, as can been seen in Figure 2.1. The SGSN is responsible
for the delivery of data packets from and to the Mobile Station within its
geographical service area. Its tasks include packet routing, transfer man-
agement, mobility management (attach/detach of MS’s and location man-

CHAPTER 2. BACKGROUND 9

agement), logical link management, authentication and charging functions.
[10]

2.1.2 GPRS Tunneling Protocol (GTP)

Within the GPRS core network, the GTP is the most important carrier
protocol. GTP allows multi-protocol packets to be tunneled between GGSN
and SGSN and between SGSN and UTRAN. Besides that, it offers the
possibility to tunnel packets between different PLMNs over the Gp interface
of the SGSN/GGSN.

GTP consists of a suite of IP-based communication protocols. It includes
the GTP control plane (GTP-C), GTP user plane (GTP-U) and GTP’ (GTP
Prime) protocol. Figure 2.2 shows which GTP protocols apply to which
interfaces of the GPRS Core network.

The GTP-U protocol is implemented by SGSNs and GGSNs in the
UMTS/GPRS backbone and by Radio Network Controllers (RNCs) in the
UTRAN to provide a tunneling mechanism for carrying user data [9]. GTP-
U over the Iu interface (i.e. the interface between SGSN and UTRAN) is

Figure 2.2: Presence of the GPRS Tunneling Protocol (GTP) in the GPRS
core network.

CHAPTER 2. BACKGROUND 10

not considered in this work.
The GTP-C (Control plane) protocol is implemented by SGSNs and

GGSNs in the UMTS/GPRS Backbone. GTP-C can be seen as a tunnel
management protocol, which allows the SGSN to provide mobile stations
access to Packet Data Networks (PDNs). GTP-C control plane signaling is
used to create, modify and delete tunnels.

GTP’ (GTP prime) can be used for carrying charging data from the
Charging Data Function (CDF) of the GSM or UMTS network to the Charg-
ing Gateway(s) within a PLMN [9]. However, in this work we focus on
GTP-C and GTP-U, GTP’ is out of scope.

2.1.3 PDP Contexts

A Packet Data Protocol (PDP) context offers a packet data connection over
which the Mobile Station (MS) and the selected Access Point Name (APN)
can exchange IP packets. APN is a logical name referring to the PDN and/or
to a service that the subscriber wishes to connect to. Depending on the
network operator, a single APN can provide access to one or more services,
e.g. MMS, Internet or WAP. The APN is hosted at a GGSN, as depicted in
Figure 2.1. One GGSN can host multiple APNs. Considering this, the MS
needs to be aware of the service it wants to use and the APN hosting that
service. A Mobile Station can have multiple simultaneous PDP contexts,
one for each active service. For each PDP context a different Quality of
Service (QoS) profile may be requested. For example, some PDP contexts
may be associated with e-mail that can tolerate lengthy response times.
Other applications cannot tolerate delay and demand a very high level of
throughput, such as interactive applications. These different requirements
are reflected in the QoS profile the MS requests. When establishing a PDP
context with an APN, the MS receives an PDP Address, either IPv4 or IPv6
type, that it has to use when communicating over that PDP context. This
means that when a MS has established several connections to different APN
the MS will have different IP addresses for each of the provided services.

As Mobile Stations develop, users will run multiple services at the same
time. These services can have different QoS parameters and can be hosted at
different APNs. Especially in case of IMS, the number of simultaneous PDP
context per MS will grow, because IMS services are all packet-switched. [11]
In case multiple simultaneous PDP contexts are set up from the same MS,
two scenarios can be differentiated:

� Multiple primary PDP contexts: In this case two or more PDP con-

CHAPTER 2. BACKGROUND 11

texts are set up independently from each other to different APNs. Ev-
ery PDP context gets a unique PDP Address, Network Layer Service
Access Point Identifier (NSAPI) and set of QoS values. Besides that,
every PDP context has a separate Iu interface radio access bearer and a
separate GTP tunnel to transfer user plane data. Figure 2.3 illustrates
this scenario. Multiple primary PDP contexts can be activated/deac-
tivated separately from each other.

Figure 2.3: Multiple primary PDP contexts, copied from [11].

� Secondary PDP contexts: In this case there is a primary PDP context,
which is always set up first. After that, one or more secondary PDP
contexts can be set up. These secondary PDP contexts reuse the PDP
address of the primary PDP context and always connect to the same
APN as the primary PDP context. The NSAPI is used to differentiate
between the different PDP contexts. The benefit of secondary PDP
contexts is that each PDP contexts can have its own set of QoS values.
Each PDP context, primary or secondary, has its own Iu interface
radio access bearer and GTP tunnel to transfer user plane data. The
Traffic Flow Template (TFT) is introduced to route downlink user
plane data into the correct GTP tunnel and hence into the correct
radio access bearer for each context. Without the TFT the GGSN
would not be able to know in which GTP tunnel to send the user
plane data, because all secondary PDP contexts use the same PDP
address. Figure 2.4 gives an example of a scenario with two secondary
PDP contexts. Any of the PDP contexts can be deactivated while

CHAPTER 2. BACKGROUND 12

keeping the associated primary PDP context active. However, when
the primary PDP context is deactivated, all secondary PDP contexts
will also be deactivated.

Figure 2.4: One primary with two associated secondary PDP contexts,
copied from [11].

Setting up a PDP Context starts with the PDP context Activation pro-
cedure: Upon receiving an Activate PDP context Request message or an
Activate Secondary PDP context Request message from the MS, the SGSN
shall initiate procedures to set up PDP contexts. The first procedure in-
cludes subscription checking, APN selection and host configuration, while
the latter procedure excludes these functions and reuses PDP context pa-
rameters including the PDP address, except the QoS parameters. After the
PDP context activation procedure the MS is able to send packets over the
established connection. After the PDP context Activation procedure, one or
more modification procedures can take place during the lifetime of a PDP
context. Modification procedures modify parameters that were negotiated
during an activation procedure for one or several PDP contexts. An MS,
a GGSN, an SGSN, or an RNC can request or initiate a modification pro-
cedure [9]. The PDP context Deactivation procedure is used to change the
state of the PDP context from active to inactive. The initiative to deac-
tivate a PDP context can come from an MS, a GGSN or an SGSN. All
PDP contexts with this PDP address are deactivated,which includes every
associated secondary PDP context that shares this PDP address.

CHAPTER 2. BACKGROUND 13

2.2 IPFIX

The IPFIX protocol is an IETF proposed standard for exporting information
about traffic flows. The protocol is the logical successor of Cisco NetFlow
v9, upon which it is based [12].

Key to the IPFIX protocol is the definition of a flow. A flow is defined
as a set of IP packets passing an Observation Point in the network during a
certain time interval [13]. All packets belonging to a particular flow have a
set of common properties. Each property is defined as the result of applying
a function to the values of:

1. one or more packet header fields (e.g., destination IP address), trans-
port header fields (e.g., destination port number), or application header
fields (e.g., RTP header fields).

2. one or more characteristics of the packet itself (e.g., number of MPLS
labels).

3. one or more fields derived from packet treatment (e.g., next hop IP
address, output interface).

A packet is defined as belonging to a flow if it completely satisfies all the de-
fined properties of the flow [13]. Table 2.1 gives an example of four different
flow records. In this example, a packet belongs to the first flow in the table
if and only if it has sourceIPv4Address 192.0.2.1, destinationIPv4Address
192.0.2.65.2 and Differentiated Services Code Point (DSCP) 4.

The above definition of flows implies that the Flow Key in IPFIX can
be flexibly defined in contrast to the traditional five-tuple Flow Key (sour-
ceIPv4Address, destination-IPv4Address, sourceTransport-Port, destination-
TransportPort, protocolIdentifier), which is used in older versions of Net-
Flow. In the example in Table 2.1 the Flow Key is defined as sourceIPv4Address,
destinationIPv4Address and ipDiffServCodePoint, leaving packetDeltaCount
as a non-key field.

sourceIPv4Address destinationIPv4Address DSCP packetDeltaCount

192.0.2.1 192.0.2.65.2 4 23423
192.0.2.23 192.0.2.65.67 4 32432
192.0.2.23 192.0.2.65.67 2 32
192.0.2.129 192.0.2.65.67 4 12

Table 2.1: Example Flow Records.

CHAPTER 2. BACKGROUND 14

Observation Domain N

Observation Domain 2

Observation Domain 1

IPFIX Device Collector

Database

Analyzer

Metering
Process

Exporting
Process

Collecting
Process

Flow Records IPFIX MessagePackets

Figure 2.5: Mapping between the functional and physical IPFIX architec-
ture.

Figure 6.1 gives a combined overview of the logical and physical IPFIX
architecture. Central in the IPFIX architecture is the IPFIX device which
collects IP packets from one or more Observation Domains. Each Obser-
vation Domain has a metering process associated with it, that generates
and maintains flow records according to the predefined Flow Key. Once
expired the metering process will forward the flow-records to an exporting
process, which is often located in the same physical device, ofter referred to
as IPFIX Device. An exporting process transports the flow records inside
an IPFIX message to the collecting process. The collecting process is hosted
at a collector and might process or store received flow records [13]. Besides
the metering, exporting and collecting process, the IPFIX architecture also
defines a fourth type of process: intermediate processes. These processes
are used to modify flows (e.g., to aggregate, correlate, or anonymize them)
[12]. Intermediate processes are outside the scope of this work and therefore
not visualized in Figure 6.1. The flow data received at the collector can be
analyzed with any tool that supports IPFIX input.

Data is transferred between Exporter and Collector in Messages. These
messages can either hold templates or data sets. Templates describe the
structure and semantics of the information in the data sets. Templates are
always sent to the collector before the corresponding data sets are sent. Oth-

CHAPTER 2. BACKGROUND 15

ElementID 12
Name destinationIPv4Address
Data Type ipv4Address
Data Type Semantics current
Description The IPv4 destination address in the IP packet

header.

Table 2.2: Example Information Element (IE).

erwise, the collector would not be able to correctly interpret the data inside
the data sets. Information in messages of the IPFIX protocol is modeled
in terms of Information Elements (IEs) [14]. An IE represents a named
data field with a specific data type and meaning [12]. An Example of
an IE is shown in Table 2.2. A template is essentially an ordered list of
IEs [12]. Many IEs are standardized by IANA [15]. Besides these IANA-
assigned IEs, IPFIX also offers the possibility to self-define IEs, referred to
as enterprise-specific IEs. If an application has a need for an IE which is
not IANA-assigned and cannot be added to the IANA registry (because it is
either commercially sensitive, experimental, or of too limited applicability
to justify an IANA registration), it can be allocated in the enterprise-specific
space, scoped to an SMI Private Enterprise Number (PEN) [12].

IPFIX messages are sent from exporter to collector in transport ses-
sions. As IPFIX is unidirectional, a transport session typically consists of
an exporting process initiating a connection to the collecting process, then
sending templates followed by data described by those templates [12]. The
IPFIX protocol prefers SCTP for transport, but TCP and UDP can be used
as well. Besides these three options, transport sessions can also be stored
in the IPFIX file format and transported using a protocol like HTTP or
SMTP. TLS and DTLS can be used to provide the confidentiality, integrity,
and authentication assurances required by the IPFIX protocol, without the
need for pre-shared keys [16].

Unfortunately not many router vendors have yet adopted IPFIX in their
hardware. By the time of writing, from the major network equipment ven-
dors only Nortel and Juniper have implemented IPFIX on some of their
routers.

Chapter 3

Requirements Analysis

Developing a flow-based solution for monitoring packet-switched roaming
traffic starts with finding out what characteristics of packet-switched roam-
ing traffic are relevant for monitoring. To answer this question a require-
ments analysis was performed at KPN. Several stakeholders within the com-
pany were interviewed about the relevant characteristics of packet-switched
roaming traffic. They were asked what information is lacking in current
packet-switched roaming monitoring tools and what information they would
like to see in a new application. The set of requirements is divided into three
categories: general requirements, which apply to the requested solution in
general and categories for GTP-C [4][5] and GTP-U [6], which corresponds
to the two protocols in the GTP suite.

This chapter starts by describing the set of general requirements, followed
by the requirements for GTP-C and GTP-U, respectively. For a general
description of GPRS and GTP, we refer to Appendix 2.1.1.

3.1 General

This section describes the set of general requirements, which are not directly
related to one of the two GTP protocols, but are posed on the flow-based
monitoring solution in general.

The system should...

1. Identify roaming partners based on Autonomous System Numbers (ASNs)
rather than IP addresses.
Roaming partners are mobile network operators that defined a cer-
tain roaming agreement. The content of all roaming agreements is

16

CHAPTER 3. REQUIREMENTS ANALYSIS 17

standardized by the GSM Association (GSMA) [17]. The benefit of
identifying roaming partners based on ASNs instead of IP addresses
is that ASNs are less susceptible to changes. Roaming partners some-
times change the IP addresses of their SGSNs/GGSNs or place them
in another subnet, while the chance that the ASN of a roaming partner
changes is rather small.

2. Monitor both inbound and outbound roaming traffic.
From a service provider point of view inbound roaming are visitors who
use your Public Land Mobile Network (PLMN) to connect to their
home PLMN abroad. Outbound roaming are your own customers
(abroad) that connect via a foreign PLMN to your own PLMN. In
practice this implies monitoring both directions of the Gp interface
(see Appendix 2.1.1).

3. Support online monitoring of packet-switched roaming traffic.
In case of online measurement, the analysis is performed while the
data is captured. While in offline measurements, a data trace is stored
and analyzed later.

4. Monitor GTP v.0 and GTP v.1 traffic.
These are currently three version of GTP: v.0 [4], v.1 [5][6] and v.2
[18]. GTP v.0 and GTP v.1 are the most common versions these
days. GTP v.2, is used for evolved packet services, such as Long
Term Evolution (LTE). By the time of writing, LTE is not yet widely
deployed in Western Europe, but many operators, including KPN, are
planning to launch an LTE network in the near future. For this reason,
the proposed solution should now only support the analysis of GTP
v.0 and GTP v.1; the analysis of GTP v.2 is saved for future work.
However, the proposed solution should be developed in an extensible
manner, so that GTP v.2 support can be easily added later.

3.2 GTP-C

This section describes the system requirements for monitoring the GTP-C
[4][5] traffic.

The system should...

1. Monitor the number of Create/Update/Delete PDP Context request
and response messages per roaming partner.

CHAPTER 3. REQUIREMENTS ANALYSIS 18

These messages are the key control plane messages in roaming traf-
fic. They are used to set up, update and delete the PDP Context of
the roaming user respectively, (see Appendix 2.1.1). The information
needed to satisfy the rest of the requirements in this section is all
encapsulated in these messages.

2. Monitor the number of unique Create PDP Context Request messages
per roaming partner, leaving duplicates from the same MS out
As a single MS can have many simultaneous PDP contexts and even
more attempts to set up a PDP context, it could be valuable to also
monitor the number of unique Create PDP context request messages,
leaving duplicate attempts from the same MS out.

3. Identify the value of the Cause field in Create, Update and Delete PDP
Context Response messages.
The response message which is always sent as a reply to the corre-
sponding create/update/delete PDP context request message, always
contains a cause value. This value indicates whether the request was
accepted or gives the reason for rejection. The failure and success
rate of each of these messages together with the reasons for rejection
provide valuable information for a service provider.

4. Identify the APN the Mobile Station wants to connect to from Create
PDP Context Request messages.
From a service providers point of view, the APN your outbound roamers
connect to could provides insight in the performance of difference
APNs. Especially in combination with the information provided by
the cause field.

5. Identify the country in which the user is located from Create PDP Con-
text Request messages.
From a service providers point of view it could be particularly inter-
esting to monitor the countries in which your outbound roamers are
residing.

6. Identify the roaming partner the user is connected to from Create PDP
Context Request messages.
The network operator one of your outbound roamers is connected
to in combination with various other statistics can provide informa-
tion about the QoS the roaming partner provides to your customers.
This information can be used to test various Service Level Agree-
ments (SLAs) you have agreed on with the other roaming partner.

CHAPTER 3. REQUIREMENTS ANALYSIS 19

7. Identify the Radio Access Network (GERAN/UTRAN) the MS is con-
nected to from Create PDP Context Request messages.
As KPN currently only has GSM and UMTS deployed, there is only
need to identify the Radio Access Networks (RANs) of GSM and
UMTS, GERAN and UTRAN, respectively. Identifying E-UTRAN,
the RAN of LTE, will be saved for future work.

8. Identify the GTP version used by roaming partners from the header of
the GTP message
The version field, which is present in every GTP message, can provide
information about the GTP version used by roaming partners.

3.3 GTP-U

This section describes the requirements for monitoring the GTP-U [4][6]
traffic. This is the traffic after a PDP Context is established, i.e. the actual
user data.

The system should...

1. Monitor the amount of GTP-U traffic per roaming partner.
This information can particularly be useful for setting up roaming
agreements (SLAs).

2. Monitor the amount of GTP-U traffic per country.
In contrast to the amount of traffic per roaming partner, the amount
of traffic per country is not directly of interest for setting up SLAs.
However, for a service provider it would be interesting to know the
amount of GTP-U traffic that is being transferred to and from other
countries.

Chapter 4

Existing Solutions

First step after defining the requirements in Chapter 3 is searching for ex-
isting solutions that are able to satisfy these requirements. This section
describes the state-of-the-art in the area of GTP traffic monitoring, flow-
based monitoring in particular. Both packet-based and flow-based solutions
will be described and we will explain why these solutions are not able to
satisfy the requirements.

4.1 Packet-Based Monitoring Solutions

To the best of our knowledge, all major service providers in The Netherlands
use a packet-based application for monitoring their packet-switched roam-
ing traffic. These monitoring applications are specialized in monitoring the
Gp (and the Gn) interface of the GPRS core network. The Gp interface is
characterized by carrying mostly packet-switched roaming traffic, i.e. GTP
traffic (see also Appendix 2.1.1). An application that is capable of monitor-
ing the GTP traffic on these interfaces is DataMon [19]. DataMon extracts
various parameters out of the GTP-C and GTP-U messages and displays
its results in various graphs and tables. Another similar packet-based solu-
tion is Daromo [20], which also monitors GTP traffic on the Gp interface.
Both applications use one or more passive measurement probes and a central
database to store the captured data. Both solutions are capable in satisfying
most of the GTP-C and GTP-U requirements. However, all these solutions
are packet-based, while this work aims at a flow-based solution for monitor-
ing GTP traffic. Besides that, both solutions identify roaming partners by
IP Addresses, while one of the requirements states roaming partners should
be identified by Autonomous System Number (ASN).

20

CHAPTER 4. EXISTING SOLUTIONS 21

4.2 Flow-Based Monitoring Solutions

One of the major benefits of flow monitoring technologies such as NetFlow
v5/v9 and IPFIX is that they are implemented on routers (and switches).
This implies no extra hardware probes are required, only a (centralized)
Collector. The shortcoming of NetFlow v5/v9 is that there is a fixed set of
traffic features that can be monitored, such as the traditional five-tuple flow-
key (source IP address, destination IP address, source port, destination port
and protocolIdentifier), see also Appendix 2.2. IPFIX adds more flexibility
to this by introducing IEs. However, as can be seen in the IANA registry
[15],there are no standardized IEs defined for GTP. Besides that, not many
router vendors have yet adopted IPFIX in their hardware (see Appendix 2.2).
This forces us to turn to a software-based solution. The number of available
software-based solutions that support flow-based monitoring of GTP traffic
is minimal. nProbe [21] is a NetFlow/IPFIX probe that claims to support
the monitoring of GTP traffic. nProbe is available as a stand-alone software
application or as an embedded system named nBox. Further analysis of
nProbe shows that the GTP monitoring capabilities of nProbe are limited
to identifying the Tunnel Identifier in the GTP header and the ability to
identify the tunneled data rather than only the envelope (i.e. the GTP
message). Another NetFlow/IPFIX-based monitoring tool is PMACCT [1].
PMACCT also supports the inspection of tunneled traffic, such as GTP.
However, just like nProbe, this is limited to identifying the tunneled data.

None of the available flow-based monitoring solutions supports the anal-
ysis of GTP-C traffic, which covers most of the requirements in Chapter 3.
In order to satisfy these requirements we have to develop a new dedicated
flow-based GTP monitoring solution.

Chapter 5

GTP Packet Analysis

In order to fulfill the requirements in Chapter 3 we have to research how the
required information can be extracted from the GTP traffic. This Chapter
describes the structure of the GTP v.0 [4] and GTP v.1 [5][6] packet, both
header and payload, and describes the fields that have to be analyzed in
order to fulfill the requirements. For a more general description of GPRS
and GTP we refer to Appendix 2.1.1.

Before describing the relevant fields inside the GTP packet, we first ad-
dress some of the more general requirements in Chapter 3. One may notice
that all requirements focus on traffic measurements per roaming partner, not
per individual user. This implies that monitoring roaming traffic per indi-
vidual user is not considered in this work. Traffic measurements per roaming
partner means monitoring the streams of traffic from one roaming partner
to and from other roaming partners. Looking at the GPRS architecture (as
described in Appendix 2.1.1), this means monitoring the Gp interface, i.e.
the interface between two Public Land Mobile Networks (PLMNs). Almost
all traffic over the Gp interface is GTP traffic. GTP tunnels over the Gp
interface always have two endpoints: the SGSN of one roaming partner and
the GGSN of another roaming partner. One of the general requirements in
Chapter 3 states that roaming partners should be identified by Autonomous
System Number (ASN) rather than IP addresses. This is illustrated in Fig-
ure 5.1. The figure shows that the IP addresses of the tunnel-endpoints,
i.e. the GPRS Support Nodes (GSNs), are mapped to the ASNs where the
GSNs are located. As some service providers span multiple Autonomous
Systems (ASs), some roaming partners can be identified by multiple ASNs.

Another requirement in Chapter 3 states that both inbound and out-
bound roaming should be monitored. Since the the Gp interface is the only

22

CHAPTER 5. GTP PACKET ANALYSIS 23

Figure 5.1: Identifying roaming partners by ASN instead of IP address.

interface between PLMNs, this requirement implies monitoring both traf-
fic directions of that interface. In practice this means that one PLMN will
be the source AS and another PLMN will be the destination AS. Which
PLMN is considered source and which PLMN is considered destination will
determine whether inbound or outbound roaming takes place.

5.1 GTP Header

This sub chapter describes how the relevant fields inside the GTP header
can be identified. As described in Chapter 3, this work will focus on GTP
v.0 [4] and GTP v.1 [5][6], GTP v.2 [18] is out of scope. The basic transfer
unit in GTP is called a message. As the content and structure of the GTP
v.0 and GTP v.1 messages slightly differ, the first step of measuring a GTP
message is to determine the GTP version, because this will influence the rest
of the GTP¸ packet analysis. Besides that, identifying the GTP version is
listed as one of the requirements. Table 5.1 illustrates the difference between
the GTP v0 and GTP v1 header. The fields which are of interest are marked
bold. Both for GTP v.0 as for GTP v.1 holds that the GTP header is the
same for both GTP-C and GTP-U messages.

One of the major differences between the GTP v.0 and GTP v.1 header
is that the GTP v.0 header has a fixed length, while the GTP v.1 header
has a variable length. The length of the GTP v.0 header is always 20 bytes,
while the GTP v.1 header has a minimum length of 8 bytes. The length of
the header is crucial, because it determines the payload offset. There are
three flags that are used to signal the presence of optional fields: the PN flag,
the S flag and the E flag. These flags indicate the presence of the N-PDU
Number field, the Sequence Number field and the Next Extension Header

CHAPTER 5. GTP PACKET ANALYSIS 24

Bits
octets 8 7 6 5 4 3 2 1
1 Version PT Spare ‘1 1 1’ SNN
2 Message Type
3-4 Length
5-6 Sequence Number
7-8 Flow Label
9 SNDCP-N-PDULLC Number

10 Spare ‘1 1 1 1 1 1 1 1’
11 Spare ‘1 1 1 1 1 1 1 1’
12 Spare ‘1 1 1 1 1 1 1 1’
13-20 TID

Bits
octets 8 7 6 5 4 3 2 1
1 Version PT * E S N
2 Message Type
3 Length (1st Octet)
4 Length (2nd Octet)
5 Tunnel Endpoint Identifier (1st Octet)
5 Tunnel Endpoint Identifier (2nd Octet)
5 Tunnel Endpoint Identifier (3rd Octet)
5 Tunnel Endpoint Identifier (4th Octet)
9 Sequence Number (1st Octet) 1) 4)
10 Sequence Number (2nd Octet) 1) 4)
11 N-PDU Number 2) 4)
12 Next Extension Header Type 3) 4)

Table 5.1: GTP v.0 Header, copied from [4] (left) and GTP v.1 Header,
copied from [5] (right).

Field field, respectively [5]. None of these fields itself is of our interest,
because they contain no information needed to satisfy the requirements.
Only their presence is important, because they influence the payload offset.

In the remainder of this chapter the GTP message will be discussed in
general, meaning the descriptions are valid for both GTP v.0 messages and
a GTP v.1 messages, unless stated otherwise.

The Protocol Type (PT) field inside the GTP header is used as a protocol
discriminator between ordinary GTP (value “1”) and GTP’ (value “0”). The
GTP’ (prime) protocol is used to transfer charging data to the Charging
Gateway Function in the GPRS core network. GTP’ is outside the scope
of this work. Therefore the Protocol Type field should only be used to filter
out the GTP’ messages.

Another important field in the GTP header is MessageType. This field
identifies the type of GTP message and is present in every GTP message.
For the GTP-C traffic we are interested in six message types, as shown
in Table 5.2. These message types are also explicitly mentioned in the
requirements of Chapter 3. For a description of the messages, see Appendix
2.1.1. Besides counting the number of occurrences of these messages, these
messages also provide all the necessary information to satisfy the other GTP-
C requirements. This will be further described in the next sub-chapter.

For GTP-U there is only one message type in which we are interested,

CHAPTER 5. GTP PACKET ANALYSIS 25

Hex.code MessageType GTP-C GTP-U

0x10 Create PDP Context Request X
0x11 Create PDP Context Response X
0x12 Update PDP Context Request X
0x13 Update PDP Context Response X
0x14 Delete PDP Context Request X
0x15 Delete PDP Context Response X
0xFF G-PDU X

Table 5.2: Relevant GTP-C and GTP-U message types.

namely GPD-U. GPD-U messages contain message type 255 and consists of
a GTP header and a T-PDU as payload. The T-PDU is the original packet,
e.g., an IP datagram, from the MS or a network node in an external Packet
Data Network (PDN). A T-PDU is the original payload that is tunneled in
the GTP-U tunnel [9].

In this work MessageType is also used to differentiate between GTP-C
and GTP-U. 3GPP 29.060 [9] shows that almost all GTP message types are
used by GTP-C, only a few are used by GTP-U. As described above, the only
GTP-U message type we are interested in is G-PDU. This makes it is easy
for us to differentiate by GTP MessageType. Another option would have
been to differentiate by UDP port number, since this number is different for
GTP v.0 and GTP v.1. GTP v.0 uses port number 3386, while GTP v.1
uses 2123 for GTP-C and 2152 for GTP-U. Why MessageType is used and
not the UDP port number, will be explained in Chapter 6.

Figure 5.2 provides an overview of relevant header fields as discussed
in this section and their presence inside the relevant GTP message types
listed in Table 5.2. Figure 5.2 shows all listed header fields are present
in every GTP message type, because of the fact these header fields are all
mandatory. In the next section the fields in the payload of the GTP message
will be discussed. These fields are not all mandatory for every GTP message
type.

5.2 GTP Payload

This section will describe the relevant fields inside the GTP payload, that
are needed to satisfy the requirements as stated in Chapter 3. Note that all
relevant fields in the GTP payload are in GTP-C messages, as the payload
of a GTP-U messages carries the actual user data (T-PDUs), as described

CHAPTER 5. GTP PACKET ANALYSIS 26

Fields Cre
at

e P
DP C

onte
xt

 R
equest

 (0
x1

0)

Cre
at

e P
DP C

onte
xt

 R
esp

onse
 (0

x1
1)

Updat
e P

DP C
onte

xt
 R

equest
 (0

x1
2)

Updat
e P

DP C
onte

xt
 R

esp
onse

 (0
x1

3)

Dele
te

 P
DP C

onte
xt

 R
equest

 (
0x1

4)

Dele
te

 P
DP C

onte
xt

 R
esp

onse
 (

0x1
5)

T-P
DU (

0xF
F)

H
ea

d
er

Version √ √ √ √ √ √ √

Protocol Type (PT) √ √ √ √ √ √ √

[Flag] Extention Header * √ √ √ √ √ √ √

[Flag] Sequence Number * √ √ √ √ √ √ √

[Flag] N-PDU Number * √ √ √ √ √ √ √

Message Type √ √ √ √ √ √ √

Length √ √ √ √ √ √ √

MSISDN √

Access Point Name (APN) √

Radio Access Technology (RAT) O

Mobile Country Code (MCC) O

Mobile Network Code (MNC) O

Cause √ √ √

GTP-U

* only in case GTP v.1

√ = Always Present

O = Optional

GTP-C

H
ea

d
er

p
ay

lo
ad

Figure 5.2: Overview the relevant GTP fields and their presence inside the
various GTP messages types.

in the previous section.
Figure 5.2 gives an overview of all relevant GTP fields inside the GTP

header and GTP-C payload. The major difference with the header fields,
that are described in the previous section, is that not all fields inside the
GTP payload are mandatory; some are optional. Besides that, the payload
fields are present in only some of the GTP message types. Figure 5.2 shows
which fields are always present, i.e. mandatory, by marking them with “V”
and which fields are optional, by marking them with “O”. If a field is not
marked at all for a specific GTP message type, than that field is either not
present or not of interest for answering the requirements.

One of the requirements in the GTP-C section of Chapter 3 states that
the cause value should be identified in a Create, Update and Delete PDP
Context Response message, respectively. This cause field indicates whether
a corresponding request is accepted or gives a reason for rejection. The

CHAPTER 5. GTP PACKET ANALYSIS 27

cause field is always present for these type of messages and is located in the
payload of the GTP-C packet.

As described in Appendix 2.1.1 a MS can set up multiple parallel PDP
Contexts: one primary and multiple associated secondary PDP Contexts.
To satisfy the requirement that states that the system should be able to
monitor the number of unique Create PDP Context Request messages per
roaming partner, we should pick a value should that uniquely identifies a
MS. For this, MSISDN is used, which is more commonly known as the
mobile telephone number. An alternative would be to use IMSI, which
is the unique identifier of the SIM inside the MS. The benefit of using
MSISDN over IMSI is that the MSISDN is present in every primary Create
PDP Context Request message, while IMSI is optional.

To identify the Access Point Name (APN) a MS connects to, the APN
field in the Create PDP Context Request message should be analyzed. This
field is present in every primary Create PDP Context Request message.
In secondary PDP Context request messages this field is left out, because
secondary PDP Contexts reuse the APN of the associated primary PDP
Context.

The Radio Access Technology (RAT) field inside the Create PDP Context
Request message indicates the network the MS is connected to. This can
be either GERAN (GSM) or UTRAN (UMTS). According to 3GPP 29.060
[5] this field is optional, which means some SGSNs/GGSNs will not include
this field.

The Mobile Country Code (MCC) and Mobile Network Code (MNC)
indicate the location of the SGSN the user is connected to: the country and
the mobile network, respectively. For example, for KPN these values are
204 (MCC) and 08 (MNC). Both MCC and MNC fields are two bytes long
and can occur in two different fields inside the GTP-C payload: in the User
Location Information field and/or in the Routing Area Indentity (RAI) field.
According to 3GPP 29.060 [5] both fields are not mandatory, so they may not
occur in every GTP message. Usually either the User Location Information
field or the Routing Area Indentity (RAI) field is present in a GTP message.
However, in 3% of the observed traffic neither of these two fields were present,
which implies that MCC and MNC values are unknown for these messages.
For example, SGSNs of KPN Mobile The Netherlands B.V. never include the
Routing Area Indentity (RAI) field, but always include the User Location
Information field. It does not make any difference from which field the
MCC and MNC are extracted, because both fields should contain the same
information.

For most of the requirements in Chapter 3 it is sufficient to count the

CHAPTER 5. GTP PACKET ANALYSIS 28

number of GTP messages, which corresponds to the number of observed
packets, as every packet can carry at most one GTP message. For the
requirements regarding the size of the GTP-U traffic, we need to count the
number of bytes of the GTP message.

Chapter 6

Flow-Based Architecture

In Chapter 5 we determined the relevant fields inside the GTP packet. In this
chapter we will define how this information can be measured and exported
in a flow-based manner. The different processes in the IPFIX architecture,
as displayed in Figure 6.1, will be used as guidance in this Chapter. First the
IPFIX Metering Process and its associated Flow Key are described. After
that, the IPFIX Exporting Process is described. The last section of this
chapter describes the IPFIX Collecting Process. For a general description
of IPFIX, see Chapter 2.2.

6.1 Metering Process

First step in setting up a flow-based solution is defining the format of the
Flows in the Metering Process, i.e. defining which packets belong to the
same Flow. Packets belonging to a particular Flow have a set of common
properties. This set of common properties is referred to as the Flow Key. In
other words, key fields contibute to the uniqueness of the flow, whlie non-key
fields do not. In Chapter 5 we defined the fields that need to be extracted
from the GTP packet in order to satisfy the requirements in Chapter 3.
As described in Chapter 5 not all these fields need to be exported; the
fields Length and Protocol Type (PT) fields, together with the PN, S and
E flags are solely used to filter out irrelevant packets. The remaining fields,
which are defined in Chapter 5, need to be exported. For these fields we
have to define which are key and which are non-key. This is a very crucial
step, because if certain fields are incorrectly marked as non-key, certain
information may get lost due to the aggregation, while marking every field
as key may result in a big and inefficient flow cache in the IPFIX Device. For

29

CHAPTER 6. FLOW-BASED ARCHITECTURE 30

each relevant field we will determine if the field is key or non-key, keeping in
mind the consequences of this decision for the requirements. Source ASN and
Destination ASN should be definitely marked as key, because these represent
the endpoints of the connections we want to measure. gtpVersion should also
be marked as key, because a roaming partner can use two versions of GTP
simultaneously, e.g., when a roaming partner has both an UMTS and an LTE
network. If gtpVersion would be marked as non-key, we would not be able
to differentiate between different versions of GTP traffic, because different
versions of GTP traffic would account to the same flow. The header field
Message Type should also be marked as key. If Message Type was non-key, it
would be impossible to count the number of GTP messages per message type,
since all message types would account to the same flow. The same reason
holds for the Cause field; this field should be marked as key, because if it
is marked as non-key it will be impossible to count the number of messages
per cause value. One of the requirements states that the system should
be able to count the number of unique PDP Context Create Messages per
roaming partner. This means MSISDN, which we use as unique identifier
for a Mobile Station (MS), should be marked as key, otherwise the system
would only be able to count the total number of PDP Context Request
messages per roaming partner and not filter out duplicates from the same

Observation Domain N

Observation Domain 2

Observation Domain 1

IPFIX Device Collector

Database

Analyzer

Metering
Process

Exporting
Process

Collecting
Process

Flow Records IPFIX MessagePackets

Figure 6.1: Mapping between the functional and physical IPFIX architec-
ture.

CHAPTER 6. FLOW-BASED ARCHITECTURE 31

MS. APN should be marked as a key field in order for the system to count
the number of bytes per APN. Same reason holds for RAN ; this field should
be marked as key in order to count the number of bytes/packets per Radio
Access Network. MNC and MCC should be marked key, because otherwise
the system will not be able to count the number of bytes/packets per mobile
network and county, respectively. In first instance, MNC might appear to be
a one-on-one mapping to the ASN, which would mean it does not contribute
to the uniqueness of the key and thus could be marked as non-key. However,
this is not always the case, e.g, Mobile Virtual Network Operators (MVNOs)
can use ASN of their host operator, but have their own MNC.

Together with packet and byte counters, the following Key and Non-Key
fields are defined.

Key Fields:
Source ASN, Destination ASN, Version, MessageType, Cause, MSISDN,

APN, RAT, MNC, MCC

Non-Key Fields:
Total Bytes Transferred, Total Packets Transferred

In Chapter 5 we described that we also use the MessageType field for
differentiating between GTP-C and GTP-U traffic. In case we would differ-
entiate on UDP port-number, this would mean an extra field, udpPortNum-
ber, should be added to the key. As described earlier, we choose to keep the
flow-key as small as possible, because we want the Flow Cache to be fast
and efficient. Due to this reason, we use MessageType and not the UDP
port number for differentiating between GTP-C and GTP-U traffic.

As almost all fields, except the packet and byte counters, are Key fields,
we suggest using one single Flow Key. An alternative would be to use mul-
tiple smaller Keys, e.g., one per requirement. However, this would mean a
lot of redundant information will be transmitted, because certain fields, like
Source ASN and Destination ASN, would occur in every Flow Key. A more
efficient way is to use one Flow Key and one Data Template. Once received,
these Flows can then be sub-aggregated by the Collector, which means the
Collector creates multiple views of the same Flows. The consequence of us-
ing a single Flow Key is that in some Flow Records not all key fields will
be recorded with a meaningful value. For example, flows with MessagType
0xff (GTP-U traffic) will never contain a value for Cause, MSISDN, APN,
RAT, MNC or MCC, because these fields are not present in GTP messages
of that message type. For these cases we suggest recoding a default value
of 0 in the corresponding key-field. Taking zero as default is a safe choice,

CHAPTER 6. FLOW-BASED ARCHITECTURE 32

because according to the GTP standard [5] non of the fields we marked as
key, can ever contain a meaningful value of 0. The only exception is the
Version field, since all GTP v.0 messages will have the version field set to 0.
For this we suggest using the maximum value for a single byte (255), since
this value will never occur in normal traffic. Note that setting a default
value for Version and other fields in the GTP header should not even be
necessary, because these fields occur in every GTP message.

The Metering Process maintains a database of all the Flow Records,
often referred to as a flow cache. This flow maintenance includes creating
new Flow Records and updating existing ones. Once a Flow is expired the
Metering Process will forward the Flow Records to the Exporting Process.
For long-running Flows, the Metering Process should expire the Flow on
a regular basis or based on some expiration policy. This periodicity or
expiration policy should be configurable at the Metering Process [13].

6.2 Exporting Process

The previous section described how observed packets are classified into flows
based on a number of selection criteria. In the IPFIX architecture [13] this
is referred to as the Metering Process. As displayed in Figure 6.1, the next
step in the IPFIX architecture is the Exporting Process, which is responsible
for sending the Flow Records to a Collector. This Exporting Process runs
on the same device as the Metering Process, often referred to as the IPFIX
Device. As described in Chapter 2.2, the transport of Flow Records from
the IPFIX Device to the Collector is done by using IPFIX Messages. This
section describes the IPFIX Exporting Process and its associated Templates
and Information Elements (IEs).

IPFIX Messages can either hold Templates or Data Sets. Templates de-
scribe the structure and semantics of the information in the Data Sets. Infor-
mation inside a Message is modeled in terms of Information Elements (IEs).
In order to export our Data Sets to a Collector, we first need to specify
a Data Template. Considering all data in the flow cache is stored accord-
ing to one single Flow Key, which we defined in the previous section, we
also need one single Data Template that describes how the key and non-
key fields are encapsulated into Data Sets. For this we need to map every
field, key and non-key, to an Information Element. This mapping, often
referred to as IE encoding, can either be done in the Metering Process or
the Exporting Process [22]. Currently there are no IEs defined for GTP in
the IANA registry [15]. The only two key fields that can be mapped to an

CHAPTER 6. FLOW-BASED ARCHITECTURE 33

ElementID Name Data Type Data Type
Semantics

Description

1 octetDeltaCount unsigned64 deltaCounter The number of octets since the previous
report (if any) in incoming packets for
this Flow at the Observation Point. The
number of octets includes IP header(s)
and IP payload.

2 packetDeltaCount unsigned64 deltaCounter The number of incoming packets since
the previous report (if any) for this Flow
at the Observation Point.

16 bgpSourceAsNumber unsigned32 identifier The autonomous system (AS) number of
the source IP address. If AS path infor-
mation for this Flow is only available as
an unordered AS set (and not as an or-
dered AS sequence), then the value of
this Information Element is 0.

17 bgpDestinationAsNumber unsigned32 identifier The autonomous system (AS) number of
the destination IP address. If AS path
information for this Flow is only avail-
able as an unordered AS set (and not as
an ordered AS sequence), then the value
of this Information Element is 0.

Table 6.1: IANA assigned IEs used for IE encoding.

IANA-assigned IE are Source ASN and Destination ASN. For this we can
use the IANA-assigned IEs bgpSourceAsNumber and bgpDestinationAsNum-
ber, respectively. For the non-key fields Total Bytes Transferred and Total
Packets Transferred, we can use octetDeltaCount and packetDeltaCount, re-
spectively. Table 6.1 gives an overview of the structure and semantics of
these IANA-assigned IEs. The information in the table is taken from the
IANA registry [15].

For the remaining fields inside the flow cache, there are no IANA-assigned
IEs, because they are all specific to GTP. That means every remaining field
in the flow cache should be mapped to an self-defined enterprise-specific IE.
For this we use the mechanism for encoding IE Type Information, proposed
in RFC 5610 [23]. Table 6.1 provides an overview of the Type Information
of the self-defined enterprise-specific IEs. Please note, the IE Type Infor-
mation, i.e. the colums of the table, is the same for the enterprise-specific

CHAPTER 6. FLOW-BASED ARCHITECTURE 34

ElementID Name Data Type Data Type
Semantics

Description Range

10 gtpVersion unsigned8 identifier The GTP version field inside the GTP
header.

0-2

11 gtpMessageType unsigned8 Identifier The message type field in the GTP header
indicating the type of GTP message.

0-255

12 gtpCause unsigned8 identifier The cause field inside the GTP payload
indicating whether a request is accepted
or the reason for rejection.

0-255

13 gtpRAT unsigned8 identifier The Radio Access Technology (RAT) field
in the GTP payload.

0-5

14 gtpAPN string default A Unicode string containing a human
readable representation of the Access
Point Name field inside the GTP payload.

15 gtpMSISDN unsigned64 identifier The MSISDN field in the GTP payload
indicating the MSISDN of the Mobile Sta-
tion.

16 gtpMNC unsigned16 identifier The MNC field inside the GTP payload
indicating the Mobile Network Code of
the SGSN where the Mobile Station is reg-
istered.

17 gtpMCC unsigned16 identifier The MCC field inside the GTP payload
indicating the Mobile Country Code of
the SGSN where the Mobile Station is reg-
istered.

Table 6.2: Self-defined enterprise-specific IEs.

IEs as for the IANA-assigned IEs displayed in Table 6.1. Most of the Type
Information in Table 6.2 is self-explanatory, for the remaining fields we will
provide a short motivation. The Data Type field corresponds to the data
type of the corresponding field in the GTP message. Almost all IEs are set
to data type Unsignedx because the corresponding fields in the GTP mes-
sage are non-negative Integers, for which a data storage of x bits is required.
The data type of gtpAPN is String, because the value of this field will always
be a Unicode String. The Data Type Semantics field defines the semantics
of the, previously described, Data Type field. In our case all data types rep-
resent an certain Identifier inside the GTP packet, except the IE gtpAPN,
which has data type semantics default, because this is mandatory for String

CHAPTER 6. FLOW-BASED ARCHITECTURE 35

data types [23]. The last column in Table 6.2 specifies the Range for those
IEs which can only hold a specific set of values. For the corresponding IEs
in the table, these ranges are specified in the various 3GPP standards for
GTP.

In order to export the enterprise-specific IEs in Table 6.2, these IEs
should be scoped to a Private Enterprise Number (PEN). To export type
information about an IANA-assigned IE, there is no need to export a PEN or
the PEN can be set to zero [23]. However, when exporting type information
about an enterprise-specific IE, the PEN should be exported. This PEN
should be registered by IANA [24]. We use one of the Private Enterprise
Numbers of the University of Twente, namely 785. Since this PEN has also
been used for other work, other enterprise-specific IEs are also scoped to
this PEN. That is why our first enterprise-specific IE, gtpVersion, starts
with 10 instead of 1.

After having defined all the individual IEs in Table 6.2 we can define the
Data Template that is needed to inform the Collector about the information
that will be sent in the Data Sets. The Data Template is shown in Table
6.3. The format of the table corresponds to the byte structure of the Data
Template, meaning every row contains four bytes, as displayed on top of the
table. The Set ID is set to 2, which is standard for Data Templates. The
Length indicates the total length of the Template in bytes. Template ID is
set to 256, which is the first Set ID that can be used to identify templates
that describe data sets. All Data Sets that are described by this Template
have the same value for Set ID to indicate the data records inside the Data
Set are described by this Template. A Template is essentially an ordered
list of IEs. The Field Count describes the number of IEs in the Template.
What follows is the actual list of IEs. First the IANA-assigned IEs, which
have the Enterprise bit set to zero, followed by the enterprise-specific IEs,
which have the Enterprise bit set to one. For each IE in the Data Template,
from left to right the Enterprise bit, name, ElementID and field length are
defined. For the enterprise-specific IEs also the PEN to which they are
scoped, is defined. All field lengths in the template are relatively small,
except the length of the gtpAPN field. The IPFIX Template mechanism is
optimized for fixed-length Information Elements [16]. However, some fields
like gtpAPN can vary considerably in length. For these variable length fields
IPFIX offers the variable-length IE [16]. This means the Field Length in the
Data Template is recorded as 65535. This reserved length value notifies the
Collecting Process, that the actual length of this IE will be recorded in the
content of this IE inside the Data Set.

However, a Collector receiving Data Sets described by this Template,

CHAPTER 6. FLOW-BASED ARCHITECTURE 36

Bits 0..15 Bits 16..31

Set ID = 2 Length = 88

Template ID = 256 Field Count = 12

0 octetDeltaCount ID = 1 Field Length = 4

0 packetDeltaCount ID = 2 Field Length = 4

0 bgpSourceAsNumber ID = 16 Field Length = 2

0 bgpDestinationAsNumber ID = 17 Field Length = 2

1 gtpVersion ID = 10 Field Length = 1

PEN = University of Twente - TIOS (785)

1 gtpMessageType ID = 11 Field Length = 1

PEN = University of Twente - TIOS (785)

1 gtpCause ID =12 Field Length = 1

PEN = University of Twente - TIOS (785)

1 gtpRAT ID = 13 Field Length = 1

PEN = University of Twente - TIOS (785)

1 gtpAPN ID = 14 Field Length = 65535

PEN = University of Twente - TIOS (785)

1 gtpMSISDN ID = 15 Field Length = 18

PEN = University of Twente - TIOS (785)

1 gtpMNC ID = 16 Field Length = 2

PEN = University of Twente - TIOS (785)

1 gtpMCC ID = 17 Field Length = 2

PEN = University of Twente - TIOS (785)

Table 6.3: IPFIX Data Template.

can only treat the enterprise-specific IEs in this Template as opaque octets,
because the Collector still only knows the name of these IEs, not their mean-
ing. For the IANA-assigned IEs we can assume an IPFIX Collector knows
hows to interpret them, but for the enterprise-specific IEs the Collector cer-
tainly does not know how to interpret them. In order to solve this problem
RFC 5610 [23] defines an Information Element Type Options Template [23],
which can be sent to the Collector, followed by IE type records for each
enterprise-specific IE in the Data Template. The function of the IE Type
Options Template is to inform the Collector about the type information in
the type records by using IANA-assigned IEs. The relation between IE Type
Options Template and type records is comparable to the relation between
Data Template and Data Sets. Figure 6.2 shows a sequence diagram of the
different IPFIX messages sent between Exporting Process and Collecting

CHAPTER 6. FLOW-BASED ARCHITECTURE 37

Exporting Process Collecting Process

n * (Type Record)

IE Type Options Template
(containing n IEs)

Data Template

Data Sets

Figure 6.2: Sequence of IPFIX messages between Exporting Process and
Collecting Process.

Process. As can be seen in the figure, the IE Type Options Template and
associated type records are sent after the Data Template, but before the
Data Sets.

Table 6.4 gives an overview of the structure of the Information Element
Type Options Template. The Set ID is set to 3, which is the standard value
for Options Templates. The Length indicates the total length of the Tem-
plate in bytes. The Template ID is set to 257, which is one more than the
Template ID of the Data Template, see Table 6.3. Next field in the Template
is the Field Count, which specifies the number of IEs in the Template. The
Scope Field Count defines the number of Scope Fields inside the Template,
which are normal Fields except that they are interpreted as scope by the
Collector. The scope uniquely identifies the reported IEs in the data records
[16]. In this case the combination privateEnterpriseNumber and informa-
tionElementID defines the scope for our IEs. What follows is a list of IEs
followed by their length. The IEs are chosen in a manner that all headers in
Table 6.2 can be referenced by this Options Template. For all these IEs the
Enterprise bit is set to zero, because they are all IANA-assigned (otherwise
the Collector would still not know how to interpret these IEs). Next to the
name of every IE the ElementID is listed. This ElementID is the ID as it is
registered by IANA. The Field Length which is listed after each IE indicates
the number of bytes that are needed in the type records. This value is chosen

CHAPTER 6. FLOW-BASED ARCHITECTURE 38

Bits 0..15 Bits 16..31

Set ID =3 Length = 42

Template ID = 257 Field Count = 7

Scope Field Count = 2 0 privateEnterpriseNumber ID = 346

Field Length = 4 0 informationElementID ID = 303

Field Length = 2 0 informationElementDataType ID = 339

Field Length = 1 0 informationElementSemantics ID = 344

Field Length = 1 0 informationElementRangeBegin ID = 342

Field Length = 8 0 informationElementRangeEnd ID = 343

Field Length = 8 0 informationElementName ID = 341

Field Length = 65535 0 informationElementDescription ID = 340

Field Length = 65535

Table 6.4: IPFIX Information Element Type Options Template.

in a manner that the field length is enough to hold the maximum possible
value of the IE. This field length is calculated by looking at the Data Type
in the IANA registry. For example, the IE informationElementID has Data
Type unsigned16, which means that two bytes are needed to store this value.
For the IEs informationElementName and informationElementDescription
variable lenght encoding is used, which we used earlier for the gtpAPN field
in the Data Template. This is visualized in the Template by recording the
Field Length as 65535.

After sending the IE Type Options Template, the associated type records
that describe the enterprise-specific IEs need to be sent. As can be seen in
Figure 6.2, one type record is sent for every IE in the IE Type Options
Template. Table 6.5 gives an example of a type record. In this table we
used the IE gtpVersion as example. Please note, that all IEs in the IE
Type Options Template of Table 6.4 also appear in the type record. The
field length of the fields in the type record corresponds to the field length
specified in the Template. The field lengths for variable-length IEs informa-
tionElementName and informationElementDescription are in this example
set to an example value, because their actual length depends on the number
of bytes the Unicode string values will take. Note that the actual length of
these two variable-length IEs appear in the first octet of the IE content, as
displayed in Table 6.5. Table 6.5 gives the type record for the IE gtpVersion,
similar type records have to be sent for all other enterprise-specific IE in the
Data Template.

CHAPTER 6. FLOW-BASED ARCHITECTURE 39

Bits 0..15 Bits 16..31

Set ID = 257 Length = 44

PEN = University of Twente - TIOS (785)

ID = 10 Data Type = 0x01 Data Type Sem.= 0x04

RangeBegin = 0

RangeEnd = 2

Length = 7
Name = gtpVersion

Length = 11
Description = GTP version field inside the GTP header

Table 6.5: Example Type Record for the enterprise-specific IE gtpVersion.

6.3 Collecting Process

When receiving the Data Template and subsequently the IE Type Options
Template and the associated type records, the Collector has enough informa-
tion to interpret the Flow Records in the Data Sets. However, in practice we
see real IPFIX Collectors are rarely deployed. Most IPFIX Collectors that
are currently available are not able to interpret enterprise-specific IEs, only
IANA-assigned IEs are supported. These Collectors often do not support
the learning of IEs via IE Type Options Templates. In practice this means
the structure and semantics of enterprise-specific IEs are often hard-coded
in the Collector. Examples of known IPFIX Collectors are Vermont [25],
nTop [26], ipfixcol [27], ripfix [28] and Scrutinizer [29]. We did not verify
whether these Collectors fully supports the requested functionality, i.e. IE
Type Options Templates and variable length IEs, since the Collecting Pro-
cess is not part of the focus of this work. Besides that, the choice for a
Collector really depends on the requested data analysis.

For the storage of Flow Records at the Collector, we propose a storage
mechanism similar to the flow cache in the Metering Process. The storage
format is variable; it can be a memory table, a database or even flat-files.
The choice is implementation specific and mainly depends on the require-
ments that are posed on the data analysis.

Chapter 7

Implementation and
Validation

In the previous chapter we proposed a flow-based solution for monitoring
GTP traffic using IPFIX. In this chapter we will demonstrate the feasibility
of that solution by setting up a proof of concept. The KPN testcenter will
be used as a test environment for our proof of concept. The proof of concept
will be validated using a captured packet-trace.

7.1 Proof of Concept

After defining an IPFIX solution for monitoring of GTP traffic in Chapter
6, we will now set up a proof of concept to demonstrate the feasibility
of this solution. As described in Chapter 4 there are currently no flow-
based monitoring tools available that fully support the monitoring of GTP-
C and GTP-U traffic. Existing flow-based monitoring tools, like nProbe and
PMACCT, are only able to analyze the traffic inside the tunneled packet,
often referred to as looking inside the envelope. This means that in order
to test our proposed solution we either have to develop a new flow-based
monitoring tool or develop a software extension to an existing flow-based
monitoring tool. We choose the latter, because a lot of functionality in
existing tools can be re-used. PMACCT [1] was picked as the tool for
which we developed a software extension, because it offers BGP peering
functionality, which is required for mapping IP addresses to Autonomous
System Numbers (ASNs). Besides that, KPN suggested PMACCT, due to
good experiences in the past.

The functionality of the Metering Process and Exporting Process was

40

CHAPTER 7. IMPLEMENTATION AND VALIDATION 41

implemented nearly fully compatible with the specifications of the proposed
solution, as specified in Chapter 6. The Metering Process, including the
associated Flow Cache, was implemented in the PMACCT deamon, pmac-
ctd, as shown in Figure 7.1. In order to ensure only GTP traffic is being
accounted we provided pmacctd with a pcap filter. In this way all packets
that do not contain a GTP message will be filtered out. The format of the
pcap filter is listed below. By applying this pcap filter, pmacctd only ana-
lyzes traffic that uses the transport ports defined for GTP, as described in
Chapter 5. By adding vlan to the pcap filter, we also account GTP traffic
that is carried by a IEEE 802.1Q VLAN packet.

port 2123 or port 2152 or port 3386 or (vlan and (

port 2123 or port 2152 or port 3386))

The Exporting Process was implemented in the Netflow/IPFIX probe,
nfprobe, which is a plugin to pmacctd. The only functionality that was left
out of the Exporting Process was the IE Type Information Options Template
and its associated type records. Instead, we implemented this functionality
into the Collecting Process.

The PMACCT Collector, nfacctd, is used for the collecting of our Flow
Records. As mentioned earlier, the export of the IE Type Options Template
and associated type records was left out. This was done, because nfacctd
currently lacks the ability to handle IE Type Options Templates. Instead of

NfProbe
IPFIX Messages
(Flow Records)

Metering
Process

Exporting
Process

Collecting
Process

Flow Records IPFIX MessagePackets

IPFIX Architecture

PMACCT Architecture

PMACCTd NFACCTd

MySQL

Figure 7.1: Mapping between the IPFIX architecture and the PMACCT
architecture.

CHAPTER 7. IMPLEMENTATION AND VALIDATION 42

this, the structure and semantics of the enterprise-specific IEs, as described
in Table 6.2, were hard-coded in the PMACCT Collector. In this way the
Collector still knows how to handle data sets containing these enterprise-
specific IEs. We did implement the variable length encoding functionality
for IEs, as described in Chapter 6. So when the PMACCT Collector receives
a Data Template containing an IE with Field Length recorded as 65535, it
knows the actual length of this IE is recorded in the first octet of corre-
sponding IE in the Data Set. Due to time constraints we decided to focus
on aspects that directly influence the performance of the proposed solution,
like the variable-length IEs, and leave the functionality for the Type Infor-
mation Options Template for future work. For the storage of Flow Records
a MySQL database is used, which is implemented in the MySQL plugin of
pmacctd (see Figure 7.1). We chose for MySQL, because it is free and rel-
atively easy to implement compared to other relational databases. Besides
that, it was recommended by PMACCT as a suitable storage format.

The source code of the developed extension is stored in a CVS repository
and can be donwloaded from the following location:

CVSROOT=:pserver:anonymous@cvs.pmacct.net:2403/home/repo-0.14-gtp

Password: pmacct

Later this year the source code will be integrated into the mainstream code
of PMACCT.

7.2 Test Environment

In order to validate the proposed solution we tested our proof of concept
at the KPN testcenter. A simplified overview of the test environment is
displayed in Figure 7.2. In practice, the IPFIX Device and the Collector will
most likely be implemented in different physical devices, because multiple
IPFIX Devices will usually provide input to a single Collector. Since we
just want to validate the correctness of our solution, the entire solution is
build on a single server, which we will refer to this server as the “PMACCT
server”. This means both pmacctd and nfacctd run on the the same physical
device, as shown in Figure 7.1. The transport of Flow Records from pmacctd
to nfacctd will go via the loopback address of the PMACCT server. Table
7.1 gives a summary of the architecture of the PMACCT server.

In order to get the correct data, the point of measurement is crucial. As
we are interested in packet-switched roaming traffic, the BorderGateWay

CHAPTER 7. IMPLEMENTATION AND VALIDATION 43

System: HP ProLiant DL380 G5
CPU: Intel Xeon 3000 Mhz Dual Core
Memory: 6 Gb ECC
Operating System: Red Hat Enterprise Linux Server release 5.8

Table 7.1: PMACCT Server - System Specifications.

router of the GPRS core network seems the most logical point of measure-
ment, since all inbound and outbound roaming traffic of KPN will pass
through this router. The BorderGateWay router is the located on the edge
of a GPRS core network and forms the connection between the home PLMN
and other PLMNs. Since KPN does not directly peer with other roaming
partners, all international packet-switched roaming traffic goes via a third-
party GRX operator. A GPRS Roaming Exchange (GRX) operator acts as a
hub for GPRS connections between roaming partners, removing the need for
dedicated connections with every individual roaming partner. So for KPN

KPN Network
GRX

PMACCT Server

BorderGateWay Router

BGP Peering

TCP Replay

Figure 7.2: Experiment setup of the proof of concept at KPN testcenter.

CHAPTER 7. IMPLEMENTATION AND VALIDATION 44

the BorderGateWay router is the logical link between the home PLMN and
the GRX operator, which makes it the best point of measurement for our
solution. However, since our test environment is located at the KPN test-
center and not in the live network of KPN, there is no live packet-switched
roaming traffic passing through the BorderGateWay router. One possibility
would be to generate GTP traffic using a roaming simulator. However, the
drawback of using a roaming simulator is that it is only be able to simulate
one roaming partner. Since we want to prove the correctness of our solu-
tion, it is important that the measured traffic is as realistic as possible. Due
to this reason, we chose to a make a 100 MB packet-trace (approximately
260.000 packets) of the BorderGateWay router in the live network of KPN.
This packet-trace contains packet-switched roaming traffic to and from vari-
ous other mobile network operators KPN has roaming agreements with. By
offering this packet-trace in a continuous loop to pmacctd we can simulate
a continuous stream of GTP traffic. For this, we use the tool Tcpreplay
[30], as shown in Figure 7.2. Tcpreplay echoes this packet-trace at a pre-
configured speed on the Ethernet interface of the PMACCT server where
pmacctd is listening. Another benefit of using Tcpreplay over a roaming
simulator is that we have exact knowledge of the data that is being inputted
to PMACCT, which makes validation easier.

Now we have simulated a steam of traffic, we still need to map the
IP Adresses of the various roaming partners to Autonomous System Num-
bers (ASNs). Again the BorderGateWay routers seems to be a good solu-
tion, because it contains BGP information of all roaming partners KPN has
roaming agreements with. However, since our test environment is located
at KPN testcenter without real roaming partners, this BGP information is
unavailable. By loading a copy of the BGP table of the BorderGateWay
router in the live network of KPN (where the packet-trace was captured)
into the BorderGateWay router in the testcenter, we acquired the necessary
BGP information. By setting up a BGP peering between the BorderGate-
Way router and the PMACCT server, this BGP information will also be
available at the PMACCT server, including BGP updates received at the
BorderGateWay router. This BGP information can be used by pmacctd to
perform the mapping of IP Addresses to ASNs. One drawback of using
this static BGP table in the BorderGateWay router is that there will be no
BGP updates. This may lead to future errors in mapping the IP addresses
to ASNs when another packet-trace is used that contains unknown IP ad-
dresses. However, in a normal scenario, like the live network of KPN, these
situations will not occur, because thanks to the BGP peering, the BGP table
will be managed in a dynamic way.

CHAPTER 7. IMPLEMENTATION AND VALIDATION 45

7.3 Validation

In this section we will validate our proposed solution using the proof of
concept, described in Chapter 7.1. The purpose of this validation is to prove
that the Flow Records stored at the Collector contain the same information
as the data that was monitored. That means on one hand no data should
get lost, but on the other hand no extra data should be created. We will
perform our validation using the packet-trace that was also used as input for
Tcpreplay [30], as described in the previous section. We analyze the packet-
trace using the tool Wireshark [31]. The Flow Records at the Collector are
analyzed using MySQL client, because they are stored in a MySQL database.
For the validation process we will take the results reported by Wireshark as a
benchmark. In case the results reported by the Collector are approximately
the same as the results reported by Wireshark, than we will assume these
results are correct. This in turn would imply our validation is succeeded.
The set of parameters that we measure corresponds to the relevant fields
inside the GTP packet, which we defined in Chapter 5. Since these fields
contain the information needed to satisfy the requirements of Chapter 3, we
indirectly validate a number of these requirements.

Table 7.2 gives an overview of the measured parameters and their values
in both the packet-trace, the Collector and the difference between these
two. Ideally the values in the packet-trace and the values in the Collector
are exactly equal. Since we decided to take the value of the packet-trace as
a benchmark, the difference is denoted as the value in the Collector minus
the value in the packet-trace. The difference is listed both as an absolute
value and as a percentage.

The first parameter we measured is the total number of IP packets.
Table 7.2 shows the value in the packet-trace is 2% larger than the value
in the Collector. This is correct, because the PCAP filter, described in
Chapter 7.1, filters out all IP packets that do not contain a GTP message.
Note that the packet-trace is captured on the Gp interface of the GPRS core
network of KPN, which almost solely transfers GTP traffic. Next parameter
in Table 7.2 shows that the number of GTP messages in the Collector is 0,1%
smaller than the value in the packet-trace. This means only 0,1% of the GTP
messages is not accounted by our proof of concept. This small portion of
non-accounted GTP messages plus the packets that do not contain a GTP
message explains the difference between the total number of packets in the
packet-trace and the total number of packets in the Collector (i.e. the first
parameter). Further analysis of the packet-trace shows the non-GTP packets
are IP packets that mainly contain Diameter, ICMP or DNS content.

CHAPTER 7. IMPLEMENTATION AND VALIDATION 46

The next parameter we measured was gtpVersion. As can be seen in
Table 7.2, the number of packets containing the version field is both for the
packet-trace and for the Collector equal to the number of packets that are
reported as GTP. That is correct, because the version field is part of the
GTP header and thus present in every GTP message. This also applies to
message type, which is also a GTP header field. When looking at the number
of GTP v.0 and GTP v.1 messages, Table 7.2 shows the values in the packet-
trace and in the Collector are approximately equal. The slight difference is
caused by the small portion of GTP messages that are not accounted, as
described earlier. This is also applies to all other parameters in Table 7.2.

Summarizing our results, Table 7.2 shows that for all measured parame-
ters the value in the packet-trace and the value in the Collector are approx-
imately equal. Besides that, the results prove to be consistent if we repeat
this validation procedure a number of times. Based on these findings we can
conclude the parameters listed in Table 7.2 are measured correctly by our
proof of concept. The slight differences between the values in the packet-

Measured statistics Packet-Trace Collector Difference

IP packets 257.660 252.507 -5153 (-2,0%)
GTP messages 252.883 252.507 -376 (-0,1%)

Messages that contain gtpVersion 252.883 252.507 -376 (-0,1%)
Messages with gtpVersion == 0 1680 1674 -6 (-0,4%)
Messages with gtpVersion == 1 251.203 250.833 -370 (-0,1%)

Messages that contain gtpMessageType 252.883 252.507 376 (-0,1%)
Messages with gtpMsgType == 0x10 402 401 -1 (-0,2%)
Messages with gtpMsgType == 0xFF 220.991 220.661 -330 (-0,1%)

Messages that contain gtpCause 1259 1256 -3 (-0,2%)
Messages with gtpCause == “0xC0” 78 78 0 (0%)

Messages that contain gtpMSISDN 402 400 -2 (-0,5%)
Messages with gtpMSISDN == “+316591002xxx” 12 12 0 (0%)

Messages that contain gtpAPN 402 401 -1 (-0,2%)
Messages with gtpAPN == “iphonekpn.nl” 16 16 0 (0%)

Messages that contain gtpRAT 396 395 -1 (-0,3%)
Messages with gtpRAT= 2 258 257 -1 (-0,4%)

Messages that contain gtpMCC 397 396 -1 (-0,3%)
Messages that contain gtpMNC 397 396 -1 (-0,3%)

Table 7.2: Comparison on different parameters between a packet-trace and
the Collector’s Flow Table.

CHAPTER 7. IMPLEMENTATION AND VALIDATION 47

trace and the values in Collector, are all related to the small percentage
(0,1%) of GTP messages that are not accounted by our proof of concept.
Since this portion is so small, it is unknown which of the GTP messages
causes this difference.

Chapter 8

Data Analysis

Data analysis can be regarded as the frond-end operation of traffic moni-
toring, while the focus of this work is on traffic measurement, which can be
regarded as the back-end operation. To illustrate the applicability of a data
analysis application, we will provide an example of how the Flow Records
received at the Collector can be analyzed, instead of providing a full scale
data analysis that satisfies every requirement in Chapter 3. For this ex-
ample the network graphing tool Cacti [8] is used. Besides Cacti, there
are other solutions available. Every data analysis applications has its own
advantages and disadvantages. Cacti, for example, is not able to generate
histograms. A histogram would be suitable to provide an overview of the
ASs that generate the most traffic, i.e. the top talkers. Excel would be able
to generate this kind of graphs, but is unable to perform online monitoring.
Which data analysis application to choose depends on the requirements the
end-user poses on the data analysis. We chose Cacti, because it offers an on-
line monitoring functionality by using polling scripts, but more important:
PMACCT [1] recommended Cacti as a flexible data analysis application,
that runs well on top of PMACCT.

This chapter will describe the steps needed to set up graphs in Cacti and
will discuss some of the example graphs we created. Note that the scripts,
methods and templates described in this chapter are specifically designed
for Cacti. The scripts can probably also be used as input for other data
analysis applications, because they are regular Shell scripts. The methods
and templates are cacti-specific. Other data analysis applications might use
a similar approach, but a one-on-one copy will probably result in errors.

48

CHAPTER 8. DATA ANALYSIS 49

8.1 Cacti Configuration

All graphs in Cacti have to be matched to a certain object, which is called a
Device. Since our solution monitors steams of traffic between two roaming
partners, identified by source AS and destination AS, we suggest mapping
every AS to a Device. In every observed flow either the source AS or the
destination AS is the the operator that performs the monitoring. The other
AS is the roaming partner with whom traffic is being exchanged. As common
in BGP peering, the operator that performs the monitoring, i.e. the AS
where the traffic is being observed, is being mapped to a zero. The other
AS is the AS of the roaming partner. This means in every observed flow
either source AS or destination AS will be zero, leaving the other AS to be
the AS of the roaming partner. In Cacti we will map the AS of the roaming
partner to a Device. This means we will create a different Device for every
roaming partner that is being peered with.

For every Device, i.e. every roaming partner, a number of statistics
can be monitored. In order to generate these statistics, the corresponding
information has to be extracted from the Flow Records at the Collector. As
described in Chapter 7, our proof of concept uses a MySQL database to store
the received Flow Records. By performing SQL queries on this database, we
can poll the corresponding flow data. One of the requirements in Chapter
3 states the system should provide online monitoring. This implies the flow
data at the Collector should be polled in a nearly continuous manner and
not by means of a once-per-day export. However, unless using a streaming
query language, the data is never polled in a continuous manner. The reason
for this is that alsmost all data analysis applications use some kind of polling
interval, which automatically implies the data is being polled in batches. As
long as the intervals are chosen small enough the data analysis approaches
online monitoring. We use shell scripts containing SQL queries to poll the
required flow data out of the MySQL database. Cacti polls this data every
five minutes, which is the same interval as other RRD-based applications,
like NfSen [32] use. One shell script can contain multiple queries. In Cacti
these shell scripts are referred to as Data Input Methods.

After defining the monitored objects, i.e. Devices, and the scripts, i.e.
Data Input Methods, to poll the data, next step is to define Data Templates.
As mentioned before: Cacti uses shell scripts containing SQL queries to
poll the data from the MySQL database at the Collector. The data that is
being polled from this database is raw data. Data Templates are used to
describe the context of this data and how to store it in the Round Robin
Database (RRD), used by Cacti. For example, Cacti can store the current

CHAPTER 8. DATA ANALYSIS 50

value of PDP Context Request messages for a certain roaming partner by
polling this value from the MySQL database every five minutes or Cacti can
just store the difference with the value of the previous polling cycle. Data
in Cacti is being averaged over time. That means the graph that describes
the results over the last month has a lower granularity than the graph that
describes the data over the current day. Data Templates define the period
for which the data should be maintained, e.g. only daily analysis or also
weekly, monthly or yearly analysis. Data Templates are generic and can be
applied to every device we want to monitor.

Last step in visualizing our results, is defining Graph Templates. Graph
Templates define the structure and appearance of the graphs we want to
create. For example, whether a graph is a line, a stack or something else;
the meaning of the axis and a legend if required. Graph Templates use the
data described by the Data Templates as input for making the graphs.

8.2 Example Graphs

This section will describe a number of example graphs created in Cacti. The
corresponding Data Input Methods, Data Templates and Graph Templates
of these figures can be found in Appendix A.

For the validation of our proposed solution, described in Chapter 7, we
used Tcpreplay [30] to simulate GTP traffic. We could re-use the same
packet-trace that we used for validation to simulate a constant stream of
traffic, because Tcpreplay offers the loop-option, which allows the packet-
trace to be played in a constant loop. However, this would result in graphs
that show the exact same pattern over and over again. To bring more
variation into the output data, we captured 10 packet-traces of 100 MB in
the live network of KPN, which consist of roughly 550.000 packets each,
and let Tcpreplay play them in a random order. Besides that, we provide
Tcpreplay with a random speed-multiplier (between 0,01 and 1,01), so every
packet-trace is played at a random speed. Note that a multiplier of 1 equals
the original speed of which the packet-trace was captured with.

Figure 8.1 shows the total number of bytes being transferred to and from
AS 64640 (network operator Movistar, Spain) over the last 24 hours. The
traffic is shown from the perspective of KPN, that means “total bytes in”
refers to the traffic from Movistar to KPN and “total bytes out” refers to the
traffic from KPN to Movistar. As can be seen in the figure, the graph resets
to zero at midnight. This is because the MySQL database at the Collector
creates a new table every day. The graph shows the traffic over the last

CHAPTER 8. DATA ANALYSIS 51

Figure 8.1: Bytes transferred between KPN and Movistar, Spain over the
last 24 hours.

24 hours. As specified in the Data Template, Cacti also generates similar
graphs for the last hour, week, month and year. As data is averaged over
time, the granularity of these graphs reduces as the timespan grows larger.

Figure 8.2a shows the number of Create PDP Context Request messages
and the number of Create PDP Contexts Response messages for AS 64577
(network operator Telenor, Norway). The traffic is shown from the per-
spective of KPN and is scoped to inbound roaming. That means the figure
shows the number of PDP Context Request messages created by customers
of Telenor that reside in the Netherlands, together with the corresponding
response messages sent from Telenor back to KPN. As can been seen in
Figure 8.2a, the number of request messages equals the number of response
messages. This is an ideal situation, because all request messages are an-
swered with a response. That is also the reason that there is only one line
drawn in the figure. Note that in case the number of request and response
messages would slightly differ, this would still be nothing to worry about,
keeping in mind the traffic that is being graphed comes from a captured
portion of traffic in the live network of KPN.

Figure 8.2b is a further analysis of the situation displayed in Figure
8.2a. Figure 8.2a displayed the number of Create PDP Context Request
and Response messages for inbound roaming customers from the network
operator Telenor. In Figure 8.2b we see which portion of the Create PDP
Context Response messages confirms a successful PDP Context setup and
which portion reports an unsuccessful setup. As can be seen in the legend
below the figure, the number of successful PDP Context Create messages

CHAPTER 8. DATA ANALYSIS 52

(a) Create PDP Context Request/Response messages.

(b) Successful/unsuccessful Create PDP Context Response messages.

Figure 8.2: Create PDP Contexts Request/Response messages between
KPN and Telenor over the last 24 hours for inbound roaming.

is much larger than the number of messages that reports an unsuccessful
setup. That is the reason why we chose for a logarithmic scaling on the
Y-axis. Whether a response message is successful or unsuccessful is implied
by the cause value inside the GTP message. We could even further analyze
this situation by creating a third figure that displays the reason, i.e. the
cause value, of why the PDP Context setup is unsuccessful. However, that
figure is not included.

The graphs discussed above are the result of various SQL queries launched
on the MySQL database of Flow Records at the Collector. Thanks to the
flexibility MySQL offers (see Chapter 6) almost an unlimited number of
statistics can be generated from the received Flow Records.

Chapter 9

Conclusions and Future
Work

In this work we proposed a flow-based solution for monitoring GTP traffic
in cellular networks. This solution can be used by service providers as an
alternative to the currently deployed packet-based monitoring solutions. All
measured parameters in the proposed solution are scoped to the perspective
of the roaming partner, not to the individual end-user. In this way the
privacy of the end-user is protected. Besides that, only summaries of the
measured traffic are exported, because the solution is flow-based. With the
new telecommunications law [2] in mind, these two arguments make our
solution more privacy aware than most of the currently deployed packet-
based solutions. Besides that, flow-based monitoring techniques in general
are much more scalable than packet-based solutions.

The requirements analysis performed at KPN resulted in three categories
of requirements for monitoring packet-switched roaming traffic in cellular
networks: a category of general requirements and categories for GTP-C
and GTP-U, which corresponds to the two protocols in the GTP suite.
All requirements imposed by KPN aim at measuring statistics per roaming
partner, not per individual end-user. In Chapter 5 we described how this
required information can be extracted from the various fields inside the GTP
packet. We can conclude most of the required information is located in the
header and especially the payload of the GTP-C traffic. Conform research
question two, this work focuses on measuring this information in a flow-
based manner. Because of that, we fully specified the Metering Process and
Exporting Process of the IPFIX architecture and provided recommendations
for the Collecting Process. We set up a proof of concept to demonstrate the

53

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 54

feasibility of our solution by developing an extension to the existing flow-
based monitoring application PMACCT. We proved the correctness of our
solution by completing almost every test in our validation with expected
results. All relevant fields inside the GTP message, which were defined in
Chapter 5, were measured correctly, except the number of GTP v.0 packets.
The reason for this was that non-GTP packets were also accounted as GTP
v.0 packets. We answered our last research question by demonstrating how
the received Flow Records can be analyzed using a data analysis applica-
tion. We chose a MySQL database to store the received Flow Records at
the Collector, because of the flexibility MySQL offers compared to NoSQL
databases and flat files. For the data analysis we chose for the network
graphing tool Cacti. Cacti proved to be a suitable application for visualiz-
ing our results, but was unable to produce histograms, which would have
been suitable to provide an overview of the ASs that generate the most traf-
fic, i.e. the top talkers. We can conclude that the choice for a data analysis
application depends mainly on the requirements the end-user poses on the
analysis.

As future work, we will now describe a number of open issues and sug-
gest some possible enhancements to our proposed solution. As described in
Chapter 7.2, the IE Type Options Templates and associated type records
were left out in the Proof of Concept, due to time constraints. We would
suggest adding these templates and type records to make the proof of con-
cept fully complaint with the IPFIX architecture, just as how it was specified
in our proposed solution (Chapter 6). The set of fields we monitor in the
header and payload of the GTP message is rather small; as can be seen in the
GTP standard [5], the payload of the GTP-C message contains a lot more
information. Imposed by the requirements in Chapter 3, we only monitor
information scoped to the perspective of the roaming partner. A possible
enhancement would be to also monitor other relevant fields inside the GTP
message: fields that are more scoped to the perspective of individual users.
However, when doing this, it is important to take privacy legislations into
account. As described in Chapter 5 we only provide support for monitoring
GTP-C and GTP-U traffic. There is a third protocol in the GTP suite,
GTP’ (prime), that is used for carrying charging data inside the GPRS core
network. Adding support for GTP’ is saved for future work. By the time
of writing a lot of Dutch mobile operators, including KPN, are in the ini-
tial phase of launching a commercial Long Term Evolution (LTE) network.
Packet-switched roaming traffic in LTE is carried by the GTP v.2 proto-
col. A possible enhancement would be to include GTP v.2 support, so the
proposed solution could also be deployed in LTE networks.

Bibliography

[1] P. Lucente, “pmacct.” http://www.pmacct.net. Accessed on July 20,
2012.

[2] NRC, “Nieuwe Telecomwet aangenomen door Eerste
Kamer.” http://www.nrc.nl/nieuws/2012/05/08/

wet-netneutraliteit-aangenomen-door-eerste-kamer/. Accessed
on July 20, 2012.

[3] KPN, “Company Profile.” http://www.kpn.com/corporate/

aboutkpn/company-profile.htm. Accessed on July 20, 2012.

[4] 3GPP, “General Packet Radio Service (GPRS); GPRS Tunnelling Pro-
tocol GPT) across the Gn and Gp Interface,” TS 09.60, 3rd Generation
Partnership Project (3GPP), Jan. 2003. http://www.3gpp.org/ftp/

Specs/html-info/0960.htm.

[5] 3GPP, “General Packet Radio Service (GPRS); GPRS Tunnelling Pro-
tocol (GTP) across the Gn and Gp interface,” TS 29.060, 3rd Genera-
tion Partnership Project (3GPP), Dec. 2011. http://www.3gpp.org/

ftp/Specs/html-info/29060.htm.

[6] 3GPP, “GPRS Tunnelling Protocol for User Plane (GTPv1-U),” TS
29.281, 3rd Generation Partnership Project (3GPP), Sept. 2008. http:
//www.3gpp.org/ftp/Specs/html-info/29281.htm.

[7] IPFIX Working Group, “Ipfix Status Pages.” http://tools.ietf.

org/wg/ipfix/. Accessed on July 20, 2012.

[8] Cacti, “Cacti: the complete RRDtool-based graphing solution.” http:

//www.cacti.net/. Accessed on July 20, 2012.

[9] 3GPP, “General Packet Radio Service (GPRS); Service description;
Stage 2,” TS 23.060, 3rd Generation Partnership Project (3GPP), Sept.
2008. http://www.3gpp.org/ftp/Specs/html-info/23060.htm.

55

http://www.pmacct.net
http://www.nrc.nl/nieuws/2012/05/08/wet-netneutraliteit-aangenomen-door-eerste-kamer/
http://www.nrc.nl/nieuws/2012/05/08/wet-netneutraliteit-aangenomen-door-eerste-kamer/
http://www.kpn.com/corporate/aboutkpn/company-profile.htm
http://www.kpn.com/corporate/aboutkpn/company-profile.htm
http://www.3gpp.org/ftp/Specs/html-info/0960.htm
http://www.3gpp.org/ftp/Specs/html-info/0960.htm
http://www.3gpp.org/ftp/Specs/html-info/29060.htm
http://www.3gpp.org/ftp/Specs/html-info/29060.htm
http://www.3gpp.org/ftp/Specs/html-info/29281.htm
http://www.3gpp.org/ftp/Specs/html-info/29281.htm
http://tools.ietf.org/wg/ipfix/
http://tools.ietf.org/wg/ipfix/
http://www.cacti.net/
http://www.cacti.net/
http://www.3gpp.org/ftp/Specs/html-info/23060.htm

BIBLIOGRAPHY 56

[10] X. Peng, W. Yingyou, Z. Dazhe, and Z. Hong, “GTP Security in 3G
Core Network,” in Networks Security Wireless Communications and
Trusted Computing (NSWCTC), 2010 Second International Conference
on, vol. 1, pp. 15 –19, april 2010.

[11] Z. Ghadialy, “A look at PDP Context in UMTS networks.” http://

www.3g4g.co.uk/Tutorial/ZG/zg_pdp, November 2007. Accessed on
July 20, 2012.

[12] B. Trammell and E. Boschi, “An Introduction to IP Flow Information
Export (IPFIX),” Communications Magazine, IEEE, vol. 49, pp. 89
–95, april 2011.

[13] G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek, “Architecture for
IP Flow Information Export.” RFC 5470 (Informational), Mar. 2009.
Updated by RFC 6183.

[14] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer, “Information
Model for IP Flow Information Export.” RFC 5102 (Proposed Stan-
dard), Jan. 2008. Updated by RFC 6313.

[15] IANA, “IP Flow Information Export (IPFIX) Entities.” http://www.

iana.org/assignments/ipfix. Accessed on July 20, 2012.

[16] B. Claise, “Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information.” RFC 5101
(Proposed Standard), Jan. 2008.

[17] GSM Association, “GSM Association.” http://www.gsma.com/. Ac-
cessed on July 20, 2012.

[18] 3GPP, “General Packet Radio Service (GPRS); Evolved GPRS Tun-
nelling Protocol (eGTP) for EPS,” TS 29.274, 3rd Generation Partner-
ship Project (3GPP), July 2008. http://www.3gpp.org/ftp/Specs/

html-info/29274.htm.

[19] Commsquare, “DataMon.” http://www.commsquare.com/products/

datamon. Accessed on July 20, 2012.

[20] Gemik, “Daromo, Data Roaming Monitor.” http://93.185.141.50/

gemik/contents/content5.php. Accessed on July 20, 2012.

[21] ntop, “nProbe v6, An Extensible NetFlow v5/v9/IPFIX GPL Probe
for IPv4/v6.” http://www.ntop.org/products/nprobe. Accessed on
July 20, 2012.

http://www.3g4g.co.uk/Tutorial/ZG/zg_pdp
http://www.3g4g.co.uk/Tutorial/ZG/zg_pdp
http://www.iana.org/assignments/ipfix
http://www.iana.org/assignments/ipfix
http://www.gsma.com/
http://www.3gpp.org/ftp/Specs/html-info/29274.htm
http://www.3gpp.org/ftp/Specs/html-info/29274.htm
http://www.commsquare.com/products/datamon
http://www.commsquare.com/products/datamon
http://93.185.141.50/gemik/contents/content5.php
http://93.185.141.50/gemik/contents/content5.php
http://www.ntop.org/products/nprobe

BIBLIOGRAPHY 57

[22] E. Boschi, L. Mark, J. Quittek, M. Stiemerling, and P. Aitken, “IP
Flow Information Export (IPFIX) Implementation Guidelines.” RFC
5153 (Informational), Apr. 2008.

[23] E. Boschi, B. Trammell, L. Mark, and T. Zseby, “Exporting Type In-
formation for IP Flow Information Export (IPFIX) Information Ele-
ments.” RFC 5610 (Proposed Standard), July 2009.

[24] IANA, “Private Enterprise Numbers.” http://www.iana.org/

assignments/enterprise-numbers. Accessed on July 20, 2012.

[25] FAU Erlangen and TU München, “Vermont - VERsatile MONitoring
Toolkit.” https://github.com/constcast/vermont/wiki. Accessed
on July 20, 2012.

[26] ntop, “ntop - Traffic analysis with NetFlow and sFlow support.” http:

//www.ntop.org/products/ntop/. Accessed on July 20, 2012.

[27] CESNET, “IPFIXcol.” http://wp.liberouter.org/?page_id=825.
Accessed on July 20, 2012.

[28] B. Trammell, “ripfix - IPFIX for Ruby.” http://ripfix.rubyforge.

org/. Accessed on July 20, 2012.

[29] Plixer, “Scrutinizer Flow Analyzer.” http://www.plixer.com/

Scrutinizer-Netflow-Sflow/scrutinizer-flow-analyzer.html.
Accessed on July 20, 2012.

[30] Tcpreplay, “Tcpreplay.” http://tcpreplay.synfin.net/. Accessed
on July 20, 2012.

[31] Wireshark, “Wireshark.” http://www.wireshark.org/. Accessed on
July 20, 2012.

[32] NfSen, “NfSen - NetFlow Sensor.” http://nfsen.sourceforge.net/.
Accessed on July 20, 2012.

http://www.iana.org/assignments/enterprise-numbers
http://www.iana.org/assignments/enterprise-numbers
https://github.com/constcast/vermont/wiki
http://www.ntop.org/products/ntop/
http://www.ntop.org/products/ntop/
http://wp.liberouter.org/?page_id=825
http://ripfix.rubyforge.org/
http://ripfix.rubyforge.org/
http://www.plixer.com/Scrutinizer-Netflow-Sflow/scrutinizer-flow-analyzer.html
http://www.plixer.com/Scrutinizer-Netflow-Sflow/scrutinizer-flow-analyzer.html
http://tcpreplay.synfin.net/
http://www.wireshark.org/
http://nfsen.sourceforge.net/

Appendix A

Cacti Templates

This Appendix will provide the Cacti [8] templates and associated Shell
scripts needed to reproduce figures 8.1, 8.2a and 8.2b. We decided to put
the code for the Cacti templates online, instead of posting it in this report.
The reason for this is that the code of the templates is XML based. If we
would paste the code here in the report, some lines will probably be too
long to to fit inside the page margins and will be wrapped around to the
next line. Then when someone will copy-paste the code into Cacti, this
will result in errors, due to the inserted line breaks. To avoid these kind of
errors and also because it is probably easier to copy-paste something from
the Internet than from a report, we decided to put the code for the Cacti
templates online.

The Cacti Templates needed to reproduce Figure 8.1, 8.2a and 8.2b can
be downloaded from the following locations:

� Figure 8.1: Bytes transferred (cumulative)
Online available at: http://pastebin.com/J9kB1xXn

� Figure 8.2a: Create PDP Context Request/Response messages
Online available at: http://pastebin.com/HK8a2ybu

� Figure 8.2b: Successful/unsuccessful Create PDP Context Response
messages
Online available at: http://pastebin.com/shWuE2MW

The code can be imported in Cacti via the Import Templates option,
located in the sidebar of Cacti. Importing the code will result in the cor-
responding Data Input Methods, Data Templates and Graph Templates of

58

http://pastebin.com/J9kB1xXn
http://pastebin.com/HK8a2ybu
http://pastebin.com/shWuE2MW

APPENDIX A. CACTI TEMPLATES 59

these figures. The version of Cacti used is 0.8.7i. Note that you could expe-
rience problems when importing these templates in older versions of Cacti.

The Data Input Methods inside the Cacti code refer to Shell scripts that
are used by Cacti to poll the information from the MySQL database of Flow
Records at the Collector. These Shell scripts are listed below.

pmacct bytes as.sh

as=$1;

datum=`date +%Y%m%d`

out=$(mysql -uroot -ppmacct -D pmacct -N -s -r -e "

SELECT sum(bytes) from pmacctd_acct_gtp_$datum

where as_src='0' and as_dst='$1 ' group by as_dst"

);

in=$(mysql -uroot -ppmacct -D pmacct -N -s -r -e "

SELECT sum(bytes) from pmacctd_acct_gtp_$datum

where as_dst='0' and as_src='$1 ' group by as_src"

);

printf "bytes_out :%s bytes_in :%s total_bytes_out :%s

total_bytes_in :%s" $out $in $out $in;

pmacct msgtypes as.sh

datum=`date +%Y%m%d`

c_req=$(mysql -uroot -ppmacct -D pmacct -N -s -r -e

"SELECT SUM(packets) FROM

pmacctd_acct_gtp_$datum WHERE as_src=$1 and

as_dst =0 and gtp_msg_type =10 GROUP BY as_src");

c_res=$(mysql -uroot -ppmacct -D pmacct -N -s -r -e

"SELECT SUM(packets) FROM

pmacctd_acct_gtp_$datum WHERE as_src =0 and as_dst

=$1 and gtp_msg_type =11 GROUP BY as_src");

u_req=$(mysql -uroot -ppmacct -D pmacct -N -s -r -e

"SELECT SUM(packets) FROM

pmacctd_acct_gtp_$datum WHERE as_src=$1 and

as_dst =0 and gtp_msg_type =12 GROUP BY as_src");

APPENDIX A. CACTI TEMPLATES 60

u_res=$(mysql -uroot -ppmacct -D pmacct -N -s -r -e

"SELECT SUM(packets) FROM

pmacctd_acct_gtp_$datum WHERE as_src =0 and as_dst

=$1 and gtp_msg_type =13 GROUP BY as_src");

d_req=$(mysql -uroot -ppmacct -D pmacct -N -s -r -e

"SELECT SUM(packets) FROM

pmacctd_acct_gtp_$datum WHERE as_src=$1 and

as_dst =0 and gtp_msg_type =14 GROUP BY as_src");

d_res=$(mysql -uroot -ppmacct -D pmacct -N -s -r -e

"SELECT SUM(packets) FROM

pmacctd_acct_gtp_$datum WHERE as_src =0 and as_dst

=$1 and gtp_msg_type =15 GROUP BY as_src");

printf "creq:%s cres:%s ureq:%s ures:%s dreq:%s dres

:%s" $c_req $c_res $u_req $u_res $d_req $d_res;

pmacct createpdp succesrate as.sh

datum=`date +%Y%m%d`

succes=$(mysql -uroot -ppmacct -D pmacct -N -s -r -

e "SELECT SUM(packets) FROM

pmacctd_acct_gtp_$datum WHERE as_src =0 and as_dst

=$1 and gtp_msg_type =11 and gtp_cause =80 GROUP BY

as_src");

failed=$(mysql -uroot -ppmacct -D pmacct -N -s -r -

e "SELECT SUM(packets) FROM

pmacctd_acct_gtp_$datum WHERE as_src =0 and as_dst

=$1 and gtp_msg_type =11 and gtp_cause !=80 GROUP

BY as_src");

printf "cres_succes :%s cres_failed :%s" $succes

$failed;

	Introduction
	Background
	GPRS
	The GPRS Core Network
	GPRS Tunneling Protocol (GTP)
	PDP Contexts

	IPFIX

	Requirements Analysis
	General
	GTP-C
	GTP-U

	Existing Solutions
	Packet-Based Monitoring Solutions
	Flow-Based Monitoring Solutions

	GTP Packet Analysis
	GTP Header
	GTP Payload

	Flow-Based Architecture
	Metering Process
	Exporting Process
	Collecting Process

	Implementation and Validation
	Proof of Concept
	Test Environment
	Validation

	Data Analysis
	Cacti Configuration
	Example Graphs

	Conclusions and Future Work
	Cacti Templates

