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Abstract 

 

In applied settings, experimental control is usually low, whereas inter- and intra-

individual variability in response characteristics is high. In deception, many cognitive 

processes that may elicit slow electrodermal responses (EDR) occur at an unknown 

timing or may even occur simultaneously. This facilitates superposition of EDR, 

making them harder to study. Two recent computational approaches - continuous 

decomposition analysis (CDA) and area under the curve (AUC) have been proposed 

to extract superposed EDR. They were tested with empirical data from a deception 

detection experiment against traditional through-to-peak analysis (TTP). In general, 

we hypothesized that tonic and area measures would be more sensitive than phasic 

measures. 

 While AUC appeared to be least sensitive, CDA and TTP indexed deception 

with similar sensitivity, although CDA provided a tonic estimate that was most 

sensitive. Moreover, within CDA, ISCR (an area measure) was more sensitive than 

sum of amplitudes and frequency of NS-SCR. The results thus support the hypothesis 

regarding the temporal characteristics of deceptive EDR. With the measures used, 

indices of both actual lying and the intention to lie were found, the latter of which was 

reliably indexed by CDA tonic activity. Moreover, there were physiological markers 

in phasic EDA when subjects switched from intending to lie to actual lying.  

 Since it is expected that these results translate to similar applications,  

recommendations are given on research on electrodermal activity in applied sciences 

in general and in deception detection in particular. 

  



Samenvatting 

 

In toegepaste onderzoeksomgevingen is er vaak  een laak aan experimentele controle 

dat gepaard gaat aan hoge inter- en intra-individuele variabiliteit van de verkregen 

responsen. In leugendetectie-onderzoek, waarbij electrodermale activiteit (EDA) bij 

de polygraaf-test gebruikt wordt, zullen bijvoorbeeld veel cognitieve processen in 

onvoorspelbare orde of zelfs tegelijkertijd aflopen. Dit draagt bij aan superpositie van 

electrodermale responsen (EDR) waardoor deze harder te detecteren vallen. Nieuwe 

computationele modellen – continuous decomposition analysis (CDA) en area under 

the curve (AUC) – zijn geïntroduceerd om overlappende EDR te extraheren en 

worden in dit onderzoek met empirische data van een leugendetectie-experiment 

vergeleken met klassieke through-to-peak analyse (TTP). We verwachtten vooral dat 

tonische en oppervlaktematen gevoeliger zouden zijn dan klassieke fasische maten. 

 Uit de resultaten blijkt dat AUC niet zeer gevoelig was terwijl CDA en TTP 

ongeveer vergelijkbaar gevoelig waren, waarbij CDA een zeer gevoelige tonische 

maat opleverde. Binnen CDA was ISCR (een oppervlaktemaat) de meest gevoelige 

maat. De resultaten steunen dus deels de hypothesen omtrent de temporele 

eigenschappen van deceptieve EDR. Er zijn indices van zowel daadwerkelijke 

leugens als de intentie om te leugen gevonden. Het laatste werd het meest 

betrouwbaar door CDA tonische activiteit geïndexeerd en door fasische maten op het 

moment dat proefpersonen de intentie om te leugen in daadwerkelijke leugens 

omzetten.  

 Omdat deze resultaten waarschijnlijk op vergelijkbare settings toepasbaar zijn, 

worden aanbevelingen voor electrodermaal onderzoek in het algemeen en deceptie-

detectie-onderzoek in het bijzonder gegeven. 
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 Introduction 

This paper addresses different computational approaches to correct for superposed 

responses in electrodermal activity (EDA) in applied contexts. Electrodermal activity has 

been studied since the late 19th century. It is thought to reflect sudomotor activity of the sweat 

glands (e.g., Benedek and Kaernbach, 2010) and to index activity of the sympathetic nervous 

system, or physiological arousal (Dawson et al, 2007; Benedek and Kaernbach, 2010). This 

physiological arousal is regarded as potential correlate of a variety of psychological 

phenomena such as orienting reflexes, responses to emotional stimuli and cognitive demands 

(Dawson et al, 2007). Thus, EDA can be regarded as a rather direct and therefore elegant 

measure of physiological arousal. 

 

EDA in applied fields and deception detection 

Today, EDA is a prevalent measure in various psychological applications. For 

example, researchers try to relate EDA responses to deception. Polygraphs use EDA in an 

attempt to detect deception. It is assumed that deception results in increased stress and 

cognitive demands, which are reflected by skin conductance (Zuckerman, De Paulo and 

Rosenthal, 1981; DePaulo, Lindsay, Malone, Muhlenbruck, Charlton and Cooper, 2003; Vrij, 

Ennis et al, 2010). For example, liars have to monitor their own responses as well as the 

reactions of the one they are deceiving; they have to select what information to give and what 

to withhold (Vrij, 2008, pp. 39-45) and they have to plan their responses far in advance (Vrij, 

2008, p. 74). Because cognitive efforts such as information processing and orienting reflexes 

manifest in electrodermal responses (EDR; Boucsein, 2012, chap. 3.1.3.1), EDA thus 

indirectly measures attempts at deceiving others (Boucsein, 2012, chap. 3.5.2). However, the 

sensitivity and specificity of this approach is rather lacking (Vrij, 2008, chap. 11; Wolpe et al, 

2005). Studies have shown that the use of mental and physical countermeasures (such as 

twitching a muscle or silently counting backwards) can successfully deceive polygraph (e.g. 
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Honts et al, 1994; Vrij, 2008, pp. 314-5 ). Moreover, if a lie actually produces deviating EDR 

depends on several factors, among which are the motivation of the liar and the effort that is 

needed to “make up the story” compared to telling the truth (Vrij, Mann & Fisher, 2006; 

DePaulo, Kashy, Kirkendo et al, 1996; Vrij, 2008, chap. 3). Despite its possible pitfalls, 

techniques for the detection of deception still receive much attention since such technology is 

highly relevant to many societies (cf. Wolpe et al, 2005; Vrij, 2008). 

 

Electrodermal responses and issues in  applied settings 

Typically, EDA is recorded as skin conductance (SC, in µSiemens) by applying a 

direct current to the skin via two silver electrodes (exosomatic method). The central concept 

of this approach is the electrodermal response (EDR, or skin conductance response: SCR), 

which is usually defined as a sharp rise in SC that is followed by a slow recovery. 

Psychophysiological research can use the EDR in event-related or evoked paradigms (cf. 

Dawson, Schell and Fillion, 2007). In such paradigms, several seconds after a stimulus such 

as a noise burst, an EDR occurs that is even visible in the raw data. With enough repetitions, a 

statistical relationship between stimulus and EDR can be established. Moreover, both tonic 

and phasic activity contribute to EDA. Tonic activity, also referred to as skin conductance 

level (SCL), is the rather steady level of arousal and changes only slowly over time. Tonic 

activity is usually not characterized by distinct responses to stimuli such as noise burst in 

event-related paradigms. Phasic activity, then, refers to skin conductance fluctuations that 

deflect from the tonic activity. That is to say, phasic activity is much more closely related to 

experimental manipulations in event-related and evoked paradigms than tonic activity. SCR 

that can be related to events are specific SCR. SCR are non-specific (NS-SCR) if they cannot 

be related to any (observable or controllable) event, and the frequency of these responses in 

longer time windows are also taken as operationalization of more tonic arousal levels. 
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Often however, evoked and event-related paradigms do no to justice to applied settings. 

Cognitive processes that are relevant in applied fields such as deception detection occur with 

much intra-individual variability and do not follow an algorithm that can be controlled 

experimentally. Instead, one has to assume that the cognitive processes that contribute to the 

EDA-signal occur in an unknown temporal order and may even occur simultaneously. For 

example, a suspect may at the same time think about his alibi, experience distress, and try to 

apply countermeasures. Because of this lack of controllability, deception and similar 

processes cannot holistically be studied in an event-related paradigm that presupposes 

experimental control. Accordingly, skin conductance responses in such paradigms must be 

regarded as non-specific (NS-SCR). 

This issue is worsened by the fact that SCR can superpose. When SCRs overlap, they 

tend to mask each other (partly). Grings and Schell (1969) note that the degree to which an 

EDR is distorted depends on both proximity and amplitude of the previous EDR. 

Additionally, even in event-related paradigms, many EDR are non-specific (Dawson, et al, 

2007) and may occur spontaneously or as reflection of movement, deep breathing or even 

temperature (Boucsein, 2012, chap. 2.3). Thus, EDR can be distorted by previous EDR that 

are elicited by the experimental environment, by the subject’s spontaneous autonomous 

responses and environmental conditions. Since researchers obviously cannot control 

spontaneous responses, it is necessary to estimate and correct for the amount of distortion 

caused by superposed EDR. This problem is especially relevant in real-world applications 

such as the detection of deceit. Since participants respond rather freely in such environments 

their responses cannot be regarded as evoked but must instead be thought of as non-specific. 

 

Earlier solutions for the problem of superposed EDR 

The extraction of superposed EDR has received widespread scientific attention. 

Historically, superposed EDR could be extracted manually. In this approach, a researcher 
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would inspect the responses visually and then choose the appropriate technique to determine 

the properties of the two superposed responses (Boucsein, 2012, pp. 154-5). This technique, 

also called through-to-peak analysis (TTP), can be automated by using computer software. 

Such software would determine the onset and peak of an EDR by finding samples in the 

record where the first derivate of EDA exceeds a given threshold value (e.g., Edelberg, 1967; 

Foerster, 1984; Boucsein, 2012, chap. 2.3.1.3). Thom (1988; see also Boucsein, 2012, chap. 

2.3.1.3) suggested to take into account the rise time of the EDA signal for evaluating whether 

or not an increase in SC signals an electrodermal response. Since the decline of an SCR is 

rather slow and gradual, the point where such a response terminates is less clear to determine. 

Darrow (1973b; in Boucsein, 2012, chap. 2.3.1.3) proposed to mathematically describe the 

decline of n SCR similar to the half-life of isotopes. That is to say, an EDR is considered to 

have ended once the SC has arrived at half the peak value. Through-to-peak analysis, even 

when one takes into account the abovementioned technical suggestions, suffers from three 

problems. First, onset, peak and decline of an EDR are determined by a set of mathematical 

rules with limited neurophysiological validity. Second, approaches that model EDR by such 

mathematical definitions are likely to be unable to appropriately handle superposed EDR, 

since these do not conform to these mathematical definitions. Third, in part because of the 

second reason, automated through-to-peak scoring still requires the researcher to control and 

asses the responses that the software has found. During the last decades then, approaches have 

emerged that aim to eliminate these problems. 

Lim et al (1997) proposed to mathematically derive a stereotypical SCR for each 

subject. Decomposing SC would yield phasic and tonic parameters for a mathematical model 

that could then describe stereotypical SCR for each subject. By fitting these onto the SC data, 

researchers could reveal superposed SCR. However, Boucsein (2012, p. 167) argues that SCR 

are not generally stereotypical and that a single mathematical model does not account for all 

the variability in SCR shape. Furthermore, this approach still needs the researcher to visually 
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identify each peak during analysis. Despite this drawback and the assumption of stereotypical 

EDRs, this method found to increase the amplitude of peaks (Lim et al, 1997) and was further 

validated by Lim et al (1999) and Williams et al (2004), where different forms of stimuli 

could still be discriminated by the SCRs they elicited, despite short temporal succession. 

Alexander et al (2005) were striving to overcome the manual visual inspection needed 

in Lim et al (1997) by implementing an automated scoring procedure for SCRs. The authors 

hypothesized that the slow EDR are the result of rapid sudomotor nerve bursts. Thus, they 

developed an impulse response function (IRF) that was meant to model the actual sudomotor 

nerve bursts. From these nerve bursts, the actual EDR could then be reconstructed. Davis et al 

(2009) applied this automated procedure in a category learning task and found that SCRs 

obtained with this method predicted successful learning even in relatively short stimulus-

response intervals. However, as Benedek and Kaernbach (2010) note, this approach assumes 

IRF to be stable or stereotypical, which would be an assumption unsupported by actual data. 

Arguing that Lim et al (1997) as well as Alexander et al (2005) make untestable 

assumptions about the shape of SCRs, Bach et al (2009) developed a technique that compares 

observed to predicted SCR that are obtained by general linear convolution. In their model, an 

SCR time series is the output of a Linear Time Invariant (LTI) filter that processes a series of 

input impulses (that might stem from experimental events). This reflects the assumption that 

distinct sudomotor nerve bursts generates temporally extended electrodermal responses. If the 

input functions are weighed with a certain coefficient and then convolved with the response 

function, a predicted time series of electrodermal responses can be obtained that ultimately 

holds the amplitude of the responses. 
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Recent approaches to extract superposed EDR 

Two recent approaches to deal with superposed EDRs have been proposed by Bach, 

Friston and Dolan (2010) and Benedek and Kaernbach (2010; 2010a). Bach, Friston et al 

(2010) provided an approach to estimate spontaneous fluctuations in skin conductivity. The 

authors argue that the time integral of an SC time series consists “of SCL,  plus the number of 

responses n, scaled by their amplitude a, and multiplied by a constant c” (pp. 52-3). The 

constant c reflects a time-invariant response function that reflects the shape of an EDR. A 

detailed discussion of this response function is beyond the scope of this thesis (cf. Bach, 

Friston and Dolan, 2009). Adding error to the model, the area under an EDR is then described 

as ∫SC t (dt) = SCL + cna + e; that is, the area under the response within a time window is 

skin conductance level plus the product of, number of responses, their amplitude, and a 

response function, plus error. This measure thus integrates the area under the EDR and is 

hence called area under the curve (AUC). Bach, Friston et al (2010) validated AUC with 

empirical data from an experiment in which participant experienced anxiety due to 

anticipating a public speech. According to Bach, Friston et al (2010), their approach provides 

a more accurate picture of sudomotor activity than other estimates. However, the authors also 

note that although their approach is less noisy than other approaches, spontaneous fluctuations 

might not be the best quantification of autonomic arousal for every case. Furthermore, Bach, 

Friston et al (2010) assume that the electrodermal responses of interest behave quite 

uniformly, which is controversial (e.g. Benedek and Kaernbach, 2010; 2010a; Boucsein, 

2012, p. 167). However, because AUC  has been validated with empirical data from an 

anxiety-experiment with low experimental control and emphasizes the temporal course of 

EDR, it may very well be suited for applied contexts and is therefore of interest for this thesis. 

Benedek and Kaernbach (2010; 2010a), as mentioned above, criticize the approaches 

of Bach et al (2009) and Alexander et al (2005) on the basis that both approaches assume a 

stable impulse-response function (IRF) that determines the shape of an EDR; the authors 
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argue that this assumption most likely does not hold true. Furthermore, if IRFs were very 

slow, these mathematical model would produce a negative driver function – reflecting 

implausible “negative” sudomotor activity (Benedek and Kaernbach, 2010; 2010a). By letting 

go the idea of stereotypical IRF and instead adjusting them inter-individually, the problem of 

“negative sudomotor activity” would be solved. The authors propose to first estimate tonic 

EDA (such as SCL) by deconvolution of the SC-data. The tonic EDA would then implicitly 

return the phasic activity that underlies the skin conductance data. By means of integrating 

these data, the magnitude of a phasic response can be obtained. This method, called 

continuous decomposition analysis (CDA), would further “establish a continuous measure 

that reflects more closely the original properties of the underlying sympathetic nervous 

system activity” (Benedek and Kaernbach, 2010). CDA thus accounts for both tonic and 

phasic activity. The authors suggest that their approach is superior to classic through-to-peak 

methods and furthermore resembles sudomotor activity more closely than the approach of 

Alexander et al. (2005). Moreover, as opposed to the aforementioned approaches, Benedek 

and Kaernbach’s (2010; 2010a) approach would be able to analyze differently shaped EDR. 

Finally, the authors regard their method as being more easily applicable than other 

approaches. For these reasons, continuous decomposition analysis will be included in this 

thesis. 

 

In applied field, EDR characteristics favor tonic and area measures 

As is explained above, cognitive processes such as deception occur with little 

experimental control and much variability, they may occur in close succession or even 

simultaneously. Intentionally or unintentionally, interviewees may spread internal processes 

that would manifest in EDA (cf .Vrij, 2008, chap. 3). Moreover, even during deception, not 

all processes will be deceptive, which makes it important to identify physiological indices of 

the intention to deceive (cf. Vrij, 2008, chap. 3, 11-2). Thus, the cognitive events that 
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contribute to EDA cannot be controlled and may overlap, bringing the slow SCR into 

superposition. In such cases, slow, consistent changes in arousal may be more characteristic 

of the physiological indices of deception than concentrated peaks at distinct moments (cf. 

Boucsein, p. 166). For example, Bach, Daunizeau, Kuelzow, Friston and Dolan (2010) and 

Boucsein (chap. 3.2.2) state that emotional states such as stress are better characterized by 

tonic than by phasic activity. Thus, rather than scoring the amplitude or frequency of NS-

SCR, it might be more advisable to evaluate the area under the SCR and tonic changes in SC. 

Therefore, when reviewing the recent approaches, area measures and tonic measures will be 

taken into account, too. 

 

Testing environment and expectations 

Since EDR superposition is a problem that is especially apparent and prevalent in 

applied settings with little experimental control, the various applications of EDA such as 

deception detection would greatly benefit from sensitive techniques to extract SCR. In this 

thesis, AUC and CDA will be compared to TTP with empirical data from a deception 

experiment that let participants respond in a relatively free manner, which is thought to 

improve ecological validity.  

We expect that as the rationale of deception detection, increased cognitive engagement 

will manifest in increased EDA. Moreover, because deception involves such cognitive 

demands, deception should result in electrodermal responses as well. Finally, as deception is 

likely to involve many overlapping, prolonged and / or simultaneous processes, area or tonic 

measures should index these processes more sensitively than the frequency of NS-SCR and 

sum of SCR-amplitudes. 
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Method 

Participants 

Originally, 103 participants from the population of the students of the University of 

Twente were recruited for the experiment. However, 16 participants’ data were removed for 

technical reasons, leaving 87 participants. Their mean age was 21.2 years and 41.4% were 

male, reflecting the approximate demographics of the faculty’s subject pool.  Participants 

were given course credit for the completion of the experiment. Additionally, a prize – 100 and 

50€, respectively - was promised to those who would show the weakest physiological 

indicators of deceit. This incentive was thought to increase motivation by increasing the 

relevance of the deception attempts. 

 

An ecologically valid experimental design in deceit detection 

In the experiment, participants had to tell the truth or deceive while performing a 

double task. The experimental design contained three factors: the sort of the double task, the 

difficulty of the task and the response condition (figure A1). 

In all conditions, participants were shown pictures of faces as stimuli and had to 

respond verbally to the stimulus features. The demanded response depended on the nature of 

the double task: in the emotional task, participants had to evaluate the emotional expression of 

the displayed faces. In the cognitive task, participants had to count the number of dots that 

were ‘printed’ onto these facial stimuli. The sort of the task was varied between subjects. 

Moreover, both double tasks also had a difficult version. The difficult emotional task involved 

faces whose expression was ambiguous and therefore hard to evaluate. The difficult cognitive 

task required participants to perform arithmetic while reporting on the stimuli. Difficulty was 

varied between subjects. It was expected that difficult stimuli would impose more cognitive 

load onto the participants and thereby increase the necessary efforts to deceive (cf. Vrij, 2008, 

pp. 39-45) .  
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Trials of six stimuli, or trials, constituted a block. During each block, participants had 

to either respond truthfully to all six subsequent stimuli (truth condition), untruthfully (lies 

condition) to all stimuli, or had to respond truthfully to the first four stimuli and lie about the 

last two stimuli (intention to lie). This last condition was included for two reasons: first, it 

increases the cognitive load of the participant because he or she has to remember when to tell 

the truth or to lie. Second, this condition resembles real-world scenarios, since in reality, 

people have to plan ahead in order to successfully deceive others (cf. Vrij, 2008, p. 74). For 

example, a criminal has to carefully monitor on which details of a crime he or she has to 

deceive the investigators. In other words, the involvement of prospective memory should 

make deceiving more difficult and therefore more visible as well as enhance ecological 

validity.  

Thus, the experiment contained 2x2x3 factors (Task X Difficulty X Condition) and it 

is expected that increased cognitive load lead to increased effort when lying, which in turn 

should become apparent in stronger EDR (assuming Boucsein 2012, chap. 3.1.1.1).  

 

Stimuli 

The stimulus pool consisted of 66 portraits (figure A2). Additional features were 

edited onto several faces so that the participants could give more detailed reports. The facial 

expressions for the easy emotional double task were derived from Ekman’s universal 

emotions (Ekman & Friesen, 1969; Ekman, 1999), whereas the expressions of the difficult 

emotional double task were more complex. Both cognitive double tasks used the same stimuli, 

but in the difficult version, participants performed additional arithmetic. 

 

Procedure of the experiment 

 After signing informed consent, each participant was seated comfortably in an isolated 

room of the faculty’s psychology laboratory. Each participant was then connected to the 
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recording equipment and the experimental task was explained. To increase motivation, 

participants were told that an expert in lie detection would observe their responses via a 

webcam. The experimenter then practiced the task with the participant. When the participant 

had mastered the task, the experimenter left the room and the experiment began.  

The experiment consisted of 12 blocks with 6 stimuli each. Thus, each participant responded 

to a total of 72 stimuli. As stated above, during each block, participants had to either report 

truthfully, lie, or plan to lie. The order of blocks varied with three versions of the experiment 

to which the participants were randomly assigned. Each trial lasted for 20 seconds that 

included stimulus, response and pause (see figure 2.1). 

 

 

Computational operationalization of the effects of deceit 

Because SC was recorded while participants were either telling the truth or deceiving, 

knowing what participants actually did is a given. Second, it was argued that deceiving would 

manifest itself in a change in electrodermal activity (most likely as a reflection of cognitive 

efforts; cf. DePaulo et al, 2003) relative to a baseline. This baseline may be conceived as the 

truth condition (since here, there were no additional, deception-related efforts). Therefore, an 

effect of deception can be operationalized as the difference in SC between lying and telling 

the truth, both of which are empirically known because of the experimental design. On the 

group level, this can be expressed as, for example, mean(effect of lying) = mean(SC(lying) – 

Figure 2.1. The structure of each trial. Figure provided by Marije Hogeboom. 
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SC(truth)). Thus, the hypotheses translate to the expectation that subtracting trials with rather 

low cognitive load (truth) from trials with high cognitive load (lying) yields a positive value 

that can be seen as index or effect of deceit. 

Although the amplitude and frequency of NS-SCR are the most common measures in 

deceit experiments (Boucsein, 2012, chap. 3.5.2), we argued that because of the possible 

intra- and inter-individual variability in deception, area and tonic measures may as well or 

even better suited to reflect the psychophysiology of deception. Therefore, these measures 

will be subjected to the same logic as mentioned above. That is, the effect of deceit is 

operationalized as the difference between a truth and a lying condition for each respective 

measure. 

 

Instruments 

Skin conductance was measured exodermally using Thought Technology skin 

conductance sensors (Thought Technology Ltd., 2012), attached to the distal phalanx of the 

right index and ring fingers. The signal was amplified using ProCompInifiniti (Thought 

Technology Ltd., 2012). The experiment itself was carried out on desktop PCs using e-Prime 

(Psychology Software Tools, 2012) to run the experiment. Since the amplifier did not have a 

dedicated interface for e-Prime, analogue experimental markers were created: for each 

experimental event, e-Prime sent a signal via the serial port to the ProCompInifiniti amplifier, 

which in turn reduced the resistance of the VI-channel. Thus, fluctuations on the VI-channel 

marked experimental events. 

Pre-processing and statistical analyses were performed using MATLAB (Mathworks, 

2012) and SPSS 16 (IBM SPSS, 2012). Continuous Decomposition analysis and automated 

through-to-peak analysis were executed using MATLAB custom code from Ledalab 

(Benedek & Kaernbach, 2010a) whereas the area under the curve technique was provided by 

the SCRalyze suite for MATLAB (Bach, Friston et al, 2010). 
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Pre-processing and parameters 

Continuous Decomposition and through-to-peak analysis. 

Since we did not use a prevalent setup for recording skin conductance data, we wrote custom 

code that converted the recorded skin conductance data into a format that could be processed 

by Ledalab. 87 Files were successfully converted. Data were neither transformed nor filtered 

because Ledalab requires raw data. In a batch mode operation, these data were subjected to 

continuous decomposition analysis and automated through-to-peak analysis (which Ledalab 

implemented as scanning the first derivate of SC for signum changes). Because of the large 

body of data and to warrant comparability with other approaches, no artifact rejection was 

applied. The response window was set from 5 to 15s after stimulus presentation so that 

electrodermal activity in the between-trial breaks could not distort the SCR. As a minimum 

criterion for SCR, .01 µS was chosen. The parameter optimization iterated 3 times, which is 

one above the author’s default recommendation. Moreover, although the authors state that 

improvements of results are insignificant above 11Hz, we chose to sample the data at 256Hz 

for more fidelity.  

 

Spontaneous Fluctuations area under the curve. 

Using MATLAB, skin conductance raw data were extracted from the raw files and imported 

into SCRalyze. All trials were then defined as epochs in a separate file, ranging from 5 to 15s 

after trial onset. Data were sampled at 256Hz.  

 

Statistical processing 

All dependent variables were extracted from the data that Ledalab and SCRalzye 

provided. Among the continuous decomposition analysis (CDA)-measures were frequency of 

NS-SCR in the event-window (CDA nSCR), the integrated area under the curve of the scr 

(CDA ISCR), the sum of amplitudes within the event-window (CDA AmpSum), and the tonic 
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skin conductance level within the event-window (CDA Tonic). For through-to-peak analysis 

(TTP), Ledalab provided the frequency of NS-SCR (TTP nSCR) and the sum of amplitudes 

within the event-window (TTPAmpSum). SCRalyze provided the area under the curve 

measure for spontaneous fluctuations (AUC). 

 These dependent variables were extracted by averaging the trial-positions across all six 

blocks. For example, the first trials of all lying-blocks were averaged (see figure A3). 

Furthermore, means of all conditions were computed. Effects were then obtained by 

subtracting the data from the truth condition from the conditions of lying and intending to lie, 

respectively (e.g. nSCR-effect of lying =  nSCR_Lying – nSCR_Truth). These effects were 

computed both for the averaged trials as well as for the whole conditions. Statistical tests were 

then performed using SPSS 16. 

 

Results 

Increased cognitive demands manifest in increased electrodermal activity 

We hypothesized that as a basic assumption of physiological deception detection, 

increases in cognitive demands would be measurable as increases in EDA. MANOVA with 

difficulty and experiment version showed that that cognitive load, operationalized as double 

task difficulty, indeed had a significant main effect on tonic EDA (Table A5) on all trial 

positions within a block. Thus, the assumption that cognitive activity is associated with 

increased electrodermal activity is met. 

 

Deception effects on EDA 

Just as task difficulty, deception effects on EDA were expected. A repeated measures 

MANOVA with the factors method(7), condition(3) and time(6) was conducted on 

untransformed raw data. Transformations were postponed to a later stage of analysis in order 

to study the general characeristics of the measures at this point. Since most measures violated  



 16 

Figure 3.1. The raw data of 
the truth-condition. As can 
be seen, different techniques 
measure different levels. 
However, the pattern is 
rather stable, suggesting that 
this condition can serve as a 
baseline. 
 

sphericity assumption, Pillai’s Trace values are reported. Significant main effects on EDR 

were time (F(5,82) = 6.163, p < .001, ηρ² =.273) and measurement method (F(6,81) = 138.9, 

p < .001, ηρ² = .911) but not condition (F(2,85) = 3,143, p = .162, ηρ² = .042). Furthermore, 

method*condition (F(12,75) = 5,823, p < .001, ηρ² = .482) and  method*time (F(30,57) = 

5.881, p < .001, ηρ² = .756) interactions were observed (also refer to Table A1). These results 

indicate that different measurement methods generally found different electrodermal 

responses and that these further varied with trial positions within a block. Moreover, whether 

or not EDR differed from the baseline condition seemed to also depend on the interaction 

between method and condition. The physiological indices of deception will later be described 

in detail using t-tests. 

 Figure 3.1 shows the general distribution of the different measures across six 

(averaged) trials in the baseline condition (truth); Figure A4 shows how the different 

techniques measured different effects per condition. For descriptive statistics on the effects of 

deception, refer to Table 3.1. Overall, the interactive patterns found by the MANOVA suggest 

that some methods may be sensitive than others. 
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T-tests against 0 were performed to test if the measures provided significant 

physiological indices of deception. CDA ISCR and CDA AmpSum were both significantly 

increased during lying (Table 3.1). CDATonic was not only able to index lying but also the 

only measure that indexed the intention to. TTP nSCR was significant when subjects lied. The 

effect sizes of the indices varied correspondingly. Note that the number of SCR decreased 

during lying and that TTP measured a significant effect on nSCR, whereas CDA did not. 

Finally, tonic skin conductance as measured by CDA, too, decreased significantly during the 

intention to lie. The tests also showed that AUC did not yield any significant effects of deceit. 

Effect sizes of AUC were also small (Table 3.1). Given the differences in significance and 

effect size, some measures seem to be more sensitive than others. 

 

Table 3.1          Descriptive statistics and significance of average deceit effects    
   Min. Max. Mean SD t(86) p d 
Continous decomposition analysis       nSCR (lying)   -1.42 1.46 -0.13 0.61 -1.93 .056 -0.21 
nSCR (intending)   -1.42 1.42 0.03 0.57 0.46 .644 0.05 
ISCR (lying) *   -1.19 1.77 0.15 0.54 2.54 .013 0.27 
ISCR (intending)   -1.49 3.85 0.02 0.66 0.23 .822 0.02 
Ampsum (lying) *   -0.42 0.58 0.03 0.15 2.08 .041 0.22 
Ampsum (intending)   -0.53 0.91 0.00 0.16 0.03 .980 0.00 
Tonic (lying) ***   -0.55 1.79 0.25 0.34 6.94 < .001 0.74 
Tonic (intending) **   -0.74 0.52 -0.07 0.21 -2.97 .004 -0.32 
Through-to-peak analysis        nSCR (lying) *   -0.92 0.75 -0.08 0.29 -2.61 .011 -0.28 
nSCR (intending)   -0.67 0.67 0.02 0.27 0.81 .418 0.09 
AmpSum (lying)   -0.38 0.37 0.02 0.10 1.82 .072 0.20 
Ampsum (intending)   -0.38 0.69 0.01 0.13 1.00 .318 0.11 
Area under the curve         AUC (lying)   -0.03 0.04 0.00 0.01 0.75 .456 0.08 
AUC (intending)   -0.05 0.07 0.00 0.01 -0.61 .544 -0.07 
Note. Effects are computed as SC(deception) – SC(truth). Effect 

 

  Size is Cohen’s d. 

* p < .05; ** p < .01; *** p < .001 
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Comparison of measure sensitivity  

It was expected that some measures would be more sensitive than others. Since the 

measures differed regarding their distribution and variance and were therefore not 

immediately comparable, mean effects have been standardized across measurement methods 

for comparison. Measures that produced negative effects were inverted by multiplication with 

-1. All means were then T-transformed to a mean of 50 with a standard deviation of 10. This 

procedure yielded an effect sizes that is distributed relative to the measures used in this 

analysis. Paired t-tests were used to estimate difference in effect size between methods. 

Because there was only one significant index of intentions to lie, only the lying-condition was 

included in this comparison. The results indicate that the effects of lying were strongest for 

CDA Tonic, with the other measures differing insignificantly from each other (Figure 3.2; 

Table 3.2). Thus, it seems that the measures indeed differed in sensitivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. The effects of 
deception vary between different 
measurement methods. Whereas 
the difference between CDA 
Tonic and TTP nSCR is 
significant, comparisons between 
other neighboring measures are 
insignificant. For statistics 
regarding the differences between 
in effect size between measures, 
refer to Table 3.2. 
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Table 3.2 
       Selected comparison of effects     

Comparison     Δ Δ-SD Error t(86) p 
CDA Tonic - TTP nSCR * 

 
2.45 10.61 1.14 2.15 0.03 

TTP nSCR - AUC * 
 

2.65 11.05 1.18 2.23 0.03 
CDA ISCR - CDA AmpSum * 2.54 11.40 1.22 2.07 0.04 
AUC - CDA AmpSum *   0.92 3.24 0.35 2.65 0.01 
Note. The Table shows selected comparisons between measures along the series of Figure 
3.2. Reported are the first significant differences between measures along that series. 
Because reported data are relative effect size, report of distinct effect sizes 
report of distinct effect sizes is omitted. 

 
 * p < .05 

    

Indices of the intention to deceive 

It was also hypothesized that because of the temporal characteristics of deceiving 

others, tonic and / or area measures would be more suited than other measures to index the 

intention to lie. It was possible to find some but not many indices of the intention to deceive. 

As has been stated earlier, CDA Tonic was generally decreased during blocks when 

participants prepared lies (t(86) = -2.968, p < .01; also refer to Figure 3.3 and Table 3.1). 

Since Figure A4 suggested that the intention to lie is associated with movements in the data 

from trial 3 to trial 4, the difference between these has been tested using a paired t-test. 

Significantly changed EDR were found using CDA ISCR (t(86) = -2.02, p <. 05, r2 = .21) and 

TTP AmpSum (t(86) = -2.14, p < .05, r2 = .22; also see Table A4). Thus, supporting the 

hypothesis, the most sensitive measure for the intention to deceive seems to be tonic EDA. 

 

Distribution and specificity of effects 

The distribution of effects was studied by analyzing the frequency distribution of 

scores across the sample. Figure 3.3 shows the CDA sum of amplitudes as well as the 

estimated tonic activity per trial in the lies and truth condition for one subject. Whereas 

effects seem largely unreliable for TTP sum of amplitudes, effects on tonic activity appear 
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stable. Moreover, a steady increase in tonic activity over the course of the experiment can be 

seen, which can also be interpreted as an undesirable covariate. 

 Additional Figures that depict standardized and transformed mean responses for the 

whole sample suggest that there is much inter-individual variability in the physiological 

responses to deception (Figure A5). That is, the effects seem to vary greatly across the 

sample. This impression is supported by the fact that the standard deviation of the effects is 

generally larger than the mean effects (Table A2), whereas this is not the case for the raw 

data. Thus, the distribution of effects indicates that these effects did not occur consistently and 

reliably. 

 The two traditional measures TTP nSCR, TTP sum of amplitudes as well the measure 

with the strongest effect size, CDA Tonic, were tested for specificity in deception detection. 

Specificity was calculated by determining what proportion of the sample, in a given condition, 

would be classified as belong to another condition if the obtained group effects were handled 

as criterion (Table 3.3). Because neither TTP nSCR nor TTP sum of amplitudes could obtain 

an index for the intention to lie, only the truth- and lying conditions were included. Whereas 

TTP nSCR is biased towards classifying participants as lying, both CDA Tonic and TTP 

AmpSum perform better than chance, although not impressively so. Overall, these results 

might support the hypothesis that tonic EDA provided a more suitable index for the detection 

of detection than phasic EDA, although this needs to be discussed. 
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Table 3.3 
    Specificity of selected measures     

Actual condition and measure   
Predicted condition 

    Truth Lies 
CDA Tonic 

    Truth 
  

69% 31% 
Lies     34.5% 65.5% 
TTP nSCR 

    Truth  
  

43.7% 56.3% 
Lies     42.5% 57.5% 
TTP AmpSum 

    Truth 
  

65.5% 34.5% 
Lies     34.5% 65.5% 

Figure 3.3. Effects of lying on CDA sum of amplitudes (above) and CDA tonic 
activity (below) per trial for one participant in the truth and lies conditions. Effects 
appear to be more reliable for CDA tonic activity than for CDA sum of amplitudes. 
Moreover, a steady increase in tonic activity over the course of the experiment can be 
seen, which may, however, also be interpreted as an undesired covariate. 
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Discussion 

Cognitive demands and deception manifest in EDA 

The premise of deception detection is that deception involves increased cognitive 

demands and arousal that manifest in EDA (e.g. Zuckerman et al, 1981; DePaulo et al, 2003). 

We found that increases in cognitive load, operationalized as differences in difficulty, were 

related to increases in tonic activity. Furthermore, independent of difficulty, there were, 

among others, moderate to strong effects of lying on tonic activity. Therefore, it seems 

reasonably defendable that in this experiment, deception was indexed by measured 

physiological responses. 

 

Several effects of deception could be identified by comparing EDR when participants 

told the truth or deceived. For lying, significant deflections from baseline were found for 

CDA ISCR, CDA sum of amplitudes, CDA Tonic, and TTP nSCR. SF AUC did not reach 

significance. Effect sizes were distributed correspondingly and ranged from weak to almost 

strong in the case of CDA Tonic.  

 Whereas tonic activity increased strongly during lying, effects on nSCR/NS-SCR were 

negative. This is unexpected and not accounted for by the literature (Boucsein, 2012, chap. 

3.5.2), where deception is linked to an increase in EDR in mock crime experiments. This 

pattern can have several reasons. While increases in tonic activity could reflect enhanced 

information processing (Boucsein, 2012, p. 316-24), this does not explain decreases in phasic 

activity. Technically, increases in phasic EDA such as NS-SCR may have been masked by 

increases in tonic activity. Similarly, EDR could have been so strongly superimposed that 

they appeared as increases in tonic activity. Moreover, it is possible that the chosen event-

windows (5 to 15s after trial onset) missed the onset of the electrodermal response and 

therefore, phasic activity might have been misclassified as tonic activity. However, other 

event windows had been tested, and none provided stronger phasic activity. Stimulus 
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habituation (cf. Boucsein, 2012, p. 324) is an unlikely cause because this should then have a 

global effect on measures, which is not the case. All of these tentative explanations remain out 

of the scope of this research and in the domain of future research. 

 

 During intending to lie, tonic activity was significantly decreased, which has been 

found in earlier mock crime experiments (Leal, Vrij and Fisher, 2008). While other indices 

had insignificant mean effects, significant decreases in CDA ISCR and TTP sum of 

amplitudes could be observed when participants were switching from truth-telling to lying. 

On the one hand, it is possible that this EDA-decrease reflects a sudden drop in cognitive load 

and/or prospective memory as well as associated stress, because participants did not have to 

plan ahead anymore (cf. Vrij, chap. 3). On the other hand, Leal et al (2008) found that 

cognitive demands could reduce tonic arousal and suspected that tonic arousal suppression 

may be a reflection of executive functioning. While the causal mechanisms behind this pattern 

cannot exhaustively be explained with the present data, their existence should be an 

encouragement for other research to investigate electrodermal indices of deceptive intentions. 

 

Overall, the data suggest that there are physiological indices both of actual and 

intended deception. However, the practical use of these indices is limited since the great 

variability of effects undermines their specificity. Therefore, group effects should not be used 

as a criterion to classify individual responses as either truthful or deceptive. Artifact rejection, 

transformation procedures and inter-individual effect adjustments were omitted as far as 

possible during the course of our analysis in order to achieve high degrees of standardization 

and comparability among methods. It is to be expected that since such steps reduce unwanted 

variability significantly (e.g., Boucsein, chap. 2.3.3.4), they would also increase the 

specificity and predictive validity of the obtained effects. Future research should test this 

hypothesis. 
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Varying sensitivity of measures and temporal characteristics of deception 

It was expected that deception may involve prolonged cognitive processes that have 

temporal characteristics that rather manifest in tonic than phasic activity. Consequently then, 

different measures should vary in sensitivity. The fact that tonic activity, as estimated by 

CDA, was the most sensitive measure shows that deception may in fact be an activity that is 

characterized by slow and steady changes in SC. Similarly, ISCR, an area measure, was the 

most sensitive phasic measure provided by CDA. This supports the hypothesis that deception 

is a process that is characterized by a large degree of internal variability that would be 

considered ‘noise’ if specific, phasic SC peaks were taken as its only index. If this is correct, 

then these results should translate well to other settings where similar responses occur. 

 Surprisingly, AUC for spontaneous fluctuations was relatively insensitive, compared 

to ISCR and tonic activity (table A2). Both AUC and ISCR integrate the area under SCR, 

while AUC in particular assumes these to be resulting from spontaneous fluctuations. Either 

the differences between AUC and ISCR result from different technical and theoretical 

backgrounds, or spontaneous fluctuations are not a suitable dependent measures in the first 

place. This question lies beyond the scope of this thesis. 

 

 Comparisons across methods with standardized, transformed data revealed that CDA 

Tonic had the strongest effect size, followed by TTP nSCR. Then, in descending order of 

effect size, came CDA ISCR, CDA nSCR, AUC, TTP and CDA sum of amplitudes. When 

nSCR and sum of amplitudes of both CDA and TTP were compared with raw data, no 

significant difference was observed. This suggests that for classical phasic measures (NS-SCR 

and sum of amplitudes), CDA was not more sensitive than TTP. But since TTP did not 

provide a comparable tonic estimate, we are unable to know whether CDA Tonic’s superior 

sensitivity exists due to CDA providing better tonic estimates, or due to tonic estimates being 

generally more sensitive. In other words, the suspicion remains that TTP is as sensitive as 
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CDA, but tonic measures were even more sensitive than phasic measures – which would 

further support our expectations. Thus, what can then be concluded is that CDA is not 

necessarily better than TTP and that the increased sensitivity of CDA Tonic may have been 

caused by the temporal characteristics of the measured response. For a final evaluation, CDA 

Tonic should be compared with a TTP-derived tonic estimate. 

 

The sensitivity comparison among measures that has been made here, is valuable for 

other applied research as well. Among the fields of study that profit from such information, 

are clinical settings (e.g. Picard, 2009; Hirstein, Iversen and Ramachandran, 2001), 

psychophysiology in traffic (e.g., Healeay and Picard, 2005; Engström, Johansson and 

Östlund, 2005), or social interaction between humans (el-Sheikh, Ballard and Cummings, 

1994; Bethel, Member, Salomon, Murphy and Burke, 2007). Given that researchers in these 

fields often measure responses that have characteristics that are similar to those in this 

deception detection experiment, it is likely that our methodological considerations and the 

results of our analysis generalize to these areas. This expectation requires empirical testing. 

 

New questions and recommendations 

This thesis has generated several new research questions. First, we found that the 

deceptive intention was indexed by a decrease in tonic EDA (cf. Leal et al, 2008). Future 

research should further isolate this index and the mechanisms that cause it. Second, our 

custom code did not offer a way to compare tonic activity estimated by CDA to tonic activity 

estimated by TTP. To complete the evaluation of CDA and TTP, such a comparison would be 

very informative. Third, although it is likely that our results are generalizable to other data 

with similar response characteristics, this expectations must be put to the test.  

Fourth, besides CDA and AUC, there is another approach to analyze skin conductance 

data. Dynamic Causal Modeling (DCM; Bach, Daunizeau, et al, 2010; Bach, Daunizeau et al, 
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2010a) is a technique that uses neurophysiological assumptions to infer sudomotor activity 

from observed skin conductance. Then, EDR, which are pre-supposed to be formed rather 

uniformly, are placed at the sudomotor nerve bursts. Although the assumption of uniform 

EDR has been criticized (Bach et al, 2012, p. 167; Benedek and Kaernbach, 2010), DCM has 

been used to account for spontaneous fluctuations (Bach, Daunizeau, et al, 2010) as well as 

anticipatory responses (Bach, Daunieau et al, 2010a). Because DCM relies on complex 

assumptions and requires vast processing power, it has remained out of the scope of this 

thesis. However, the technique performed favorably when validated with empirical data 

(Bach, Daunizeau et al, 2010; 2010a) and should thus be tested in future research. 

  

In this research, transformations, filtering and other manipulations were omitted in order 

to retain a high degree of standardizations across methods. Similarly, effects have not been 

adjusted for inter-individual differences between participants. Finally, figure 3.3 suggests that 

time may act as a covariate on tonic EDA; time should thus be controlled for. Any researcher 

who wants to use the compared computational approaches is encouraged to take these steps in 

order reduce variance and thereby increase sensitivity and specificity (cf. Boucsein, 2012, 

chap. 2.3.3.3-4). 

 

General conclusion 

This research evaluated several computational approaches to quantify autonomic 

arousal in applied settings, where there is low experimental control, while responses are often 

non-specific and have  a high likelihood of superposition. In particular, we expected that tonic 

and area measures would be the most sensitive in such an applied setting and tested this 

hypothesis with a dataset from a deception experiment. 

As was hypothesized, we were able to show that EDA was influenced by cognitive 

task demands. Because we also found effects of deception on EDA, we conclude that the 
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compared techniques indeed provided several indices of deception, which varied in 

sensitivity. The most sensitive index for deception, both intended and actual, was tonic 

activity, which is in accordance with our hypothesis. AUC, however, was not more sensitive 

than phasic activity measures. Besides tonic activity as estimated by CDA, we could not show 

that CDA is generally better than TTP; the data suggest that phasic activity is better estimated 

by TTP. 

Taken as a premise that many other applied settings may have similar response 

characteristics as deception as is outlined in the introduction, we conclude that our results will 

likely generalize to these responses and settings as well. However, since this premise cannot 

be verified a priori, further supporting evidence is needed to draw this conclusion. 
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Appendix A: Tables and Figures 
 
 
 
This appendix contains both tables and figures. Tables and figures are listed separately. 
 
 
  



 
 
 
 
 
 
Table A1  

        Method(7)*Condition(3)*Time(6) multivariate analysis for all measures (n = 87)       
General Linear Model     F df df (error) p ηρ² 
Method ᵃ ***    138,90 6,00 81,00 0,00 0,91 
Condition    1,86 2,00 85,00 0,16 0,04 
Time ᵃ ***    6,16 5,00 82,00 0,00 0,27 
Method*Condition ᵃ ***   5,82 12,00 75,00 0,00 0,48 
Method*Time ᵃ ***   5,88 30,00 57,00 0,00 0,76 
Condition*Time **   1,70 10,00 77,00 0,10 0,18 
Method*Condition*Time ᵃ     1,86 60,00 27,00 0,04 0,81 
Note. Because most factors violate the Sphericity assumption, Pillai's Trace 

   values are reported. The factor time refers to trial positions within blocks of stimuli. 
   hp

2 = SSbetween / SStotal + SSerror 
      ᵃ this factor violates Sphericity 
      

         * p < .05. ** p < .01. *** p < .001 
       

  



Table A2 
        Descriptive statistics of different measures           

Measure     Range Min Max Mean SD 
Truth Condition             
CDA nSCR     9,29 0,00 9,29 4,73 1,80 
CDA ISCR     12,85 0,04 12,89 2,51 2,25 
CDA AMpSum     4,48 0,00 4,48 0,63 0,75 
CDA Tonic     19,11 0,82 19,93 4,49 3,53 
TTP nSCR     5,38 0,08 5,46 1,41 0,76 
TTP AmpSum     2,27 0,00 2,27 0,32 0,37 
AUC     0,20 0,00 0,20 0,03 0,03 
Effect of Lying             
CDA nSCR     2,88 -1,42 1,46 -0,13 0,61 
CDA ISCR     2,97 -1,19 1,77 0,15 0,54 
CDA AmpSum     1,00 -0,42 0,58 0,03 0,15 
CDA Tonic     2,34 -0,55 1,79 0,25 0,34 
TTP nSCR     1,67 -0,92 0,75 -0,08 0,29 
TTP AmpSum     0,75 -0,38 0,37 0,02 0,10 
AUC     0,08 -0,03 0,04 0,00 0,01 
Effect of Intending   

     CDA nSCR     2,83 -1,42 1,42 0,03 0,57 
CDA ISCR     5,34 -1,49 3,85 0,02 0,66 
CDA AmpSum     1,44 -0,53 0,91 0,00 0,16 
CDA Tonic     1,26 -0,74 0,52 -0,07 0,21 
TTP nSCR     1,33 -0,67 0,67 0,02 0,27 
TTP AmpSum     1,07 -0,38 0,69 0,01 0,13 
AUC     0,12 -0,05 0,07 0,00 0,01 

 
  



Table A3 
        Comparison between relative effect sizes of different measures (effects of lying) 

  Comparison     Δ Δ-SD Error t(86) p   
CDA Tonic -               

 TTP nSCR     2,45 10,61 1,14 2,15 0,03 
 CDA ISCR     3,48 14,36 1,54 2,26 0,03 
 CDA nSCR     4,06 13,96 1,50 2,72 0,01 
 AUC     5,09 9,89 1,06 4,80 0,00 
 TTP AmpSum     5,45 9,52 1,02 5,34 0,00 
 CDA AmpSum     6,02 8,36 0,90 6,71 0,00   

TTP nSCR -               
 CDA ISCR     1,03 12,13 1,30 0,79 0,43 
 CDA nSCR     1,62 18,62 2,00 0,81 0,42 
 AUC     2,65 11,05 1,18 2,23 0,03 
 TTP AmpSum     3,01 10,48 1,12 2,68 0,01 
 CDA AmpSum     3,57 10,57 1,13 3,15 0,00   

CDA ISCR -               
 CDA nSCR     0,59 16,11 1,73 0,34 0,74 
 AUC     1,61 9,38 1,01 1,60 0,11 
 TTP AmpSum     1,98 10,55 1,13 1,75 0,08 
 CDA AmpSum     2,54 11,40 1,22 2,07 0,04   

CDA nSCR -               
 AUC     1,03 18,01 1,93 0,53 0,60 
 TTP AmpSum     1,39 18,26 1,96 0,71 0,48 
 CDA AmpSum     1,95 17,42 1,87 1,04 0,30   

AUC -               
 TTP AmpSum     0,36 3,04 0,33 1,11 0,27 
 CDA AmpSum     0,92 3,24 0,35 2,65 0,01   

TTP AmpSum -                
 CDA AmpSum     0,56 3,15 0,34 1,66 0,10   

  



 
 
 
 
 
Table A4 

         Changes between trial 3 and trial 4 when participants intended to lie (n = 87).        
 

   
t-test for equality of means         

        
95% CI   

      Δ Δ-SD t(86) p r² Lower Upper 
CDA_nSCR 

  
-0,30 1,91 -1,45 0,151 0,15 -0,70 0,11 

CDA_ISCR * 
  

-0,37 1,72 -2,02 0,047 0,21 -0,74 0,00 
TTP_Tonic 

  
0,01 0,07 0,72 0,477 0,08 -0,01 0,02 

TTP_AmpSum *   -0,05 0,24 -2,14 0,036 0,22 -0,10 0,00 
Note. CDA_Tonic is not significant because CDA_Tonic is decreased during the whole condition 

   condition of intending to lie. Therefore, no changes between trial 3 and 4 are observed. 
    R² was computed as SQRT(t²/(t²+df)). 

       
          * p < .05.  

          
  



Table A5 
   Effects of task difficulty on tonic EDA 

 Trialposition F(2) p 
 Truth responses 

  1* 3,245 ,044 
 2* 3,370 ,039 
 3* 3,426 ,037 
 4* 3,457 ,036 
 5* 3,442 ,037 
 6* 3,428 ,037 
 Lie responses 

  1* 3,157 ,048 
 2* 3,268 ,043 
 3* 3,237 ,044 
 4* 3,241 ,044 
 5* 3,256 ,044 
 6* 3,252 ,044 
 Note. Results show between-subjects 

effects of task difficulty in MANOVA. 
While there were only two conditions, there 
are two degrees of freedom because 
several participants lacked records but were 
still included in the analysis. 

 
    * p < .05 

    
 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A1. Both the sort of the double task and its difficulty were varied between participants. Each participant 
completed a total of twelve blocks of six successive trials of truth, lies, and intention to lie. Block order was varied 
between participants. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A2. In all versions of the experiment, participants had to report on the features of the stimuli. In the 
easy cognitive version, participants counted the dots on the faces (left hand), whereas in the difficult 
cognitive version, they performed arithmetic while reporting. In the emotional versions, participants had to 
evaluate the facial expression of the stimuli, which could either be unambiguous (central; easy) or 
ambiguous (right hand; difficult) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A3. Within each response condition, responses were averaged across all blocks. This way, responses could be 
analyzed over the course of blocks of successive trials. Means for conditions were computed by averaging these trial-
means. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A4. In the two deceptive response condition (lying and intending to lie), measured effects varied greatly, depending on the 
measurement technique. 



  

Figure A5 a). The 
distribution of deception 
effects on the frequency of 
NS-SCR estimated by 
CDA in one subject 
(above) and the whole 
sample (below). 



  

Figure A5 b). The 
distribution of deception 
effects on the sum of  SCR 
amplitudes estimated by 
CDA in one subject 
(above) and the whole 
sample (below). 



  

Figure A5 c). The 
distribution of deception 
effects on the integrated 
area under the SCR 
estimated by CDA in one 
subject (above) and the 
whole sample (below). 



  

Figure A5 d). The 
distribution of deception 
effects tonic EDA 
estimated by CDA in one 
subject (above) and the 
whole sample (below). 



  

Figure A5 e). The 
distribution of deception 
effects on the frequency of 
NS-SCR estimated by 
TTP in one subject 
(above) and the whole 
sample (below). 



 

Figure A5 f). The 
distribution of deception 
effects on the sum of 
SCR-amplitudes estimated 
by TTP in one subject 
(above) and the whole 
sample (below). 



Appendix B: MATLAB Custom Code 
The following pages contain all the MATLAB custom code other than SCRalyze and Ledalab 

that was used in order to process the data with continuous decomposition analysis, through-to-

peak analysis and area under the curve analysis. 

 

The first five functions (A_CreateExperimentalDesign, B_ConvertLedalab, 

C_ExtractResultsConditionwise, D_ExtractResultsTrialWise, Data_Reader) are used to prepare 

and analyze the data from the Pulp Fiction experiment to be analyzed with CDA and TTP. 

Several things should be noted: 

 

1. If you have access to the original code files, use them instead of this Word-document. 

Transferring code from Word to Matlab can be hard because of formatting problems. 

 

2. The files need to be run with their respective input files in the active directory. Some scripts 

will generate new files (e.g., the Ledalab-Converter; result-files). To keep the overview, think 

about moving those files to another new folder.  

 

3. Results will be saved in separate matlab-files. These can be exported as text-files and then be 

imported into SPSS and other software. Also note that these scripts will want to access variables 

that are created by SCRalyze, so you might want to perform AUC-analysis before you extract 

results. 

 

4. For Ledalab, the two results-extraction files contain code for a batch-mode operation to analyze 

all files at once at the end of the respective files. 

 

 

The last function describes both how text data can be cut to prepare them for SCRalyze as well as 

how to actually import an array of data to SCRalyze. Please note that for using SCRalyze, you 

need to specify an epoch file that contains all onsets and offsets of experimental events. 

Unfortunately, this file cannot be included in this document. However, it is just a simple two 

column matlab-file; the first column contains the onsets, the second the offsets. 

 

Happy coding! 
  



A_CreateExperimentalDesign	  
 
% This file generates the experimental design as it is needed to export the 
% markers and their respective identities. It is used repeatedly throughout 
% the whole Ledalab-pipeline.  
  
% Explanation: 
% Versions 1, 2 and three refer to the version of the cognitive or 
% emotional experiment. 
% Difficulty 1 = means low; difficulty = 2 means high. 
  
% Note that this approach is highly unelegant. However, it is easy to 
% handle once established. 
  
% Updates: 
% subject 60 (between 33 and 64): has no datafile. Entry deleted. 
% subject 51 (betwen 49 and 62): returns out of bound errors. Subject 
% terminated. 
% subject 59 (between 56 and 88): returns out of bound error. Subject 
% terminated 
% subject 6 (between 102 and14): file not found. Subject terminated. 
% subject 83 (between 80 and 104): out of bound error. Subject terminated. 
  
clear all; 
  
subjects = [22 40 52 67 71 75 77 90 11 15 17 37 45 89 96 103 12 33 64 74 82 85 
92 98 2 21 27 28 31 32 43 57 78 91 3 10 13 19 26 46 50 66 70 81 9 29 49 62 65 
69 4 25 30 38 47 53 54 87 101 20 42 44 56 88 94 105 1 7 35 36 63 79 93 99 102 
14 48 58 68 76 84 86 95 5 8 18 34 61 80 104 16 23 24 39 41 55 72 73 97] ; 
  
versions = []; 
versions (find(subjects==22):find(subjects==103)) = 1; 
versions (find(subjects==4):find(subjects==105)) = 1; 
versions (find(subjects==12):find(subjects==91)) = 2; 
versions (find(subjects==1):find(subjects==95)) = 2; 
versions (find(subjects==3):find(subjects==69)) = 3; 
versions (find(subjects==5):find(subjects==97)) = 3;     
  
difficulty = []; 
difficulty(find(subjects==22):find(subjects==90)) = 1; 
difficulty(find(subjects==11):find(subjects==103)) = 2; 
difficulty(find(subjects==12):find(subjects==98)) = 1; 
difficulty(find(subjects==2):find(subjects==91)) = 2; 
difficulty(find(subjects==3):find(subjects==70)) = 1; 
difficulty(find(subjects==81):find(subjects==69)) = 2; 
difficulty(find(subjects==4):find(subjects==101)) = 1; 
difficulty(find(subjects==20):find(subjects==105)) = 2; 
difficulty(find(subjects==1):find(subjects==102)) = 1; 
difficulty(find(subjects==6):find(subjects==95)) = 2; 
difficulty(find(subjects==5):find(subjects==104))=1; 
difficulty(find(subjects==16):find(subjects==97))=2; 
  
  
Design = [subjects;versions;difficulty]; 
  
% To refer to the general design of a given subject's expeirment, use 
% Design(2,find(Design(1,:)==subject)); 
% To refer to a given subject's version's difficulty, use 
% Design(2,find(Design(1,:)==subject)); 
% This code returns all trials of any specified subject / version: 
% Trials(Design(2,find(Design(1,:)==subject)) 
  
Trials = [ 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 
1 1 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1; 



           1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 
1 1 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1; 
           2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 
2 2 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1]; 
	  
	  
	   	  



B_ConvertLedalab	  
	  
%% Ledalab-Converter 0.9  
% 06 March 2012 
% Secret Research Facility in The Netherlands 
% 
% This script reads skin-conductance textfiles that were created using a 
% seperate "VI-channel" as improvised markers. The script can process 
% either specific datafiles, or a whole array of files at once. The 
% resulting files are readable by Ledalab. 
%   In the first section, the script reconstructs the design of the 
% experiment - which datafile belonged to which condition and what 
% different trials were used in each condition. You can add participants as 
% you want, just make sure each participant has an according entry in the 
% "versions"-array. Likewise, you can modify the content of each 
% experiment-verision by adding his line in the "Trials"-array. As above, 
% all versions have to have the same length however. 
%   Next, the script picks and opens a datafile. This (and all that 
% follows) is part of a for-loop, therefore this script can process all 
% your subject at once. Which datafile is read, is determined by the 
% subjects-array and the index of the for-loop (-> subjects(i). Adjust 
% fname to suit your own needs. 
%   In the next section, the script extracs all markers in the array 
% VI_nuttig. This extraction resulted from testing several methods over the 
% course of days and it finally works, so don't change this unless you have 
% reason to so. 
%   The following section contains some advanced visualization options. 
% Neither of them is truly necessary but may be helpful for exploring your 
% data. Read the respective descriptions for more info. 
%   The final section (before the RAM is cleared) deals with transforming 
% the data into a format that is usable for Ledalab. All data are stored 
% into a nested structure array. Note that data.event(i).name and 
% data.event(i).nid need the experimental design to be written. If you 
% have not defined your design yet, comment every line with 
% data.event(i).name or .nid in it. Also note that in the present 
% experiment, every 2nd experimental event did not actually send a 
% VI-signal. Thus, these had to be added here - keep that in mind should 
% you plan to use this. 
  
clear all; 
  
A_CreateExperimentalDesign; 
  
  
for i = 91:length(subjects) 
 subject = subjects(i); 
 fname=['pp',int2str(subject),'_log.txt'];     
 dataTemp = Data_Reader(fname); 
 thisSubjectsVersionIndex = Design(2,find(subjects==subject));    
   
     
%% ---- MARKER EXTRACTION START ---------------     
     
     
 % The signal pulses in the VI-channel are identified by marking 
 % / indexing every samplepoint that exceeds a treshold value (-.23). 
 VI = find(dataTemp(:,3)>-.23);  
     
 % Then, the "true" onset of the event has to be determined. 
 % VI_nuttig contains all these "true" onsets and is therefore 
 % what counts as experimental markers. 
 VI_n(1)=VI(1); 
     
     for t=1:length(VI)-1; 



             if VI(t+1)-VI(t)>1000; 
             VI_n(t)=VI(t+1); 
             end 
     end 
      
 k = find(VI_n>0); 
 VI_nuttig = VI_n(k); 
  
%% ----- MARKER EXTRACTION STOP ----     
     
     
     
     
    %% ---- LEDALAB CONVERSION START ----------------------- 
    % The data-array is a nested structures array that is used for Ledalab. 
    % While the outer array consists of time and EDA, the inner array 
    % (event) holds the onsets, names and IDs of each event. The onsets 
    % of the VI-pulses are used as event markers. 
    newFileName = ['LEDALAB_pp',int2str(subject),'_log.mat'] 
     
    % Construct the array 
    data = struct('time',dataTemp(:,1) ,'conductance',dataTemp(:,2),'timeoff', 
0, 'event', struct('time',{}, 'name', {}, 'nid', {})); 
     
     
    % Fill the time-variable of the event-array with data from the VI-channel 
    % Returns the onset of each event in milliseconds (not rows!). 
    % ShiftedEventData refers to those markers that are not actually 
    % present in the data but must be created manually. 
    % Warning: Still shows only 37 markers. Where is the rest? 
       
    OriginalMarkers = VI_nuttig(1,2:length(VI_nuttig)); 
    AllMarkers = []; 
  
    for i=1:length(OriginalMarkers) 
    AllMarkers(2*i-1) = OriginalMarkers(i);     
    AllMarkers(2*i) = OriginalMarkers(i) + 20*256; 
    end 
  
     
    for p=1:length(AllMarkers); 
        data.event(1,p).time = dataTemp(AllMarkers(p),1); 
        data.event(1,p).nid = Trials(Design(2,find(Design(1,:)==subject)),p);    
    end 
  
            
    % The files are saved as matlab-files. 
    save(newFileName, 'data', '-mat'); 
    disp('Ledalab-file saved!') 
     
 %% ---- LEDALAB CONVERSION STOP -----------------------    
  
 clear VI_nuttig; 
 clear dataTemp; 
 clear VI; 
 clear VI_n; 
  
  
  
end 
 
	  
	   	  



C_ExtractResultsConditionwise 
 
% This file takes all the result-files from Ledalab in a given folder and 
% extracts several dependant variables from these data. All subject and 
% dependent variables are saved in a new file. 
  
  
  
% Call the design again to identify relevant trials for each subject. 
% subject 88 (56/94) removed; no datafile was present. 
% subject 7 (1/35( removed; events didn't match design. 
% subject 99(x/102) removed; events didn't match design. 
% subject 14(102/48) removed; no datafile was present. 
% subject 95(86 / 5) removed; no datafile was present. Design-code 
% adjusted. 
% subject 5 (95/8) removed; no data found. Design-code adjusted. 
% subject 8 removed. Design-code adjusted. 
% subject 18 removed. Design-code adjusted. 
% dito 34,61,80,104  
  
% Those missing data are a problem. Much of data at the end is missing. I 
% do not know what happened to them, but it involves all 'easy' subjects of 
% the third cognitive condition. Somehow, they have not made it through 
% Ledalab. The coding of the experimental design has been corrected for 
% their disappearance (versions and difficulty are computed as a function of 
subject). 
% Where are those files gone? 
  
clear all; 
  
subjects = [22 40 52 67 71 75 77 90 11 15 17 37 45 89 96 103 12 33 64 74 82 85 
92 98 2 21 27 28 31 32 43 57 78 91 3 10 13 19 26 46 50 66 70 81 9 29 49 62 65 
69 4 25 30 38 47 53 54 87 101 20 42 44 56 94 105 1 35 36 63 79 93 102 48 58 68 
76 84 86 16 23 24 39 41 55 72 73 97] ; 
  
versions = []; 
versions (find(subjects==22):find(subjects==103)) = 1; 
versions (find(subjects==4):find(subjects==105)) = 1; 
versions (find(subjects==12):find(subjects==91)) = 2; 
versions (find(subjects==1):find(subjects==86)) = 2; 
versions (find(subjects==3):find(subjects==69)) = 3; 
versions (find(subjects==16):find(subjects==97)) = 3;     
  
difficulty = []; 
difficulty(find(subjects==22):find(subjects==90)) = 1; 
difficulty(find(subjects==11):find(subjects==103)) = 2; 
difficulty(find(subjects==12):find(subjects==98)) = 1; 
difficulty(find(subjects==2):find(subjects==91)) = 2; 
difficulty(find(subjects==3):find(subjects==70)) = 1; 
difficulty(find(subjects==81):find(subjects==69)) = 2; 
difficulty(find(subjects==4):find(subjects==101)) = 1; 
difficulty(find(subjects==20):find(subjects==105)) = 2; 
difficulty(find(subjects==1):find(subjects==102)) = 1; 
difficulty(find(subjects==6):find(subjects==86)) = 2; 
difficulty(find(subjects==16):find(subjects==16))=1; 
difficulty(find(subjects==16):find(subjects==97))=2; 
  
  
Design = [subjects;versions;difficulty]; 
  
% To refer to the general design of a given subject's expeirment, use 
% Design(2,find(Design(1,:)==subject)); 
% To refer to a given subject's version's difficulty, use 
% Design(2,find(Design(1,:)==subject)); 



% This code returns all trials of any specified subject / version: 
% Trials(Design(2,find(Design(1,:)==subject)) 
  
Trials = [ 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 
1 1 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1; 
           1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 
1 1 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1; 
           2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 
2 2 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1]; 
        
 for i = 1:length(subjects) 
  
 subject = subjects(i);     
 fname = ['LEDALAB_pp', int2str(subject), '_log_era.mat']; 
 load(fname); 
  
  
  
 ThisSubjectsVersion =  Design(2,find(Design(1,:)==subject)); 
 ThisSubjectsMarkers = Trials(Design(2,find(Design(1,:)==subject)),:); 
 ThisSubjectsDifficulty = Design(3,find(Design(1,:)==subject)); 
  
 Truth = find(ThisSubjectsMarkers==0); 
 Lies = find(ThisSubjectsMarkers==1); 
 Intention = find(ThisSubjectsMarkers==2); 
  
  
 % Some dependent variables based on DDA-analysis 
 % Average amount of SCRs 
%  Nr_SCR_Truth = sum(results.CDA.scr_nr(Truth))/24;         % Mean amount of 
SCR when Truth was spoke 
%  Nr_SCR_Lies = sum(results.CDA.scr_nr(Lies))/24;           % Dito Lies 
%  Nr_SCR_Intention = sum(results.CDA.scr_nr(Intention))/24; % Dito Intention 
%   
%   
%  % Sum of event-related SCR-amplitude 
%  Sum_SCR_Truth = sum(results.CDA.scr_ampsum(Truth))/24;         % Mean ampsum 
when Truth was spoken 
%  Sum_SCR_Lies = sum(results.CDA.scr_ampsum(Lies))/24;           % Dito Lies 
%  Sum_SCR_Intention = sum(results.CDA.scr_ampsum(Intention))/24; % Dito 
Intention 
%   
%  % SCR Area 
%  Area_SCR_Truth = sum(results.CDA.scr_areasum(Truth))/24; 
%  Area_SCR_Lies = sum(results.CDA.scr_areasum(Lies))/24; 
%  Area_SCR_Intention = sum(results.CDA.scr_areasum(Intention))/24; 
%  DependentVariables = [subject ThisSubjectsVersion Nr_SCR_Truth Nr_SCR_Lies 
Nr_SCR_Intention Sum_SCR_Truth Sum_SCR_Lies Sum_SCR_Intention Area_SCR_Truth 
Area_SCR_Lies Area_SCR_Intention]; 
  
  
% Some dependent variables based on CDA-analysis 
% Number of SCR in event-window 
CDA_nSCR_Truth = sum(results.CDA.nSCR(Truth))/24; 
CDA_nSCR_Lies = sum(results.CDA.nSCR(Lies))/24; 
CDA_nSCR_Intention = sum(results.CDA.nSCR(Intention))/24; 
  
% Latency of SCR 
CDA_Latency_Truth = sum(results.CDA.Latency(Truth))/24; 
CDA_Latency_Lies = sum(results.CDA.Latency(Lies))/24; 
CDA_Latency_Intention = sum(results.CDA.Latency(Intention))/24; 
  
% Sum of SCR-amplitudes in event-window 
CDA_Sum_Truth = sum(results.CDA.AmpSum(Truth))/24; 
CDA_Sum_Lies = sum(results.CDA.AmpSum(Lies))/24; 



CDA_Sum_Intention = sum(results.CDA.AmpSum(Intention))/24; 
  
% Improved SCR (average phasic driver, "most accurate") 
CDA_inSCR_Truth = sum(results.CDA.SCR(Truth))/24; 
CDA_inSCR_Lies = sum(results.CDA.SCR(Lies))/24; 
CDA_inSCR_Intention = sum(results.CDA.SCR(Intention))/24; 
  
% Area measurement 
CDA_ISCR_Truth = sum(results.CDA.ISCR(Truth))/24; 
CDA_ISCR_Lies = sum(results.CDA.ISCR(Lies))/24; 
CDA_ISCR_Intention = sum(results.CDA.ISCR(Intention))/24; 
  
  
% Some variables based on TTP-analysis 
% N of SCR 
TTP_nSCR_Truth = sum(results.TTP.nSCR(Truth))/24; 
TTP_nSCR_Lies = sum(results.TTP.nSCR(Lies))/24; 
TTP_nSCR_Intention = sum(results.TTP.nSCR(Intention))/24; 
  
% Latency of SCR 
TTP_Latency_Truth = sum(results.TTP.Latency(Truth))/24; 
TTP_Latency_Lies = sum(results.TTP.Latency(Lies))/24; 
TTP_Latency_Intention = sum(results.TTP.Latency(Intention))/24; 
  
% Sum of Amplitudes 
TTP_AmpSum_Truth = sum(results.TTP.AmpSum(Truth))/24; 
TTP_AmpSum_Lies = sum(results.TTP.AmpSum(Lies))/24; 
TTP_Ampsum_Intention = sum(results.TTP.AmpSum(Intention))/24; 
  
  
DependentVariables = [subject ThisSubjectsVersion ThisSubjectsDifficulty 
CDA_nSCR_Truth CDA_nSCR_Lies CDA_nSCR_Intention CDA_Latency_Truth 
CDA_Latency_Lies CDA_Latency_Intention CDA_Sum_Truth CDA_Sum_Lies 
CDA_Sum_Intention CDA_inSCR_Truth CDA_inSCR_Lies CDA_inSCR_Intention 
CDA_ISCR_Truth CDA_ISCR_Lies CDA_ISCR_Intention TTP_nSCR_Truth TTP_nSCR_Lies 
TTP_nSCR_Intention TTP_Latency_Truth TTP_Latency_Lies TTP_Latency_Intention 
TTP_AmpSum_Truth TTP_AmpSum_Lies TTP_Ampsum_Intention]; 
Export(i,:) = DependentVariables;  
 end 
  
 ResultsFileName = ['results', date, '.dat']; 
 dlmwrite (ResultsFileName,Export,'delimiter','\t'); 
 disp('Event-related activation has been extracted from all specified Ledalab-
files.'); 
 disp('Data have been saved to:'); 
 disp(ResultsFileName); 
  
  
  
  
 % The code that produced these results on 19 March 2012:  
 % Ledalab('/Users/Christian/Documents/MATLAB/Data Files Ledalab/Converted to 
Ledalab/', 'open', 'mat', 'downsample', 32, 'analyze','CDA', 
'optimize',3,'export_era',[5 15 .01 1], 'overview',0); 
	  
	  
	   	  



D_ExtractResultsTrialWise 
 
% This file takes all the result-files from Ledalab in a given folder and 
% extracts several dependant variables from these data. All subject and 
% dependent variables are saved in a new file. 
  
% UPDATED: this new results-extractor does not take the mean of a whole 
% condition anymore but instead averages the first 4 trials of a given 
% block.  
% POSSIBLE IMPROVEMENT: It is possible that there will also be a trial-wise 
% extraction in the future. 
  
  
% Call the design again to identify relevant trials for each subject. 
% subject 88 (56/94) removed; no datafile was present. 
% subject 7 (1/35( removed; events didn't match design. 
% subject 99(x/102) removed; events didn't match design. 
% subject 14(102/48) removed; no datafile was present. 
% subject 95(86 / 5) removed; no datafile was present. Design-code 
% adjusted. 
% subject 5 (95/8) removed; no data found. Design-code adjusted. 
% subject 8 removed. Design-code adjusted. 
% subject 18 removed. Design-code adjusted. 
% dito 34,61,80,104  
  
% Those missing data are a problem. Much of data at the end is missing. I 
% do not know what happened to them, but it involves all 'easy' subjects of 
% the third cognitive condition. Somehow, they have not made it through 
% Ledalab. The coding of the experimental design has been corrected for 
% their disappearance (versions and difficulty are computed as a function of 
subject). 
% Where are those files gone? 
  
clear all; 
  
subjects = [22 40 52 67 71 75 77 90 11 15 17 37 45 89 96 103 12 33 64 74 82 85 
92 98 2 21 27 28 31 32 43 57 78 91 3 10 13 19 26 46 50 66 70 81 9 29 49 62 65 
69 4 25 30 38 47 53 54 87 101 20 42 44 56 94 105 1 35 36 63 79 93 102 48 58 68 
76 84 86 16 23 24 39 41 55 72 73 97] ; 
  
versions = []; 
versions (find(subjects==22):find(subjects==103)) = 1; 
versions (find(subjects==4):find(subjects==105)) = 1; 
versions (find(subjects==12):find(subjects==91)) = 2; 
versions (find(subjects==1):find(subjects==86)) = 2; 
versions (find(subjects==3):find(subjects==69)) = 3; 
versions (find(subjects==16):find(subjects==97)) = 3;     
  
difficulty = []; 
difficulty(find(subjects==22):find(subjects==90)) = 1; 
difficulty(find(subjects==11):find(subjects==103)) = 2; 
difficulty(find(subjects==12):find(subjects==98)) = 1; 
difficulty(find(subjects==2):find(subjects==91)) = 2; 
difficulty(find(subjects==3):find(subjects==70)) = 1; 
difficulty(find(subjects==81):find(subjects==69)) = 2; 
difficulty(find(subjects==4):find(subjects==101)) = 1; 
difficulty(find(subjects==20):find(subjects==105)) = 2; 
difficulty(find(subjects==1):find(subjects==102)) = 1; 
difficulty(find(subjects==6):find(subjects==86)) = 2; 
difficulty(find(subjects==16):find(subjects==16))=1; 
difficulty(find(subjects==16):find(subjects==97))=2; 
  
  
Design = [subjects;versions;difficulty]; 



  
% To refer to the general design of a given subject's expeirment, use 
% Design(2,find(Design(1,:)==subject)); 
% To refer to a given subject's version's difficulty, use 
% Design(2,find(Design(1,:)==subject)); 
% This code returns all trials of any specified subject / version: 
% Trials(Design(2,find(Design(1,:)==subject)) 
  
Trials = [ 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 
1 1 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1; 
           1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 
1 1 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1; 
           2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 
2 2 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1]; 
        
 for i = 1:length(subjects) 
  
 subject = subjects(i);     
 fname = ['LEDALAB_pp', int2str(subject), '_log_era.mat']; 
 load(fname); 
  
  
  
 ThisSubjectsVersion =  Design(2,find(Design(1,:)==subject)); 
 ThisSubjectsMarkers = Trials(Design(2,find(Design(1,:)==subject)),:); 
 ThisSubjectsDifficulty = Design(3,find(Design(1,:)==subject)); 
  
 Truth = find(ThisSubjectsMarkers==0); 
 Lies = find(ThisSubjectsMarkers==1); 
 Intention = find(ThisSubjectsMarkers==2); 
  
  
% In this approach, we try to analyze the within-block effects that occur 
% during each series of stimuli. The first, second, third.. stimuli of each 
% kind of block are averaged. This design does not allow to study effects 
% during the course of the experiment, but during the course of an average 
% block. 
  
% CDA-nSCR 
CDA_nSCR_Truth_T1 = mean([results.CDA.nSCR(Truth(1)), 
results.CDA.nSCR(Truth(7)), results.CDA.nSCR(Truth(13)), 
results.CDA.nSCR(Truth(19))]); 
CDA_nSCR_Truth_T2 = mean([results.CDA.nSCR(Truth(2)), 
results.CDA.nSCR(Truth(8)), results.CDA.nSCR(Truth(14)), 
results.CDA.nSCR(Truth(20))]); 
CDA_nSCR_Truth_T3 = mean([results.CDA.nSCR(Truth(3)), 
results.CDA.nSCR(Truth(9)), results.CDA.nSCR(Truth(15)), 
results.CDA.nSCR(Truth(21))]); 
CDA_nSCR_Truth_T4 = mean([results.CDA.nSCR(Truth(4)), 
results.CDA.nSCR(Truth(10)), results.CDA.nSCR(Truth(16)), 
results.CDA.nSCR(Truth(22))]); 
CDA_nSCR_Truth_T5 = mean([results.CDA.nSCR(Truth(5)), 
results.CDA.nSCR(Truth(11)), results.CDA.nSCR(Truth(17)), 
results.CDA.nSCR(Truth(23))]); 
CDA_nSCR_Truth_T6 = mean([results.CDA.nSCR(Truth(6)), 
results.CDA.nSCR(Truth(12)), results.CDA.nSCR(Truth(18)), 
results.CDA.nSCR(Truth(24))]); 
  
CDA_nSCR_Lies_T1 = mean([results.CDA.nSCR(Lies(1)), results.CDA.nSCR(Lies(7)), 
results.CDA.nSCR(Lies(13)), results.CDA.nSCR(Lies(19))]); 
CDA_nSCR_Lies_T2 = mean([results.CDA.nSCR(Lies(2)), results.CDA.nSCR(Lies(8)), 
results.CDA.nSCR(Lies(14)), results.CDA.nSCR(Lies(20))]); 
CDA_nSCR_Lies_T3 = mean([results.CDA.nSCR(Lies(3)), results.CDA.nSCR(Lies(9)), 
results.CDA.nSCR(Lies(15)), results.CDA.nSCR(Lies(21))]); 
CDA_nSCR_Lies_T4 = mean([results.CDA.nSCR(Lies(4)), results.CDA.nSCR(Lies(10)), 



results.CDA.nSCR(Lies(16)), results.CDA.nSCR(Lies(22))]); 
CDA_nSCR_Lies_T5 = mean([results.CDA.nSCR(Lies(5)), results.CDA.nSCR(Lies(11)), 
results.CDA.nSCR(Lies(17)), results.CDA.nSCR(Lies(23))]); 
CDA_nSCR_Lies_T6 = mean([results.CDA.nSCR(Lies(6)), results.CDA.nSCR(Lies(12)), 
results.CDA.nSCR(Lies(18)), results.CDA.nSCR(Lies(24))]); 
  
CDA_nSCR_Intention_T1 = mean([results.CDA.nSCR(Intention(1)), 
results.CDA.nSCR(Intention(7)), results.CDA.nSCR(Intention(13)), 
results.CDA.nSCR(Intention(19))]); 
CDA_nSCR_Intention_T2 = mean([results.CDA.nSCR(Intention(2)), 
results.CDA.nSCR(Intention(8)), results.CDA.nSCR(Intention(14)), 
results.CDA.nSCR(Intention(20))]); 
CDA_nSCR_Intention_T3 = mean([results.CDA.nSCR(Intention(3)), 
results.CDA.nSCR(Intention(9)), results.CDA.nSCR(Intention(15)), 
results.CDA.nSCR(Intention(21))]); 
CDA_nSCR_Intention_T4 = mean([results.CDA.nSCR(Intention(4)), 
results.CDA.nSCR(Intention(10)), results.CDA.nSCR(Intention(16)), 
results.CDA.nSCR(Intention(22))]); 
CDA_nSCR_Intention_T5 = mean([results.CDA.nSCR(Intention(5)), 
results.CDA.nSCR(Intention(11)), results.CDA.nSCR(Intention(17)), 
results.CDA.nSCR(Intention(23))]); 
CDA_nSCR_Intention_T6 = mean([results.CDA.nSCR(Intention(6)), 
results.CDA.nSCR(Intention(12)), results.CDA.nSCR(Intention(18)), 
results.CDA.nSCR(Intention(24))]); 
  
% CDA-ISCR 
CDA_ISCR_Truth_T1 = mean([results.CDA.ISCR(Truth(1)), 
results.CDA.ISCR(Truth(7)), results.CDA.ISCR(Truth(13)), 
results.CDA.ISCR(Truth(19))]); 
CDA_ISCR_Truth_T2 = mean([results.CDA.ISCR(Truth(2)), 
results.CDA.ISCR(Truth(8)), results.CDA.ISCR(Truth(14)), 
results.CDA.ISCR(Truth(20))]); 
CDA_ISCR_Truth_T3 = mean([results.CDA.ISCR(Truth(3)), 
results.CDA.ISCR(Truth(9)), results.CDA.ISCR(Truth(15)), 
results.CDA.ISCR(Truth(21))]); 
CDA_ISCR_Truth_T4 = mean([results.CDA.ISCR(Truth(4)), 
results.CDA.ISCR(Truth(10)), results.CDA.ISCR(Truth(16)), 
results.CDA.ISCR(Truth(22))]); 
CDA_ISCR_Truth_T5 = mean([results.CDA.ISCR(Truth(5)), 
results.CDA.ISCR(Truth(11)), results.CDA.ISCR(Truth(17)), 
results.CDA.ISCR(Truth(23))]); 
CDA_ISCR_Truth_T6 = mean([results.CDA.ISCR(Truth(6)), 
results.CDA.ISCR(Truth(12)), results.CDA.ISCR(Truth(18)), 
results.CDA.ISCR(Truth(24))]); 
  
CDA_ISCR_Lies_T1 = mean([results.CDA.ISCR(Lies(1)), results.CDA.ISCR(Lies(7)), 
results.CDA.ISCR(Lies(13)), results.CDA.ISCR(Lies(19))]); 
CDA_ISCR_Lies_T2 = mean([results.CDA.ISCR(Lies(2)), results.CDA.ISCR(Lies(8)), 
results.CDA.ISCR(Lies(14)), results.CDA.ISCR(Lies(20))]); 
CDA_ISCR_Lies_T3 = mean([results.CDA.ISCR(Lies(3)), results.CDA.ISCR(Lies(9)), 
results.CDA.ISCR(Lies(15)), results.CDA.ISCR(Lies(21))]); 
CDA_ISCR_Lies_T4 = mean([results.CDA.ISCR(Lies(4)), results.CDA.ISCR(Lies(10)), 
results.CDA.ISCR(Lies(16)), results.CDA.ISCR(Lies(22))]); 
CDA_ISCR_Lies_T5 = mean([results.CDA.ISCR(Lies(5)), results.CDA.ISCR(Lies(11)), 
results.CDA.ISCR(Lies(17)), results.CDA.ISCR(Lies(23))]); 
CDA_ISCR_Lies_T6 = mean([results.CDA.ISCR(Lies(6)), results.CDA.ISCR(Lies(12)), 
results.CDA.ISCR(Lies(18)), results.CDA.ISCR(Lies(24))]); 
  
CDA_ISCR_Intention_T1 = mean([results.CDA.ISCR(Intention(1)), 
results.CDA.ISCR(Intention(7)), results.CDA.ISCR(Intention(13)), 
results.CDA.ISCR(Intention(19))]); 
CDA_ISCR_Intention_T2 = mean([results.CDA.ISCR(Intention(2)), 
results.CDA.ISCR(Intention(8)), results.CDA.ISCR(Intention(14)), 
results.CDA.ISCR(Intention(20))]); 
CDA_ISCR_Intention_T3 = mean([results.CDA.ISCR(Intention(3)), 



results.CDA.ISCR(Intention(9)), results.CDA.ISCR(Intention(15)), 
results.CDA.ISCR(Intention(21))]); 
CDA_ISCR_Intention_T4 = mean([results.CDA.ISCR(Intention(4)), 
results.CDA.ISCR(Intention(10)), results.CDA.ISCR(Intention(16)), 
results.CDA.ISCR(Intention(22))]); 
CDA_ISCR_Intention_T5 = mean([results.CDA.ISCR(Intention(5)), 
results.CDA.ISCR(Intention(11)), results.CDA.ISCR(Intention(17)), 
results.CDA.ISCR(Intention(23))]); 
CDA_ISCR_Intention_T6 = mean([results.CDA.ISCR(Intention(6)), 
results.CDA.ISCR(Intention(12)), results.CDA.ISCR(Intention(18)), 
results.CDA.ISCR(Intention(24))]); 
  
  
% CDA-AmpSum 
CDA_AmpSum_Truth_T1 = mean([results.CDA.AmpSum(Truth(1)), 
results.CDA.AmpSum(Truth(7)), results.CDA.AmpSum(Truth(13)), 
results.CDA.AmpSum(Truth(19))]); 
CDA_AmpSum_Truth_T2 = mean([results.CDA.AmpSum(Truth(2)), 
results.CDA.AmpSum(Truth(8)), results.CDA.AmpSum(Truth(14)), 
results.CDA.AmpSum(Truth(20))]); 
CDA_AmpSum_Truth_T3 = mean([results.CDA.AmpSum(Truth(3)), 
results.CDA.AmpSum(Truth(9)), results.CDA.AmpSum(Truth(15)), 
results.CDA.AmpSum(Truth(21))]); 
CDA_AmpSum_Truth_T4 = mean([results.CDA.AmpSum(Truth(4)), 
results.CDA.AmpSum(Truth(10)), results.CDA.AmpSum(Truth(16)), 
results.CDA.AmpSum(Truth(22))]); 
CDA_AmpSum_Truth_T5 = mean([results.CDA.AmpSum(Truth(5)), 
results.CDA.AmpSum(Truth(11)), results.CDA.AmpSum(Truth(17)), 
results.CDA.AmpSum(Truth(23))]); 
CDA_AmpSum_Truth_T6 = mean([results.CDA.AmpSum(Truth(6)), 
results.CDA.AmpSum(Truth(12)), results.CDA.AmpSum(Truth(18)), 
results.CDA.AmpSum(Truth(24))]); 
  
CDA_AmpSum_Lies_T1 = mean([results.CDA.AmpSum(Lies(1)), 
results.CDA.AmpSum(Lies(7)), results.CDA.AmpSum(Lies(13)), 
results.CDA.AmpSum(Lies(19))]); 
CDA_AmpSum_Lies_T2 = mean([results.CDA.AmpSum(Lies(2)), 
results.CDA.AmpSum(Lies(8)), results.CDA.AmpSum(Lies(14)), 
results.CDA.AmpSum(Lies(20))]); 
CDA_AmpSum_Lies_T3 = mean([results.CDA.AmpSum(Lies(3)), 
results.CDA.AmpSum(Lies(9)), results.CDA.AmpSum(Lies(15)), 
results.CDA.AmpSum(Lies(21))]); 
CDA_AmpSum_Lies_T4 = mean([results.CDA.AmpSum(Lies(4)), 
results.CDA.AmpSum(Lies(10)), results.CDA.AmpSum(Lies(16)), 
results.CDA.AmpSum(Lies(22))]); 
CDA_AmpSum_Lies_T5 = mean([results.CDA.AmpSum(Lies(5)), 
results.CDA.AmpSum(Lies(11)), results.CDA.AmpSum(Lies(17)), 
results.CDA.AmpSum(Lies(23))]); 
CDA_AmpSum_Lies_T6 = mean([results.CDA.AmpSum(Lies(6)), 
results.CDA.AmpSum(Lies(12)), results.CDA.AmpSum(Lies(18)), 
results.CDA.AmpSum(Lies(24))]); 
  
CDA_AmpSum_Intention_T1 = mean([results.CDA.AmpSum(Intention(1)), 
results.CDA.AmpSum(Intention(7)), results.CDA.AmpSum(Intention(13)), 
results.CDA.AmpSum(Intention(19))]); 
CDA_AmpSum_Intention_T2 = mean([results.CDA.AmpSum(Intention(2)), 
results.CDA.AmpSum(Intention(8)), results.CDA.AmpSum(Intention(14)), 
results.CDA.AmpSum(Intention(20))]); 
CDA_AmpSum_Intention_T3 = mean([results.CDA.AmpSum(Intention(3)), 
results.CDA.AmpSum(Intention(9)), results.CDA.AmpSum(Intention(15)), 
results.CDA.AmpSum(Intention(21))]); 
CDA_AmpSum_Intention_T4 = mean([results.CDA.AmpSum(Intention(4)), 
results.CDA.AmpSum(Intention(10)), results.CDA.AmpSum(Intention(16)), 
results.CDA.AmpSum(Intention(22))]); 
CDA_AmpSum_Intention_T5 = mean([results.CDA.AmpSum(Intention(5)), 



results.CDA.AmpSum(Intention(11)), results.CDA.AmpSum(Intention(17)), 
results.CDA.AmpSum(Intention(23))]); 
CDA_AmpSum_Intention_T6 = mean([results.CDA.AmpSum(Intention(6)), 
results.CDA.AmpSum(Intention(12)), results.CDA.AmpSum(Intention(18)), 
results.CDA.AmpSum(Intention(24))]); 
  
% CDA-Tonic 
CDA_Tonic_Truth_T1 = mean([results.CDA.Tonic(Truth(1)), 
results.CDA.Tonic(Truth(7)), results.CDA.Tonic(Truth(13)), 
results.CDA.Tonic(Truth(19))]); 
CDA_Tonic_Truth_T2 = mean([results.CDA.Tonic(Truth(2)), 
results.CDA.Tonic(Truth(8)), results.CDA.Tonic(Truth(14)), 
results.CDA.Tonic(Truth(20))]); 
CDA_Tonic_Truth_T3 = mean([results.CDA.Tonic(Truth(3)), 
results.CDA.Tonic(Truth(9)), results.CDA.Tonic(Truth(15)), 
results.CDA.Tonic(Truth(21))]); 
CDA_Tonic_Truth_T4 = mean([results.CDA.Tonic(Truth(4)), 
results.CDA.Tonic(Truth(10)), results.CDA.Tonic(Truth(16)), 
results.CDA.Tonic(Truth(22))]); 
CDA_Tonic_Truth_T5 = mean([results.CDA.Tonic(Truth(5)), 
results.CDA.Tonic(Truth(11)), results.CDA.Tonic(Truth(17)), 
results.CDA.Tonic(Truth(23))]); 
CDA_Tonic_Truth_T6 = mean([results.CDA.Tonic(Truth(6)), 
results.CDA.Tonic(Truth(12)), results.CDA.Tonic(Truth(18)), 
results.CDA.Tonic(Truth(24))]); 
  
CDA_Tonic_Lies_T1 = mean([results.CDA.Tonic(Lies(1)), 
results.CDA.Tonic(Lies(7)), results.CDA.Tonic(Lies(13)), 
results.CDA.Tonic(Lies(19))]); 
CDA_Tonic_Lies_T2 = mean([results.CDA.Tonic(Lies(2)), 
results.CDA.Tonic(Lies(8)), results.CDA.Tonic(Lies(14)), 
results.CDA.Tonic(Lies(20))]); 
CDA_Tonic_Lies_T3 = mean([results.CDA.Tonic(Lies(3)), 
results.CDA.Tonic(Lies(9)), results.CDA.Tonic(Lies(15)), 
results.CDA.Tonic(Lies(21))]); 
CDA_Tonic_Lies_T4 = mean([results.CDA.Tonic(Lies(4)), 
results.CDA.Tonic(Lies(10)), results.CDA.Tonic(Lies(16)), 
results.CDA.Tonic(Lies(22))]); 
CDA_Tonic_Lies_T5 = mean([results.CDA.Tonic(Lies(5)), 
results.CDA.Tonic(Lies(11)), results.CDA.Tonic(Lies(17)), 
results.CDA.Tonic(Lies(23))]); 
CDA_Tonic_Lies_T6 = mean([results.CDA.Tonic(Lies(6)), 
results.CDA.Tonic(Lies(12)), results.CDA.Tonic(Lies(18)), 
results.CDA.Tonic(Lies(24))]); 
  
CDA_Tonic_Intention_T1 = mean([results.CDA.Tonic(Intention(1)), 
results.CDA.Tonic(Intention(7)), results.CDA.Tonic(Intention(13)), 
results.CDA.Tonic(Intention(19))]); 
CDA_Tonic_Intention_T2 = mean([results.CDA.Tonic(Intention(2)), 
results.CDA.Tonic(Intention(8)), results.CDA.Tonic(Intention(14)), 
results.CDA.Tonic(Intention(20))]); 
CDA_Tonic_Intention_T3 = mean([results.CDA.Tonic(Intention(3)), 
results.CDA.Tonic(Intention(9)), results.CDA.Tonic(Intention(15)), 
results.CDA.Tonic(Intention(21))]); 
CDA_Tonic_Intention_T4 = mean([results.CDA.Tonic(Intention(4)), 
results.CDA.Tonic(Intention(10)), results.CDA.Tonic(Intention(16)), 
results.CDA.Tonic(Intention(22))]); 
CDA_Tonic_Intention_T5 = mean([results.CDA.Tonic(Intention(5)), 
results.CDA.Tonic(Intention(11)), results.CDA.Tonic(Intention(17)), 
results.CDA.Tonic(Intention(23))]); 
CDA_Tonic_Intention_T6 = mean([results.CDA.Tonic(Intention(6)), 
results.CDA.Tonic(Intention(12)), results.CDA.Tonic(Intention(18)), 
results.CDA.Tonic(Intention(24))]); 
  
% TTP-nSCR 



TTP_nSCR_Truth_T1 = mean([results.TTP.nSCR(Truth(1)), 
results.TTP.nSCR(Truth(7)), results.TTP.nSCR(Truth(13)), 
results.TTP.nSCR(Truth(19))]); 
TTP_nSCR_Truth_T2 = mean([results.TTP.nSCR(Truth(2)), 
results.TTP.nSCR(Truth(8)), results.TTP.nSCR(Truth(14)), 
results.TTP.nSCR(Truth(20))]); 
TTP_nSCR_Truth_T3 = mean([results.TTP.nSCR(Truth(3)), 
results.TTP.nSCR(Truth(9)), results.TTP.nSCR(Truth(15)), 
results.TTP.nSCR(Truth(21))]); 
TTP_nSCR_Truth_T4 = mean([results.TTP.nSCR(Truth(4)), 
results.TTP.nSCR(Truth(10)), results.TTP.nSCR(Truth(16)), 
results.TTP.nSCR(Truth(22))]); 
TTP_nSCR_Truth_T5 = mean([results.TTP.nSCR(Truth(5)), 
results.TTP.nSCR(Truth(11)), results.TTP.nSCR(Truth(17)), 
results.TTP.nSCR(Truth(23))]); 
TTP_nSCR_Truth_T6 = mean([results.TTP.nSCR(Truth(6)), 
results.TTP.nSCR(Truth(12)), results.TTP.nSCR(Truth(18)), 
results.TTP.nSCR(Truth(24))]); 
  
TTP_nSCR_Lies_T1 = mean([results.TTP.nSCR(Lies(1)), results.TTP.nSCR(Lies(7)), 
results.TTP.nSCR(Lies(13)), results.TTP.nSCR(Lies(19))]); 
TTP_nSCR_Lies_T2 = mean([results.TTP.nSCR(Lies(2)), results.TTP.nSCR(Lies(8)), 
results.TTP.nSCR(Lies(14)), results.TTP.nSCR(Lies(20))]); 
TTP_nSCR_Lies_T3 = mean([results.TTP.nSCR(Lies(3)), results.TTP.nSCR(Lies(9)), 
results.TTP.nSCR(Lies(15)), results.TTP.nSCR(Lies(21))]); 
TTP_nSCR_Lies_T4 = mean([results.TTP.nSCR(Lies(4)), results.TTP.nSCR(Lies(10)), 
results.TTP.nSCR(Lies(16)), results.TTP.nSCR(Lies(22))]); 
TTP_nSCR_Lies_T5 = mean([results.TTP.nSCR(Lies(5)), results.TTP.nSCR(Lies(11)), 
results.TTP.nSCR(Lies(17)), results.TTP.nSCR(Lies(23))]); 
TTP_nSCR_Lies_T6 = mean([results.TTP.nSCR(Lies(6)), results.TTP.nSCR(Lies(12)), 
results.TTP.nSCR(Lies(18)), results.TTP.nSCR(Lies(24))]); 
  
TTP_nSCR_Intention_T1 = mean([results.TTP.nSCR(Intention(1)), 
results.TTP.nSCR(Intention(7)), results.TTP.nSCR(Intention(13)), 
results.TTP.nSCR(Intention(19))]); 
TTP_nSCR_Intention_T2 = mean([results.TTP.nSCR(Intention(2)), 
results.TTP.nSCR(Intention(8)), results.TTP.nSCR(Intention(14)), 
results.TTP.nSCR(Intention(20))]); 
TTP_nSCR_Intention_T3 = mean([results.TTP.nSCR(Intention(3)), 
results.TTP.nSCR(Intention(9)), results.TTP.nSCR(Intention(15)), 
results.TTP.nSCR(Intention(21))]); 
TTP_nSCR_Intention_T4 = mean([results.TTP.nSCR(Intention(4)), 
results.TTP.nSCR(Intention(10)), results.TTP.nSCR(Intention(16)), 
results.TTP.nSCR(Intention(22))]); 
TTP_nSCR_Intention_T5 = mean([results.TTP.nSCR(Intention(5)), 
results.TTP.nSCR(Intention(11)), results.TTP.nSCR(Intention(17)), 
results.TTP.nSCR(Intention(23))]); 
TTP_nSCR_Intention_T6 = mean([results.TTP.nSCR(Intention(6)), 
results.TTP.nSCR(Intention(12)), results.TTP.nSCR(Intention(18)), 
results.TTP.nSCR(Intention(24))]); 
  
% TTP-AmpSum 
TTT_AmpSum_Truth_T1 = mean([results.TTP.AmpSum(Truth(1)), 
results.TTP.AmpSum(Truth(7)), results.TTP.AmpSum(Truth(13)), 
results.TTP.AmpSum(Truth(19))]); 
TTP_AmpSum_Truth_T2 = mean([results.TTP.AmpSum(Truth(2)), 
results.TTP.AmpSum(Truth(8)), results.TTP.AmpSum(Truth(14)), 
results.TTP.AmpSum(Truth(20))]); 
TTP_AmpSum_Truth_T3 = mean([results.TTP.AmpSum(Truth(3)), 
results.TTP.AmpSum(Truth(9)), results.TTP.AmpSum(Truth(15)), 
results.TTP.AmpSum(Truth(21))]); 
TTP_AmpSum_Truth_T4 = mean([results.TTP.AmpSum(Truth(4)), 
results.TTP.AmpSum(Truth(10)), results.TTP.AmpSum(Truth(16)), 
results.TTP.AmpSum(Truth(22))]); 
TTP_AmpSum_Truth_T5 = mean([results.TTP.AmpSum(Truth(5)), 



results.TTP.AmpSum(Truth(11)), results.TTP.AmpSum(Truth(17)), 
results.TTP.AmpSum(Truth(23))]); 
TTP_AmpSum_Truth_T6 = mean([results.TTP.AmpSum(Truth(6)), 
results.TTP.AmpSum(Truth(12)), results.TTP.AmpSum(Truth(18)), 
results.TTP.AmpSum(Truth(24))]); 
  
TTP_AmpSum_Lies_T1 = mean([results.TTP.AmpSum(Lies(1)), 
results.TTP.AmpSum(Lies(7)), results.TTP.AmpSum(Lies(13)), 
results.TTP.AmpSum(Lies(19))]); 
TTP_AmpSum_Lies_T2 = mean([results.TTP.AmpSum(Lies(2)), 
results.TTP.AmpSum(Lies(8)), results.TTP.AmpSum(Lies(14)), 
results.TTP.AmpSum(Lies(20))]); 
TTP_AmpSum_Lies_T3 = mean([results.TTP.AmpSum(Lies(3)), 
results.TTP.AmpSum(Lies(9)), results.TTP.AmpSum(Lies(15)), 
results.TTP.AmpSum(Lies(21))]); 
TTP_AmpSum_Lies_T4 = mean([results.TTP.AmpSum(Lies(4)), 
results.TTP.AmpSum(Lies(10)), results.TTP.AmpSum(Lies(16)), 
results.TTP.AmpSum(Lies(22))]); 
TTP_AmpSum_Lies_T5 = mean([results.TTP.AmpSum(Lies(5)), 
results.TTP.AmpSum(Lies(11)), results.TTP.AmpSum(Lies(17)), 
results.TTP.AmpSum(Lies(23))]); 
TTP_AmpSum_Lies_T6 = mean([results.TTP.AmpSum(Lies(6)), 
results.TTP.AmpSum(Lies(12)), results.TTP.AmpSum(Lies(18)), 
results.TTP.AmpSum(Lies(24))]); 
  
TTP_AmpSum_Intention_T1 = mean([results.TTP.AmpSum(Intention(1)), 
results.TTP.AmpSum(Intention(7)), results.TTP.AmpSum(Intention(13)), 
results.TTP.AmpSum(Intention(19))]); 
TTP_AmpSum_Intention_T2 = mean([results.TTP.AmpSum(Intention(2)), 
results.TTP.AmpSum(Intention(8)), results.TTP.AmpSum(Intention(14)), 
results.TTP.AmpSum(Intention(20))]); 
TTP_AmpSum_Intention_T3 = mean([results.TTP.AmpSum(Intention(3)), 
results.TTP.AmpSum(Intention(9)), results.TTP.AmpSum(Intention(15)), 
results.TTP.AmpSum(Intention(21))]); 
TTP_AmpSum_Intention_T4 = mean([results.TTP.AmpSum(Intention(4)), 
results.TTP.AmpSum(Intention(10)), results.TTP.AmpSum(Intention(16)), 
results.TTP.AmpSum(Intention(22))]); 
TTP_AmpSum_Intention_T5 = mean([results.TTP.AmpSum(Intention(5)), 
results.TTP.AmpSum(Intention(11)), results.TTP.AmpSum(Intention(17)), 
results.TTP.AmpSum(Intention(23))]); 
TTP_AmpSum_Intention_T6 = mean([results.TTP.AmpSum(Intention(6)), 
results.TTP.AmpSum(Intention(12)), results.TTP.AmpSum(Intention(18)), 
results.TTP.AmpSum(Intention(24))]); 
  
  
  
DependentVariables = [CDA_nSCR_Truth_T1, CDA_nSCR_Truth_T2, CDA_nSCR_Truth_T3, 
CDA_nSCR_Truth_T4, CDA_nSCR_Truth_T5, CDA_nSCR_Truth_T6, CDA_nSCR_Lies_T1, 
CDA_nSCR_Lies_T2, CDA_nSCR_Lies_T3, CDA_nSCR_Lies_T4, CDA_nSCR_Lies_T5, 
CDA_nSCR_Lies_T6, CDA_nSCR_Intention_T1, CDA_nSCR_Intention_T2, 
CDA_nSCR_Intention_T3, CDA_nSCR_Intention_T4, CDA_nSCR_Intention_T5, 
CDA_nSCR_Intention_T6, CDA_ISCR_Truth_T1, CDA_ISCR_Truth_T2, CDA_ISCR_Truth_T3, 
CDA_ISCR_Truth_T4, CDA_ISCR_Truth_T5, CDA_ISCR_Truth_T6, CDA_ISCR_Lies_T1, 
CDA_ISCR_Lies_T2, CDA_ISCR_Lies_T3, CDA_ISCR_Lies_T4, CDA_ISCR_Lies_T5, 
CDA_ISCR_Lies_T6, CDA_ISCR_Intention_T1, CDA_ISCR_Intention_T2, 
CDA_ISCR_Intention_T3, CDA_ISCR_Intention_T4, CDA_ISCR_Intention_T5, 
CDA_ISCR_Intention_T6, CDA_nSCR_Truth_T1, CDA_AmpSum_Truth_T2, 
CDA_AmpSum_Truth_T3, CDA_AmpSum_Truth_T4, CDA_AmpSum_Truth_T5, 
CDA_AmpSum_Truth_T6, CDA_AmpSum_Lies_T1, CDA_AmpSum_Lies_T2, 
CDA_AmpSum_Lies_T3, CDA_AmpSum_Lies_T4, CDA_AmpSum_Lies_T5, CDA_AmpSum_Lies_T6, 
CDA_AmpSum_Intention_T1, CDA_AmpSum_Intention_T2, CDA_AmpSum_Intention_T3, 
CDA_AmpSum_Intention_T4, CDA_AmpSum_Intention_T5, CDA_AmpSum_Intention_T6, 
CDA_Tonic_Truth_T1, CDA_Tonic_Truth_T2, CDA_Tonic_Truth_T3, CDA_Tonic_Truth_T4, 
CDA_Tonic_Truth_T5, CDA_Tonic_Truth_T6, CDA_Tonic_Lies_T1, CDA_Tonic_Lies_T2, 
CDA_Tonic_Lies_T3, CDA_Tonic_Lies_T4, CDA_Tonic_Lies_T5, CDA_Tonic_Lies_T6, 



CDA_Tonic_Intention_T1, CDA_Tonic_Intention_T2, CDA_Tonic_Intention_T3, 
CDA_Tonic_Intention_T4, CDA_Tonic_Intention_T5, CDA_Tonic_Intention_T6, 
TTP_nSCR_Truth_T1, TTP_nSCR_Truth_T2, TTP_nSCR_Truth_T3, TTP_nSCR_Truth_T4, 
TTP_nSCR_Truth_T5, TTP_nSCR_Truth_T6, TTP_nSCR_Lies_T1, TTP_nSCR_Lies_T2, 
TTP_nSCR_Lies_T3, TTP_nSCR_Lies_T4, TTP_nSCR_Lies_T5, TTP_nSCR_Lies_T6, 
TTP_nSCR_Intention_T1, TTP_nSCR_Intention_T2, TTP_nSCR_Intention_T3, 
TTP_nSCR_Intention_T4, TTP_nSCR_Intention_T5, TTP_nSCR_Intention_T6, 
CDA_nSCR_Truth_T1, TTP_AmpSum_Truth_T2, TTP_AmpSum_Truth_T3, 
TTP_AmpSum_Truth_T4, TTP_AmpSum_Truth_T5, TTP_AmpSum_Truth_T6, 
TTP_AmpSum_Lies_T1, TTP_AmpSum_Lies_T2, TTP_AmpSum_Lies_T3, TTP_AmpSum_Lies_T4, 
TTP_AmpSum_Lies_T5, TTP_AmpSum_Lies_T6, TTP_AmpSum_Intention_T1, 
TTP_AmpSum_Intention_T2, TTP_AmpSum_Intention_T3, TTP_AmpSum_Intention_T4, 
TTP_AmpSum_Intention_T5, TTP_AmpSum_Intention_T6]; 
Export(i,:) = DependentVariables;  
 end 
  
 ResultsFileName = ['WithinBlock-Analysis', date, '.dat']; 
 dlmwrite (ResultsFileName,Export,'delimiter','\t'); 
 disp('Event-related activation has been extracted from all specified Ledalab-
files.'); 
 disp('Dependent variables were constructed based on the mean of the first 4 
trials of each block.'); 
 disp('Data have been saved to:'); 
 disp(ResultsFileName); 
  
  
  
  
 % The code that produced these results on 19 March 2012:  
 % Ledalab('/Users/Christian/Documents/MATLAB/Data Files Ledalab/Converted 
 % to Ledalab/', 'open', 'mat', 'downsample', 32, 'analyze','CDA', 
'optimize',2,'export_era',[0 14 .01 1], 'overview',0); 
	  
	  
	   	  



Data_Reader 
 
%% Data_Reader (before: read_fysio_log v1.0 by anonymous) 
%This function imports a Thought technology csv file and creates a matrix with 
the follwing 
%properties: [data] = [tijd Volt_Isol EDA] 
  
  
function [data]=Data_Reader(fname); 
  
[tijd EDA Volt_Isol]= textread(fname, '%f %f %f',... 
'headerlines',8, 'delimiter',','); 
  
[data] = [tijd EDA Volt_Isol]; 
  
  
  
 
	   	  



Cut	  and	  import	  text	  data	  to	  SCRalyze	  
	  
% This file handles preparing textfiles for SCRalyze. 
  
% --------------------------------------------------------- 
% The following lines refer to the experimental design (see 
% Ledalab-converter).  
% --------------------------------------------------------- 
subjects = [4 25 30 38 47 53 54 87 101 2 7 35 36 63 79 93 99 102 5 8 18 34 80 
83 104]; 
versions = [1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3]; 
Design = [subjects; versions]; 
  
Trials = [99 0 0 0 1 1 1 2 2 2 0 0 0 2 2 2 1 1 1 2 2 2 0 0 0 2 2 2 1 1 1 0 0 0 
1 1 1;99 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1 0 0 0 2 2 2 1 1 1 2 2 2 0 0 0 1 1 
1;99 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 1 1 1 0 0 0 1 1 1]; 
  
  
% for i = 1:length(subjects) 
%  
% subject = subjects(i); 
% fname=['pp',int2str(subject),'_log.txt']; 
% dataTemp = load(fname); 
%  
% VI = find(dataTemp(:,3)>-.23); VI_n(1)=VI(1); for t=1:length(VI)-1; if 
VI(t+1)-VI(t)>1000; VI_n(t)=VI(t+1); end; end;  k = find(VI_n>0); VI_nuttig = 
VI_n(k); 
%  
% % ----------------------------------- 
% % Data cutter  
% % 
% % these lines identify the onset of the actual data, and remove all lines 
% % before. This is needed in order to perform 1st level GLM in SCRalyze,  
% % becazse 1st level GLM considers the data not to have any headroom. 
% % ----------------------------------- 
% disp('Beginning to remove all superfluous data'); 
%  
% Headroom = 1:(VI_nuttig(1,1)); 
% dataTemp(Headroom,:) = []; 
% disp(subject); 
%  
% dlmwrite(fname, dataTemp, 'delimiter', '\t'); 
%  
% clear Headroom; clear newFname; 
%  
% % End of Data Cutter 
%  
%  
% end 
%  
% cler all; 
  
  
%--------------- 
%From here on begins SCRalyze's import-script 
%--------------- 
  
%-----------------------------------------------------------------------       
% Job script created by scr_job_create, 15-Mar-2012                            
%-----------------------------------------------------------------------       
                                                                               
global settings                                                                
if isempty(settings), scr_init; end;                                           
D{1} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp100_log.txt';  



D{2} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp101_log.txt';  
D{3} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp102_log.txt';  
D{4} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp103_log.txt';  
D{5} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp104_log.txt';  
D{6} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp105_log.txt';  
D{7} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp10_log.txt';   
D{8} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp11_log.txt';   
D{9} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp12_log.txt';   
D{10} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp13_log.txt';  
D{11} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp14_log.txt';  
D{12} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp15_log.txt';  
D{13} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp16_log.txt';  
D{14} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp17_log.txt';  
D{15} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp18_log.txt';  
D{16} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp19_log.txt';  
D{17} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp1_log.txt';   
D{18} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp20_log.txt';  
D{19} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp21_log.txt';  
D{20} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp22_log.txt';  
D{21} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp23_log.txt';  
D{22} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp24_log.txt';  
D{23} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp25_log.txt';  
D{24} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp26_log.txt';  
D{25} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp27_log.txt';  
D{26} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp28_log.txt';  
D{27} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp29_log.txt';  
D{28} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp2_log.txt';   
D{29} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp30_log.txt';  
D{30} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp31_log.txt';  
D{31} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp32_log.txt';  
D{32} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp33_log.txt';  
D{33} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp34_log.txt';  
D{34} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp35_log.txt';  
D{35} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp36_log.txt';  
D{36} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp37_log.txt';  
D{37} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp38_log.txt';  
D{38} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp39_log.txt';  
D{39} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp3_log.txt';   
D{40} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp40_log.txt';  
D{41} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp41_log.txt';  
D{42} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp42_log.txt';  
D{43} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp43_log.txt';  
D{44} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp44_log.txt';  
D{45} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp45_log.txt';  
D{46} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp46_log.txt';  
D{47} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp47_log.txt';  
D{48} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp48_log.txt';  
D{49} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp49_log.txt';  
D{50} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp4_log.txt';   
D{51} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp50_log.txt';  
D{52} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp51_log.txt';  
D{53} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp52_log.txt';  
D{54} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp53_log.txt';  
D{55} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp54_log.txt';  
D{56} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp55_log.txt';  
D{57} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp56_log.txt';  
D{58} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp57_log.txt';  
D{59} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp58_log.txt';  
D{60} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp59_log.txt';  
D{61} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp5_log.txt';   
D{62} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp61_log.txt';  
D{63} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp62_log.txt';  
D{64} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp63_log.txt';  
D{65} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp64_log.txt';  
D{66} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp65_log.txt';  



D{67} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp66_log.txt';  
D{68} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp67_log.txt';  
D{69} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp68_log.txt';  
D{70} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp69_log.txt';  
D{71} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp70_log.txt';  
D{72} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp71_log.txt';  
D{73} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp72_log.txt';  
D{74} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp73_log.txt';  
D{75} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp74_log.txt';  
D{76} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp75_log.txt';  
D{77} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp76_log.txt';  
D{78} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp77_log.txt';  
D{79} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp78_log.txt';  
D{80} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp79_log.txt';  
D{81} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp7_log.txt';   
D{82} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp80_log.txt';  
D{83} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp81_log.txt';  
D{84} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp82_log.txt';  
D{85} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp83_log.txt';  
D{86} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp84_log.txt';  
D{87} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp85_log.txt';  
D{88} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp86_log.txt';  
D{89} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp87_log.txt';  
D{90} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp88_log.txt';  
D{91} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp89_log.txt';  
D{92} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp8_log.txt';   
D{93} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp90_log.txt';  
D{94} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp91_log.txt';  
D{95} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp92_log.txt';  
D{96} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp93_log.txt';  
D{97} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp94_log.txt';  
D{98} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp95_log.txt';  
D{99} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp96_log.txt';  
D{100} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp97_log.txt'; 
D{101} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp98_log.txt'; 
D{102} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp99_log.txt'; 
D{103} = '/Users/christian/Documents/MATLAB/Data Files SCRalyze/pp9_log.txt';  
datatype = 'txt';                                                              
import{1}.channel = 2;                                                         
import{1}.type = 'scr';                                                        
import{1}.sr = 256;                                                            
import{1}.transfer = 'none';                                                   
options.overwrite = 0;                                                         
scr_import(D, datatype, import, options);  
  
  
  
  
  
  
 
	  


