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Management summary

ORTEC offers the software tool BOSS, which is used for supply chain optimization studies
and decision support at a strategic and tactical level. To find the optimal configuration of
a supply chain, BOSS uses mathematical programming. In mathematical programming, it
is generally assumed that all data necessary to solve the model is accurately known at the
moment of decision. However, in supply chain modeling, parameters like actual demand for
products (right-hand side uncertainty) and prices of products (cost parameter uncertainty) are
not precisely known when critical decisions have to be made. Furthermore, a mathematical
model is generally a simplification of a real business problem. Such a model typically leaves
out details that are difficult to express by formal expressions or that make the model hard to
solve. Also, some optimization criteria are inherently subjective and difficult to quantify. This
thesis describes research into improving the capabilities of BOSS to deal with data and model
uncertainties.

Modeling to Generate Alternatives (MGA) has been proposed as a framework for dealing
with complex problems for which there are important unmodeled issues (Chang et al., 1983).
MGA techniques are designed to provide the decision maker a set of alternative solutions that
are good with respect to the modeled objectives and different from each other in the decisions
they make. Literature describes several methods to generate such alternatives. We propose to
apply an approach based on the Hop, Skip, and Jump (HSJ) method by Brill et al. (1982),
which we refer to as the Generalized HSJ (GHSJ) framework.

The GHSJ framework uses mathematical optimization with a different objective function
than the original model uses. A constraint is added to this new model to ensure that the
cost of an alternative solution does not exceed the optimal value by more than a pre-specified
percentage. Furthermore, the constraints of the original model should hold. We propose four
realizations of the GHSJ method that all use a different objective function, depending on the
purpose of the method with respect to the obtained alternative solutions:

1. to obtain maximally different solutions, we apply the Standard HSJ method;

2. to obtain a large number of alternative solutions, we apply the Random HSJ method;

3. to obtain alternative solutions that perform better in case of cost parameter uncertainty,
we apply the Cost uncertain HSJ method;

4. to obtain alternative solutions that are more robust against right-hand side uncertainty,
we apply two versions of the Robust HSJ method.

Thus, the four approaches of the GHSJ method deal with both model uncertainty (method 1
and 2) and data uncertainty (method 3 and 4).

To test the proposed methods, we use two test cases based on studies performed for customers
of ORTEC. The test results are promising and show that each method is able to obtain the
type of alternative solutions that it aims for. Based on these results, we recommend ORTEC
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to implement all four methods in BOSS. When doing a strategic network study for a customer
with BOSS, we advise ORTEC to always use the Standard HSJ method. This method provides
insight to the decision maker in the existence of solutions that are close to optimal, but with very
different strategic decisions. We recommend to use the Random HSJ method, when cost may
only increase from optimality by a small amount, for example 0.5%, and the Standard HSJ finds
too few solutions. When cost uncertainty plays a role, even if there is only a slight presumption
that actual cost may be different than assumed, we recommend to apply the Cost uncertain
HSJ method. Initial results should point out whether there exist alternatives that outperform
the initial solution. Also, if the Cost uncertain HSJ does not find good alternatives, the method
still serves a purpose, since the decision maker gets more confidence in the proposed solution.
We recommend applying the Robust HSJ method (version 1) if a customer wants to consider
alternatives that allocate unused capacity differently over production facilities and distribution
locations. Finally, when the customer indicates that he prefers capacity to be not fully utilized
for all production or distribution locations, we recommend to apply the Robust HSJ method
(version 2).
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Chapter 1

Introduction

This report describes the graduation research into improving the capabilities of the supply chain
optimization tool BOSS, to deal with uncertainties in input data and model formulations.

In strategic and tactical supply chain optimization studies, modelers are confronted with
uncertainty of input data. This may influence the applicability and suitability of a proposed
supply chain design. Furthermore, the decision maker almost always has some objectives that
are not modeled. Therefore, he prefers to have several alternative solutions to choose from.
These issues are also relevant for the supply chain optimization tool BOSS, which is developed
at ORTEC.

Before we elaborate on this subject, we first introduce the company ORTEC in Section 1.1
and the supply chain optimization tool BOSS in Section 1.2. Section 1.3 provides a description
of the relevant problems for this research. Section 1.4 discusses the research scope, objectives,
and corresponding questions. Finally, Section 1.5 describes the organization of this thesis.

1.1 Company description

ORTEC is one of the largest providers of advanced planning and optimization software solutions
and consultancy services. ORTEC was founded in 1981 and has grown to a company that
employs over 700 employees in several offices in Europe, North America, Asia, and the Pacific
Region with more than 1,550 customers worldwide. Industries in which ORTEC operates are
among others: oil, gas and chemicals, aviation, trade transport and logistics, consumer packaged
goods, professional and public services, and health care. The mission of ORTEC is as follows
(ORTEC company profile, n.d.):

To support companies and public institutions in their strategic and operational deci-
sion making through the delivery of sophisticated planning and optimization software
solutions, professional consulting, and mathematical modeling services.

ORTEC’s portfolio includes advanced software solutions to support and optimize operational
planning for a wide range of business applications, such as fleet routing and dispatch, work-
force scheduling, service planning, and vehicle load optimization. These standardized advanced
planning systems are typically installed at customer site, and operated by customer staff. The
focus of these systems is mainly tactical and operational.

Furthermore, ORTEC provides logistics consultancy and services dedicated specifically to
individual customer needs and situation. The consultancy and services typically have a strategic
or tactical focus, and are supported by dedicated logistics decision support systems, developed
to meet individual customer needs. Also, ORTEC conducts network studies using software tools
that are not fit to hand-over to customers.

1



2 1. Introduction

This research concerns the consultancy department of ORTEC and, more specifically, the
consultancy business unit Consulting and Information technology Services (CIS). This depart-
ment has a large number of customers, mainly in logistics, for which it provides customized
software solutions.

1.2 BOSS introduction

BOSS is a software tool that is used for supply chain optimization studies and decision support
at a strategic and tactical level. A typical supply chain, as displayed in Figure 1.1, comprises
suppliers, production sites, storage facilities, and customers. Suppliers are most upstream of
the supply chain, providing raw materials to a production location. Each production location,
also called plant, may have more than one supplier. Products produced at the plants will often
be stored at one or two intermediary stages in the supply chain, namely warehouses and smaller
distribution centers. Each warehouse may be supplied from more than one production location.
Similarly, a distribution center can be supplied from more than one warehouse, although in
practice it is most often only supplied from one warehouse. It is possible that one or more
stages in the supply chain are located at the same site, such that there is no transport between
these stages. For example, a warehouse may be located at a production site. Another deviation
from the standard supply chain described here is when intermediary steps are left out. For
example, the supply chain may not consist of warehouses or more extremely, products are
transported directly from the production locations to the customers.

A supply chain should be managed in the most efficient way to minimize cost, delivery
delays, and inventories, and to maximize profit and customer service levels. To this end, supply
chain management involves several strategic and tactical decisions (Tsiakis et al., 2001):

• Location decisions consider the number, size, and physical location of production plants,
warehouses, and distribution centers.

• Production decisions consider the products to be produced at each production site and
also the allocation of suppliers to plants and of plants to warehouses.

• Transportation decisions consider the allocation of plants or warehouses to distribution
centers and of distribution centers to customers.

BOSS is able to cover the entire supply chain from obtaining the raw materials to the delivery at
the customers. Based on data on, among others, costs, capacities, and demand, BOSS calculates
the optimal supply chain configuration within the allowed solution space. To find the optimal
design of the supply chain, BOSS uses mathematical programming. Chapter 2 presents a more
extensive description of the BOSS model.

The approach ORTEC takes with BOSS is that it developed a software tool that can be
operated at a customer site, with a standardized ‘core’ of basic functionalities. The design
allows tailoring and extension to meet customer requirements. Also, in its general form, BOSS
can be used by consultants of ORTEC in studies performed for customers.

1.3 Problem introduction

In mathematical optimization, it is generally assumed that all data necessary to solve the model
is accurately known at the moment of decision. However, in many real world optimization
problems, data uncertainty is present. In supply chain optimization, the actual demand for
products, financial returns, prices of products, material requirements, machine reliability, and
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primary distribution

suppliers customersdistribution centerswarehousesplants

secondary distribution

Figure 1.1: A typical supply chain network.

other resources are not precisely known when critical decisions have to be made. The moment
a company makes important strategic decisions for the upcoming months, or even years, a lot
of the input data is still uncertain. In BOSS, a linear programming problem is solved for which
all parameters are set at their most likely values. Nevertheless, the model is likely to violate
the constraints with the actual data or the model might be far from optimal for the realized
data. For example, when actual demand is higher than expected, it might be infeasible to fulfill
all demand in time. The obtained solution can be far from optimal when, for example, realized
production cost for a location are underestimated.

In many practical applications, constraint violation may influence the usability of a solution
as shown in an extensive case study on several linear optimization problems by Ben-Tal and
Nemirovski (2000). They conclude that:

In real world applications of linear programming one cannot ignore the possibility
that a small uncertainty in the data can make the usual optimal solution completely
meaningless from a practical viewpoint.

Since actual input data cannot be used, the goal is to find a solution which is less sensitive
to a deviation from the expected input data. When parameters are equal to their expected
values, the objective value should not loose too much in optimality. Obtaining such a solution
would be relevant to the BOSS model, since many decision-makers are willing to trade off some
optimality for a solution that is more robust against data uncertainty.

Another critical assumption made in mathematical optimization also concerns uncertainty,
namely model uncertainty. Generally, a mathematical model is assumed to accurately describe
the real life situation. However, the mathematical model is almost always a simplification of
the real business problem. Such a model may deliberately leave out details that are difficult to
express by mathematical expressions or that make the model hard to solve. More importantly,
some optimization criteria are inherently subjective and difficult to quantify. For example, a
decision-maker might from experiences have some idea in mind about a preferred schedule. In
practice, a business manager prefers a schedule with little ‘chaos’ in it, i.e., a simple, orderly
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schedule with as little as possible deviations from some basic schedule. This means for example,
that customers are preferably supplied every time from one single depot instead of from changing
depots. These kind of preferences might not be easily modeled.

Therefore, from a decision-making perspective, it is preferable to have several alternative
solutions. These solutions should differ significantly from each other regarding the decisions
made. For example, they might have different facility locations or a different allocation of
customers to depots. However, their objective value should not deviate too much from the
optimal solution. The decision-maker should decide which solution best matches the actual
situation and fits both the modeled and unmodeled objectives.

1.4 Research design

This section gives a formal description of the research into the two uncertainty related problems
discussed in Section 1.3. Section 1.4.1 specifies the scope of this research. Section 1.4.2 identifies
the research objectives. To meet the research objectives, a number of sub goals are identified
and several research questions need to be answered. Section 1.4.3 discusses these goals and
research questions.

1.4.1 Research scope

The research in this thesis concentrates on how to deal with uncertainty in the BOSS model.
Since the BOSS model is formulated as a mixed integer linear programming (MILP) problem,
this research specifically focuses on MILP problems.

As BOSS is a consulting tool, it is applied in many different settings and with different
purposes. For this research, we focus on strategic level decisions in supply chain optimization.
These strategic decisions concern, among others, the locations that should be opened and the
allocation of customers to distribution centers. Therefore, we refer to this type of problem as
the location-allocation problem. Chapter 2 provides an exact definition of the model for this
study.

Section 1.3 discusses two sources of uncertainty in mathematical programming that are
relevant for supply chain planning, namely:

• data uncertainty, i.e., uncertainty about, among others, actual demand, capacities, and
costs;

• model uncertainty, i.e., uncertainty about whether the model accurately describes the
realistic situation.

For this study, our goal is to investigate how we can deal with both types of uncertainty.
However, the primary focus of this research is on generating alternative solutions to account for
model uncertainty. The main reason for this choice is that business wise it is more relevant to
generate alternatives than to obtain robust solutions, since in practice there is a lot of demand
for it. This is among others caused by the fact that, for robust optimization a lot of in depth
knowledge on the business case and also on the uncertain data is required. However, this
information is often not readily available. For generating alternatives, no extra information
is required, since the sole purpose of generating the alternatives is to account for unknown
information. Furthermore, a decision maker is usually not looking for the safest solution; mostly
he is interested in solutions that are close to optimal, but differ on the critical decisions made. He
can then choose the solution that best fits the modeled and unmodeled objectives. Additionally,
by implementing a method to generate alternative solutions, we might obtain solutions that
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are besides significantly different from each other, also more robust against data uncertainty.
More concretely, we can explicitly incorporate the objective of robustness in the framework for
generating alternative solutions. Finally, from the literature overview in Chapter 3, it follows
that methods to deal with model uncertainty are much better suited for implementation in
BOSS for the model instances we want to deal with.

1.4.2 Research objectives

We identify the need to gain insight into methods to deal with uncertainty in the location-
allocation problem in BOSS and ORTEC’s wish to improve the ability of BOSS to handle these
uncertainties. Therefore, we formulate the following research objective:

The objective of this research is to improve the capabilities of BOSS to deal with both
data and model uncertainties.

In order to make this objective more concrete, we formulate for both sources of uncertainty
a separate objective. To account for data uncertainty, solutions should be obtained that are
more robust against small deviations in input data. To deal with model uncertainty, alternative
solutions should be generated, such that the decision maker can decide which solution best fits
the modeled and unmodeled objectives. We formulate the following two sub-objectives:

SO 1 The objective of this research with respect to data uncertainty is to create insight
in available methods to obtain solutions to the location-allocation problem in
BOSS that are more robust against data uncertainty.

SO 2 The objective of this research with respect to model uncertainty is to develop
a method to obtain alternative solutions to the location-allocation problem in
BOSS.

1.4.3 Research questions

To meet the research objectives as formulated in Section 1.4.2, this research consists of several
goals that all serve their own purpose and together work towards the research objectives. We
now discuss the goals and the research questions arising from these goals. Figure 1.2 displays
the relation between the questions.

The first goal of this research is to provide a formal description of BOSS. To this end, we
formulate a mixed integer linear programming (MILP) model for the location-allocation problem
in BOSS. This goal leads to the following question:

RQ 1 What is the (mixed integer) linear programming model which describes the strategic location-
allocation problem that can be modeled in BOSS?

The second goal of this research is to identify relevant methods in literature to obtain solutions
to linear programming problems that are less sensitive to uncertainty in the input data. We refer
to these kind of solutions as robust solutions. This goal leads to the following two questions:

RQ 2 What approaches exist in literature to obtain solutions to linear programming problems that
are more robust against uncertainties in the input data than the solution that is optimal
for specific parameter values?

RQ 3 What identified methods to obtain solutions that are more robust against data uncertainty
are best suited for implementation in BOSS?
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Figure 1.2: Relation between research questions.

The third goal of this research is to identify relevant methods in literature to obtain alternative
solutions and to assess the applicability of these methods to the location-allocation problem in
BOSS. The alternative solutions should perform well with respect to the modeled objective(s)
and they should differ from each other with respect to critical decisions. To this end, we
propose a framework to generate alternative solutions to a linear programming model and test
realizations of this framework for applicability in BOSS with two test cases. The research
questions corresponding to this research goal are:

RQ 4 What approaches exist in literature to obtain alternative solutions to a linear programming
problem, that make different critical decisions from the optimal solution?

RQ 5 How can we define a framework to generate alternative solutions to the location-allocation
problem in BOSS, that are close to optimal with respect to the original objective, but make
different decisions?

RQ 6 To what extent are the proposed models able to generate alternative solutions that differ
in the decisions taken?

Finally, the fourth goal of this research is to identify ways in which the proposed framework to
deal with model uncertainty, can also be used to account for data uncertainty. We want to asses
the applicability of such methods to the location-allocation problem in BOSS. The following
research questions correspond to this goal:

RQ 7 How can we use the defined framework to obtain solutions that are more robust against
uncertainties in input data?

RQ 8 To what extent are the proposed models able to generate one or more alternative solutions
that are more robust against data uncertainties?
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1.5 Organization of the thesis

This section describes the organization of this thesis and gives a brief summary of the following
chapters. Chapter 2 describes in detail the location-allocation problem that can be modeled in
BOSS and gives the mathematical formulation for this model. By comprehending the model
formulation, we understand how the initial solution to the problem is obtained. Furthermore,
it enables us to specify with respect to which decisions, alternative solutions should differ from
the initial solution and each other. Also, this chapter discusses the data input that is considered
to be uncertain in BOSS.

Chapter 3 gives an overview of relevant literature. This literature study helps us to place
our research into perspective and defines a direction for the remainder of the thesis. The lit-
erature study reviews methods to account for either data uncertainty (Section 3.1) or model
uncertainty (Section 3.2). Based on this study, we decide to focus on methods to generate
alternative solutions.

Based on the discussed literature, Chapter 4 describes a general framework to generate
alternative solutions. We apply this framework to the location-allocation problem in BOSS.
Subsequently, this chapter proposes four realizations of this framework to generate alternatives
that either make different decisions or are better able to deal with data uncertainty than the
initial solution.

Chapter 5 describes two test cases from practice that are used to test the proposed methods.
We apply all methods to these test cases. This chapter also discusses the obtained results in de-
tail and describes further research that is done on the sensitivity of the methods. Furthermore,
Chapter 5 discusses some modifications to improve obtained results and tests these adapted
models.

Finally, Chapter 6 summarizes the answers to the research questions. Also, this chapter
contains a section that makes concrete recommendations to ORTEC on the application of the
proposed methods in studies ORTEC performs for customers with BOSS. Based on the as-
sumptions made in this research and the knowledge gained on methods to generate meaningful
alternative solutions to the location-allocation problem in BOSS, we conclude with some sug-
gestions for further research.
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Chapter 2

BOSS model description

BOSS is a decision support tool for supply chain optimization at a strategic and tactical level.
The tool can be applied in many different settings and for different time horizons and types of
decisions. This chapter provides a formal description of BOSS. Section 2.1 discusses the type of
problems solved with BOSS on which this research focuses. Section 2.2 provides a description
of the corresponding mathematical formulation of the BOSS model. Section 2.3 discusses data
uncertainty in BOSS. Finally, Section 2.4 discusses on which decisions we want alternative so-
lutions to differ from the initial solution and each other.

2.1 Introduction to BOSS model

BOSS defines locations as the main entities and theoretically between any two locations trans-
portation of goods may occur. Furthermore, a location can have one or more of the following
roles: production, storage, and demand. One physical location can be modeled as a supply
chain itself as well, i.e., a location can have more than one production facility, and output of
one production facility may be input to another. Figure 2.1 displays the typical set up of a
supply chain in BOSS. Products can refer both to end products sold to customers, as well as to
intermediate products used in the production process. Products can be defined as supply at a
location if the modeler wishes to no further specify the upstream supply chain of this product.
In the example, this is the case for P1, which is modeled to be available at a certain price at
location S1 and the modeler takes no further interest in where the product originates from.
Commodities are used in the production process; they are available at the start of the period
at a location and, if not used by the end of the period, are no longer available. Examples of
commodities that can limit the total production are available time or maximum CO2 emission.

The scope of the research is the application of BOSS to strategic level studies, with a time
horizon of 1 to 5 years. Even though BOSS is able to handle multiple periods, we consider only
one time period models, where the data is aggregated to this level. The main study questions
for this time horizon are:

• At which locations should new production facilities/depots be opened?

• Which existing production locations/depots should be closed?

• In which production locations/depots should be invested to increase the capacity, and
how much should be invested?

Since BOSS is a widely deployable tool with many options for lower level studies, we might
easily end up using an unnecessarily complicated model with too many details. Examples of

9
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Figure 2.1: Typical supply chain as modeled in BOSS.

issues that are not relevant for our study are:

• stock levels and inventory cost;

• different production modes at each production facility;

• different transport modalities, with different transportation time and cost between any
two locations;

• exchange/swap deals with competitors;

• non-monotonous tranched pricing for products and commodities;

• routing and timing of deliveries;

• workforce scheduling.

Although these issues are not taken into account in our study, all except for the last two can
be modeled in BOSS. Section 2.2 discusses the mathematical formulation corresponding to the
BOSS model described above. This model formulation is used throughout this thesis.

2.2 Mathematical formulation

This section describes the mathematical formulation of the supply chain model outlined in
Section 2.1. Each subsection describes for an element, or part, of the supply chain how it is
modeled in BOSS. Appendix A gives a summary of this mathematical model. Note that we
differentiate between parameters and decision variables by beginning the name of a decision
variable with a capital letter and a parameter name not.

2.2.1 Supply chain

A supply chain consists of locations and flows of products between them; the potential flows
are represented by arcs. To model the general network we define:

• L : set of all physical locations in the network;
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• P : set of products;

• Flow (p, l1, l2) : decision variable giving the number of units of product p transported
from location l1 to location l2;

• LocOpen (l) : decision variable indicating whether or not a location is in use:

LocOpen (l) =

{
1 if location l is in use;

0 otherwise.

The maximum throughput of a location is determined by the distribution capacity of the loca-
tion. This distribution capacity is given for each location:

• flowcap (p, l) : maximum throughput of product p at location l.

Furthermore, for a location that is used for either production or distribution, fixed cost are paid.
To model this, we ensure by a constraint that the decision variable LocOpen (l) is set to 1, when
a location is used. However, for a customer location, LocOpen (l) does not have to be set to
1, since no fixed cost are associated with such a location. Thus, products (either intermediates
or end products) can only originate from a location for which LocOpen (l) is 1. On the other
hand, products can be received by locations that are not ‘opened’, i.e., the decision variable
LocOpen (l) may equal zero for such a location. Also, we want to ensure that throughput at a
location is never higher than the throughput capacity. To model both situations, we introduce
the following restriction:∑

l1∈L|l1 6=l

Flow (p, l, l1) ≤ LocOpen (l) · flowcap (p, l) ∀ p ∈ P, l ∈ L. (2.1)

However, since the distribution capacity of a location can be increased by making an investment,
we replace constraint (2.1) by two other constraints, see Section 2.2.5.

2.2.2 Production process

For a location to be able to manufacture products, it needs to have production facilities. There-
fore, we define:

• F : set of all production facilities;

• F l ⊆ F : set of all production facilities located at physical location l, i.e., F l = ∅ if no
production can take place at location l, for example, if l is a customer location.

Note the difference between production facilities and distribution facilities; whereas the distri-
bution capacity is defined by the model for the entire location, production facilities are modeled
separately at a location and one location can have multiple production facilities.

The input of the production process, called ingredients, consists of products and commodi-
ties. Commodities are available at a location for a certain time period. Examples of commodities
are electricity and CO2. Thus, we define:

• M : set of commodities;

• G : set of ingredients for the production process, i.e., G =M∪P.
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12 strawberries

500 ml yogurt

500 ml ice cream

1 strawberry 
smoothie

3 minutes (time)

Figure 2.2: Example production process strawberry smoothie.

Each production facility produces according to a specific recipe. For each ingredient and a
specific facility, a recipe indicates the number of units of that ingredient used or produced in
the production process of that production facility; a negative number denotes the use of an
ingredient and a positive number denotes the production of the ingredient. We assume that
commodities can only be used in the production process and cannot be produced, whereas
products can be both used and produced. A recipe of a production facility gives the ratios of
the ingredients in the production process of that production facility. Thus, we introduce the
following parameter:

• recipef (g) : number of units of ingredient g used or produced at production facility f .

We clarify this concept by an example of producing a strawberry smoothie. The production
facility is a blender and the ingredients are: 12 strawberries, 500 ml of yogurt, and 500 ml of
vanilla ice cream. Furthermore, we need to blend for 3 minutes. If time is a constraining factor,
we should explicitly model it as a commodity. Figure 2.2 summarizes this process. Note that
each ingredient can have its own unit of measurement. For the example, we have the following
recipe:

1. recipeblender (strawberries) = −12;

2. recipeblender (yogurt) = −500;

3. recipeblender (ice cream) = −500;

4. recipeblender (time) = −3;

5. recipeblender (smoothies) = 1.

To measure the production level of facility f , we introduce a decision variable Production (f),
indicating the number of times recipef is carried out. The unit of measurement is called
production units, such that if Production (f) = 1, recipef is carried out once and the number
of production units equals 1. The actual number of units of an ingredient used or produced in
the production process can be derived by multiplying the production level by the corresponding
recipe. Therefore, we define:

• Production (f) : production level at facility f , we measure this variable by production
units;
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• ProdIn (p, f) : number of units of product p used in the production process of facility f ;

ProdIn (p, f) = −1 · Production (f) · recipef (p) ∀ p ∈ P, f ∈ F| recipef (p) < 0;
(2.2)

• ProdOut (p, f) : number of units of product p produced at facility f ;

ProdOut (p, f) = Production (f) · recipef (p) ∀ p ∈ P, f ∈ F| recipef (p) ≥ 0; (2.3)

• CommUse (m, f) : number of units of commodity m used in the production process of
production facility f ;

CommUse (m, f) = −1 · Production (f) · recipef (m) ∀m ∈M, f ∈ F . (2.4)

Note that ProdIn (p, f), ProdOut (p, f), and CommUse (m, f) are auxiliary variables, intro-
duced to increase readability. If we return to the example of Figure 2.2 and consider the case that
we make 3 strawberry smoothies, i.e., ProdOut (smoothies) = 3, we get Production (blender) =
3 by Equation (2.3). Table 2.1 displays the values of ProdIn (p, f) and ProdOut (p, f) for the
products.

strawberries yogurt ice cream smoothies

ProdIn (p, blender) 36 1500 1500
ProdOut (p, blender) 3

Table 2.1: Input and output of products, for the example of Figure 2.2 and a production level of 3
strawberry smoothies.

2.2.3 Production capacity

The maximum production level of a production facility is determined by the production capacity:

• prodcap (f) : maximum production capacity of production facility f .

The following constraint models that the production level at a facility is restricted by the
capacity of that facility:

Production (f) ≤ prodcap (f) ∀ f ∈ F . (2.5)

However, the production capacity of a facility can be increased by making an investment; Section
2.2.5 discusses the modification of this constraint, such that it also covers investments.

Next we consider products for which the upstream supply chain is no further specified, for
example because a product is purchased from an external supplier. Such products are supplied
to a location and are not produced in the scope of the supply chain. Therefore, these products
are modeled as if they are available at a location against a certain price. The transport of a
supplied product to the location is not modeled, since transportation costs are included in the
supply costs. So, we define:

• Supply (p, l) : decision variable indicating the number of units of product p supplied to
location l.



14 2. BOSS model description

Thus, there are two option for products to enter the supply chain, either as a result of the
production process in the supply chain, or as supply from outside the relevant supply chain.

The production level at a facility is restricted by the capacity of a production facility, as
expressed in restriction (2.5). However, for each product at each location a maximum supply is
given and this can also restrict the total production capacity of a location. To model this, we
introduce the following parameter:

• maxsupply (p, l) : maximum supply of product p at location l.

The following constraint ensures that the total supply at a location is no bigger than the
maximum available supply for each product:

Supply (p, l) ≤ maxsupply (p, l) ∀ p ∈ P, l ∈ L. (2.6)

Finally, the actual production level may also be restricted due to the available units of a com-
modity:

• commavail (m, l) : available number of units of commodity m at location l.

The following constraint models the restriction on the use of commodities:∑
f∈F l

CommUse (m, f) ≤ commavail (m, l) ∀m ∈M, l ∈ L. (2.7)

2.2.4 Location balance

Ultimately, the purpose of the supply chain is to make money by selling products to customers.
Therefore, we introduce the parameter:

• demand (p, l) : number of units demand for product p by location l.

To maximizes profit and customer satisfaction, all demand by customers has to be fulfilled.
Furthermore, the flow from and to a location, together with the supply, production process, and
demand should be balanced, such that a product cannot suddenly appear at a location without
it being first produced, supplied, or transported to that location. Therefore, the following
balance equation should hold:∑

l1∈L|l1 6=l

Flow (p, l1, l) +
∑
f∈F l

ProdOut (p, f) + Supply (p, l) =

∑
l2∈L|l2 6=l

Flow (p, l, l2) +
∑
f∈F l

ProdIn (p, f) + demand (p, l) ∀ p ∈ P, l ∈ L. (2.8)

The above equation holds for all types of locations. For example for a distribution location,
ProdOut (p, f), ProdIn (p, f), and demand (p, l) equal zero and the remaining equation states
that for each product total flow to a location, including flow from outside the scope of the
supply chain (Supply (p, l)), equates to the total flow out of the location. Similarly, for a
customer location the above equation states that the flow into the location should equal the
demand, i.e., all demand has to be fulfilled.
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2.2.5 Investments

Only in very rare cases, a study performed with BOSS will be a greenfield study, i.e., a study in
which no previous facilities exist, such that the entire supply chain has to be configured. More
likely, a study is performed on an existing supply chain, with some fixed locations for production
and distribution. Nevertheless, it might be possible to invest in the supply chain to change the
current configuration. For example, the throughput capacity of a distribution location can be
increased. Even though the choice of opening new locations is also an investment issue, we do not
formally define it as such. We define two types of investments: investments in the distribution
capacity of a location and investments in the production capacity of a production facility.
Furthermore, investments can be divided into positive and negative investments; capacity is
increased by a positive investment and decreased by a negative investment. Evidently, a positive
investment costs money and a negative investment brings in money.

Since it is not realistic to assume that we can linearly increase capacity by investing a
certain amount, the management has to specify a set of potential investments. For example,
they might be aware of the opportunity to buy a new machine at a certain price to double
the production capacity of a certain production facility. Also, an investment can be defined as
closing a distribution location to make a certain amount of money. We have:

• I : set of potential investments. Each investment is related to either a location in its
entirety or to a single facility;

• Ifl(l) ⊆ I : set of potential investments that increase or decrease the distribution capacity
of location l;

• Ipr(f) ⊆ I : set of potential investments that increase or decrease the production capacity
of facility f .

Furthermore, we define:

• InvDone (i) : decision variable indicating whether or not an investment i is made:

InvDone (i) =

{
1 if investment i is made;

0 otherwise.

It is possible to define several different investment options for one production facility; the
management may for example have the option to choose between two machines with different
cost and capacity. However, investments at a facility are mutually exclusive. Similarly, even
though at each location several investment options can be defined to increase or decrease the
distribution capacity, only one investment can be chosen. We model these two restrictions in
the following way: ∑

i∈Ifl(l)
InvDone (i) ≤ 1 ∀ l ∈ L. (2.9)

∑
i∈Ipr(f)

InvDone (i) ≤ 1 ∀ f ∈ F . (2.10)

If the production capacity of a location can be changed by an investment, constraint (2.5) has
to be adapted. We introduce a new parameter giving the production capacity corresponding to
an investment:

• investprodcap (i, f) : maximum production capacity of facility f if investment i is made.
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If no investment is made, the production capacity equals the original production capacity
(prodcap). If an investment is made, the actual production capacity equals the investment
production capacity (investprodcap) and the original capacity is no longer valid. Therefore, we
determine the actual available production capacity as follows:

• AvailProdCap (f) = prodcap (f) ·

(
1−

∑
i∈Ipr(f)

InvDone (i)

)

+
∑

i∈Ipr(f)
investprodcap (i, f) · InvDone (i) ∀ f ∈ F . (2.11)

Thus, we replace constraint (2.5) by:

Production (f) ≤ AvailProdCap (f) ∀ f ∈ F . (2.12)

For the distribution capacity, a similar situation holds as for the production capacity. Therefore,
we introduce the following parameter:

• investflowcap (i, p, l) : maximum throughput capacity of product p at location l if invest-
ment i is made.

We determine the actual available distribution capacity as follows:

• AvailF lowCap (p, l) = flowcap (p, l) ·

(
1−

∑
i∈Ifl(l)

InvDone (i)

)

+
∑

i∈Ifl(l)
investflowcap (i, p, l) · InvDone (i). ∀ p ∈ P, l ∈ L. (2.13)

The adapted restriction on the distribution capacity (2.1) is given by:∑
l1∈L|l1 6=l

Flow (p, l, l1) ≤ AvailF lowCap (p, l) ∀ p ∈ P, l ∈ L. (2.14)

However, another purpose of constraint (2.1) was to ensure that the decision variable LocOpen (l)
is set to 1 if a location is used for either production or distribution. In this constraint,
flowcap (p, l) had the function of a so called ‘bigM’ parameter. As discussed by Camm et
al. (1990), the choice of the constant ‘bigM’ can have serious computational implications. By
making this parameter arbitrarily large, the feasible region of the LP relaxation is unnecessarily
expanded. Therefore, ‘bigM’ should always be chosen as small as possible. However, if the
distribution capacity increases due to the decision to make an investment, constrain (2.1) does
not suffice anymore. We introduce a new ‘bigM’-type parameter, which equals the maximum
distribution capacity at a location:

• bigMFlow (p, l) = max

(
max
i∈If l(l)

(
investflowcap (i, p, l)

)
, f lowcap (p, l)

)
.

Now, we ensure that the decision variable LocOpen (l) is set to 1 if a location is used, by the
following constraint:∑

l1∈L|l1 6=l

Flow (p, l, l1) ≤ LocOpen (l) · bigMFlow (p, l) ∀ p ∈ P, l ∈ L. (2.15)
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2.2.6 Objective function

The objective of BOSS is to minimize the total costs of the supply chain design. Therefore we
define the following decision variable:

• Cost : total cost of supply chain design:

Cost = TransportCost+ LocationCost+ ProductionCost

+ SupplyCost+ InvestmentCost, (2.16)

where

TransportCost =
∑
p∈P

l1,l2∈L|l1 6=l2

Flow (p, l1, l2) · vartransportcost (p, l1, l2); (2.17)

LocationCost =
∑
l∈L

LocOpen (l) · fixedlocationcost (l); (2.18)

ProductionCost =
∑
l∈L

∑
m∈M
f∈F l

CommUse (m, f) · varcommoditycost (m, l)

+
∑
f∈F

Production (f) · varproductioncost (f); (2.19)

SupplyCost =
∑
p∈P
l∈L

Supply (p, l) · varsupplycost (p, l); (2.20)

InvestmentCost =
∑
i∈I

InvDone (i) · fixedinvestmentcost (i). (2.21)

The meaning of the cost parameters is as follows:

• vartransportcost (p, l1, l2) : variable cost of transporting one unit of product p from loca-
tion l1 to location l2;

• fixedlocationcost (l) : fixed cost of using location l;

• varcommoditycost (m, l) : variable cost of one unit of commodity m at location l;

• varproductioncost (f) : variable cost of one production unit at production facility f ;

• varsupplycost (p, l) : variable cost of one unit of product p supplied to location l. This
amount includes transportation cost and purchase price;

• fixedinvestmentcost (i) : fixed cost of making investment i.

The objective of BOSS is simply:
min Cost. (2.22)

Note that while there are fixed costs associated with using a location, these cost are not defined
for facilities. We assume that a facility that is currently utilized remains to be used in the future,
unless the entire location is closed and in that case the facility closing benefits are part of the
fixedlocationcost (l) parameter. Conversely, the option to buy a new facility at a location is
modeled as an investment.

Furthermore, since the model will most likely not be used for a period equal to the lifetime of
investments in facilities and locations, fixedlocationcost (l) and fixedinvestmentcost (i) should
be set equal to the depreciation cost over the planning horizon.
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2.3 Data uncertainty in BOSS

For supply chain studies, it is very relevant to obtain solutions that are robust against data un-
certainty in the demand parameters. When making decisions at a strategic level, actual orders
of customers are most likely not be received yet. Therefore, customer demand is often esti-
mated based on historical data. The accuracy of these estimates strongly depends on business
characteristics and resulting variance in demand. For example, the demand for coffee can be
estimated reasonably well, while estimates for road salt most likely differ significantly, especially
on the long term, from actual demand.

Furthermore, cost components are inherently uncertain. For example, products that are
bought on the spot market can vary considerably in price. For investments, the cause of uncer-
tainty is not only the variability of prices, but rather that it is very difficult to estimate actual
cost beforehand. This also holds for the fixed cost of opening a location. In conclusion, we
consider uncertainty in the following input parameters:

• demand (p, l);

• vartransportcost (p, l1, l2);

• fixedlocationcost (l);

• varcommoditycost (m, l);

• varproductioncost (l, f);

• varsupplycost (p, l);

• fixedinvestmentcost (i).

2.4 Alternative solutions in BOSS

As discussed in Chapter 1, our goal is to obtain multiple near-optimal solutions for the mathe-
matical model, so that the decision maker can examine them, and choose the solution that best
fits his preferences with respect to both the modeled objective (lowest cost) and unmodeled
objectives. Now that we have described the mathematical model of BOSS, we can explicitly
define the aspects in which we like the alternative solutions to differ from each other.

The decisions made by BOSS that are most influential to the design of the supply chain
are: which locations are opened and which investments, if any, are made to increase or decrease
the capacity of production facilities and distribution locations. The alternative solutions should
therefore differ from each other with respect to the following two binary decision variables:

• LocOpen (l);

• InvDone (i).

We consider two solutions to be different if and only if, they differ by at least one of these binary
variables. Another reason for choosing these binary variables and no continuous variables, is
that there might exist an infinite number of solutions that differ by at least one continuous
variable and in that case it is less obvious how to define when two solutions are significantly
different (Danna et al., 2007).



Chapter 3

Literature overview

In this thesis, we have indicated two relevant and related research problems. First, a key
difficulty in the strategic perspective of our location-allocation problem is addressing data un-
certainty. Second, we like to account for model uncertainties in BOSS by offering the decision
maker a choice between multiple near-optimal solutions that are significantly different in deci-
sion space.

This chapter gives an overview of the relevant literature for dealing in a mathematical model
with data uncertainty (Section 3.1) and model uncertainty (Section 3.2).

3.1 Optimization under data uncertainty

A large number of problems in production planning and scheduling, allocation, transportation,
finance, and engineering design require decisions to be made in the presence of uncertainty.
Addressing data uncertainty in mathematical programming models has long been recognized as
a central problem in optimization (Bertsimas and Sim, 2003). A key difficulty in optimization
under uncertainty is in dealing with an uncertain space that is huge and frequently leads to
very large-scale optimization models. This section begins with an overview of the different
philosophies encountered in literature on optimization under data uncertainty (Section 3.1.1).
Section 3.1.2 discusses the applicability of these models to BOSS and provides recommendations
for further research.

3.1.1 Overview of modeling philosophies

Approaches to optimization under uncertainty have followed a variety of modeling philosophies,
including expectation minimization, minimization of maximum costs, worst-case optimization,
optimization over soft constraints, and minimization of deviation from goals (Sahinidis, 2004).
This section briefly discusses these five different philosophies.

Expectation minimization

The early work of Dantzig (1955) recognizes the problem of uncertainty in input data and pro-
poses to minimize the expected cost of a solution. Dantzig divides a problem into two or more
stages. Decisions are only required to be taken for quantities or activities in the first stage.
Those in the second or later stages cannot be determined in advance, since they depend on
the outcomes of the first stage and the realization of uncertainties. For example, in a supply
chain context, we should decide on the location and size of production and distribution facilities
before actual demand is known. Next, it should be decided what quantities are produced and
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shipped to customers, based on realized demand and the locations chosen in the first stage. It
is important to note that Dantzig assumes that the set of activities is complete in the sense
that, whatever choices are made in the earlier stages, there is a possible choice of activities in
the later stages.

A formal description of the two-stage stochastic linear program as given by Birge and Lou-
veaux (1997) is:

min cTx+Eω [Q(x, ω)] (3.1)

s.t. Ax ≤ b
x ≥ 0,

with

Q(x, ω) = min qT y (3.2)

s.t. Tx+Wy ≥ h
y ≥ 0.

Here ω is a random vector formed by the components of qT , hT , and T , and W denotes the
effect of corrective actions. Problem (3.1) with variables x constitutes the first stage on which
decisions need to be made prior to the realization of the uncertain parameters ω. Problem (3.2)
constitutes the second stage with variables y. Under the assumption of discrete distributions
of the uncertain parameters, the problem can be equivalently formulated as a large-scale linear
program, which can be solved using standard linear programming approaches (Sahinidis, 2004).

Mulvey et al. (1995) propose to add a variability measure of the second stage cost, such as
variance, to the objective function. However, this introduces nonlinearity into the model and
thereby severely complicates the solution process.

Minimization of maximum cost

Like expectation minimization, the minimization of maximum cost approach also deals with
uncertainty in the cost parameters of the objective function. Consider the following model:

min cTx (3.3)

s.t. Ax ≤ b
x ≥ 0.

We assume for the vector c that c ∈ C. Note that c represents a potential realization of cost, i.e.,
it occurs with a positive, but possibly unknown probability. Furthermore, the use of scenarios
to structure the data uncertainty allows for relationships between the uncertain parameters.
The formulation of problem (3.3) that minimizes the maximum cost is:

min max
c∈C

cTx (3.4)

s.t. Ax ≤ b
x ≥ 0.

Kouvelis and Yu (1997) term these kind of solutions absolute robust solutions. They remark that
absolute robust solutions are of a conservative nature, as these solutions are based on the notion
that the worst might happen. However, such risk averse decision making might be appropriate
in an environment in which budgeted values are set as benchmarks to assess the quality of the
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decisions regardless of the realized scenario. Kouvelis and Yu introduce as an alternative the
robust deviation solution, which is the decision that exhibits the smallest deviation from the
optimal solution over all realizable data input. The objective function is then

min max
c∈C

(
cTx− cTxc∗

)
, (3.5)

where xc∗ is the optimal solution to (3.3) in case the realized cost are c. This decision criterion
is appropriate for environments in which the quality of the decision is evaluated using the actual
realized data.

Worst-case optimization

Ben-Tal and Nemirovski (2000) show that in many practical applications, data uncertainty can
cause the usual optimal solution to be infeasible for specific realizations of the data. The worst-
case optimization modeling philosophy has exactly this issue as a starting point. Thus, the
focus is on the reliability of the system, i.e., the ability of the system to remain feasible in an
uncertain environment. This approach therefore deals, as opposed to the previous discussed
approaches, with uncertainty in the constraint data.

Consider again problem (3.3), however this approach assumes uncertainty in the matrix A
and the vector b, instead of in the vector c. Worst-case optimization is concerned with hard
constraints, i.e., constraints which must be satisfied for any realization of the data (A, b) within
a reasonable prescribed uncertainty set U . The robust counterpart of the uncertain linear
programming problem (3.3) is now defined as:

min cTx (3.6)

s.t. Ax ≤ b ∀ (A, b) ∈ U
x ≥ 0.

The advantage of this method is that U describes the possible realizations of the data (A, b),
without the requirement to specify the corresponding probabilities. Furthermore, even though,
the number of restrictions can become very high with a large set of possible data realizations,
the model remains linear.

Optimization over soft constraints

The approach in worst-case optimization might seem too pessimistic in many real-life situa-
tions, especially when very little is known on the actual data and for safety reasons U is chosen
unnecessarily large. In an attempt to resolve this issue, Charnes and Cooper (1959) developed
the probabilistic approach.

In the probabilistic approach, the reliability of the model is expressed as a minimum require-
ment on the probability of satisfying constraints. In essence, the philosophy of this approach is
that infeasibilities in the second stage constraints are allowed only if the probability of occur-
rence is lower than some predefined value. Thus, also in this approach, uncertainty is assumed
in the constraint data, while the cost parameters are assumed to be known with certainty.

Consider again the classical linear programming model (3.3). If we assume that there is
uncertainty regarding the matrix A and the right-hand side vector b, then the corresponding
probabilistic linear program can be stated as follows:

min cTx (3.7)

s.t. P (Ax ≤ b) ≥ p
x ≥ 0,
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where p = (p1, p2, . . . , pm) and pi ∈ (0, 1) is the minimum required probability of satisfying
constraint i. Consider the case with one constraint, a deterministic parameter a, and random
right-hand side variable b with probability function F . Let β be such that F (β) = p. Then
the constraint P (aTx ≤ b) ≥ p can be written as aTx ≤ β. In this simple case, the proba-
bilistic model is similar to a standard linear program. Kataoka (1963) applies this model to a
transportation problem, where he assumes data to be normally distributed.

Minimization of deviations from goals

Again we consider the mathematical program of (3.3). In the minimization of deviation from
goals philosophy, uncertainty is not modeled by probability functions, but random parameters
are considered as fuzzy numbers and constraints are treated as fuzzy sets. In classical set
theory, the membership of elements in a set is assessed in binary terms, i.e., an element either
belongs to a set or it does not. However, fuzzy set theory permits the gradual assessment of
the membership of elements in a set. In fuzzy mathematical programming, some constraint
violation is allowed and the degree of satisfaction of a constraint is defined as a membership
function of the constraint. A typical linear membership function for a constraint aTx ≤ β,
where β can take values in the range [b, b+ ∆b], is:

u (x) =


1 if aTx ≤ b
1− aT x−b

∆b if b ≤ aTx ≤ b+ ∆b

0 otherwise.

(3.8)

Objective functions in fuzzy mathematical programming are treated as constraints, with the
upper bound and lower bound defined subjectively by the decision maker.

Many of the developments in the area of fuzzy mathematical programming are based on the
early paper by Bellman and Zadeh (1970). To introduce the concept, we consider flexible pro-
gramming, which is a type of fuzzy programming that deals with right-hand side uncertainties.
Problem (3.3) can be rewritten as follows to a flexible programming problem:

cTx . z0 + ∆ z (3.9)

Ax . b+ ∆ b

x ≥ 0,

where z0 denotes the optimal objective value to problem (3.3) and z0 + ∆ z denotes the aspi-
ration level of the decision maker. Since no optimal decision is defined for this problem, any
solution that satisfies all constraints can be accepted. By defining u1(x), · · · , un(x) as the set
of membership functions of the constraints of the model, including the constraint on the objec-
tive value, an optimal fuzzy decision x∗ can be defined. A common choice is to maximize the
minimum satisfaction level, i.e.,

x∗ = max
x≥0

min
i=1,...,n

ui(x). (3.10)

Zimmerman (1978) shows that if all membership functions are linear, then (3.10) can be reduced
to a classical linear program. For the membership function as defined in (3.8) this results in:

max λ (3.11)

s.t. cTx+ ∆z λ ≤ z0 + ∆z

Ax+ ∆b λ ≤ b+ ∆b

x ≥ 0

0 ≤ λ ≤ 1.
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Problem (3.11) includes one more variable and one more constraint than the original problem.
While flexible programming deals with right-hand side uncertainties, possibilistic program-

ming recognizes uncertainties in the objective function as well as in the constraint coefficients.
In a similar fashion to (3.11), an equivalent possibilistic program can be derived by introducing
a new variable to the model.

3.1.2 Discussion

Section 3.1.1 describes several alternative approaches to deal with uncertainty in the input data.
The approaches differ with respect to:

1. the parameters in which uncertainty is assumed; some approaches deal with uncertainty
in the right-hand side of constraints, while others handle uncertainty in parameters in the
objective function.

2. the way in which the approach deals with uncertainty, i.e., the objective with respect to
uncertainty. For example, where one method aims at minimum expected cost, another
provides the solution with the lowest maximum cost.

Section 2.3 indicates that for BOSS there is uncertainty in both cost parameters and right-hand
side parameters, namely demand. Only the fuzzy mathematical programming approach is able
to handle both uncertainties simultaneously. However, other methods might be adapted or
combined such that they are also able to handle both variants of uncertain data.

Regarding the second issue, none of the methods directly match the objective we have for
BOSS with respect to uncertain input data. We like to obtain solutions which are close to
optimal and ‘almost’ feasible for ‘most’ scenarios. The first approach, minimization of expected
cost, is too narrow for our objective and realized cost may deviate too much from optimality
for different scenarios. Extending the objective function by variance, may solve this problem.
However, it introduces nonlinearity into the model. This method is therefore not suitable for the
large problem instances we want to model with BOSS, since no solver available on the market
can solve such a model in reasonable time. Minimizing the maximum cost over different scenar-
ios as well as worst-case optimization takes the worst possible outcome as the relevant scenario
for respectively cost parameter and right-hand side uncertainty. Since these approaches produce
over-conservative solutions, they are not consistent with our objective. The optimization over
soft constraints approach partly solves this issue. It however, requires specifying a probability
distribution and it does not account for uncertainty in the cost parameters. Nevertheless, this
approach might be relevant for handling uncertainty about customer demand.

The last discussed approach, fuzzy mathematical programming, can handle both types of
uncertainties. It allows for some constraint violation for fuzzy defined constraints. Furthermore,
this method does not introduce nonlinearity into the model, if membership functions are defined
linear. This is in contrast to many other approaches. For these reasons, this method might
be very useful for dealing with data uncertainty in BOSS. Further research is required on the
choice of the membership function and to determine reasonable bounds on the uncertain input
data.

However, we have decided to do no further research into these methods to obtain robust
solutions. Instead, we focus on methods to generate alternative solutions and on adapting
these methods such that they can also deal with data uncertainty. Section 3.2 discusses differ-
ent approaches from literature to generate alternative solutions to mathematical programming
problems.
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3.2 Generating alternative solutions

Modeling to Generate Alternatives (MGA) has been proposed as a framework for dealing with
complex problems for which there are important unmodeled issues (Chang et al., 1983). MGA
techniques are designed to provide the decision maker with a set of alternatives that are good
with respect to the modeled objectives and different from each other in decision space.

Section 3.2.1 gives an overview of approaches to generate alternative solutions. Section 3.2.2
discusses the methods and the applicability to BOSS.

3.2.1 Overview of approaches

This section discusses six different approaches to generate alternative solutions. Assume that
we have the following linear programming problem to which we want to find close to optimal
alternative solutions:

min Z = cTx (3.12)

s.t. Ax ≤ b
x ≥ 0.

Furthermore, z0 is the objective value of the optimal solution to (3.12).

Adjust model parameters

One approach to generate alternative solutions is to judgmentally change model parameters or
equations, to examine alternative sets of conditions. This approach is applied to scheduling of
police cars by Kolesar et al. (1975). In this study, constraints are added to include preferences
about starting times of shifts. Also, the number of petrol cars is restricted for each optimization
by a different value to obtain different models, resulting in different solutions. Balakrishnan
and AltinKemer (1992) vary the right-hand side of one of the constraints in a mixed integer
programming model to obtain alternative designs for a network communication system.

Adapting constraints requires a very high level of in-depth knowledge of the problem at
hand. Furthermore, this method is ad hoc and provides no means for obtaining solutions that
are different, but perform good with respect to the original set of conditions. For these reasons,
we do not discuss this method further.

Branch and Bound method

A second method discussed in literature explicitly examines solutions routinely obtained in the
optimization process. Nakamura and Brill (1979) and Huang et al. (1997) apply a method they
call Brand-and-Bound/Screen (BBS). In this method, all solutions obtained by a branch-and-
bound algorithm that is applied in the optimization process, are evaluated.

The branch-and-bound algorithm, which forms the basis of the BBS method, works in such
a way that the potential solutions are grouped in mutually exclusive subsets. Lower and upper
bounds on the least-cost alternative in the subset are determined. If the lower bound found
for subset A is higher than the upper bound for subset B, the solutions in subset A can be
discarded. The remaining subsets are further partitioned in smaller mutually exclusive sets.
The process continues until a solution is obtained, such that the lower bound on all remaining
subsets exceeds its cost. By this process, many solutions are explicitly evaluated. The BBS
method obtains alternative solutions by storing those solutions the branch-and-bound algorithm
comes across, that are within a certain pre-specified cost bound. The generation step is suc-
ceeded by a post-screening step in which solutions that are similar are eliminated from the set



3. Literature overview 25

of alternative solutions.
The process can be adapted to find not only the encountered, but all solutions within a cer-

tain cost bound, by growing the branch-and-bound tree beyond the point required to obtain the
optimal solution. This means that a subset is discarded if and only if its lower bound is higher
than the specified cost bound, instead of when it is higher than the upper bound of any other
subset. However, by this altered approach, the solution process will become computationally
highly extensive.

A major advantage of this method is that it does not necessitate running, a potentially com-
putational extensive, optimization run for each required alternative solution. Instead solutions
are obtained by examining the routinely obtained solutions in the optimization process. How-
ever, the method has no guiding features specifically for producing solutions that are different
in decision space, since only those solutions encountered in the search process to the optimal
solution are examined. The adapted algorithm, finding all solutions within a certain cost bound,
has the large disadvantage that the solution process will become computationally too extensive
for the instances we want to solve with BOSS. Since both types of searching the decision space
have a unsurmountable disadvantage, we do not discuss this approach further.

Random method

One of the first approaches mentioned in literature to generate alternative solutions, discussed
by Brooks (1958), is to randomly generate these alternatives. However, it is in general difficult
to generate a set of values of decision variables at random such that the solution is feasible,
especially if there are many mathematical constraints. To this end, Chang (1981) develops a
method to randomly generate feasible solutions. A set of indices is randomly generated and
then the sum over the values of the corresponding decision variables is maximized under the
original constraints of the model. Also, a constraint is added to the model to reduce the feasible
decision space to a space in which all solutions are good with respect to the original objective
function. Mathematically, we can write the model as

max Y =
∑
j∈J

xj (3.13)

s.t. cTx ≤ (k + 1) · z0 (3.14)

Ax ≤ b (3.15)

x ≥ 0, (3.16)

where J is a set of randomly generated indices and k ≥ 0 is a constant.

Distance metric method

One of the most intuitive approaches to MGA, described, among others, by Kripakaran and
Gupta (2006), literally maximizes the ‘distance’ of a solution to previous solutions. A dis-
tance metric δα,β is defined to measure the difference between solution α and solution β. The
mathematical model can be formulated as:

max
β

Y = δα,β (3.17)

s.t. (3.14) - (3.16) holds,

where α = (xα,1, . . . , xα,m) is the optimal solution and β = (xβ,1, . . . , xβ,m) the alterna-
tive solution. There are different choices for the metric δ, for example, the euclidean norm
‖(xα,1 − xβ,1, · · · , xα,m − xβ,m)‖2 can be used to measure the difference between two solutions.
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Note that this metric is nonlinear. To obtain more alternative solutions, the objective function
is modified to include all previously obtained solutions, i.e.,

max
β

Y =
n∑
j=1

δj,β, (3.18)

where n is the number of previously obtained solutions, including the optimal solution. Nat-
urally, the distance matrix could be defined differently. For example, Kripakaran and Gupta
(2006) propose to use the Hamming distance, which counts for two solutions the number of
variables that differ. Thus, in case of solely binary variables, the Hamming distance equals
‖(xα,1 − xβ,1, · · · , xα,m − xβ,m)‖1.

The main disadvantage of the distance metric method is that, with defining a distance metric
which is nonlinear, as are both of the metrics mentioned above, nonlinearity is introduced into
the model and solutions are much harder to obtain. Genetic algorithms may be applied to op-
timize the nonlinear objective function, see Loughlin et al. (2001) and Zechman and Ranjithan
(2004) for more details.

HSJ method

Brill et al. (1982) propose a method similar to the previous method, which they call Hop, Skip,
and Jump (HSJ). As for the distance metric method, HSJ is designed to generate a solution that
is ‘maximally’ different from the initial solution. To this end, the objective function is modified
to set as many as possible decision variables, that are nonzero in the initial solution, to zero.
Again the initial constraints are included and supplemented by a constraint on the value of
the original objective function. Thus, the first alternative solution is obtained by solving the
following system:

min Y =
∑
j∈J

xj (3.19)

s.t. (3.14) - (3.16) holds,

where J is the set of indices of the decision variables which are nonzero in the initial solution. To
obtain the second and following alternatives, a formulation similar to (3.19) can be used, except
that J should include all nonzero variables in all previous solutions. A series of alternative
solutions can be generated by continuing the process, where general stopping criteria are:

1. a pre-specified number of alternatives is found;

2. no new decision variables enter the solution.

These stopping criteria can obviously also be applied in the previous method. The biggest
advantages of this method are the linearity of the model and the easy implementation in any
optimization software.

Fuzzy HSJ method

The Fuzzy HSJ approach, as the name reveals, is based on the HSJ method. Section 3.1.1
discusses fuzzy mathematical programming in the context of dealing with uncertain data. Here
we only provide a brief summary: in fuzzy mathematical programming, constraints belong to
fuzzy sets and objective functions are also treated as constraints with the upper and lower
bound specified subjectively by the decision maker. The membership of an element in fuzzy set
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theory is not assessed in binary terms, but can be gradually assessed. Some constraint violation
is allowed and the degree of satisfaction of a constraint is defined by a membership function.

The Fuzzy HSJ method uses a formulation similar to (3.19), except that the objective
function and the cost constraint are fuzzy. This means that the solution should ‘significantly’
differ from the initial solution and the cost should not be ‘much higher’ than the optimal
objective value z0. The corresponding mathematical formulation replacing (3.19) is:∑

j∈J
xj . d+ ∆d (3.20)

cTx . z0 + ∆z

s.t. (3.15) - (3.16) holds,

where J is again the set of indices of nonzero variables in the initial solution and d is the
optimal difference level desired. Since there is no mathematical method to obtain a solution to
this problem directly, the fuzzy relationships in (3.20) should be converted to a corresponding
binary formulation. To this end, we assume the membership function, or satisfaction level, of
the first constraint to be defined as follows:

µ1 (x) =


1 if

∑
j∈J xj ≤ d

1−
(∑

j∈J xj − d
)
\∆d if d ≤

∑
j∈J xj ≤ d+ ∆d

0 otherwise,

(3.21)

where [d, d+ ∆d] gives the desirable range of values from the difference function. The member-
ship function of the second constraint is similarly defined, with the desirable range for cost equal
to [z0, z0 +∆z]. Finally, an assumption has to be made on how the decision maker evaluates the
satisfaction levels among different objectives. A common choice is to assume that the decision
maker wants to maximize the minimum satisfaction of the objectives. In that case, with the
choice of membership function as in (3.21), (3.20) can be converted to:

max
x≥0

min

[
1−

∑
j∈J xj − d

∆d
, 1− cTx− z0

∆z

]
(3.22)

s.t. (3.15) - (3.16) holds.

Zimmerman (1978) has shown that (3.22) can be rewritten to the following system:

max s (3.23)

s.t.
∑
j∈J

xj + ∆d s ≤ d+ ∆d

cTx+ ∆z s ≤ z0 + ∆z

0 ≤ s ≤ 1

(3.15) - (3.16) holds.

The advantage of the linearity assumption on the membership functions combined with the
objective of maximizing the minimum satisfaction, is that the resulting model (3.23) is linear
and therefore relatively easy to solve. Chang et al. (1983) apply the fuzzy HSJ approach to two
examples, for which they obtain results roughly similar to the original HSJ approach. Also, the
results from the original HSJ approach are easier to interpret and implementation is simpler for
this method. Therefore, we prefer the original HSJ approach over the fuzzy approach.
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3.2.2 Discussion

Section 3.2.1 discusses six different approaches to generate alternative solutions to linear pro-
gramming problems. Of these approaches, we have already discarded the first two methods.
Adjusting model parameters is an ad hoc method which does not guarantee ‘good’ or even
feasible solutions with respect to the original problem. The Branch-and-Bound/Screen method
provides no guidance to truly different solutions. The random method by Chang (1981), the
distance metric method, and the HSJ approach have in common that they try to maximize
the difference between solutions, while restraining the original objective value. The Fuzzy HSJ
approach is a variant of the HSJ approach with a different objective function. However, since
the original HSJ approach is simpler to implement and results are easier interpreted, we do
not discuss the Fuzzy HSJ approach further. Chapter 4 introduces a generalized framework of
which we show that it covers the HSJ approach, the random approach, and the distance metric
approach.

All methods mentioned are designed for continuous variables, and might be less suitable for
integer and binary variables. Chang et al. (1982) have tested several variations of the HSJ
method and concluded that the sole use of zero-one variables in the objective function is less
effective than the use of continuous variables. The apparent reason for this is that the use of
binary variables does not produce a driving force to reduce the capacities of plants and depots
if those capacities cannot be forced to zero. However, for our study we have indicated that
alternative solutions should differ with respect to locations in use and investments made. Both
decisions are represented by binary variables in the mathematical model, see for details Section
2.2. As far as we are aware, no literature has been dedicated to generating alternatives to bi-
nary decisions. Nevertheless, all described methods may be applied to binary variables as well.
Therefore, Section 4.4 proposes several methods, based on the models discussed in this section.



Chapter 4

Approaches to generate alternative
solutions in BOSS

The discussed methods to generate alternative solutions (Section 3.2) are developed for con-
tinuous variables. For the location-allocation problem in BOSS (Chapter 2), we are interested
in alternatives with respect to binary decisions. Furthermore, we like to obtain solutions that
are better able to deal with data uncertainty. This chapter proposes a general framework for
methods to generate alternative solutions. This framework can be applied in multiple forms to
obtain different types of alternative solutions. In this way, the framework can be used to deal
with both types of indicated uncertainties relevant in mathematical optimization, i.e., model
uncertainty and data uncertainty.

For binary variables, Section 4.1 shows the equivalence of the distance metric method and
the HSJ method. Section 4.2 introduces the general framework based on the HSJ approach and
Section 4.3 provides a description of this framework applied to the location-allocation problem
in BOSS. Subsequently, In Section 4.4, we propose several realizations of the framework to
generate alternative solutions to the location-allocation problem in BOSS. Section 4.5 discusses
stopping criteria for the proposed methods. Finally, Section 4.6 describes a number of quan-
titative measures to evaluate the results of these methods, which we use when we apply the
methods to test cases in Chapter 5.

4.1 Distance metric method for binary variables

The distance metric method obtains an alternative solution by literally maximizing the difference
of a new solution with the initial solution. To this end, a so-called distance metric is maximized.
In literature, the following two distance metrics are applied:

1. Hamming distance metric: ‖xα − x‖1;

2. Euclidean distance metric: ‖xα − x‖2,

where xα is the vector containing the original solution and x is the alternative solution. Section
4.1.1 shows the consequences of applying the Hamming distance metric to binary decision vari-
ables and Section 4.1.2 does the same for the Euclidean distance metric. Subsequently, Section
4.1.3 compares the application of both distance metrics with the HSJ method.

29
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4.1.1 Hamming distance metric

The Hamming distance metric measures the sum of the absolute differences between all indi-
vidual elements of two vectors. For ease of notation, we introduce a set J , such that

• J : set of indices of the (binary) decision variables that are 1 in the initial solution.

With this notation, we have that

xα,j = 1 ∀ j ∈ J,
xα,j = 0 ∀ j /∈ J.

It holds that

‖xα − x‖1 =

m∑
j=1

|xα,j − xj |

=
∑
j ∈ J

(1− xj) +
∑
j /∈ J

xj

=
∑
j ∈ J

1−
∑
j ∈ J

xj +
∑
j /∈ J

xj . (4.1)

We have that maximizing

−
∑
j ∈ J

xj +
∑
j /∈ J

xj + constant, (4.2)

is equivalent to minimizing ∑
j ∈ J

xj −
∑
j /∈ J

xj . (4.3)

Thus, we have shown in this section that, for binary variables, maximizing the Hamming
distance metric is equivalent to the formulation in (4.3). This means that, by applying this
metric, the objective is to maximize the number of decision variables that have a different value
from the initial solution. In other words, the objective is to change as many decisions as possible.

4.1.2 Euclidean distance metric

The Euclidean distance metric measures the sum of the square of the difference between all
individual elements of two vectors. We define x̃ = xj − x. Since, xj , x ∈ {0, 1}, it holds that
x̃ ∈ {−1, 0, 1}. In general, for a vector x ∈ {−1, 0, 1}n, it holds that

∑m
j=1 |xj | =

∑m
j=1 x

2
j .

Therefore, we have that
‖xα − x‖2 = ‖xα − x‖1 . (4.4)

We conclude from this, by following the same argumentation as in Section 4.1.1, that maximizing
the Euclidean distance metric is equivalent to minimizing equation (4.3). Thus, for both metrics,
the objective is to change as many as possible 0-1 decisions.

4.1.3 Comparison of distance metric and HSJ method

For binary variables, there is a strong resemblance between the distance metric method and the
HSJ method. In the HSJ approach, the objective is

min
∑
j ∈ J

xj . (4.5)
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Sections 4.1.1 and 4.1.2 show that the distance metric method for binary variables, with the
two metrics applied in literature, has the objective

min

∑
j ∈ J

xj −
∑
j /∈ J

xj

 . (4.6)

Both models are subject to all restrictions of the initial model, complemented by a restriction
on the maximum cost of an alternative solution. Thus, besides for the existence of the second
term in (4.6), the HSJ method and the distance metric method are completely equal.

In words, the HSJ approach minimizes the sum over the decision variables that are nonzero
in the initial solution and the distance metric method minimizes this same quantity, while also
maximizing the sum over the decision variables that are zero in the initial solution. We refer to
decision variables that are nonzero as impact variables. The objective in (4.5) forces indirectly
variables that are zero in the initial solution to become impact variables. This is caused by
the fact that, as far as the cost restriction allows it, all nonzero variables are forced to become
zero and the original restrictions still have to be fulfilled. For BOSS the primary strategic
decisions are the choice of production and distribution locations to be used and the investments
to be made. Since the HSJ approach attempts to close as much as possible current locations,
automatically new locations are opened to fulfill demand. The difference is that (4.6) also
maximizes the number of non-impact variables that become impact variables. For BOSS that
implies that the model maximizes the number of opened locations that were not opened in the
initial solution. This means for example, that the distance metric model prefers to open two
small depots over one larger depot. However, since we search for solutions that open different
depots, not necessarily more depots, this is not a sensible objective for our model.

Furthermore, the second term of the objective function in (4.6) may result in unnecessary
high cost. This is for example the case, if an investment can be done within the cost restriction,
but this investment does not contribute to the performance of the supply chain. Therefore, we
conclude that for binary decision variables the distance metric method is less appropriate than
the HSJ method; hence, we do not further explore the distance metric method.

4.2 Generalized HSJ approach

Section 3.2.1 discusses the Hop, Skip, and Jump (HSJ) method developed by Brill et al. (1982).
In this section, we formulate a more general form of this method, such that it can be applied
for multiple purposes. The HSJ method generates alternative solutions by introducing a new
objective function, while the original objective value may not deteriorate by more than a pre-
specified amount. This new objective function maximizes the difference among alternative
solutions. The first alternative solution is obtained by minimizing the sum over the decision
variables that are nonzero in the initial solution. To obtain the second and following alternatives,
the set of decision variables in the objective function is expanded by all decision variables that
are nonzero in any of the previously obtained solutions.

The HSJ method is most suitable for continuous variables, and it is less useful for binary
variables (Chang, 1981). However, Section 2.4 motivates that the decision variables in which
we like to see differences are binary variables. Furthermore, the HSJ method is designed such
that it returns maximally different alternative solutions. Nevertheless, we like to generalize
this method, such that it can also be used with a different purpose. For example, as discussed
in Section 2.3, the demand and several cost parameters are not known with certainty when a
strategic supply chain design is evaluated. Therefore, it contributes to the applicability of our
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model, if it can also be used to obtain solutions that are less sensitive to data changes.
We write the Generalized HSJ (GHSJ) method as:

min
∑
j ∈ J

αj · xj −
∑
k∈K

βk · yk − γ · S (4.7)

s.t. cTx+ S = (k + 1) · z0

Ax+ y = b

x, y ≥ 0,

where J and K are given sets of indices. Whereas for the discussed HSJ method by Brill et al.
J contains all nonzero variables in the initial solution and K is empty, the choice of J and K
is free in the GHSJ method. Furthermore, z0 is the optimal solution to the original problem
(3.12), k is a constant, and α = {αj | j ∈ J} is a vector containing given weight factors. The
vector y is introduced to measure the difference between used capacity and available capacity,
we refer to this difference as slack. By increasing the value of a slack variable, more robustness
is created against right-hand side uncertainties. The vector β = {βk | k ∈ K} contains given
weight factors corresponding to the slack variables.

The variable S indicates the difference between the realized and allowed cost increase with
respect to the optimal solution. By increasing the value of S, a solution with lower total cost is
obtained. Appendix D provides a discussion on the choice of the weight factor γ.

Note that the choice of α, β, γ, J , and K can be chosen based on the approach taken. For
example, for the standard HSJ approach of Brill et al. (1982) we have α = 1, β = 0, γ = 0, K
is empty, and J contains all indices of the nonzero variables in the optimal solution. Similarly,
by choosing α = −1, β = 0, γ = 0, K empty, and J is the set of randomly generated indices,
the model is equal to the random approach by Chang (1981), discussed in Section 3.2.1. Thus,
the model in (4.7) offers a lot of flexibility and can therefore be used for different approaches.
Section 4.4 discusses these approaches. However, first Section 4.3 describes the application of
the GHSJ method to BOSS.

4.3 GHSJ method for BOSS

For the objective function (4.7), we define X as the set of decision variables belonging to J :
X = {xj | j ∈ J}. X contains variables of the following form:

• LocOpen (l);

• InvDone (i);

• Flow (p, l1, l2);

• Production (f);

• Supply (p, l).

Note that X contains only direct decision variables from the model described in Chapter 2, i.e.,
all dependent decision variables are excluded. Furthermore, we define Y as the set of decision
variables belonging to K: Y = {yk | k ∈ K}. This set contains slack variables, i.e., variables to
measure the robustness of a solution with respect to right-hand side uncertainties. Y contains
variables of the following form:

• ProdSlack (f) : unused production capacity of facility f ;
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• SmallestProdSlack = min
f ∈F

ProdSlack (f) : smallest unused production capacity over all

facilities;

• FlowSlack (p, l) : unused distribution capacity for product p and location l;

• SmallestF lowSlack (p) = min
l∈L

FlowSlack (p, l) : smallest unused distribution capacity

for product p over all locations.

While the actual content of the objective function in (4.7) depends on the choice of the method,
the constraints that should hold for the model are always the same. These constraints are
mainly equal to those discussed in Section 2.2. However, some constraints should be adapted
to introduce the variables in Y and other constraints need to be added to the mathematical
model. We measure the production and distribution slack as the difference between available
and used capacity. And this slack is only nonzero for locations that are used. We now discuss
the adaptations to the original model of Chapter 2.

The optimal value of the original objective function equals z0. The constraint that ensures
that the original objective does not deviate too much from optimality can now be written as:

Cost+ S = (k + 1) · z0, (4.8)

where Cost denotes the cost with respect to the original objective. Constraint (2.12) should
be replaced by two new constraints to enforce a correct calculation of the production slack
ProdSlack (f) of production facility f and the minimum production slack SmallestProdSlack.
As opposed to the model described in (4.7), the introduction of these slack variables does not
result in the constraints getting an equality sign. The reason for this is that Prodslack (f)
should equal zero if the location is not in use. SmallestProdSlack does not depend on facility
f , whereas the constraint does. Therefore, in this constraint equality cannot hold. We model
the described situation by the following two constraints:

Production (f) + ProdSlack (f) ≤ AvailProdCap (f) ∀ f ∈ F ; (4.9)

Production (f) + SmallestProdSlack ≤ AvailProdCap (f) ∀ f ∈ F . (4.10)

To ensure that ProdSlack (f) is equal to zero if production facility f is located at a location
that is not opened, a third new constraint is added to the model:∑

f ∈F l

ProdSlack (f) ≤ LocOpen (l) · bigMProd (l) ∀ l ∈ L, (4.11)

where

bigMProd (l) =
∑
f ∈F l

(
max

(
max

i∈Ipr(f)
(investprodcap (i, f)) , prodcap (f)

))
. (4.12)

For constraint (2.14), giving a restriction on the distribution capacity, an equivalent situation
holds. Therefore, this is modeled by the following three constraints:∑

l1∈L
Flow (p, l, l1) + FlowSlack (p, l) ≤ AvailF lowCap (p, l) ∀ p ∈ P, l ∈ L; (4.13)

∑
l1∈L

Flow (p, l, l1) + SmallestF lowSlack (p) ≤ AvailF lowCap (p, l) ∀ p ∈ P, l ∈ L; (4.14)

∑
p∈P

FlowSlack (p, l) ≤ LocOpen (l) · bigMFlow (p, l) ∀ l ∈ L, (4.15)
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where

bigMFlow (p, l) = max

(
max
i∈If l(l)

(investflowcap (i, p, l)) , f lowcap (p, l)

)
. (4.16)

Furthermore, all other constraints remain valid, i.e., constraints (2.2) - (2.4), (2.6) - (2.10),
(2.11), and (2.13) should hold.

4.4 Realizations of GHSJ framework

Section 4.3 describes the GHSJ framework for BOSS. This section proposes several realizations
of this framework. Section 4.4.1 describes the details of applying the HSJ method by Brill
et al. (1982) to the location-allocation problem in BOSS. However, the framework offers more
flexibility to apply it in different manners. Therefore, Section 4.4.2 discusses a second realization
of the GHSJ framework to generate a large amount of alternative solutions.

The first two realizations of the GHSJ method correspond to the research objective to deal
with model uncertainty. However, Section 1.4.2 also indicates a research objective with respect
to data uncertainty. For BOSS we have indicated two types of data uncertainty, namely:

• right-hand side uncertainty: uncertainty about demand data;

• uncertainty in the objective function: uncertainty about cost parameters.

Therefore, we describe for both types of data uncertainty a realization of the GHSJ model to
account for it. These methods are discussed in respectively Section 4.4.3 and Section 4.4.4.

This section concludes with the description of some other realizations of the GHSJ framework
that are business wise relevant, but are not applied to test cases in this research.

4.4.1 Standard HSJ

The Standard HSJ implements the HSJ approach as described by Brill et al. (1982) for the
binary decision variables LocOpen (l) and InvDone (i). However, we add the decision variable
S to the objective function. Thus, the objective function is:

min
∑
l∈ JL

LocOpen (l) +
∑
i∈ JI

InvDone (i)− γ · S, (4.17)

where JL is for LocOpen (l) and JI for InvDone (i) the set of indices of nonzero variables in all
previously obtained solutions. Thus:

JL = { l | LocOpen (l) = 1 in at least one previously obtained solution},
JI = { i | InvDone (i) = 1 in at least one previously obtained solution}.

This method fits in the GHSJ framework by choosing α = 1, J as defined above, K empty, and
X contains variables of the form LocOpen (l) and InvDone (i).

The process of updating JL and JI , and solving the resulting problem is repeated until one
or more of the following happens:

1. JL = L and JI = I, i.e., all decision variables have been added to the objective function;

2. the obtained solution has the same value for all variables LocOpen (l) and InvDone (i) as
one of the previously obtained solutions;
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3. a total of MaxSol different solutions is obtained.

The objective of the Standard HSJ approach is to obtain solutions, within the allowed cost-range,
that are as different from each other as possible with respect to LocOpen (l) and InvDone (i).
The choice for these two decision variables is motivated in Section 2.4. The Standard HSJ
method only generates a limited number of alternative solutions. However, this is not necessarily
a disadvantage, since human beings can not process and evaluate more than a few alternatives.

4.4.2 Random HSJ

The Random HSJ method uses an objective function with randomly chosen weights for the
variables LocOpen, (l) and InvDone (i). Also, we add the variable S to the objective function.
Thus, the objective function is:

min
∑
l∈L

αL(l) · LocOpen (l) +
∑
i∈I

αI(i) · InvDone (i)− γ · S, (4.18)

where αL (l) is the weight corresponding to LocOpen (l), and αI (i) is the weight corresponding
to InvDone (i). Both weights are in each iteration randomly generated from the range [0, 1].
This method corresponds to the GHSJ framework by choosing α = {αL (l), αI (i)} random from
[0, 1], J = L∪I, K empty, and X contains variables of the form LocOpen (l) and InvDone (i).
The process of generating new weights, and solving the resulting objective function, is repeated
until either MaxSol solutions are obtained or no new solution is obtained for MaxEq iterations.
Section 4.5 discusses stopping criteria in more detail.

The objective of the Random HSJ approach is to generate many close to optimal solutions.
However, this approach has no guiding feature to obtain solutions that are different from pre-
viously obtained solutions. Therefore, after each iteration, an obtained solution that does not
differ by at least one decision variable from all of the previously obtained solutions is removed
from the set of solutions in a post-screening step.

4.4.3 Cost uncertain HSJ

The goal of the Cost uncertain HSJ method is to account for uncertainty in the cost parameters.
For this purpose, we use an objective function that differs significantly from those used for the
Standard HSJ and Random HSJ method. For this model the original objective function (2.16)
is slightly modified by replacing the uncertain cost parameters by a random number in the
specified uncertain range. Thus, the objective function for this model is:

min
∑
l∈L

αL(l) · LocOpen (l) +
∑
i∈I

αI(i) · InvDone (i) +
∑
p∈P
l∈L

αS(p, l) · Supply (p, l)

+
∑
f∈F

αP (f) · Production (f) +
∑
l∈L

∑
m∈M
f∈F l

αC(l,m, f) · Production (f) · recipef (m)

+
∑
p∈P

l1,l2∈L|l1 6=l2

αF (p, l1, l2) · Flow (p, l1, l2). (4.19)

To see that (4.19) is a realization of the general form of the objective function in the GHSJ
framework in (4.7), we choose α = {αL(l), αI(i), αS(p, l), αP (f), αC(l,m, f), αF (p, l1, l2)}, X
contains variables of the form LocOpen (l), InvDone (i), Supply (p, l), Production (f), and
Flow (p, l1, l2). Furthermore, β = 0, γ = 0, and K is empty.



36 4. Approaches to generate alternative solutions in BOSS

Objective (4.19) strongly resembles the original objective (2.16), except that the cost pa-
rameters are replaced by random numbers. These random numbers are drawn from an interval
specified by the modeler. For example, assume that the cost of supplying one unit of product
A to location X is not known exactly when a strategic plan is made. However, the modeler is
fairly sure that it costs between e1.20 and e1.40. For the initial model, the modeler should
decide on a single most likely value of this cost parameter, for example, e1.30. A solution is
then obtained that is optimal in case the realized cost parameters are equal to the expected
values. However, this does not mean that it would also be optimal in case the realized cost
parameters are different than expected.

In the Cost uncertain HSJ approach, alternatives are generated by using different random
values within the specified cost ranges. Thus, for the example αS(A,X) is drawn from the inter-
val [1.20, 1.40]. However, the total cost of an alternative solution, calculated with the expected
cost parameters, should be below the specified bound, as indicated in constraint (4.8). The
reason for this is that the decision maker might not want the total cost for the expected case
to increase too much, since it might be difficult to sell such a solution business wise. However,
since the objective of this method is still minimizing cost, k could also be set sufficiently high,
such that it has no influence on the obtained solution. For each alternative solution, the cost
in case of m different realizations can easily be calculated. To this end, given that cost have
no impact on the feasibility of a solution, only the cost function should be recalculated. The
alternatives can then be compared on total cost in the different realizations of the uncertain
cost parameters.

In conclusion, the objective of the Cost uncertain HSJ approach is to obtain one or more
alternative solutions to a problem where uncertainties in cost parameters play a role. Such a
solution should have lowest cost in a higher number of cost realizations than the original solution
or a lower average cost over these realizations.

4.4.4 Robust HSJ

The goal of the Robust HSJ method is to obtain one or more alternative solutions that are more
robust against right-hand side uncertainties, those are uncertainties in demand and capacities.
To measure this robustness, we have introduced production and distribution slack variables in
Section 4.3. These slack variables measure the difference between available and actually used
capacity. We define two versions of the Robust HSJ method, one that maximizes individual
slack and one that maximizes minimum slack. These two versions are complementary to each
other. Both versions fit in the GHSJ framework by choosing J empty, α = 0, and γ = 0. The
value of β and the content of Y differs for both methods.

Version 1

For the Robust HSJ method (version 1), the aim is to find a number of alternative solutions
that have a higher total slack as the initial solution and allocate slack differently over locations
and production facilities. For this method we define the following two variables, that measure
the utilization of capacity:

• βPS(f) : equals the utilization of production facility f in the previously obtained solution.

• βFS(p, l) : equals the utilization of the distribution capacity for product p at location l in
the previously obtained solution.

To denote previously obtained solutions, we add a subscript s to the decision variables. Then,
we calculate the utilizations by dividing the production or distribution by the actual capacities



4. Approaches to generate alternative solutions in BOSS 37

as defined in (2.11) and (2.13):

βPS(f) =
Productions (f)

AvailProdCaps (f)
;

βFS(p, l) =

∑
l1∈L|l1 6=l Flows (p, l1, l)

AvailF lowCaps (p, l)
.

This approach maximizes the sum over the slack variables ProdSlack (f) and FlowSlack (p, l).
However, we attach weights to these variables equal to the utilization of the capacity in the
previous solution. Thus, the objective function of the Robust HSJ method (version 1) is:

max
∑
f∈F

βPS(f) · ProdSlack (f) +
∑
p∈P
l∈L

βFS(p, l) · FlowSlack (p, l). (4.20)

With this approach a higher weight is assigned to the slack for higher utilized facilities
and distribution locations. The rational behind this is that it should result in more slack for
production facilities and distribution locations that have little slack in the last obtained solution.
Thereby, this method does not only potentially increases total slack, it also allocates slack over
different locations and facilities.

The discussed parameters are updated after each new obtained solution, and so the weights
βPS (f) and βFS (p, l) are recalculated after each iteration. If a solution is obtained that has
been found before, calculated weights stay equal to those in a previous run. Therefore, the
objective function is the same and the run can be stopped.

Version 2

The Robust HSJ method (version 2) aims to increase the slack for all production facilities and
distribution locations, instead of allocating slack differently and maximizing total slack. To this
end, we maximize the minimum slack for both production and distribution. This version of the
robust HSJ approach uses the objective function:

max SmallestProdSlack +
∑
p∈P

SmallestF lowSlack (p), (4.21)

where the decision variables SmallestProdSlack, and SmallestF lowSlack (p) are as defined in
Section 4.3. With this approach an alternative solution is obtained in which the minimum pro-
duction slack is maximized together with the minimum distribution slack. Thus all production
slack variables ProdSlack (f) are at least equal to SmallestProdSlack. Equivalently, for each
location l the decision variable FlowSlack (p, l) is at least equal to SmallestF lowSlack (p).
Therefore, we obtain by this approach an alternative solution where production slack and dis-
tribution slack are better balanced over the different facilities and locations.

In contrast to Robust HSJ (version 1), this approach only obtains one alternative solution
per choice of the cost bound k, since there are no weights that alter after an iteration.

4.4.5 Dedicated methods

In this section we briefly describe some other methods that are business wise relevant and can
be implemented within the GHSJ framework. To this end, only the proposed objective function,
corresponding to a specific goal of the decision maker, has to be implemented. Even thought,
this can be easily done, we have not done experiments with these dedicated methods.
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Minimize CO2 emission

Nowadays, reducing the carbon footprint is an important objective for many organizations. The
carbon footprint is expressed in the amount of Carbon Dioxide (CO2) emission. A lower CO2

emission can for example be achieved by combining truckloads or producing in a more efficient
production mode. The objective function for this approach is:

min
∑
f∈F

Production (f) · recipef (CO2)

+
∑
p∈P

l1,l2∈L|l1 6=l2

Flow (p, l1, l2) · emission (CO2, p, l1, l2), (4.22)

where emission (CO2, p, l1, l2) is a new introduced parameter giving the amount of CO2 emission
for the transport of 1 unit of product p from location l1 to location l2.

Minimize fixed cost

When having to make a trade-off between fixed and variable cost, many decision makers prefer
a solution with higher variable cost and lower fixed cost. The reason is that fixed cost create
a financial risk to the company, where purely variable cost do not. Take, for example, a com-
pany that expects a growing demand and should therefore increase production capacity. This
company can choose between two machines:

• Machine A: cost e12,000,000 and produces one unit of product X for e1.00;

• Machine B: cost e15,000,000 and produces one unit of product X for e0.70.

Suppose, that this company expects to sell 15 million units of product X in the next 5 years and
5 years is also the depreciation period of both machines. Furthermore, we assume capacity and
maintenance cost of both machines to be equal. The total cost when the company chooses for
machine A are: 12, 000, 000+15, 000, 000 ·1.00 = e27, 000, 000. When it chooses for machine B,
total production cost are: 15, 000, 000 + 15, 000, 000 ·0.70 = e25, 500, 000. From these numbers,
one could conclude that machine B is the best option. However, when actual demand is lower
than 10 million, this is no longer the case. Another reason for a lower investment to be preferred
is that available funds might be limited.

To obtain an alternative solution with lower fixed cost, the following objective function
should be minimized:

min
∑
l∈L

LocOpen (l) · fixedlocationcost (l)

+
∑
i∈I

InvDone (i) · fixedinvestmentcost (i). (4.23)

The GHSJ framework ensures that total cost of the alternative solution does not increase by
more than k times the minimum cost z0.

Minimize external purchasing

A company confronted with a so-called make-or-buy decision has to decide on either manufac-
turing in-house or purchasing from an external supplier. In a make-or-buy decision, the two
most important factors to consider are cost and availability of production capacity. However,
even if purchasing from an external supplier is cheaper, preferences may be to produce in-house,
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if there is idle production capacity. Reasons for this include better quality control or proprietary
technology that needs to be protected.

We could use the GHSJ framework to obtain an alternative solution with a minimal amount
of supply from external sources, while total cost increases by at most k times the optimal cost.
The objective function for this approach is:

min
∑
p∈P
l∈L

Supply (p, l). (4.24)

Products that cannot be manufactured in-house can be excluded from this objective function.

4.5 Stopping criteria

When applying the GHSJ method, there are some method specific stopping criteria that deter-
mine when no new iteration is started anymore. For the standard HSJ method, it holds that the
method stops when the last obtained solution does not set any binary variable to 1 that has not
been set to 1 in any of the previously obtained solutions. Thus, if the new solution has no used
locations or investments that where not used in all earlier solutions, the method stops. This
is an inherent characteristic of the method, since the objective function is in that case exactly
the same as for the previous iteration. Thus, optimizing this objective function again results in
the same solution. The Robust HSJ (version 1) method stops when a solution is obtained that
has been found before. Again, the reason for this is that the new objective function is in that
case equal to the objective in one of the previous iterations. The Robust HSJ method (version
2) only obtains one alternative solution, since the objective function does not change after an
iteration.

Theoretically, the Random HSJ and Cost uncertain HSJ method can be repeated infinitely
many times. Therefore, we introduce two stopping criteria for these methods. The first reason
to stop the method is when MaxSol number of solutions are obtained, including the initial solu-
tion. Since humans cannot process more than 5 to 10 alternatives, in general a reasonable value
for MaxSol would be around 10. For testing purposes, we often set this value higher to obtain
more solutions. The second stopping criterion is when MaxEq number of times a solution is
obtained that is already in the set of obtained solutions. This second stopping criterion ensures
that the method stops in a finite number of iterations. The maximum number of iterations is
thus MaxSol +MaxEq, while the minimum number of iterations is min(MaxSol,MaxEq).

4.6 Evaluate results

To be able to evaluate the obtained set of alternative solutions, we need quantitative measures.
This is especially relevant when the purpose is to obtain solutions that make different decisions,
i.e., for the Standard HSJ and Random HSJ. Since it is then not evident how to assess the
obtained solutions. One obvious measure to quantify a solution is the value of the original ob-
jective function, specifying the ‘real’ cost of the solution. Derived from this, we can calculate for
an alternative solution the deviation from optimality as a percentage of the optimal objective
value.

Since the purpose of generating alternatives is to account for unmodeled objectives, alter-
native solutions could be evaluated based on these objectives. Even though, many objectives
might be unknown or difficult to measure, some objectives can be quantified. For our model,
the total transport distance is relevant, since it largely determines the degree of air pollution.
However, it is not modeled as an objective in the objective function. Another example of such
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an unmodeled objective is the fraction of fixed cost. We use these two extra measures to eval-
uate the alternative solutions.

Another relevant measure is the degree of difference among alternative solutions. The al-
ternative solutions must be close to optimal with respect to the original objective, i.e., cost of
an alternative solution may not increase by more than k times the cost of the initial solution.
However, the alternatives are typically different with respect to the values of the decision vari-
ables, and these differences can be measured. To calculate the difference between a new solution
and all previous solutions, Chang (1981) first calculates the pairwise differences. The pairwise
difference is calculated as the number of different nonzero variables between two solutions. Then
he defines the least pairwise difference as the smallest difference between the new solution and
any of the previous solutions. We refer to this measure as the binary difference metric (BDM)
and define it formally as

BDM (s) = min
s′ ∈S

∑
i∈B
|si − s′i|, (4.25)

where S is the set of solutions, B is the set of binary decision variables, and si indicates
the value of binary decision variable i. Since the Cost uncertain HSJ and Robust HSJ method
use, besides binary variables, also continuous variables in the objective function, we add another
difference measure that takes the influence of these different decisions into account. To this end,
we multiply the pairwise difference on each decision variable by the influence of this decision
variable, which we define by C(i). For LocOpen (l), we define the influence as the capacity of
location l and for InvDone (i) we define it as the absolute difference between the capacity of
the corresponding location if investment i is made and when it is not. We refer to this measure
as the capacity difference metric (CDM) and define it formally as

CDM (s) = min
s′ ∈S

∑
i∈B
|si − s′i| · C(i). (4.26)

These measures give an indication of the difference of an alternative solution with respect to
previously obtained solutions, which could for example be used to exclude solutions that do not
differ enough. This is, however, not our primary purpose with the difference metrics.

To draw conclusions about the performance of the methods, we like to have a metric that
gives insight in the degree of diversity of solutions that can be obtained with a method. To
this end, we introduce the diversity measure (D(S)) of Danna et al. (2007), which defines the
diversity of a set S of solutions as the average pairwise distance, i.e.,

D(S) =
1

|S|2|B|
∑

s,s′ ∈S

∑
i∈B
|si − s′i|. (4.27)

A higher value of D(S) indicates a higher degree of diversity in the set of solutions. It holds that
D(S) ≤ 1

2 for all sets S of solutions. To see this, we look at each variable i ∈ B individually. It
is clear that

∑
s,s′ ∈S |si−s′i| is maximal if b|S|/2c of the solutions have si = 1 and the remaining

solutions have si = 0. In that case, at most half of the terms |si− s′i| are equal to 1 and at least
half of them are 0. It follows that D(S) ≤ 1

|S|2|B|
∑

i∈B
1
2 |S|

2 = 1
2 .

4.7 Conclusion

The Hop, Skip, and Jump (HSJ) method by Brill et al. (1982) can be generalized such that it
can be applied for multiple purposes, i.e.,

1. the Standard HSJ method is proposed to obtain maximally different alternatives;
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2. the Random HSJ method is proposed to obtain a large number of different alternatives;

3. the Cost uncertain HSJ method is proposed to obtain alternatives that are more robust
against cost parameter uncertainties than the initial solution;

4. the Robust HSJ method is proposed to obtain alternatives that are more robust against
right-hand side uncertainties than the initial solution.

For these methods the following two stop criteria were defined:

• MaxSol : the maximum number of obtained solutions, including the initial solution.

• MaxEq : the maximum number of times a solution is obtained that is already in the set
of solutions.

The total number of iterations is thus between min(MaxSol,MaxEq) and MaxEq+MaxSol.
Furthermore, when applying any of the above mentioned methods, the modeler has to decide
how much total cost of an alternative solution may deviate from optimality, by setting the value
of k. For example, if k = 0.1, cost of an alternative solution may be at most 10% higher than
the cost of the optimal solution.

Finally, a number of measures were introduced to quantify the performance of alternative
solutions, such as actual cost deviation and total transport distance. Furthermore, the binary
difference metric BDM (s) and the capacity difference metric CDM (s) can be applied to mea-
sure the difference between a solution and the current set of solutions. The diversity of the entire
set of solutions can be measures with the diversity measure D (S) by Danna et al. (2007).
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Chapter 5

Application of HSJ methods to test
cases

Chapter 4 proposes four methods to obtain alternative solutions to the location-allocation prob-
lem in BOSS, namely the Standard HSJ, Random HSJ, Cost uncertain HSJ, and Robust HSJ
method. Each of these four methods correspond to a specific demand for certain alternative
solutions. This chapter discusses the test results obtained on two different test cases.

Section 5.1 describes the characteristics of the test cases. Section 5.2 discusses, based on
obtained results, for each of the four defined goals in what extent the proposed method is able
to obtain the requested alternatives. In this section, also modifications to the models based
on the obtained results are discussed. Finally, Section 5.3 summarizes the main results of this
chapter.

5.1 Test cases

To test the proposed models, we use two different test cases, both are based on studies performed
for customers of ORTEC. From the first study, we define a small and a large test instance. The
second test case originates also from a situation from practice. This section introduces the test
cases and describes their characteristics.

5.1.1 Test cases Bread

The Bread test case originates from the Dutch retail market, and it concerns the production
and transportation of bread. For the remainder of this thesis, we refer to this test case as TC
Bread. Production currently happens at 8 different bakeries, located throughout the Nether-
lands. From these bakeries, the bread is distributed to 791 retail shops, also located throughout
the Netherlands. The bakeries are modeled as production and distribution locations and the
retail shops are considered as customer locations. In 5 years time, demand is expected to grow
beyond the current production capacity. Therefore, strategic decisions have to be made about
network configurations, to ensure that demand can be met in the future. There are two options
to increase the total production capacity of the network. One is to open new production loca-
tions and the other is to invest in the production capacity of the current production locations.

All production locations are named by the country, NL for Netherlands or BE for Belgium,
followed by three or four numbers. The current production facilities are all located in the
Netherlands and are numbered NL001 to NL008. The potential new locations are numbered
by their zip code, for example ‘NL8601’. Appendix B displays the current and potential new
locations graphically. For this test case, the fixed cost to use one of the current locations is
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location situation capacity fixed cost variable prod. cost

NL001 current 8,241 e14,700 e6.70
NL001 closing 0 - e36,600 -
NL001 investment option 1 12,500 e37,050 e6.70
NL001 investment option 2 15,000 e61,200 e6.70

NL002 current 6,497 e11,200 e6.90
NL002 closing 0 - e27,900 -
NL002 investment option 1 9,600 e28,350 e6.90
NL002 investment option 2 11,000 e40,050 e6.90

NL2678 opening 3,821 e53,300 e4.30
NL2678 not opening 0 e0 -

BE2960 opening 10,450 e83,600 e7.50
BE2960 not opening 0 e0 -

Table 5.1: Example data for TC Bread on capacities and costs correspond-
ing to opening, closing, or investing in a location.

significantly lower than the cost of opening a new production location. The reason is that all
facilities are already in place for the current locations. Furthermore, closing one of these loca-
tions does not only save money from not having to pay some fixed costs, it also yields a fixed
amount from selling off the building and facilities. Besides fixed cost for the use of a location
and for making investments, also variable cost play a role; i.e., variable production cost for a
production location and transport cost for distributing one product from a production location
to a customer are given. Table 5.1 displays for two current and two new locations data on the
cost and capacities corresponding to all options that exist for such a location.

BOSS calculates distribution cost for the transport of one product between any production
location and any customer based on, among others, geographical data, truck capacity, and de-
mand data. The cost of transporting one unit of a product from a production location to a
customer varies between e0.50 and e5.00. There are some outliers for allocations that will not
happen in practice, for example, the bakery near Amsterdam will not distribute to retail shops
in Maastricht.

For testing purposes, we use a small and a large instance of this test case. For both
instances, the described characteristics are as discussed above. However, for the small case a
total of 10 potential new production locations are defined, whereas for the large case there are
30 potential new production locations. Also, whereas the small test case represents a realistic
situation, we use the large test case to analyze how the methods behave in an extreme situation.
Therefore, we increase demand by an extra 80% for the large test case. For the small case about
3 of the 10 potential new production locations should be opened to fulfill demand, for the large
case about 10 of the 30 potential locations have to be opened. Furthermore, for both instances
it is possible to close any of the current production locations. However, for the small case only
3 investment options are defined to increase the capacity of a current location, whereas for the
large case 12 of such investment options are defined. Table 5.3 gives a summary of the charac-
teristics of these test cases, together with the characteristics of the test case described in the
next section.

5.1.2 Test case Oil and gas market

The Oil test case originates from the American oil and gas market; we refer to this case in the
remainder of this thesis as TC Oil. This test case concerns the production and distribution of
one product, which we simply call oil. The oil is produced at 3 production locations, located
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in the USA. It is distributed to 21 distribution locations which further distribute the oil to the
713 customers locations, also located in the USA. The production locations are named ‘US-
P001’, ‘US-P002’, and ‘US-P003’, the distribution locations are named ‘US-D’ followed by a
zip-code. The management believes that a large cost saving can be achieved by closing one or
more distribution locations. Therefore a study is performed to make recommendations to the
management team on the network configuration. For this case no investment decisions have to
be made; the relevant decision is which distribution locations should be kept open and which
should be closed. Appendix B gives a graphical overview of the production and distribution
locations.

For this test case savings from closing a distribution location are caused by not having to
pay a fixed amount, for example for renting the building. However, closing a location does not
yield a fixed amount of money, as for TC Bread, from selling off facilities. Thus, the only fixed
costs defined in this test case are for using a location. Furthermore, variable costs are associated
with production, handling at a distribution location, transportation from the production loca-
tions to the distribution locations, and distributing the oil from the distribution locations to the
customers. All fixed and variable costs differ per location. Table 5.2 gives data on capacities
and costs of the three production locations and three of the 21 distribution locations. Note that
since closing any of the production locations is not an option in the scope of this study, no fixed
location cost are defined for these locations.

location capacity fixed cost variable cost

US-P001 760,000 - $1.87
US-P002 330,000 - $2.64
US-P003 815,000 - $1.54

US-D5499 74,023 $611,201 $0.56
US-D6712 114,399 $1,137,274 $0.44
US-D6883 7,739 $68,733 $0.58

Table 5.2: Example data for TC Oil on capacities
and costs corresponding to several locations.

Transport cost for one unit of oil from a production location to a distribution location varies
between $0.88 and $3.90. For the transport of one unit of oil from a distribution location to a
customer location, costs vary between $0.46 and $1.97. As already mentioned, Table 5.3 gives a
summary of the characteristics of this test case. Note that even though all distribution locations
can be closed in this test case, these closures are not defined as investment options, since closing
a location does not result in a profit, only a saving from not having to pay fixed location costs.

5.2 Results of applying the methods

This section discusses for each defined goal the results of applying the corresponding proposed
method. The GHSJ framework for BOSS is implemented in AIMMS 3.11 and all test results are
obtained with CPLEX 12.3. For each method we start with running it for a few different values
of the allowed cost deviation k. We want to find out whether the method works as expected
and intended, and how many different solutions are obtained. If the first results give rise to it,
we modify the method and test it again. Furthermore, we test for sensitivities of the methods,
such as the chosen random seed.
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TC Bread TC Bread TC oil
(small) (large)

Number of customers locations 791 791 713
Total demand 81,862.2 147,352.4 1,663,485
Average demand per customer 103.5 186.3 2,333.1
Number of current prod. locations 8 8 3
Total prod. capacity current locations 75,761.0 75,761.0 1,905,000
Average prod. capacity current locations 9,470.1 9,470.1 635,000
Number of potential new prod. locations 10 30 -
Total prod. capacity new locations 64,279.0 193,558.0 -
Average prod. capacity new locations 6,427.9 6,451.9 -
Number of current dist. locations - - 21
Total dist. capacity current locations - - 2,305,704
Average dist. capacity current locations - - 109,795.4
Number of potential closures of prod. loc. 8 8 0
Number of potential closures of dist. loc. - - 21 1

Number of potential investments
to increase capacity 3 12 0

Total number of potential investments 11 20 0
Total potential increase in capacity

through investments 2 33,100.0 106,500.0 -
Total average increase in capacity

per investment 11,033.3 12,383.3 -

1 These closures are not modeled as investment options, since they do not come
with a fixed profit.

2 This amount does not equal the sum over all investments, since only one invest-
ment can be chosen per location. Therefore this amount equals the sum over all
locations, of the investment that increases the capacity most.

Table 5.3: Summary of characteristics of test cases.

5.2.1 Obtain maximally different alternative solutions

To find a number of alternative solutions that are maximally different from each other, we apply
the Standard HSJ method. In words, this method attempts to find a solution that uses as little
as possible locations and investments that were used in any of the previous solutions. Since the
restrictions of the original model have to be fulfilled, this potentially leads to the use of different
locations and investments.

This section starts with discussing the number of obtained solutions and the diversity of the
set of solutions for all test cases and different values of the allowed cost deviation k. Then we
discuss the results of adapting the main two dependencies of the model, i.e., the initial solution
and the value of the weight factor γ. Finally, we propose and test some modifications to the
model to obtain more alternatives.

Obtained solutions

For each test case, we want to find out how many alternative solutions the Standard HSJ
method finds for different values of the allowed cost deviation k. Furthermore, we like to
know the diversity of the set of obtained solutions and whether there is a relation between the
number of obtained solutions (# alt.), the diversity measure D(S), and k. To test this, we run
the Standard HSJ method for each test case for multiple values of k; Table 5.4 displays these
results. Appendix C gives for TC Bread (small) with k = 0.05 and k = 0.10, and for TC Oil
with k = 0.05 a detailed overview of the obtained results.

The results in Table 5.4 show that, especially for TC Bread (small) and TC Oil, the number
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of obtained alternative solutions is small. For these test cases for non of the choices of k, more
than 3 alternatives are found. For TC Bread (large) at most 8 alternative solutions are obtained.
Furthermore, the number of obtained solutions is not always increasing with the value of k. For
example, for TC Bread (small) and k = 0.01, 2 alternatives are found, while only 1 alternative
is found when k is increased to 0.02. The reason for this is that with a higher value of k, the
Standard HSJ method may find a first alternative that differs by more decision variables from
the initial solution, which results in a different starting position for the next iteration. It turns
out that the method is from this starting position not able to set any of the decision variables
in J to zero, such that the method is terminated. Note that the data in Table 5.4 does not
give information on which solutions are obtained. For example, the 2 solutions obtained for TC
Bread (small) with k = 0.01 do not include the solution obtained with k = 0.005, even though
this is also an allowed solution. See also Appendix C, which shows that the set of solutions
obtained for TC Bread (small) with k = 0.05 and k = 0.10 do not contain overlapping solutions.

From the results in Table 5.4, we see that when k is bigger, the value of the diversity measure
D(S) increases. The diversity measure is not only higher when the number of obtained solutions
is higher, since Table 5.4 shows examples of an increasing value of D(S), while the number of
obtained alternatives decreases or remains equal.

Allowed cost TC Bread (small) TC Bread (large) TC Oil
increase k # alt D(S) # alt D(S) # alt D(S)

0.0001 0 - 1 0.0086 0 -
0.001 0 - 3 0.0453 0 -
0.005 1 0.0172 4 0.0579 1 0.0477
0.01 2 0.0383 4 0.0662 2 0.0529
0.02 1 0.0517 6 0.0725 3 0.1041
0.05 3 0.0905 8 0.0924 3 0.1072
0.10 3 0.1034 7 0.1099 3 0.1481

Table 5.4: Number of obtained alternative solutions with the Standard
HSJ method and corresponding diversity measure D(S).

When the Standard HSJ does not find any alternative solutions, we can conclude that no
alternative solutions exist within the allowed cost range k. The reason for this is, that if the
Standard HSJ method did not succeed in finding an alternative solution, then it is not possible
to set any of the nonzero decision variables in the initial solution to zero. Also, we can safely
assume that it is, due to the constraint on total cost, not possible to set any zero decision
variable to 1, without simultaneously setting a nonzero decision variable to zero. Therefore, no
alternative solution exists within cost bound k, if the Standard HSJ does not find any. Thus,
for TC Bread (small) and TC Oil no alternative solutions exist for k ≤ 0.001. It is useful
information for the modeler to know that no alternative solutions exist within a certain cost
bound k. In that case, he knows that alternatives are available only if he accepts an increase
in cost higher than this value of k. If the Standard HSJ method obtains one or more solutions,
we cannot conclude anything about the number of existing alternative solutions, besides that
it is as least as high as the obtained number.

Effect of different initial solution

In the Standard HSJ method, the objective function that is optimized in each iteration is
determined by the value of the decision variables in the previously obtained solutions. Therefore,
we want to find out the extent to which the obtained solutions depend on the chosen initial
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sol. obtained in iteration
Start 1 2 3

A B C D
E F C D
G H C D
I J C D
B C M D

(a) TC Bread (small)

sol. obtained in iteration
Start 1 2 3

A B C D
E F G D
H B G D
I J G D
K L D

(b) TC Oil

solution obtained in iteration
Start 1 2 3 4 5 6 7 8 9 10

A B C D E F G H I
B J K L M E F G H I
N O P Q R E F G H I
S T U
V W X L Y R E F G H I

(c) TC Bread (large)

Table 5.5: Obtained solutions with the Standard HSJ method when different starting solutions are used.
A letter classifies a specific combination of decision variables and if a letter is bold then the solution is
not obtained in any of the previous runs.

solution. For this experiment, we allow a 5% increase of costs (k = 0.05) and use 5 different
initial solutions, under wich the optimal solution. All chosen initial solutions have total cost
less than 5% higher than the optimal solution. There exist for TC Bread (small) at least 70
different solutions with a maximum cost increase of 5%, 315 for TC Bread (large), and 194
solutions for TC Oil, see Table 5.8. Each solution is classified by a letter that characterizes the
exact combination of decision variables, where the letter ‘A’ refers to the optimal solution.

From the results of this experiment, displayed in Table 5.5, it is striking that for all test
cases often the same solutions are obtained, while the number of available solutions that have
a total cost at most 5% higher than the optimal solution is very high. For TC Bread (small)
in every iteration the solutions C and D are obtained; for TC Oil a similar situation holds
where D is always obtained and G in 3 of the 5 experiments; for TC Bread (large) E, F, G, H,
and I are obtained for all except the fourth experiment. For this test case, it even holds that
the solutions E to I are obtained in the same order. The results for TC Bread (large) show a
recognizable pattern. Thus, it seems that there is a high probability of the method to converge
to the same solutions. A tentative conclusion is that the obtained solutions when using different
start solutions are often the same.

Effect of changing the value of γ

The objective function for the Standard HSJ can be split in two parts: a difference part and a
cost part; i.e.,

min
∑
l∈ JL

LocOpen (l) +
∑
i∈ JI

InvDone (i)

︸ ︷︷ ︸
difference part

− γ · S︸ ︷︷ ︸
cost part

.

We want to draw conclusions on the effect of increasing the relative importance of the cost part
of the objective function by increasing the value of γ. For previous tests, we have chosen γ such
that the cost part of the objective function is always subordinate to the difference part, i.e.,
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only if two solutions have equal score on the difference part, the solution with lowest cost is
preferred, otherwise the solution with lowest score on the difference part is chosen. We define
for the cost part

γ = γ′ · 1

k · z0
.

With this formulation we can better scale the relative importance of both parts by choosing
the value of γ′. When 0 < γ′ < 1, it holds that γ · S < 1. Since the difference part can
only take integer values, such a choice of γ′ ensures that the objective function is hierarchical,
with the difference part as primary objective. Appendix D discusses this in more detail. We
are interested in the obtained solutions for γ′ ≥ 1. Therefore, we set k = 0.02 and increase γ′

step by step for each test case. We only draw conclusions from the solution obtained in the
first iteration, since the optimization process for each iteration depends on the value of decision
variables in previously obtained solutions.

For each choice of γ′, Table 5.6 displays for the first obtained alternative the value of the
binary difference metric (BDM) and the actual cost increase. The value of BDM gives the
pairwise difference between the initial solution and the alternative solution for the decisions vari-
ables LocOpen (l) and InvDone (i). These results show, as expected, that when γ′ increases, the
value of BDM decreases, indicating a smaller difference between the first obtained alternative
solution and the initial solution, while total cost of the alternative solution is also decreasing.

We conclude that setting γ > 1, such that a trade-off is made between degree of difference
and costs of the solution, makes the process somewhat like a black box to the user. We cannot
make any strong conclusions about the effect of weight factor γ′ on this trade-off or give an
indication on the value a user should choose for γ′. It is more transparent to the decision maker
when the objectives are assumed to be hierarchical, where difference is the main objective. In
that case, the user should choose 0 < γ′ < 1 and different solutions are obtained by using
different values of k.

act. cost
γ′ BDM increase

0 ≤ γ′ ≤ 1 6 1.71%
{2, 3} 4 0.65%
{4, · · · , 17} 2 0.12%
{18, · · · ,∞} 0 0.00%

(a) TC Bread (small)

act. cost
γ′ BDM increase

0 ≤ γ′ ≤ 3 19 1.58%
{4, 5} 16 1.07%
6 14 0.67%
{7, · · · , 14} 12 0.36%
{15, · · · , 49} 9 0.09%
{50, · · · , 574} 5 0.01%
{575, · · · ,∞} 0 0.00%

(b) TC Bread (large)

act. cost
γ′ BDM increase

0 ≤ γ′ ≤ 1 7 1.81%
{2, 19} 4 0.21%
{20, · · · ,∞} 0 0.00%

(c) TC Oil

Table 5.6: Effect of different values of γ′ on the difference and cost part of the objective function of the
Standard HSJ method for (a) TC Bread (small), (b) TC Bread (large), and (c) TC Oil.

Modified Standard HSJ to obtain more alternatives

It is striking about the Standard HSJ method that it finds in most experiments only a very
small number of alternative solutions. For example, for TC Bread (small) and k = 0.02, only
1 alternative solution is obtained, even though at least two more solutions qualify, namely the
solutions obtained for k = 0.01. Therefore, we propose an adapted version of the Standard HSJ
method, which should find more alternative solutions. However, these alternatives should still
be maximally different from the current set of solutions. Therefore, also the diversity should not
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decrease compared to the results of the original Standard HSJ method. We test the adapted
method by applying it to all test cases for k =0.01, 0.02, 0.05, and 0.10. Results can than
be compared to the results displayed in Table 5.4. However, first we describe the proposed
modification to the Standard HSJ model.

To prevent the Standard HSJ method from stopping after obtaining a solution that has been
found before, we define a different objective function at this point. This new objective function
is very similar to the original objective function of the Standard HSJ method, only now weights
are added to the binary decision variables. Thus, the new objective function is:

min
∑
l∈ JL

αL (l) · LocOpen (l) +
∑
i∈ JI

αI (i) · InvDone (i)− γ · S. (5.1)

The weights αL (l) and αI (i) are set equal to the number of obtained solutions in which the
corresponding decision variable is nonzero. By minimizing this new objective function, the
highest possible weight is given to closing locations that were not closed in any of the previous
solutions, while the weight associated with LocOpen (l) for a location l that was closed in all
previous solutions still equals zero. Therefore, the new objective function maximizes the differ-
ence between the new solution and all previous obtained solutions. The weights are updated
after each new solution, such that the objective is different in each iteration.

The described modifications of the Standard HSJ method ensure that in theory this method
can be repeated for infinitely many iterations. Therefore, we introduce the same stopping cri-
teria that are also used for the Random HSJ method and the Cost uncertain HSJ method, i.e.,
MaxSol and MaxEq. Figure 5.1 displays the complete proposed method, where SolCount is the
number of obtained solutions including the initial solution and EqCount is the number of times
a solution is obtained that is already in the set of solutions.

We apply the adapted version of the Standard HSJ method to all test cases, and set
MaxSol = 25 and MaxEq = 2 or 5. Table 5.7 displays for different values of k the number of
obtained solutions and the value of the diversity measure D(S). For ease of comparison also the
results for the original Standard HSJ are displayed. From these results we see that the number
of obtained solutions can be increased significantly with the proposed modification. For TC
Bread (small) we obtain the smallest increase, even no new alternative solutions for k = 0.005
and only one for k = 0.05, while at least for k = 0.05 we know that more solutions exist. This
is caused by the fact that optimizing the new weighted objective function results in a solution
that is already in the set of obtained solutions. We can explain this as follow: for instances in
which the initial number of obtained solutions is small, the weights vary less and the resulting
objective function differs less from the previous objective function. Therefore, the probability of
obtaining the same optimal solution is larger. Furthermore, results show that also the diversity
of the set of alternatives significantly increases by applying the adapted Standard HSJ method
instead of the original Standard HSJ method.

We conclude that the adapted Standard HSJ method is able to obtain more alternative
solutions, which also have a higher diversity than the solutions obtained with the original Stan-
dard HSJ method. Therefore, we recommend to use the adapted method. However, choosing
MaxEq = 5 instead of MaxEq = 2 does not result in more solutions for most instances. Also,
the diversity of the set of obtained solutions barely increases or even decreases by increasing
MaxEq from 2 to 5. Therefore, if time is an issue, MaxEq = 2 should be chosen. In that case,
the method stops as soon as the modified method resulted in a solution that has been found in
one of the previous iterations.
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modification

Original
Standard HSJ model

Determine set J of nonzero variables in all 
solutions

Set weight := 1

Determine optimal solution

Is solution new?

Set weight to number of solutions 
for which variable is nonzero

Determine optimal solution

Is solution new?

Set EqCount += 1

EqCount = 
MaxEq?

Set weight += 1 for nonzero 
decision variables in last solution

Initial solution

SolCount = 
MaxSol?

SolCount = 
MaxSol?

STOP

yes

yes

yes

yes

no

no

no

no

no

Set SolCount += 1

Set SolCount += 1

yes

Set EqCount += 1

Figure 5.1: Modified Standard HSJ method to obtain more alternative solutions.

5.2.2 Obtain a large number of alternative solutions

To obtain a large number of alternative solutions, we apply the Random HSJ method. This
method tries to find solutions with different decisions about the used locations and investments
by generating for each iteration new random weights corresponding to these decisions and
optimizing the resulting objective function.

This section first discusses the obtained number of alternatives for different values of the
allowed cost deviation k and the corresponding value of the diversity measure D(S). Second,



52 5. Application of HSJ methods to test cases

# obtained alternatives Diversity measure (D(S))
original modified modified original modified modified

k (MaxEq = 2) (MaxEq = 5) (MaxEq = 2) (MaxEq = 5)

0.005 1 1 1 0.0172 0.0172 0.0172
0.01 2 4 4 0.0383 0.0524 0.0524
0.02 1 4 5 0.0517 0.0662 0.0642
0.05 3 3 4 0.0905 0.0905 0.0910
0.10 3 6 7 0.1034 0.1520 0.1530

(a) TC Bread (small)

0.0001 1 1 1 0.0086 0.0086 0.0086
0.001 3 5 6 0.0435 0.0517 0.0500
0.005 4 10 11 0.0579 0.0804 0.0800
0.01 4 21 23 0.0662 0.0946 0.0955
0.02 6 24 24 0.0725 0.1162 0.1162
0.05 8 24 24 0.0924 0.1481 0.1481
0.10 7 24 24 0.1099 0.1661 0.1661

(b) TC Bread (large)

0.005 1 4 5 0.0477 0.0648 0.0728
0.01 2 5 6 0.0529 0.0794 0.0797
0.02 3 6 8 0.1041 0.1166 0.1199
0.05 3 9 11 0.1072 0.1490 0.1491
0.10 3 9 11 0.1481 0.1662 0.1663

(c) TC Oil

Table 5.7: Results of adapted Standard HSJ for TC Bread (small) (a), TC Bread (large) (b), and TC
Oil (c).

we discuss how we can decrease the number of obtained solutions, while potentially increasing
the diversity of the set of solutions. Finally, we test how dependent obtained results are on the
chosen random seed.

Obtained solutions

For each test case, we investigate how many alternative solutions the Random HSJ method finds
for different values of the allowed cost deviation k. Therefore, we apply this method to all test
cases for different values of k and set MaxSol sufficiently large, such that it is not restrictive.
Furthermore, we choose MaxEq = 600 for TC Bread (small) and TC Oil, and due to large
computation time MaxEq = 10 for TC Bread (large). To gain some first understanding of
the influence of the applied random seed on the obtained solutions, this experiment is repeated
twice for TC Bread (small).

Table 5.8 displays the results of these experiments. In this table, the column ‘total #
alternatives’ gives for TC Bread (small) the total number of different obtained alternatives
from both trials. For TC Bread (small) and TC Oil, no tests are performed for k ≤ 0.001, since
we concluded from the results of the Standard HSJ method that no alternatives exist. For TC
Bread (large) and k ≥ 0.05 no tests are performed, since already a large number of solutions
is obtained and the process takes a significant amount of time. We see that the number of
obtained solutions increases fast when k increases and can be come very large. Furthermore,
the diversity measure is strictly increasing with k.
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TC Bread (small) TC Bread (large) TC Oil
# alternatives total # Diversity (D(S)) # alter- diversity # alter- diversity

k (run 1) (run 2) alternatives (run 1) (run 2) natives D(S) natives D(S)

0.0001 - - 0 - - 1 0.0086 - -
0.001 - - 0 - - 8 0.0485 - -
0.005 1 1 1 0.0172 0.0172 49 0.0694 5 0.0728
0.01 4 4 4 0.0524 0.0524 112 0.0854 8 0.0764
0.02 13 12 14 0.0644 0.0641 315 0.1004 40 0.1141
0.05 54 66 70 0.1023 0.1045 - - 194 0.1540
0.10 205 199 293 0.1387 0.1358 - - 710 0.1674

Table 5.8: Number of obtained alternative solutions and corresponding diversity measure D(S) of
applying the Standard HSJ method.

Decreasing the number of solutions

Since, the total number of obtained solutions can easily become too high to be considered by a
decision maker, we want to decrease the number of obtained solutions and potentially increase
the diversity measure D(S). There are two options to do this, i.e.,

1. introduce an extra stopping criterion;

2. remove solutions that differ too little from the current set of solutions.

An extra stopping criterion could be, besides using MaxSol en MaxEq, to stop when the
diversity of the set gets below a pre-specified value. However, it appears that D(S) is not a
decreasing function of the number of alternatives. For example, the diversity measure for TC
Bread (large) and k = 0.02 equals 0.091 for the first 10 solutions and 0.100 for the entire set of
316 solutions. Therefore, using such a stopping criterion does not seem to be useful.

Removing solutions that differ too little from the current set of solutions can be done by
using the binary difference measure or the capacity difference metric, discussed in Section 4.6.
Appendix F displays for TC Bread (small) with k = 0.10 and for TC Bread (large) with k = 0.02
the value of the binary difference metric (BDM(s)) for each obtained solution. Now we present
the results of applying the Random HSJ method with the binary difference metric to TC Bread
(small) and k = 0.10. After each iteration, we calculate the value of BDM (s) for the new
obtained solution s. We remove solution s from the set of solutions if the value of BDM (s)
is smaller than a pre-specified value x. This means that a solution should differ by more than
x binary variables from all current solutions to be included in the set of alternatives. We test
this method with the same random seed and settings as used for the results of run 1 in Table
5.8 and set x = 2, 3, and 4. To be able to compare results, we terminate the method when the
total number of removed solutions equals MaxEq, i.e., solutions that are double obtained and
solutions that differ too little from the current set.

Table 5.9 displays for different values of x the number of obtained solutions and the diversity
measure D(S). For completeness, also the situation without removal is included, i.e., x = 0.
From these results, we see that when a solution should differ by more than 2 variables from
all current solutions, the number of obtained solutions almost halve and the diversity measure
increases from 0.1387 to 0.3261. Also, increasing x further, decreases the number of obtained
solutions significantly. However, increase of diversity is less significant when x is set higher
than 2, compared to when x is set from 0 to 2. Thus, we conclude that using the binary
difference metric to remove solutions from the set can decrease the number of obtained solutions
significantly, while also increasing the diversity measure D(S).
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Removal from set for # of alternatives Diversity (D(S))

No removal 205 0.1387
BDM (s) ≤ 2 105 0.3261
BDM (s) ≤ 3 56 0.3634
BDM (s) ≤ 4 40 0.3974

Table 5.9: Results for TC Bread (small) and k = 0.10 of applying
the binary difference metric (BDM) to the Random HSJ method.

Effect of different random seeds

We want to find out the extent to which the chosen random seed is determinant for the obtained
solutions. From the results of TC Bread (small) in Table 5.8, it seems that about the same
solutions are obtained with different random seeds. This is especially true for k ≤ 0.05. To
test if it holds in general that with different chosen random seeds roughly the same solutions
are obtained, we select for all test cases a value of k such that around 10 different solutions are
found. This means for TC Bread (small) k = 0.02, for TC Bread (large) k = 0.001, and for
TC Oil k = 0.01. Furthermore, we set MaxEq = 100 for TC Bread (small) and TC Oil, and
MaxEq = 20 for TC Bread (large).

Table 5.10 displays the results of the discussed experiment for TC Bread (large) and TC
Oil. The numbers in between brackets display the iteration in which the solution is obtained.
Results for TC Bread (small) show a similar pattern to results for TC Bread (large) and are
therefore displayed in Appendix G. For example, for TC Bread (large) in the first run, solution
B is obtained in the first iteration, solution C in the second, and in the third iteration A, B,
or C is obtained again and thus it is removed from the set of solutions. For this test case, we
see that the solutions C, D, E, and G are obtained in each run within 10 iterations, whereas
F is only obtained in 2 of the 5 runs and K only in 1 run. Also, for TC Bread (small), the
first few obtained solutions in the first run are mostly also found in the other runs. For TC Oil
the variation of the iterations in which solutions are found is much bigger. However, within 25
iterations almost all solutions of the first run are also obtained in the other four runs.

The results from TC Bread indicate that at least a significant part of the obtained solutions
is also found with another seed, as long as MaxEq is not set too low. The results for TC
Oil are less convincing, since more fluctuation in obtained solutions is present and much more
iterations are needed to obtain approximately the same solutions as in the first run. Therefore,
we cannot make strict conclusions on the dependency of the random seed based on the observed
results. However, when MaxSol and MaxEq are chosen sufficiently large, approximately the
same solutions are found and we can safely assume that the influence of the chosen random seed
is not too significant.

5.2.3 Obtain alternatives that are robust against cost parameter uncertain-
ties

To obtain alternative solutions that have lower cost when actual cost parameters are realized
different than expected, we apply the Cost uncertain HSJ method. In this method the objec-
tive function is equivalent to the original objective function of BOSS. However, uncertain cost
parameters are replaced by random numbers from a range indicated by the modeler. First, we
discuss the results of applying the Cost uncertain HSJ method. We are especially interested
in whether we find alternatives that are from an uncertain cost perspective preferred over the
initial solution. Second, we briefly discuss the difference in obtained results between TC Bread
and TC Oil.
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initial solution obtained in iteration
solution 1 2 3 4 5 6 7 8

A (0) B (1) C (2) D (4) E (6) F (7) G (8) H (12)
A (0) B (1) G (2) D (3) E (4) C (8) H (13) I (25)
A (0) E (1) G (6) C (7) B (8) J (9) D (10) I (11) K (22)
A (0) E (1) D (3) C (4) I (6) G (9) B (22)
A (0) B (1) E (2) D (4) G (6) C (7) H (12) K (14) F (21)

(a) TC Bread (Large)

initial solution obtained in iteration
sol. 1 2 3 4 5 6 7 8 9 10 11

A (0) B (1) C (3) D (4) E (6) F (7) G (8) H (12) I (9) J (20) K (24)
A (0) J (1) C (2) L (3) I (4) F (6) K (8) H (10) G (21)
A (0) H (1) K (2) J (3) C (6) G (7) I (9) B (10) F (17) E (84)
A (0) B (1) G (2) J (4) I (5) K (6) C (9) F (10) M (50) H (54) E (66) D (70)
A (0) I (1) J (2) H (3) K (4) G (5) F (13) C (17) B (25) E (38) D (44)

(b) TC Oil

Table 5.10: Results of using different random seeds in the Random HSJ for TC Bread (large) (a) and
TC Oil (b). A letter classifies a specific combination of decision variables and if a letter is bold, then the
solution is not obtained in any of the previous runs.

Obtained solutions

For each of the three test instances, we investigate whether the Cost uncertain HSJ method
finds alternative solutions that are preferred over the initial solution. In order to achieve this, we
define for each test case several scenarios of the uncertain cost parameters. To compare solutions
with each other, the cost of each solution is calculated for a large number of realizations of the
cost parameters. Subsequently, based on this data, we calculate for each obtained solution two
performance indicators:

• average cost over all evaluated realizations;

• percentage of realizations in which the obtained solution has lowest cost in comparison to
all other obtained solutions.

For the scenarios, we make a distinction between variable and fixed cost. For each scenario we
define a variance for both types of cost. For a realization we draw the cost uniformly from the
interval [

E [cost] · (1− variance) , E [cost] · (1 + variance)
]
. (5.2)

Cost parameters used in the objective function are also drawn from this same interval. Note
that the initial solution is optimal if realized cost = E[cost]. For all tests we use the following
settings: k = 0.10, MaxSol = 100, MaxEq = 100, and number of realizations for evaluation is
2000.

For each test case we define 4 different scenarios with increasing variance. Furthermore,
variance of variable cost is for all scenarios smaller or equal to variance of fixed cost. For
TC Bread (large) and TC Oil we use the same scenarios. For TC Bread (small) we choose
scenarios with larger variances, since results for the scenario with smallest variance shows that
this variance barely influences the optimal solution. Table 5.11 displays the results of these
experiments. From the result for TC Bread (small) and TC Bread (large) we see that the initial
solution in most experiments has the highest percentage of realizations with lowest cost. Even
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sce- variance cost # obt. best % this sol. % initial sol. cost compared to initial sol.
nario fixed variable alt. D(S) sol. lowest cost lowest cost orig. situation average

1 0.05 0.05 3 0.0383 initial 80.80% 80.80% ≈ 0.00% ≈ 0.00%
2 0.10 0.10 3 0.0383 initial 74.90% 74.90% ≈ 0.00% ≈ 0.00%
3 0.25 0.10 29 0.0996 initial 33.70% 33.70% ≈ 0.00% ≈ 0.00%
4 0.80 0.50 100 0.1507 initial 3.40% 3.40% ≈ 0.00% ≈ 0.00%

(a) TC Bread (small)

sce- variance cost # obt. best % this sol. % initial sol. cost compared to initial sol.
nario fixed variable alt. D(S) sol. lowest cost lowest cost orig. situation average

1 0.05 0.05 100 0.0768 B 6.65% 6.00% +0.01% ≈ 0.00%
2 0.10 0.05 100 0.0905 C 4.75% 4.60% +0.01% ≈ 0.00%
3 0.10 0.10 100 0.0897 D 4.20% 2.80% +0.14% ≈ 0.00%
4 0.25 0.10 100 0.1216 initial 6.20% 6.20% ≈ 0.00% ≈ 0.00%

(b) TC Bread (large)

sce- variance cost # obt. best % this sol. % initial sol. cost compared to initial sol.
nario fixed variable alt. D(S) sol. lowest cost lowest cost orig. situation average

1 0.05 0.05 3 0.0463 B 94.85% 0.00% +2.75% -2.28%
2 0.10 0.05 7 0.0729 B 48.10% 4.65% +2.75% -1.00%
3 0.10 0.10 9 0.0772 B 39.55% 9.05% +2.75% -0.72%
4 0.25 0.10 28 0.1029 C 12.75% 3.35% +0.64% -0.64%

(c) TC Oil

Table 5.11: Results of applying the Cost uncertain HSJ method for different scenarios, with MaxSol =
100, MaxEq = 100 for TC Bread (small) (a), TC Bread (large) (b), and TC Oil (c).

if this does not hold, the initial solution is still relatively good, i.e., it has the lowest cost in
almost as many realizations as the solution with highest score. Even more important, in all
experiments on these two test cases, the initial solution has the lowest average cost. Also, the
graphical representation of both performance indicators in Appendix H shows that the initial
solution for TC Bread always belongs to the minority of solutions that have approximately
the same percentage of realizations for which it has lowest cost as the best solution. Thus,
for TC Bread the Cost uncertain HSJ method does not find a good alternative solution that
outperforms the initial solution on both performance indicators. Therefore, there is no strong
incentive to prefer one of the alternatives over the initial solution.

For TC Oil, the results are very different from those for TC Bread. From the results in Table
5.11, we see that for each scenario the Cost uncertain HSJ method finds an alternative which
has lowest average cost in a higher percentage of the realizations. This table also shows that
the solution in the column ‘best sol.’ has total cost in the initial situation only slightly higher
than the optimal solution in this situation and lowest average cost. These results show that the
obtained solutions B and C in the corresponding scenarios are preferred over the initial solution,
since they have lower average cost and lowest cost in a higher percentage of realizations for the
corresponding scenario.

To test whether the obtained results in Table 5.11 are representative or that completely
different results are obtained with other random seeds, we repeat for TC Bread (small) and TC
Oil for two scenarios the performed test with different random seeds. From the results of these
tests, displayed in Appendix I, we conclude that the outcomes are fairly stable and no other
conclusions are drawn when another random seed is used.
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Difference between test cases

We conclude that for TC Bread, the Cost uncertain HSJ method did not result in an alternative
solution that is preferred over the initial solution. However, for TC Oil, such an alternative
is obtained for each scenario. Therefore, the Cost uncertain HSJ method is a good addition
to BOSS. The fact that preferred alternatives are obtained for TC Oil and not for TC Bread,
might be caused by the difference in cost structure of the test cases. An explanation could be in
the difference of the fraction of fixed cost from total cost, this fraction is in the initial solution
0.23 for TC Bread (small), 0.37 for TC Bread (large), and 0.58 for TC Oil. Thus for TC Oil
this fraction is significantly larger than for the other two test cases and this may cause relevant
alternatives to be available for TC Oil and not for TC Bread. The reason is that total cost is
only build up of a small number of fixed costs elements, while there is a very large number of
variable cost elements. Variation in a large number of variable cost elements may cause effects
to cancel each other out, while variation in only a small number of large cost factors may not
have this effect. By this reasoning, a higher fraction of fixed cost makes it more likely to obtain
alternative solutions that outperform the initial solution in other cost realizations. To be able to
draw conclusions on what kind of cost structure characteristics make it likely to obtain relevant
alternative solutions with the Cost uncertain HSJ method, more tests on different test cases
should be performed.

5.2.4 Obtain alternatives that are robust against right-hand side uncertain-
ties

To obtain solutions that are more robust against right-hand side uncertainties, we propose
in Section 4.4.4 two versions of the Robust HSJ method. Right-hand side uncertainties for
BOSS contain uncertainty about demand, production capacity, and distribution capacity. Both
versions of the Robust HSJ method maximize the difference between available and used capacity.
However, the Robust HSJ method (version 1) does this for individual production facilities and
locations, whereas, the Robust HSJ method (version 2) maximizes the minimum production
and distribution slack.

For TC Bread, only production capacity is relevant, since products are distributed directly
from the production facility to the customer, without the intermediate step of a distribution
location. For TC Oil, both production capacity and distribution capacity play a role. Thus, for
this test case, the objective is to maximize both production and distribution slack.

This section first discusses the results of applying the Robust HSJ method (version 1) to
both test cases and subsequently for the Robust HSJ method (version 2). For this last method
we also propose some modifications and discuss results of applying the adapted method.

Robust HSJ method (version 1)

We want to find out whether the Robust HSJ method (version 1) is able to obtain a number of
alternatives that distribute slack differently over the production facilities and distribution loca-
tions, while at the same time potentially increasing the total slack in the network. The Robust
HSJ method (version 1) tries to do this by giving a higher incentive to increasing production
or distribution slack for locations and facilities that are highly utilized in the previous solution
than for less utilized locations and facilities. To test the Robust HSJ method (version 1), we
apply it to all three test instances with different values of k.

Table 5.12 displays for each test case for the obtained alternative solutions the total slack
and the actual cost increase; Appendix J gives more detailed results on the slack per location in
each solution. For TC Oil, production slack is not displayed, since it is in each solution exactly
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1st obtained alternative 2nd obtained alternative
k Total slack actual cost increase Total slack actual cost increase

0.00 40.8 - - -
0.01 1484.8 0.21% - -
0.02 1484.8 0.21% 1487.8 1.85%
0.05 4701.8 4.65% - -
0.07 7402.8 6.55% - -
0.10 9365.8 10.00% 8963.8 9.97%

(a) TC Bread (small).

1st obtained alternative 2nd obtained alternative 3rd obtained alternative
k Total slack cost incr. Total slack cost increase Total slack cost increase

0.00 20.0 - - - - -
0.01 2784.6 0.98% - - - -
0.02 5563.6 1.98% 5488.0 1.96% - -
0.05 13407.6 5.00% 12451.6 5.00% - -
0.07 18516.6 7.00% 17191.6 6.99% - -
0.10 25852.6 10.00% 23701.6 10.00% 26939.6 9.99%

(b) TC Bread (large).

1st obtained alternative 2nd obtained alternative 3rd obtained alternative
k Total slack cost incr. Total slack cost increase Total slack cost increase

0.00 15100 - - - - -
0.01 8093 0.89% 7083 0.92% 13140 0.86%
0.02 5122 1.81% 3324 1.63% - -
0.05 14822 5.00% 6511 3.31% 10169 4.02%
0.07 44335 5.72% 4727 2.05% 34560 5.17%
0.10 9660 8.41% - - - -

(c) TC Oil.

Table 5.12: Results of Robust HSJ method (version 1).

equally distributed over the locations. Apparently, the distribution of production slack has little
influence on the total cost and even with a small allowed cost increase, total production slack
can be equally allocated to the production locations. Thus, for TC Bread, in Table 5.12 slack
refers to production slack and for TC Oil, it refers to distribution slack. The first line for each
test case gives the situation of the initial solution. From these results, we see that the Robust
HSJ method (version 1) only finds a small number of alternative solutions, mostly one or two
alternatives. We can explain this in the following way: the weights βPS(f) and βFS(p, l) are
calculated by the utilization of the previously obtained solution. However, if slack is relatively
small, all weights are approximately equal. For example, for TC Bread (small) and k = 0.01
the first alternative only has slack of 1484.8 at one production location, while all others are
fully utilized. Thus, the weight βPS(f) = 1 for all except one location, and for this last location
βPS(f) = 0.87. These values of the weights result in the objective function (4.20) to be roughly
the same in each iteration, such that with high probability a solution is obtained that is already
in the set of alternative solutions. In that case, no new weights are calculated and the method
terminates.

The results in Table 5.12 show that for TC Bread total slack increases significantly for all
alternatives when k increases. For example, when k = 0.01, slack increases for TC Bread (small)
from 0.00% for the initial solution to 1.81% of total demand for the alternative solution. For TC
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Oil, total slack does not increase for most values of k. However, slack is distributed differently
over the locations.

Even though we only find a small number of alternative solutions, these solutions can con-
tribute to the decision process of choosing the solution that best fits the preferences of the
decision maker. The Robust HSJ method (version 1) can give insight in possibilities to increase
slack at different production facilities and distribution locations. Therefore, we recommend to
apply this method if the decision maker prefers to increase production or distribution slack or
is interested in options to distribute slack across the network.

Robust HSJ method (version 2)

We want to find out whether the Robust HSJ method (version 2) is able to increase minimum
slack by increasing the value of k. And if this is the case, whether there is a straightforward
relation between k and the minimum slack. To test this, we apply the Robust HSJ method
(version 2) to all three test instances for k ∈ {0.01, 0.02, . . . , 0.10}. Since, the objective function
of this method is static, i.e., it does not change after an iteration, the method finds at most 1
alternative solution.

Figure 5.2 displays for all three test cases as a function of k, the minimum slack. This
slack is displayed as a fraction of total demand by all customers, to make the different test cases
more comparable. For TC Bread, slack refers to production slack and for TC Oil it refers to
distribution slack. For TC Oil, production slack is not displayed, since minimum production
slack is for all tested values of k equal to 4.84% of total demand, i.e., even for k = 0.01 total
production slack is equally distributed over the 3 production facilities. For TC Bread (small)
we see that no alternative solution is found for k ≤ 0.05, i.e., minimum slack cannot be made
positive if cost is allowed to increase by at most 5%. For TC Bread (large) it seems that slack
linearly increases with k. However, this observation is not supported by the results of the other
two test cases. For TC Oil minimum slack equals 0.47% of demand for all values of k between
0.07 and 0.10, and actual cost increase is 6.07%. Thus, minimum slack cannot be increased
further than this 0.47% when cost may not increase by more than 10%, and therefore, the
method returns the same solution for 0.07 ≤ k ≤ 0.10.

The Robust HSJ method (version 2) has as a disadvantage that it is hard to interpret its
results. Without context it tells very little to know that each location can produce 100 units
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Figure 5.2: Results of Robust HSJ method (version 2), where minimum slack refers to production slack
for TC Bread and to distribution slack for TC Oil. Slack is displayed as a percentage of total demand.
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more. This is a very high amount, most likely even undesirable, when total capacity is 400 units,
whereas, it is negligible small if total capacity is 100,000 units. Thus, we like to measure slack
as a fraction of total capacity of the corresponding location or facility. We modify the Robust
HSJ method (version 2) such that it maximizes minimum relative slack instead of minimum
absolute slack. To this end, we replace some of the constraints, concerning slack, of the BOSS
model. First, we introduce the following two new decision variables:

• RelSmallestProdSlack: smallest unutilized production capacity as a fraction of total
capacity, over all production facilities;

• RelSmallestF lowSlack(p): smallest unutilized distribution capacity for product p as a
fraction of total capacity, over all distribution locations.

Furthermore, we introduce the following two constraints to ensure that these two decision
variables are indeed set to the corresponding values:

RelSmallestProdSlack ≤ ProdSlack (f)

prodcap (f)
; (5.3)

RelSmallestF lowSlack (p) ≤ FlowSlack (p, l)

flowcap (p, l)
∀ p ∈ P. (5.4)

The value of the decision variables ProdSlack (f) and FlowSlack (p, l) follows from respectively
the constraints (4.9) and (4.13). For the Robust HSJ method (version 1), we included constraints
which ensure that slack equals zero for locations that are not in use. For this model, slack for
a location that is not opened can be positive. Otherwise, RelSmallestProdSlack is equal to
zero if at least one location is closed. The new objective function now becomes:

max RelSmallestProdSlack +
∑
p∈P

RelSmallestF lowSlack (p). (5.5)

Note that the relative slack is defined as a fraction of the initial capacity, i.e., we do not account
for investments that can increase the total capacity of a facility or location. The reason is that
this makes the model nonlinear, such that it becomes much harder to solve.

Figure 5.3 displays for all three test instances, as a function of k, the minimum relative slack.
The results in this figure show a similar pattern to that in Figure 5.2, i.e., the relation between
k and minimum relative slack seems to be equivalent to the relation between k and minimum
absolute slack. Minimum relative slack for TC Bread (small) is equal to zero for k ≤ 0.05. For
TC Bread (large), minimum relative slack almost linearly increases for k ≥ 0.01. However, for
TC Oil, the minimum relative slack increases for k ≥ 0.07, whereas, the minimum absolute
slack has the same value for 0.07 ≤ k ≤ 0.10.

We now briefly discuss the impact of defining relative slack as a fraction of initial capacity
instead of actual capacity. This definition biases the results, as actual relative slack is smaller
than the calculated relative slack, if an investment is made to increase capacity. For TC Oil
this is not an issue, since no investments are defined for this test case. For TC Bread (small) at
most 1 location has a lower actual relative slack. For TC Bread (large) up to 3 locations have
a lower actual relative slack. For example, for k = 0.07 RelSmallestProdSlack =2.73%, while
actual relative slack is 1.50%, 1.61%, and 2.18% for 3 locations; all other locations have actual
slack at least equal to 2.73%. However, the biasing is barely an issue and mostly a matter of
definition.

We conclude that this adapted version using relative slack is preferred over the initial
Robust HSJ method (version 2), which uses absolute slack. The reason is that relative slack
is more intuitively understood and more relevant for a decision maker to steer on. Locations
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Figure 5.3: Results of modified Robust HSJ method (version 2), where relative minimum slack refers to
production slack for TC Bread (small) and TC Bread (large) and to distribution slack for TC Oil. Slack
is displayed as a percentage of total capacity of a location or facility.

can vary significantly in size, such that a slack of x units has a completely different effect
on operations for a small facility as for a much larger facility. In contrast, if for example,
the minimum relative production slack in a network is 2%, than we know that an increase of
demand by 2% can be absorbed by the network. Also, every location produces at most at 98%
of maximum production level. This may be an aspiration of the management team, such that
failures and maintaince of machines do not disrupt the production process.

5.3 Conclusion

In this chapter, we have described the application to three test instances of four different real-
izations of the GHSJ framework, where each method was developed for a specific goal. We now
summarize the main results and conclusions from these methods.

The Standard HSJ method was found to be well able to obtain maximally different solutions
for all three test cases. However, the user has little control over the number of obtained solu-
tions. Therefore, a modification to this model was proposed. From test results, we concluded
that the number of obtained solutions is increased significantly with this modified method, while
the diversity of the set of obtained solutions also increases.

The Random HSJ method can be used to obtain a large number of alternative solutions.
Also, when only a very small cost deviation is allowed, this method can be used to find a number
of alternatives. However, this method has no driving force to obtain solutions that are different
from each other. To increase the diversity of the obtained solutions and decrease the number
of alternatives, the binary difference metric (BDM(s)) can be used to remove solutions that
differ not enough from the current set of solutions.

The Cost uncertain HSJ method was proposed to obtain solutions that are more robust
against cost parameter uncertainties than the initial solution. Obtained alternatives were eval-
uated by the average cost over a large number of different realizations of the uncertain cost
parameters and the percentage of realizations in which the solution has lowest cost. By the
application of this method to the test cases and the evaluation of the obtained solutions, we
found for one test case, alternative solutions that are preferred over the initial solutions, while
for the other test case we did not find such alternatives. The difference between the results
for both test cases may be caused by a difference in cost structure. However, without further
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research we cannot state this with certainty. We conclude that the Cost uncertain HSJ is a
good addition to BOSS, since the method found relevant alternatives for one of the test cases.

The Robust HSJ method has two versions, with related objectives. Both methods are used
to obtain solutions that are more robust against right-hand side uncertainties, such as uncer-
tainty about demand or capacity. We found, by applying the Robust HSJ method (version
1), that a number of alternative solutions are obtained that allocate production or distribution
slack differently over the facilities or locations. Even though the number of obtained solutions
is small and most facilities and locations still use full capacity, results are useful and promising,
i.e., with a small cost increase alternatives are found that a decision maker can consider when
uncertainty in demand or capacity plays a role. By the Robust HSJ method (version 2), a sin-
gle alternative solution, that maximizes minimum absolute slack is obtained. Even though this
method shows some good results, it is hard to interpret the results. Therefore, we propose to
adapt the method such that it maximizes minimum relative slack. From the results of applying
both versions to both test cases, we conclude that the adapted version is preferred due to the
more intuitive interpretation of results.



Chapter 6

Conclusion and recommendations

In this chapter we present the conclusions of this research project in Section 6.1. In section 6.2,
we recommend on implementation of the discussed methods in BOSS. Finally, we gives some
suggestions on further research in Section 6.3.

6.1 Conclusions

The subject of this thesis is BOSS, a strategic and tactical supply chain optimization tool,
which solves a mathematical program to find an optimal supply chain configuration. We focus
on the modeling of the location-allocation problem in BOSS; in this type of problem the most
important decisions are which locations should be used and which investments should be made.
Chapter 2 describes the mathematical formulation of this problem. For BOSS we identify two
types of uncertainties that play a role:

• Data uncertainty, i.e., uncertainty about, among others, actual demand, capacities, and
costs.

• Model uncertainty, i.e., uncertainty about whether the model accurately describes the
realistic situation.

We have done literature research on dealing with both types of uncertainty in mathematical
programming. Literature on robustness in mathematical optimization defines two types of data
uncertainty, i.e., uncertainty about objective function parameters and uncertainty about right-
hand side parameters. From the methods discussed in literature to obtain robust solutions, only
fuzzy mathematical programming can handle both types of uncertainties. Since this method,
in contrast to many other methods, does not introduce nonlinearity into the model, we expect
it to be useful for dealing with data uncertainty in BOSS. However, we have decided not to
implement this method. Instead we focus on methods to deal with model uncertainty and on
adapting these methods such that they can also deal with data uncertainty.

Literature on model uncertainty proposes to generate alternative solutions that are good
with respect to the modeled objectives and different from each other in the critical decisions
taken. When presented with these different alternative solutions, the decision maker can decide
which solution best fits his preferences with respect to both modeled and unmodeled objectives.
Most of the methods discussed in literature generate such alternative solutions by applying
mathematical optimization to the original problem, with a different objective function compared
to in the initial model. We define a framework, which we refer to as Generalized Hop, Skip,
Jump (GHSJ), to generate alternative solutions. In this framework, the objective function has
a general form, but the implementation can be chosen based on the objective of the decision
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maker with respect to the obtained alternatives. Furthermore, we use the constraints of the
original model to ensure that an obtained solution fulfills all requirements. Finally, we add an
extra constraint to ensure that total cost of an alternative solution does not deviate more than
a pre-specified amount from the cost of the optimal solution.

Based on the GHSJ framework, we propose two different methods to generate alternative
solutions to the location-allocation problem in BOSS that make different critical decisions. First,
we propose the Standard HSJ method to obtain a number of maximally different alternative
solutions. This method uses an objective function that minimizes the sum of the binary decision
variables that were nonzero in any of the previously obtained solutions. Second, we propose
to apply an objective function with randomly generated weights to find a large number of
alternative solutions; we refer to this method as Random HSJ.

We extend the applicability of the GHSJ framework to account for data uncertainty in BOSS.
To this end, we define two methods to generate solutions that are more robust against data
uncertainty. The Cost uncertain HSJ method aims to find alternative solutions that are more
robust against cost parameter uncertainty than the initial solution. This is done by using the
original objective function, where uncertain cost parameters are replaced by random realizations.
The Robust HSJ aims to find alternative solutions that are more robust against right-hand side
uncertainties. To this end, we introduce slack variables measuring for each location and facility
the difference between available and used capacity. We propose two versions of the Robust HSJ,
where the first one maximizes individual slack and the second maximizes minimum slack.

Chapter 5 discusses the application of the four proposed methods to two test cases based
on studies performed for customers of ORTEC. These tests show that each proposed method is
indeed able to generate the required alternatives. For the Standard HSJ method, we propose
and test a modification that provides the user with more control over the number of obtained
solutions, since this number can be very small with the original Standard HSJ. The Random HSJ
can obtain a very large number of alternatives. Since this method has no driving force to obtain
solutions that are different from each other, we apply the binary difference metric (BDM(s))
to remove solutions that differ too little from the current set of solutions. Tests show that this
indeed results in a significant decrease of the number of solutions, while the diversity of the
set of solutions increases significantly. Solutions obtained with the Cost uncertain HSJ method
are evaluated based on a large number of realizations of the uncertain cost parameters. This
method is a good addition to BOSS, since we found for one of the test cases alternative solutions
that perform better in case of cost parameter uncertainty. For the Robust HSJ method we test
two versions. Version 1 was found to obtain a number of alternative solutions that allocate
production or distribution slack over different locations. For version 2 we propose to adapt the
method to maximize minimum relative slack instead of minimum absolute slack, since results
are in that case more intuitively interpreted.

6.2 Recommendations

We recommend ORTEC to implement all four discussed methods in BOSS. Note that for the
Standard and the Robust HSJ method (version 2) we advise to implement the modified methods,
since they find more or better alternatives. We now describe the recommendations for each of
the four developed methods separately.

1. Standard HSJ

When doing a strategic network study for a customer with BOSS, we advise ORTEC to always
use the Standard HSJ method. This method takes less time than the Random HSJ method and
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finds a small number of maximally different solutions. The Standard HSJ method can be used
for a number of different values of k, for example 0.01, 0.02, 0.05, and 0.10. Obtained solutions
can then be discussed with the customer, such that his preferences are better understood. Based
on these results, ORTEC can either adapt the original model to include certain preferences or
recommend one of the alternative solutions. The Standard HSJ gives insight to the decision
maker in the existence of solutions that are close to optimal, but make very different strategic
decisions.

2. Random HSJ

We recommend to use the Random HSJ method when cost may only increase from optimality
by a small percentage, for example 0.5%, and the Standard HSJ method finds too few solutions.
In that case, the Random HSJ may be able to obtain more and different alternatives than the
Standard HSJ finds, especially when MaxEq is set to a high value. Even for a higher allowed
cost deviation it might be that more alternative solutions are requested. Also, in that case the
Random HSJ method should be used. Furthermore, when a set of solutions with a very high
diversity is required, we recommend to use the Random HSJ method with removal of solutions
that differ too little by the binary difference metric.

3. Cost uncertain HSJ

When cost uncertainty plays a role, even if there is only a slight presumption that actual
cost may be different than expected, we recommend to apply the Cost uncertain HSJ method.
Whether this method finds solutions that are preferred over the initial solution for cost uncertain
parameters, depends on the structure of the data. However, we cannot conclude beforehand
whether this method finds relevant alternatives. Therefore, it is best to apply the Cost uncertain
HSJ method for a small number of iterations and conclude from these results whether the
method finds good alternatives, or that the initial solution is already good. Solutions should
be evaluated based on a large number of randomly generated realizations of the uncertain cost
parameters, and compared on average cost and percentage of realizations in which the solution
has lowest cost. When this method does not find alternatives that score better on any of these
criteria, this gives the decision maker more confident in the initial solution. So also in that case,
it is relevant to apply the Cost uncertain HSJ method.

4. Robust HSJ

Finally, we recommend to apply the Robust HSJ method when the customer indicates that
he is not sure about future demand or capacity. The Robust HSJ method (version 1) can be
applied to find alternative solutions that allocate unused capacity differently over production
facilities and distribution locations. These alternative solutions also have potentially more total
unused capacity, thereby making it easier to absorb a growing demand or loss of capacity due
to failure. This results in a supply chain that is more robust and flexible. When the customer
indicates to prefer capacity to be not fully utilized for all production or distribution locations,
we recommend to apply the Robust HSJ method (version 2). With the modified method that
maximizes minimum relative unused capacity, an alternative can be obtained that has for each
production facility or distribution location the same percentage of slack. For example, if this
percentage equals 1%, it means that an increase of total demand by 1% can still be fulfilled by
the production or distribution capacity. It can also be relevant to have a certain percentage of
slack, such that maintaince can be scheduled easily and failures do not disturb production too
much.
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6.3 Further research

Based on the assumptions made in this research and the knowledge gained on methods to gen-
erate meaningful alternative solutions for BOSS, we give some suggestions for further research.

1. Influence cost structure on solutions from Cost uncertain HSJ

With the Cost uncertain HSJ method, we find no relevant alternative solutions for one of the
test cases, while for the other test case in each scenario we obtain at least one alternative that
is preferred over the initial solution. More research is needed, by applying the Cost uncertain
HSJ method to test cases with different cost structures, to be able to draw conclusions on what
kind of cost structure makes it likely for this method to obtain relevant alternatives.

2. Distribution uncertain cost parameters

Throughout this research we assume that no information on the distribution of the uncertain cost
parameters is available, and the uniform distribution best matches this situation. Therefore, it
might be worth testing the Cost uncertain HSJ method on TC Bread with different distributions
of cost parameters. For example, a normal distribution gives a higher probability to the expected
value of a cost parameter. Also, in that case, a modeler does not have to specify a hard lower
and upper limit. Nevertheless, a normal distribution requires indicating the standard deviation
of the data, and this may also be difficult to specify. If a consultant of ORTEC wants to apply
this method in a study for a customer and enough historical data is available, he might be
able to base the assumed distribution on actual data and test the Cost uncertain HSJ method
with this distribution. Such tests result in a better understanding of the assumptions on the
influence of uncertain cost parameters on this method.

3. More alternatives from Robust HSJ method

For the Robust HSJ method (version 1) we found for our test cases only one or two alternative
solutions, that allocate slack over a small number of locations. However, we like to find more
alternatives, and distribute slack over more locations. A modification to this method that
is worth testing is to introduce binary variables measuring whether a location or production
facility has unused capacity. Then we can force the slack to be distributed over more locations
by taking these decision variables into the objective function. However, we should also enforce
a pre-defined minimum slack, since otherwise a very small amount of slack already qualifies.

4. New methods and better fitting methods to customer wishes

Finally, in general, the discussed methods should be applied to more test cases to increase con-
fidence of the users. If consultants of ORTEC use one or more methods in case studies they
performs for customers with BOSS, they can use feedback of those customers to improve the
search for the type of alternatives a customer requests. Based on this information new realiza-
tions of the GHSJ framework can be developed and tested. For example, a customer with an
environmental focus, may be interested in decreasing CO2 emission. Section 4.4.5 discusses a
number of such methods that might be business wise relevant.
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Appendix A

BOSS model description

This appendix summarizes the BOSS model described in Chapter 2. Section A.1 gives the sets
and parameters of the model. Section A.2 describes the decision variables and Section A.3
indicates the objective function. Finally, Section A.4 discusses the restrictions that hold for the
model.

A.1 Sets and parameters

The BOSS model uses the following main data sets:

1. L : set of all physical locations in the network;

2. F : set of all facilities;

3. F l ⊆ F : set of all facilities located at physical location l, i.e., F l : ∅ if no production can
take place at location l, for example if l is a customer location;

4. M : set of commodities;

5. P : set of products;

6. G : set of ingredients for the production process, i.e., G :M∪P;

7. I : set of potential investments. Each investment is related to either a location in its
entirety or to a single facility;

8. Ifl(l) ⊆ I : set of potential investments which increase or decrease the flow capacity of
location l;

9. Ipr(f) ⊆ I : set of potential investments which increase or decrease the capacity of
production facility f .

Furthermore, we have the following data available:

1. demand (p, l) : demand for product p by location l;

2. prodcap (f) : maximum production capacity of production facility f ;

3. investprodcap (i, f) : maximum production capacity of production facility f if investment
i is done;

4. flowcap (p, l) : maximum throughput of product p at location l;
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5. investflowcap (i, p, l) : maximum throughput of product p at location l if investment i is
done;

6. recipef (g) : number of units of ingredient g used or produced at facility f ;

7. maxsupply (p, l) : maximum supply of product p at location l;

8. commavail (m, l) : available number of units of commodity m at location l;

9. bigMFlow (p, l) = max

(
max
i∈If l(l)

(investflowcap (i, p, l)) , f lowcap (p, l)

)
.

A.2 Decision variables

The decision variables in the BOSS model are:

1.

LocOpen (l) =

{
1 if location l is in use;

0 otherwise.

2.

InvDone (i) =

{
1 if investment i is made;

0 otherwise.

3. Production (f) : production level at production facility f ;

4. ProdIn (p, f) : number of units of product p used in the production process of one pro-
duction unit at facility f ;

5. ProdOut (p, f) : number of units of product p produced from one production unit at
facility f ;

6. Flow (p, l1, l2) : number of units of product p transported from location l1 to location l2;

7. Supply (p, l) : number of units of product p supplied to location l;

8. CommUse (m, f) : number of units of commodity m used at facility f .

A.3 Objective function

The objective function is to minimize the total costs of the supply chain design, i.e.,

minCost = TransportCost+ LocationCost+ ProductionCost

+ SupplyCost+ InvestmentCost, (A.1)
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where

TransportCost =
∑
p∈P

l1,l2∈L|l1 6=l2

Flow (p, l1, l2) · vartransportcost (p, l1, l2); (A.2)

LocationCost =
∑
l∈L

LocOpen (l) · fixedlocationcost (l); (A.3)

ProductionCost =
∑
l∈L

∑
m∈M
f∈F

CommUse (m, f) · varcommoditycost (m, l)

+
∑
f∈F l

Production (f) · varproductioncost (f); (A.4)

SupplyCost =
∑
p∈P
l∈L

Supply (p, l) · varsupplycost (p, l); (A.5)

InvestmentCost =
∑
i∈I

InvDone (i) · fixedinvestmentcost (i). (A.6)

The meaning of the cost parameters is as follows:

• vartransportcost (p, l1, l2) : variable cost of transporting one unit of product p from loca-
tion l1 to location l2;

• fixedlocationcost (l) : fixed cost of opening location l;

• varcommoditycost (m, l) : variable cost of one unit of commodity m at location l;

• varproductioncost (f) : variable cost of one production unit at facility f ;

• varsupplycost (p, l) : variable cost of one unit of product p supplied at location l, which
includes transportation cost and purchase price;

• fixedinvestmentcost (i) : fixed cost of making investment i.

A.4 Constraints

The following restrictions should hold:

1. All variables should be nonnegative, i.e., all variables ≥ 0;

2. LocOpen (l), InvDone (i) ∈ {0, 1};

3. ∑
l1∈L|l1 6=l

Flow (p, l, l1) ≤ LocOpen (l) · bigMFlow (p, l) ∀ l ∈ L; (A.7)

4.

CommUse (m, f) = Production (f) · recipef (m) ∀m ∈M, f ∈ F ; (A.8)

5.

ProdIn (p, f) = −1 · Production (f) · recipef (p) ∀ p ∈ P, f ∈ F| recipef (p) < 0;
(A.9)



72 A. BOSS model description

6.

ProdOut (p, f) = Production (f) · recipef (p) ∀ p ∈ P, f ∈ F| recipef (p) ≥ 0;
(A.10)

7. ∑
l1∈L|l1 6=l

Flow (p, l1, l) +
∑
f∈F l

ProdOut (p, f) + Supply (p, l) =

∑
l2∈L|l2 6=l

Flow (p, l, l2) +
∑
f∈F l

ProdIn (p, f) + demand(p, l) ∀ p ∈ P, l ∈ L;

8.

Supply (p, l) ≤ maxsupply (p, l) ∀ p ∈ P, l ∈ L; (A.11)

9. ∑
f∈F l

CommUse (m, f) ≤ commavail (m, l) ∀m ∈M, l ∈ L; (A.12)

10. ∑
i∈Ifl(l)

InvDone (i) ≤ 1 ∀ l ∈ L; (A.13)

11. ∑
i∈Ipr(f)

InvDone (i) ≤ 1 ∀ f ∈ F ; (A.14)

12.

AvailProdCap (f) = prodcap (f) ·

1−
∑

i∈Ipr(f)
InvDone (i)


+

∑
i∈Ipr(f)

investprodcap (i, f) · InvDone (i) ∀ f ∈ F . (A.15)

13.

AvailF lowCap (p, l) = flowcap (p, l) ·

1−
∑

i∈Ifl(l)
InvDone (i)


+

∑
i∈Ifl(l)

investflowcap (i, p, l) · InvDone (i). ∀ p ∈ P, l ∈ L.

(A.16)

14.
Production (f) ≤ AvailProdCap (f) ∀ f ∈ F . (A.17)

15. ∑
l1∈L|l1 6=l

Flow (p, l, l1) ≤ AvailF lowCap (p, l) ∀ p ∈ P, l ∈ L. (A.18)



Appendix B

Visualization data test cases

Figure B.1 displays the current production locations of the Bread test cases in blue and also the
potential new production locations for TC Bread (small) in red. For TC Bread (large) 20 more
potential new production locations are defined; these are not displayed. Figure B.2 displays for
TC Oil the three production locations in red, and the 21 distribution locations in green. The
little dark blue dots on both maps are customer locations.
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Figure B.1: Graphical overview of TC Bread (small).
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Figure B.2: Graphical overview of TC Oil.
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Appendix C

Standard HSJ results

Table C.1 displays the obtained solutions for TC Bread (small) and an allowed cost increase of
5%. For example, alternative 3 has only 2.70% higher cost than optimal, while total transport
distance is 2.47% lower. There could also be other reasons to prefer one alternative over another.
For example, if a decision maker prefer to keep NL005 open, he might prefer alternative 2 over
the initial solution. Table C.2 displays these same results for an allowed cost increase of 10%.
From comparing these two tables, we notice that the obtained solutions for an allowed cost
increase of 10% have no overlap with the solutions obtained when the allowed cost increase is
5%, even though these solutions are also within the allowed cost range. Results for TC Bread
(large) are similar, but less easy overseen due to the higher number of locations and investments.
Table C.3 displays the results for TC Oil for an allowed cost increase of 5%.
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Initial solution Alternative 1 Alternative 2 Alternative 3

BOSS objective value e961,221.43 e1,000,505.45 e1,002,193.70 e987,203.97
Cost increase % 4.09% 4.26% 2.70%
Difference objective value 7 10 11
Binary difference 10 4 4
Capacity difference 60575 68315 25324
Total transport distance 264,171,048 263,180,907 260,996,446 257,657,410
Fixed cost / total cost 0.2341 0.2892 0.2770 0.2792

Locations

NL001 X X X X
NL002 X X X X
NL003 X X
NL004 X X X X
NL005 X
NL006 X X X X
NL007 X X X X
NL008 X X X X
BE2300 X X
NL2231
NL3255
NL3447 X X
NL6003
NL6718
NL7731 X X X
NL7844 X
NL8332
NL8601 X X

Investments

NL001 closure
NL001 invest X X
NL002 closure
NL002 invest X
NL003 closure X X
NL004 closure
NL005 closure X X X
NL006 closure
NL006 invest X
NL007 closure
NL007 closure

Table C.1: Results Standard HSJ for TC Bread (small) and k = 0.05.
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Initial solution Alternative 1 Alternative 2 Alternative 3

BOSS objective value e961,221.43 e1,047,074.65 e1,036,186.61 e1,033,678.27
Cost increase % 8.93% 7.80% 7.54%
Difference objective value 6 8 9
Binary difference 10 6 4
Capacity difference 67459 40701 19480
Total transport distance 264,171,048 270,838,554 254,659,369 257,665,671
Fixed cost / total cost 0.2341 0.3305 0.3475 0.3268

Locations

NL001 X X X X
NL002 X X X X
NL003 X X X
NL004 X X X X
NL005 X X
NL006 X X X X
NL007 X X X X
NL008 X X X X
BE2300 X X
NL2231
NL3255
NL3447 X
NL6003 X
NL6718 X
NL7731 X
NL7844 X
NL8332 X
NL8601 X

Investments

NL001 closure
NL001 invest X
NL002 closure
NL002 invest X
NL003 closure X
NL004 closure
NL005 closure X X
NL006 closure
NL006 invest X
NL007 closure
NL008 closure

Table C.2: Results Standard HSJ for TC Bread (small) and k = 0.10.
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Initial solution Alternative 1 Alternative 2 Alternative 3

BOSS objective value e17,825,599.47 e18,694,181.96 e18,202,618.56 e18,080,330.14
Cost increase % 4.87% 2.12% 1.43%
Difference objective value 9 12 13
Binary difference 9 6 4
Capacity difference 1071172.17 748246.50 338619.53
Total transport distance 1,276,904,993 1,351,437,472 1,339,595,843 1,314,290,037
Fixed cost / total cost 0.5782 0.5937 0.5829 0.5856

Locations

US-D5499 X X
US-D6098 X
US-D6712 X
US-D6865 X X X
US-D6876 X
US-D6883 X
US-D7960 X X X X
US-D8000 X X X X
US-D3023 X X
US-D7543 X X X X
US-D7553 X X X X
US-D7723 X
US-D7763 X X X X
US-D6504 X
US-D7592 X X X X
US-D7621 X X X X
US-D9293 X X X
US-D9343 X X X X
US-D9933 X X X X
US-D2011 X X
US-D8177

Table C.3: Results Standard HSJ method for TC Oil and k = 0.05.



Appendix D

Discussion on cost part of objective
function

In this appendix we explain how we can make the Standard HSJ and Random HSJ model
hierarchical, with difference as primary objective. A hierarchical objective is realized in linear
programming by applying weight factors to the different objectives in the objective function.
Therefore, we discuss how γ should be chosen to achieve a hierarchical objective function.

The objective for the Standard HSJ and Random HSJ can be split in two parts. For example
for the Standard HSJ this gives

min
∑
l∈ JL

LocOpen (l) +
∑
i∈ JI

InvDone (i)

︸ ︷︷ ︸
difference part

− γ · S︸ ︷︷ ︸
cost part

.

For the cost part we define

γ = γ′ · 1

k · z0
, (D.1)

where z0 is the objective value of the optimal solution. Thus the cost part can be written as

γ′ · S

k · z0
. (D.2)

The decision variable S achieves its maximum when the cost of the alternative solution is equal
to the cost of the optimal solution; in that case S = k · z0. Thus, the cost part is at most equal
to γ′. We can choose γ′ such that the term γ ·S is always smaller than the smallest impact of the
binary decision variables, in that case the objective function is hierarchical; i.e., the difference
part is the primary objective, and only if two solutions have equal score on the difference part,
the solution with lowest cost is preferred.

For the Standard HSJ method we should choose 0 < γ′ < 1, since the variables LocOpen (l)
and InvDone (i) are binary decision variables. Thus, if γ′ < 1, the cost part is always smaller
than 1, and no trade-off can exist between difference and cost.

Due to the random weight factors in th objective function of the Random HSJ method, it is
less clear how to choose γ′ for this method. The random numbers are drawn from the interval
[0,1], which means that if we choose γ′ = 0.01, the probability of the occurrence of a trade-off
situation is sufficiently small. To see this, we assume that there is only one decision variable
LocOpen in the objective function, i.e., the objective function is

min α · LocOpen− 0.01 · S

k · z0
. (D.3)
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Only if α ≤ 0.01, which happens with probability 0.01, a trade-off situation could exist between
LocOpen and cost, since S

k·z0 ≤ 1. However, whether this trade-off situation actually occurs
depends on the data structure and whether it is possible to decrease cost by setting LocOpen (l)
to 0, such that all restrictions are still fulfilled. When there are more decision variables in the
objective function a similar situation holds.



Appendix E

Adapted Standard HSJ: minimum
binary difference

The figures in this appendix display the minimum binary difference for each solution obtained
with the modified Standard HSJ method, for each test case and k = 0.10. The lines below the
horizontal axis show if the solution is found with the standard HSJ method or in an iteration
of the modified method.
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Figure E.1: Binary difference metric (BDM(s)) for solutions obtained with the modified Standard HSJ
for TC Bread (small) and k = 0.10.
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Figure E.2: Binary difference metric (BDM(s)) for solutions obtained with the modified Standard HSJ
for TC Bread (large) and k = 0.10.
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Figure E.3: Binary difference metric (BDM(s)) for solutions obtained with modified Standard HSJ for
TC Oil and k = 0.10.



Appendix F

Random HSJ: minimum binary
difference

The Figures F.1 and F.2 display for respectively TC Bread (small) and k = 0.10, and TC Bread
(large) and k = 0.02 the minimum binary difference of each solution obtained with the Random
HSJ method.
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Figure F.1: Binary difference metric (BDM(s)) for solutions obtained with Random HSJ for TC Bread
(small) and k = 0.10.
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Figure F.2: Binary difference metric (BDM(s)) for solutions obtained with Random HSJ for TC Bread
(large) and k = 0.02.



Appendix G

Random HSJ method: results
different random seeds

Table G.1 displays the results of the Random HSJ method for different random seeds for TC
Bread (small) and an k = 0.02. A letter classifies an exact combination of values for decision
variables LocOpen (l) and InvDone (i). In bold are solutions not obtained in previous runs and
in between brackets is the iteration in which the solution is obtained.

Number alternative run 1 run 2 run 3 run 4 run 5

initial solution A (0) A (0) A (0) A (0) A (0)
alt. 1 B (1) F (1) K (1) M (1) C (1)
alt. 2 C (4) I (3) G (2) I (2) I (2)
alt. 3 D (5) G (4) M (4) D (3) F (3)
alt. 4 E (6) K (5) E (6) F (4) E (7)
alt. 5 F (7) E (6) F (7) K (6) K (8)
alt. 6 G (10) H (8) B (13) C (10) M (10)
alt. 7 H (16) M (9) L (17) B (11) G (20)
alt. 8 I (22) N (13) C (22) E (12) L (22)
alt. 9 J (23) D (20) I (26) L (15) B (31)
alt. 10 K (35) B (25) D (34) N (19) D (45)
alt. 11 L (46) C (52) H (57) G (30) N (51)
alt. 12 M (62) L (71) J (63) J (47) O (55)
alt. 13 N (82) O (79) O (89) O (60)
alt. 14 H (66)

Table G.1: Results of Random HSJ for TC Bread (small) and k = 0.02, for different random seeds.
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Appendix H

Cost uncertain HSJ results

For the figures in this appendix, the solutions have been sorted based on the percentage of
realizations in which the solution has lowest cost, from high to low. Then the sorted solutions
are plotted against these percentages with a blue line. The shape of the graph tells us something
about the distribution of the solutions and the relative performance. When the line starts very
horizontal before decreasing faster, many solutions perform similar, whereas when the line
directly decreases fast before stabilizing, a small group of solutions perform significantly better
than most solutions. The red line gives the corresponding average cost of the solutions. In all
figures also the initial solution is indicated with an arrow, such that we can analyze the relative
performance of the initial solution. The dotted lines correspond to more experiments.

From the results in Figure H.1 we see that for TC Bread (small) the initial solution is for all
experiments by far the best, i.e., the initial solution is the solution with the highest percentage of
realizations for which this solution has the lowest cost compared to the other solutions. Figure
H.2 displays the results for TC Bread (large). In this figure we see that the initial solution is
not always the best solution, but it at least has lowest cost in a percentage of realizations close
to the solution with the best score. Also, the two Bread test cases have lowest average cost over
all realizations for the initial solution.

For TC Oil the results are displayed in Figure H.3. For this test case, the initial solution
is in non of the experiments the best. It even holds that this solution is not even close to the
best solution, i.e., the initial solution has lowest cost in much less scenarios than one or more
obtained alternatives have. Also, average cost for the initial solution are higher than for the
relevant alternative solutions.
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Appendix I

Cost uncertain HSJ: results different
random seeds

The input of the Cost uncertain HSJ method is besides the assumed variances, also a large
amount of pseudo-random numbers, based on a random seed. We want to test the influence
of the chosen random seed on the obtained results. By repeating the experiments of Table
5.11 with different random seeds, we can determine whether these results are representative or
that the chosen random seed highly influences the outcomes and completely different results
are obtained with other random seeds. We test this by repeating for TC Bread (small) and TC
Oil for two scenarios the performed tests with other random seeds. Altering the random seed,
influences the process in two ways; the optimized objective function differs for each iteration
and also the evaluated realizations differ.

Table I.1 shows the results of these experiments for TC Bread (small), including the results
of the initial run and Table I.2 displays these results for TC Oil. From Table I.1 we see that
results for TC Bread (small) are fairly stable, i.e., for both scenarios similar results are obtained
with all five random seeds. The same holds for the results of TC Oil, where with all five random
seeds the same solution is found to have the highest percentage of realizations in which it has
lowest cost. From Table I.2 we see that although there is some variation in the percentages of
realizations in which solution B has the lowest cost, in every run the same solution is obtained.
Furthermore, this solution is always obtained within 10 iterations. Also, the number of obtained
alternatives and the diversity measure are roughly equal for each of the five different random
seeds.
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94 I. Cost uncertain HSJ: results different random seeds

variance cost # obt. Diversity best % this sol.
scenario fixed variable sol. D(S) sol. lowest cost

2 0.10 0.10 3 0.03831 initial 74.90%
2 0.10 0.10 4 0.04741 initial 73.50%
2 0.10 0.10 4 0.04740 initial 75.20%
2 0.10 0.10 5 0.04414 initial 65.60%
2 0.10 0.10 4 0.03920 initial 70.50%

3 0.25 0.10 29 0.09964 initial 33.70%
3 0.25 0.10 22 0.09298 initial 37.10%
3 0.25 0.10 32 0.10281 initial 35.60%
3 0.25 0.10 28 0.10365 initial 37.60%
3 0.25 0.10 27 0.10420 initial 36.40%

Table I.1: Results of applying the Cost uncertain HSJ method on TC Bread (small) for two scenarios,
with MaxSol = 100, MaxEq = 100 with different random seeds.

variance cost # obt. best % this sol % initial sol
scenario fixed variable sol. D(S) sol. lowest cost lowest cost

1 0.05 0.05 3 0.04630 B 94.85% 0.00%
1 0.05 0.05 3 0.05556 B 82.85% 0.10%
1 0.05 0.05 3 0.05556 B 83.55% 0.25%
1 0.05 0.05 4 0.05990 B 85.55% 0.25%
1 0.05 0.05 4 0.05469 B 83.15% 0.20%

3 0.10 0.10 9 0.07716 B 39.55% 9.05%
3 0.10 0.10 11 0.07989 B 41.50% 7.55%
3 0.10 0.10 10 0.07917 B 46.35% 7.05%
3 0.10 0.10 10 0.07792 B 51.85% 7.35%
3 0.10 0.10 10 0.07792 B 46.15% 7.20%

Table I.2: Results of applying the Cost uncertain HSJ method for different scenarios, withMaxSol = 100,
MaxEq = 100, for TC Oil with different random seeds.



Appendix J

Robust HSJ (version 1) results

Table J.1a, J.1b, and J.2 display the results of the Robust HSJ method (version 1) for respec-
tively TC Bread (small), TC Bread (large), and TC Oil. Note that, Table J.2 displays for TC
Oil only distribution slack. For the production slack problem we have not found any alternative
solutions, i.e., all solutions distribute production slack perfectly. Therefore, only results for
distribution slack are displayed in Table J.2.
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