
Master thesis

Innovation dynamics
in open source software

Author:

Name: Remco Bloemen
Student number: 0109150

Email: remco.bloemen@gmail.com
Telephone: +316 11 88 66 71

Supervisors and advisors:

Name: prof. dr. Stefan Kuhlmann
Email: s.kuhlmann@utwente.nl

Telephone: +31 53 489 3353
Office: Ravelijn RA 4410 (STEPS)

Name: dr. Chintan Amrit
Email: c.amrit@utwente.nl

Telephone: +31 53 489 4064
Office: Ravelijn RA 3410 (IEBIS)

Name: dr. Gonzalo Ordóñez–Matamoros
Email: h.g.ordonezmatamoros@utwente.nl

Telephone: +31 53 489 3348
Office: Ravelijn RA 4333 (STEPS)

1

Abstract

Open source software development is a major driver of software innovation, yet
it has thus far received little attention from innovation research. One of the
reasons is that conventional methods such as survey based studies or patent
co-citation analysis do not work in the open source communities. In this thesis
it will be shown that open source development is very accessible to study, due to
its open nature, but it requires special tools. In particular, this thesis introduces
the method of dependency graph analysis to study open source software devel-
opment on the grandest scale. A proof of concept application of this method is
done and has delivered many significant and interesting results.

Contents

1 Open source software 6
1.1 The open source licenses . 8
1.2 Commercial involvement in open source 9
1.3 Opens source development . 10
1.4 The intellectual property debates 12

1.4.1 The software patent debate 13
1.4.2 The open source blind spot 15

1.5 Litterature search on network analysis in software development . 17

2 Theoretical background 19
2.1 Theory of innovation dynamics 19

2.1.1 What is innovation? . 19
2.1.2 The Henderson-Clark classification 20
2.1.3 The Bass diffusion model 22

3 Dependency graph analysis 25
3.1 Dependees are adopters . 26
3.2 Henderson-Clark patterns . 26

4 Gathering real-world data 29
4.1 Qualities of a dataset . 29
4.2 Sources of data . 31

4.2.1 Project hosts . 32
4.2.2 Data from project directories 35
4.2.3 Data from distribution package databases 36
4.2.4 Conclusion . 37

4.3 Processing the Gentoo Portage dataset 38
4.3.1 Collecting the raw ebuilds 38
4.3.2 Parsing the ebuilds . 38
4.3.3 Producing the dependency graph 39
4.3.4 Processing the graph . 41

5 Analysing the real-world data 44
5.1 Exploring the last snapshot . 44
5.2 Fitting the Bass innovation diffusion model 47
5.3 Example of imitator driver growth 48
5.4 Example of innovator driver growth 51
5.5 Other examples . 53

1

5.6 Example of growth and demise 55

6 Conclusions and discussions 58
6.1 Conclusions from the real-world data 58
6.2 Viability of dependency graph analysis 59
6.3 Implications . 60
6.4 Suggestions for future studies . 62

A Litterature 63

2

List of Figures

1.1 The entire original BSD license 8
1.2 Forking of the Debian Linux distribution. 11
1.3 KDE module dependencies . 12

2.1 Henderson-Clark classification of innovation 21
2.2 Bass model of innovation diffusion 23

3.1 Example of a dependency graph 25

4.1 Runtime dependencies of the Amarok music player. 40
4.2 Growth of the package database 41
4.3 The elimination of virtual and meta packages 42
4.4 Growth of the dependency relations 43

5.1 Histogram of dependency relations 45
5.2 KDE module dependencies . 46
5.3 Fitting the Bass model to git . 49
5.4 Dependee growth after package introduction 51
5.5 Dependee growth after package introduction 54
5.6 Fitting the Bass model to the adoption of xulrunner 55
5.7 Packages depending on xulrunner 56
5.8 Fitting the Bass model to the adoption of xulrunner 57

3

List of Tables

1.1 The recipe for OpenCola . 7
1.2 U.S. Software patents . 14
1.3 Breakdown of respondents . 15
1.4 Litterature search on social network analysis and software devel-

opment . 16
1.5 Papers from the literature search 17

2.1 Bass model variables and parameters 24

4.1 List of FOSS hosts . 32
4.2 Overview of FOSS directories. 35
4.3 Major FOSS distributions and their package databases. 36

5.1 Fitting the Bass model to git . 50
5.2 Fitting the Bass model to the adoption of libmad 52
5.3 Naive fitting the Bass model to the adoption of xulrunner 56
5.4 Fitting the Bass model to the adoption of xulrunner 2 57

4

Thesis outline

Chapter one will quickly introduce open source software, what it is, how it works
and why it is interesting to study its innovation dynamics. It particularly looks
at the intellectual property debate with respect to software patents, which is the
original motivation for this thesis. It will be identified that a major problem in
this debate is the lack of methods to analyse innovation dynamics in the open
source software world. The rest of this thesis will be focused on developing a
method to analyse innovation dynamics in the open source world.

In short the method will analyse how the interdependencies among open
source projects develop over time. Like any other technology, software can be
seen as build from parts that are combined to create new parts. The open source
projects are effectively all developing a particular part. In doing so they rely on
other projects developing their parts. For example a music player project can
rely on a music reader project and on a audio driver project (in reality there are
many more parts involved). These projects and their interdependencies form
a directed graph which changes over time. By analysing this graph and its
changes one can gather information on the underlying innovation.

Section 1.4 will explain the need for such a method in the software patent
debate. Currently the U.S. patent office has a quarter million patents that
make claims related to software development. Although the U.S. law prohibits
patenting inventions without physical existence, which software arguably is,
court rulings have extended this to include “anything [...] made by man”. The
situation in Europe is different, the European Patent Convention explicitly for-
bids software patents, but the pressure to conform to the U.S. system is large.
As a consequence, studies have been done to investigate innovation in the soft-
ware sector and the effect software patents would have. As chapter 1.4 will
argue, the methods these studies employ are basically blind for non-commercial
software development, therefore a new methods are required.

5

Chapter 1

Open source software

The open source software community offers a very interesting and mostly unex-
plored opportunity to research innovation. The open source software community
has shown itself to be an important driver of innovation in the IT industry, with
some crucial pieces of IT technology developed by open source projects and a
software developer workforce that outnumbers the entire U.S. commercial soft-
ware developer workforce. The open source software model has inspired similar
models in, among others, art, hardware development, biotechnology. A funny
example is the open cola project, designed to explain the concept of open source
and mocks Coca Cola’s use of trade secrecy by developing a cola completely in
the open. In table 1.1 one can find the current recipe, if someone improves the
recipe, he is required to share his discovery as well.1

The open source model has an interesting interaction with commercial devel-
opment. Many large and small commercial entities are using and/or investing
in open source development. But there are also conflicts, for example when
commercial entities break the license agreements of the open source projects,
or when open source projects break patents held by commercial entities. Cur-
rently there is an interesting and important debate going on about the nature
and value of software patents, which has wide consequence for both commercial
and open source development. It is important to provide this debate with the
scientific evidence required to come to an optimal, fair and rational solution.

Due to the nature of open source a lot of information can be gathered in an
automated fashion with relatively little effort, yet this area is still very unex-
plored. In open source development large projects are taken on by individuals
who can live in opposite sides of the world, usually their only means of coordi-
nation is through the internet. The development can happen through various
channels, a common pattern is to have a website to supply users and new contrib-
utors with information, a mailing list and to discuss the development process,
an issue tracking systems to administrate what needs to be done and a revision
management system to track what has been done in the past. And here is the
good part: in open source, all these systems are publicly accessible, allowing
innovation researchers to have almost perfect information about the innovative
process through the entire history of the project.

In this chapter a short introduction is made to the structure of the open

1Interestingly, the project started with a recipe found in the diary of the inventor of Coca-
Cola, which has since fallen in the public domain.

6

Table 1.1: The recipe for OpenCola, version 1.1.3.

Flavouring:

3.50 ml orange oil
1.00 ml lemon oil
1.00 ml nutmeg oil
1.25 ml cassia oil
0.25 ml coriander oil
0.25 ml neroli oil
2.75 ml lime oil
0.25 ml lavender oil
10.0 g gum arabic
3.00 ml water

Syrup:

10.0 ml flavouring formula
17.5 ml phosphoric acid
2.28 l water
2.36 kg plain white sugar
30.0 ml caramel colour
2.5 ml caffeine (optional)

Soda:

1 part syrup
5 parts carbonated water

Source: http://www.colawp.com/

colas/400/cola467_recipe.html

License: GPL Version 2.

7

http://www.colawp.com/colas/400/cola467_recipe.html
http://www.colawp.com/colas/400/cola467_recipe.html

Figure 1.1: The entire original BSD license

Copyright (c) year copyright holder. All rights reserved.

Redistribution and use in source and binary forms are permitted pro-
vided that the above copyright notice and this paragraph are duplicated
in all such forms and that any documentation, advertising materials, and
other materials related to such distribution and use acknowledge that the
software was developed by the organization. The name of the organiza-
tion may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIM-
ITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Source: Wikipedia, originally from the Regents of the University of California.
License: Public domain

source community, some of the major organisations and projects are introduced,
their development and cooperation methods are explained and the concepts of
packages and dependencies are explained. For a more elaborate introduction
to open source from an innovation perspective the reader is kindly referred to
(St.Amant and Still, 2007) and in particular (Deek and McHugh, 2008).

1.1 The open source licenses

There is no single open source philosophy that all developers subscribe to. Some
are of the opinion that all software development should be open and that use of
commercial software should be actively discouraged. Others take a more relaxed
stance and want their software to benefit others in any way it can, whether it is
commercial or not. It is impossible to catagorise all the different opinions, but
it is possible to study their brainchilds, the opensource software licenses.

Opens source software licenses fall broadly in three categories depending
on how much commercial use is prohibited by the license. First there are the
permissive licenses, such as the MIT License and the BSD Licenses. These
licenses pose very little constrains on the use of the source code, they are quite
comparable with releasing the source code in the public domain. The license
usually has a disclaimer, “the author takes has responsibility whatsoever”, and
sometimes contain an attribution term, “the original authors must be credited in
derivative works”. Some less serious variations state that the user can “do what
the fuck [he] want[s] to” (Hovecar, 2004) or have a clause stating that the user
is “encouraged to buy the author a beer” (Kamp, 2004). These licenses tend
to be very short, the original BSD license is printed in it entirety in figure 1.1.
Opposite of these licenses are the strong copyleft licenses, such as the popular
GPL license. These licenses have a reciprocal nature, any derivative works must
also be released under the same license terms. Where the permissive licenses
allow the work to be integrated in a commercial software package, the strong
copyleft license require this software package to be released in a strong copyleft
license as well. The license is designed to prohibit use in commercial software.
Besides the reciprocal clause and attribution clause some other popular clauses

8

are a patent retaliation clause, which revokes the license as soon as the user use
patents in a way that may harm the project and a DRM restriction clause that
revokes the license when the final product limits the end user in freely using the
product by other means than modifying the software (such as modifying the
hardware).

For some developers the permissive licenses are to free, because it allows
other authors to use a piece of technology without ever contributing their im-
provements back to the original author and the strong copyleft licenses are to
strong, because it prevents users of the technology from releasing their com-
posite product under different license terms. The weak copyleft licenses are
a compromise, the user is allowed to use the technology as a component in a
larger product which is released under a different license, but any changes made
to the component must be released under the same weak copyleft license. An
additional clause stipulates that even though the source code of the composite
projects does not have to be released, provisions mus be made so that user can
see, modify or replace the weak copyleft component. Effectively only the part
that was open source in the first place must become open source. Such license
are popular with commercial developers, the WebKit engine, which is used by
both Apple and Google as the core of their web browsers, is under the LGPL
license. This license allows them to develop their own proprietary web browsers,
but also requires them to share improvements in the WebKit engine with the
world (and thus each other).

It is important to note that handing out the source code under a certain
license does not change the fact that the code author still owns the copyright.
Possession of the copyright allows the owner to re-release the code under differ-
ent licenses. In the dual-license businesses model a company releases a product
in two versions, one in an open source license and one in a commercial license.
If the open source license is of the strong copyleft variety then commercial users
are required to pay for a commercial license. But even if the open source license
is permissive, the commercial version may be interesting due to proprietary
extensions or commercial support.

Project that are organised in a nonprofit or for profit organisation usually
want to retain all the copyright in this central organisation. This is required
when the organisation needs to change the license terms of the code, or for the
dual-license scheme. To maintain the copyright over all the code the organisation
is required to obtain copyright waivers from all the developers all over the world.
This is a very complex a juridical manoeuvre that very few software developers
really care about.

1.2 Commercial involvement in open source

Open source software development is not the opposite of commercial software
development. Successful products and businesses have been set up around
open source packages to provide commercial support. Also, companies have
released commercial products in the open source to further the development of
the project. Three quite famous cases are Firefox, Chrome and LibreOffice.

Firefox In 1994 Netscape pioneered the web browsers market with its com-
mercial Netscape Navigator product. In March 1998 Netscape released most of

9

the browsers source code as an open source project called the ‘Mozilla Appli-
cation Suite’. This in turn formed the basis for what is now the popular open
source web browser Firefox.

Chrome In 1998 the KDE project started implementing their own open source
browser engine called KHTML based on earlier work. In 2001 Apple forked the
KHTML code (Controversially, they announced this to the KHTML developers
only after they worked on the fork for a year. This contributed to a divergence
between the two projects that made sharing improvements difficult. Apples
difficulty with sharing its improvements with the KHTML developers let to
some bad publicity. Eventually the situation improved and now both projects
coexist and collaborate.) Apple’s forked KHTML engine was developed into the
WebKit browser engine, which inherited KHTML’s open source license. This
WebKit engine drives Apple’s closed-source Safari web browser used on Mac OS
X and the iPhone Operating System. Google used WebKit as the engine for
its Chrome browser, which in turn was largely released under an open source
license.

LibreOffice Sun Microsystems acquired StarOffice in 1999, continued to de-
velop it and in 2000 released the source code under and open source license. The
open source fork became known as OpenOffice. Sun continued to sell StarOf-
fice as a version of OpenOffice with proprietary extensions. Sun continued to
invest development resources in OpenOffice until Sun itself was acquired by Or-
acle Corporation. Developers feared Oracle might discontinue the investment
in OpenOffice or otherwise harm the project so many developers forked the
project into the LibreOffice open source project. When Oracle did discontinue
all OpenOffice involvement in 2011 Google and five other organisations stepped
up and each devoted one employee to the project.

1.3 Opens source development

The development process in open source software project is very dynamic. On
a given project, developers come and go. Some developers stay around for years
and contribute major parts, other times a developer contributes a single bug fix
and is never heard from again. Often, developers can come from all over the
world and the group is diverse, but sometime a project may have a majority
of their developers originating from a single company. In any case a means of
coordination is required that can cope with a dynamic pool of developers that
are not geographically close. Therefore almost all the development and related
processes happen online using various tools such as mailing lists, wiki’s, issue
trackers, revision managers, etcetera. Usually all these systems are publicly
accessible, in spirit with the open source philosophy and to facilitate the self-
education of new developers.

Forking Juridically every slight change made to a software package a makes
it a new work which is derivative of the original work. The copyleft licenses
require this work to be released under the same terms as well. This would mean
that every small change would mean an entirely different code base, which can
in turn be used to create many different derivative works from. In practise, the

10

Figure 1.2: Forking of the Debian Linux distribution.

Libranet

Omoikane (Arma)

Gibraltar

LEAF

Skolelinux

Freespire

Lindows Linspire

MEPIS SimplyMEPIS

Impi

Guadalinex

Clonezilla Live

Edubuntu

Xubuntu

gNewSense

Geubuntu OpenGEU

Fluxbuntu

Eeebuntu AuroraOS

Zebuntu ZevenOS

Maryan

Lubuntu

Ylmf

Netrunner

Ulteo

Element

wattOS

Qimo

Ubuntu eee Easy Peasy

CrunchBang

gOS

Kiwi

Ubuntulite U-lite

Linux Mint

nUbuntu

Kubuntu

Ubuntu

MoLinux

BlankOn

Elive

OS2005 Maemo

Epidemic

sidux

PelicanHPC

Inquisitor

Canaima

Corel Xandros

Metamorphose

Estrella Roja

BOSS

PureOS

NepaLinux

Tuquito

Trisquel

Resulinux

BeatriX

grml

DeadCD Olive

Bluewall

ASLinux

gnuLiNex

DeMuDi

Progeny

Quantian

DSL-N

Hikarunix Damn Vulnerable Linux

Damn Small Linux

Danix

Parsix

Auditor Security Linux Backtrack

Kanotix

Bioknoppix

Whoppix WHAX

Symphony OS

NeoDizinha Patinho Faminto

Musix

ParallelKnoppix

Kaella

Shabdix

Feather

KnoppMyth

ZoneCD

Hiwix Hiweed Deepin

Dreamlinux

Morphix

Kalango

Dizinha

Poseidon

Kurumin

Knoppix

Finnix

Storm

Debian

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Source: http://futurist.se/gldt/ (sligthly modified)
License: GNU Free Documentation License.

community maintaining a particular software package will integrate all these
changes back into a single normative code base. The community will then
periodically release new versions of this code base.

This process of converging to a single version requires the developers to
agree on the direction to go in. Often they succeed in this, but sometimes a
derivative work does not integrate back in to the mainline and becomes an open
source project on its own. This process is called ‘forking’. There can be many
reasons for a fork, such as specialisation in different direction, disagreement
about license terms or copyright ownership or an experimental design decision.
A fork does not necessarily imply a failure on the part of the forking or the
original developers to keep coherence. In figure 1.2 one can see an example
of forking behaviour. Debian is one of the first general purpose Linux based
operating systems and over a period of twenty years many projects have taken
Debian as a basis to create more specialised operating systems.

11

http://futurist.se/gldt/

Figure 1.3: Internal dependencies of modules in the KDE community. Colour
represents the k-core measure. The graph edges have been bundled to improve
readability. Source: own illustration, created using Tulip.

Dependencies The open source community consists of numerous projects
that produce periodical releases, called packages. Usually these projects rely on
technology from many other projects to function. Consequently, the packages
require the packages from the other projects to be installed as well. When this
is the case required package is called an dependency of the former package and
conversely, the former package is a dependee of the required package.

These packages and their dependency relations can be considered graphs. In
figure 1.3 the dependency relations of all the projects of the KDE community
are shown. Only dependencies within the KDE community are shown, external
dependencies are left out. The colouring represents the k-core measure, which
reveals clustering of modules. The graph shows All modules depend on kdelibs
(centre) and some form clusters around specific technologies such as the games,
the email and address book applications.

1.4 The intellectual property debates

Currently there are heavy debates on the subject of intellectual property (IP).
With the advent of computers and the internet the economic cost of information

12

reproduction and distribution has become negligible. The result is that there
is a vast online community that exchanges information freely, a lot of which
are products of own work released to the public domain and some are illegal
reproductions of material covered by IP protection. The ease of copying and
sharing is at odds with the current intellectual property legislature, which was
mostly written in a time when copying books and films required printing-presses
and film development equipment. This has led economists and other authors,
such as Boldrin and Levine (2008) and Boyle (2008) to the conclusion that the
intellectual property protection needs to be heavily reformed, or even abolished.
They consider the success of creators in industries that are not covered by IP
protection legislature and those that deliberately do not use IP protection as
proof that IP incentives are not necessary to stimulate creation. Needless to
say, many large patent and copyright holders disagree.

The debate is particularly fierce in the media industry, where IP protection is
largely done using copyrights and in the software industry, where both copyright
and patenting provides IP protection. Both areas have stakeholders that range
form hobbyist public domain producers to large global corporations and both
deal with IP infringement on a massive scale. Although the media industry
debate is interesting on its own (see Boldrin and Levine, 2008; Boyle, 2008,
and many others), this thesis will focus on the software industry. Particular
emphasis will be given to software patents since the US and EU has a painful
conflict in this area that many would like to see resolved, but few can agree on
how.

1.4.1 The software patent debate

Goldstein (2005) explains that patents provide the holder of the patent with
a temporary monopoly on an invention. This monopoly allows the holder to
exploit his invention as he wishes without having to worry about competitors
stealing his idea. In order to obtain a patent an invention has to satisfy four
demands. First, the subject of the invention has to be patentable, for example in
all legislatures the invention of an industrial machine will be patentable but the
invention of a story line for a book will not be patentable. The second demand
is utility, the invention must solve the problem it is designed to address, that is,
the invention must work. According to (Jaffe and Lerner, 2007, page 28) this
requirement is not important in practise, since almost anything can be shown
potentially useful in some way. Thirdly, the invention must be new. If someone
can proof that he knew about the invention before the patent application than
this is called prior-art and the invention will not satisfy the novelty requirement.
The fourth requirement builds upon this, the invention has to be non-obvious
to a person skilled in the art at the time of invention. This demand prevents
someone from acquiring patents on slight variants of already known inventions.

The last three demands vary only in details between nations, but the first
demand, which subject are patentable and which not differs widely regarding
software. In the US patent law, patents can only be awarded for inventions which
have some physical existence or processes resulting in physical products. How-
ever, various court cases have stretched this law to include business methods,
financial constructions and computer software. This culminated in 1980 when
the Supreme Court judged in the Chakrabarty decision that “anything under
the sun made by man” is patentable Jaffe and Lerner (2007). Even though the

13

Table 1.2: U.S. patents awarded for software inventions up to and including
2009.

Class class title patents

Data Processing:
700 Generic Control Systems or Specific Applications 15,747
701 Vehicles, Navigation, and Relative Location 17,197
702 Measuring, Calibrating, or Testing 17,050
703 Structural Design, Modeling, Simulation, and Emulation 5,317
704 Speech Signal Processing, Linguistics, Language 10,015
705 Financial, Business Practice, Management, or Cost/Price Determination 12,231
706 Artificial Intelligence 3,981
707 Database and File Management or Data Structures 19,690
715 Presentation Processing of Document, Operator Interface Processing, and

Screen Saver Display Processing
11,848

716 Design and Analysis of Circuit or Semiconductor Mask 8,071
717 Software Development, Installation, and Management 6,803

Electrical Computers and Digital Processing Systems:
708 Arithmetic Processing and Calculating 7,800
709 Multicomputer Data Transferring 21,959
710 Input/Output 16,061
711 Memory 19,083
712 Processing 7,855
713 Support 14,157
718 Virtual Machine Task or Process Management or Task Management/Control 2,506
719 Interprogram Communication or Interprocess Communication (Ipc) 2,598

Other:
714 Error Detection/Correction and Fault Detection/Recovery 22,780
720 Dynamic Optical Information Storage or Retrieval 3,034
725 Interactive Video Distribution Systems 3,860
726 Information Security 4,490

Total software patents: 254,133
Total patents: 4,015,989

Source: data from PTM (2010)

14

Table 1.3: Breakdown of respondents by activity and whether they release their
software in mostly as open source.

Verkade et al. Blind et al. mostly open source

Independent developers 0 38 82%
Software bureaus 4 139 8%
Other busineses 2 58 8%
Non-commercial 1 0
Patent experts 7 0

Source: data from Verkade et al. (2000); Blind et al. (2005)

original law still stands, in practise it is rendered irrelevant as the US system
now allows the patenting of algorithms and other non-physical inventions. So
far, this has resulted in a quarter million patents for software inventions, 6% of
the total number of patents, see table 1.2.

In Europe the situation is a bit different, the European Patent Convention
(EPC) explicitly states that ”discoveries, scientific theories and mathematical
methods” and ”schemes, rules and methods for performing mental acts, playing
games or doing business, and programs for computers” are not regarded as
inventions (EPO, 2000, article 52). According to Verkade et al. (2000) this
legislature has been incorporated in national law, but Verkade et al. (2000)
are surprised by the amount the European Patent Office dares to deviate from
these laws. Much like the US case the law has been bend in practise till the
point where its relevance can be questioned. In 2008 the president of the EPC,
Alison Brimelow, officially questioned the European Patent Office with regard
to software patents to the Enlarged Board of Appeal of the EPC. In 2010 the
board gave a 55 page opinion that concludes that the case law is consistent and
the president therefore has no right to question it. On their website the EPO
publishes:

If a claim related to a computer program defines or uses technical
means it is not excluded from patentability as a computer program
’as such’. However, only those aspects of a claim which contribute
to its technical character are taken into consideration for assessing
novelty and inventive step. — epo (2010)

The official explanation of the current case law is in ?.

1.4.2 The open source blind spot

The software patent debate has been going on for at least a decade and has
inspired, amongst others, Verkade et al. (2000) and Blind et al. (2005) to study
the potential consequences of software patents. Both research programs where
set-up as a literature study and a survey of stakeholders. Verkade et al. (2000)
did a study on the development of the relevant Dutch and European laws and
a survey among commercial software developers, non-commercial software re-
searchers (universities) and patent offices. Blind et al. (2005) start with a lit-
erature study and proceed with an extensive survey among commercial soft-
ware developers. They surveyed independent software developers, software bu-
reaus and other businesses requiring software development (electrotechnology,

15

Table 1.4: Literature search on social network analysis (SNA) and software
development (SD) in innovation journals.

Journal SNA SD SNA and SD filtered

Research Policy 239 162 26 4
Technovation 116 92 7 0
Tech. Forecasting and Social Change 142 89 5 2
Scientometric 233 23 4 2

Total: 730 366 42 8

Source: own creation, searched using ScienceDirect and Google Scolar.

telecommunication, etc.). The study of Blind et al. (2005) is particularly in-
teresting because they asked how often the developers release their code in the
public domain. Table 1.3 provides a breakdown of the respondents to both
studies.

The studies may have overlooked the non-registered developers. Blind et al.
(2005) developed their sample list in co-operation with the German Federal Min-
istry of Economics and Technology (BMWi) and they selected their addresses
by the economic class they where registered under. The BMWi also supplied
them with a list of independent developers. Although Blind et al. (2005) do
not mention this, it appears that these are all software developers registered
at the trade office. The study of Verkade et al. (2000) contains a list of re-
spondents, none of them are independent developers. It is therefore likely that
non-registered developers are entirely overlooked.

A large fraction of the open source developers are however not registered as
independent developers at trade offices. Many open source developers work on
open source projects in their spare time and have jobs as commercial developers
or academics.

So, even though the study by Blind et al. (2005) includes some open source
developers, the large majority of open source developers is overlooked. One
could even argue that the included open source developers are biased towards the
commercial side, since they have registered themselves as commercial developers
at the trade office.

Another area where open source software (and perhaps to some extend soft-
ware in general) is overlooked is in patent citation analysis. As will be explained
in more detail later, this method of analysing innovation dynamics involves the
use of large patent databases where one looks at how patents cite each other.
The resulting networks can be analysed using social network analysis techniques.
These networks are then used to gain insights in the evolution of a certain class
of innovations. This method is of course blind for open source software, since
their licences prohibit the use of patents. Furthermore, the complicated posi-
tion of software patents may invalidate the use of the patent citation analysis
technique for software in general.

16

Table 1.5: The papers resulting from the literature search. The nature of their
networks—the nodes, relations and dataset—is shown.

Article Nodes Relations Dataset

Research Policy:
Dahlander and Wallin (2006) Mailing list posters Replies Gnome-dev mailing list
Dittrich et al. (2007) Software companies Strategic alliances MERIT-CATI, CGCP
Engelsman and van Raan (1994) Patents classes Word co-occurence, EPAT, WPI/L

co-classification
M’Chirgui (2009) Smart-card firms R&D alliances SCIFA

Scientometic:
McCain et al. (2005) Authors Co-citation Journal of Software

Engineering
Lim and Park (2010) Patent classes Word co-occurence, co-classification WIPS

Technological Forecasting and Social Change:
He and Hosein Fallah (2009) Patents Investor–assignee USPTO BIB database
Choi et al. (2007) Patents classes Cross impact USPTO filtered for

the ICT industry

Source: own creation.

1.5 Litterature search on network analysis in
software development

To find existing literature on the analysis of software innovation dynamics us-
ing network analysis a literature search was executed. Four important journals
for innovation research where searched: Research Policy, Technovation, Interna-
tional Journal of Technological Forecasting and Social Change and Scientomet-
ric. The first three were searched using ScienceDirect, the last using Google Sco-
lar. The journals were search for two concepts, network analysis and software de-
velopment, with the search query "network analysis" OR "social network"

and "software development" OR "software innovation" respectively. Sev-
eral hundreds of papers where found, as is displayed in table 1.4. The two queries
were then combined which resulted in a more manageable 42 hits. These ar-
ticles where then scanned by hand to filter out the false positives, 33 articles
were eliminated because they did not employ network analysis and one article
was eliminated because it had no relation to software development.

The eight remaining articles where then studied in more detail to analyse
the nature of the networks they analyse. The nature of the nodes, the relations
and the origin of the data is presented in table 1.5.

Half of the articles used networks based on patents, but these papers look
at patents on the grandest scale where software development is only a small
part of the whole. No studies where found that used patent network analysis to
specifically investigate software innovation, but this is hardly a surprise given
the controversial nature of software patents.

Two of the four remaining studies used companies and their alliances as the
network. M’Chirgui (2009) analysed the strategic alliance network of IBM to
investigate IBM’s transformation from a hardware manufacturer to a software
service provider. Using these networks the authors show how very large com-
panies can quickly change their strategy by consciously changing their alliance
network. M’Chirgui (2009) analysed the R&D alliance network of smart-card
firms to demonstrate that there is a strong correlation between these networks
and the direction in which the technology develops. Both these studies provide

17

interesting conclusions that might be applicable to the open source commu-
nity, if one substitutes ”project” for ”company”. But since they use proprietary
databases that contain only companies they are inherently blind for open source
software development, as explained in section 1.4.

18

Chapter 2

Theoretical background

This research will draw on two major theoretical frameworks, the theory of in-
novation dynamics and the theory of social network analysis. These two frame-
works will be combined to develop a framework wherein the research question
and hypotheses can be formulated as empirically testable statements. The the-
ory of innovation dynamics concerns the processes and outcomes of problem
solving in organisations. In particular it concerns research and development,
inventions and their adoption by others. The theory of social network analy-
sis concerns individuals or organisations which have certain relations with each
other. The relations can be anything from friendship and kinship to email
communications to business transactions and patent co-citations. The resulting
networks can be analysed using general techniques to gain insights in the pro-
cesses and structures that produce them. Combining these two theories is not
new however, it has been done before in patent co-citation analysis. A literature
study is therefore employed to find existing uses of social network analysis on
software development in the innovation research journals.

2.1 Theory of innovation dynamics

To do an explorative empirical study in the innovation dynamics a clear defi-
nition of the relevant concepts and theories is required. There is little existing
innovation dynamics research in the open source software community to build
on, so it will be necessary to derive a usable theoretical framework. Luckily,
there is a large existing body of research on the innovation dynamics in other
areas, for example in consumer technology and agriculture, which has resulted
in a clear concepts and theories. In this section the most relevant results will
be introduced.

2.1.1 What is innovation?

According to (Narayanan, 2001, page 67) innovation is commonly held as be-
ing synonymous with invention, referring to a creative process whereby two or
more existing entities or ideas are combined in a some new way to produce a
configuration not previously known by the firm or person involved. The Oslo
Manual, a well respected body of guidelines in the field of innovation research,

19

presents the following definition:

An innovation is the implementation of a new or significantly im-
proved product (good or service), or process, a new marketing method,
or a new organisational method in business practises, workplace or-
ganisation or external relations.

— Definition from the The Oslo Manual (2005)

Josep Schumpeter, an early economist interested in development, was the
first to distinguish between invention and innovation. Schumpeter considered
an invention to be a new combination of preexisting knowledge whereas an
innovation is broader. If an entity produces a good or services or uses a system
or procedure that is new to it, it makes an innovation. An invention is thus
always part of an innovation, but not all innovations need to involve inventions.
(see Schumpeter, 2004, page xix and note 32). In this view innovations include
the creation of a technological change new to the company and the use of an
existing invention by a company which did not use it yet. An example of the
later would be the adoption of bar-code scanners by super markets.

This results in two practical uses of the word innovation, it can either refer to
a particular artifact or the process of creating and using an artifact. Narayanan
(2001) explicitly uses both interpretations, he uses the terms innovation process
for the process of arriving at a technical solution to a problem and innovation
output to the solution itself. In this research paper the same disambiguation
will be used where necessary.

2.1.2 The Henderson-Clark classification

Innovations can be classified by the extend to which they change the existing
products or processes. Innovations that leave the existing products or processes
relatively unchanged are called incremental innovations, an example is an in-
crease in resolution in computer screens. The other end, where an innovation
involves a new approach to an existing product or process is called a radical
innovation, an example is the move from cathode ray tube (CRT) to thin-film
transistor (TFT) technology in computer screens.

It should now become apparent that a classification of innovations is very
much context dependent. The shift from CRT to TFT might be a radical inno-
vation in context of computer screens, they are only an incremental innovation
in the context of public addressing systems, such as screens displaying flight
departure times in airports. To give another example, in the context of cars
slightly increased power would be considered an incremental innovation, but
it might entail a radical innovation such as a turbocharger in the context of
internal combustion engine technology.

When Henderson and Clark (1990) researched the success factors of innova-
tions they found that an incremental versus radical dichotomy was not enough
to classify innovations. They divided innovation along two dimensions, compo-
nent change and architecture change. The first dimension measures the amount
in which specific technologies in an innovation depart from earlier ones. The
second dimension measures the amount in which configurations among tech-
nologies in an innovation depart from earlier ones. (see also Narayanan, 2001,
pages 72–74)

20

Figure 2.1: The Henderson-Clark classification of innovation.

Source: based on Scocco (2006), created using
Inkscape.

Although Henderson and Clark (1990); Narayanan (2001) also focus on the
organisational and knowledge aspects of the innovation, this research will mainly
focus on the technological aspects of innovations. Much like in Scocco (2006)’s
version the model will be narrowed down to the technology and the knowledge
management aspects will be left out. It will become evident that the classifica-
tion remains valuable.

Figure 2.1 shows the classification when the spectrum of innovation is quar-
tered by along the dimensions. The four quadrants represent four classes of
innovations, the familiar incremental and radical innovations and the new mod-
ular and architectural innovations. According to Narayanan (2001); Scocco
(2006) they represent:

Incremental innovations are minor improvements to existing products, tech-
nologies or practises. Typical examples would be improvements in the technical
specifications of a product. For example, in the context of hard disks a slightly
larger capacity is considered an incremental innovation.

Modular innovations are significant changes in elements of existing product,
technologies or practises without significant changes in the composition of the
elements. For example in the context of cars the replacement of an analog
speedometer with a digital speedometer is considered a modular innovation.

Architectural innovations use existing elements but link them in different
ways. In the context of ceiling-mounted fans the invention of a portable fan
would be an architectural innovation since the components—the fan blade, mo-
tor and control system—would be mostly the same but the architecture of the
product would be different.

Radical innovations replace the existing architecture and components with
something new. Returning to the hard disk example, the introduction of hard
disks based on solid state memory is a radical innovation.

Narayanan (2001) mentions three major motivations for the classification.
The four classes differ in the process of innovation, they differ in the economic
impact and they differ in the role of a manager in the innovation process.

In the open source community there is hardly any economics and manage-

21

ment, but these motivations have analogous interpretations. The economic im-
pact can be abstracted to the amount the innovation affects its environment, or
in the case of OS, how much the innovation is used. The role of the manager in
the innovation process is taken by the developers, often there is a single devel-
oper that takes charge of a specific idea and implements it. Should the idea be
too big for a single developer to implement he would try to gain support from
the community while making initial steps. This initiating developer is therefore
a natural manager for a specific innovation.

2.1.3 The Bass diffusion model

Once an innovation is released to the public a process starts where an increasing
portion of the market decides to use the innovation. In the theory of innovation
dynamics this process is called diffusion and the users are called adopters. (see
Narayanan, 2001, chapter 4)

To model the process of innovation diffusion Bass (1969) introduces two pro-
cesses that propagate an innovation. The first processes is involves individuals
that decide to use an innovation based on their perception of its merits, without
looking at the experiences of others. The second process involves the word-of-
mouth effect or the bandwagon effect, individuals adopt the innovation solely
because they hear of the experiences of previous adopters. Of course in reality,
everyone will be somewhere in between these two extreme types, but for the
sake of modelling it suffices to consider the relative abundance of both types.

It should be noted that Bass (1969) and all later authors, use confusing terms
to describe the two types of adopters. The first type are called ”innovators”,
not to be confused with those actually inventing the innovation and the second
type are called ”imitators”, not to be confused with those developing imitating
offerings. If one remembers that the model concerns the demand side of the
market and not the supply side than it will all be clear.

To model the diffusion process, let M be the total market size for the in-
novation and A the current number of adopters, such that 0 ≥ A ≥ M . The
two adoption processes can then be described as follows: (see also , BBRI;
Vijay Mahajan, 1990)

Innovators: Some individuals in the market that don’t use the innovation
might decide to adopt the innovation. The rate at which this happens is p, the
coefficient of innovation. The number of user that do not use the innovation is
M −A, so the inflow of adopters is p(M −A).

Imitators: The people who use the innovation can express their fondness to
people who do not yet use the innovation, which can influence them to adopt
the innovation. The rate at which this happens is q, the rate of imitation. The
number of user that do not use the innovation is again M − A, the chance of
meeting someone that does use the innovation is proportional to A

M so the inflow

of imitators can be modelled as q A
M (M −A).

When these two effects are combined, the net inflow of users, represented by
the time derivative of A, can be modelled as:

dA

dt
= p(M −A) + q

A

M
(M −A)

=

(
p + q

A

M

)
(M −A)

22

Figure 2.2: The Bass model of innovation diffusion. The blue trace represents a
Bass diffusion with p = 0.01 and q = 0.90. The purple trace bass diffusion with
p = 0.90 and q = 0.01.

Time

Users

Source: own illustration, created using Mathematica.

Often one is not concerned with the market size M and only interested in the
fraction of the market—denoted with F—that uses the innovation. Of course,
F = A

M . By dividing the above equation with M one obtains the Bass model:

dF

dt
= (p + qF) (1 − F) (2.1)

Bass (1969) solves this ordinary differential equation, which results in the
following function for F :

F (t) =
1 − e−(p+q)t

1 + q
pe−(p+q)t

(2.2)

In figure 2.2 two Bass diffusions are plotted using equation (2.2), one rep-
resenting an innovation diffusion with many innovators and few imitators and
one representing a diffusion with many imitators and few innovators. When
there are more imitators it takes a while for the innovation to take of since the
majority of the potential users are waiting for someone else to try it first.

To fit the model of equation (2.2) to empirical data two additions are nec-
essary. First the market size has to be re-introduced, this is done by taking
A(t) = MF (t). The market size, M , in this equation represents the total
number of potential adopters for this specific product, not the total number of
adopters for a category of products. Since it is not possible to know in advance
who will eventually be using an innovation it is difficult to determine M in
advance. Furthermore, the Bass model assumes the market size to be constant
and competition free, which is unlikely in practise. Therefore the quantity has
to be fitted to the data, statistical goodness-of-fit measures can then be used
to determine the validity of the assumptions. The second addition is the time

23

Table 2.1: Overview of the variables and parameters of the Bass model as
presented in equation (2.3).

Dimension description

A adopters adopters at a the model time
t time model time

t0 time time of innovation introduction
M adopters number of potential adopters
p time−1 rate of adopter innovation
q time−1 rate of adopter imitation

Source: own creation.

at which the innovation is introduced. Until now the assumption was that the
introduction was at t = 0, in arbitrary units. For empirical data fitting it is nec-
essary to be able to specify an arbitrary introduction time. This can be achieved
by introducing the introduction time t0 in the equation as A(t) = MF (t− t0).
Again, this variable can be fitted if it can not be determined in advance.

A(t) = M
1 − e−(p+q)(t−t0)

1 + q
pe−(p+q)(t−t0)

(2.3)

Equation (2.3) incorporates the two additions and can be readily applied to
empirical data. In Vijay Mahajan (1995) and many other empirical studies this
happens in the differential form, since only absolute sales figures are available
and not absolute user figures. The dependency graph method presented later
allows one to obtain absolute usage number, so the differential form is not further
used.

The interpretation of the variables and parameters and their dimensions is
presented in table 2.1. When applying the formula one should note that it is
non-linear, so ordinary linear regression can not be used. Instead one can use
non-linear least squares regression, but note the correct number of the degrees
of freedom. This can be done using existing mathematical/statistical packages.
For this thesis the NonlinearModelFit procedure in Mathematica was used.

24

Chapter 3

Dependency graph analysis

Figure 3.1: Example of a dependency graph
Source: Own work, created using Graphviz

SuperChat v. 1.0

Cute UI lib v. 2.69 Cern Network lib v. 3.14

Berkley Files lib v. 2.72

FreeFont v. 1.74window manager v. 1.41

Fglrx graphics driver v. 1.62

No software project stands entirely on its own. Software is usually developed
by taking one or more existing libraries of components and combining those
components in ways to create new products. Take for example a simple chat
application. The chat application uses a library for user interface development
that provides components such as a window a text entry field and a button
(that is labelled ”send message” by the chat application). This user interface
library in its turn uses a graphics library to draw the lines, rectangles and text
necessary for the fields and buttons. The graphics library uses a library to read
font files and use the fonts to turn text into pictures that can be displayed
on the screen. The graphics library then sends the contents of the window to
the window manager, which in turns uses graphics card driver to instruct the
hardware. The chat application uses a networking library to provide it with
the basic components for internet communication and uses a file library to store
the users settings. The same file library is also used by the font library to read
font files. The dependency graph so described is drawn in figure 3. Compared
to a real chat application the graph is hugely simplified, tracing a real chat
application back to all the components involved will likely result in hundreds of
libraries used.

In the remainder of this thesis the terms ‘project’, ‘package’ and ‘library’
will be used as synonyms for a node in the dependency graph.

25

3.1 Dependees are adopters

In the example from figure 3 the font library and the chat application use the
same library to access files, but this need not be the case. There can be several
competing libraries implementing similar functionality. It could even be the case
that the font library and the chat application use a different library, effectively
meaning that both libraries are required to use the chat application. This might
seem wasteful, and in a certain sense it is, but it is common practise and there
is a good reason to it.

A project developing a file reading and writing library has as its target audi-
ence all project that require such functionality. This target audience has a free
choice in whether they use the projects implementation or a competing imple-
mentation. Given that in the open source community there are no license fees,
the selection happens on, for example, technological merits and social factors.
The selection also depends on the problem at hand, the font library may have
a very good reason to choose a specific file library, while the chat application
may have equally good reasons to choose a different one. The two libraries will
happily co-exist, each having their own niche.

The relation between software projects and dependency relations can be
considered as one of technologies and adopters. Each software project has a
defined problem it provides a solution for. The solution it provides, and hence
the project as a whole, could be considered a technology. When a project
uses another project to solve a sub-problem, they are effectively adopting its
solution. The dependency graph can therefore be directly reinterpreted as a
graph of technologies and adopters.

Since the number of dependees of a package is interpreted as the number
of adopters one would expect from theory that it follows a Bass model growth.
This hypothesis will be tested in the empirical part of this thesis.

3.2 Henderson-Clark patterns

The Henderson-Clark patterns from section 2.1.2 depend on the context in which
they are applied. In the dependency graph they are interpreted in the context
of an individual package which uses other packages as its components. An
alternative perspective would be to consider the way in which the technology
is implemented within a package, the Henderson-Clark patterns would then get
an interpretation that differs from the one presented here.

Component change With component a small part of the packages changes
significantly, at least internally. For example a package moving from using one
library to implement a technology to using another library to implement the
same technology would be a component change. In terms of the dependency
graph the component change would be noticable as a change in the dependencies
of a package. This could be swapping one library for another, or adding a library
or removing one.

Architectural change With architectural change, the outward appearance
of the package changes radically. That is, the way the package interacts with
other packages changes in a way that renders previous interfaces between them

26

incompatible. The dependees of the package that changed the architecture need
to be adapted before they can interface with the package again. In terms of
software engineering this is an application interface change, more specifically an
application programming interface (API) change if the code of the dependees
needs to be changed or an application binary interface (ABI) change if merely
recompiling the dependee suffices to resolve the interface conflict.

In terms of dependency graphs, an architectural change can be interpreted
as an change in the package that requires change in its dependers. This can be
detected by the following effect: The package updates and if the package uses
a major-minor versioning scheme the major part is incremented. The depen-
ders need to implement the change and until they do so they are incompatible
with the new version. Such an incompatibility manifests itself in an dependency
which requires a specific version of a package, for example package kdelibs ver-
sion 3.5.9 requires qt with version less than 4. Once the depender has updated
its code the version specification usually flips, for example, the updated kdelibs

version 4.0.0 requires qt version at least 4.
Dependencies with explicit less than version specifications can only appear

if an architectural change has occurred in the dependee. If the change where
not architectural, the outward interface of the package would remain compatible
with the previous version and the version’s specification would be unnecessary.
Dependencies with a greater than version specification are not necessarily indi-
cators of architectural change in the dependee. The depender might for example
require a version where a certain prohibitive bug is fixed or where a required
feature is added.

Incremental innovation In incremental innovation the packages under con-
sideration undergoes a minor improvement which does not alter the architecture
or composition of the package. Trivial software examples of incremental innova-
tion are higher performance or reduced size in some respect. But one can also
argue that bug fixes or even minor feature additions are incremental innova-
tions since they do not change the composition or architecture of the package.
Therefor the concept of incremental innovation can be roughly translated to the
concept of a minor release in software engineering.

In terms of dependency graphs an incremental innovation of a package re-
sults in a new version of the package, but no component change or architectural
change. The absence of component change has the consequence that the de-
pendencies of the package do not change with the new version. The absence
of architectural change has the effect that there will not come any less-than
version dependencies with the old version of the package as dependee. In short,
an incremental innovation can be recognised as a change in version number,
without any changes in the dependency graph.

Architectural innovation With architectural innovation the set of compo-
nents used to create the product is changed very little, but the manner in which
they are composed is changed such that the outward appearance of the product
changes. Examples in software engineering are refactoring the public interface,
incompatible changes in communication protocols and storage formats shared
with users and .

27

Modular innovation Modular change is when a project changes its own
dependencies without consequences for the projects depending on it. This is
the case when a project decides to adopt a new technology, for example a new
multimedia format, or when the project moves from one implementation of a
technology to another.

A modular innovation can be recognised in the dependency graph by a
change in a package’s dependencies without a change in the package’s dependees.

Radical innovation Radically changing the architecture of a package is quite
uncommon, once a project has settled on a certain overall structure this struc-
ture changes only incrementally. Radical architectural innovations are not
favoured by the dependers, since it entails a radical change in the way they
interface with the package and such changes are often very laborious. In fact,
there are examples of packages that went to a moderate architectural change
and where then forked by their dependers; the dependers would rather choose to
maintain the old version themselves than adapt to the new architecture! Radi-
cally changing the architecture of a package is almost certain to eschew all the
dependers.

Radical architectural innovation is therefore usually accomplished by start-
ing a new project with the new architecture in mind. It is not uncommon for
some developers of an old project, fed up with the old architecture, to start a
new project, based on the lessons they learnt while developing the old project.
The new project can then be developed in peace, other developers and depen-
ders may decide to switch from the old project to the new project and given
enough time, everyone will have switch to the new architecture. Or if the new
architecture proves unsuccessful, they keep continue with the old architecture.
This is where the evolutionary nature of open source development comes in.

28

Chapter 4

Gathering real-world data

In this chapter the methods developed so far, analysing dependency graphs, will
be applied to real-world data. First a list of available datasets is compiled, then
a particular set is selected, collected and processed into a dependency graph
changing over time. This provides the input for the methods described in the
chapter 3. In chapter 5 some of these methods will be applied.

4.1 Qualities of a dataset

To apply the techniques of the previous chapter one would need accurate project
dependency information over time. From a scientific point of view there are
three qualities a dataset should have to produce good and relevant innovation
information that can arguably be generalised to the open source community as
a whole. And then there is the practical aspect as well.

1. The list of projects. The open source community contains a huge amount
of projects, this will be quantified in the next section. These projects differ
greatly in their size and their relevance to the open source community as a
whole. Ideally one would like to include every single project in the dataset, but
this is impossible in practise since smaller and less relevant projects are likely
less known. Projects that cater only to a niche subject (for example tools for
specific exotic hardware) may not even be known outside a small circle of users.
It can therefore be concluded that the complete list of open source software
projects will never be known. The unavailability of this list prevents a pure
random selection from being made. A good dataset should contain as many
projects as it can (completeness) with as much heterogeneity as it can. Or, put
differently, with as little bias as it can (neutrality).

Huge list of projects can be obtained by searching the internet for the words
”open source” or other tell-tale terms and collecting all the pages that appear
to be open source projects. This would however create false positives, through
several mechanisms: a) the method can incorrectly identifying a page as being
a projects, where in reality it is for example a news article about a project. b)
projects can have mirrors, where people create an identical copy of the project
to increase the availability. c) the projects may be “development trees” where
a developer or group of developers make a copy of project to try out new ideas
before integrating them in the main project. The Linux kernel tree is a known

29

to use this model, where individual developers make their contributions to their
own copies of the entire projects, which are then collected and ultimately inte-
grated into the main project.

The matter of the false positives is further complicated by the existence of
‘forks’ as described in 1.3. Here a project is intentionally copied to add new
ideas, much like the “development trees”, but this time not with the intention
of contributing back to the original project, but rather to start a new project
on its own. The distinction is between a development tree and a fork is mainly
a matter of intent and is therefore subjective. When a fork is the consequence
of a developer split or disagreement its existence is not only subjective, but also
controversial and debated.

In conclusion: A complete list of projects is impossible to determine and
creating an approximate list is likely to be subjective and even controversial at
times. If the list contains a bias towards some area of development than the
conclusions drawn from it will also be biased towards that area. It is possible
that the list contains some noise where matters become more subjective, where
to draw the line between the same and similar but different projects and when to
include or ignore a small or unused project. It is assumed that these errors are
small enough and uncorrelated enough to not make a difference in the large scale
structures and statistical averages that are under investigation in this thesis.

2. The dependencies. Once the list of projects is clear the dependency
relations between the projects can be mapped. Again, one can question the
false-positives and the false-negatives. In section 4.2.3 a list of ‘distribution
package databases’ will be introduced. These databases are used to install and
operate the software. For example, if software package A requires package B to
run and the user requests A to be installed, the system will use the database
and install both package A and B. If the database contains a false-negative
than it would not know that A requires B, it would neglect to install package
B and consequently package A would not operate properly. The system would
effectively fail. It is therefore necessary for the correct operation of the sys-
tem to have no false-negatives. A false-positive would have the consequence
of installing unnecessary packages (also known as ‘garbage’ among the users of
such systems). This is wasteful on resources and can lead to problems when the
installed unnecessary package is so faulty that it harms the system as a whole.
Both these consequences lower the user experience of the database and there is
therefore a competitive pressure to keep the number of false-positives to a min-
imum. The observation is thus that in decent distribution package databases
the false-negatives are practically absent and the false-positives are kept to a
minimum. There are therefore a number of very high quality databases of pack-
age dependency information available. This observation was one of the primary
motivations behind exploring the method of dependency graph analysis.

3. Chronology of the data. The dataset should not only contain a list of
projects and dependencies, but also track how this changes over time. To anal-
yse how a project gets adopted by other projects the growth of new dependency
relations needs to be quantified. Scientifically, the interesting qualities are reso-
lution and timeliness. Resolution refers to the minimal discernable unit of time
in the dataset. If the dataset is produced by taking monthly snapshots of the
projects and their relations, then the resolution would be one month. Timeliness
refers to the responsiveness of the data gathering method to changes. When a
project or dependency gets added or removed, will this be apparent in the next

30

snapshot? Or will it take a while for the information to trickle through. As
will be shown, not all distributions package databases are set on including the
very latest packages, they rather wait until they are tested and possible bugs
are fixed.

4. Practicality From a practical point of view it is advantageous if the dataset
is easily available and codified. Easily available means that the dataset can be
obtain by reasonable means, for example by downloading from one location.
Codified means that the data is written in a manner that allows automated
processing. For example, taking all the projects homepages as the data source
would not satisfy both. Even though this might be the most accurate method,
it is infeasible to download all the homepages and very difficult to extract the
dependency information.

4.2 Sources of data

Given these qualities an investigation can be made of the data sources available.
There are three large bodies of data sources. First, one has the project hosts.
These are organisations that provide facilities to open source projects such as
a website, a mailing list a source code repository, etcetera. As an extra ser-
vice and promotional tool they provide lists of projects hosted on them, often
including much meta information on the project, such as its rate of develop-
ment, the number of developers, activity by month. This information gives so
many insights in open source development that it warrants a separate research
project. In fact, this has been done in the work by Adams et al. (2008) amongst
others. Second, one has the project directories. Much like a telephone directory
these are manual or automated efforts of indexing open source projects. Their
purpose ranges from helping users find a specific project to collecting extensive
amounts of statistics and metadata. The third category of data sources are the
distribution package databases. These are used by the open source distribu-
tions to track what other packages need to be installed in order to use a certain
package.

31

4.2.1 Project hosts

Table 4.1: List of FOSS hosts and their reported sizes.

Developers projects

GitHub 345,000 1,061,000a

Assembla 180,000b

SourceForge ¿2,000,000 246,790
Bitbucket 58,100 31,356
Launchpad 1,169,086c 18,901

CodePlex 151,782d 16,917
Project Kenai 53,192 12,132
Gitorious ? 9,532
Google Code ? 5,675
BerliOS 47,778 5,467
GNU Savannah 49,155 3,242
TuxFamily ? 2,279
BountySource ? 1,337
Alioth 10,187 896
Tigris.org ? 686
Eclipse Labs ? 623
KnowledgeForge 1,039 266

a GitHub encourages forking as a form of
branching, a search query for projects that
are forks showed that at least 31% of the
projects are forks.

b Figure according to the homepage, the user
list only has 3,086 public users.

c This is the primary host for Ubuntu
development. It is likely that Ubuntu users
are encouraged to register as a Launchpad
developer, thus inflating the number.

d Data from Wikipedia, could not be verified.
Source: own creation, list from Wikipedia, data
from respective websites in 2010.

A survey of general purpose open source project hosts has resulted in table
4.1. The list of project hosts was first retrieved from Wikipedia. For each host
in the list a search was done to find the number of projects hosted and the total
number of developers registered at their platform. None of those figures have
double-counting when developers work on several projects, but developers may
have registered several accounts.

A particularly large number of projects is hosted on GitHub, but projects on
this host tend to have a high number of very similar clones. GitHub encourages a
development method where developers make a personal copy of the entire project
and apply their ideas there first, before integrating them in the main project.
Integrating back into the original project is not a necessary part, developers can
maintain their version as a fork. All these copies inflate the number presented
by GitHub. A query for the tag ‘fork’ which is added to such projects reveals
that at least 31% of the projects are copies of other projects.

Large numbers of developers can be found on SourceForge and Launchpad.
The former is one of the first and most well-known hosts, hence has gathered
many projects and users over the years. The later is developed Canonical, the

32

company behind the Ubuntu Linux distribution. Users of Ubuntu are encour-
aged to register and contribute.

A rough idea of the size of the open source community can be obtained from
these data. Developers can register at several project hosts and will have to
when they want to work on projects from different hosts. It should therefore be
assumed that there is a lot of overlap in the user base. Assuming maximal over-
lap, a lower bound of the total number of developers is two million, the highest
number of developers from a single host. Compare this with 913, 100 software
developers from the U.S. Bureau of Labor Statistics.1 This would lead to the
result that the open source software development workforce is at least twice as
large as the entire US software development workforce. But that would be a
rather quick conclusion, there could be a lot of duplicate or inactive accounts
on SourceForge and even the active users are unlikely to spend the equivalent
of a full-time job on an unpaid project. So The actual number of working hours
spent will be less impressive. On the other hand, there are many companies
investing paid hours on open source projects. From an innovation perspective
the total amount of available specialist knowledge among the developers might
be as interesting as the number of working hours. It can be argued that the
former scales more with the number of ‘heads’ than the number of hours.

Reflecting on the qualities a dataset the list of projects is very extensive
compared to the other sources, a bit too extensive. According to a 2007 study
by the FLOSSMetrics project only 8% to 10% of these projects are active, the
rest has not shown activity recently.2 It is unlikely that the majority of these
abandoned projects where once major open source projects, most of them are
rather insignificant and could be considered noise on the list.

On most hosts anyone can register for a free account and start a new project,
therefore no selection bias is expected from these hosts. In practise specific
groups of open source developers can cluster around a specific hosts. Unsurpris-
ingly the open source projects initiated by Google tend to be on Google Code
and Ubuntu related project tend to be on Launchpad.

The presented list does not include hosts that cater to a specific project or
development environment. As an example freedesktop.org caters to projects re-
lated to graphical desktop components and Java.net, LuaForge and RubyForge
cater specifically to projects developed in the Jave, Lua and Ruby languages.
The existence of these dedicated hosts implies that they will be under repre-
sented in the general purpose hosts. Whether that is a significant bias is difficult
to determine.

To get a complete and unbiased picture one would need to combine all the
general purpose and dedicated hosts. As mentioned the both kinds suffer from
biases in their list of projects. Furthermore, large, significant projects, which
should be included in the list to get a complete picture, can be in all the project
hosts.

Many of the larger projects run their own hosting facilities and are therefore
missing from the list of projects. Examples of such projects are the Apache web-
server, OpenOffice, GNOME and KDE. By their nature these projects are large,
famous and much used, not having them in the list of projects is a detrimental
bias.

1http://www.bls.gov/ooh/Computer-and-Information-Technology/

Software-developers.htm
2http://robertogaloppini.net/2007/08/23/estimating-the-number-of-active-and-stable-floss-projects/

33

http://www.bls.gov/ooh/Computer-and-Information-Technology/Software-developers.htm
http://www.bls.gov/ooh/Computer-and-Information-Technology/Software-developers.htm
http://robertogaloppini.net/2007/08/23/estimating-the-number-of-active-and-stable-floss-projects/

The second quality, dependencies, is even more difficult. The project hosts
do not require their projects to list which other projects they depend on because
there is no reason to. The hosts also do not have a clear benefit from having such
a list. Gathering the dependency information would therefore mean looking at
the individual projects and finding out its dependencies, which is not codified
in a standard way. Doing this for hundreds of thousands of projects is near
impossible.

The idea of gathering data from project hosts is quickly abandoned at this
stage.

34

4.2.2 Data from project directories

Table 4.2: Overview of FOSS directories.
Projects indexed provided meta data

Ohloh 437,710 popularity, versions, commits, code
measures, developers, geographic
location, etc...

Freshmeat 42,445a popularity, versions
IceWalkers 3,107 latest version
OSSdirectory 855 none
FSdirectory 6,650 versions

a Also includes some commercial packages
Source: own creation, list from Wikipedia, data from respective websites.

The survey of project hosts also resulted in what could be called ‘project
directories’. These interesting data sources try to create a list of projects and do
some measurements on them, much like what this thesis aims to do. Particularly
interesting is Ohloh, which has indexed many of projects and measures a lot of
information that is valuable for innovation research. Ohloh tracks the individual
changes made to a project and for each change it knows who the author is, what
programming languages are used and how large the change is, in terms of lines
of code. This is then used to create popularity measures, activity measures and
size measures, for both the projects and their developers.

The directories provide a good list of projects with interesting and relevant
information, but no dependency information. The directories only contain meta
information on the projects and point to the project’s website for more infor-
mation. In particular the dependencies are not mapped in any way. So these
data sources are also unusable for this thesis.

35

4.2.3 Data from distribution package databases

Table 4.3: Major FOSS distributions and their package databases.

Initial release package manager source/binary packages release cycle

Ubuntu 20-10-2004 dpkg binary 34,580 1
2

year
Fedora/Red Hat 13-04-1995 rpm binary 7,334 1

2
year

(open)SUSE 01-03-1994 rpm binary 6,011 1 year
Debian 17-06-1996 dpkg binary 40,163 2 year
Mandriva 23-06-1998 rpm binary 5,779 1

2
year

Mint 27-08-2006 dpkg binary 30,000 1
2

year
PCLinuxOS 01-10-2003 rpm binary ? 1

2
year

Slackware 16-07-1993 pkgtools binary 10,590 1 year
Gentoo 31-03-2002 portage sourcea 14,018 rolling
CentOS 14-05-2004 rpm binary 2,599 1

2
year

FreeBSD 01-11-1993 ports source 22,020 1
2

year
a About 100 packages are also provided in binary form.
Source: own creation, list from Distrowatch, data from Wikipedia and respective distribution websites.

There are numerous distributions of open source software. So many that it
provoked Ladislav Bodnar to start a website maintaining a comprehensive list of
all distributions available. At the moment of writing the database contains 665
distributions, 320 are labelled as active, 50 as dormant and 295 as discontinued.
The majority of these distributions are very small projects or subtle variations of
other projects. His website Distrowatch also maintains a list ranked by popular-
ity. This list is presented in table 4.3 and augmented with distribution statistics
collected from Wikipedia and the distribution’s websites.

For each distribution a number of details is given in the columns. The date of
its first published version is given. The ‘package manager’ revers to the system
used to install and maintain software in a running system. This is relevant
for the thesis since the package manager must know what packages depend on
what other packages so that it installs all the prerequisites. The ‘source/binary’
column specifies whether the packages are installed by compiling the source
code or if the distribution provides pre-compiled binaries. The later case is
more popular since compiling software is very slow and error prone compared to
simply copying pre-compiled files. The last columns list the number of packages
in the package database at the time of writing and the average duration between
new versions of the package database. Gentoo is unique in that it does not
periodically releases a new version of the package database, but updates its
database as new versions of packages become available.

It should be noted that some distributions are variations of other distribu-
tions, even within this list. Mint is based on Ubuntu which in turn is based on
Debian and PCLinuxOS is derived from Mandriva. See also figure 1.2. Fedora
is a commercial Linux Distribution developed by Red Hat, unlike the other dis-
tributions it is not free to download. The open source license requires them to
publish some of their source code, which anyone can compile to build their own
free version. CentOS is a distribution that does exactly this and is therefore
based on Fedora. Interestingly, the for-money Fedora is more popular in this
list than its free-of-charge clone. Explanations can be the support Red Hat
provides, it’s proprietary extensions and branding.

36

Reflecting on the qualities of a dataset the numbers of packages do not seem
too impressive at first sight. But unlike the previous datasets there are few
insignificant packages, no distribution would like to spend time supporting a
package that is unfinished or abandoned by its original developers. On the
other hand, their user base requires them to include all the popular projects.
Given that the most relevant packages are included, the fact that the list does
not include ‘noise’ in the form of insignificant projects could be considered a
bonus.

Still, there can be a bias in the selection of packages. Ubuntu, for example,
has a specific target audience of novice Linux users and provides them with a
Gnome based desktop environment. This means there is less pressure incentive
for Ubuntu to include other desktop environments and advanced server software
in their package database. Despite this, Ubuntu’s database still includes a few
other desktop environments and various advanced packages. Broad support
appears more important than the burden of supporting many components. In
general, the distributions have a user base that is very broad, some distributions
are used from large server farms to mobile device and provides software packages
for users that range from children to professionals in various fields.

A distinctive advantage of distribution package databases is that they con-
tain very good dependency information. As mentioned earlier the package
database needs to contain correct dependency for correct operation of the system
and since the package manager operates automatically this information needs
to be fully codified. With relative ease one can extract the entire dependency
graph from the package database. This greatly facilitates gathering a dataset.

Source distributions will necessarily contain more a more complete depen-
dency graph than binary distributions. Both kinds of package databases need
to list all the dependencies required to use a particular package, but source
base distribution need to include all de packages required to compile and use
the project.

4.2.4 Conclusion

The Gentoo portage database and the FreeBSD ports databases are ideal can-
didates. Both have all the good qualities of a source based package database.
FreeBSD’s has the advantage that it has a long history and more packages,
Gentoo’s has the advantage that it has better time resolution. Since author is
very familiar with Gentoo’s database, this one is chosen.

It would be interesting to develop a hybrid approach by combining informa-
tion from several sources. For example one could combine package databases
with information from services such as Ohloh. Or one could develop methods to
(heuristically) parse the source code of the projects and extract the dependen-
cies from there. This method is difficult to implement, but once implemented
it can collect other statistics from the source code, much like Ohloh does.

37

4.3 Processing the Gentoo Portage dataset

Now that a data source is selected, it is time to extract the required information
and process the data into a form that allows easy calculations. The major steps
are collecting the raw data, parsing this into a simpler format and producting
the final dependency graph from this simpler form. Some postprocessing can
then be done on the dependency graph. In the process the dataset will shrink
from thirteen gigabytes taking more than a week to collect to thirty megabytes
that can be processed in four seconds.

4.3.1 Collecting the raw ebuilds

The Gentoo portage database consists of a number of files, at least one for every
version of every package, contained in a large directory structure. This entire
structure is kept in a CVS revision control system that has tracked all changes
to the database since the start of the project arround 2000.

Using the cvs command one can download the entire database as it was at
a certain point in history. For example the following command would download
the database as it was on 1 December 2003:

cvs -d :pserver:anonymous@anoncvs.gentoo.org/var/cvsroot co \

-D 12/01/2003 gentoo-x86

Using a small utility written for the task, this command was repeatedly
invoked to download all the databases from 1 January 200 untill today, with
increments of one month. Of all these downloads, only the .ebuild and .eclass

files are stored, the other files are ignored to save space since they contain no
relevant information. This whole downloading processes took about a week and
a half and the resulting database consists of three million files occupying thirteen
gigabytes of space.

Later it was found that there are also .eblit files which are relevant, but
these are just recently introduced and only used by a handful of packages. The
missing .eblit files could therefore be introduced by hand and the week long
process did not have to be redone. There are also files specifying packages
renames, but since these only get appended to and never deleted they where
taken from the latest tree.

4.3.2 Parsing the ebuilds

The files are written in a text based computer language called ‘ebuild’ which
is based on the Bash shell script language. Being a scripting language, the
files can refer to other files and include complicated code to calculate depen-
dencies on demand. This eases the task of the database developer, since he
can automate many processes, but it complicates the task of extracting data.
Several approaches where tried to extract the data in the industrial quantities
the analysis requires.

The first approach was to use Paludis and its C++ bindings to load a reposi-
tory and extract metadata. Paludis is a package designed to process ebuild files,
when then query its database interface to gather all the dependency information
from all the packages. This approach takes a lat of time, it requires around a

38

half an hour per database, but it fails on some of the older databases because
the format of the database changes over time.

The second attempt was to use a custom build metadata extraction program
that also supports older version of the database. This parser looks for text
patterns resembling dependency specifications and implements only a minimal
amount of the ebuild file format (basically only the inherit statement). This
technique is very fast, processing the entire set in 70 minutes, but fails on the
newer databases that use complex techniques such as macro’s in the dependency
specifications.

The final method is a hybrid of the first two, using the Paludis’ instruo
command on the later trees to create simplified versions that do not use the
advanced macro’s but contain the same information. The instruo command
was run on every copy of the database downloaded. Where the command failed
on a package (mainly the older format ones) the original was kept. The total
running time of this operation was around four days.

4.3.3 Producing the dependency graph

Now the data is in 154 snapshots of the package database in a simplified text
based format. This is several gigabytes and several millions of files large and
needs to be processed into dependency graphs. Obviously this it is inhumane
to do this by hand, therefore more specialised tools were developed.

By design the database can work with complicated dependency relations,
such as “package amarok requires package phonon-kde, minimum version 4.3,
but only when feature player is required”. This is would be coded as player?
(>=kde-base/phonon-kde-4.3). A complete example of the run time depen-
dencies for the Amarok music player is given in figure 4.3.3. The figure includes
more complex rules such as “either package X or package Y is required”, “
package X is required to contain feature Y”, etcetera.

These conditional rules are relevant when compiling and running software,
but the conditions are not necessary when analysing component use from an
innovation perspective. If Amarok has an optional dependency on a package,
the developers of Amarok are actively using the innovation provided by that
package even though it may not be enabled by the end user in the final product.
For this reason, and of simplicity, all the conditionals are ignored when parsing
the ebuilds.

When a database snapshot contains several versions of the same package,
only the latest is used. For some of the analysis techniques presented in sec-
tion 3.2 the version information is required. But at this point it was decided
not to include different versions to simplify processing analysis. When several
versions where available in the database at a certain point in time, only the
highest version was included. This ensures that each snapshot represents the
state of art at that time.

In the Gentoo Portage database the dependencies are sorted in two kinds,
compile time dependencies and runtime dependencies. The first kind are re-
quired to build and install the package. The second kind is only required when
actually using the package. The reason for this distinction is a technical: it
solves installation issues with cyclical dependencies. For the current purposes
both kinds of dependencies are considered equal.

39

Figure 4.1: Runtime dependencies of the Amarok music player.

>=media-libs/taglib-1.6.1[asf,mp4]

>=media-libs/taglib-extras-1.0.1

player? (app-crypt/qca:2

>=app-misc/strigi-0.5.7[dbus,qt4]

|| (>=dev-db/mysql-5.0.76

=virtual/mysql-5.1)

>=kde-base/kdelibs-4.3[opengl?,semantic-desktop?]

sys-libs/zlib

x11-libs/qt-script

>=x11-libs/qtscriptgenerator-0.1.0

cdda? (>=kde-base/libkcddb-4.3

>=kde-base/libkcompactdisc-4.3

>=kde-base/kdemultimedia-kioslaves-4.3)

embedded? (<dev-db/mysql-5.1[embedded,-minimal])

ipod? (>=media-libs/libgpod-0.7.0[gtk])

lastfm? (>=media-libs/liblastfm-0.3.0)

mp3tunes? (dev-libs/glib:2

dev-libs/libxml2

dev-libs/openssl

net-libs/loudmouth

net-misc/curl

x11-libs/qt-core[glib])

mtp? (>=media-libs/libmtp-0.3.0)

opengl? (virtual/opengl))

utils? (x11-libs/qt-core x11-libs/qt-dbus)

!player? (!utils? (media-sound/amarok[player]))

!media-sound/amarok-utils

player? (>=kde-base/phonon-kde-4.3)

Sometimes, package get renamed or moved around in the database, this needs
to be accounted for. Luckily, to allow users to upgrade from an older version
to a newer version the processing of moves and renames has been automated in
the Gentoo Portage database. The developers maintain a list of all the moves
and renames that have happened in the database in a structured format. The
latest version of this list is used to retroactively change all the package names
in the historical snapshots to their modern name. This ensures that moves and
renames do not harm historical continuity in the dataset.

Using all the observations and choices made above, a tool was developed
to extract dependency graphs from all the simplified database snapshots. The
shear scale of the resulting dataset, 1.3 million packages and 6.9 million depen-
dency relations, required a solution to store efficiently. Therefore, a compressed
format was developed that only stores the changes between the historical snap-
shots instead of storing whole snapshots. The extraction process took three
hours and resulted in a 29 megabyte file. Reading out this file and performing
calculations of the kind that will be needed later takes about 4 seconds. The
dataset is now in a usable form.

40

Figure 4.2: Growth of the number of packages in the Gentoo package database.
Source: own creation using Mathematica

2002 2004 2006 2008 2010 2012

5000

10 000

15 000

(a) The total number of packages over time

2000 2002 2004 2006 2008 2010 2012

-500

0

500

1000

(b) The number of package additions and re-
movals over time. The blue curve represents
the monthly total number of additions, the
red line the monthly total of removals.

4.3.4 Processing the graph

Growth of the number of packages. In figure 4.3(a) the number of pack-
ages in the database is plotted over time. One can see how the database started
in 2001, underwent a period of rapid growth between 2002—2006 and settled
into calm a linear growth from 2006 onwards. In figure 4.3(b) the rate of intro-
ducing and removing packages is plotted over time. This show two spikes, one
at the start of 2002 and one in 2005. The cause of these spikes was not thor-
oughly investigated, but a likely cause is a massive cleanup and refactoring of
the database. This is a warning sign that the data exactly at these points might
contain a lot of noise. In general, the data before 2006 should be considered
with more caution than the data afterwards.

The effect of the growth of the entire dataset on the number of dependencies
for individual packages was investigated, but no influence was found. Since
the total number of packages grows one would expect the ‘market’ for a certain
package to grow and thus the number of dependency relations to that package to
grow. To compensate for this one could divide the number of dependers by the
total number of packages, compare this with using a market-share instead of an
absolute number of users. In practise, this only made any significant difference
for early data, but that was determined to be unreliable anyway. In the interest
of keeping the analysis simple no compensation was made for the growth of the
number of packages.

Virtual and meta packages. It sometimes happens that several projects im-
plement the same functionality and are entirely compatible. This can be caused
by forking, where the two copies maintain compatibility with each other. In
other cases, such as with OpenGL or Java, entirely separate projects are started
that implement the same standard. The end result is that several packages ex-
ist that provide a certain technology and that a package depending on this
technology is indifferent to which package provides it.

In the Gentoo Portage database this is accounted for by introducing ‘vir-
tual’ packages representing abstract technologies rather than concrete imple-
mentations. In figure 4.4(a) one can see how two packages require a technology

41

Figure 4.3: The elimination process of virtual and meta packages; dependency
relations are connected through and the virtual package is removed.
Source: own creation using Inkscape

(a) Before elimination a virtual package rep-
resents a common group of dependencies.

(b) After the elimination all the dependen-
cies of the virtual packages are added to the
dependers of the virtual package.

provided by virtual. The package virtual does not have content of its own;
upon installation it will install nothing. However, the package depends on sev-
eral ‘real’ packages, which will be installed by the package manager. Since only
one implementation of a specific technology is required the dependencies are of
the “either X or Y or Z” variety.

Related to this are ‘meta’ packages, which group a common set of dependen-
cies. Sometimes it is useful to consider a group of packages as a single package.
For example a word processor, spreadsheet and presentation package could col-
lectively be considered an office package. These groups are mostly used as a
convenience for users, it allows them to install a bunch of packages in one go.
It is implemented similar to the virtual packages, but instead of an “either X or
Y” condition, the dependencies are of the form “X and Y and Z” form. These
meta packages are only used to convenience users and are not depended upon
by other packages. They can therefore be safely discarded.

Since these virtual and meta packages are not true packages and do not rep-
resent actual open source projects a method was devised to eliminate them. As
mentioned the meta packages can simply be discarded, but the virtual packages
contain valuable dependency information. The packages that depend on a vir-
tual package do so because they use the technology it provides. If the virtual
is simply removed this technology is missing from the dependencies of the de-
pender. To compensate all the dependencies of the virtual are added to all the
packages that depend on the virtual. The process is explained in figure 4.3.4.

Applying the virtual elimination technique increases the number of depen-
dencies. Suppose the original virtual has i packages depending on it and depends
on o packages. The number of dependency relations before elimination is the
sum i + o. After elimination this number is the product i · o. If both i and
o are large than the product is huge compared to the sum. The number of
dependency relations over time is plotted in figure 4.5(b). After the virtual
packages are eliminated using the method described the number of dependency
relations increases to the amount plotted in figure 4.5(b). The increase is ten-
fold! After processing the majority of the dependency relations are caused by
the elimination procedure, completely swamping the original data. Even worse,
the number of dependency relations over time is now highly erratic, containing
huge rises and falls.

In the interest of keeping it simple it was decided not eliminate the virtual

42

Figure 4.4: Growth of the number of dependency relations in the Gentoo package
database and the effect of eliminating the virtual and meta packages.
Source: own creation using Mathematica

2002 2004 2006 2008 2010

20 000

40 000

60 000

80 000

(a) The number of dependency relations in
the unprocessed dataset over time. Note the
strong relation with the number of packages,
their fraction converges to around 4 depen-
dencies per package.

2002 2004 2006 2008 2010 2012

200 000

400 000

600 000

800 000

1.0 ´ 106

1.2 ´ 106

(b) The number of dependency relations in
the virtual eliminated dataset over time.
The number of dependencies increases ten-
fold and shows highly erratic behaviour.

packages. This does not affect the outcomes significantly for a two of reasons.
First, the majority of the dependencies created by eliminating virtual packages
happen in a few specific areas. By not considering packages in these areas one
avoids the influence of virtual packages, at the cost of not being able generalise
conclusions over those areas. Second, the virtual dependencies are of the “either
X or Y” kind, so in practise only one of the packages is installed. Thus the num-
ber of dependency relations in practise is only i·1 instead of i·o. Thinking about
this, the virtual packages represents an abstract technology that is depended on.
The packages themselves are ignorant about the specific implementation used,
they operate in the abstract as well. Keeping the virtual packages as they are
more closely resembles reality than the elimination procedure presented above.

43

Chapter 5

Analysing the real-world
data

In this chapter the real-world data gathered in the previous chapter will be anal-
ysed using the method developed in chapter 3. In particular the Bass diffusion
model from section 2.1.3 will be used to model the adoption of technology by
projects as it is represented by packages gaining dependencies on other pack-
ages. But first, graph clustering analysis is applied on a small but interesting
subset of the entire graph.

5.1 Exploring the last snapshot

One of the first thing attempted after generating the dataset was to visualise
the entire graph of the latest snapshot. The problem is, to make any sense
of a graph it has to be laid out, nodes that are connected should be placed
close to each other so that connecting lines are short and have little overlap.
Software packages such as Graphviz, Tulip, Gephi, Jetty and Cytoscope have
been tried, but after days of trying and many hours of calculation, none where
able to produce any insightful layout for the sixteen thousand nodes and hundred
thousand relations.

Since it was impossible to get a visual overview of the entire dependency
graph, its structure was plotted using histograms. Figure 5.2(a) is a histogram
of the number of dependencies per package. A log-log scale was required to make
the plot insightful, this reflects the fact that there are many packages with only
zero, one or a few dependencies and a few packages with a lot of dependencies.
Statistically this means the distribution of the number of dependencies has
a fat tail. Likewise, the number of dependers for each package is plotted in
figure 5.2(b). This can be interpreted as the distribution of the number of
adopters of a given technology. Again, there is a fat tail, even fatter than
the one from the number of dependencies. The approximate linearity of the
histogram suggest a power-law like distribution of the number of adopters for
a given technology. According to Shalizi (2007) this is not sufficient proof and
further statistical tests are required. Unfortunately, the tests mentioned in
Shalizi (2007) are not easily available in Mathematica.

The entire graph might be difficult to visualise, but a small part should be

44

Figure 5.1: Histograms of the number of dependencies and dependers per pack-
age. Vertically the number of packages is plotted logarithmically, horizotanly
the number of dependencies or depender relations is plotted for those packages,
also logarithmically.
Source: own illustration, created using Mathematica.

10. 100

1.

10.

100

1000

(a) Dependencies per package

10. 100 1000

1.

10.

100

1000

10 000

(b) Dependers per package

easier. The problem with choosing a small part is that the part must have
a meaningful boundary, a random selection will likely have few relations and
miss some key packages. It was therefore decided to only pick the packages
that belong to the KDE desktop environment. The primary reason is that the
author is familiar with this set of packages and knows its structure in some detail.
A secondary reason is that the packages are developed by a tightly connected
community where component reuse among the projects is stimulated by creating
libraries. The selection was implemented by considering only packages in the
category kde-base from the Gentoo Portage database.

The program Tulip was used to visualise the graph, the result is in figure 5.1.
First the graph was laid out using a force based method, this clusters packages
that are strongly connected close to each other. Then the graphs where coloured
according to their k-core measure, this is a measure for the ‘connectedness’
of a package. At this point there was still an unclear mess of lines between
the packages, this was resolved by bundling the edges. Edge bundling merges
neighbouring lines to a single thicker line, this creates a vein-like structure.

In figure 5.1 one can see that all the packages depend on kdelibs, the
large blue dot in the middle. The kdelibs package provides a lot of basic
functionality, such as a unified set of icons, file open/save dialogues and less
visible standard components. Almost all the packages in the KDE set require
one or more of these components. It should be stressed that there was no manual
work involved in the layout of this graph, Tulip was able to determine using only
objective, determinist mathematical methods from graph theory that kdelibs

plays a central role in the KDE technology.
The second thing to notice are the clusters that form along the edge of the

figure. All these clusters represent related areas of technology within KDE.
The brownish-grey cluster immediately at the top contains mostly educational
software and a few file utilities. Going clockwise, the little blue cluster next
to it contains programs for compact discs. The large brownish-grey cluster on
the right consists exclusively of games and supporting technologies. The com-
plex mesh that starts around seven o’clock begins with technology used to allow
users to log in. It then proceeds towards hardware related technology and desk-

45

Figure 5.2: Internal dependencies of modules in the KDE project. Colour rep-
resents the k-core measure. The graph edges have been bundled to improve
readability.
Source: own illustration, created using Tulip.

46

top infrastructure. The big blue dot marked ‘solid’ at eight o’clock is KDE’s
hardware abstraction layer. At nine o’clock the big blue dot represents the no-
tification library, used to notify users of hardware events (“battery low” and
the likes), appointments or incoming emails. The mesh now shifts towards per-
sonal information management at ten o’clock. These contain utilities such as an
email client, a note taking application, a chat client and a calendar application
and related technologies. Lastly, the small brown-grey cluster at eleven o’clock
contains technology to allow integration of scripting languages.

Scattered throughout the figure are yellow dots containing packages that are
only connected to kdelibs, without any apparent pattern in their location. This
was expected since the packages only depend on kdelibs and are not depended
upon by other packages. This means there is no information that brings any
insight in their nature and where to cluster them. Perhaps if dependencies from
outside the KDE subset where included the packages would form more clusters.

It is remarkable how only a few dependency relations provide sufficient clues
for the clustering algorithm to automatically find related areas of technology.
Similar but faster clustering techniques where used on the whole snapshot with
similar results. Related packages for certain programming languages (Perl, Php,
Java, Python, Ruby) would cluster and packages related to either KDE or
GNOME would cluster, among many more. Unfortunately the analysis software
was struggling with the size of the dataset and the full set was not investigated
further.

5.2 Fitting the Bass innovation diffusion model

The previous section only considered a single snapshot, but the dataset contains
an entire history, so a time series based analysis can be applied. The time-series
under consideration is the number of dependers (adopters) of a given packages
(technology) at a given point in time. As explained in section 2.1.3 one ex-
pects this to follow a Bass diffusion curve, given by equation (2.3). This is a
non-linear equation and can be fitted using non-linear least squares regression
methods. The method used was the default method implemented in Mathemat-
ica’s NonlinearModelFit. To help the method converge a manual initial guess
was provided, but this process can probably be automated. To limit the search
the constraints that p ≥ 0 and q ≥ 0 where provided. Once a least-squares fit
is found its goodness-of-fit is analysed, the parameters are extracted and the
result is plotted.

The goodness-of-fit analysis is done using analysis of variance, presented in
an ANOVA table. The goodness-of-fit is calculated using the adjusted coefficient
of determination, R̄2, which is the percentage of variance explained by the model
corrected for the degrees of freedom of the model. This measure may not be
appropriate in the context of time-series, where individual measurements are
not independent, so the goodness-of-fit numbers are not to be considered fully
rigorous. Different methods from Mathematica’s algorithms where evaluated,
such as Kolmogorov-Smirnov, but no methods where found that can be used
to rigorously measure the goodness-of-fit of a non-linear model to time-series
data. Escanciano (2006) proposes a new method to do such goodness-of-fit
tests, mentions that bootstrapping methods are commonly used in this context
and the wild bootstrapping method is the most relevant for this situation. The

47

paper by Escanciano (2006) and some other relevant papers where relatively
recent, published in a statistics journal and highly technical, this hints that the
present goodness-of-fit problem is still an active area of research. Given the
exploratory nature of this thesis, absolute rigour is not crucially important at
this stage and the issue was not investigated further.

The parameters are extracted from the fit and confidence intervals are calcu-
lated under normality assumptions. In a table the four parameters are presented
with their mean value, their standard error and a 95% confidence interval. Since
normality is assumed the confidence intervals ignore the p ≥ 0 and q ≥ 0 con-
straints.

The plot is drawn using a thick red line for the model and shades of red for
the prediction bands. The thick red line is drawn according to equation (2.3)
with the means values used as parameters. Then single value predictions bands
are calculated for 90%, 95%, 99% and 99.9% confidence and are drawn in pro-
gressively darker shades of pink. They represent a prediction for where a single
additional value would likely fall. According to the model and the uncertainty
introduced by the fit, there is a 90% chance that it will fall in the innermost
band, 95% chance that it false in the second band, etc. If the data fits the
model properly, one would expect to see 90% of the points in the inner band.
Finally, the empirical data points are plotted as black dots, connected with a
thin vertical line, the residual error, to the model.

5.3 Example of imitator driver growth

From the entire list of packages a few well-known (at least according to the
author) packages where selected. The selection criteria where that the package
must not have existed much before 2004, because the Gentoo Portage database
was still too immature then, and the package must have gained a considerable
number of dependers since its introduction. First a typical imitator driven
growth and a typical innovator driven growth is presented, then eight cases are
presented and finally a special case of growth and demise is presented.

The first package to git, a modern revision control system that shows an
imitator driven adoption. It’s growth can be seen in figure 5.3, the corresponding
statistics are in table 5.1. The package first appeared just before 2005, it had
around ten packages depending on it in 2006, twenty in 2008 and is currently
used by almost three hundred packages. According to the Bass model it will
continue to grow to approximately 750 users. The innovator inflow is only 0.2%
of the potential market per year so one would expect 0.002 · (750 − 300) = 1
user to adopt git out of shear innovation. Taking the analogy with persons, if
someone from the 450 current non-users where to meet a random person from
the entire 750 market there is a 300

750 = 40% chance of meeting a user which can
convince him to start using git. The chance of this happening is the imitator
inflow q = 0.73. Therefore, the total number of users git can expect to gain
from imitation this year is 450 · 40% · 0.73 = 131. Very much imitator driven!

The relative slowness of git’s growth and its dependence on imitator can be
explained. First, the purpose of revision control systems needs to be explained.
Open source projects, and software project in general, consist of numerous large
textual files containing source code. Changes made in one place can hugely and
unpredictably affect other places. To complicate matters further, usually more

48

than on developer works on the source code at the same time. Revision control
systems track who changed what and when in the source code and even allows
developers to revert changes. The revision control system in effect memorises
every version of every file in the project with detailed information on who created
it. This is a piece of infrastructure that is almost exclusively targeting software
developers. There are competing systems such as cvs, subversion, mercurial,
etcetera., but the basic functionality of maintaining version is provided by all of
them. Thus two explanations can be derived for git’s growth: (1) the revision
control system is not a part that affects the products delivered by the open
source project and (2) there is little incentive to switch unless the new revision
control system is proved to be superior.

Figure 5.3: Bass fit on the number of packages depending on the package git.
The Bass model can explain R̄2 = 99.27% of the variance in the data.

2006 2008 2010 2012

0

50

100

150

200

250

300

350

Source: own creation using Mathematica.

49

Table 5.1: Results of fitting the Bass model to the total number of packages
depending on git. Fitted using nonlinear least squares regression analysis. See
figure ?? for a plot of the data and fitted model.

(a) ANOVA Table

D.F. sum of squares mean square

Model 4 9.16·105 2.29·105

Error 81 5.23·103 65.0
Uncorrected total 85 9.22·105

Corrected total 84 5.13·105

Adjusted coefficient of determination R̄2 = 99.27%

Source: own creation using Mathematica.

(b) Parameter estimates

Parameter unit mean std. error 95%-interval

Start t0 year 2,005.03 1.36 2,002.32 2,007.73
Size M adopters 746 198 352 1140
Innovator inflow p year−1 1.97·10−3 2.05·10−3 −2.10·10−3 6.04·10−3

Imitator inflow q year−1 0.732 0.0633 0.606 0.858

Source: own creation using Mathematica.

50

5.4 Example of innovator driver growth

A typical example of innovator driven growth is given by libmad. The model is
fitted resulting in figure 5.4 and table 5.4. Again, the data is neatly explained
by a Bass diffusion process, in particular the rapid steep growth and the stable
user base afterwards. The name is an acronym for “library for MPEG Audio
Decoding” and the package provides a high quality mp3 decoder for use in mul-
timedia applications. This might also explain the rapid growth of its adoption:
multimedia applications can benefit a lot from good quality mp3 support.

Figure 5.4: Bass fit on the number of packages depending on the library libmad.
The Bass model can explain R̄2 = 99.67% of the variance in the data.

2004 2006 2008 2010 2012

0

10

20

30

40

50

60

Source: own creation using Mathematica.

51

Table 5.2: Results of fitting the Bass model to the total number of dependers of
libmad. Fitted using nonlinear least squares regression analysis. See figure 5.4
for a plot of the data and fitted model.

(a) ANOVA Table

D.F. sum of squares mean square

Model 4 2.45·105 6.13·104

Error 102 775 7.60
Uncorrected total 106 2.46·105

Corrected total 105 2.71·104

Adjusted coefficient of determination R̄2 = 99.68%

Source: own creation using Mathematica.

(b) Parameter estimates

Parameter unit mean std. error 95%-interval

Start t0 year 2,003.44 0.182 2,003.08 2,003.81
Size M adopters 55.4 0.391 54.7 56.2
Innovator inflow p year−1 0.177 0.0685 0.041 0.312
Imitator inflow q year−1 1.135 0.173 0.792 1.478

Source: own creation using Mathematica.

52

5.5 Other examples

In figure 5.5 the fits are show for eight packages, the statistics are not presented.
The packages and their function are:

libnotify is a library for notifications. In modern desktop environments
applications may want to notify the user of certain events, for example a battery
that is about to go empty, a new email or an incoming phone call. The adoption
is relatively slow, despite its usefulness. A possible explanation is that the target
applications all have their own custom solutions, which the developers are keen
to keep.

libtheora is a library for the Schroedinger video codec. It implements a
multimedia standard for use by video players. Just as with libmad there is a
strong innovator driven growth.

qt-core and qt-gui are libraries from the Qt toolkit. These libraries pro-
vide a standardised way to, for example, open and process files or draw user
interfaces. Given its rather fundamental nature the rapid growth is odd. The
explanation is that the packages used to be one package, named qt, but got
split up due to its size. It is likely that the growth represents existing dependers
moving from the old to the new packages, rather than new adopters.

taglib is a library that processes metadata from multimedia files. The
package allows media players to read and store information such as artist and
title from multimedia files. Again, like the other multimedia packages there is
rapid innovator driven growth.

udev is a device manager. Its task is to communicate closely with the hard-
ware drivers in Linux kernel to monitor any changes in the hardware configura-
tion. It represents an architectural change in a very low level component, this
might explain its slow imitator driven growth.

libXaw is a user interface library much like qt-gui. The project behind the
package has been around for at least a decade, the extremely rapid growth is
likely to be an anomaly. Perhaps the package and a collection of applications
using it got added to the Portage Database around 2006.

cairo is a graphics library. It provides facilities for drawing lines, circles,
text and other graphics primitives and is used by user graphics-heavy projects
such as user interface libraries. Much like udev it is an architectural change at
a low level, this might explain its similar growth pattern.

53

Figure 5.5: The Bass curve fitted on a number of packages

2006 2007 2008 2009 2010 2011 2012 2013
0

20

40

60

80

100

120

(a) libnotify: p = 0.05, q = 0.72

2004 2006 2008 2010 2012

0

5

10

15

20

25

30

35

(b) libtheora: p = 0.11, q = 0.63

2007 2008 2009 2010 2011 2012 2013

0

100

200

300

400

500

600

700

(c) qt-core: p = 0.50, q = 0.00

2007 2008 2009 2010 2011 2012 2013

0

200

400

600

800

(d) qt-gui: p = 0.45, q = 0.01

2004 2006 2008 2010 2012

0

10

20

30

40

50

60

(e) taglib: p = 0.22, q = 0.04

2004 2006 2008 2010 2012

0

20

40

60

80

100

120

140

(f) udev: p = 0.01, q = 0.50

2006 2008 2010 2012
0

20

40

60

80

100

120

140

(g) libXaw: p = 0.65, q = 3.74

2004 2006 2008 2010 2012
0

50

100

150

200

(h) cairo: p = 0.005, q = 0.35

54

5.6 Example of growth and demise

The previous examples are all about projects that start and undergo a growth
phase that can be explained by a Bass diffusion process. So far, the Bass
diffusion model has appeared to give a very accurate explanation of the adoption
of an open source software library.

A Bass diffusion is monotonically increasing, it will always rise, but never
decline. The project libmad (see fig 5.5b) is a good example of this behaviour.
The package has an innovator driver growth that brings it close to its maximum
in about two years. After that, the package’s usage remains almost flat for
years, and will do so indefinitely if it is a perfect Bass diffusion process. This is
called the “maturity stage” in product life-cycle parlance.

A real product life-cycle will also include a “decline stage” where the product
is becoming obsolete. The Bass innovation diffusion model does not account for
this. In a deep sense it would not have to, once ideas spread they become part
of our collective knowledge and will continue to be used by the new products
being developed. But the Bass model was not developed for the spreading
of ideas, it was developed in the context of marketing to model the adoption
of products. Extending the Bass model to include obsolescence would be an
interesting extension to venture.

The package xulrunner in the dataset is a nice example of a short but
complete life cycle, as will soon be demonstrated. When the Bass model is
applied naively and a least mean squares best-fit is made, the result is as in
figure 5.6. The model fits poorly, the explained variance of 96.63% it is barely
above the 95% significance mark. It is still significant that the process fits a
Bass diffusion process, but only barely so.

Figure 5.6: Bass fit on the number of packages depending on the library
xulrunner. The Bass model can explain R̄2 = 96.84% of the variance in the
data.

2006 2007 2008 2009 2010 2011 2012 2013
0

10

20

30

40

Source: own creation using Mathematica.

When looking at the Bass model parameters in table 5.3 some parameters are
still accurate. Given that the fit is not good it is striking that the introduction
time t0 and size M can still be determined with relatively small 95%-confidence
intervals. From the figure it is apparent that the size is an underestimation
caused by the declining values at the end. The innovator inflow and particularly

55

Table 5.3: Results of naively fitting the Bass model to the total number of de-
penders of xulrunner. Fitted using nonlinear least squares regression analysis.
See figure 5.6 for a plot of the data and fitted model.

Parameter unit mean std. error 95%-interval

Start t0 year 2,006.36 0.90 2,004.56 2,008.16
Size M adopters 32.34 0.87 30.60 34.07
Innovator inflow p year−1 0.10 0.22 -0.40 0.61
Imitator inflow q year−1 1.97 0.62 -0.44 3.50

Source: own creation using Mathematica.

the imitator inflow have huge intervals.

Figure 5.7: The number of packages depending on xulrunner as a linearly
interpolated function over time.

2006 2007 2008 2009 2010 2011 2012

0

10

20

30

40

Source: own creation using Mathematica.

If one forgets the naive Bass fit from 5.6 and looks at the dependency growth
on itself as in figure 5.7 the cause is clear: the package becomes obsolete, which
the Bass model as presented in section 2.1.3 does not understand. The decline
of the package use start from approximately 2011 onwards, the blue dots in the
figure.

Excluding the blue dots, the decline from 2011 onwards, from the data re-
sults in the Bass model fit from figure 5.8. The fitness has increased from
R̄2 = 96.63% to R̄2 = 99.54% and the parameters have tighter and reasonable
confidence intervals. This is strong evidence that the initial adoption of the
package is Bass diffusion process. To explain the last part the model should be
extended with an obsolescence term. Graphs such as figure 5.7 could contain
clues on how such an extension should work.

56

Figure 5.8: Bass fit on the number of packages depending on the library
xulrunner. The Bass model can explain R̄2 = 99.53% of the variance in the
data.

2006 2007 2008 2009 2010 2011 2012 2013
0

10

20

30

40

Source: own creation using Mathematica.

Table 5.4: Results of fitting the Bass model to the total number of dependers
of xulrunner. Fitted using nonlinear least squares regression analysis. See
figure 5.8 for a plot of the data and fitted model.

(a) ANOVA Table

D.F. sum of squares mean square

Model 4 38, 962 9, 741
Error 50 170.00 3.400
Uncorrected total 54 39, 132
Corrected total 53 8, 124

Adjusted coefficient of determination R̄2 = 99.53%

Source: own creation using Mathematica.

(b) Parameter estimates

Parameter unit mean std. error 95%-interval

Start t0 year 2,006.40 0.20 2,005.99 2,006.78
Size M adopters 37.27 0.76 35.73 39.90
Innovator inflow p year−1 0.153 0.072 0.008 0.297
Imitator inflow q year−1 1.28 0.23 0.81 1.74

Source: own creation using Mathematica.

57

Chapter 6

Conclusions and discussions

In this chapter the results from the small empirical study will be reflected upon
and the consequences for the broader topics from this thesis will be discussed.
Specifically the viability of empirical research on open source software inno-
vation using dependency graph analysis will be discussed. This result is then
interpreted in the contexts of the intellectual property debate and innovation
research in general. Finally, suggestions are given for future studies.

6.1 Conclusions from the real-world data

The dataset is large and complicated. Despite the careful selection of the
dataset there was still some noise. The changes in the database format over
time caused some data to become unreadable, despite considerable attempts
to compensate for this. The issue with the package moves, virtual packages
and meta packages where at least partially resolved, but there are still issues
from package split-ups and, perhaps, mergers. In depth knowledge of both open
source software development and innovation research is required to resolve these
issues.

Nevertheless, vast databases containing valuable information on vast num-
bers of open source packages are publicly available. When specialised tools are
developed to extract only the relevant information, they are still so large that,
for example, cluster analysis is hard. The shear size of the datasets complicates
analysis, but once these hurdles are overcome the amount insights gained in
open source innovation dynamics is equally great.

Dependee graphs could be scale free. The distribution of the number
of dependees per packages appears linear in a log-log plot (see figure 5.2(b)).
This could indicate that the distribution is a power-law distribution, which in
turn would imply that the dependee graph is scale-free, like social networks.
This hypothesis was not rigorously tested, due to the unavailability of proper
statistical tests.

Dependee graph cluster analysis can reveal related technologies. Graph
cluster analysis proved difficult due to size of the dataset, but when it was ap-
plied to the KDE subset it did cluster related technologies.

58

Dependee growth is a Bass diffusion process. Overall the Bass diffusion
model gave very good fits with the empirical data. Using only four parameters
it was able to describe all the growth curves from the empirical data. Full
statistical rigour would require a more involved analysis using the methods
from, for example, Escanciano (2006), but given the amount of and quality of
evidence found so far the hypothesis could be considered confirmed.

Bass parameters p and q are difficult to interpret and compare. The
parameters are accurately measured, but the p and q values are difficult to in-
terpret. A high p does not automatically mean an innovator driven growth: if
the q value is also high then the result is simply a lot of growth. For the same
reason it is also difficult to compare the p and q between packages. Vijay Ma-
hajan (1995) suggests using q

p and q + p, this represents the total adoption rate

and an imitator/innovator ratio.

Dependee graph analysis provides new insights. The exploratory study
revealed two new insights in the innovation dynamics of open source software:
1) multimedia libraries are quickly adopted by innovators and 2) low-level ar-
chitectural changes happen slowly and by imitation. Further studies could test
these hypotheses.

The Bass model should be extended to include discarders. The Bass
model and the present analysis is formulated in terms of absolute number of
users, but in most applications only sales figures are available. The number of
sales is the first derivative of the Bass model, hence the model is usually applied
in its derivative form Vijay Mahajan (1995). As a consequence the model only
considers adopters, but does not consider discarders.

In the xulrunner example the package was being discarded from 2011 on-
wards, providing insights in the discarding mechanism. The next step would
be to collect more examples of packages being discard, look at their patterns
and develop a model of discarding to supplement the Bass model of adoption.
One model could for example be the inverse of a Bass curve, this makes sense
when the market share of the original package is taken over by a new package.
The unique feature of dependency graph analysis to give absolute user numbers
facilitates this.

6.2 Viability of dependency graph analysis

The scale and complexity of the dependency graphs and open source innovation
requires some care. Three notable issues became apparent in this thesis: 1)
In the open source community there is a lot of forking. It is not always clear
whether a forked project constitutes the continuation of the original project or
a separate new project. A more thorough study on the nature of forking could
provide the insights to resolve this. 2) Due to the public nature of open source
development many immature or abandoned projects are visible in the larger
datasets. This is good from a scientific perspective: it allows one to research
projects from their early beginning and look at projects that failed to grow
or became obsolete. But it clouds the ‘big picture’ with many projects that

59

do not significantly contribute to the overall innovation. In large datasets one
would have to devise a relevance metric to select the relevant metrics. Such
metrics could be the number of developers, the number users or the number of
dependees. 3) The shear scale of the available databases provided challenges to
process. Specialist tooling was required to transform the raw data into more
manageable formats.

Despite the scale and complexity a lot of information could be extracted
from the real-world data. Of the methods developed in chapter 3 only the
cluster analysis and the Bass diffusion model where tested, both successfully
delivered new insights in open source innovation dynamics. This suggests that
other methods, for example those based on the Henderson-Clark innovation
patterns might also reveal interesting new insights. The dependency graph
methods therefore seem a viable method of open source innovation research.

The dependency graph has an important limitation in that it does not show
the end users of projects. The dependency graph only shows how projects
are using each others technologies, not which technologies end users are using.
While the method provides insights in the adoption of a technology presented
as an independent package, such as a new media codec, it is less suitable to
measure the adoption of an end user application, such as a new web browser. In
the present study the projects analysed all have a sizable user base, due to the
choice of dataset. The distribution maintainers need to do considerable effort to
include and maintain a package in their database so they are unlikely to include
packages without a moderate user base.

6.3 Implications

Implications for the intellectual property debate The motivation for
this thesis is the intellectual property debate, particularly its consequences for
open source software. As has been shown in chapter 1 open source software
development provides an important source of innovation and strong intellectual
property legislation can harm this engine of innovation. Chapter 1 showed that
quantitative research to measure the effects of intellectual property legislation
hardly measures open source software innovation. To resolve the intellectual
property debate in the most scientific manner it is important to investigate the
innovation dynamics of open source software.

In this thesis new quantitative methods where presented to analyse the in-
novation dynamics in open source software. These methods can provide new
insights that could affect the intellectual property debate. Two examples: 1)
One could try to quantify the open source innovation and reason about the
potential effects of IP legislation. If it where demonstrated that the proposed
IP legislation harms open source innovation more than it helps non open source
development one could question the legislation’s value to society. 2) If it is
demonstrated that the open source method of innovation is more productive
than alternative methods then one could propose to stimulate (parts of) the
open source development method in different areas. (For example by recognis-
ing open source as charity for tax purposes.)

Implications for commercial software development A new method to
analyse open source innovation could also contribute to commercial software

60

development. It is tempting to pit open source versus commercial software
development and compare the two. And why not! By comparing the two best
pratises could be exchanged and both could benefit. One should however be
careful not to take this juxtaposition too far, because the borders are regularly
crossed, as can be seen from the examples in section 1.2.

In section 1.2 it becomes clear that both small and large commercial software
innovators use open source software in their innovations. This implies that open
source innovation has a some positive effect on commercial innovation, it would
be interesting to quantify this effect.

Implications for innovation research In this thesis it is shown that using
dependency graph analysis one can study grand-scale innovation dynamics in
open source software. It was found that the method allowed one to get abso-
lute user numbers instead of sales figures, which is unique within the field of
innovation research. This could provide the quantitative data to extend the
Bass model with discarding. The dependency graph analysis is also unique in
the shear amount and resolution of the data it provides, giving high statistical
significance with much less effort than questionnaires or cases studies would re-
quire. Suitable hypotheses about innovation could be easily tested using data
from the open source software community.

The implications for innovation research do not stop a what can be gained
from dependency graph analysis. The study by Dahlander and Wallin (2006)
used the mailing list of the Gnome developers to do social network analysis. In
open source most of the technology discussions take place in public channels
such as mailing lists, IRC chatrooms and fora. Usually these discussions are
archived and freely retrievable, providing a detailed and honest history on why
certain design decision where made. Another rich source are the public accessi-
ble management systems, these not only contain the complete source code for a
project, but they contain step-by-step information on how the source code of a
project developed over time and who was responsible for what part. Lastly, the
larger open source projects use issue tracking software similar to commercial
software developers, these systems are also publicly accessible. Issue trackers
contain structured information on problems and feature request and how they
are handled by the developers.

The research that can be done in open source software is unique in several
respects: It is community driven innovation on a global scale, in terms of innova-
tive output it is comparable to a whole industry of a large nation. Furthermore,
almost all the development happens in the open on the internet and is archived
with the archives being freely accessible. This allows research to use automated
tools, like the ones developed in this thesis, to analyse global structures and dy-
namics. But it is also possible to go in depth and read old email conversations
on why a particular strategic or engineering decision has been made.

In short: the open source software community contains a vast amount of
accessible information. It is the authors opinion that the field of innovation
research has only begun to scratch the surface of this resource.

61

6.4 Suggestions for future studies

Open source development contains a lot of project forking, a concept that is not
very common in other areas of innovation. The heavy use of forking provided
difficulties with defining the boundary between two developmental copies of the
same project, or two diverting projects. A more thorough study on the nature
of forking could provide the insights to resolve this.

The Ohloh dataset contains a lot of information on a huge amount of open
source projects. If this dataset where extended with dependency information it
would create a huge dataset to analyse, with even more information than the
package databases provide. Give the nature of the Ohloh project it is likely that
they are open to such initiatives.

A limitation of the dependency graph analysis was the unavailability of end
user statistics. Such statistics could be gathered by other means: Installing
a package happens by downloading the relevant files from a server. This is
usually not a server operated by distribution, they have limited resources and
can not afford the facilities. Therefore the distributions rely on volunteers to
host copies of those files for their user to download from, so called ‘mirrors’. It so
happens that the Student Net Twente of the University of Twente hosts popular
mirrors for several distributions, including Gentoo. They could collect download
statistics for the files, which can easily be traced back to the relevant packages.
Analysing these download statistics can reveal end user usage of packages.

In open source all the innovation happens publicly and is usually well archived
and accessible. With proper methods these huge amounts of information can
be tapped and new insights gained. Be creative!

62

Appendix A

Litterature

Faq on the opinion of the enlarged board of appeal, 2010. Available at http:

//www.epo.org/news-issues/issues/computers/eba/faq-opinion.html.

Paul J. Adams, Andrea Capiluppi, and Adriaan de Groot. Detecting agility of
open source projects through developer engagement, 2008.

Frank M. Bass. A new product growth for model consumer durables. Manage-
ment Science, 15(5):215–227, January 1969.

Bass’s Basement Research Institute (BBRI). The bass model homepage, 2010.
Available at http://www.frankmbass.org/BassModel/.

Knuth Blind, Jakob Edler, and Michael Friedewald. Software Patents – Eco-
nomic Impacts and Policy Implications. Edward Elgar Publishing, Ghel-
tenham, United Kingdom, 2005. ISBN 9781845424886.

Michele Boldrin and David K. Levine. Against Intellectual Monopoly.
Cambridge University Press, Cambridge, United Kingdom, 2008. ISBN
9780521879286. Also available at http://levine.sscnet.ucla.edu/

general/intellectual/againstfinal.htm.

James Boyle. The Public Domain – Enclosing the Commons of the Mind. Yale
University Press, New Haven, Connecticut, 2008. ISBN 9780300137408. Also
available at http://www.thepublicdomain.org/download/.

Changwoo Choi, Seungkyum Kim, and Yongtae Park. A patent-based cross
impact analysis for quantitative estimation of technological impact: The case
of information and communication technology. Technological Forecasting &
Social Change, 74:1296–1314, 2007.

Linus Dahlander and Martin W. Wallin. A man on the inside: Unlocking com-
munities as complementary assets. Research Policy, 35:1243–1259, 2006.

Fadi P. Deek and James A.M. McHugh. Open Source – Technology and Pol-
icy. Cambridge University Press, Cambridge, United Kingdom, 2008. ISBN
9780521707411.

63

http://www.epo.org/news-issues/issues/computers/eba/faq-opinion.html
http://www.epo.org/news-issues/issues/computers/eba/faq-opinion.html
http://www.frankmbass.org/BassModel/
http://levine.sscnet.ucla.edu/general/intellectual/againstfinal.htm
http://levine.sscnet.ucla.edu/general/intellectual/againstfinal.htm
http://www.thepublicdomain.org/download/

Koen Dittrich, Geert Duysters, and Ard-Pieter de Man. Strategic repositioning
by means of alliance networks: The case of ibm. Research Policy, 36:1496–
1511, 2007.

E.C. Engelsman and A.F.J. van Raan. A patent-based cartography of technol-
ogy. Research Policy, 23:1–26, 1994.

Convention on the Grant of European Patents (European Patent Convention,
EPC), 2000. EPO: European Patent Organisation. Available at http://www.
epo.org/patents/law/legal-texts/html/epc/2000/e/contents.html.

J. Carlos Escanciano. Goodness-of-fit tests for linear and nonlinear time series
models. Journal of the American Statistical Association, 101(474):531–541,
2006. doi: 10.1198/016214505000001050. URL http://www.tandfonline.

com/doi/abs/10.1198/016214505000001050.

Emmanuelle Fauchart and Eric von Hippel. Norms-based intellectual property
systems: The case of french chefs. Organization Science, 19(2):187–201, 2008.
doi: 10.1287/orsc.1070.0314.

Avery N. Goldstein. Patent Law for Scientists and Engineers. CRC Press, Boca
Raton, Florida, 2005. ISBN 9780824723835.

Jiang He and M. Hosein Fallah. Is inventor network structure a predictor of
cluster evolution? Technological Forecasting & Social Change, 76:91–106,
2009.

Rebecca M. Henderson and Kim B. Clark. Architectural innovation, the recon-
figuration of existing product technologies and the failure of established firms.
Administrative Science Quarterly, 35:9–30, March 1990.

Joachim Henkel and Eric von Hippel. Welfare implications of user innova-
tion. The Journal of Technology Transfer, 30(1):73–87, 2004. doi: 10.1007/
s10961-004-4359-6.

Sam Hovecar. Do what the fuck you want to public license, 2004. Available at
http://sam.zoy.org/wtfpl/.

Adam B. Jaffe and Josh Lerner. Innovation and Its Discontents – How our
broken patent system is endarngering innovation and progress and what to
do about it. Princeton University Press, Princeton, New Jersey, 2007. ISBN
9780691127941.

Poul-Henning Kamp. Beerware, am i really serious?, 2004. Available at http:

//people.freebsd.org/~phk/.

Karim R. Lakhani and Eric von Hippel. How open source software works:
”free” user-to-user assistance. Research Policy, 32(6):923–943, 2003. doi:
10.1016/S0048-7333(02)00095-1.

Hyojeong Lim and Yongtae Park. Identification of technological knowledge
intermediaries. Scientometrics, 84:543–561, 2010.

64

http://www.epo.org/patents/law/legal-texts/html/epc/2000/e/contents.html
http://www.epo.org/patents/law/legal-texts/html/epc/2000/e/contents.html
http://www.tandfonline.com/doi/abs/10.1198/016214505000001050
http://www.tandfonline.com/doi/abs/10.1198/016214505000001050
http://sam.zoy.org/wtfpl/
http://people.freebsd.org/~phk/
http://people.freebsd.org/~phk/

Katherine W. McCain, June M. Verner, Gregory W. Hislop, William Evanco,
and Vera Cole. The use of bibliometric and knowledge elicitation techniques to
map a knowledge domain: Software engineering in the 1990s. Scientometrics,
65(1):131–144, 2005.

Zouhäıer M’Chirgui. Dynamics of r&d networked relationships and mergers and
acquisitions in the smart card field. Research Policy, 38:1453–1467, 2009.

Vadake K. Narayanan. Managing Technology and Innovation for Competi-
tive Advantage. Prentice Hall, Englewood Cliffs, New Jersey, 2001. ISBN
9780130305060.

A Patent Technology Monitoring Team Report – Patent Counts By Class By
Year, 2010. PTMT: U.S. Patent and Trademark Office – Patent Technology
Monitoring Team. Available at http://www.uspto.gov/web/offices/ac/

ido/oeip/taf/cbcby.htm.

Joseph Alois Schumpeter. The Theory of Economic Development. Transac-
tion Publishers, New Brunswick, New Jersey, 2004. ISBN 9780878556984.
Translation of: Theorie der wirtschaftlichen Entwicklung (1934).

Daniel Scocco. Innovation zen: Henderson–clark model, August
2006. Available at http://innovationzen.com/blog/2006/08/11/

innovation-management-theory-part-3/.

Cosma Shalizi. So you think you have a power law — well isn’t that special?, July
2007. Available at http://cscs.umich.edu/~crshalizi/weblog/491.html
and http://bactra.org/weblog/491.html.

Kirk St.Amant and Brian Still. Handbook of Research on Open Source Soft-
ware – Technological, Economic and Social Perspectives. Information Science
Reference, London, United Kingdom, 2007. ISBN 9781591409991.

The Oslo Manual. The Measurement of Scientific and Technological Activities,
Guidelines for Collecting and Interpreting Innovation Data. Organisation for
Economic Co-operation and Development (OECD) and Statistical Office of
the European Communities (Eurostat), third edition, 2005. ISBN 9264013083.

D.W.F. Verkade, D.J.G. Visser, and L.D. Bruining. Ruimere octrooiëring van
computerprogramma’s: Technicality of revolutie? Technical Report 37, Na-
tionaal Programma Informatie Technologie en Recht (ITeR), The Hague,
Netherlands, 2000.

Frank M. Bass Vijay Mahajan, Eitan Muller. Diffusion of new products: Em-
perical generalizations and manegerial uses. Marketing Science, 14:G79–G88,
1995.

Rajendra K. Srivastava Vijay Mahajan, Eitan Muller. Determination of adopter
categories by using innovation diffusion models. Journal of Marketing Re-
search, 27:37–50, February 1990.

Eric von Hippel and George von Krogh. Open source software and the ’private-
collective’ innovation model: Issues for organization science. Organization
Science, 14(2):209–223, 2003.

65

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/cbcby.htm
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/cbcby.htm
http://innovationzen.com/blog/2006/08/11/innovation-management-theory-part-3/
http://innovationzen.com/blog/2006/08/11/innovation-management-theory-part-3/
http://cscs.umich.edu/~crshalizi/weblog/491.html
http://bactra.org/weblog/491.html

	Open source software
	The open source licenses
	Commercial involvement in open source
	Opens source development
	The intellectual property debates
	The software patent debate
	The open source blind spot

	Litterature search on network analysis in software development

	Theoretical background
	Theory of innovation dynamics
	What is innovation?
	The Henderson-Clark classification
	The Bass diffusion model

	Dependency graph analysis
	Dependees are adopters
	Henderson-Clark patterns

	Gathering real-world data
	Qualities of a dataset
	Sources of data
	Project hosts
	Data from project directories
	Data from distribution package databases
	Conclusion

	Processing the Gentoo Portage dataset
	Collecting the raw ebuilds
	Parsing the ebuilds
	Producing the dependency graph
	Processing the graph

	Analysing the real-world data
	Exploring the last snapshot
	Fitting the Bass innovation diffusion model
	Example of imitator driver growth
	Example of innovator driver growth
	Other examples
	Example of growth and demise

	Conclusions and discussions
	Conclusions from the real-world data
	Viability of dependency graph analysis
	Implications
	Suggestions for future studies

	Litterature

