
SeDyA: Secure Dynamic Aggregation in VANETs

Rens W. van der Heijden
University of Twente

r.w.vanderheijden@alumnus.utwente.nl

August 10, 2012

Abstract

In Vehicular Ad-hoc Networks (VANETs), the ultimate goal is to let vehicles communicate by exchanging
messages through wireless networks to provide safety, traffic efficiency and entertainment applications. Ag-
gregation of information in these messages contributes to this goal by reducing the bandwidth requirements
that prevent applications from disseminating messages over a large area. Aggregation will allow applications
to exchange high quality summaries of the current status in a specific region, rather than forwarding all
individual status messages from this region, increasing the available information for all vehicles.

Most existing work on aggregation in VANETs has neglected to consider security, not providing any
guarantees on the data that is collected. Security for aggregates is important because they may be used
by other cars for decisions about routing, as well as traffic statistics that may be used in political decisions
concerning road safety and availability. The most important challenge for security is that aggregation
removes redundancy and the option to directly verify signatures on messages, because multiple messages are
merged into one. The few works that discuss secure aggregation are limited because they require roads to
be segmented into small regions, beyond which aggregation cannot be performed. The main contribution
of this thesis is the introduction of SeDyA, a scheme that allows more dynamic aggregation compared to
existing work, while also providing stronger security guarantees for the receiving vehicles.

Acknowledgements

The author thanks Stefan Dietzel and Prof. Frank Kargl for their invaluable guidance and discussions over
the course of the thesis. In addition, the author wishes to thank Michael Feiri for his assistance with code
development and interesting discussions. The committee members, Prof. Frank Kargl, Prof. Geert Heijink,
Dr. Jonathan Petit, and Stefan Dietzel, are thanked for making time in their busy schedules to review this
thesis. Finally, the author would like to thank the members of the Distributed and Embedded Security group
in the University of Twente and of the Institut für Verteilte Systeme in Ulm University for their hospitality
and the office space where most of this thesis was written.

2

Contents

1 Introduction 5

2 Problem Statement 9
2.1 Models . 9

2.1.1 Network model . 9
2.1.2 Attacker model . 10

2.2 VANET Aggregation Overview . 12
2.2.1 Motivation and challenges of VANET aggregation . 12
2.2.2 General VANET aggregation model . 13
2.2.3 Security . 14

2.3 Requirements . 15
2.3.1 Data utility requirements . 15
2.3.2 Feasability requirements . 16
2.3.3 Security requirements . 16

3 Related Work 17
3.1 Probabilistic Counting . 17

3.1.1 FM sketches . 17
3.1.2 LC sketches . 18
3.1.3 z-smallest . 19

3.2 Cryptographic Signatures . 19
3.3 VANET Aggregation . 20
3.4 Current Secure Aggregation . 21

3.4.1 AM-FM sketches . 22
3.4.2 SAS . 24
3.4.3 Threshold-based event validation . 25

4 SeDyA: overview 27
4.1 Overview . 27
4.2 Phase 1: Aggregation Phase . 29

4.2.1 Dynamic aggregation area . 30
4.2.2 Accuracy . 31
4.2.3 Overhead . 33
4.2.4 Discussion and conclusion . 35
4.2.5 SeDyA’s solutions . 36

4.3 Phase 2: Finalization Phase . 36
4.3.1 Finalization . 37
4.3.2 Signature collection protocol . 38
4.3.3 SeDyA’s solutions . 40

4.4 Phase 3: Dissemination Phase . 40

3

4.4.1 Confidence . 41
4.4.2 Attack detection . 41
4.4.3 Further aggregation and its challenges . 42
4.4.4 SeDyA’s solutions . 42

4.5 Summary . 43

5 SeDyA: implementation 45
5.1 Cryptographic Background . 45

5.1.1 Elliptic Curve Cryptography . 45
5.1.2 Pairing-based Cryptography & Identity Based Encryption 47
5.1.3 Multisignatures and IBS . 48
5.1.4 Aggregate signatures and IBS . 49
5.1.5 Computational cost . 49

5.2 Phase 1: Aggregation Phase . 49
5.2.1 Signatures . 50
5.2.2 Overhead . 50
5.2.3 Privacy . 51

5.3 Phase 2: Finalization Phase . 51
5.3.1 Signatures . 51
5.3.2 Overhead . 52
5.3.3 Privacy . 52
5.3.4 CA problems . 52

5.4 Summary . 53

6 Evaluation 55
6.1 Motivation . 55

6.1.1 Accuracy . 55
6.1.2 Feasibility . 56
6.1.3 Security . 56

6.2 JiST/SWANS . 57
6.2.1 Implementation of SeDyA . 58
6.2.2 Simulation parameters . 58

6.3 Optimizing SeDyA . 58
6.3.1 Configuration and parameters . 60
6.3.2 Results . 60

6.4 Simulation Results . 63
6.4.1 Accuracy . 63
6.4.2 Feasibility . 64
6.4.3 Security . 65

6.5 Summary . 69

7 Conclusion 71

4

Chapter 1

Introduction

In recent years, much work has been performed by industry and academia alike to develop Vehicular Ad-hoc
Networks (VANETs) to improve safety on the road, as well as introducing information and entertainment
applications. A VANET is created by equipping vehicles with an on-board unit (OBU) that is capable of
wireless communication, typically using IEEE 802.11p, developed specifically for VANETs. In addition to
communication between OBUs, some VANET research envisions the availability of road-side units (RSUs),
although in the early phases of VANETs these are expected to be sporadic. RSUs will also use IEEE
802.11p, but will typically also be connected to a back end, and will provide access to the Internet, contact
with certificate authorities and the possibility to distribute updates for applications. The greatest challenges
of VANETs compared to other types of Ad-hoc Networks include the highly dynamic network conditions,
bandwidth constraints and the large amount of vehicles.

For VANETs, security is of essential importance, as attacks on these networks can easily lead to safety
risks, in addition to typical security concerns. This gives rise to some types of VANET-specific attacks,
including dissemination of false information, large scale privacy violation through tracking and position
spoofing. Aside from these attacks, VANETs also pose an additional challenge to security research through
its bandwidth and time constraints, requiring novel ideas to provide small signatures, small certificates and
efficient signature verification.

Currently, the first VANET protocols are undergoing standardization, including security mechanisms to
protect them. The first deployments in real world scenarios are forseen in 5 to 8 years. One of the first of these
protocols, for which standardization is nearing completion, is the periodic beaconing service. This protocol
defines the basis for many other protocols, as it requires every vehicle to periodically transmit a beacon
message to announce its presence, typically with a frequency of 10 Hz. Beacons are strictly single-hop, but
will enable many essential safety applications, including brake warnings, collision avoidance and cooperative
adaptive cruise control [9,16]. The integrity of the beacon messages, as well as other messages transmitted by
the network, will be protected by cryptographic signatures. For these signatures, it is commonly assumed that
a public key infrastructure (PKI) specifically designed for VANETs will exist. Since these beacon messages
typically include location and speed information, VANETs also raise privacy concerns, especially when one
considers a typical X.509-style PKI, where a public key is linked to a person or device. To address this issue,
but still satisfy the integrity requirements, pseudonym schemes have been proposed, which in essence provide
a vehicle with multiple identities (and thus multiple keys) to use. However, for some applications, such as
cooperative adaptive cruise control, it is necessary to link sequences of messages from the same vehicle, to
estimate its trajectory. The exchange between different identities and the trade-off between the provided
privacy, security and functionality is an active area of research [10,22].

Some applications, like Internet access and traffic management, require communication beyond the single-
hop range that beaconing messages provide. For this purpose, multi-hop communication may be introduced,
although it is subject to considerable drawbacks in terms of overhead and message loss due to the dynamic
environment. Multi-hop communication may be used to communicate with RSUs, between vehicles, but
also to disseminate important information to a specified region. The latter is referred to as geocast, which

5

allows a single vehicle (or RSU) to transmit messages to a particular region. However, note that in many
applications, it is not the information about individual vehicles that is interesting, but instead the situation
aggregated over a particular area of the road. Considering the strict bandwidth constraints of VANETs,
it is very ineffective to define a scheme where many vehicles disseminate their information to a larger area
using geocast techniques. For this reason, recent work has introduced many different applications that apply
aggregation in some form. Aggregation allows to compress relevant information about many vehicles in a
single message, rather than disseminating all these messages. Due to the ad-hoc nature of VANETs, it is an
ideal setting to apply in-network aggregation to perform aggregation in a distributed fashion. Contrary to
more traditional approaches, as those employed in sensor networks, the relevant aggregation schemes cannot
rely on network structure or a central receiving node. An additional advantage is that not forwarding the
individual messages provides slightly more privacy, since messages containing the vehicle’s pseudonym are
no longer disseminated over a long range, and the information is more restricted.

However, it has been shown [13] that security mechanisms used for normal messages are insufficient for
aggregation mechanisms, and that the impact of a successful attack on an aggregate message may have much
more impact due to the fact that aggregation tries to compress data into one message as much as possible.
Thus, while conserving bandwidth, aggregation without security provides an excellent surface for attacks: the
impact of an attack on a single message increases. In addition, aggregation reduces the amount of redundant
information in the network, thereby reducing the amount of messages that have to be forged or modified
by the attacker. In essence, for aggregation to be secure means that every step in the aggregation process
must be protected against tampering by attackers. Compared to normal message integrity, aggregation adds
an extra challenge here: after several messages have been aggregated, it should be possible to verify that
the aggregation process has been performed correctly. Intuitively, proving that a number of messages from
distinct vehicles were used in the computation of an aggregate is difficult. Simple solutions like including
all signatures of each vehicle are prohibitive in terms of overhead and do not allow for flexibility during
aggregation.

In previous work, several solutions have been proposed to provide secure aggregation in VANETs [20,24,
25]. These solutions each consider the aspects of aggregation and security at the same time; by intertwining
both aspects, it is possible to conserve resources at the cost of a less general solution. Compared to previous
work on VANET aggregation that does not consider security [11,29,33,49,50], these schemes are limited in
the quality of the information they provide. This is in part because the schemes that do not consider security
are not bound to fixed information that is known before the aggregation procedure begins, unlike the secure
aggregation schemes. On the other hand, the secure schemes are bound to fixed information, due to the
fact that signatures are still used to guarantee that aggregates are merged correctly, and signatures require
fixed information to remain verifiable. In addition to signatures, each of the discussed schemes employs a
probabilistic counting mechanism for the aggregation process; FM sketches in [20,24] and z-smallest in [25].
These probabilistic counting algorithms simplify the counting of distinct elements in a distributed fashion
through the use of hash functions, thereby providing duplicate insensitivity, a property due to which they
are also used in some VANET aggregation mechanisms that do not consider security. However, due to their
probabilistic nature, probabilistic counting algorithms like FM sketches also have a negative effect on data
quality.

Based on this work, the following research questions have been put forward, which guided the development
of a new scheme:

1. How can we provide data integrity and consistency for in-network aggregation in VANETs?
2. Which guarantees and how much confidence can we gain by using cryptography for data integrity and

consistency in VANET aggregation?
3. How can we compare different secure aggregation schemes in terms of accuracy, privacy and security

guarantees?
4. How can we ensure that aggregation schemes can scale to a sufficiently large area without loosing too

much accuracy?
5. Can we obtain a better trade-off between security and privacy than the current state of the art in

VANET aggregation?

6

This thesis will introduce a new secure VANET aggregation scheme called secure dynamic aggregation
(SeDyA), which will build on elements from the current state of the art to provide stronger security guar-
antees. The contribution of this new scheme is twofold. First, it provides a dynamic definition of the
aggregation area by employing probabilistic counting techniques, allowing aggregates to be defined over a
large area, reducing the amount of messages required to disseminate the relevant information troughout
the network. Second, the scheme aims to provide stronger security guarantees in an efficient manner, by
employing novel cryptographic primitives. Compared to related work, it will allow the weakening of several
unrealistic1 assumptions while still providing better security. In addition, SeDyA can provide additional
input for trust and consistency mechanisms that verify messages based on content rather than cryptographic
validity.

To validate the scheme, this thesis will present extensive simulation results to show that the scheme
improves on the state of the art, as well as experiments to motivate several design choices in the scheme.
Simulations will be performed using an implementation of SeDyA in the Java-based simulator JiST/SWANS,
a state of the art discrete event simulator [3]. The main criteria for analysis are accuracy, feasability, and
security.

The master thesis is structured as follows. Chapter 2 will discuss the various issues involved in VANETs,
VANET aggregation and their security in detail, followed by a discussion of important related work in Chapter
3. Then, SeDyA will be introduced in two chapters, discussing first the high-level goals and solutions in
Chapter 4 and then important details and cryptographic background in Chapter 5. Finally, SeDyA will be
evaluated with simulations in Chapter 6 and the master thesis will be concluded in Chapter 7.

1It should be noted that not all related work was originally developed for VANETs. The assumptions hold in their respective
domains, but not in VANETs.

7

8

Chapter 2

Problem Statement

This chapter provides an overview of the issues that the scheme from Chapter 4 aims to solve, as well as a
discussion of the assumptions on network conditions and the attacker model. Section 2.1 discusses the latter,
while Section 2.2 provides a high level overview of the challenges involved. The assumptions in this chapter
are similar to those of related work, which is discussed in Chapter 3; the differences are discussed. Finally,
Section 2.3 will conclude with some requirements for VANET aggregation.

2.1 Models

This thesis will use assumptions similar to those in the state of the art; these assumptions are made explicit
in this section. The differences with a assumptions in related work are discussed and motivated. Specifically,
some of the assumptions can be considered unrealistic and are thus adapted to a more general setting for this
thesis. Finally, note that different requirements and use cases for aggregation exist; the aggregation model
will make explicit what is assumed for this thesis. However, first the network and attacker models will be
discussed, first in a general VANET setting and then indicating the specific challenging for aggregation.

2.1.1 Network model

Current literature assumes a VANET will have a typical communication range of about 300 meters [42],
with up to 1000 meters under optimal conditions [1]. It should be possible for the VANET to improve safety
and provide services even when relatively few vehicles are equipped with wireless technology, as this will
facilitate introduction of VANETs into the real world [23]. The network is very dynamic; most communication
is expected to occur over single-hop broadcast, as there is no guarantee that sequences of more than one
message can be exchanged between two vehicles. For this reason, clustering and other schemes that require
knowledge of the network topology, as is common in sensor networks, are typically avoided, although sensor
networks are an important source of inspiration for many VANET protocols.

There are several existing ways to dissiminate information in VANETs, each more appropriate for cer-
tain types of applications [40]; the most important three are beaconing, geobroadcast and (in-network)
aggregation.

Beaconing uses a periodic single-hop link-layer broadcast message to inform other vehicles of the status of
the transmitting vehicle and typically contains at least location, heading, speed and time. Beaconing is used
for applications like cooperative awareness, but also for packet routing and many other applications that
require knowledge of the vehicles’ immediate surroundings.

Geobroadcast (also known as geocast) is used to forward a particular packet over multiple hops to all
vehicles in a specific destination area. Note that unlike regular unicast packets, the destination is an area
instead of a vehicle. Applications that use geobroadcast typically include those that notify vehicles of an
event, like a post-collision notification or a road condition notification.

9

Aggregation provides information about larger areas of interest or over larger periods of time, such as a
stretch of road between two exits on a highway in the past ten minutes. This traffic pattern is a series of
messages which have information over a certain area with increasing accuracy. By aggregating the informa-
tion into very few messages, the state of an entire stretch of road can be described in one packet, rather
than by the beacons of all vehicles on this stretch of road. Aggregation is used to collect traffic statistics,
detect traffic jams and count free parking spaces. For aggregation to work, it is required that duplicates can
be avoided and that the order in which the data is processed is irrelevant to the result. Here, duplicates are
defined strictly as processing exactly the same message twice.

The network typically contains on-board units (OBUs), integrated in vehicles and connected to its sensors,
and some areas there will be road-side units (RSUs), which allow connectivity to a back end. There is a
PKI that provides the OBU with key material, or information to compute valid key material, including a
number of pseudonyms and system parameters. Key material is typically loaded onto the OBU through
some off-line channel, or possibly through a user’s home network. Future deployment of VANETs will most
likely involve the deployment of RSUs, to provide additional services such as Internet connectivity, tolling
applications or as a simple means of collecting network and traffic statistics. However, the cost to deploy
RSUs is prohibitive, especially in the initial stages of VANET deployment, when the penentration rate is low
and there is thus little benefit. Larger numbers of RSUs are expected to be deployed only after this initial
stage, and only in a limited part of the road network, so a general application should be able to operate
without access to infrastructure. However, it is reasonable to assume low-bandwidth, low frequency and high
latency contact with some back end (or the Internet), even when RSUs are never deployed, since this can
also be achieved through an existing mobile phone network. Finally, high-bandwidth low frequency contact
may be possible when the car is at home or under maintainance. A more detailed discussion of deployment
possibilities and the PKI can be found in [1, 9, 42].

To preserve the privacy of drivers against corporate tracking, as well as large scale tracking by gov-
ernments, VANETs will employ the use of pseudonyms, typically generated by a certificate authority.
Pseudonyms are alternative identities that are used as the identity in a certificate, of which a vehicle re-
cieves multiple, along with the associated private key. The mechanism is similar to a fairly recent RFC
on Traceable Anonymous Certificates1, although the issuance process for pseudonyms is usually different.
Pseudonyms protect the privacy by making the different certificates unlinkable, and allowing a vehicle to
change the certificate it uses. In most proposals, it is possible for certificate authorities to resolve conflicts2

by revoking pseudonymity of a user, when ordered to do so by a court. The goal of pseudonyms is not to
provide perfect anonymity, but to provide the same level of protection as when VANETs are not used. This
means that typical tracking of individual vehicles, for example by driving behind them, is not something that
VANETs need to protect against. To achieve the required level of privacy, pseudonyms should switch in a
controlled fashion, such that the vehicles cannot be linked after the switch. This may seem counter-intuitive,
but without additional protection it is easy to link two pseudonyms after a switch, if there is no transition,
by simply matching the locations contained in different beacons [22,23].

2.1.2 Attacker model

Most of the attacker model for VANETs is the same as for regular Internet services and wireless networks
(ie. Dolev-Yao attacker model [14]), where the attacker carries the message. This type of atttacker model
includes passive attacks like wiretapping and active attacks like replay, modification, injection or dropping
of packets. For some situations, the Dolev-Yao model is too strong and is weakened by adding an honest
majority assumption. On the other hand, the attacker may obtain arbitrary certified keys (up to half the
total nodes if an honest majority is assumed), because such keys may be obtained from a vehicle directly,
or from after-market devices. However, even when an honest majority exists, note that in the interest of
privacy, it may be possible to obtain multiple identities (pseudonyms) for a single device [37], enabling the
attacker to break certain majority-based schemes that do not protect against this type of attack. Most

1RFC 5636, Traceable Anonymous Certificate (2009), which has experimental status; see http://tools.ietf.org/html/

rfc5636.
2The question of which conflicts is an interesting legal question, but is considered out of scope for this thesis.

10

http://tools.ietf.org/html/rfc5636
http://tools.ietf.org/html/rfc5636

papers therefore consider a simple constraint to exclude this type of attack, which may be either a short
limit on certificate lifetime or another mechanism.

Because VANETs focus mainly on integrity and availability, passive attackers will be composed mostly
of academic researchers and governments or corporations looking to obtain personal data by attacking
pseudonym schemes. Confidentiality is not as strong a requirement as in normal networks, because as noted
in the network model, most traffic patterns will concern public data. Providing confidentiality for such data
does not make sense, especially because the attacker could simply purchase a vehicle and listen to the network,
trivially bypassing any attempt at providing confidentiality against outsiders. Potential application-specific
confidential data, such as fresh pseudonyms for a vehicle, can always be transmitted using a more general
higher-layer security protocol like (D)TLS3.

Active attackers can inject, replay, modify or drop packets and have the option to jam their transmission
range for denial of service (DoS) attacks or to prevent messages from arriving. In addition, it is easy for the
attacker to obtain legitimate access to the network, as the only necessary resources are valid key material
and proper communication equipment, both of which will be available to anyone. It is expected that most
attackers will be active, although they will vary greatly in strength. Their goals will vary from common
attacks, like users making some extra space for themselves on the road, to extremely rare attacks, like
activists that want to block a road network4 or terrorists that attempt to cause chain-accidents.

The main challenge of active attackers in this model is that they may be legitimate participants for a long
time before they attempt an attack. In aggregation, this challenge is even greater, because the location to
which the information applies may not be directly verifiable by the receiver. Thus, active attackers may be
able to manipulate the receivers’ view of the world by injecting false messages that are indistinguishable from
legitmate messages. In addition, there is always a risk of a software bug or damaged sensor that may cause
incorrect data to be sent. This data is called faulty data, distinguishing it from attacks, whose injections are
refered to as malicious data [38]. Thus, even in a best case scenario, a purely cryptographic solution would
only be able to identify incorrectly signed or modified messages; a signature provides authenticity, but not
necessarily validity. However, it is possible to compare a message with other messages, such as those with
similar time and location, exploiting redundancy to check the consistency of messages from different senders.
Since aggregation involves the compression of data in a lossy manner, as well as reducing redundancy, there
are additional risks involved, leading to several new types of attacks even when the messages are protected
against attacks in the preceding model. These new types of attacks are sybil attacks, inflation and deflation
attacks and, specifically for VANETs, the remote impersonation attack.

Sybil attacks are an inherent challenge for a system that relies on majority decisions as well as providing
pseudonymity; if an attacker can obtain several identities to protect her privacy, she can also use them
to artificially represent multiple nodes. Sybil attacks are a difficult problem in general [5, 10, 15], but for
VANETs the additional challenge is that no single party must be able to revoke the pseudonymity of any
legitimate user. Recently, schemes have been developed to detect sybil attacks in VANETs through trajectory
verification [10] and plausibility checking [5]. However, these solutions rely on RSUs and proximity to the
attacker, respectively. For Footprint [10], the focus lies on urban scenarios, where RSUs are likely to be
deployed in sufficient quantity. The VANET aggregation scenario adds the challenge of doing this detection
remotely and with minimal interaction with RSUs. Unlike assumed by Footprint, VANET aggregation will
also occur on highway scenarios. Detecting sybil attacks will play a role in any efficient and secure aggregation
mechanism. One way to do this is to get rid of pseudonyms; however, this would mean that identities are
bound to a node, removing the desired privacy. As noted previously, an alternative is to use a maximum
lifetime, enforced by either an issuance mechanism or simply a tight bound on the certificate lifetime.

In- and deflation attacks specifically aim at influencing the value of an aggregate. This can also be
achieved by employing sybil attacks; however, the term in- and deflation attacks is used for attacks that attack
the aggregation mechanism, either by modifying their own observation or by generating false aggregates [20].
Some countermeasures exist against this type of attack; schemes that include cryptographic countermeasures,

3DTLS stands for Datagram TLS; it is basically TLS-like security for UDP connections, which may be more prevalent in
VANETs, although this is speculation.

4Here, road network refers to a large number of roads that could not be blocked using simple objects.

11

such as [20,24], will be reviewed in Section 3.4. Additional countermeasures include other techniques such as
plausibility checks [12]: these are considered out of scope as they can be used as complementary mechanisms.
Remote impersonation attack is the attack type that is used to influence the knowledge of a target
node or group of nodes about a particular area of interest. The attack can be performed from any location,
typically outside the aggregation area, as opposed to sybil and in- and deflation attacks. Countrary to
these other attacks, remote impersionation attacks do not have the attacker as a legitimate participant.
Two elements are essential to a remote impersonation attack; first, the attacker must be able to inject an
aggregate, and second, the attacker must artificially specify the aggegation area. This is different from
modifying a geocast message transmitted from the aggregation area to the target; the attacker may be at a
completely different location sending a similar message.

2.2 VANET Aggregation Overview

Aggregation in VANETs can be seen as an instance of distributed aggregation, with a number of phases
that illustrate different steps in the aggregation process. Typically distributed aggregation is considered to
have one or very few sink nodes. Sink nodes are interested in certain information and generate queries to
which the network responds by aggregating in a specific way, as declared in the query (using a language like
SQL) [20, 32, 39]. Each node aggregates the data it receives and forwards it to the sink node, until all the
data is aggregated and at the sink node.

However, in the VANET model this is somewhat different: first, most nodes (vehicles) are interested in
the result of the aggregation process, instead of just the sink node(s). Second, there is no sink node or set
of sink nodes that generate the queries that are to be answered by the network. The first problem could be
partially solved by employing a dissemination scheme after first performing aggregation to some sink nodes.
However, this does not address the problem of generating queries, nor does it address the problem for a
node to determine whether they have a complete aggregate that should be disseminated. Another approach
is employing in-network aggregation, a process where the network nodes themselves perform aggregation on
the messages they receive as they forward them. In-network aggregation is more fuzzy, meaning here that it
is harder to ensure that every node participates correctly, but it is more efficient than applying dissemination
back nto the network after aggregation has been performed. While in-network aggregation does not solve
the lack of sink nodes by definition, it allows for a much simpler solution than ad-hoc selection of sink nodes;
the queries may simply be embedded in the machine code of the application. If this solution is used with the
other approach, then nodes must still somehow detect that they are a sink node and initiate dissemination.

The issue of generating queries poses a risk of denial of service attacks; allowing arbitrary vehicles to
specify arbitrary queries to which other vehicles respond is a recipe for disaster. When these queries are
defined within the application, it may be challenging to update them, thus bounding the amount of possible
queries. Finally, it is also important to be able to separate the same query for different sections of road or
time span. One common solution to this is to use a fixed piece of information related to the aggregate, such
as a fixed aggregation area, as the query identifier, allowing to distinguish similar queries. However, this is
undesirable from the perspective of application users and developers, as the solution limits the flexibility of
the application because it can not dynamically expand the aggregation area [12,13]. In this work, a scheme
to define an aggregation area in a more dynamic fashion, while still retaining the useful property of a unique
query identifier, will be introduced.

The theoretical background behind aggregation and its application to sensor networks will be discussed
in Section 2.2.2, while secure aggregation in VANETs will be the topic of Section 3.4. The remainder of this
section will first motivate the use of aggregation in VANETs, then discuss some aggregation requirements,
propose a general VANET aggregation model and finally discuss the additional attack types, introduced in
Section 2.1.2, that play a role in VANET aggregation.

2.2.1 Motivation and challenges of VANET aggregation

To see the usefulness of VANET aggregation from the perspective of a vehicle, consider the resolution and
quality of information sources at different distances, as shown in Figure 2.1. This figure shows a highway

12

Beaconing

3000 15.000 100.000

Aggregation Geocast Car radio

meters

Figure 2.1: Different data sources with update frequencies at different ranges.

scenario and data sources that are currently available; each data source provides information from different
locations, as shown on the x-axis. Color estimates the frequency and quality of the information, from high-
frequency beaconing (Green) to low frequency radio broadcasts (Red). Newly introduced are the aggregation
and geobroadcast areas, which provide medium-accuracy information over a relatively large area. Some
aggregation only makes sense when performed over a limited area. For example, average speed or traffic
density may be significantly different over a very long stretch of road; aggregating over an area that is too
large may cause a traffic jam to be missed. Thus, between the aggregation area and the very low frequency of
traffic information, the vehicle may obtain data that is forwarded, but no longer aggregated. Such forwarding
should occur to some distance from the area to interested vehicles, which are headed for the area (eg. a
traffic jam); the geobroadcast communication pattern is useful for such purposes [40].

In an urban scenario, traffic jams may be harder to detect because of traffic lights; it is difficult to define
whether a traffic jam is occuring. However, for an urban scenario the example application of counting parking
spaces is interesting. For this application, a figure similar to Figure 2.1 can be drawn, using a circle instead
of a straight road and different ranges. Note that speed or density information, rather than traffic jam
detection, may still be useful in an urban setting; for example, one could use this information to build traffic
models and tune traffic lights for optimal throughput. However, the end-user application is out-of-scope for
thesis; it focusses instead on the aggregation process and its security. The speed and traffic jam application
will be used as a means to analyze schemes, as it is the most commonly mentioned application.

2.2.2 General VANET aggregation model

This section will provide an overview of how aggregation in VANETs occurs, providing a reference model on
which different attacks can be explained. In previous work, Dietzel et al. [12, 13] showed how aggregation
can be seen as a continuous process that stores the observations and received messages of a vehicle in a
world model. The vehicle then selects interesting data for aggregation, places the aggregates in the model
and forwards information to other vehicles.

For the communication between different vehicles, the model is shown in Figure 2.2. It consists of four
roles, roughly representing the lifetime of an aggregate; observation, aggregation, finalization and forwarding.
Each vehicle can perform one or more role; each role is seperate in the figure for clarity. The roles are split in
two groups; an aggregation and a dissemination phase. The distinction between these phases is not explicit
in current work, but it will be made explicit to use it in the new scheme that this thesis introduces. In the
observation role (O), each vehicle obtains information from its own observations and broadcasts them to
other vehicles in range. In the aggregation role (A), a vehicle combines received observations and aggregates,
plus its own observations, to create one or more aggregates, which are broadcasted. At some point, a vehicle
will decide the aggregate is complete (for example, when the average of speed observations stabalizes), creates
a finalized message and forwards it (Fin), marking the end of the aggregation phase. This decision can be
either a fixed threshold, or it could be based on the deviation of the aggregate from the observations of
the vehicle that decides. In addition, note that finalization of a message can be represented either by a
flipped bit in the message, or a more elaborate approach involving cryptographic signatures. Finally, in
the forwarding phase (Fwd) this message is simply used and/or forwarded to interested vehicles; this is the
dissemination phase. In the aggregation model for this thesis, which is motivated by a security background,
it is not possible to ‘de-finalize’ the aggregate in order to further aggregate certain messages.

Note that in some schemes, the aggregation model will remain in the aggregation phase indefinitely,

13

Fin Fwd

O

A

O

O

O

A

O

O

Aggregation Phase Dissemination Phase

A

Fwd Fwd

Figure 2.2: This figure shows the different roles that vehicles can have in VANET aggregation.

because they do not maintain a bound on the aggregation dimensions (ie. area and time), so no finalization
will occur. These schemes are inherently vulnurable to attacks that make the aggregation area so large that
the aggregate is no longer useful5. Another possibility is that the aggregate simply reaches an area where
no new aggregation steps will be performed; the dissemination phase is entered implicitly.

In addition to these phases of aggregation, a core concept is that of order and duplicate insensitivity.
This means that an aggregation process should give the same final result regardless of the order of processing
and regardless of any duplicates that may be encountered during processing. Duplicates are here defined
as distinct readings from different nodes6. An illustrative example would be determining the set of all
nodes in some area: sets may only contain each node once ({A} ∪ {A} ≡ {A}), and are insensitive to
order ({A,B} ≡ {B,A}). This concept is inherently required for in-network aggregation; without duplicate
insensitivity, either the aggregate will be subject to variation based on the paths in the network, or these paths
must be fixed in some way to ensure exactly one copy of each reading is used in the overall aggregate. These
solutions are commonly applied in sensor networks, but recall that for VANETs, neither of these solutions are
satisfactory due to the network model. Therefore the authors of [34] have introduced a property called ODI-
correctness, which will guarantee correctness of an aggregate produced by such an aggregation mechanism.
Given that an aggregation method is ODI-correct, it can be applied in arbitrary network configurations, as
long as it is suitable for the aggregation method and the data. Common examples of ODI-correct aggregation
methods are summation and counting.

Fundementally, aggregation is limited in the information it can transfer; if one represents the aggregation
area as a circle, then (in two-dimensional space, over which most applications aggregate) the message size7

of the aggregate must not grow faster than 1/d2 [39]. For aggregation mechanisms, this growth speed is the
optimal case, retaining as much information as possible without growing out of bounds to cause a broadcast
storm. For additional security overhead, however, it is desireable to be as small as possible, while still
providing confidence in the legitimacy of the message. If the size of the security overhead depends on the
size of the aggregate, then there may be cases where security overhead would cause the scalability of a good
aggregation scheme to be insufficient.

2.2.3 Security

Given the general VANET aggregation model, the attacks on aggregation discussed in Section 2.1.2 can now
be distinguished using the model to identify the key areas where a secure VANET aggregation scheme should

5Although there may be solutions that mitigate this problem, such as secure positioning.
6Formally speaking, a duplicate occurs when an individual observation value has the same 〈time, ID, area〉, but in some

cases this definition may be too wide. For example, if a node has a single sensor and two network cards, it may have two
identities, but clearly two readings should be considered duplicates. Similarly, it makes sense intuitively to consider time and
area in a fuzzier sense, limiting them to some granularity rather than exact values. Another issue would occur when two distinct
values have the same tuple. These issues are not considered in this work; it is assumed that the tuple uniquely identifies the
observation.

7This is for the entire message, including metadata and security overhead (if any).

14

employ a defense.

Consider the general aggregation model in Figure 2.2; each of the marked node types can be an attacker
performing various attacks on the aggregation scheme. In this paragraph, it is assumed that normal messages
in a VANET are protected against any modification, replay or injection, as achieved by current VANET
security mechanisms [1]. Given that O is an attacker, she can attack the aggregation scheme by injecting
false messages with her pseudonym; typically this happens in the context of a sybil attack. Given that A
is an attacker, she may choose to perform a sybil attack by fulfilling the role of O many times, or she may
choose to incorrectly aggregate the received observations and aggregates. This can happen in a number of
ways, distinguished by whether A ignores unfavorable input, or an active bias is included in the aggregation
scheme. Given that Fin is an attacker, she may finalize an aggregate right away, ending the aggregation
phase early and causing a denial of service attack. Alternatively, she may inject a valid finalized message
without ever having heard an aggregate; a remote impersonation attack. Given that Fwd is an attacker,
she may perform denial of service attacks by dropping or jamming the packet, or she may attempt a replay
attack by replacing the packet with an older packet. Note that the impact of such a replay attack can only be
denial of service, as it is assumed that messages are protected against simple replays and injection by current
VANET security mechanisms [1]. Since the messages are easily identified as old, the impact of this attack
is very limited. Some of these attacks are very difficult or expensive to defend against, unless it becomes
possible to link pseudonyms, which implies a loss of privacy.

Security can be considered as something that can be achieved in three ways, each of which provides trust
from a different source, increasing the barriers an attacker has to overcome to perform a successful attack.
The three distinct categories are cryptography, plausibility checks and interactive verification. These are
VANET adaptations of the three possibilities discussed in [27]; cryptography, abnormality-based detection
and retro-active detection. Cryptography can be used to provide trust by indicating how many vehicles
were involved in the aggregate, to prove that a vehicle was indeed in the area specified by the aggregate
and the integrity of the message itself. Plausibility checks are a useful tool to verify the correctness of a
statement by simply checking it against models of physics, driver behaviour or simply by comparing with
known statistics. This provides a confidence in a given aggregate. Finally, interactive verification refers
to anything where two vehicles interact to verify certain statements. This paper will focus mainly on the
cryptographic aspects for two reasons. First, current work does not provide a satisfactory solution; second,
improving the guarantees offered by the cryptography component makes the other two more effective. For
example, if a signature scheme that provides the number of signers is used, plausibility checks can use this
as a parameter to compute the trust in a message. Furthermore, cryptography provides relatively conclusive
evidence of a certain fact, while plausibility checks will always be probabilistic. Compared to interactive
verification, cryptography may provide less overhead, depending on the amount of hops between the original
sender(s) and the receiver.

2.3 Requirements

This section discusses the requirements for secure VANET aggregation. These requirements essentially
summarize the main result of the preceding chapter.

2.3.1 Data utility requirements

Equal participation, meaning that every benign vehicle that has data available contributes to the resulting
aggregate message in an approximately equal fashion, resulting in an aggregate that represents the ‘average’
of the data of all benign vehicles. For this definition, benign means any vehicle that is not controlled by
the attacker and does not have malfunctioning sensors; therefore, vehicles with malfunctioning sensors can
still be disregarded. Meeting this requirement also helps security, since if this requirement is met, then
a higher number of participants implies that the receiver can have a higher confidence in the aggregate
message. Conversely, it should not be possible for a single vehicle to have a disproportionate contribution
to the aggregate; however, this definition is much closer to a security requirement.

15

Accuracy is the main requirement for the data structure or algorithm used to aggregate the data.
Without sufficiently accurate mechanisms, secure VANET aggregation will not provide sufficiently useful
information; in that case, applying secure VANET aggregation, or even VANET aggregation in general, is
not sensible. In most cases, accuracy can be traded off against bandwidth efficiency.

2.3.2 Feasability requirements

Bandwidth efficiency is perhaps the most important requirement for secure VANET aggregation. One of
the core advantages of using in-network aggregation as opposed to efficient dissemination and information
gathering mechanisms is that the bandwidth consumption of in-network aggregation is much lower. However,
aggregation reduces the value of the security payload that each vehicle generates; in efficient dissemination
schemes, this security payload can still be used to verify the validity of the message. In aggregation mecha-
nisms, on the other hand, messages are aggregated, which means the original security payload can no longer
be used for verification. Secure VANET aggregation should not cause this advantage to be lost, since then
security will be ignored, or aggregation as a whole will not be considered.

Computational efficiency here refers to the amount of time needed for cryptographic processing; it is
thus required to provide up-to-date aggregates to interested vehicles. Insufficient computational efficiency
will hamper the adoption of secure VANET aggregation mechanisms in favor of insecure ones, which will
result in many security problems. Such security problems will effectively reduce an aggregation mechanism
to a waste of resources, or even a risk to traffic efficiency. Computational efficiency may be achieved by
hardware acceleration in some cases; in such cases the hardware used for this purpose should be sufficiently
cheap to stimulate adoption. However, hardware prices are out of scope for this thesis.

2.3.3 Security requirements

Security requirements are the most important ones for SeDyA, as the goal is to provide security on top of
the existing aggregation features that already exist. In this class of requirements, the most important ones
are integrity for individual messages and data consistency for different aggregates. In addition, it is desirable
to have privacy against other participating vehicles and a limited requirement on availability. Each of these
requirements are shortly described here.

Message integrity refers to the integrity of individual messages in a single-hop broadcast scenario. This
requirement is similar to that posed in general VANET security and the main purpose is to allow vehicles to
detect message modification attacks. In addition, it provides the guarantee that all valid messages are sent
by a vehicle, because the key material is certified by a certificate authority for use with a vehicle and key
material is typically stored in a tamper-proof device.

Data consistency, on the other hand, refers to the intergity of aggregated messages. More precisely, the
vehicle that performs the secure aggregation process should perform this task correctly. Therefore, the only
thing an attacker can falsify is her own observation; she cannot abuse the merge process to generate false
messages that are accepted because they are based on legitimate messages. Note that because aggregation
fundementally modifies the content of the packets, it is not sufficient to require the to repeat the signatures
attached to the observations it receives, because these signatures are generated on the observations, which
are aggregated away, making them impossible to verify.

Similarly, availability should be achieved to at least the same level as achieved in regular VANET
scenarios. In this context, availability refers to the absence of specific denial of service attacks, such as
by means of injecting certain packets, or selective packet dropping, as opposed to general attacks such as
simply jamming the entire communication channel. This is because general flooding-based denial of service
attacks are practically impossible to protect against: even if the radio units are tightly controlled using
hardware security, researchers have already developed an open source software-defined radio implementation
of 802.11p, thus rendering such a control effort useless.

16

Chapter 3

Related Work

This section discusses the related work for the scheme in Chapter 4. In Sections 3.1 and 3.2 discuss proba-
bilistic counting and cryptography, respectively. These sections, in particular that of probabilistic counting,
are essential to understanding the issues involved in the construction of a secure aggregation scheme and the
problems that current work does not solve. Section 3.3 discusses some current VANET aggregation schemes
that do not consider security. The existing work that adresses secure VANET aggregation is discussed in
Section 3.4; some of this work is actually intended for sensor networks, but may be adapted to operate in a
VANET environment without breaking the ideas in the schemes.

3.1 Probabilistic Counting

A probabilistic counting algorithm is a method to count distinct elements in a set in a distributed system.
These algorithms are also called distributed stream algorithms, which is a more general class that focusses on
processing large amounts of data in a single pass in a distributed fashion. The original design goal for such
algorithms was for databases to function in environments with little memory. This section will introduce
FM sketches and some improvements suggested in [19], followed by a short introduction of LC sketches and
the z-smallest method1.

3.1.1 FM sketches

FM sketches are an instance of probabilistic counting, a method to provide smaller aggregates that can
still be updated. They were originally developed for resource-constrained programs that processed large
databases by Flajolet & Martin in [19]. In essence, FM sketches rely on counting hashes, as opposed
to individual elements; because the same hash function is used by all nodes, FM sketches are duplicate
and order insensitive. This is a tradeoff between transmission overhead and accuracy, when compared to
transmitting all elements and counting them afterwards. Alternatively, if compared to a scheme that simply
transmits the count, the FM sketches have less accuracy (in an ideal network), but offer both strict error
bounds and order and duplicate insensitivity. The FM sketch is one of the most common distributed stream
algorithms used for in-network aggregation schemes, in both sensor networks and VANETs [20,24,34].

The operation of FM sketches is somewhat similar to Bloom filters in that it uses a hash function to map
elements to a bit in a fixed length l bit string (a Bloom filter with its parameter set to 1). Given this, the FM
sketch can then count up to 2l distinct elements with a fixed error bound. The additional requirement for
this result is that the mapping to the sketch is distributed geometrically. This mapping operation is typically
implemented using a cryptographically secure hash function h, which provides a fixed output for the same
input, but is otherwise assumed to be random2. Such a random hash function can implement a geometric

1Some notes on other candidate methods can be found in the research topics document
2This is the essence of what cryptographers call the Random Oracle Model. There is a lot more to designing secure hash

functions, but this is not a requirement here.

17

0 0 0 1
0 0 1 0 H(c1)=

H(c2)=

1 0 1 1

 Old
Aggregate

estimate=1/ρ·22=4/ρ

OR

1 0 0 1
03

(a)
Using FM sketches to count nodes ci
and add it to an old aggregate. Note
the order of the bits is big endian.

0 0 0 1
0 0 1 0 H(c1)=

H(c2)=

1 0 1 1

 Old
Aggregate

estimate=-4·ln(1/4)

OR

1 0 0 1
03

(b) Using LC sketches to count nodes
ci and add it to an old aggregate.
Because the hash function distributes
uniformly over the bits, endianness is
not relevant here.

Figure 3.1: FM and LC sketches

hash function as follows: compute h(i) of item i and count the amount of zeros in the resulting bit string
before the first 1 bit and use this amount as the output of the geometric hash function. To estimate the
number of entries counted by a given sketch, the estimator 2x

ρ is used, where x is the length of the sequence

of 1 bits, starting from the least significant bit and ρ ≈ 0.775351 [19]. An example is shown in Figure 3.1a;
here, distinct ci are counted and added to the old aggregate (which could for example be c0), resulting in
an estimate of 4/ρ ≈ 5.16. Note that it is possible to dynamically grow the size of the FM sketch, without
invalidating old observations, as long as the last bit is not set. The reason is that the last bit is always set
when it is reached, regardless of the result of the geometric distribution.

Using a probabilistic counting scheme like the FM sketch has a significant negative impact on the accuracy,
due to the high variance in the estimate [19, 29]. To allow for a trade-off, probabilistic counting can obtain
higher accuracy by implementing a technique called probabilistic counting with stochasic averaging (PCSA).
Rather than using just one bit string (and associated hash function), multiple bit strings and hash functions
are used and the estimation will be the average of the result of each: m

ρ ·2
Σm

j=1xj/m, where xj is the end of the

sequence of 1 bits in the jth sketch and m is the total amount of sketches used. [29] introduces a bound that
is more accurate especially for sketches that contain less than 10 ·m elements; mρ · 2

Σm
j=1xj/m − 2−κΣm

j=1x/m,
where κ ≈ 1.75. Note that the hash functions should be distinct; this can be achieved by simply using
hy(i) = h(i||y) as the yth hash function, where || denotes concatination.

3.1.2 LC sketches

LC sketches are a variant of the FM sketches, designed to provide a higher accuracy and tighter error
bounds [17] in exchange for a higher transmission overhead. The concept is the same as FM sketches, but
instead of using a geometrically distributed hash function, a uniformly distributed hash function is used.
The length of the sketch increases from log n to m ≤ n and the count returned after processing all the
elements into the sketch is −m · ln(zm), where z is the amount of remaining 0-bits in the sketch. See Figure
3.1b for an example of an LC sketch. Accuracy of the sketch is given through the relative expected error:
(en/m−n/m−1)

2·n , given a set with n distinct items. Note that while LC sketches allow tuning of accuracy, doing
so requires (some) knowledge of n. [17] claims a strong improvement of accuracy compared to FM sketches,
given similar size; however, these experiments count sensor nodes directly. Countrary to FM sketches, there
are no explicit claims about the usefulness of LC sketches for use with other aggregates like computing an
average.

18

3.1.3 z-smallest

z-smallest is a probabilistic counting method that can be implemented in two ways. The difference between
the two methods lies in whether the result can later be merged with another result, or whether it is purely
used for probabilistic counting in one node. In the former case, the node counts a specific thing, such as
neighbours it observes, and hashes each of them with H → [0, 1], which has a uniform distribution for its
result. The node then simply keeps the z smallest values and transmits them in a packet, as opposed to
transmitting all values at once. In the second case, the node only needs to perform the counting locally, so
it can simply keep exclusively the zth element, selecting it as a representative for the entire set of values.
This works because the hashes are uniformly distributed over a range, since given z and the corresponding
hash value, one can estimate the amount of elements in [0, 1] by simply computing z/vz.

3.2 Cryptographic Signatures

This section will briefly introduce the basic principles of various types of signatures, each of which has a
number of properties that are useful when designing a secure aggregation scheme. Throughout the past three
decades, many researchers have designed cryptographic signatures for a variety of applications, including an
aggregation setting. The signature types will be introduced and briefly discussed in the context of VANET
aggregation. Because of the large scale and multi-hop setting, only signature schemes based on public key
cryptography are used. Secret key cryptography, which is one of two options for SAS through the use of
Message Authetnication Codes (MACs), does not support verification of a signature by an arbitrary vehicle
and thus requires some scheme to switch to a new key and broadcast the old one for use. This is done in
schemes like TESLA++ [45], but their use is limited to single-hop applications because of a broadcast storm
problem, in addition to issues where due to retransmissions the key and message would arrive at a vehicle
in the wrong order.

Signature A signature is a cryptographic primitive that provides proof that the sender of a message
posesses a certain private key, because she is the only one that can create a valid signature that verifies
using the corresponding public key. Thus, anyone can verify a signature, but only the owner of the key can
create it. A valid signature only provides evidence that the signer is legitimate if her keys are not revoked
by the CA and if the public key is obtained from a trusted source, such as a secure channel to the CA or
a certificate containing a signature of the CA. For VANETs, the signature is usually sent together with the
certificate, because it is impossible to pre-load all certificates of all vehicles. Recall that TBEV exploits the
use of signatures to build a scheme that is akin to aggregation; she collects signatures from different vehicles
on certain events.

Threshold signature [44] Given a group of n participants, each with their own private key (also called key
shares), and a threshold t < n, a n, t-threshold signature scheme provides that a valid signature can only be
generated when at least t+1 distinct keys are used. This signature will verify with the public key associated
with the entire group of participants. In addition, an attacker that can compromise at most t participants
cannot discover any information about the global secret key. Finally, some threshold signature schemes
explicitly require that given a valid signature, an attacker can never discover which of the n participants
participated in the signing process. Threshold signatures can be designed using a secret sharing scheme,
such as [43] which generates a random polynomial f of degree t over Fm, such that f(0) = d, where d is the
secret, and computes the key share of each participant i as f(i) mod m. Normally, to recreate the secret
key, Lagrange interpolation can be used to recompute d. However, it is possible to allow each participant to
generate its own part of the signature, after which these signature shares can be merged into a valid signature.
In any case, threshold signatures require the message M to be fixed for all the signing participants. A valid
threshold signature guarantees that at least t+ 1 participants agreed to sign the message.

For VANET aggregation, threshold signatures are difficult to achieve, because the key shares need to
be computed either beforehand or as a protocol is running. Neither solution is satisfactory, because the

19

amount of key shares is simply too great, even before pseudonyms are introduced. Alternatively, when the
anonymity requirement is used, it becomes very difficult to detect sybil attacks. In such a situation, different
messages can no longer be linked, as doing so would breach anonymity. In addition, the threshold t is fixed
for the duration of its use, so it is impossible to shrink when the road is filled with too few vehicles (i.e.,
≤ t). Making t too low simply provides an expensive scheme that can easily be broken.

Multisignature Given a group of n participants, each with their own keypair (pki, ski) a multisignature
on a message M can be generated by any subset of all participants L by computing it from the individual
signature that each participant generates on M . Then, the signature can be verified by using all the public
keys of the participants in L and computing from them the ‘public key’ of L. Multisignatures can be
implemented in a discrete log setting by simply computing the product of all the signatures as the single
signature; the public key is then computed as the product of the public keys of the participants in L. This
scheme can also be applied to perform batch verification of signatures on the same message [6].

For VANET aggregation, this scheme can provide the same level of protection as threshold signatures,
but in a more flexible fashion. Because multisignatures can be implemented using a regular signature scheme,
without influencing the security of that scheme, its implementation into VANETs is also much simpler; there
is no sharing protocol required to establish key shares. The most important drawback is that the set L must
somehow be provided to the verifier of the message. Since the public key is already in most signed messages
sent in a VANET, this is definitely possible. However, the amount of public keys will grow linearly with the
amount of signers, which creates large amounts of overhead.

Aggregate signature [8] Given a group of n distinct participants and n distinct messages, an aggregate
signature is a signature that can be computed from the signatures that are generated by each participant on
its own message. Similar to multisignatures, each participant computes her own signature before aggregating
them, and these signatures can be used normally. A verifier can verify the aggregate signature, given the
signature and all n messages and public keys to convince himself that indeed each participant signed one
of the messages. However, it is not necessarily possible for a verifier to determine which participant signed
which message. Aggregate signatures may be implemented using pairing based cryptography, which will be
discussed in Section 5.1.2.

For VANET aggregation, aggregate signatures seem to be ideal at first glance. However, notice that the
requirement of distinct messages is strong for some applications, such as event validation, where the event is
typically the same message for every vehicle, because sometimes the message of a vehicle may be identical
to that of another vehicle. In addition, the messages sent with an aggregate signature are not aggregated
themselves; instead, only the signatures are aggregated. However, as noted by SAS, aggregate signatures
could be used to reduce the size of signatures that will not change, saving bandwidth at the cost of increased
computational effort.

3.3 VANET Aggregation

This section briefly discusses a few important VANET aggregation schemes that do not consider security.
The discussion given here is not intended to provide a complete overview of all available VANET aggregation
mechanisms; instead it shows the evolution of different schemes and highlights the most important issues
that have been encountered in these works.

SOTIS [50] is one of the earliest proposals of using VANETs to collect information about the surroundings
of a vehicle, leading to the development of the typical local dynamic map (LDM, also known as neighbor
table) that state of the art VANET protocols typically rely on. With a very low beacon rate (once per five
seconds), SOTIS provides a coarse overview of the state of all the neighbors in the network. Aggregation
is implicit and completely local; SOTIS only discusses that vehicles should compute data like the average
speed of its surroundings and broadcast this data in its beacons.

TrafficView [11, 33], like SOTIS, is an information dissemination scheme that relates to the current
VANET state of the art, using beaconing to gain knowledge about the surroundings of a vehicle. The work

20

also explicitly considers aggregation as a means to provide additional information to the system, providing
two different algorithms to compute high quality aggregates. However, aggregation is performed only on
transmission of the data, instead of when data is received. Instead, received data is first validated by a
validation model, which makes the decisions on what to keep and which message is most up-to-date.

Lochert et al. [29] introduce the use of a variant of FM sketches to VANET aggregation. They argue
that SOTIS and TrafficView cannot provide results, because they select an aggregate to store, rather than
merging received aggregates. More fundementally, it is argued that this process of selection instead of
merging bounds the best possible aggregates; the authors then propose the use of a variant of FM sketches,
called the soft-state sketch, to avoid this issue. Soft-state sketches are FM sketches that use a counter instead
of a bit; merging occurs by taking the maximum of all counters for each bit in the sketch. These counters
each represent a time to live (TTL) field, which is decremented just before every transmission. Note that in
this scheme, the sketches are not bounded to a particular region, lacking the ability to distinguish between
areas where different values exist. For example, two traffic jams with an intermediate section where normal
driving is possible would be aggregated into a single traffic jam.

TrafficMap [49] (see also the more advanced result in [41]) demonstrates the importance of dynamic
aggregation areas when detecting traffic jams. It attempts to balance redundancy with accuracy by discussing
an intelligent coding and filtering scheme to dictate which vehicles should aggregate when. This allows the
scheme to closely match the actual situation on the road with a very low amount of packets and provide an
accurate overview of a large section of the road, as well as be detailed enough for use as local information.
However, unfortunately, the scheme the authors describe is specific to a specific type of data, namely average
speed.

Dietzel et al. [12] discuss the use of fuzzy logic as one possible approach to obtain a more general system
that allows for such accuracy. They take the ideas of TrafficView and replaces the knowledge database with
a more detailed world model that represents a larger area of the network. Most notably, this database may
contain conflicting information about the network, where fuzzy logic is used to decide which value is the
correct value at a given time. Subsequent dissemination messages will use the fuzzy logic method to extract
the current world view of the vehicle, which is then disseminated as the current state the vehicle has seen.

Both TrafficMap and Dietzel et al.’s fuzzy logic scheme show that dynamicness of the aggregation mecha-
nism to match the dynamic reality of a road is important to designing a good aggregation scheme. Compared
to their predecessors like SOTIS and TrafficView, they are able to disseminate information in higher quanti-
ties and quality. The probabilistic mechanism described by Lochert et al. shows that FM sketches can also
be used in VANET aggregation.

Note that none of the discussed schemes consider security, although some of them use validation to check
incoming messages and make decisions concerning them. The work by Dietzel et al. mainly considers a
world model, so if the input to this world model can be provided in a secure way, and the dissemination
mechanism is secure, then this work can make use of such security mechanisms. The other works show
that a typical aggregation mechanism in VANETs has a high impact on integrity requirements (as also
noted by Dietzel et al.); none of these mechanisms demonstrate that their scheme provides integrity. More
frustratingly, their schemes cannot be extended with security in a straight-forward fashion (for example,
by simply adding signatures), because this only provides the guarantee that the message was generated by
another vehicle. The next section discusses some secure aggregation mechanisms that attempt to provide a
stronger guarantee: that the aggregation process was performed in a legitmate manner.

3.4 Current Secure Aggregation

The idea to add security to aggregation in VANETs using additional cryptographic means was discussed first
by Raya et al. [36]. As noted, this approach is fundamentally different from schemes that provide security
through data-centric security mechanisms, such as [13]. Any solutions that are designed using cryptography
provide suplementary evidence that can be used in addition to data-centric mechanisms, as cryptography can
reduce the capabilities of the attacker by restricting the space of valid messages that she can use. Raya et
al. introduced several options to secure an aggregation scheme. However, their ideas rely fundementally on

21

H(c1)=

H(c2)=

1 0 1 1 →{σa3,σ1,σ2}

 Old
Aggregate

estimate=1/ρ·22=4/ρ

Merge

1 0 0 1 →{σa0,σa3}
0 0 1 0 →{σ1}
0 0 0 1 →{σ2}

AMSketch
03

Figure 3.2: The FM sketch from Figure 3.1a with the AM for each sketch.

group communication, where all vehicle in a group are in communication range of each other. As noted, this
requirement cannot be met by the scope of the current state of the art of the network model. It is assumed
that such a cluster-like scheme would not be able to operate in a real world scenario, in particular in those
scenarios where there is a slow traffic on one lane and fast traffic on another. The mechanism described in
the paper is strongly dependent on this clustering mechanism, which is based on location cells; the group
leader is elected by who is closest to the center. However, the group leader must be in posession of the
public keys of the group members, and she must disseminate a group key to all of them. They propose three
different signing methods to provide the necessary level of security; concatenated signatures (simply add
all signatures in a list), onion signatures (sign the previous signature; provides only two valid signatures),
and hybrid signatures (combining concatenated and onion signatures to have an arbitrary amount of valid
signatures for half the overhead).

In current work, there are two approaches to provide secure aggregation in VANETs using cryptographic
means; either adding additional cryptographic means, or by exploiting current mechanisms more effectively.
Authentication Manifest FM sketches (AM-FM sketches) and SAS are both in the first category, where
the main focus is inflation and deflation attacks [20, 24]. To prevent inflation attacks, both schemes apply
signatures to specific bits in the FM sketch to protect its integrity across different messages, even after
aggregation with similar messages. In the second category, Threshold Based Event Validation (TBEV) uses
a fixed message format to which all protocol messages must conform. With this decision and the introduction
of a new protocol, TBEV provides secure aggregation without introducing additional security. Both AM-
FM sketches and TBEV limit the scope of aggregation mechanisms to binary events, such as a warning of
a traffic jam or a collision warning. For AM-FM sketches, an alternative method is discussed to still be
able to compute (approximate) sum and average queries with binary events. TBEV does not consider such
aggegation use cases, but a similar approach may be used, as long as events are defined in advance.

Finally, note that current work considers sybil attacks to be impossible or very limited due to the use
of at most one pseudonym at any time, or by completely avoiding them by not applying any pseudonym
scheme, thus ignoring privacy issues.

3.4.1 AM-FM sketches

AM-FM sketches are a scheme designed for originally sensor networks, which can also been applied to
VANETs. The fundemental idea is to generate some proof in the form of signatures on observations that
can be transferred to validate the aggregate, indicating that the aggregation procedure has been executed
properly. To keep signatures verifiable without using complex and expensive cryptographic primitives, each
node generates a signature for every 1-bit in the FM sketch. Each node has a unique identity and signs its
tuple, where a tuple is the sensor value for a binary event. Attached to each 1-bit in the FM sketch is the
position of the bit, a unique identity, a signature and a tuple that resulted in this bit being set. The example
FM sketch from Figure 3.1a is extended with an AM in Figure 3.2, which also shows how to merge the
AMs of different messages.The merge operation only keeps one signature per bit, to save signatures. This
example only counts nodes that observe a binary event; however, it is possible to extend AM-FM sketches to
compute sums. In the original paper [20] an iteratively queried list of binary events is used, but this will not

22

H(c1)=

H(c2)=

1 0 1 1 →{σ1⊕σ2},{σa3}

 Old
Aggregate

estimate=1/ρ·22=4/ρ

Merge

1 0 0 1 →{σa0}, {σa3}
0 0 1 0 →{σ1}, {}
0 0 0 1 →{σ2}, {}

s+Sketch
03

 s×

Figure 3.3: The FM sketch from Figure 3.1a with the inflation-free and supplement proof for each sketch.

be practical in most VANET scenarios. Given this, it is possible to either discard the iterative component,
introducing a significantly larger error bound, or to adapt the method used to extend a normal FM sketch
for measuring sums, an approach used by SAS (see the next section), which sacrifices some security.

Finalization and forwarding phases are not implemented in this scheme, as its intended application is
sensor networks where aggregation is on-going until the aggregate reaches the querying node. As noted in
the discussion in [20], the AM can be translated to other probabilistic counting algorithms; as long as it
is possible to associate an observation with a signature that remains verifiable and these signatures can be
collected in a compact set.

Security AM-FM sketches are intended to protect against in- and deflation attacks; it is assumed that
sybil attacks do not apply because of a unique key, registered at the sink node. Remote impersonation
attacks do not play a role in sensor networks. Inflation protection is achieved by the signatures; the attacker
must compromise a key to flip arbitrary bits to 1-bits in the sketch. Flipping arbitrary bits that are not
supposed to be 1-bits will reveal the attack because of a missing signature; if the attacker uses her key to
sign the appropriate bit, a significant inflation would require the attacker to sign multiple bits, revealing
her identity and the attack. In the case of a sum computation using the iterative component, an attacker
would still appear multiple times in different predicate polls if she attempts to inflate the value, resulting in
a revealed identity and revealed attack.

Deflation prevention is not natively achieved by using AMs; the authors in [20] propose to also include
a response for the inverse query, such as to obtain a complementary FM sketch. The issue that arises from
this method is that a sink node that obtains the sketch for verification must know the amount of nodes
that participate. This problem is not solved by the authors, who argue that in most sensor networking
applications a good estimate of this amount is known. The authors also note that an approach with weaker
guarantees about the bounds of the aggregate would be to exploit redundancy in the network. Finally, in
the case of more complex queries like a sum or average, inverting a query may be more difficult; however,
for the iterative computation method described in [20], the inverse queries are given.

Overhead Recall that typical probabilistic counting algorithms, as discussed in Section 3.1, are query-
based rather than continuous, so using query identifiers for the signatures does not introduce additional
overhead. However, a query will need to be generated and disseminated to the sensors. The query can be
protected by a signature, preventing modification of the query identifier before the query reaches the node.
The messages sent by each aggregating node will contain an AM, which in turn will contain at most k · log n
signatures, where k is the amount of sketches and n is the maximum length of the data. Note that n is the
range of the data type multiplied by the amount of participants, because of the way FM sketches work with
non-binary queries (see Section 3.1). In addition to these signatures, the FM sketches themselves should
be included along with a typical signature to ensure the integrity of the message as a whole. In the sensor
network setting of the original paper, it is reasonable to assume that the querier knows all the public keys
of her sensors. However, in a VANET setting, all the public keys need to be included to ensure that the
signatures can actually be checked, creating additional overhead.

23

3.4.2 SAS

Another proposed solution that uses FM sketches as a basis is SAS. SAS eliminates the need for inverse
queries as used in AM by using a different proof strategy, consisting of three components. These components
are the inflation-free proof, deflation-free proof and supplement security proof; given these proofs for each
observation, an aggregator can compute a new three-component proof for the aggregate, after performed
aggregation. These proofs consist of specific information about the data along with a number of message
authentication codes (MACs), which perform a task similar to the signatures in an AM-FM sketch. The
MACs are generated using a secret key, which is shared between a vehicle and a central authority, the traffic
monitoring center (TMC). This TMC is interested in continuous data from pre-determined segments of the
road for analysis. In [24], the authors mention that SAS may also be used with asymmetric cryptography,
replacing MACs with homomorphic signatures. However, in the paper itself this is only mentioned at a
few points and not thoroughly analyzed, leading to the assumption that the version using MACs is the
most relevant one. This especially because the use of homomorphic signatures brings with it an additional
computational cost and further privacy issues.

The inflation-free proof contains a MAC for each 1-bit in the sequence before the first 0-bit in the FM
sketch, along with epoch and location identifiers. The supplement security proof contains MACs on the
remaining 1-bits and the epoch and location identifiers. Thus, each 1-bit in the FM sketch is authenticated
at any time; when two sketches are merged, at least one MAC authenticates any bit, since there are MACs
for every bit in both sketches. This approach is similar to that of AM-FM sketches; Figure 3.1a is repeated
with the appropriate proofs in Figure 3.3. While it is not made explicit, each MAC must also be linked
to a global identifier for the user, so that the TMC can determine which key it should use to check the
MAC. Finally, the deflation-free proof is a MAC on just the epoch and location identifiers, which is used
as the seed of a hash chain. A hash chain is formed by repeated application of a one-way function F ; the
root of a hash chain is the input of the first hash operation. The xth element of this chain is then denoted
F x(y) for input y. Each vehicle sends not the MAC of the deflation-free proof, but F k(s−i), where s−i is
the MAC of the deflation-free proof and k is the position of the first 0-bit of the sketch. For the merging
procedure, all the aggregator has to do is make the chains equally long by applying F exactly as often as the
difference between the 0-bit position in the original message and the aggregate. This difference will always
be non-negative, because 1-bits can never become 0-bits in an FM-sketch, so the aggregator will never have
to reverse an application of F . Because the TMC knows the location, epoch and key, it can simply compute
the deflation-free proof and use it to recompute each hash chain. In the actual implementation, an additional
operation is introduced to fold all the hash chains into a single one, so only a single hash is required to be
sent in the actual message.

Security Since the application scenario is specific to traffic information, inflation and deflation attacks are
the most interesting attacks. Sybil attacks are not treated in the paper; this is reasonable, because there
is a single shared key between a vehicle and the TMC. Remote impersonation attacks are not mentioned;
however, such an attack would be quite easy to detect, as no other vehicle will aggregate its messages with
the message of the attacker and she can be identified directly from the message.

The functionality provided for collecting data is better than AM; notably SAS is not bounded to count
only binary events. However, the approach sacrifices some security; even though each 1-bit in the FM sketch
is signed, it is possible for the attacker to act as an aggregator and compute a fictious observation that
sets exactly the desired bits in the aggregated sketch. Detecting this attack is very difficult, because unlike
binary events it is very possible that a user’s identity will occur multiple times in a single sketch. In addition,
SAS requires that the aggregator always preserve the signature of the lowest identity for the inflation-free
proof. This is not strictly necessary, but it is impossible to use a random signature like AM does, because
the procedure needs to be reproduced by the TMC, because the MACs are XOR-ed to preserve space. It
may be possible to detect the attacker if she sets a disproportionate amount of bits; however, typically the
attacker needs to set only a few bits to significantly influence the aggregate.

Concerning deflation-freeness, the attacker can attempt to just flip 1-bits in the aggregate and try to
discard the associated MACs to perform deflation. As an aggregator, the attacker can do this by refusing

24

to set a 1-bit in the aggregate and discarding the associated MAC from the supplementary security proof.
However, due to the hash chain in the deflation-free proof, the attacker needs to reverse the hash function to
be able to compute the correct folded hash, which is hard. The messages that are sent to perform aggregation
should still be signed, in order to avoid issues where an attacker changes the identity in the inflation-free
proof.

Overhead The total amount of MACs correlates directly with the amount of 1-bits k in the FM sketch:
there are a total of k+1 MACs in a single message. To solve this issue, the original paper introduces a simple
optimization; the MACs in the inflation-free proof can be XOR-ed, since their individual knowledge is no
longer required. It is claimed that the sketch proofs all together produce an overhead of 8 ·log2(vmax ·n)+136
bytes, where n is the amount of vehicles in any section and vmax is the maximum speed. However, this claim
is largely not motivated, except for the fact that a sketch will indeed contain log2(vmax · n) bits. Given the
optimization mentioned earlier, the total security overhead should only be the size of 1+y MACs (where y is
the amount of bits signed in the supplement security proof), plus a single result of the one-way function used
for the deflation-freeness. For the latter, the paper proposes the use of 1024 bit RSA, producing an additional
128 bytes of overhead. Assuming a MAC is 8 bytes in size, this corresponds roughly to the computation
provided above as a worst-case scenario.

Disadvantages Every bit of privacy the driver had towards any receiver of the messages is lost; the
introduction of privacy into SAS would break both the security and efficiency of the scheme. The identity
of the vehicle must be known, because it is necessary to identify the correct symmetric key with which the
TMC should check the signature. Note that the introduction of privacy would require either a regular change
of symmetric keys for every vehicle, allowing sybil attacks, or some kind of anonymity guarantee that could
be provided by an aggregate signature scheme. An aggregate signature scheme is indeed mentioned as an
alternative to using common MACs; however, its efficiency in both size and space is not evaluated. Even
with such a scheme, privacy towards the TMC will be difficult to obtain without opening the way for sybil
attacks.

Another problem is that since the identity is never included in any signature, it is trivial to perform
a denial of service attack on the entire block (location and epoch identifiers) by simply sending a single
mismatching identifier with a key. This attack can be performed by any vehicle, as long as it is a participant
in the protocol.

Finally, the paper does not address communication delays or computational efficiency in its analysis of
the protocol. Rather, a graph of the standard error and a graph showing the overhead for different amounts
of sketches are given. From these graphs, it can be seen that to obtain a reasonable standard error the use
of at least 8 FM sketches is required, regardless of the use of SAS.

3.4.3 Threshold-based event validation

The third scheme takes a different approach; instead of securing any arbitrary aggregate, [25] focusses on
protecting against what the authors call decision changing attacks on binary events. These attacks include
any type of attack, as long as it can change the aggregate in such a way that a decision based on the
aggregate changes (so remote impersonation is not considered here, because such an attack introduces a
completely new aggregate). However, it is assumed that attackers cannot obtain many keys within the same
time of validity to execute sybil attacks. This approach significantly simplifies the problem, leaving some
applications out of the picture, but it allows the construction of a secure scheme.

To achieve protection against decision changing attacks, standard signatures are applied to protect in-
dividual messages, and a specific message format is enforce for aggregate messages. Rather than applying
additional cryptography, this enforced message format improves the effect of standard signatures. Vehicles
are able to send a fixed number of events; given an observation of event ξ and a coarse-grained indication of
time and location (estimated to be 10 minutes and the nearest intersection or highway exit), TBEV provides
a protocol to efficiently disseminate the event over multi-hop. This protocol, the Message Exchange Protocol
(MEP), does not contain additional security guarantees beyond simple blacklisting to avoid denial of service

25

attacks, and thus is not relevant to this discussion. What remains then is to count the different reports of
an event ξ and use threshold τ to determine whether the event is accepted as having occurred. The scheme
consists of a total of four parameters τ, a, b, δ which represent the threshold τ , the noise zone [a, b) around
this threshold and the bound δ on the false positive and false negative rate, respectively. If the result of
counting occurances of an event lies outside the noise zone, then with high probability this event indeed
occurred.

Security The security of this scheme is determined by the well-known properties of signatures that are
expected to be used in normal VANET applications. In fact, MEP specifies piggybacking a message digest
on each beacon. Because the actual protocol only allows the transmission of a fixed range of events together
with the signatures and certificates of the vehicles that have encountered this event. This approach avoids
issues with complex compression of signatures or providing proofs that still verify after aggregation, but
limits the applicability of the scheme. On the other hand, it shows that cryptographic signatures can be
effective in an aggregation setting. The only security concern is weighing the privacy of the drivers against
the possibility of sybil attacks. The authors argue that privacy is protected by the use of pseudonyms,
but also assume that only one pseudonym is active at any time, which has been observed as a very strong
assumption in previous work [23].

Overhead The overhead required by this scheme is bounded by the probabilistic counting mechanism that
is used to count the events. This not because the probabilistic data structure is transmitted, but because it
provides a bound on how many signatures should be distributed per event as part of the MEP. Because of
this, FM sketches are not the ideal choice; instead, z-smallest is used as a local scheme, which means only

one value needs to be kept. For overhead, this then means the size of the synopsis is bounded by O(ln(1/δ)
ε2),

where ε ∈ [0, 1] indicates the lower and upper bounds of the estimate, which are n · (1 − ε) and n · (1 + ε)
respectively. As a practical example, [25] indicates a synopsis size of 128 elements for when the amount of
vehicles n = 10000, ε = 0.1 and the false positive/negative bound is 0.05. Each element in the synopsis
is a signature and a certificate, providing a total element size of 181 bytes. The synopsis also includes an
event description, though it is only 136 bits (17 bytes); this synopsis is attached to every beacon to allow
the vehicles to detect that their neighbours have new events available.

A concern of importance is the amount of possible events. In order to use this scheme for a general
aggregation application, such as average speed measurements, many different events need to be composed,
causing the event space to grow as well as the variety of synopses. For fairly accurate measurements, for
example at a granularity of 5 km/h, it is desirable to merge two different events (eg. 50 − 55 km/h and
55 − 60 km/h). However, this is not possible in TBEV. In addition, a large variety of events means that
more synopses need to be kept, and thus more signatures will be broadcast.

26

Chapter 4

SeDyA: overview

This chapter will introduce the conceptual ideas behind the main result of this thesis, a scheme called Secure
Dynamic Aggregation (SeDyA). This chapter will focus on effective aggregation mechanisms and appropriate
use of cryptography, without going into details. Cryptography will be treated as black boxes in this chapter;
their discussion is deferred to Chapter 5, which will explain what kind of cryptography is used in SeDyA.
SeDyA is inspired by ideas from the related secure aggregation schemes discussed in Chapter 3, but it
will address two main shortcomings; in the current secure schemes, aggregation is static and the security
guarantees are insufficient to provide the desired level of protection. In addition, because aggregation is not
dynamic in related secure aggregation schemes, long-distance dissemination may have bandwidth overhead
issues. However, solving these issues is not the main goal of SeDyA; it instead aims to provide a trade-off
between security and bandwidth consumption that provides a higher level of security. The remainder of
this chapter is organized as follows: A high-level overview of SeDyA is given in Section 4.1, including the
motivation for the division of SeDyA into three phases. After the overview, each of the three phases are
discussed in detail. In the discussion of each phase, the main issues are briefly explained along with the
solution that SeDyA provides.

4.1 Overview

SeDyA consists of three phases; the aggregation phase, the finalization phase, and the dissemination phase.
These phases relate directly to the aggregation model from Section 2.2.2; the model itself is repeated in
Figure 4.1. This model can be mapped to a real world scenario with three different areas, in which the
phases perform their role; the areas are shown in Figure 4.2. Each vehicle that plays the role of observer
or aggregator (O or A in Figure 4.1) is in the aggregation phase, attempting to find a locally stable value.

Fin Fwd

O

A

O

O

O

A

O

O

Aggregation Phase Dissemination Phase

A

Fwd Fwd

Figure 4.1: The aggregation model introduced in Chapter 2.

27

Aggregation
Area

Finalization
Area

Interested
Vehicles

Figure 4.2: The different regions in SeDyA. Each phase will operate on a different subset of this figure; this
figure will be repeated for each phase, marking the elements that are significant in that phase.

When such a value is found (by one or more edge nodes, one of which becomes a finalizing vehicle, denoted
Fin in Figure 4.1), the finalization phase begins, where some vehicles finalize the aggregate and forward it
through the aggregation area. This is the point where SeDyA deviates from the model; it first communicates
the message through the aggregation area. As the aggregate is forwarded through the aggregation area, each
contributing vehicle has the opportunity to sign the aggregate. The finalization phase is where SeDyA’s
security supersedes that of the related secure aggregation schemes. Once the aggregate has been passed
through the area and vehicles have chosen to sign or not sign the content, the aggregate implicitly enters
the dissemination phase (denoted by the vehicles labeled Fwd in Figure 4.1), where the aggregate is only
forwarded to inform as many vehicles as possible. SeDyA provides additional security through security
mechanisms in each of these phases, the ideas of which will now be presented.

Aggregation phase The purpose of the aggregation phase is to find locally stable information, such as
the average speed, which can then be disseminated to the interested vehicles outside the aggregation area.
To perform this task, AM-FM sketches are used in conjunction with AM-LC sketches. AM-LC sketches are
an extension of LC sketches, applying the same mechanism as AM-FM sketches to protect against attacks,
as discussed in Section 3.4.1. In addition, the aggregation phase applies these datastructures to describe
the aggregation area in a dynamic fashion, as opposed to related secure aggregation schemes. These related
schemes all select a short, fixed stretch of road as the aggregation area; aggregation cannot occur between two
messages from different areas. SeDyA will allow discrete events, such as an average speed1, to be described,
as opposed to the binary events that are used in some related secure aggregation schemes. However, the
security of this type of scheme is not as strong as when binary events are used (like e.g., in TBEV); the
attacker may be able to make subtle changes to the aggregate to produce a different result with very little
risk of detection.

Finalization phase To provide the stronger security guarantees that SeDyA aims to provide, the final-
ization phase is introduced. The first step in this phase is to determine when to consider locally stable
information as final and in which area the information is stable. Once this choice is made, the message
(i.e., the aggregate) is finalized by creating a multisignature on it, indicating it as a finalized aggregate
that describes the area indicated in the message. A multisignature, in its simplest form, is the product of
multiple signatures on a single message, such that the resulting signature can be verified with the product
of the involved public keys. Using multisignatures as opposed to normal signatures provides a constant size

1Technically, this is a continuous event, but it should be made discrete to be compatible with sketches. Note that this will
not add significant error compared to the error produced by sketches, as previously discussed in Section 3.1.

28

Aggregation
Area

Finalization
Area

Interested
Vehicles

Figure 4.3: The areas of Figure 4.2 relevant to the aggregation phase.

signature and significantly reduces verification time, although this is still O(n) in participants2. To compute
the multisignature in a distributed fashion, a protocol is introduced, which forwards the message through the
aggregation area and allowing each vehicle to add its signature to the multisignature. The security payload
from the aggregation phase is dropped after this phase.

Dissemination phase Finally, the message will be disseminated from the aggregation area to the inter-
ested vehicles in the dissemination phase. Dissemination will occur using any standard broadcast dissemi-
nation scheme; the main concern for SeDyA is the guarantees it can provide, how attackers may be detected
en-route and relating to this, how to detect and minimize the threat from attacks if the aggregate arrives
at an interested vehicle. These tasks are mainly addressed by using heuristics and an existing world model,
where confidence values are assigned to each piece of information. The heuristics indicate how SeDyA’s
guarantees and attack detection may be quantified to provide confidence values for the information that
is transmitted. This allows SeDyA to be used in the related research field of data consistency, where the
vehicles need a variety of sources to determine what information to use; SeDyA will be one of these sources.

4.2 Phase 1: Aggregation Phase

The aggregation phase is mainly concerned with finding locally stable values that are of potential interest to
vehicles at a larger distance. The type of information considered includes current traffic density, available
parking spaces in the vicinity, current road status, weather conditions and average speed. For example, most
vehicles on a highway will be interested in the traffic density in the subsequent 10 to 20km ahead of them,
to determine whether a traffic jam is likely to occur, and whether it makes sense to take the next exit to
circumvent it. The relevant vehicles in the aggregation phase are indicated in Figure 4.3; only those vehicles
that are in the aggregation area will be considered.

For the aggregation phase, there are three important issues: selecting the aggregation area, providing
the maximum possible accuracy and limiting the overhead in terms of bandwidth usage. These issues relate
directly to the discussion of the aggregation model (Section 2.2.2) and the network model (Section 2.1.1).

The main goal for the attacker in this phase is significantly influencing the value that the aggregate
provides, which allows the attacker to use the benign vehicles as a stepping stone to convince the interested
vehicles of a particular state of the road. The stepping stone effect is caused by the fact that many vehicles
are involved in the aggregation process, and the receiver of the aggregation message can only distinguish the
inputs of different vehicles by the signature on each bit. Recall that AM-FM sketches are used for security,

2Verification of a multisignature requires a single signature verification and n group operations to compute the product of
the public keys. Typically, this operation takes much less time than a complete signature verification.

29

so each bit is signed; however, since SeDyA allows discrete inputs, a single vehicle is allowed to set and sign
more than one bit (unlike the AM-FM approach, which allows only binary inputs). The only possible way to
detect an attack with this information is by over-representation of a particular signer; the attacker can avoid
this by adaptively selecting the bits she flips. This reduces the impact somewhat, but will make it practically
impossible to distinguish the attack from a legitimate contribution. Such an attack is an in/deflation attack:
this type of attack is the most important one in the aggregation phase. On the other hand, sybil attacks
and remote impersonation attacks are relatively challenging to perform, because the aggregation phase is a
relatively short-lived phase. For privacy purposes it is assumed that pseudonyms will be used, but that each
of these will be valid for a short period, with limited overlap, making it more difficult for the attacker to
perform sybil attacks. This is similar to what related work requires as protection against sybil attacks.

4.2.1 Dynamic aggregation area

The effectiveness of the aggregation phase strongly depends on how the aggregation area is chosen. There are
two fundamentally distinct methods to choose the aggregation area; either by a predetermined interval, or
dynamically based on the deviation from other atomic observations and neighborhood information. Although
it is desirable to have a dynamic aggregation area, providing security for such an area is very challenging.
Recall from Section 2.2.2 that aggregation with support for many types of information requires identifiers to
avoid mixing different aggregates together unintentionally. Because in-network aggregation is distributed and
does not rely on a querying node, there is a need for using part of the input for aggregation as information
that uniquely identifies an aggregate, so that unrelated aggregates can be distinguished from each other.
Most commonly, the aggregation area is used, which typically consists of two or three spatial dimensions.
However, these dimensions are not known to every vehicle before aggregation occurs. Therefore, existing
schemes resort to introducing granularity to enforce a particular structure over which aggregation can be
performed. This identifier is then used as a fixed piece of information that may be cryptographically signed to
provide authenticity, a property that is exploited by both the SAS and AM-FM schemes that were discussed
in Section 3.4. TBEV also uses a granularity, but it is more restricted than those of SAS and AM-FM, because
the granularity is very coarse, allowing TBEV to provide sufficient security at the cost of less accurate data.

Certain aggregation schemes that do not consider security offer a dynamic aggregation area instead of a
fixed one. However, most of these schemes intelligently merge different aggregation areas to larger aggregation
areas, which makes securing them with cryptographic signatures very challenging. In general, any security
mechanism for such a scheme would need to allow other nodes to modify the data in the message, while still
providing the expected guarantees on verification of a signature. Note that providing the ability to modify
cryptographically signed data can be achieved already, by exploiting homomorphic properties. However, the
challenging part is to cope with insider attackers that abuse such a homomorphic property. For this reason,
SeDyA builds on the related secure aggregation schemes, rather than attempting to design security around
the aggregation schemes without security. The AM-FM approach is modified to support a dynamic area
that is indicated by several sketches. The security mechanism remains the same as that of regular AM-FM
sketches.

The aggregation area can be dynamically selected based on several fixed points. As noted, such specific
points must be predetermined and consistently selected, because they are used as input for the signing
procedures in the sketch and should thus be the same for all vehicles in the aggregation area. In a highway
scenario, the road on which an aggregate is computed, is typically a single region where most vehicles drive
in the same direction. Thus, an aggregation area in a highway scenario will only vary in one dimension. This
can be exploited by computing the average of all locations of the participating vehicles, as shown in Figure
4.4. The vehicles in the finalization area will indicate their location in the finalization phase, specifying
one edge of the area and allowing receivers of the aggregate to reconstruct the area by symmetry in the
average. Thus, the area is defined by the average and the location of the finalizing vehicle; the other end of
the aggregation area can be computed by symmetry of the location in the average location. This is based
on the assumption that vehicles with similar sensor readings (such as speed or road conditions) will strongly
correlate with a similar traffic density. However, in an urban scenario, aggregation will typically occur across
a network of roads. Depending on the scenario, it makes more sense to aggregate over the whole area, or

30

Finalization
area

Aggregation
area

Figure 4.4: This figure shows a single direction of a highway with a traffic jam in the aggregation area. The
left- and rightmost dots indicate fixed map points, while the dot in the center indicates the average of the
distances. This information is stored in the sketch as a single vector, shown below the road.

to consider individual roads separately. Aggregation over the whole area is sensible only when the roads
are comparable; if an urban road network consists of a large main road with mostly empty side-roads, then
aggregation over the whole area will only add inaccuracy. This issue is shown in Figure 4.5, where a traffic
jam on one three out of four edges in a crossing cause the receiver of an aggregate to see the empty section
as part of the traffic jam. Therefore, if it is known that the road on which a vehicle is driving is the only
road with high-volume traffic in the area, SeDyA can specify that this road should be considered a highway.

4.2.2 Accuracy

A second important issue is the accuracy of the aggregate, which directly relates to the issue of message
overhead; higher accuracy will fundementally require more bandwidth. Ideally, if there were no bandwidth
requirements, all messages could simply be forwarded to all interested vehicles, providing ‘perfect’ accuracy.
Because aggregation is performed, less bandwidth will be used, but thus it also becomes important to
consider accuracy. Inherently, aggregation transmits less information and thus the data structure will have
inaccuracies compared to transmitting all data. More concretely, secure aggregation schemes from related
work use either a coarse granularity to limit the possible messages or a probabilistic counting technique with
a small data structure like an FM sketch. In either case, the data is encoded into the specific structure to save
bandwidth, as well as to obtain the ODI-correctness property. See Section 3.1 for more details on probabilistic
counting techniques. For probabilistic counting techniques, accuracy can be estimated by analyzing the error
bounds or the relative error even when they are used without considering network conditions. The relative
error will be used in a preliminary analysis in this section, to choose how probabilistic counting should be
used in SeDyA.

The chosen probabilistic counting settings can then be used to create a secure scheme that finds locally
stable values in a dynamically chosen area. The choice for this settings is a choice between the size and type
of sketches. For the latter, there are two options; FM sketches and LC sketches, both of which have the
useful property that a particular bit in the sketch will not flip to zero after it was set to one. This property
makes possible the security mechanisms that the related secure aggregation schemes AM-FM and SAS use.
Both of these approaches sign the position of each one bit, together with static information. The AM-FM
approach can trivially extend LC sketches, obtaining AM-LC sketches. However, the AM-FM approach has
two distinct disadvantages: the static aggregation area and the requirement of using an interactive approach
to compute sums. While the static aggregation area has already been addressed in the previous section,
the interactive mechanism for computing sums remains. This issue can be addressed by introducing the
same mechanism for computing sums as already existing in SAS and regular FM sketches, as discussed in
Chapter 3. Simply put, this approach requires vehicles to add k values to the sketch, where k is the value
that the vehicle is adding to the sketch. For example, a measured speed of 10 kilometers per hour for
vehicle 0 would be added by inserting (0, 1), (0, 2), (0, 3), ..., (0, 10) into the sketch. However, this introduces
inaccuracies, as noted by [20], which cites it as the reason for introducing interactivity. In VANETs, however,
interactivity is not an option: SAS simply uses the sum computation approach, and so will SeDyA. This also

31

Figure 4.5: This figure shows a typical urban scenario with seven buildings and a traffic jam in the bottom
left region. This figure has three finalization areas, on the outer ends of the traffic jam. Again, the corners
of the figure have the fixed points from which sketches count. The dot approximately in the center indicates
the average location of the vehicles in the rectangle that indicates the vehicles involved in the aggregation
process. When a vehicle receives a finalized aggregate from a finalizing vehicle in finalization area A, it
will infer the aggregation area as a circle, which is indicated by the large circle with the same center as
the dot that indicates average location. If more data is available, the receiver may be able to instead use a
rectangular shape to estimate the aggregation area.

32

introduces potential vulnurabilities, as discussed in Section 3; these vulnurabilities are part of the reason
for introducing the finalization phase. An alternative approach to computing sums interactively would be
to introduce granularity and count the different vehicles that agree with a particular status, an approach
that is used in TBEV. To determine the best solution for this issue is very challenging because the effect
of introducing granularity greatly depends on the amount of possible readings and the particular use case.
Because SeDyA cannot in general use this solution because it is intended to be as generic as possible, but an
application designer that works with a particular use-case can fix the granularity in the application, allowing
him to use TBEV’s approach.

FM and LC sketches will now be compared for their accuracy; indeed, [17] claims quite strong results for
the LC sketches, but their analysis focusses on a limited use case (temperature in a relatively small sensor
network). In SeDyA’s setting, the amount of vehicles may range from a few dozen to several hundreds,
each of which will add x different values to the sketch3, so the amount of inputs can grow quickly. For
this reason, a preliminary evaluation is performed to compare the accuracy of FM and LC sketches. There
are two relevant variables that can be changed: the available bandwidth for data and the type of input,
which is either binary (e.g., use the sketch for counting) or discrete in different sizes (e.g., use the sketch for
sum). For this brief evaluation, only the amount of information contained in the aggregate is considered: no
network simulation is used. The results have been generated using Java; for FM sketches, PCSA is always
used. The estimates for the FM sketches have been generated using the optimized formula due to [29], as
discussed in Section 3.1. To test the accuracy of a sketch, random input was generated and used to select
bits in each sketch to simulate the random identities of vehicles for which the sketches will be used. The
amount of identities and the values they reported were varied, to simulate low to high density scenarios; all
the results are aggregated into a single figure for different available bandwidth, with the amount of hashed
items on the x axis (participating vehicles times measurement size) and the relative error on the y axis.
When PCSA is used for FM sketches, the size of each individual sketch as well as the amount of sketches
used is relevant; different sizes are labeled as sizexnumber. Each of the experiments was run five times with
the same settings, but different random identities.

In [17], which claims a significant advantage for LC sketches, a sketch size of 320 bits is used. Figure
4.6a shows the accuracy for this sketch size. Note that LC sketches do not produce many results beyond
5000 inputs (e.g., 50 cars driving 100km/h). The cause of this is that an LC sketch will produce the result
’infinity’ if it is full, as also noted in [17] as a shortcoming. Similarly, FM sketches that were too small to
provide a reliable estimate, i.e., the maximum estimate of the sketch was less than the resulting value, were
also excluded, which is why FM10x32 only appears on the bottom left of the graph. Figure 4.6b shows a
more detailed image of the same graph, clearly indicating that for low input sizes LC sketches are more
appropriate. However, as the amount of inputs increases, FM sketches are more useful. In addition, recall
that FM sketches have the added advantage of having a geometric distribution, which allows them to grow
on the fly. Out of all the FM sketches, it appears that the PCSA technique with more sketches results in
more accuracy, as long as the sketch size can still count to a sufficiently high number.

Considering the fact that [17] does not consider security and therefore security overhead, a sketch size of
320 bits may be too large. Therefore, Figures 4.7a and 4.7b show similar measurements for a sketch size of
128 bits, and Figures 4.8a and 4.8b for 64 bits. For this size, LC sketches again show that they are useful
for low inputs, due to their high accuracy, but for high inputs FM sketches remain much better. Thus, LC
sketches will be used for any application that requires counting, while PCSA with FM sketches will be used
for anything that requires a large amount of inputs, such as sum computations.

4.2.3 Overhead

The third issue in the aggregation phase is that of overhead, specifically in message overhead: when ag-
gregates are more accurate, they are larger, requiring more bandwdith. Similarly, the additional security
payload required (mainly signatures and certificates) is also significant. This is particularly important when
many signatures must be produced, as is the case for the AM-FM approach. Overhead may also involve
computational overhead; again, it is prudent to consider the amount of signatures a vehicle must generate

3Recall that sums are computed by hashing the values (1, ID), (2, ID), ...(x, ID) to the sketch.

33

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5000 10000 15000 20000 25000

re
la

tiv
e

er
ro

r
in

 r
es

ul
t

inputs

"FM320x1" using 4:3
"FM160x2" using 4:3

"FM80x4" using 4:3
"FM40x8" using 4:3

"FM20x16" using 4:3
"FM10x32" using 4:3

"LC320" using 4:3

(a) Accuracy of sketches for a sketch size of 320 bits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000

re
la

tiv
e

er
ro

r
in

 r
es

ul
t

inputs

"FM320x1" using 4:3
"FM160x2" using 4:3

"FM80x4" using 4:3
"FM40x8" using 4:3

"FM20x16" using 4:3
"FM10x32" using 4:3

"LC320" using 4:3

(b) A detailed view on the graph of Figure 4.6a.

Figure 4.6: Relative error for varied amount of inputs and varied type of sketch when 320 bits are available
for data (the value mentioned in [17]).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5000 10000 15000 20000 25000 30000

re
la

tiv
e

er
ro

r
in

 r
es

ul
t

inputs

"FM128x1" using 4:3
"FM64x2" using 4:3
"FM32x4" using 4:3

"LC128" using 4:3

(a) Accuracy of sketches for a sketch size of 128 bits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000

re
la

tiv
e

er
ro

r
in

 r
es

ul
t

inputs

"FM128x1" using 4:3
"FM64x2" using 4:3
"FM32x4" using 4:3

"LC128" using 4:3

(b) A detailed view on the graph of Figure 4.7a.

Figure 4.7: Relative error for varied amount of inputs and varied type of sketch when 128 bits are available
for data (the value mentioned in [17]).

34

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000 25000 30000

re
la

tiv
e

er
ro

r
in

 r
es

ul
t

inputs

"FM64x1" using 4:3
"FM32x2" using 4:3
"FM16x4" using 4:3

"FM8x8" using 4:3
"LC64" using 4:3

(a) Accuracy of sketches for a sketch size of 64 bits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000

re
la

tiv
e

er
ro

r
in

 r
es

ul
t

inputs

"FM64x1" using 4:3
"FM32x2" using 4:3
"FM16x4" using 4:3

"FM8x8" using 4:3
"LC64" using 4:3

(b) A detailed view on the graph of Figure 4.8a.

Figure 4.8: Relative error for varied amount of inputs and varied type of sketch when 64 bits are available
for data (the value mentioned in [17]).

while evaluating the usefulness of such a scheme. The computational overhead for messages (signing and ver-
ification) can be quite high when software implementations are considered, even for regular VANET traffic,
with verification speeds of several milliseconds on a high-speed desktop machine [35], which is both unrealis-
tic hardware for an OBU and insufficiently fast for high traffic cases. However, cryptographic co-processors
promise to make cryptography sufficiently fast for such applications. Because aggregation is not very delay
sensitive, it should be able to manage with some delay as introduced by generating many signatures.

4.2.4 Discussion and conclusion

Instead of the segmented approach that is typically used in related work [17, 20], this thesis will focus on
the case where flexible aggregation is used. This flexible aggregation is achieved by first choosing a low
granularity distribution of points on a map, from which distances may be specified. Each time a vehicle
transmits its observations as a sketch, it will use a map point to specify the origin from which the aggregation
area is specified. The aggregation area itself is defined by additional sketches, that roughly estimate the
distance from the map point. Depending on the situation (highway or urban scenario), the details are
somewhat different, but in both cases the distance from map points is sufficient to define the location of the
aggregation area. It is left for the beginning of the next phase to fix a border for the aggregation area. Note
that while this introduces more inaccuracy into the aggregation mechanism, dynamic aggregation has the
very important property that it will allow aggregation to scale despite expensive security mechanisms.

From the accuracy results from the previous section, it is clear that both AM-FM sketches and AM-LC
sketches can be used in a VANET aggregation scenario, for summation and counting, respectively. This will
allow the most effective usage of the available bandwidth.

Finally, it is worth repeating that in [20], it is considered to be somewhat too inaccurate to compute sums
in the way proposed here. The work instead replaces the summation with an iterative mechanism to count
nodes that agree with a certain range. However, this is a challenging approach to accomplish in VANETs,
because nodes are much more dynamic in their behavior, and an estimate of the amount of participating
nodes is unknown to the receivers of the aggregate. It may be possible to transfer these ideas by introducing
granularity to convert the sketches that compute sums to sketches that only count. However, this will
introduce more inaccuracy, because nodes can no longer freely add values but can only state agreement
or disagreement with a particular statement, such as ‘The current average speed is 50km/h!’. In terms of
security, this is beneficial, because the attacker can now only flip one bit, limiting the impact of an attack.
An alternative to SeDyA could attempt to exploit this approach; however, as noted previously, the goal of

35

Aggregation
Area

Finalization
Area

Interested
Vehicles

Figure 4.9: The finalization phase in the context of the aggregation model.

SeDyA is also to be flexible.

4.2.5 SeDyA’s solutions

To summarize, the aggregation phase solves the problem of aggregation with both FM and LC sketches,
using them for summation and counting, respectively. To have a dynamic aggregation area that can still be
secured, additional sketches are employed to describe the distance from a fixed point that is common for
all vehicles in the aggregation area. The benefit of aggregating in time segments is considered negligible, so
fixed time segments will be used to save space. For security purposes, signatures that can be aggregated are
employed. Because it is still necessary to merge different sketches, signature aggregation is only performed
on those signatures associated with the initial sequence of 1-bits; all other signatures are included separately.
Each signature signs a position in the sketch, the fixed time segment, the fixed point and any additional
information that is constant throughout the aggregation area (that is, things like protocol version). The
transition to the next phase is left for the next section; however, to define the aggregation area, this transition
must include the location of the vehicle that performs it.

4.3 Phase 2: Finalization Phase

In the second phase of SeDyA, the main goal is to determine when an aggregate is complete, and how the
implicit finalization of this aggregate can be made explicit for security purposes. In the previous phase, the
aggregation phase, SeDyA aggregates in a relatively small, local setting to find locally stable information
such as average speed in a traffic jam. In the next phase, the dissemination phase, SeDyA will disseminate
the finalized aggregate and provide the data to the application, which can then use it to infer information
such as the fact that there is a traffic jam. The current phase determines the security of the resulting
aggregate and thus determines the quality of the information that the interested vehicles receive.

This section will discuss the process of finalization, which determines the starting point of this phase,
followed by a discussion of how to generate the multisignature that is used as the main security mechanism
in SeDyA. The main issue in this phase is how the latter; how can a multisignature be generated in a
distributed fashion, without reliable communication links? An additional issue that closely relates to this is
the time required for a message to pass through the finalization phase, which should not require waiting for
every vehicle to perform a task.

36

4.3.1 Finalization

The first issue considered here is when finalization of an aggregate should occur. In current work, final-
ization is implicitly achieved, because of the fixed aggregation area and thus bounded amount of messages
in the aggregation area (e.g., 500 meter stretches of road in SAS). However, with the introduction of dy-
namic aggregation areas in SeDyA’s aggregation phase, implicit finalization will no longer work, because
an aggregate may now grow much more. Thus, explicit finalization serves to fix the aggregation area. In
addition, explicit finalization provides the basis for the security mechanism that will be introduced later in
this section. However, the issue of when to finalize a message remains. There are many approaches to deter-
mining when a particular value is locally stable or should otherwise be considered a final message. However,
note that a simple threshold may not be sufficient, because some types of information graduately increase
or decrease over area, or the data does not segment the road into regions where the value is high or low4.
Finally, the initial data will not concern the whole aggregation area, so finalization should not occur until
most of the information is disseminated throughout the area. However, designing and implementing these
types of parameters is complex and highly application-specific. Therfore, for the remainder of this thesis, a
combination of a minimum time spent in the aggregation phase and a simple threshold will be used. The
threshold, henceforth referred to as edge threshold, indicates whether the vehicle is on an edge between two
aggregation areas based on the beacons of surrounding vehicles. The vehicles are divided into two groups
(ahead of and behind the vehicle); the edge threshold determines what the difference between the averaged
values reported by these two groups must be, for the vehicle to be considered an edge node.

Finalized message selection is the first step of this phase, where one or more vehicles will detect a message
that should be finalized. These vehicles, called edge nodes, will be either close in range to each other (e.g.,
both on the same end of a traffic jam in a highway scenario) or widely distributed (each on a different end
of a traffic jam, or an urban scenario). Each edge node will broadcast the aggregate, its signature on the
aggregate, its certificate, its location and a signature on its location. Note that all vehicles receiving this
message should check that the location lies within their communication range; if this is not the case, then
they should report an attempted attack and ignore further finalization messages from its sender (identified
by network address). Therefore, if the attacker attempts a replay attack in the same time slot, or attempts to
finalize with a faked position, she may be detected and blacklisted. The finalizing vehicle is then selected by
choosing the message with the lowest identfier, and its message is then the finalized message. Each edge node
re-broadcasts this finalized message, after which the signature collection protocol will begin. If the attacker
colludes with other vehicles5, she may be able to convince the network to use her message for the signature
collection protocol. However, because each vehicle will verify the contents of the message, the attacker can
either not have a large impact or only obtain very few signatures, which means that the attacker is no better
off than to send a message on her own behalf.

The message format is the same for both the finalization and the signature collection protocol:
〈Agg, loc, P1, σm, Sm, σv, Cv〉. These represent the aggregate data, the location of the finalizing vehicle, the
security payload from the aggregation phase, the multisignature, the set of certificates, the vehicles’ signature
and the vehicles’ certificate. The aggregate data includes the sketches for the aggregation area, the data
itself, the time slot and any other application-specific constants. All signatures in phase 2 will be generated
on (Agg, loc), thus excluding P1, which will be discarded at the end of this phase.

The main purpose of this phase, is to provide additional security guarantees. As discussed in Chapter 3,
the use of sketches provides the capability to guarantee integrity of different observations even when they
are aggregated into an aggegate message. However, it has also been shown that this leads to some potential
attacks from an adaptive attacker that performs an aggregation step, in particular when computing sums,
due to the fact that an attacker can sign more than one bit in these sketches. Recall that the attacker has full
control over her own observation, which can be generated based on the aggregates she merges. The attacker
can arbitrarily inflate or deflate the aggregate, but such an attack can be detected by neighboring vehicles,
due to the fact that the estimate of the aggregate is no longer consistent with the real world. Therefore,

4For example, consider a traffic jam; there is no hard distinction between vehicles being ‘in’ or ‘out of’ the traffic jam; there
is a lot of slow-moving traffic before and after it.

5For example, by using an exploit in the software of the surrounding vehicles.

37

vehicles should always check a received aggregate against their own knowledge; however, recall that sketches
come with significant inaccuracy, on top of the fact that the aggregate already provides an average of several
values, so this is not a perfect solution. In particular, recall that an attacker may modify her observation to
have exactly the desired impact. Potentially, an attacker can indeed have a very large impact that cannot
be detected by, for example, an over-representation of the attackers’ identity after the aggregate has been
generated. In addition to potential attacks like this one, an attacker may initialize the finalization process
at an early stage, or an aggregate may simply contain a sketch that does not appropriately represent reality
due to the probabilistic nature of sketches. These issues are all defeated by the finalization phase by giving
each vehicle in the aggregation area the opportunity to contribute a signature to the finalized message.
When a vehicle attaches its signature to such a message, this signature is used as evidence that the vehicle
agrees with the message. Agreeing with a message can be decided in many ways, but SeDyA will use a
simple threshold, henceforth called the agreement threshold, that checks its own value and the average of its
current neighbor table against the aggregate to determine whether to sign. Because attaching signatures for
every vehicle consumes a linear amount of space, and the size of a signature is significant, a multisignature
scheme will be used to compress all signatures into a single signature. The space consumed will still be
linear, because the certificates of all participants are required to verify the message. As noted by [21], it
is not information-theoretically possible to avoid including some indication of who signed what. The issue
of certificates and their size is addressed in the next chapter. However, before size becomes an issue, there
must first be an effective method to collect the signatures and certificates.

4.3.2 Signature collection protocol

This is the problem that will be solved by the signature collection protocol that is presented below. Signa-
tures are collected using a protocol similar to a broadcast dissemination protocol, such as the distance-based
scheme in [47], where the distance from the broadcasting vehicle and the transmission backoff of the current
vehicle are directly related. In a broadcast protocol, the delay grows as the vehicles are closer together; in
the signature collection protocol, the exact inverse happens. This means that the closer two vehicles are,
the faster the receiving vehicle re-broadcasts the message with the addition of its own signature. There-
fore, vehicles further away will obtain the signatures of most vehicles inbetween the previous sender and
themselves. This is illustrated in Figure 4.10. Vehicles can use beacons to estimate the amount of vehicles
between the original sender and themselves; a vehicle should schedule its transmission to occur after that of
the intermediate vehicles to avoid collisions. To prevent flooding and make scheduling easier, only a small
fixed amount of messages should be sent per beaconing interval.

Recall that a message is formatted as 〈Agg, loc, P1, σm, Sm, σv, Cv〉, representing the aggregate data, the
location of the finalizing vehicle, the security payload from the aggregation phase, the multisignature, the
set of certificates, the vehicles’ signature and the vehicles’ certificate, respectively. After a vehicle A receives
such messages in sequence from three vehicles B,C,D, represented in Figure 4.10 by a dotted, dashed and
solid line respectively, it will have computed σm · σB · σC · σD. More precisely, after receiving the message
from B, A will compute σm · σB ; after it receives the message from C, it will compute σm · σB · σC and so
on. This applies only when the certificate sets Sm (and thus the multisignatures σm) are the same for each
received message. If the certificate sets differ, but only by certificates of vehicles from which A received a
message, then A will still have the individual signatures. For example, consider the case where B transmits
first, with σm and σB , then C sends with σm and σC . Now, D sends σm · σB and σD. If A receives such
messages, it can still compute σm · σB · σC from the available signatures. However, when the certificate sets
differ by a vehicle from which A has not received a message, then A may compute its σm by multiplying
the conflicting multisignatures in addition to the signatures of the neighbors (i.e., σm1 · σm2 · σB · σC). The
disadvantage of this solution is that the certificate set will be a multiset that grows faster as this type of
problem occurs more often. However, the inclusion of the individual signature (rather than only sending
σm · σID) and the scheduling should limit the necessity of this solution to a minimum.

This protocol allows most runs to successfully provide a number of signatures that is close to the amount
of vehicles in the area, for an aggregate that is legitimate. There is always the risk that loss will cause some
missing signatures, as well as the risk that vehicles have left the aggregation area since their contribution to

38

A

B

C

DA

B

C

Transmission of messages,
chronologically ordered:

Figure 4.10: This figure shows four vehicles, where three have broadcasted the message with their signature.
The broadcasts are indicated by circles; the dotted line is the oldest broadcast and the line is the most recent
one. The right-most vehicle receives the dotted broadcast first, at which point it queues a message with
σm · σdotted. It then receives the dashed broadcast and updates to σm · σdotted · σdashed. Finally the line
broadcast is received, which contains the multisignature σm · σdotted. The right-most vehicle knows σdotted,
so she can compute σm · σdotted · σdashed · σline.

39

Aggregation
Area

Finalization
Area

Interested
Vehicles

Figure 4.11: The dissemination phase in the context of the aggregation model.

the aggregate. Finally, it may be considered desirable to further limit the amount of certificates. This can
be achieved by allowing the finalizing vehicle to select a signing policy that specifies with which probability
a vehicle should include its signature.

4.3.3 SeDyA’s solutions

In summary, the finalization phase performs the most important tasks with respect to security. The transition
from the aggregation phase works by detecting that the message is complete when compared with the beacons
of the neighbors, followed by a broadcast of the finalized message by this vehicle and any nearby vehicles
that have come to the same conclusion. Security is increased in this phase by forwarding the finalized
message through the aggregation area and allowing vehicles to add their signature when they agree with
the message. To save resources, but retain the advantages of these explicit signatures, multisignatures are
employed to compress signatures into a single one. To collect the signatures for generating a multisignature,
the signature collection protocol is used, which operates in parallel with forwarding the message through the
aggregation area. Therefore, as the message is forwarded, the multisignature is generated at the same time.
The transition to the next phase is not explicit. When a vehicle detects it is outside the aggregation area, it
can drop the security payload from the aggregation phase and continue with the dissemination phase.

4.4 Phase 3: Dissemination Phase

In the third and last phase, the dissemination phase, the goal is to distribute the finalized messages and
associated multisignatures and certificate sets to interested vehicles beyond the bounds of the aggregation
area. This is illustrated in Figure 4.11. The interested vehicles can then use this information for a number
of aggregation applications such as traffic statistics, traffic routing, finding free parking spaces and traffic
jam detection. For such applications to operate properly, the information must be accurate and protected
from tampering by attackers; different approaches for this detection is the main challenge in this phase.
The dissemination process in this phase is trivial; any efficient broadcast dissemination scheme will perform
reasonably.

Recall from the aggregation phase that there is now a dynamic aggregation area, which varies in size
depending on the particular aggregate. This makes defining remote impersonation attacks slightly more dif-
ficult, because such attacks are, strictly speaking, any vehicle that contributes to an aggregate from outside
the aggregation area. Now that the aggregation area no longer has a fixed bound, a remote impersonation
attack is no longer defined before aggregation is finalized, because the bound is probabilistic. However, in
general SeDyA is particularly interested in vehicles that are relatively far from the aggregation area; protec-

40

tion against attacks by vehicles just outside the aggregation area can be prevented through the measures in
the other two phases.

Note that it is reasonable to assume that the attacker must have a significant impact on the aggregate
in order to consider her attack successful, because the probabilistic nature of aggregates make small modifi-
cations irrelevant. The attacker will require the message to not only carry the modified aggregate, but also
that the receivers will have confidence that the message is legitimate. Without these properties, an attack
does not help, and these two are exactly the properties that SeDyA aims to take away in its first two phases.
Thus, part of the security of SeDyA involves how interested vehicles will treat the information they are sent.

In addition, it may be desirable to be able to merge two finalized messages into a larger one (e.g.,
consider a traffic jam with a small gap where vehicles drive twice the speed). This is easy when finalization
is implicit, but an attacker can abuse this legitimate use case to modify the aggregate even when she is not
in the aggregation area. Each of these issues is discussed seperately below, along with an indication of how
to solve them.

4.4.1 Confidence

The main issue in this phase is the confidence an interested vehicle can assign to the contents of message.
SeDyA’s first two phases can only provide so much; in the end, it remains the case that the attacker is in
possession of key material, which may be used to transmit malicious information with valid signatures. This
cannot be changed by any cryptographic mechanism; the best that can be done is to guarantee maximum
detection of malicious data and to limit the key material available by revocation and legal protection. The
question remains, how can the confidence in any message be quantified, such as to be useful to the interested
vehicle that is attempting to estimate the value of a message she just received. As already noted in the
discussion of SeDyA’s second phase, the amount of certificates attached to the received message should play
an important role here. In addition, note that the message will contain a sketch that estimates the amount of
participating vehicles for the purpose of computing an average; while somewhat inaccurate, this can be used
to compare against the amount of signing vehicles. Freshness of the message is another useful parameter
that can be used to indicate how confident the reciever of the message should be about its content. Finally,
the detection of attacks will play a large role in the quantification of confidence, as the likelyhood of an
attack is directly associated with how trustworthy the message is.

Confidence quantification can also be used to provide the necessary bounds on the dissemination phase,
by avoiding the selection of messages with low confidence. Given infinite bandwidth, it does not make sense
to limite the available bandwidth for each message. Since the available bandwidth can vary greatly over
the range of interested vehicles, the most convenient approach is to assume infinite bandwidth and make
a best effort to disseminate the most useful information. This usefulness can be determined directly by
a vehicle’s confidence in a message. However, it is out of scope for SeDyA to introduce a new best-effort
broadcast dissemination scheme, the parameters above should provide some insight in the usefulness of such
a scheme. SeDyA assumes that an arbitrary protocol is used to disseminate the messages as far as possible
given bandwidth constraints. The only requirement made for such a scheme is that each vehicle should at
least verify that the sender of the message and the aggregation area are roughly on the same side of the
vehicle. The lack thereof indicates that a remote impersonation attack may be in progress.

4.4.2 Attack detection

The detection of such remote impersonation attacks is one of the basic heuristics that SeDyA uses to
detect attacks. In general, it is difficult to evaluate whether an attack is in progress based on messages
alone, as shown by the continued research effort in intrusion detection systems. However, in VANETs
there is additional information available; physical models provide the initial sanity checks to detect absurd
statements such as speeds of thousands of kilometers per hour. This approach of incorporating different
sources of information and using them to detect attacks is fundemental to the field of data consistency,
which has recently gained interest from the research community. However, instead of developing an entirely
new method of performing data consistency, SeDyA may be used as an information source in such a scheme.

41

SeDyA offers some useful additional metrics to detect attacks, which are non-trivial to obtain in a generic
data consistency setting. Note that data consistency checks should occur in every phase, although SeDyA
can only be used as input in the dissemination phase.

Vehicles that are disseminating a finalized aggregate should check the contents of such an aggregate
against the real world, detecting any attacks that contradict with the physical model. This includes the
source of the message, which is especially useful in highway scenarios; a message that is being forwarded
by vehicles behind, but contains claims about an area in front, is suspicious. Another obvious source of an
attack is two conflicting views about the same region, or different messages for that same region. Because
a vehicle should still forward information, and it cannot always determine which of the two is the malicious
message, it can forward both messages together in this situation.

4.4.3 Further aggregation and its challenges

Finally, despite dynamic aggregation, vehicles may want to merge the different aggregated messages they
receive into a single one. For example, it may happen that two traffic jams are close together, but there is a
gap of about one kilometer. While this operation is trivial in an aggregation scheme that does not consider
security, a secure solution is more challenging, because the very purpose of such a solution is to keep two
distinct finalized messages separate. Existing work on secure aggregation does not provide a solution for this
issue. For example, if SAS used, then merging two implicitly finalized messages about different road segments
would merge two sets of proofs with different inputs to their cryptographic signatures. As a consequence,
the receiver is no longer able to verify the messages, because she cannot determine which content is signed
with which fixed piece of information.

The same issue exists with SeDyA, but it will occur much less frequently due to the dynamic aggregation
mechanism. In this setting, the only further ‘aggregation’ possible after the finalization of the message
is appending more certificates and signatures to the message. In theory, it is possible that an attacker
has network access both inside the aggregation area and on the path between the aggregation area and the
interested vehicles. This attacker can exploit the possibility of adding signatures by attacking the aggregation
phase by modifying the aggregate only by a limited amount, such that some vehicles in the aggregation area
will still agree to sign it. She can then use her network access on the path to add additional signatures with
newer pseudonyms, as they become available, to increase the confidence in this message. However, such
attacks are not very relevant, because they rely on a number of unrealistic assumptions and the impact of
the attack is insignificant, unless the expected amount of signers for legitimate messages is very low. The
most notable assumption necessary for this attack is that the attacker needs sufficient knowledge about the
aggregation area to predict the behavior of participating vehicles. It is possible for the attacker to generate
an attack with higher impact as she obtains possession of more key material; however, the best that such an
attacker can do is induce conflicting world views in the interested vehicles, because of the honest majority
assumption.

One possible approach to achieve aggregation beyond the bounds of the fixed points regardless of these
issues is to allow vehicles to consider aggregates they receive as an observation. However, this severely hurts
the mechanisms that detect attacks, because vehicles that are not in an aggregation area may now suddenly
make claims about that area. The only feasible approach is to allow application designers to create specific
statements, such as ‘in the next twenty kilometers, there is no traffic jam’, and perform binary counting on
them. This approach is similar to that of TBEV, but it does not take advantage of the possibility of dynamic
aggregation that SeDyA offers and still risks attacks.

4.4.4 SeDyA’s solutions

This final phase of SeDyA can use any existing dissemination protocol to forward messages throughout the
network. The main purpose of aggregation is to allow the rest of the network to learn the state of each
aggregation area. Each vehicle that receives a finalized message can compute its confidence in the message
and determine how useful it is: for this purpose SeDyA specifies the amount of signers, the proximity of
the aggregation area and the freshness of the message. For the dissemination of the messages, SeDyA does

42

not put constraints on forwarding but instead optimizes by re-arranging the forwarded messages, such that
the most useful messages are forwarded first. This is determined by the confidence that was assigned to the
message; another measure that will be used is the attack probability, which can be determined by comparing
the amount of signers with the considered amount of vehicles in the area and the size of the area.

4.5 Summary

This chapter has discussed the ideas and goals that SeDyA aims to achieve, including a high-level overview of
how SeDyA works and its relation to related work. SeDyA splits the process of secure VANET aggregation
into three parts, which it solves with individual solutions that each contribute to an increased level of security.
The aggregation phase shows how to obtain agreement within the aggregation area about the data and the
bounds, while the finalization area shows how to finalize this decision and generate a multisignature that
shows that the process was indeed performed correctly. The dissemination phase discusses how to forward the
messages through the rest of the network, what kind of guarantees are offered and how those guarantees relate
to the previous phases. Finally, the dissemination phase also explains how to apply SeDyA by discussing
factors that contribute to attack detection and that provide confidence metrics that may be used in data
consistency mechanisms. What remains now is to determine how to implement SeDyA efficiently, using
cryptographic schemes to provide the primitives that were assumed in this chapter.

43

44

Chapter 5

SeDyA: implementation

This chapter discusses implementation issues in SeDyA, consisting of cryptographic schemes and a more
detailed discussion of bandwidth consumption and certification authorities. It will begin by introducing the
necessary cryptographic background, discussing every option that is considered for securing SeDyA. This
will be followed by a selection of cryptographic schemes for the aggregation and finalization phases from
the previous chapter and a discussion of the alternatives. Subsequently, the first two phases of SeDyA will
be reviewed in light of the implementation issues and the chapter will conclude with a complete overview
of SeDyA that includes the implementation issues. The dissemination phase is not discussed; secure and
efficient dissemination of the resulting messages that SeDyA produces is an entirely different field. For the
implementation used for the evaluation, simple flooding with a forwarding probability of 1

2 is used, analogous
to the first phase.

5.1 Cryptographic Background

This section will introduce the necessary cryptographic background to understand the details of SeDyA. This
includes the introduction of elliptic curve and bilinear pairing-based cryptography, each with a discussion
of the different cryptographic schemes that may be used in SeDyA: ECDSA and ECQV ECDSA for elliptic
curves; IBMS and IBAS for pairing-based cryptography.

Recall SeDyA involves three types of cryptographic signatures; regular signatures, multisignatures and
aggregate signatures. The definitions are repeated here:

Signature For a regular one signer generates a signature on one message using her private key. The
signature can then be verified by anyone that has posession of a legitmate copy of the corresponding public
key.

Multisignature Given a group of n participants, each with their own keypair (pki, ski) a multisignature
on a message M can be generated by any subset of all participants L by computing it from the individual
signature that each participant generates on M . Then, the signature can be verified by using all the public
keys of the participants in L and computing from them the ‘public key’ of L.

Aggregate signature Given a group of n distinct participants and n distinct messages, an aggregate
signature is a signature that can be computed from the signatures that are generated by each participant on
its own message.

5.1.1 Elliptic Curve Cryptography

This section will discuss some of the basics for elliptic curve cryptography (ECC), giving an intuition of how
a curve is used and which hard problems play a role. This discussion forms the basis for the subsequent
sections that discuss identity-based encryption (IBE) and (multi)signatures, both of which require knowledge
of ECC basics.

45

An elliptic curve is essentially a function with two parameters, which can be written as1: y2 = x3+a·x+b.
Here, a and b are the values that define the shape of the curve, and thus which points will be on the curve.
Each point is simply (x, y); the operation on a curve is point addition (as opposed to multiplication in RSA).
The way to obtain these points differs for each curve definition; an overview can be found on the webpage
provided in the previous footnote. For cryptography, one typically uses carefully chosen elliptic curves over
finite fields, i.e., x, y ∈ Fq, typically written as E(Fq). It can be proven that the points on an elliptic curve
over finite fields always forms a cyclic group [31], which can be used for cryptographic purposes by defining
a discrete logarithm problem over it. Given that P ∈ E(Fq) is a point that generates the curve, the discrete
logarithm problem (DLP) can be written as finding a ∈ Z given aP, P (analogous to the problem in fields;
finding x ∈ Z given gx, g ∈ Zq). Similarly, the computational and decisional diffie-hellman problems (CDH
and DDH) can be written as finding abP given P, aP, bP and determining whether c = ab given P, aP, bP, cP
respectively. These are the hard problems on which the diffie-hellman key exchange is built, among many
other public key cryptography schemes, and they often form the basis of a security proof.

ECDSA

One of these sechemes is the Digital Signature Algorithm (DSA). Elliptic curve cryptography can be applied
to provide signatures using the Elliptic Curve Digital Signature Algorithm (ECDSA). ECDSA is the standard
signing algorithm for VANETs, as stated in IEEE 1609.2 [1]. The algorithm is briefly repeated here to
illustrate its operation2.
Setup Select a generator P of group G, set n = |G| and a hash function H : {0, 1}∗ → [1, n− 1].
Key Generation is performed by taking a random private key d ∈ [1, n− 1] and a public key PK = d · P .
Signing of a message M is performed by computing z = H(M), selecting a random value k ∈ [1, n − 1]
and computing r = (k ·P)x mod n, where the x signifies taking the x component of the point on the curve.
Finally, compute s = k−1(z + r · d) mod n and let the signature be (r, s).
Verification of signature σ = (r, s) can be performed by again computing z = H(M). Now, take w = s−1

mod n, compute u1 = z ·w and u2 = r ·w (both mod n). Finally, compute the point R = u1 ·G+ u2 · PK
and check that the x-coordinate matches: Rx = r.

ECQV ECDSA

The Elliptic Curve Qu-Vanstone (ECQV) implicit certificate scheme is one of several implicit certifcation
schemes that is commonly combined with ECDSA signatures. In principle, implicit certificates replace the
actual certificate by an identity and a value, as opposed to an explicit certificate which has an idenity, a
signature and a public key. The implicit certificate can be used directly for encryption (or signing) and its
most important advantage is the size of the (implicit) certificate is smaller, saving bandwidth in scenarios
where many public keys are not known to the receiver. The setting is the same as ECDSA, but the key
generation phase is now as follows, interactively between the CA and the user. The CA key pair is generated
as any other key, with random c and C = cP , same as the regular ECDSA setting. Note that in ECDSA, the
CA was not discussed, because certification happens by regular X.509 means; however, ECQV changes this.
The user generates a certification request R = rq · P , using a random value rq. The implicit certificate can
be computed as IC = R+k ·P , with an implicit signature sig = c+H(IC, ID) ·k and a random k such that
k ∈ [0, n]. The key pair is then determined as sig +H(IC, ID) · rq as private key and C +H(IC, ID) · IC
as public key. Here ID is the identity of the user; the choice for k is made by the CA. The key pair is
computed by the user, while the implicit certificate and signature are computed by the CA. Now, the public
key is implicitly certified, meaning that anyone who generates a signature that verifies with this key is in
possession of the corresponding private key. Note that when transmitting a message, the user should send

1This is the Weierstrass curve; others, such as Montgomery or Twisted Edwards curves exist. Some curves may be rewrit-
ten to others and some are computationally cheaper than others; see http://hyperelliptic.org/EFD/g1p/index.html for a
comprehensive overview.

2An extensive description may be found in the standard ANSI X9.62 and FIPS 186-3, which discusses appropriate curves
and similar details.

46

http://hyperelliptic.org/EFD/g1p/index.html

the implicit certificate and the signature she generates, not the public key and the signature, because anyone
can re-compute the public key from the certificate and the identity of the user.

When verifying many signatures in a short time, both ECQV ECDSA and ECDSA can still be too
much for a regular OBU’s processor. However, cryptographic co-processors are capable of doing the required
operations (one inversion mod n, 3 scalar multiplications +1 for reconstruction, 1 point addition +1 for
reconstruction) in less about 1 ms, assuming that scalar multiplication is the most expensive operation [30].

5.1.2 Pairing-based Cryptography & Identity Based Encryption

Just like RSA primes, elliptic curves must be carefully chosen to build a secure system. One of the issues
encountered when using elliptic curves is that of pairings3. These pairings map two points of an elliptic curve
to a group G using a bilinear map. The map is of particular interest because another class of cryptosystems
can be built on them; such a map is defined as e : E(Fq)×E(Fq)→ G and respects two important properties:
e(P + Q,R) = e(P,R)e(Q,R) as well as e(P,Q + R) = e(P,Q)e(P,R) for all points P,Q,R ∈ E(Fq)
(bilinearity) and for all P 6= 0 : ∃Q ∈ E(Fq) : e(P,Q) 6= 1 (non-degeneracy). Note that bilinearity implies
that e(aP,Q) = e(P,Q)a = e(P, aQ), a useful property that is exploited by a variety of cryptosystems. One
of the classes of elliptic curves on which pairings with these properties can be defined are called supersingular
curves.

Note the properties of pairings obviously defeat cryptosystems based on these curves that require hard-
ness of the DDH problem on elliptic curves; it is now simple to check that e(P, cP) = e(P, abP) by testing
against e(aP, bP). However, a new problem can now be defined, the bilinear diffie-hellman problem (BDH):
find e(P, P)abc given P, aP, bP, cP . Using this problem, we can implement identity-based encryption (IBE),
where the idea is to replace the public key of a user with a name or address. After Boneh et al. [7] intro-
duced a practical IBE encryption scheme on pairings, many have followed to implement improvements and
adjustments, including signatures based on IBE, certificateless encryption and certificate-based encryption.
The general structure of all these schemes follows that of the original scheme. This scheme contains a single
trusted third party (the CA), which issues private keys based on the name of the user, or some other unique
identifier, such as a hash of name and validity period. The public key is determined using a hash function
and the public key of the CA; decryption is performed using the issued private key and the public key of the
server.

Basic IBE consists of four phases; setup, private key extraction, encryption and decryption.
Setup The CA selects the parameters, including a generator P for the group of the curve 〈P 〉, the group
of the map G, two hash functions, a master key s and computes its public key sP . The hash function
H1 : {0, 1}∗ → 〈P 〉 and H2 : G→M ∈ {0, 1}n.
Extract key The CA computes a key dI from identity I ∈ {0, 1}∗ as dI = sH1(I), sent to the user over a
secure channel.
Encrypt Encryption of M ∈ {0, 1}nis performed by computing mask = H2(e(H1(I), sP)r) the ciphertext
C = (rP,M ⊕mask).
Decrypt Decryption of4 (U, V) also performed by computing mask: H2(e(dI , U)) and then M = V ⊕mask.

This works because e(dI , U) = e(sH1(I), rP) = e(H1(I), P)rs = e(H1(I), sP)r, which is exactly what
was used as input of an encryption operation. Notice that breaking this is indeed the BDH problem: P and
sP are known, rP is transmitted as part of the message and H1(I) = aP (for some a, because the group is
cyclic) is the public key of the user. To decrypt the message, one must compute e(P, P)sra = e(H1(I), sP)r

from these four values; this is exactly the BDH problem.
Full IBE adds protection against adaptive chosen ciphertext attacks. This scheme works for similar reason

as the basic scheme; it just adds some additional randomness. The additional protection is implemented as
follows (key extraction remains the same):
Setup Select two more hash functions, H3 : {0, 1}n → Z∗q and H4 : {0, 1}n → {0, 1}n.
Encryption Choose σ ∈ {0, 1}n and compute r = H3(σ,M). Then compute the ciphertext as C =
(rP, σ ⊕mask,M ⊕H4(σ)), where mask is computed as before.

3Various types exist; most common are Weil and Tate pairings.
4Note on notation: (U, V) is used to clearly indicate the knowledge used while decrypting.

47

Decryption Using ciphertext (U, V,W), compute σ = V ⊕H2(e(dI , U)) and M = W ⊕H4(σ). Also, verify
that U = H3(σ,M)P .

Identity based signatures To generate signatures from an IBE scheme, extend the basic IBE scheme of
Boneh et al. with a third hash function H3 : {0, 1}∗× 〈P 〉 → Z∗q . A signature on message M is generated as
follows: set U = rH1(I), h = H3(M,U) and output signature (U, (r + h)dI).
A signature (U, V) can be verified by recomputing h and checking that e(P, V) = e(sP, U + hH1(I)).
This works, because e(P, V) = e(P, (r + h)dI) = e(sP, (r + h)H1(I)) = e(sP, rH1(I) + hH1(I)) = e(sP, U +
hH1(I)). These signatures are called identity based signatures (IBS).

It has been proposed to use IBE signatures for general VANET security [28]. However, this scheme makes
very strong assumptions about the available processing power in each vehicle. In aggregation, however,
signature verification and other mechanisms that provide guarantees on aggregated messages are not high
priority; they can tolerate some delay. Therefore, IBS may be applied to obtain very small public keys at
the cost of more delay. Recall that in VANETs, it is assumed that public keys are not known in advance, so
certificates should be transmitted to allow verification of each message. An aggregate may be signed by many
vehicles, all of which agree with the message; multisignatures allow the combination of all their signatures
into a single signature. If IBS can be combined with multisignatures, then it is possible to generate a message
M with an arbitrary set of signers L with very limited overhead, because the certificates are only an identity.

5.1.3 Multisignatures and IBS

This section will discuss two schemes; the first illustrates the possibility of multisignatures on an elliptic
curve-like group and how they work; the second shows an identity-based multisignature (IBMS) scheme.
In the ideal case, identity based multisignatures (IBMS) provide constant signature size and very small
public keys, allowing for a large amount of users to sign a single message without prohibitive overhead. The
first scheme that will be discussed is based on Gap Diffie-Hellman groups, which is computationally cheap
but not identity based. This scheme serves as an example how multisignatures may be implemented. The
second scheme will provide IBMS with small keys, constant signature size and the possibility to dynamically
merge several (multi)signatures into one multisignature. The core disadvantages of that scheme are that the
identity of the signers is not authenticated and the relatively large verification time.

Boldyreva [6] introduced a number of signature schemes based on so called Gap Diffie-Hellman groups.
These groups are those where the DDH problem is easy, but the CDH problem is hard. Recall that for
supersingular elliptic curves, on which pairings can be defined, this was indeed the case, so such groups exist
(see [26] for construction examples). Given such a curve, it is now possible to create the multisignature
schemes from [6] in practice. The scheme consists of four phases; setup, key generation, signing and verifi-
cation.
Setup Select a generator g of group G, set p = |G| and a hash function H : {0, 1}∗ → G.
Key Generation is performed by all participants just like a normal signature scheme; select random x ∈ Z∗p
and compute the keypair (x, gx), where x is the secret key.
Signing of a message M is performed by a subset L of all participants as H(M)xi for participant Pi. Then
the multisignature can be computed by a designated signer D (which can be anyone that knows the param-
eters of the setup) as

∏
j∈L σj .

Verification of signature σ can be done by computing the product of the public keys of all participants
PKL =

∏
j∈L g

xj and then using the regular signature verification algorithm to verify the signature, which
is simply answering DDH for g, PKL, H(M), σ. Note that knowledge of σ,M and L is required to check the
signature on M .

[21] introduces an IBMS scheme as a first step to creating an identity based aggregate signature (IBAS)
scheme. The scheme is surprisingly simple and signing is a relatively cheap operation; however, verification
requires three pairing operations and n point additions (for n participants) and it is not possible to work
with multiple CAs in the same multisignature.
Setup Generate two groups G1, G2 of prime order q and a pairing e : G1 ×G1 → G2, a generator P of G1,
a master secret key s ∈ Z/qZ and master public key sP , and two hash functions H1, H2 that both map text

48

to G1.
Key generation Given identity I, compute the keypair with public key H1(I) and secret key sH1(I).
Sign Choose random ri ∈ Z/qZ and compute the signature as (riH2(m) + sH1(I), riP).
Aggregation To aggregate signatures, simply perform point addition for all the individual signatures;
(
∑
i Si,

∑
i Ti) for signatures written as (Si, Ti).

Verify Given a multisignature (Sn, Tn), verify that e(Sn, P) = e(Tn, H2(m))e(sP,
∑
i Pi).

Using the IBMS scheme in [21], it is possible to create multisignatures in the desired fashion. What
remains to be done for a reliable aggregation mechanism is to build a component that properly generates a
fixed message for all vehicles to sign, a way to detect or avoid sybil attacks and a way to prevent a vehicle
from tampering with the location and time indication. It may be argued that the use of IBAS is perferable
here, but such a scheme requires that all messages be forwarded to obtain a verifiable aggregate signature.
The purpose of aggregation in VANETs is to aggregate the messages, not the signatures, so multisignatures
are sufficient. In theory, sybil detection by the server is easy; just check which identities belong to which
vehicle and see if a duplicate pops up. However, in the current IBMS scheme it is possible for the server to
sign messages on behalf of another user; this inherent key escrow should also be addressed.

5.1.4 Aggregate signatures and IBS

This section will discuss the aggregate signatures that [21] introduces. The ideas used by this scheme are
almost identical to those in the multisignature setting, except that they need an additional unique message.
For similar reasons, it is still not possible to work with multiple CAs in the same multisignature. The scheme
works as follows:
Setup Generate two groups G1, G2 of prime order q and a pairing e : G1 ×G1 → G2, a generator P of G1,
a master secret key s ∈ Z/qZ and master public key sP , two hash functions H1, H2 that both map text to
G1, and a hash function H3 that maps text to Z/qZ.
Key generation Given identity I, the CA will compute two keypairs with public keys Pi,0 = H1(Ii, 0),
Pi,1 = H1(Ii, 1) and private keys sH1(I, 0), sH1(I, 1) respectively.
Sign Determine a w that has not been used before, which will be the same for each message. It need not be
random, only unique to this signing procedure. Compute H2(w), ci = H3(mi, Ii, w) and generate random
ri ∈ Z/qZ; then the signature is (w, riH2(w) + sPi,0 + cisPi,1, riP).
Aggregation To aggregate signatures, simply perform point addition for all the individual signatures;
(w,

∑
i Si,

∑
i Ti) for signatures written as (w, Si, Ti). It is not allowed to aggregate signatures with different

w.
Verify Given a multisignature (w, Sn, Tn), verify that e(Sn, P) = e(Tn, H2(w))e(sP,

∑
i Pi,0 +

∑
i Pi,1).

5.1.5 Computational cost

A distinct disadvantage of using IBE-based schemes is the required computation time. However, similar
to ECDSA, recent work has made progress in developing cryptographic co-processors for these groups as
well [2, 4], showing that computation times in the millisecond range should be possible when supported by
such a co-processor. However, the cost of such a co-processor is currently still unknown; it may be difficult
to obtain cheap co-processors with this level of performance.

5.2 Phase 1: Aggregation Phase

The aggregation phase is the phase that finds the locally stable values and sets the aggregation area. Be-
cause the aggregation phase controls these two aspects of aggregation, its main security concerns relate to
integrity. In addition to the actual cryptographic signature type, this section will discuss privacy issues and
message overhead. Although the security mechanisms in this phase are not that different from related secure

49

aggregation schemes, they introduce a major message overhead; this section will therefore conclude with
several optimizations that will be considered for evaluation.

5.2.1 Signatures

Recall that in this phase, the main goal is to find locally stable values, meaning that there are some time
constraints to make detection of such values a smooth process. For this reason, identity-based encryption,
with its expensive pairing operations, is difficult to justify. Thus, at first glance, it is beneficial to use ECQV
ECDSA to generate the necessary signatures, due to the slightly increased efficiency and reduced overhead
compared to plain ECDSA. The simplest approach is to use ECQV ECDSA or regular ECDSA depending
on what is mandated by standards for regular VANET messages and beacons.

However, the amount of required signatures is too large to transmit in many cases. For this reason,
SeDyA will use aggregate signatures to reduce the size. The aggregate signatures will be used on all the
FM sketches, which are easy to aggregate, while the LC sketches will retain regular signatures, because
the distribution of bits is uniform in this type, meaning that aggregation of signatures will be very rare.
However, currently known aggregate signature schemes operate in an identity-based fashion, which reduces
the overhead of involved public keys, but increases computational cost. As discussed in Section 5.1.5, the
pairing operations that make identity-based encryption so expensive may be computed faster by using a
cryptographic co-processor. In addition, note that the use of multisignatures in the finalization phase also
requires the use of identity-based encryption, so using it for this phase saves on key material and thus on
overhead due to certificates.

5.2.2 Overhead

Another important issue is that of bandwidth overhead. The overhead of signatures and certificates is
important, because larger messages and the subsequent wireless channel congestion will also influence the
dissemination speed of the messages in the aggregation phase. Unfortunately, the authors that introduced
the AM-FM approach [20] do not provide many additional insights on how to limit the overhead. Their
evaluation features 256 FM sketches with a size of log2(105) to count a single binary value, resulting in 4252
signatures. However, in their setting, the event is always binary and there is much more available bandwidth.
For VANETs, 4252 signatures is too large by at least an order of magnitude; however, even reducing the
amount of sketches by an order of magnitude to obtain 4 sketches of 16 bits each still leaves 64 signatures for
a single sketch. In addition, note that more than one of these sets is required. SeDyA requires the inclusion
of inflation and deflation free sketches for the amount of participants and the location of the vehicles, in
addition to the data, resulting in a total of 8 · 64 bits of data and a maximum of 512 signatures. Therefore,
bandwidth optimization is required.

One very effective bandwidth optimization is the use of aggregate signatures. The simplest method to
obtain this result is by replacing the ECQV ECDSA signatures with the IBAS scheme discussed in Section
5.1.4. The required unique w, which is a value that is constant for all signatures that can be aggregated,
can be obtained by using the same fixed inputs as used as input for the signing procedure of every bit in
the FM sketch, i.e., the fixed point(s) used for location and the time epoch. The additional advantage is
that vehicles will also have small public keys, and they will use the same public keys for the aggregation and
finalization phase. Aggregate signatures can be applied effectively to FM sketches, where the first 1-bits will
likely be set quite quickly. In addition, due to the geometric distribution of bits over an FM sketch, it is very
likely that a large sequence of bits will occur at the start of the sketch, compared to a uniform distribution
that exists for LC sketches. Since the signatures should never be discarded anyway, and the only important
thing for verification is that the receiver knows which certificate was used to sign which bit, the signatures
may be aggregated into a single signature. When two aggregates are merged, the aggregate signature that
covers the largest amount of bits is used and any further signatures on one bits are aggregated into it, such
that the result again covers all the one bits before the first zero bit. Thus, if all the bits in a sketch are one
bits, the aggregate signatures will be used to compress the signatures to one signature in each sketch, which
will reduce the previous worst-case scenario to 4 · 8 = 32 signatures. It is possible that up to 512− 32 = 480

50

signatures will be in the sketch (when the first bit in each sketch is zero and the rest is all one), but due to
the geometric distribution of values in sketches, this is extremely unlikely. However, the worst-case scenario
still contains 512 certificates, assuming each vehicle signs exactly one distinct bit.

One extra way of saving bandwidth can be found in traditional broadcast storm avoidance techniques [46].
SeDyA is implemented with the simplest possible method, which sends a message only with probability 1

2 ,
if it is generated based on a previously received aggregate. Because this approach is random, it is difficult
for the attacker to exploit the technique for its own means, contrary to other broadcast storm avoidance
techniques that require more thorough analysis to reach this conclusion. Also, the forwarding probability is
sufficiently high, such that the attacker still needs to generate a significant amount of messages to manipulate
the behavior of vehicles. This type of pure flooding based denial of service attack cannot be prevented, and
this is thus not considered in the evaluation of SeDyA.

Finally, certificates are also an issue; each certificate must be known to the receiver in order to be able to
verify it. In the näıve case, certificates are always included, resulting in an additional 512 certificates (worst
case) to be included. However, for one-hop message authentication, recent work on certificate omission
has shown that significant bandwidth can be saved by intelligently omitting certificates, particularly in a
congested scenario [18]. This scenario matches closely with that of aggregation; indeed, most vehicles will
be interested to know where on the road the biggest congestions are. In addition, note that vehicles in an
aggregation area will repeatedly need the certificates of the other vehicles already, to verify the beacons they
receive and to participate in the finalization of an aggregate.

5.2.3 Privacy

Privacy is not a strong concern in this phase, because of its limited duration. However, note that a standard
privacy mechanism like pseudonyms may introduce vulnurabilities by allowing the attacker to use multiple
key pairs at the same time. This type of sybil attack is usually prevented by restricting pseudonyms to
specific time segments (the pseudonym period), which are included in the certificate meta-data. For privacy
reasons it may be desireable to allow some overlap in the pseudonym period to avoid linking of two subsequent
pseudonyms based on message content [22]. This may be exploited by the attacker, which is why vehicles
must always check the contents of a message before contributing to it, using plausibility checks that check
the message against the vehicle’s current value and the vehicle’s neighbour table. However, such checks are
always heuristic in nature; therefore, it is necessary for CAs to be able to resolve the pseudonymity provided
by pseudonyms in cases of legal dispute or a suspected attack. Although policies for such procedures are out
of scope for this thesis, it should be noted that revocation of pseudonymity should be a last-resort measure
and the security of a scheme should not rely on it.

5.3 Phase 2: Finalization Phase

Cryptographically speaking, this phase is the most interesting: in the aggregation phase, some manipulation
may be unavoidable, but the result of the finalization phase should be as precise as possible. Recall that
each vehicle is given the opportunity to submit its signature in this phase, declaring their agreement with a
particular aggregate. The protocol defined in the previous chapter collects all these signatures while at the
same time computing the multisignature.

5.3.1 Signatures

As already pointed out in the previous section and chapter, this phase uses multisignatures to reduce the
overhead. The reason for this is that multisignatures allow a constant size signature that is the product of
many signatures, which can be verified using the product of all public keys. This means that the signature
size is constant and thus that the overhead is greatly reduced. In addition, by employing the IBMS scheme
that was discussed in Section 5.1.3, the certificate size can be reduced significantly to about 20 bytes by
retaining only a unique identity and a moment of expiry. However, similar to the aggregate signatures in
the previous section, computational efficiency may be an issue. Considering that the finalization phase is

51

less time-constrained than the aggregation phase, because the distribution of the aggregate will always be a
best-effort type of protocol, it is reasonable to take the additional computational effort for granted.

5.3.2 Overhead

The main reason for using IBMS, is to limit the required bandwidth. Recall from the cryptographic back-
ground that a certificate for IEEE 1609.2 is currently 117 bytes and is proposed to be extended to 140 bytes,
with a signature size of 65 bytes. On the other hand, when ECQV ECDSA is used, one can save an ECDSA
signature in the certificate, resulting in a size of about 75 bytes. However, in IBMS, or more generally in
IBC, the only required element is the identity, into which much certificate data can be encoded in addition
to a globally unique identifier. Thus, a key size of 10 bytes should be more than sufficient, as it is possi-
ble to generate 280 different keys this way. Conservatively, consider a key size of 16 bytes; with a current
population of around 7 billion people and a pseudonym period of 5 minutes, only 7 bytes are necessary to
represent a hundred years worth of unique pseudonyms.5 The remaining bytes can be used to add certificate
meta-data or be randomized for pseudonymity; in practice, the likely solution is that a hash function will be
used to hash the identity of the vehicle along with some randomness (different for every pseudonym) to an
entire range, after which the validity period will be attached. Thus, it is possible to carry over signatures
in a single message (assuming all the data is carried in a separate 802.11 frame). Based on this, it can be
concluded that messages will be of reasonable size; however, it remains to be seen whether the amount of
distinct aggregates is also reasonable. Regardless, this amount will out-perform SAS, where segments are
barely larger than the transmission range (500 meter segments).

5.3.3 Privacy

Instead of employing unique identities, it is possible to simply apply hashing to obtain pseudonyms. However,
the time of expiry must remain readable, such as to allow constraints on the validity period of pseudonyms to
prevent sybil attacks. The most privacy-sensitive component of SeDyA is the finalization phase; including a
signature in this phase will indeed cause the certificate of a vehicle to be disseminated, to a potentially very
large region. However, the validity period of pseudonyms is limited to about five minutes; this means that
when the map points are located ten kilometers apart and a vehicle drives 120 kilometers per hour, it will
need exactly one pseudonym per contribution to an aggregate. Even when a vehicle participates in multiple
aggregates, the only revealed information is that a vehicle was on these two segments of road. When this is
considered privacy-invasive, the vehicle always has the option not to attach its signature, although this will
damage performance of SeDyA.

5.3.4 CA problems

For the multisignature part of the phase, the IBMS scheme discussed in Section 5.1.3 will be used, which in-
herently supports this method of computing the multisignature, as also noted in the original work. However,
because this scheme is based on identity-based signatures (IBS), a few important issues typically associ-
ated with identity-based cryptography (IBC) also recur here. Both of these issues relate to CAs: first, in
traditional IBC the CA has possession of the private key of every use; second, using multiple CAs in the
infrastructure is not inherently possible. Possession of the private key by the CA has been addressed previ-
ously by many works, including . While this issue is quite pressing, it is assumed that the CAs are sufficiently
trustworthy, delegating the application of more secure IBC to the multisignature scheme as future work. The
reason for this is that this approach will require new security proof and thus the introduction of a model,
difficult problems and similar concepts from cryptography. The aim of this thesis is to provide security
against attackers in the network, not against the compromise of a CA. Second, and for this thesis more
relevant, is the issue of using multiple CAs. In a typical world-wide network setting, such as the Internet,
it is customary to have multiple CAs for many reasons; it distributes the trust, spreads the computational
and storage requirements, provides some redundancy, and for a variety of political reasons. The problem for

5log2(7 · 109 · (100 · 365.25 · 24 · 60)/5) ≈ 56 bits (slightly more, so just over 7 bytes).

52

IBMS, or perhaps even IBC in general, lies in the fact that the key material of the CA is input for the key
material that each vehicle has. If two multisignatures related to distinct CAs are merged, the verification
process no longer works for algebraic reasons. The solution to this is simply keeping a separate multisig-
nature for each CA; this solution may seem somewhat cumbersome, but it is fairly elegant as long as the
amount of CA remains limited, because signature size is limited. Note that because there is no consensus
about the approach and hierarchy of CAs for when VANETs are deloyed, it is difficult to say how often this
will happen. Frequently discussed alternatives are either region-based hierarchies or manufacturer-based
hierarchies (either vehicle or OBU manufacturers). For SeDyA, the region-based hierarchies are the most
optimal setting, because it is likely that most vehicles in a particular area will be from one or two different
countries.

5.4 Summary

SeDyA consists of three phases; the aggregation phase, the finalization phase and the dissemination phase.
In the aggregation phase, IBAS will be used in conjunction with the AM-FM technique to aggregate

over a region. AM-FM is extended to allow much more dynamic aggregation by using sketches to represent
the region in which aggregation is performed. A signature on a bit in the AM-FM means that the signer
flipped this bit; it thus proves participation in the aggregation process. However, it does not guarantee
agreement with the estimate that the sketch generates, unlike in AM-FM. Privacy will simply be achieved
by using pseudonyms, which are restricted to a small segment of time (around five minutes), with little
overlap. Inflation and deflation will not work, because vehicles will not add their observations to arbitrary
aggregates.

The finalization phase begins when one or more vehicles detect that their neighbors do not agree with
the aggregate and decide that they are the border of the aggregation area. These vehicles will initiate
the signature collection protocol, which forwards the aggregate along with a multisignature and a set of
certificates through the aggregation protocol. In addition, they will provide their location to indicate the
edge of the aggregation area. The protocol uses a simple scheme to forward the data through the aggregation
area and allow each vehicle the opportunity to sign. Signatures are generated on the aggregated data (the
sketches from the aggregation phase, but not the AM) and the location of the finalizing vehicle, using the
IBMS scheme from [21] that was discussed in Section 5.1.3.

Finally, the dissemination phase will forward the message in a best-effort way through the network.
Although any dissemination scheme may be used, SeDyA would benefit from a scheme where vehicles forward
based on freshness, proximity of the aggregation area and possibly the confidence a vehicle has in the
message. Heuristics should be deployed to detect attacks as soon as possible. Most notably, to detect
remote impersonation attacks, messages that refer to an aggregation area in one direction, but are sent from
the opposite direction, are suspicious and should be ignored. Similarly, due to the previously mentioned
forwarding scheme, old messages and messages with low confidence are forwarded less quickly than high
quality and fresh messages.

53

54

Chapter 6

Evaluation

This chapter will discuss the evaluation of the performance of SeDyA. First, metrics are introduced and
discussed, followed by a discussion of simulation parameters, a configuration experiment that determines the
two thresholds from Chapter 4, the experiments and the results.

6.1 Motivation

The evaluation is divided into three items of interest: first, accuracy will be considered, followed by feasibility
and finally security. While security is the main purpose of SeDyA, it is important not to lose sight of both
accuracy and feasibility, which are the goals of aggregation. Recall that the main goal of aggregation is to
provide a better trade-off between these two aspects, thereby improving the efficiency of the VANET by
providing more information for less resources at the cost of some accuracy. Thus, accuracy and feasibility
will be measured against each other to determine whether SeDyA still achieves the goals of aggregation,
before discussing various metrics for security.

Due to time constraints and limited computational resources, the evaluation will focus on a highway
scenario. This scenario is the main scenario for which SeDyA is developed, as well as schemes that have
been discussed in Chapter 3. Although SeDyA theoretically provides support for an urban setting, also
implemented in the source code, some implementation issues remain, notably the application of aggregation
to different driving directions.

The main reference to another scheme for these simulations is the fixed segments approach, which is an
adaptation of SAS. However, note that this fixed segments approach uses the aggregate signature approach
for its security, instead of symmetric encryption, and it provides additional plausibility checks, taken from
SeDyA. These checks ensure that the scheme does not contribute to malicious aggregates, eliminating one
potential source of attacks. Removal of this source is essential to provide a good comparison for SeDyA;
nothing prevents the implementation of plausibility checks to SAS. In addition, the goal of the simulations
includes showing that SeDyA’s second phase provides an additional layer of security; by adding plausibility
checks to SAS, they are excluded as the cause for improved performance.

6.1.1 Accuracy

Accuracy metrics focus on the quality of the data. Because data quality is very difficult to measure, the
accuracy metric below focusses on a particular aggregation setting; determining the average speed. While
accuracy of the aggregation mechanism (i.e., the FM sketches) used in SeDyA is by itself not of significant
interest to SeDyA, accuracy is the main metric to determine how accurately SeDyA describes a particular
aggregation area. In addition, the impact of an attack is mainly described by a reduction of accuracy. Thus,
even though the aggregation mechanism itself is not of interest, its impact will be shown in these simulations.
Therfore, it should be kept in mind that the accuracy of sketches is considerably limited, as has been shown
in the preliminary evaluation of the aggregation phase in Section 4.2.2.

55

The impact of this inaccuracy is measured in the first experiment, which tests four scenarios: both the
fixed segment approach (with a block size of 500 meters) and SeDyA’s dynamic approach are tested against
a blocked and non-blocked road. The ”blocked” roads have a traffic jam, and are referred to as congested;
both scenarios can be simulated for a variety of vehicle densities. As noted, the fixed segment approach is
similar to SAS. The metric for this experiment is called the average deviation, defined as:∑

i∈I |e− vi|
|I|

,

where e is the average as estimated by the aggregation scheme and vi is the value for the vehicle i, while
I is the set of all vehicles in the aggregation area. The accuracy across the simulation is then determined
by taking the average of all these distinct aggregates. The aggregation area is defined by the aggregation
mechanism (in the dynamic case), or fixed in advance (in the 500 meter blocks case). The main reason for
using the dynamically defined area that SeDyA generates, is that the entire purpose of this area is to provide
information about a larger region, while maintaining accuracy. By definition, the dynamically defined area
and the accuracy of the data are inter-connected, because the dynamically defined area uses the data to
determine its dimensions, while the data is aggregated according to the defined area. The metric abstracts
from this inter-connection and determines the accuracy of the whole scheme.

For SeDyA, accuracy can be measured at two points: directly after the aggregation phase, when a vehicle
decides to finalize, or after the message has been forwarded through the aggregation area (i.e., at the end
of the finalization phase). This allows a detailed analysis of the effect of the finalization phase. In the
configuration experiment, the focus is exclusively on the accuracy directly after the aggregation phase; the
reason is that the main effect of the thresholds occurs in the first phase.

6.1.2 Feasibility

To verify that each approach is feasible in terms of bandwidth, there are two main approaches: measuring
bandwidth directly (bandwidth metric), and measuring the dissemination range of messages (knowledge
metric). An example of a knowledge metric would be measuring feasiblity by determining the fraction of
the network each vehicle has knowledge about at a given point in time. Measuring bandwidth directly
has the advantage that no side-effects from the protocol, such as messages that are ignored due to being
incorrect or signatures that cannot be verified, can affect it. This is of vital importance, as the goal of
the feasibility analysis is to determine whether SeDyA can run alongside other services in the VANET, not
whether SeDyA can fully utilize the bandwidth it is given. The bandwidth metric gives a good indication of
the required bandwidth, while a knowledge metric relies on maximum utilization of the available bandwidth.
The knowledge metric determines how much information is available to vehicles; very useful information, but
only when it is certain that at least the order of magnitude of available bandwidth is configured correctly.
Since the bandwidth reserved for SeDyA is unknown, but likely to be limited due to other mechanisms, such
as pseudonym updates, revocation protocols and entertainement services, it is better to have a bandwidth
estimate than a knowledge estimate that may turn out completely wrong due to the difference in available
bandwidth. On the other hand, it is very difficult to account for spatial re-use effects when measuring raw
bandwidth usage. However, since measurement using the dissemination range metric requires a very large
simulation area to be effective, which in conjunction with the corresponding increase in vehicles creates
extremely large simulations, in addition to the disadvantages mentioned above, SeDyA will be evaluated
using the bandwidth metric. Bandwidth usage will be measured by determining the exact size of SeDyA
messages, excluding overhead from the IP and 802.11p layers, as well as any additional constraints on the
physical layer. Since SeDyA is supposed to run in the sevice channel in 802.11p, bandwidth consumption of
beaconing mechanisms is ignored for all these experiments, although it may have some impact.

6.1.3 Security

SeDyA features security mechanisms in two phases, as opposed to just one in schemes from related work, like
SAS. The first security experiment will focus on the first security mechanism that SeDyA has in common with

56

related work, by showing that attacks against this mechanism exist. Just like for the definition of correctness
of an aggregate, a major challenge is when to consider a produced aggregate to be legitimate, and how to
derive a definition for the security of such a scheme. The main reason for this difficulty is due to the fact
that inaccuracy is inherent to aggregation; therefore, one cannot define a metric that considers an aggregate
with an error as an attack, because such an error may be inherent to aggregation. In addition, the impact of
an attack is much more relevant to the aggregation mechanism than the frequency of attack success, given
that such a frequency would inherently be high. Consider for example that an attacker manages to influence
the speed value contained in an aggregate by 0.0001%; this could be considered an attack, but with an
error due to aggregation that is (for example) 1%, this attack is completely meaningless. For this reason,
attackers are considered as an additional source of inaccuracy, in addition to the aggregation mechanism and
the plausibility checking mechanisms. This allows to show the overall impact on the quality of the data for
a varied number of attackers that operate independently, but with a similar goal. Therefore, for both the
security experiments, a number of attackers have been implemented that cover the most general approaches
an attacker can take: attacking the value and attacking the region. In the first security experiment, which
focusses on the first phase, only the attacker that combines all the näıve attacks into a concentrated attack is
considered. The other attackers were implemented, but since the Smart attacker combines their approaches
and exploits knowledge of SeDyA’s thresholds, this attacker has the focus. More precisely, this Smart
attacker exploits the fact that an attacker can use a received sketch and modify it, rather than using a
predefined scheme to determine a target value (i.e., the näıve attacks that were implemented but not used).
As previously discussed in Section 3.4.1, such an attack on FM sketches is executed by flipping the first 0-bit
in each sketch, causing the estimate of the sketch to increase. The same is applied to the LC sketches that
SeDyA uses.

As a second security experiment, the added value of SeDyA’s finalization phase will be tested. This
experiment will evaluate the signing procedure that SeDyA provides. The expectation of this signing pro-
cedure is that a relatively large fraction of the participating vehicles will sign a legitimate message, while
an attacker’s message should have a limited amount of signers. In the ideal case, vehicles that are in the
finalization phase will drop attacker messages; however, due to the high inaccuracy of the sketches, this is
a solution that may exclude many legitimate messages, potentially enabling denial of service attacks. To
analyze the results, a number of simulations with and without attackers are performed. The fraction of
signers is graphed for attacker and non-attacker cases; the difference between these two graphs determines
how well SeDyA’s second phase works, as a higher difference makes it easy for a vehicle to distinguish benign
and malicious messages. Again, several attackers are implemented; for simplicity, and to obtain results that
are as widely generalizable as possible, each of these scenarios assumes the attacker has full control over the
final message produced in the aggregation phase. For this experiment, the attackers are an Area attacker
and an Inflation attacker; the Inflation attacker operates analogously to the Smart attacker in the previous
security experiment. The Area attacker aggressively attempts to change the aggregate by configuring the
finalization area to be very far from her actual location. Both attackers assume control of the finalization
process by declaring themselves as finalizing vehicle. The Area attacker exploits the fact that the second
phase stores the location of the finalizing vehicle, which is the attacker. The Inflation attacker has complete
control over the message from the first phase, and will use a high value as the estimate; the Deflation attacker
is equivalent, but uses a low value as estimate.

6.2 JiST/SWANS

To perform the experiments described in this chapter, SeDyA has been implemented in JiST/SWANS.
JiST/SWANS (Java in Simulation Time / Scalable Wireless Ad hoc Network Simulator) is a discrete event-
based network simulator, developed between 2002 and 2005 by Barr [3] at Cornell University. It has since
been improved by the Universities Ulm and Twente with enhancements to allow the simulation of VANETs,
including an implementation of 802.11p, the STRAW mobility model, beaconing applications, security ap-
plications and various VANET protocols. Some of this source has been released as a GPL patch for the

57

original JiST/SWANS distribution in 2008 [48], while other code remains internal so far1.

6.2.1 Implementation of SeDyA

SeDyA has been implemented largely as described in Chapters 4 and 5, including the three phases and
most of the message exchanges. In addition, SeDyA uses the existing secure beaconing code, which provides
security for beacon messages, and an identity generator that simulates the use of pseudonyms. As discussed
in Chapter 5, two threshold values are introduced in SeDyA; an agreement threshold that determines when a
message still agrees with the data of the vehicle and an edge threshold, which decides when a vehicle is at the
edge of an aggregation area. Note that the computations that involve the edge of the aggregation area involve
the difference in the neighbor table: the vehicle compares the average for the vehicles behind and in front
of it, while the aggregation threshold compares a received aggregate with the vehicles individual data and
the average of its neighbor table. Other checks to verify packets include mainly the verification of signatures
and checks that determine freshness of a message. The physicial model checks are not implemented, because
they involve a lot of domain-specific knowledge and most of these failures would not pass the check against
the neighbor table anyway. Cryptography itself is not simulated; the value assigned to each public key by
the vehicle’s identity generator is also used to determine whether a signature is still verifiable. This saves a
lot of computational resources without impacting the accuracy of the simulations. For multisignatures and
aggregate signatures, the same approach is used, but the public keys are summed, as are the signatures.
For the LC Sketches, simulations crashed due to memory usage when using aggregate signatures; thus, the
aggregation phase uses regular signatures for this sketch type.

Countrary to the real world, JiST/SWANS currently provides only a single channel for communication
using when using 802.11p. In reality, standards have defined multiple channels that are to be used for
different purposes. Those relevant for SeDyA are the 6 Mbit/s control channel, for beacon messages, and
the (up to) 27 Mbit/s services channel, for SeDyA’s messages. In the simulations, all message are sent on
the control channel, which is the only available channel. The reason for this is two-fold; first, it is important
to study bandwidth consumption in a worst-case setting, to be sure that SeDyA will work. Second, the
services channel should not be fully dedicated to SeDyA; other services will need bandwidth to operate as
well. Finally, it should be noted that SeDyA considers secure beaconing in its analysis as well, with a fixed
size of 209 bytes, including security payload. See Table 6.1 for a full overview of the important simulation
parameters.

6.2.2 Simulation parameters

To perform consistent simulations, most parameters for the simulator are fixed. The discussion of each
experiment describes the relevant variables that are varied, typically including the amount of vehicles, size of
the area and inclusion of attackers. The mobility model for the simulations is a simple car-following model
on the highway scenario, which includes overtaking and collision avoidance behavior. The urban scenario
was not rigorously simulated due to some implementation issues; however, initial simulations indicated that
SeDyA should be bound to a specific road, rather than a region of roads.

The beaconing rate is set to 10Hz, which is a common and standardized setting; beacons include location
information, heading and driving speed, in addition to the security mechanism. SeDyA does not interact
with the beaconing mechanism, except for using the produced data; separate key mechanisms are used.

6.3 Optimizing SeDyA

Due to the large amount of parameters, this section will first configure the two thresholds for SeDyA in
such a way that they are optimal when considering both accuracy and bandwidth efficiency. Both of these
parameters will then be fixed for the remainder of the evaluation. The thresholds are configured for accuracy

1Due to all these licensing constraints for the base code, there will not be a public code package for JiST/SWANS. The
author can be contacted for specific inquiries.

58

Group Parameter Setting

Duration 200 seconds
Mobility model Scenario Highway

Model JiST/SWANS Ulm Highway modela

Lanes 3
Lane Length 5000 meter
Maximum speed 30 m/s
Maximum acceleration 1 m/s (5 m/s breaking)
Average speed 18 m/s

Physical layer Fading RayLeigh
Path loss TwoRay
Transmit power 10.9 dB
Noise model Additive

MAC layer MAC 802.11p

Network layer IP implementation JiST/SWANS implementationb

Maximum packet size 4096 bytes

Beaconing Interval 10 Hz
Beacon size 209 bytes

SeDyA Vehicle counter sketch size 64 bits
Location sketch size 8 bits per sketch

with 4 sketches for PCSA
Payload sketch size 8 bits per sketch

with 8 sketches for PCSA
Hash method MD5 (and SHA1 for PCSA)

aThis includes a simple car following model, collision avoidance, lane changing and overtaking.
bThis implementation is like regular IP, but does not support fragmentation. Thus, packages larger than the maximum size

are dropped.

Table 6.1: The simulation settings common for all simulations.

59

and bandwidth efficiency because SeDyA must first and foremost effectively perform the aggregation process,
before security is considered. The reason for this is that while security is the goal of SeDyA, efficiency and
accuracy are the main purpose of aggregation mechanisms. Therefore, is required that these are achieved
before security is even relevant; a more secure aggregation mechanism that is inefficient and has poor accuracy
will (almost) never be used2.

6.3.1 Configuration and parameters

The accuracy and bandwidth metric discussed in Section 6.1 are used for the evaluation; the edge and
aggregation thresholds are varied between 0.5 to 3.5 with steps of 1 and between 2 and 10 with steps of
2, respectively. This range was selected for further investigation after performing initial experiments. In
addition, a very high agreement threshold (16) was included to observe the effect of an extremely high
aggregation threshold. Note also that an edge threshold of 0 would imply that each vehicle is an edge node
and an agreeement threshold of 0 would imply that vehicles should never agree with deviating values, no
matter how close. The agreement threshold value of 2 means a deviation of 2 meters per second is the upper
bound for the vehicle to accept the message as legitimate, and so on; for very high values of the agreement
threshold, almost every message is aggregated. Considering that in Section 4.2.2, a relative error of over
0.5 was quite common, and the maximum speed is 80 kilometers per hour (about 22 meters per second),
the minimum agreement threshold of 2 should be a good minimum. It was hypothesized that for higher
values of the agreement threshold, accuracy would become a problem quite quickly; the choice of 10 should
be more than sufficient to show this, or at least decide whether simulations with higher values are necessary.
The reason for the difference in the values is that the edge threshold compares two averages (subsets of the
neighbor table), while the agreement threshold compares against both the neighbor tabe and the vehicle’s
current value. In addition, the inaccuracy due to aggregation is also involved in the agreement threshold,
which is not the case for the edge threshold.

Simulations were performed with 75 and 250 vehicles on a 5 kilometer stretch of road, using a non-
congested setting and a fully congested setting. Higher vehicle densities were not considered due to relatively
high memory consumption of simulations. The amount of repetitions was limited to three for this configu-
ration experiment, as the goal is to get an idea of the effect of the thresholds. Other parameters have been
set in the same way as discussed in the simulation parameters section.

6.3.2 Results

Before proceeding to the results of the analysis, it should be noted that all the simulated data is made public3

Figure 6.1 shows the influence of the agreement threshold on the accuracy metric, for both low and high
density settings (as noted, 75 and 250 vehicles on 5 kilometers of 3 lane highway). The different graphs,
denoted by a value for e, represent different settings for the edge threshold. As expected, this graph shows
that a higher agreement threshold reduces accuracy (almost) linearly. This makes sense: if vehicles are more
lenient towards estimates, the difference between the average and the vehicle’s value will be higher. Another
expected result is that the accuracy for lower density regions is quite bad, as seen in Figures 6.1b and 6.1a;
this is due to the high variations in speed that the mobility model provides.

The impact of the different edge threshold settings is lower than expected; the hypothesis was that a
higher edge threshold would lead also to a loss in accuracy, because more vehicles would contribute to the
same aggregate. Instead, the graphs show that all the differences are well within the bounds of the standard
deviations for the uncongested setting and congested low density setting (Figures 6.1a, 6.1b and 6.1b), while
in the congested high density setting (Figure 6.1d), the higher edge threshold performs slightly better. The
small difference can be explained by noting that the inaccuracy of sketches is relatively high, so the area

2For security mechanisms in general, this is not the case; however, applications that use aggregation will already be fault-
tolerant. Note also that aggregation is a supplementary application; its functioning is not required for VANETs to function, so
not having aggregation may be better than secure but poor aggregation.

3All the data will be published in an organized fashion here: http://91.121.197.132/work/master_thesis/

baf75cb3f019a9528553d9c535ff765b8c8cd40a/data/. The current experiment is preliminary and thus labeled with ‘experi-
ment 0’.

60

http://91.121.197.132/work/master_thesis/baf75cb3f019a9528553d9c535ff765b8c8cd40a/data/
http://91.121.197.132/work/master_thesis/baf75cb3f019a9528553d9c535ff765b8c8cd40a/data/

 0

 5

 10

 15

 20

 4 6 8 10 12 14 16

D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

agreement threshold

e=0.5
e=1.5
e=2.5
e=3.5

(a) Low density: 15 vehicles per kilometer, no congestion

 0

 5

 10

 15

 20

 4 6 8 10 12 14 16

D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

agreement threshold

e=0.5
e=1.5
e=2.5
e=3.5

(b) Low density: 15 vehicles per kilometer, with congestion

 0

 2

 4

 6

 8

 10

 12

 4 6 8 10 12 14 16

D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

agreement threshold

e=0.5
e=1.5
e=2.5
e=3.5

(c) High density: 50 vehicles per kilometer, no congestion

 0

 2

 4

 6

 8

 10

 12

 4 6 8 10 12 14 16

D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

agreement threshold

e=0.5
e=1.5
e=2.5
e=3.5

(d) High density: 50 vehicles per kilometer, with conges-
tion

Figure 6.1: Influence of thresholds on accuracy.

described by SeDyA is likely to be larger than necessary for the aggregates produced by lower thresholds.
These aggregates are typically very small; they consist of data from less than five vehicles, so the locations
of the contributing vehicles are very close together. Thus, because the edge of the area is one of these five,
even a small error will cause the area to grow quickly; the relatively high errors for sketches cause this to
include many extra vehicles. In the congested setting, the speeds vary more over the road, and thus the
impact of this larger area is shown by a somewhat larger value for smaller edge thresholds.

Next, Figure 6.2 shows the impact of the same settings on overall bandwidth usage. As noted, this bandwidth usage is only
comprised of SeDyA’s messages and their payload, not the additional overhead from other network layers
or retransmissions. Furthermore, the bandwidth usage is that of all phases combined, rather than the usage
of one specific phase. This graph shows that the cost of security is much higher than the bandwidth saved
by using large but highly aggregated messages, as set by a higher agreement threshold. This is especially
the case in the high density scenarios, where many vehicles sign the messages they see in phase 2. The low
density scenario shows some variations in the congested scenario; this is due to the fact that congestions in a
low density scenario dissolve quickly, leading to highly variable conditions. In addition, this scenario and the

61

 0

 10

 20

 30

 40

 50

 60

 70

 4 6 8 10 12 14 16

B
an

dw
id

th
 u

se
d

(k
B

/s
)

agreement threshold

e=0.5
e=1.5
e=2.5
e=3.5

(a) Low density: 15 vehicles per kilometer, no congestion

 0

 2

 4

 6

 8

 10

 4 6 8 10 12 14 16

B
an

dw
id

th
 u

se
d

(k
B

/s
)

agreement threshold

e=0.5
e=1.5
e=2.5
e=3.5

(b) Low density: 15 vehicles per kilometer, with congestion

 0

 100

 200

 300

 400

 500

 600

 4 6 8 10 12 14 16

B
an

dw
id

th
 u

se
d

(k
B

/s
)

agreement threshold

e=0.5
e=1.5
e=2.5
e=3.5

(c) High density: 50 vehicles per kilometer, no congestion

 0

 100

 200

 300

 400

 500

 600

 4 6 8 10 12 14 16

B
an

dw
id

th
 u

se
d

(k
B

/s
)

agreement threshold

e=0.5
e=1.5
e=2.5
e=3.5

(d) High density: 50 vehicles per kilometer, with congestion

Figure 6.2: Influence of thresholds on overall bandwidth usage. Standard deviation in Figure 6.2a is cut off
on both edges of the graph due to its size.

62

low density scenario have a single result with a very high value, which causes the spikes in the graph for the
edge threshold of 2.5. Finally, the scenario without congestion and a high density has a lower low value for
edge threshold 0.5 and agreement threshold 16. The most likely explanation is that this threshold causes so
many collisions, due to the high amount of messages as well as the high amount of signatures, that messages
are lost. Note that SeDyA does not provide any re-transmission mechanism in phase 2: if a message is lost,
it will not generate any additional traffic.

It should be noted that it is possible to reduce the overhead further by introducing signing policies in
the finalization phase, such a policy could define that not everyone should sign, but only a fraction (for
example, sign with probability 0.5). Another possibility is to adapt a more efficient broadcast mechanism
to collect the signatures; the current mechanism essentially re-broadcasts a fairly large message O(n) times;
once for every vehicle in the aggregation area. However, due to the potential security implications caused
by limiting the amount of messages or signatures, these options are not further investigated. For example,
against a contention-based mechanism to limit the amount of messages, the attacker can perform a selective
jamming attack to reduce the amount of signatures generated on a message, by jamming certain messages
to cause additional loss. While such an attack can be prevented by using a vehicle’s neighbour table, this
puts various attacks on the neighbour table in scope; this type of optimization is thus left for future work.

As a conclusion, the thresholds are configured to be 4 for the agreement threshold and 3.5 for the edge
threshold. This configuration has shown a good balance between accuracy and bandwidth, considering that
the bandwidth usage is significant in all simulations.

6.4 Simulation Results

6.4.1 Accuracy

The accuracy depends on a few newly introduced mechanisms, notably including the dynamic aggregation
area and the efficiency of the dissemination mechanism. Thus, it will be measured for different scenarios
to determine the performance of SeDyA, using the previously discussed metric. The experiment will run
SeDyA and the fixed segments approach to identify the accuracy of each approach as per this metric. In
addition, the impact of SeDyA’s finalization phase will be analyzed, by measuring the accuracy both at the
start and the end of this phase. The main variable in these simulations is the density of the network, set by
the total amount of vehicles simulated on the 5 kilometer stretch of road; the amount of vehicles is varied
from 75 to 300 in steps of 75. In addition, the scenario is varied between congested and uncongested; the
speed of vehicles in the uncongested scenario are more variable over time.

The results are shown in Figure 6.3. First, observe that the result for accuracy measurements after the
finalization phase (’d-phase1’ in the figure) is not as good as that after the finalization phase (’d-phase2’ in
the figure), especially for lower densities. The reason that high densities have somewhat better values for
’d-phase1’ is due to the higher density (and therefore more consistent speed), coupled with the fact that
in phase 2, collisions cause not all of the high quality aggregates to reach the end of the area. In fact,
more collisions will occur surrounding high quality aggregates, because the protocol requires each vehicle to
transmit its signature on the message, if it agrees with the payload.

Second, the result clearly shows that the fixed segment approach (‘fixed’ by in the figure) is the superior
value, at least for higher vehicle densities. However, this is to be expected; recall that the fixed segment
approach divides the road into fixed parts of about 500 meters in length; such a segment is roughly contained
within the communication range of a vehicle, if the vehicle is placed at the center. Therefore, if such a vehicle
sends a message, it will immediately exit the aggregation area and therefore transition to dissemination
(because phase 2 does not exist in the fixed segment approach). Although the aggregation mechanism has
a minimum duration implemented to avoid this problem, the core issue remains; the aggregate consists of
only the sensor data of very few vehicles, which consequently causes a higher accuracy. However, as density
increases, and available bandwidth per vehicle decreases, the deviation in SeDyA’s aggregates goes down as
well. Apart from the above reasons, it should also be noted that the higher density scenario is simply more
stable in this highway mobility model; free-roaming cars have widely varying speeds. Finally, it should be

63

noted that the inaccuracies for the fixed segment approach mainly come from the FM sketches, which can
introduce significant errors as discussed in Section 4.2.2.

In conclusion, the improvement in accuracy is not as significant as expected, for high density scenarios,
but the second phase definitely achieves the goal it was designed for. To know whether SeDyA is actually
useful, one must also consider bandwidth usage and security, which will be done in the following sections.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.01 0.02 0.03 0.04 0.05 0.06

D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

density (nodes/m)

d-phase1
d-phase2

fixed

(a) No congestion

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.01 0.02 0.03 0.04 0.05 0.06

D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

density (nodes/m)

d-phase1
d-phase2

fixed

(b) With congestion

Figure 6.3: Influence of density and phase 2 on accuracy.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 0.01 0.02 0.03 0.04 0.05 0.06

B
an

dw
id

th
 u

se
d

(k
B

/s
)

density (nodes/m)

dynamic
fixed

(a) No congestion

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 0.01 0.02 0.03 0.04 0.05 0.06

B
an

dw
id

th
 u

se
d

(k
B

/s
)

density (nodes/m)

dynamic
fixed

(b) With congestion

Figure 6.4: Comparison of overall bandwidth usage.

6.4.2 Feasibility

Now that it has been established that SeDyA is sufficiently accurate, it is also important to consider over-
head; the bandwidth consumption of the simulations in the previous section is now examined. Recall that
bandwidth is measured by the size of the SeDyA messages that are transmitted, excluding overhead from the
lower network layers. As shown in Figure 6.4, as well as the configuration experiment, the total bandwidth

64

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 0.01 0.02 0.03 0.04 0.05 0.06

B
an

dw
id

th
 u

se
d

(k
B

/s
)

density (nodes/m)

dynamic
fixed

(a) No congestion

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 0.01 0.02 0.03 0.04 0.05 0.06

B
an

dw
id

th
 u

se
d

(k
B

/s
)

density (nodes/m)

dynamic
fixed

(b) With congestion

Figure 6.5: Comparison of bandwidth usage in the aggregation phase. Standard deviations are cut off in
both figures to show some detail for lower densities.

usage of SeDyA is quite high; however, if one looks at only the bandwidth consumption in phase 1, then
it can be seen that SeDyA does indeed perform the task it was designed for. More precisely, the dynamic
configuration of the area does indeed have the intended effect that less overhead is produced in the first and
third phase (shown in Figures 6.7 and 6.5, respectively). Recall that in the first and third phases, aggregation
and dissemination are performed, respectively; it is therefore also the main bandwidth usage source that
needs to be reduced to conclude that more aggregation is positive for bandwidth usage. This shows that the
dynamic component of SeDyA has its desired effect, as one could expect from other dynamic aggregation
mechanisms. However, the additional security that SeDyA aims to provide through the finalization phase is
quite expensive in terms of bandwidth, as shown in Figure 6.6: the vast majority of the resources are used
by this phase. This figure has 0 bandwidth for all fixed segment cases, because a finalization phase does
not exist there. Consequently, as can be observed in the overall bandwidth usage, the total cost of SeDyA
is signficant when compared to the fixed segment approach; this suggests that a trade-off may be the best
achievable result. This trade-off provides better accuracy in lower densities, and the higher level of security
that SeDyA aims to provide, in exchange for more bandwidth overhead. To learn more about this trade-off,
the higher level of security first needs to be confirmed.

6.4.3 Security

Finally and most importantly, SeDyA’s security must be analyzed. In this section, the attacker model from
Section 2.1.2 will be used to evaluate how well each phase protects against the relevant attacks. However,
note that sybil attacks have already been excluded by assuming a limited amount of pseudonyms that may
be active. First, SeDyA is compared to the fixed segment approach, using attacks on the first phase, designed
to have maximum impact. This attacker is designed specifically to have the greatest possible impact without
being discarded by SeDyA; the same attacks are applied to the fixed segment approach to simplify the
implementation and make the implementation of the plausibility checks consistent. Although the attacker is
primarily designed to attack SeDyA, the vulnurability she expliots lies in the usage of FM sketches, and the
attack can thus also be exploited in the fixed segment approach. Subsequently, potential new attacks that
can be performed on phase 2 are analyzed to confirm that this phase does not introduce new vulnurabilities.
Since these attacks are specifically against SeDyA, only SeDyA is considered in that analysis.

65

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 0.01 0.02 0.03 0.04 0.05 0.06

B
an

dw
id

th
 u

se
d

(k
B

/s
)

density (nodes/m)

dynamic
fixed

(a) No congestion

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 0.01 0.02 0.03 0.04 0.05 0.06

B
an

dw
id

th
 u

se
d

(k
B

/s
)

density (nodes/m)

dynamic
fixed

(b) With congestion

Figure 6.6: Comparison of bandwidth usage in the finalization phase.

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.01 0.02 0.03 0.04 0.05 0.06

B
an

dw
id

th
 u

se
d

(k
B

/s
)

density (nodes/m)

dynamic
fixed

(a) No congestion

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.01 0.02 0.03 0.04 0.05 0.06

B
an

dw
id

th
 u

se
d

(k
B

/s
)

density (nodes/m)

dynamic
fixed

(b) With congestion

Figure 6.7: Comparison of bandwidth usage in the dissemination phase.

66

Attacking phase 1

As discussed previously, the attack itself is performed by flipping the first zero bit in each sketch, demon-
strating an inflation attack. Recall that the first zero bit is exactly that bit that is used to determine
the value that the sketch represents. Flipping this bit may occur legitimately, so there is no way for any
subsequent receiver to determine whether the attacker tampered with the message or simply contributed
legitimately, although it may be possible to mark some of these messages as suspicious. For example, if a
vehicle overhears two messages, where one message is exactly the same as the others, except for exactly those
bits an attacker would choose to flip, the message may be marked as suspicious, because this is a very rare
occurence. More generally, SeDyA and the fixed segment approach can attempt to detect this type of attack
by using a deviation check (i.e., the agreement threshold from the configuration experiment). The impact
of an attack is measured by the deviation in the aggregate; in this experiment, the average deviation over
all messages will be used to analyze the effect of the amount of attackers on SeDyA and the fixed segment
approach for different vehicle densities. Figure 6.8 shows the results for the smart attacker; the amount of
attackers is either 1, 5 or 10. Note that 10 attackers corresponds exactly to one attacker per segment for
the fixed segment approach, as the simulations run on a 5km stretch of road with segments of 500m. The
attackers do not collude, but they use the same algorithm towards the same goal: incrementing the value in
the sketch. Other than this manipulation in phase 1, the attackers are entirely honest.

As shown in the figures, the impact of a single attacker on the overall data quality is insignificant in
both cases; however, as the amount of attackers grows, the impact on the fixed segment approach increases
drastically, while for SeDyA it remains the same. In addition, note that the fixed segment approach shows a
large standard deviation (for all but the highest density it goes off the chart); this indicates that the impact
of some attacks is very large indeed. SeDyA performs well in low density scenarios, as well as scenarios
with many attackers, while as the vehicle density increases, the fixed segment approach improves slightly,
in exchange for a higher stanard deviation. However, due to the lower variation, using SeDyA in a general
setting is desirable from a security perspective. Recall again that the metric shows the impact averaged over
all messages; the high standard deviation for fixed segments may imply that the attacked messages have a
high impact, but there is sufficient redundancy to (on average) compensate for this impact. In addition,
as an interesting side-effect, some attacks on SeDyA cause errors due to sketches to be excluded, resulting
in a better accuracy than the setting without attacks. This is particularly the case in scenarios where the
difference between the values of vehicles is relatively high, i.e., when there is no congestion, as shown in
Figure 6.8a. Finally, SeDyA also provides a list of identities that should help determine the accuracy of a
message, while the fixed segment approach does not provide this functionality. For this analysis, however, the
payload is not considered; the analysis focusses on all received messages, so only messages that are dropped
by SeDyA’s second phase for their inaccuracy are not included here. The reason for this choice is that the
messages that arrive at the end of the aggregation area have the support of at least so many vehicles as are
required to disseminate the message through the aggregation area, as vehicles do not forward messages they
do not agree with. Because some scenarios require that even uncertain messages be accepted, and due to
the added complexity of another threshold mechanism that would be required to decide whether to accept
the message, the analysis does not consider this part.

In conclusion, this experiment has shown that SeDyA signficantly reduces the standard deviation of the
overall data quality, when compared to the fixed segment approach. This is especially notable in scenarios
with a significant amount of attackers; lastly, it has been shown that a single attacker in her own segment
does not have a large impact on the overall data quality of the aggregates that are produced by the network.
SeDyA therefore offers an alternative to the trade-off between the lower level of security, but also lower
bandwidth usage that the fixed segment approach offers. At this point it should be noted that SeDyA can
be adapted to provide a trade-off that can be tweaked: either by defining more restrictive signing policies
or by defining a better protocol for attaching signatures. In addition, SeDyA’s security mechanisms in the
aggregation phase may be replaced entirely by the plausibility checks to free up bandwidth. These three
mechanisms can allow SeDyA to trade security for more bandwidth efficiency; future work is needed to make
a rigorous analysis of the impact of these changes.

67

 0

 5

 10

 15

 20

0 0.015 0.03 0.045 0.06

D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

density (nodes/m)

dy-0
dy-1
dy-5

dy-10
fi-0
fi-1
fi-5

fi-10

(a) No congestion

 0

 5

 10

 15

 20

0 0.015 0.03 0.045 0.06

D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

density (nodes/m)

dy-0
dy-1
dy-5

dy-10
fi-0
fi-1
fi-5

fi-10

(b) With congestion

Figure 6.8: Influence of vehicle density and attacks on the first phase, as measured by accuracy after the
second phase, for fixed (fi) and dynamic (dy) approaches. The number indicates the amount of attackers.
Standard deviations for the fixed approach have been cut off to show more detail.

Attacking phase 2

In this last experiment, it is analyzed whether SeDyA introduces significant new vulnurabilities that may
be exploited by the attacker. Since the algorithm used for the multi-signature scheme is secure, the best an
attacker can to attack this component is perform a denial of service attack, by for instance, adding garbage
to a signature, identity or the message. However, this is a capability that always exists, irrespective of the
algorithm used, because the security mechanism cannot control the messages an attacker sends. Similar
reasoning applies to the attacker dropping messages that should not be dropped. The remainder of this
section will evaluate the attacks that the attacker can perform only on SeDyA, by modifying the messages
in the aggregation phase, or by controlling the input of the finalization phase.

Note that the attacks on the aggregation phase are exactly those that were covered in the previous section
(and were adapted to also work on the fixed segment approach). Thus, what remains to be examined are
the attacks that are possible when the attacker is in a position to finalize a message. In such a case, the
attacker determines which message is the final message; thus, SeDyA should prevent these messages from
being forwarded, or cause them to have few signers. For this attack type, several implementations exist,
as previously discussed. The ones tested here include the standard incrementing attacker (denoted incr),
which simply configures a higher value, and the area attacker (denoted area), which modifies the area by
configuring a different position. The decrementing attacker is analogous to the incrementing attacker, but
reduces the value (denoted decr).

Figure 6.9 shows the results; the impact of the attacks is almost negligible: all points in the figure are
will within each others’ standard deviations. Note also that some of the attacker points are actually slightly
below the line without attackers, in the case without congestion. This is similar to what was observed in
attacks on the aggregation phase; again, the reason for this is that the attacker is intelligently attempting
modification, incrementing with just half the agreement threshold. This causes sketches with only slightly
too high values to be discarded due to the additional error introduced by the attacker. From these results,
it is concluded that SeDyA does not introduce new vulnurabilities that are not covered by the finalization
phase.

68

 0
 2
 4
 6
 8

 10
 12
 14
 16

0 0.015 0.03 0.045 0.06D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

density (nodes/m)

area.1
area.10

none
decr.10

incr.1
incr.10

(a) No congestion

 0
 2
 4
 6
 8

 10
 12
 14
 16

0 0.015 0.03 0.045 0.06D
ev

ia
tio

n
fro

m
 e

st
im

at
e

(m
/s

)

density (nodes/m)

area.1
area.10

none
decr.10

incr.1
incr.10

(b) With congestion

Figure 6.9: Influence of vehicle density and attacks on the second phase, as measured by accuracy after
the second phase, for different attacker types; decr is the decrementing attacker, incr is the incrementing
attacker, area is the area attacker. The number indicates the amount of attackers.

6.5 Summary

This chapter has rigorously tested SeDyA’s capabilities through simulation, examining three main metrics:
accuracy, feasibility and security. Before putting SeDyA itself to the test, SeDyA was configured by testing
different values for its edge and agreement thresholds, which control the degree of aggregation and the
lenience of vehicles towards measurement errors, respectively. From these results, an edge threshold of
3.5 with an agreement threshold of 4 was selected as the best combination. Subsequently, SeDyA has
been compared against an implementation of the fixed segments approach. To exclude influences from the
plausibility checks that SeDyA uses, the same checks have been added to the fixed segment approach. The
fixed segment approach itself is an adapted version of SAS [24], using aggregate signatures, as suggested in
the original paper.

The core result of the analysis confirms the intuition that there is a trade-off between the bandwidth
usage, the accuracy of an aggregation mechanism and the resilience against attacks. Before SeDyA was
introduced, three general approaches existed: either forwarding every single beacon, secure aggregation
and normal aggregation. Recall that forwarding every single beacon provides the highest possible level of
security, but also the worst bandwidth performance. On the other hand, normal aggregation mechanisms,
without security, are very bandwidth-efficient but allow the attacker full control. As discussed in Chapter
3, some existing work provides secure aggregation, aiming to combine both into a good level of security
with reasonable bandwidth usage. While these approaches succeed to some extent, some potential attacks
still remained, as identified in the sections that describes these approaches. SeDyA attempts to fill the gap
between the related work and the highest possible level of security, but at a better level of bandwidth usage,
compared to forwarding all beacons.

The analysis has shown that SeDyA is less bandwidth efficient than related work, but provides higher
accuracy in low density scenarios and stronger security guarantees, especially in the presence of multiple
non-colluding4 attackers. The reduction in bandwidth efficiency is quite significant, but the current imple-
mentation of SeDyA provides the highest possible level of security that SeDyA can provide. In addition,
it has been demonstrated that SeDyA’s security mechanisms do not provide a surface for new attacks, by
giving the attacker full control over the message that SeDyA provides as aggregate.

4However, the attackers do amplify each other, because they have the same goal.

69

SeDyA’s significant bandwidth reduction may be compensated in future work by analyzing the possi-
bility of optimizations in its protocols. Specifically, SeDyA’s finalization phase consumes a large amount
of bandwidth for the security it offers. This finalization phase may be optimized by implementing signing
policies, which limit the amount of signatures produced in this phase, by implementing a more intelligent
method to iteratively contruct the multisignature, or by completely discarding the security mechanisms in
phase 1. This last solution is of particular interest, as it has been shown that the impact of an attacker with
full control over the input of the finalization phase is very low.

70

Chapter 7

Conclusion

This master thesis has introduced and discussed the challenges surrounding secure aggregation, VANETs
and dynamic aggregation, shown current approaches in related work and used the results of these discus-
sions to design a new scheme. This new scheme, Secure Dynamic Aggregation (SeDyA), provides dynamic
aggregation, including the desired level of security. In addition, it has been shown that goal of dynamic
aggregation is preserved; however, the new security mechanisms introduced more overhead than expected.
Thus, SeDyA illustrates a trade-off between high security and the severe bandwidth usage of forwarding all
beacon messages, and the lower level of security but high bandwidth efficiency of existing secure aggregation
schemes. However, it should be noted that SeDyA achieves the dynamic aggregation goal to reduce the
bandwidth requirements in the dissemination phase. Future work will be able to determine the potential of
this approach by performing large scale simulations and further study the trade-off between bandwidth and
disseminated information, while maintaining a high level of security. The thesis has considered the following
research questions, which will be discussed individually:

1. How can we provide data integrity and consistency for in-network aggregation in VANETs?
2. Which guarantees and how much confidence can we gain by using cryptography for data integrity and

consistency in VANET aggregation?
3. How can we compare different secure aggregation schemes in terms of accuracy, privacy and security

guarantees?
4. How can we ensure that aggregation schemes can scale to a sufficiently large area without loosing too

much accuracy?
5. Can we obtain a better trade-off between security and privacy than the current state of the art in

VANET aggregation?

1. As already discussed to some extent by related work, both integrity and consistency can be reached in
several ways, using trust and consistency checks, cryptographic primitives and interactive verification. The
most common approach for consistency is to rely on trust and checks, because this typically does not incur
high overhead. However, as has been shown by some secure aggregation schemes, cryptographic primitives
can be used to support this approach at the cost of additional overhead. This master thesis has combined
consistency checks with improved cryptographic primitives to build SeDyA, which provides a strong resilience
against attacks by relying on both these mechanisms. In addition, SeDyA also has a component of interactive
verification, because a message is first aggregated and then disseminated through the aggregation area for
signing. Finally, the interested vehicles that receive the messages are protected against remote impersonation
attacks, due to the fact that the pseudonyms of each signer of a message are known. Due to this knowledge,
the message can be used for further consistency checks, to allow vehicles to resolve conflicting information.

2. Unfortunately, the guarantees offered by the cryptographic mechanisms introduced by related work
are not as strong as previously assumed. In particular, this thesis has shown that the approach used by

71

SAS and by AM-FM sketches is vulnurable to some attacks, when converted into a more realistic VANET
scenario. SeDyA has been developed with these attacks in mind, aiming to combine consistency checks with
cryptographic integrity to improve the confidence that vehicles can have in a message. Specifically, it provides
a number of signers, which can be used to make the computation of the confidence in this message explicit.
In addition, SeDyA provides more protection against attacks, compared to the alternatives, particularly
when those attacks are frequent. However, SeDyA is still vulnurable to a larger scale collusion of distinct
attackers, which declared out of scope by SeDyA as well as other secure aggregation schemes from literature.

3. The comparison of different guarantees concerning accuracy, privacy and security, as well as feasability,
has proven more difficult than intially expected. To the authors knowledge, there are no well-established
metrics to determine these results; in addition, the mechanisms typically rely on different assumptions that
make direct comparison challenging at best. While analyzing these protocols by modifying simulations is
possible, there are typically no implementations available for the related work, making it an extremely time-
consuming and error-prone process to perform this analysis. Therefore, the simulations performed for the
new scheme, SeDyA, have been compared against a limited version that is closely related to two schemes
from related work. The evaluation metrics are then designed in a manner similar to related work, using some
new but well-documented metrics and some existing metrics from other works.

4. The scalability of aggregation is one of the main reasons to construct SeDyA, which builds on elements
of related work to create a more secure and dynamic aggregation protocol. To the knowledge of the author,
this is the first general aggregation scheme that provides both security and a dynamically defined area.
Defining the area in a dynamic fashion is essential to providing a good and scalable aggregation scheme,
because it reduces the amount of aggregates that need to be disseminated as the area size grows. Related
work that considers security relies on a fixed segment size, which may needlessly bound aggregation or cause
inaccurate aggregates to be generated when, for example, the bound of a traffic jam falls in the middle of
such a fixed segment. While the evaluation has shown that SeDyA’s intended design works, providing this
secure scheme incurs significant bandwidth overhead. However, future work should be able to adapt SeDyA
to support more flexible and less bandwidth-consuming mechanisms. This may be possible by stripping away
the security of SeDyAs aggregation phase entirely, or by using efficient message dissemination schemes in
the finalization phase. However, this approach may incur a cost in terms of security, and should be carefully
analyzed before being applied in practice. Nevertheless, this shows that SeDyA provides a different choice
for the trade-off between security, bandwidth usage and accuracy.

5. As per the results from Chapter 6, it seems that SeDyA does not provide an improvement of three ele-
ments in this trade-off between security, accuracy and bandwidth usage. Instead, the security is improved,
at the cost of a significant increase in bandwidth consumption. This clearly shows that it is possible to
provide stronger security in the presence of independent attackers. Note that, as discussed in Section 6.5,
there are still some approaches that have not been explored. These approaches typically involve concessions
in security to achieve better bandwidth efficiency, allowing further study of this trade-off.

To summarize, SeDyA provides a valuable contribution to the study of the trade-off between security,
bandwith efficiency and accuracy. Future work should be able to further study this trade-off by introduc-
ing additional mechanisms to SeDyA’s finalization phase, and by removing the security mechanism in the
aggregation phase. Furthermore, future work should focus on other available combinations of consistency,
cryptography and interactive mechanisms to improve the security and bandwidth consumption of secure
aggregation schemes. While some of these mechanisms have been designed in previous work already, none
of these schemes use cryptography as a means to combine the consistency checks of many vehicles. Finally,
there is room to develop a more rigorous and formal analysis of the impact an attacker can have when
consistency checks are a significant component in security. This also applies more generally to the use of
consistency checks in VANETs, which are sometimes employed to argue against strong security mechanisms.

72

Bibliography

[1] IEEE trial-use standard for wireless access in vehicular environments - security services for applications
and management messages, 2006. IEEE Std 1609.2-2006.

[2] A. Barenghi, G. Bertoni, L. Breveglieri, and G. Pelosi. A fpga coprocessor for the cryptographic tate
pairing over fp. In Information Technology: New Generations, 2008. ITNG 2008. Fifth International
Conference on, pages 112 –119, april 2008.

[3] R. Barr. An efficient, unifying approach to simulation using virtual machines. PhD thesis, Cornell
University, May 2004.

[4] J.-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto. Arithmetic operators for pairing-based cryp-
tography. 4727:239–255, 2007.

[5] N. Bissmeyer, C. Stresing, and K. Bayarou. Intrusion detection in vanets through verification of vehicle
movement data. In Vehicular Networking Conference (VNC), 2010 IEEE, pages 166 –173, dec. 2010.

[6] A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-diffie-
hellman-group signature scheme. In Public Key Cryptography, pages 31–46, 2003.

[7] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. SIAM Journal on Com-
puting, 32(3):586, 2003.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In Advances in Cryptology - EUROCRYPT 2003, volume 2656, page 416, 2003.

[9] CAMP Vehicle Safety Communications Consortium. Vehicle safety communications project (final re-
port), May 2005.

[10] S. Chang, Y. Qi, H. Zhu, J. Zhao, and X. Shen. Footprint: Detecting sybil attacks in urban vehicular
networks. Parallel and Distributed Systems, IEEE Transactions on, PP(99):1, 2012.

[11] S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. Borcea, P. Kang, and L. Iftode. Trafficview: a driver
assistant device for traffic monitoring based on car-to-car communication. In Vehicular Technology
Conference, 2004. VTC 2004-Spring. 2004 IEEE 59th, volume 5, pages 2946 – 2950 Vol.5, may 2004.

[12] S. Dietzel, B. Bako, E. Schoch, and F. Kargl. A fuzzy logic based approach for structure-free aggregation
in vehicular ad-hoc networks. In Proceedings of the sixth ACM international workshop on VehiculAr
InterNETworking - VANET ’09, page 79, 2009.

[13] S. Dietzel, E. Schoch, B. Konings, M. Weber, and F. Kargl. Resilient secure aggregation for vehicular
networks. IEEE Network, 24(1):26, 2010.

[14] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, IT-29(2):198–208, March 1983.

73

[15] J. R. Douceur. The sybil attack. In Revised Papers from the First International Workshop on Peer-to-
Peer Systems, IPTPS ’01, pages 251–260, London, UK, 2002. Springer-Verlag.

[16] ETSI. Intelligent transport systems (ITS); vehicular communications; basic set of applica-
tions; definitions. http://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/

tr_102638v010101p.pdf, June 2006. ETSI TR 102 638, version 1.1.1.

[17] Y.-C. Fan and A. L. Chen. Efficient and robust sensor data aggregation using linear counting sketches.
In 2008 IEEE International Symposium on Parallel and Distributed Processing, page 1, 2008.

[18] M. Feiri, J. Petit, and F. Kargl. Congestion-based certificate omission in vanets. In Proceedings of the
ninth ACM international workshop on Vehicular inter-networking, systems, and applications, VANET
’12, pages 135–138, New York, NY, USA, 2012. ACM.

[19] P. Flajolet and G. N. Martin. Probabilistic counting. In FOCS’83, pages 76–82, 1983.

[20] M. Garofalakis, J. M. Hellerstein, and P. Maniatis. Proof sketches: Verifiable in-network aggregation.
In 2007 IEEE 23rd International Conference on Data Engineering, page 996, 2007.

[21] C. Gentry and Z. Ramzan. Identity-based aggregate signatures. In Public Key Cryptography - PKC
2006, 9th International Conference on Theory and Practice of Public-Key Cryptography, pages 257–273,
2006.

[22] M. Gerlach. Assessing and improving privacy in vanets. ESCAR Embedded Security in Cars, 2006.

[23] M. Gerlach. Assessing and improving privacy in VANETs. In 4th Workshop on Embedded Security in
Cars, 2006.

[24] Q. Han, S. Du, D. Ren, and H. Zhu. Sas: A secure data aggregation scheme in vehicular sensing
networks. In 2010 IEEE International Conference on Communications, page 1, 2010.

[25] H.-C. Hsiao, A. Studer, R. Dubey, E. Shi, and A. Perrig. Efficient and secure threshold-based event
validation for vanets. In WISEC’11, pages 163–174, 2011.

[26] A. Joux and K. Nguyen. Separating decision diffie-hellman from diffie-hellman in cryptographic groups.
Cryptology ePrint Archive, Report 2001/003, 2001. http://eprint.iacr.org/.

[27] Z. Li and G. Gong. Data aggregation integrity based on homomorphic primitives in sensor networks.
In ADHOC-NOW’10, pages 149–162, 2010.

[28] X. Lin, X. Sun, P.-H. Ho, and X. Shen. Gsis: A secure and privacy-preserving protocol for vehicular
communications. Vehicular Technology, IEEE Transactions on, 56(6):3442 –3456, nov. 2007.

[29] C. Lochert, B. Scheuermann, and M. Mauve. Probabilistic aggregation for data dissemination in vanets.
In Proceedings of the fourth ACM international workshop on Vehicular ad hoc networks - VANET ’07,
page 1, 2007.

[30] J. Lutz and A. Hasan. High performance fpga based elliptic curve cryptographic co-processor. In
International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC
2004., page 486, 2004.

[31] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite
field. Information Theory, IEEE Transactions on, 39(5):1639 –1646, sep 1993.

[32] A. Metwally, D. Agrawal, and A. E. Abbadi. Why go logarithmic if we can go linear? In Proceedings
of the 11th international conference on Extending database technology Advances in database technology
- EDBT ’08, pages 618–629, 2008.

74

http://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf
http://eprint.iacr.org/

[33] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode. Trafficview: a scalable traffic monitoring system.
In Mobile Data Management, 2004. Proceedings. 2004 IEEE International Conference on, pages 13 –
26, 2004.

[34] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust aggregation in
sensor networks. In Proceedings of the 2nd international conference on Embedded networked sensor
systems - SenSys ’04, page 250, 2004.

[35] J. Petit and Z. Mammeri. Analysis of authentication overhead in vehicular networks. In Wireless and
Mobile Networking Conference (WMNC), 2010 Third Joint IFIP, pages 1 –6, oct. 2010.

[36] M. Raya, A. Aziz, and J.-P. Hubaux. Efficient secure aggregation in vanets. In Proceedings of the 3rd
international workshop on Vehicular ad hoc networks, VANET ’06, pages 67–75. ACM, 2006.

[37] M. Raya and J.-P. Hubaux. Securing vehicular ad hoc networks. Journal of Computer Security, 15(1):39–
68, 2007.

[38] J. Rezgui and S. Cherkaoui. Detecting faulty and malicious vehicles using rule-based communications
data mining. In Local Computer Networks (LCN), 2011 IEEE 36th Conference on, pages 827 –834, oct.
2011.

[39] B. Scheuermann, C. Lochert, J. Rybicki, and M. Mauve. A fundamental scalability criterion for data
aggregation in vanets. In Proceedings of the 15th annual international conference on Mobile computing
and networking - MobiCom ’09, page 285, 2009.

[40] E. Schoch, F. Kargl, and M. Weber. Communication patterns in vanets. IEEE Communications
Magazine, 46(11):119, 2008.

[41] R. Schwartz, M. van Eenennaam, G. Karagiannis, G. Heijenk, W. Wolterink, and H. Scholten. Using v2v
communication to create over-the-horizon awareness in multiple-lane highway scenarios. In Intelligent
Vehicles Symposium (IV), 2010 IEEE, pages 998 –1005, june 2010.

[42] SeVeCom. SeVeCom Deliverable 2.1-App.A, version 1.2: Baseline security application, April 2009.

[43] A. Shamir. How to share a secret. Commun. ACM, 22:612–613, November 1979.

[44] V. Shoup. Practical threshold signatures. In Proceedings of the 19th international conference on Theory
and application of cryptographic techniques, EUROCRYPT’00, pages 207–220, Berlin, Heidelberg, 2000.
Springer-Verlag.

[45] A. Studer, F. Bai, B. Bellur, and A. Perrig. Flexible, extensible, and efficient vanet authentication. In
Proceedings of the 6th Embedded Security in Cars Workshop (ESCAR 08), November 2008.

[46] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem in a mobile ad hoc
network. Wirel. Netw., 8:153–167, March 2002.

[47] Y.-c. Tseng, S.-Y. Ni, Y.-s. Chen, and J.-P. Sheu. The Broadcast Storm Problem in a Mobile Ad Hoc
Network. Wireless Networks, 8(2-3):153–167, 2002.

[48] University Ulm. Jist/swans extensions. http://vanet.info/node/12.html. Retrieved 9 July 2012.

[49] M. van Eenennaam and G. Heijenk. In Proceedings of the Fourth International Workshop on Vehicle-
to-Vehicle Communications, V2VCOM 2008, pages 19–25, 2008.

[50] L. Wischoff, A. Ebner, H. Rohling, M. Lott, and R. Halfmann. Sotis - a self-organizing traffic information
system. In Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th IEEE Semiannual,
volume 4, pages 2442 – 2446 vol.4, april 2003.

75

	Introduction
	Problem Statement
	Models
	Network model
	Attacker model

	VANET Aggregation Overview
	Motivation and challenges of VANET aggregation
	General VANET aggregation model
	Security

	Requirements
	Data utility requirements
	Feasability requirements
	Security requirements

	Related Work
	Probabilistic Counting
	FM sketches
	LC sketches
	z-smallest

	Cryptographic Signatures
	VANET Aggregation
	Current Secure Aggregation
	AM-FM sketches
	SAS
	Threshold-based event validation

	SeDyA: overview
	Overview
	Phase 1: Aggregation Phase
	Dynamic aggregation area
	Accuracy
	Overhead
	Discussion and conclusion
	SeDyA's solutions

	Phase 2: Finalization Phase
	Finalization
	Signature collection protocol
	SeDyA's solutions

	Phase 3: Dissemination Phase
	Confidence
	Attack detection
	Further aggregation and its challenges
	SeDyA's solutions

	Summary

	SeDyA: implementation
	Cryptographic Background
	Elliptic Curve Cryptography
	Pairing-based Cryptography & Identity Based Encryption
	Multisignatures and IBS
	Aggregate signatures and IBS
	Computational cost

	Phase 1: Aggregation Phase
	Signatures
	Overhead
	Privacy

	Phase 2: Finalization Phase
	Signatures
	Overhead
	Privacy
	CA problems

	Summary

	Evaluation
	Motivation
	Accuracy
	Feasibility
	Security

	JiST/SWANS
	Implementation of SeDyA
	Simulation parameters

	Optimizing SeDyA
	Configuration and parameters
	Results

	Simulation Results
	Accuracy
	Feasibility
	Security

	Summary

	Conclusion

