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ABSTRACT

This thesis presents an experimental and numerical study of laser-induced cavit-
ation in capillary tubes. An experimental study of the influence of focal position
of the laser reveals that cavitation bubble formation is enhanced when the laser
focus is displaced from the capillary axis towards the laser. A numerical model
based on a ray tracing method was developed to calculate the spatial energy
absorption profile. Subsequently, a simple energy threshold model was used to
obtain an estimation of the initial bubble volume. The estimation provides a good
match with the experimentally observed trend and predicts an optimum position
for the laser focus. The model may serve as a tool to optimize cavitation-based
microfluidic systems, allowing study of the influence of the liquid absorptivity,
the capillary diameter, the capillary wall thickness and the laser pulse energy
and polarization on bubble formation. The local energy distribution, for which
currently no adequate model exists, could also enhance the initial conditions
of computational fluid dynamics models commonly used to describe cavitation
dynamics.
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1INTRODUCTION

When a laser pulse is focused on a liquid, the energy absorption can cause rapid
evaporation (Lauterborn, 1972) and even optical or thermal breakdown (Felix
and Ellis, 1971; Byun and Kwak, 2004). The evaporation due to the intense energy
deposit results in a cavitation bubble that violently expands and collapses. This
can cause e.g. shock waves, rapid jets (Tagawa et al., 2012) and sonoluminescence
(Brenner et al., 2002). The aggressive nature of laser-induced cavitation has found
a broad range of applications, such as cell lysis, cell membrane poration and
ocular surgery (Quinto-Su et al., 2009). In microfluidics, cavitation is used for
pumping, mixing, switching and moving objects. Cavitation can hereby produce
inertia-dominated flow even within the small dimensions of microfluidics (Ohl
et al., 2009). A novel example is the creation of highly focused supersonic mi-
crojets (Tagawa et al., 2012). Due to their excellent controllability, high velocity
and relatively low power requirements, these jets are an attractive option for
needle-free drug injection (Mitragotri, 2006).

To study the dynamics of laser-induced cavitation, various experimental tech-
niques have been employed. High-speed cameras have proved useful to study the
evolution of bubbles in time (Lauterborn, 1972; Gonzalez-Avila et al., 2011) and
particle image velocimetry was used to study the flow field induced by cavitation
(Zwaan et al., 2007). In addition, various numerical methods were developed,
such as kinetic and energy balance models (Byun and Kwak, 2004; Sun et al.,
2009) and applications of the boundary element method (Yang and Prosperetti,
2008; Gonzalez-Avila et al., 2011).

A key uncertainty in the current numerical methods is the initial distribution
of absorbed energy after the usually nanosecond-scale laser pulse, which determ-
ines ‘the initial shape of the cavitation bubble and its induced flow field’ (Lim
et al., 2010). According to Byun and Kwak (2004), ‘[t]he laser energy transmitted
to the focusing region may depend on the focal length of the lens employed, the
focusing angle and aberration of the laser front.’

For example, the model from Sun et al. (2009) requires an initial temperature
profile, which currently is ‘a matter of considerable uncertainty because we do
not have sufficient information on the spatial distribution of the absorbed laser
energy.’ Lim et al. (2010) demonstrated that the bubble shape and evolution could
be modified by changing the spatial energy distribution of the laser. However, in
their boundary element simulations, the initial bubble shapes were estimated, as
no model for the local energy absorption was developed.

To obtain the spatial distribution of absorbed energy of a nanoseconds laser
pulse, this research presents a numerical approach. A ray tracing method directly
relates the energy distribution to the absorptivity of the liquid, the geometry
of the system and the laser energy, focusing angle and position. This allows
calculation of the initial bubble shape from the local energy dump, instead of the
currently common assumptions of initially spherical bubbles or other shapes.

A similar ray tracing method was used to model the infrared heating of plastic
bottles during their production (Bordival et al., 2010; Cosson et al., 2011) and
infrared composite curing (Nakouzi et al., 2011). Previously, ray tracing was also
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2 introduction

successfully applied to model the radiation absorption in fluid collectors for solar
energy collection (Sokolov and Saltiel, 1981) and heliostat solar power plants
(Garcia et al., 2008).

To study the dependence of the local energy dump on bubble formation,
cavitation bubbles in a capillary filled with ink were imaged for varying positions
of the focal point of a laser. Chapter 2 starts with an overview of the experimental
setup and results. Subsequently, Chapter 3 presents the numerical method that
was developed. In Chapter 4, the model is evaluated and compared with the
experiments. Chapter 5 concludes the thesis with a summary and outlook.



2EXPERIMENTAL WORK

To study the dependence of the initial energy distribution on cavitation bubble
generation, this thesis focuses on the influence of the position of the focal point
of a laser within or outside a capillary tube filled with ink. This chapter describes
the experiments performed to determine this influence.

2.1 experimental setup

Figure 2.1 depicts the setup that was used to study the cavitation bubbles, similar Imaging of bubbles was
performed by M.S. Al,
T.A.M van Dijk, M.H.
Klein Schaarsberg and
C.W. Visser in a
one-week project. The
absorption coefficient
of the ink was
measured by C.W.
Visser. Image
processing and analysis
was performed by M.H.
Klein Schaarsberg.

to that of Sun et al. (2009) and Tagawa et al. (2012). A borosilicate glass capillary
tube (Capillary Tube Supplies Limited) with an inner and outer diameter of
respectively 200 and 220 µm was filled with ink by connecting one end to a
syringe pump (Harvard Apparatus phd 2000). The other end was left open to
air. To create cavitation bubbles, a 7 ns laser pulse (Q-switched Nd-YAG laser,
Quantel Evergreen 70, versionA) was focused on a point on or outside the capillary
using a beam expander (Edmund Optics f64-418) and a 10× microscope objective
(Thorlabs lmh-10x-532). The laser’s axis of propagation was aligned with the
centre of the capillary by looking at its shadow on a detector card. To measure
the pulse energy, half of the beam was diverted by a beam splitter towards
an energy meter (Gentec-EO qe12sp-s-mt-d0) connected to an oscilloscope
(Tektronix tds2014). The bubbles in the capillary were imaged from the side with
a high-speed camera (PCO Sensicam) connected to a 20× microscope objective
(Olympus system). The camera recorded two frames for each experiment with
an inter-frame delay of 2 ns. Exposure for the two frames was provided by laser
induced fluorescence at 600–800 nm from a fluorescence box (LaVision vz11-5)
connected to two 7 ns pulsed lasers (532 nm Q-switched Nd-YAG lasers, Litron
Nano trl 400-20 piv). Laser induced fluorescence reduces the laser coherence,
which is undesirable for imaging purposes, while maintaining a nanoseconds
pulse duration (van der Bos et al., 2011). To filter out remaining 532 nm radiation,
a red filter was installed before the camera. The injection laser, exposure lasers
and camera were triggered by a pulse/delay generator (Berkeley Nucleonics, Model
555).

The ink (R.C. Universal Magenta 08402) was diluted to a 10% solution in water.
The absorption coefficient of the ink was determined using the Lambert–Beer
law, which is given by

I
I0
= 10−αℓ , (2.1)

where I/I0 is the ratio of transmitted to incident power, ℓ the optical length and
α (units m−1) the absorption coefficient. Using a 532 nm laser and varying the
incident power, the absorption coefficient of the 10 % ink solution was measured
at (84 ± 4) × 102 m−1. A mirror reflecting only the 532 nm radiation was used to
prevent the detection of 1064 nm radiation, which is radiated by the sample as
the ink acts as a wavelength modulator.

3



4 experimental work

Injection 
laser

Beam 
expander

Beam 
splitter

Energy 
meter

10× 
Objective

Oscilloscope

Polarizer

Capillary
�lled with ink

Fibre

High speed 
camera

20× 
Objective

Red �lter

Exposure
laser

Fluorescence 
box

LF

RL

y

x

xF

Figure 2.1: Experimental setup.

2.2 results

Figure 2.2 shows a range of typical images. Two images were recorded for every
bubble, at 3 µs (Figure 2.2, top row) and 23 µs (bottom row) after an 8 mJ injection
laser pulse. Every image pair from a–f belongs to a separate experiment. The
focal displacement = xF êx + yF êy is defined as the position of the projected
focal point relative to the cylinder axis (inset of Figure 2.1). Here, êx is the in
the direction perpendicular to the capillary axis and towards the laser, and êy
is the unit vector in the direction perpendicular to êx and the capillary axis. In
Figure 2.2a, the laser was approximately focused on the centre of the capillary
(xF ≈ 0, yF ≈ 0). In subsequent images (e.g. Figure 2.2)b–f, the capillary was
moved away from the laser, increasing the focal displacement xF in steps.

2.2.1 Bubble volume

When the focal displacement is increased from in focus towards out focus,
the bubble size increases (Figure 2.2a–c), as the laser presumably heats a larger
volume of liquid. This trend will be investigated in Chapter 4 using the numerical
model. As bubbles reach the capillary wall (Figure 2.2c–e), they continue to grow
asymmetrically towards the open end of the capillary. If the displacement is
increased even further, the bubble size declines again, as an increasing part of
the laser beam exceeds the width of the capillary (Figure 2.2d–f).

To compare the experiments with simulations, an approximation of the bubble
volume is required. A straightforward method is to determine the area of the
bubble using image processing in matlab and to use this area to calculate
the radius of a circle. With this radius, we can calculate the volume of a sphere.
However, the more the bubble shape differs from a sphere, the more the calculated
volume deviates from the real volume. For example, for a cylindrical bubble with
a height twice the diameter, the volume is overestimated with 35 %.

A better approximation is given by the axisymmetric method. Here, the image
is envisioned as a stack of disk-shaped slices viewed from the side. For bubbles
that are not confined in a direction perpendicular to the laser beam, the best
choice for the axis of symmetry is parallel to the laser axis, such as in Gonzalez-
Avila et al. (2011). The bubble is then divided into vertical slices with thickness ∆x
of 1 pixel, such as in Figure 2.3a. In our case, this seems a good approach for small
bubbles. However, as the bubbles grow and fill the capillary, this approach gives a
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Figure 2.2: Variation of the bubble size and shape with focal displacement xF in a side
view of the capillary with the open end on top and the injection laser on the
right. Each image has a width equal to the inner diameter of the capillary. The
scale bar indicates a length of 100 µm and the drawings above the pictures
indicate the position of the laser beam, which is shown in realistic proportions
to the capillary diameter.

great overestimation of the bubble volume, because the bubble shape approaches
the shape of a cylinder (such as Sun et al. (2009)). Here, division in horizontal
slices (with thickness ∆z of 1 pixel) seems a better method (Figure 2.3b). To make
a division between the two methods, we have chosen to use the direction in
which the bubble is largest, horizontal or vertical, as the axis of symmetry.

Still, an overestimation of the bubble volume is likely due to the morphology
of the bubbles. Instead of a solid body, the images show the formation of very
small bubbles (Figure 2.2, top row), which merge into one or more bigger bubbles
(Figure 2.2, bottom row). For a cloud of bubbles, such as in Figure 2.2b (top) an
indication of the possible overestimation of the volume fraction may be given
by the empty volume between close packed spheres, which is 26 %.

The bubble contours were determined with background subtraction, contrast
enhancement and thresholding using image processing routines in matlab. The
bubbles were assumed to consist of full circular slices only, any holes perpendic-
ular to the axis of symmetry were filled (which explains the horizontal line at the
bottom in the contour of Figure 2.3b). Where necessary, the bubble edges were
darkened manually using photo editing software to improve edge detection.

The variation of the resulting approximated volume with increasing focal
displacement is displayed in Figure 2.4a. The error bars indicate a 20 % error
that aims to capture the uncertainty of the actual bubble shape.

An average volume expansion rate was calculated from the increase in volume
between 0 and 3 µs and between 3 and 23 µs (Figure 2.4b). The bubbles expand
most rapidly at a displacement between 300 and 500 µm. Here, both the instant-
aneous volume and the expansion rate reach a maximum.
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(a) Horizontal axis of symmetry. (b) Vertical axis of symmetry.

Figure 2.3: Side view of the capillary with an approximation of the bubble volume using
the axisymmetric method. The scale bar indicates 100 µm and the + indicates
the centre of mass of the approximated volume.

The movement of the capillary between shots was measured with an error of
±3 µm However, the position of initial focal point in Figure 2.2a was measured
with a much larger error of approximately ±50 µm. Since all other positions are
calculated relative to this point, each focal position subsequent to the initial
focal position has an error of ±54 µm. Nevertheless, the data provides sufficient
information for qualitative analysis.

In 5 of 26 recorded images, a part of the bubble was not in the field of view
of the camera. To use these bubbles in further approximate calculations, these
bubbles were extrapolated, such as in the rectangles in Figure 2.2c. The data
points obtained from these images are indicated by circles in Figure 2.4.
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(a) Bubble volume at 3 µs (◻) and 23 µs
(△).
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(b) Average volume expansion rate
between 0 and 3 µs (◻) and between
3 and 23 µs (△).

Figure 2.4: Development of bubble volume versus the relative focal displacement, for a
200 µm capillary and 8 mJ laser pulse. The circles indicate data from extrapol-
ated images.
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Figure 2.5: Position of the centre of mass of the bubble relative to the cylinder axis versus
relative focal displacement at 3 µs (◻) and 23 µs (△). The circles indicate data
from extrapolated images.

2.2.2 Bubble location

To compare the position of the bubbles, the centre of mass of the approximated
volume was calculated, assuming constant density. With the bubble volume
approximated by N volume elements of unit mass, the distance of the centre of
mass xM from the capillary axis is given by the average of their positions x i :

xM =
1
N ∑i

x i . (2.2)

Figure 2.5 shows how the imaged bubbles are located relative to the capillary
axis as illustrated in Figure 2.3. The location xM was non-dimensionalized by
dividing by the inner capillary radius r (thus xM/r is 0 at the capillary axis and 1
at the right edge of the capillary). For increasing focal displacement, the bubbles
generally move closer to the capillary wall on the side of the laser. However, for
a relative focal displacement of 300–500 µm, the bubbles move more towards
the capillary axis. At the largest bubble volumes, where the bubble fills the entire
cross-section of the capillary, the centre of mass is located on or near the capillary
axis. Between 3 µs and 23 µs, the bubbles grow and move towards the capillary
axis.

2.3 discussion & conclusion

High-speed imaging of laser-induced cavitation bubbles in a capillary tube for
varying position of the focal point of the laser reveals that bubble expansion rate
can be enhanced by placing the focal point at a distance from the capillary axis.
This can be explained by a competition between two effects. The first effect is
that the irradiance (power per area) in the cross-section of the beam decreases
with distance for a diverging beam. If a threshold energy density is required
for evaporation in a slice of cross-section of the beam, the evaporated part of
this slice will decrease with distance. The other effect is that the volume that is
initially irradiated by the laser increases as the focal point is moved away from
the capillary axis. Before thermal diffusion and fluid dynamics come into play,
bubble nucleation will not occur outside the volume where the beam strikes.
The competition between the decrease of irradiance and the increase of heated
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volume for increasing focal displacement explains the observed maximum in
the bubble expansion rate (Figure 2.4b).

In the next chapter, the observed phenomena will be investigated further
with a numerical model. The results of this model will be compared with the
experimental results in Chapter 4.



3NUMERICAL MODELLING OF LOCAL ENERGY ABSORPTION

To improve the understanding of laser-induced cavitation, this chapter presents
a numerical model for the local energy deposit. Numerical and experimental
validation follows in Chapter 4.

An analytical description of a laser beam requires a beam much smaller than
the optical system (Alda, 2003; Greco and Giusfredi, 2007). In our setup, the beam
width can easily exceed the width of the capillary. For this reason, a ray tracing
method was implemented to describe the interaction of the laser beam with the
capillary, analogous to Visser (2011). This method is explained in Section 3.1. As
input, the laser beam and energy is discretized in a large number of infinitely
thin rays (Section 3.2). Section 3.3 explains the calculation of reflections and
refractions. To model the local energy deposit, the liquid is assumed to satisfy the
Lambert–Beer absorption equation. Section 3.4 explains how the absorption is
discretized in space with an algorithm by Amanatides and Woo (1987). Section 3.5
concludes the chapter with a straightforward method to obtain an indication of
the initial bubble volume from the modelled energy deposit.

3.1 description of the ray tracing method

Figure 3.1 shows the result of the ray tracing method. First, the laser beam is
divided into a large number of infinitely thin rays. Of these rays, the cascade of
reflections and refractions of all the rays that intersect the capillary is calculated
until a minimum intensity threshold is reached.

The initial radius of the beam modelled is taken equal to radius of the beam
just before the lens. The specifications of the laser used in the experiments report
a near-field beam diameter of 3.87 mm and 1.95 mrad divergence at 86.5%. With
the setup’s optical length of (1.31 ± 0.02) m, the divergence causes the beam radius
to increase with 2.6 mm. Including the 3× magnification of the beam expander,
the final beam radius becomes 1.35 cm. Spherical aberration and diffraction
effects are not taken into account. The finite beam waist that a Gaussian beam
still has at the focal point is also neglected (Alda (2003)).

The starting points of all rays lie in a single yz-plane. The position of the
starting point X0 of a ray at the centre of the beam is determined by the focal
displacement xF and focal length LF (see Figure 2.1):

X0 = LF êx + xF . (3.1)

Each ray, with starting point X0, is given a normalized direction vector v towards
the projected focal point:

v = X0 − xF
∣X0 − xF ∣

. (3.2)

The following section will explain the determination of the starting points of
the rays and the energy per ray.

9



10 numerical modelling of local energy absorption

Figure 3.1: Ray tracing in a capillary tube. From top to bottom, (a), (b) and (c) show a
side view, 3d view and top view of the traced rays. In the middle, the laser
discretization in a regular pattern in the yz-plane is visible. The black line and
ring on the right side indicate the beam radius RL . The simulation started with
61 initial rays and ended with 613 rays.

3.2 discretization of a laser beam

A typical laser beam is characterized by a radial Gaussian irradiance profile,

I(r) = 2Pt
πR2 exp [−2(r/R)2] , (3.3)

with r the distance from the beam centre, R the beam radius and Pt the total laser
power. The beam radius can be interpreted as the distance from the beam axis
where the irradiance has dropped to 1/e2. The prefactor ensures that the total
laser power results if the irradiance is integrated over the entire cross-section of
the beam:

Pt = ∫
2π

0
∫
∞

0
I(r)r dr dθ . (3.4)

To discretize the energy of the beam over the separate ray while maintaining
a Gaussian irradiance profile, two methods were used. Figure 3.2a illustrates the
first method, where the rays origins are distributed in a regular pattern with
approximately equal area per ray. A Gaussian irradiance profile of the discretized
beam is obtained by a proper distribution of energy per ray (Visser, 2011). The
second method, illustrated in Figure 3.2b, uses a stochastic distribution for the
ray origins with equal energy per ray. The two methods will be described in the
following two sections.

3.2.1 Regular pattern beam discretization

Visser (2011) proposed to distribute the rays from the discretized beam in an
approximately hexagonal pattern (Figure 3.2a). First, the power of the laser is
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Figure 3.2: Determination of ray origins for the discretization of a laser beam. The circles
shows the beam radius RL .

split over a centre ray at r = 0 and N annuli or rings (area between two concentric
circles) around this first ray. Each annulus n has an inner radius r0(n) and an
outer radius r1(n). To cover the whole laser beam, the outer and inner radii of
consecutive annuli are equal (r1(n) = r0(n+1)). For the centre ray r0(0) = 0, and
for the outermost annulus, r1(N) =∞. Subsequently, each annulus is divided
into 6n pieces, such that the area surrounding each ray centre is approximately
equal. To determine the power for each ray in the n-th annulus, the irradiance
I(r) from (3.3) is integrated for each annulus and divided by the number of rays
per annulus:

P(n) = 1
6n ∫

2π

0
∫

r1(n)

r0(n)
I(r)rdrdθ (3.5)

= Pt
6n
{exp [−2(r0(n)/R)2] − exp [−2(r1(n)/R)2]} (3.6)

The 7 ns duration of the studied laser pulses is far shorter than the resulting
dynamics. Therefore, we will consider each laser pulse as an instantaneous injec-
tion of energy from this point. It is then more convenient to use the total laser
pulse energy Ut = PtT (with T the pulse duration) instead of power. This results
in an energy per ray U(n) = P(n)T (Figure 3.3a):

U(n) = Ut

6n
{exp [−2(r0(n)/R)2] − exp [−2(r1(n)/R)2]} (3.7)

For the outermost annulus (at 2.5R), the energy per ray is slightly higher, as
the irradiance is integrated from ≈ 2.5R to infinity. This difference is negligible,
however, since this last annulus contains only ≈ 0.2 % of the total beam energy.
The resulting discretized irradiance profile (multiplied by the pulse duration to
obtain the ratio of energy per ray to surface per ray) has a Gaussian distribution
(Figure 3.3b).
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Figure 3.3: Laser discretization in a regular pattern for a Gaussian beam with radius
R = 3 mm, laser pulse energy Ut = 10 µJ and NR = 20 rings, giving N = 1261
initial rays. Adapted from Visser (2011), with permission.

The number of initial rays with NR rings around a centre ray and 6n rays per
ring is equal to

N = 1 + 3NR(NR + 1). (3.8)

With a little algebra, it follows that the number of rings required to discretize
the beam in at least N rays is equal to

Nr = ⌈
1
6
√

12N − 3 − 1
2
⌉ . (3.9)

Preliminary results from Visser (2011) indicate that the regular pattern method
is very discretization dependent. This problem was also reported by Cosson et al.
(2011), who solved the problem by using a stochastic discretization method.
Therefore, a similar approach will be pursued in the following section. The
discretization dependence will be discussed further in Chapter 4.

The stochastic method also has the advantage that the number of initial rays
does not have to be predetermined before a simulation. In comparison, a major
drawback of the regular pattern method is that the number of rays has to be
specified beforehand: there is no possibility to obtain representative results when
the calculation is aborted prematurely. The implications of this will also be
discussed in Chapter 4.

3.2.2 Stochastic beam discretization

In the stochastic approach, each ray has the same initial energy U = Ut/N , such
that the total energy of all rays equals the total beam energy. The irradiance
profile is determined by the ray density distribution in the cross-section of the
beam. A Gaussian irradiance distribution is obtained by determining the ray
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Figure 3.4: Comparison of the radial irradiance of the stochastic laser discretization with
the theoretical profile for a beam with radius RL = 3 mm (indicated by the
dashed line on the right), laser pulse energy Ut = 10 µJ and N = 10 000 initial
rays.

origins with two independent stochastic variables with a normal distribution:
one for the y-coordinates and one for the z-coordinates:

Px =
1
R

√
2
π

exp [−2(x/R)2] , Py =
1
R

√
2
π

exp [−2(y/R)2] , (3.10)

where R is again the beam radius. The prefactor ensures that the distributions
are normalized.

∑ Px = ∫
∞

−∞
Px dx = 1, ∑ Py = ∫

∞

−∞
Py dy = 1. (3.11)

The x-coordinates of the ray origins are all equal and determined by the focal
length and offset (Figure 2.1). Figure 3.2b shows the origin points of 10 000
rays generated with Equation 3.10. In Figure 3.4, the irradiance profile of this
discretization is compared to the theoretical profile. Here, we divide the cross-
section of the beam into a number of annuli. The irradiance is then found by
multiplying the number of rays per annulus by the energy per ray and dividing
by the annulus area.

The results of the regular and stochastic discretization method will be com-
pared in Chapter 4, as the following sections will explain further crucial parts of
the model.

3.3 reflections & refractions

To model absorption, the reflections and transmissions of rays are crucial. For
each ray, we calculate where it hits the surface of the capillary and derive the
direction of transmitted and reflected rays, analogous to Visser (2011). This is
described in more detail in Appendix A. The surface of the capillary is assumed
smooth, such that only specular reflections occur (Figure 3.5).

The decrease in intensity along each ray is determined with the Lambert–Beer
law, as will be discussed in the next section. Still a main question is when to
cut off the reflected rays, as part of the rays will reflect infinitely in the capillary.
The calculation of further reflections and refractions of a given ray is therefore
stopped if the energy at the end the ray falls below a certain threshold (Figure 3.1).
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Figure 3.5: Specular (left) versus diffuse reflections. On a smooth surface, a parallel beam
of light is reflected as a parallel beam. A rough surface causes reflection in
all directions from a macroscopic point of view. Figure adapted from Hecht
(2001).

For the stochastic discretization method, where each ray has the same initial
energy, this threshold is set at 1/1000 of the initial energy per ray. For the regular
pattern discretization method, the threshold is set at 1/1000 of the average initial
energy per ray. For rays that are directed towards open space, an end point is
determined.

3.4 spatial discretization of absorption

To model absorption, the working liquid is considered to satisfy the Lambert–We do not have to take
into account the

variation of volumetric
absorption for different

wavelengths. If this is
required, the analysis of

Sun et al. (1999) is a
good starting point.

Beer absorption law:

I
I0
= 10−αℓ , (3.12)

where ℓ is the distance a ray travels through the working liquid with absorption
coefficient α, resulting in a ratio I/I0 of the intensities (or power) of the trans-
mitted and incident light. No scattering is taken into account. To model ink,
we use the experimentally determined absorption coefficient α = 8.4 × 103 m−1.
For glass and air, the absorptivity is negligible compared to that of ink, so an
absorption coefficient of 0 is assumed.

To obtain a spatial profile of the absorbed energy, space itself is partitioned
into a grid of cubic volume cells. To find the cells that each ray encounters and
the distance traversed in each cell, the grid is traversed from the begin point
X0 to the end point X1 of the ray with a modified implementation of the voxel
traversal algorithm presented by Amanatides and Woo (1987). Here, each ray is
described by the equation X0 + tv, where X0 is the starting point of the ray, v
the direction vector and t the distance travelled along the ray. For example, in
the two dimensional case of Figure 3.6a, the ray encounters the cells a, b, c d, e, f,
g and h, in that order, as t increases from 0 to the length ℓ of the ray. The lengths
per cell ℓ i are the distances between intersections of the ray and the grid. These
lengths are used to calculate the fractions of energy dissipation per cell U i/U0
with the Lambert–Beer law (Figure 3.6b).

Adding up the contributions of all rays for every cell gives the required ab-
sorption profile. Since each ray passes through a single material (the boundaries
between materials determine the end points of rays and begin points of reflec-
ted and refracted rays), the material is treated as a ray property, and not a cell
property. That way, no unnecessary calculations have to be made for rays that
do not travel through the working liquid.

From the obtained energy distribution, other numerical methods can be used
to obtain the resulting temperature profile and cavitation dynamics. For example,
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(a) A ray traversing a 2d grid. Adapted
from Amanatides and Woo (1987).
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Figure 3.6: Spatial discretization of absorption per ray.

Cosson et al. (2011) obtained a temperature distribution from ray tracing results
by using the absorbed energy as volumetric source term in the heat balance
equation, which was solved with a finite element method. This will be discussed
further in Chapter 4 and 5. In the following section, a straightforward approach
is used to get a first indication of the cavitation bubble growth.

3.5 estimation of bubble volume

To compare the ray tracer output with experimental data, the bubble growth
has to be derived from the discretized energy absorption profile. For this pur-
pose, Visser (2011) proposed a simple model, where each volume element in the
absorption grid is considered to be instantly vaporized if a threshold energy is
exceeded:

Ua ≥ ρCp∆T
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

Ub

+ ρ∆Hvap
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

Uv

(3.13)

where Ua is the absorbed energy per unit volume, ρ and Cp the density and heat
capacity of the liquid, ∆T = Tb − Ti is the difference between the boiling temper-
ature and the initial temperature and ∆Hvap is the enthalpy of vaporization. The
first term on the right hand side, Ub , accounts for heating the liquid up to the
boiling point, the second term Uv describes the energy required to evaporate
the whole volume. We approximate our 10 % ink solution as pure water with
an initial temperature Ti = 20 ○C, boiling temperature of Tb = 100 ○C, density
ρ = 1000 kg m−3, heat capacity Cp = 4.18 kJ kg−1 K−1 and enthalpy of vaporiza-
tion ∆Hvap = 2257 kJ kg−1. The resulting energy density for bubble formation
then becomes 2.59 GJ/m3.

However, if we consider discrete volume elements and apply this threshold, the
evaporated volume is still underestimated. The method does not take into account
elements for which the added energy is more than required to heat the amount
of liquid to the boiling point, but not enough to fully evaporate the volume.
Only elements that have absorbed enough energy to completely evaporate are
considered evaporated. To obtain a better indication of the total evaporated
volume, an approach bearing some resemblance to the Volume of Fluid method
(VOF) is used. Here, each grid cell is considered to contain two phases, liquid
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and vapour. We define the evaporated fraction η as the part of the cell volume
that is vapour. While the VOF method use information from neighbouring cells
to derive the actual interface, here a straightforward estimation is used, based
only on the absorbed energy in each cell:

• η = 0 if there is no evaporation, when Ua ≤ Ub ;

• η = 1 if there is complete evaporation, when Ua ≥ Ub +Uv ;

• η = (Ua −Ub)/(Uv −Ub) if there is partial evaporation, when Ua > Ub
and Ua < Ub +Uv .

The total bubble volume Vb is then calculated as the sum of all the evaporated
fractions η i multiplied by the volume per element:

Vb = d3∑
i
η i . (3.14)

Still, an error is introduced at the volume elements near the capillary wall,
because the bubble estimation assumes that the volume surrounding a grid point
consists of absorbing liquid only, while at the wall part of the volume is not
ink but glass. The heating and evaporation will be underestimated, because the
energy is spread over a larger volume than the ink actually occupies. This error
is decreased by choosing a grid spacing such that a whole number of volume
elements fits in the capillary diameter. The remaining error will be neglected
here. It can be decreased further by using a finer grid, or removed altogether by
calculating the actual volume of liquid per cell.

Both the simple threshold and evaporated fraction method give at best crude
approximation of the bubble volume, especially when a coarse grid used. Still,
the results give a remarkable qualitative match with experimental results. They
will be discussed in the next chapter. The methods may also be used to study how
much energy is required to generate cavitation bubbles. Tagawa et al. (2012) used
cavitation bubbles to create high-speed jets and observed that below a certain
threshold of absorbed energy, no jet was formed. This leads to the question
whether a cavitation bubble is still produced or not in that case. Furthermore,
the jet speed may be related to the bubble volume. Knowledge on the bubble
volume may thus be used to better control such jets.



4EVALUATION OF THE NUMERICAL MODEL

In this chapter we will evaluate the model developed in the previous chapter.
We start with an analysis of the convergence and efficiency, and conclude with a
comparison with experiments.

4.1 beam discretization convergence

For a given spatial grid, a sufficient amount of initial rays is required for a con-
verged absorption profile. This is illustrated in Figure 4.1, which shows slices
of the calculated absorption profile in the xy-plane at z = 0, the xz-plane at
y = 0 and a yx-plane. The focal point of the laser (coming from the right) is
projected at x , y, z = 0. In a–c and e–g, the number of initial rays is insufficient,
as the absorption profile changes when the number of rays increases. The pro-
file approaches its final appearance at about 10 000 initial rays for both beam
discretization methods.

For regular pattern beam discretization, the profile is always the same for a
given number of initial rays. This means that there will be a systematic error
until convergence is achieved. This discretization dependence for regular-spaced
ray discretization was also reported by Cosson et al. (2011). While the stochastic
discretization method also requires a sufficient number of initial rays, the error
is now random rather than systematic.

To obtain a quantitative indication of the convergence, two methods were
used. These methods circumvent the lack of an analytical result to compare the
simulations results with. First, we look at the total absorption for an increasing
number of rays. Second, we look at the change in the absorption profile for
increasing numbers of rays. The spatial grid resolution was kept constant at
9.5 µm.

Figure 4.2a shows the total absorption for increasing numbers of initial rays
for both the regular pattern and stochastic beam discretization. From this graph,
it appears that the regular discretization converges with a lower number of rays
compared to the stochastic method. There also is a slight difference in total
absorption. This difference can be explained by the unavoidable difference of
the maximum number of rays calculated with each method. In both methods,
calculation of reflections and refractions is halted when the energy of a ray is less
than 1/1000 of the average initial ray energy, but the energy per ray is constant
for the stochastic method and variable for the regular method.

Figure 4.2b shows the relative change of the absorption profile, calculated
between successive increments of the number of initial rays with 10 000 rays.
The relative change ∆Ur in the absorption profile is defined as the sum of the
changes in absorbed energy per grid cell, divided by the total absorbed energy:

∆Ur =
∑i ∣U i(n) −U i(n − 1)∣

∑i ∣U i(n))∣
, (4.1)

where i refers to grid points, and n to successive calculations. To achieve a less
than 1 % change, about 100 000 initial rays are required in this configuration.

17
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(a) N = 10 (b) N = 100 (c) N = 1000 (d) N = 10 000

(e) N = 10 (f) N = 100 (g) N = 1000 (h) N = 10 000

Figure 4.1: Influence of the number of initial rays on the absorption profile for a given
spatial grid resolution. The capillary contours are indicated by white lines. The
top and bottom row show results from the regular pattern and stochastic beam
discretization, respectively.

Initially, the change is smaller for the stochastic beam discretization. However,
from about 104 initial rays, from which the number of initial rays is increased
with constant step, the change is smaller for the regular discretization. The slope
of the graphs indicate that the error then scales with 1/N for the stochastic beam
discretization and with 1/N 3/2 for the regular beam discretization.

For increased focal displacement or a finer spatial grid, the required number
of initial rays increases. Further analysis is required to determine the dependence
of the result on the spatial discretization. To obtain discretization independent
results, a converged result is required. For this, we can either define a minimum
change in the absorption profile, or introduce a similarity variable. For example,
we can define a ray density number as the number of absorbed rays divided
by the number of grid cells with nonzero absorption. The usability of such a
number requires further investigation.

The varying demands on the number of initial rays favour the stochastic beam
discretization method, for this method allows to add initial rays until a certain
level of convergence is achieved. The regular method, on the other hand, uses a
predetermined number of initial rays, with no possibility to adapt the calculation
to the convergence of the result during a simulation.

4.2 efficiency analysis

To improve the accuracy and speed of the simulation, the memory and time
efficiency of the code was analyzed and improved. The speed of the code was
increased up to 200× compared to preliminary code by Visser (2011), which
used a different spatial absorption algorithm. Memory limitations for increasing
numbers of initial rays were eliminated by calculating rays in batches.
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Figure 4.2: Convergence analysis for increasing numbers of initial rays for a fixed spatial
grid with d = 9.5 µm and xF = 0, comparing stochastic (◻) and regular pattern
(△) beam discretization.

4.2.1 Time efficiency

Figure 4.3a shows the simulation runtime for an increasing number of initial
rays for the two beam discretization method. The slope of 1 in the log-log plot
indicates that the simulation runs in linear time with respect to the number of
initial rays. The higher computation time for the stochastic method results from
the difference in limiting the number of traced rays, which results in a higher
number of total rays for a given number of initial rays for the stochastic method
(see Section 3.3).

4.2.2 Memory efficiency

Figure 4.3b shows the increase in memory for both beam discretization methods.
The regular pattern discretization runs in linear memory, whereas the stochastic
almost runs in constant memory. The linear increase of memory limits further
increase of the number of rays for the regular method. The lower memory usage
of the stochastic methods results from the implementation of a batch processing
method and not from the discretization method. For the stochastic method,
initial rays were added in batches, while for the regular pattern method, all rays
were calculated at once.

4.3 results

Figure 4.4 shows the model results for varying focal displacement. All other
input parameters were matched to the experimental setup (see Appendix B for an
overview). The local energy absorption was determined using a grid with 9.5 µm
spacing and 100 000 initial rays. Here, we compare these simulation results with
the experimental results from Chapter 2. A qualitative comparison confirms that
a larger volume of fluid is heated for increasing focal offset. Furthermore, the
position with the most absorbed energy and its displacement with increasing
focal displacement match the experimental trend. In focus, the most energy is
deposited near the axis of the tube (Figure 4.4a, see also Figure 2.2a). Displace-
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Figure 4.3: Efficiency analysis of the simulation, comparing stochastic (◻) and regular
pattern (△) beam discretization.

(a) xF = 0 µm (b) xF = 150 µm (c) xF = 300 µm (d) xF = 450 µm (e) xF = 600 µm

Figure 4.4: Modelled local absorption profile in a 200 µm capillary tube for increasing fo-
cal displacement xF towards the laser. The colours show the relative difference
within each image.

ment of the focus to the right shifts the absorption pattern towards the edge of
the tube (Figure 4.4b–e, see also Figure 2.2b–f).

Figure 4.5 shows the modelled bubble volume for varying focal displacement.
Both the results of the simple bubble volume method (where cells are either fully
evaporated or not) and the evaporated fraction method (where the cell volume
consists of part liquid and part vapour) are shown. There are two laser positions
that result in a local maximum of the bubble volume. Moving further out focus
from these positions results in a decrease of the bubble to zeros. As discussed in
Chapter 2, a plausible explanation for the maximum is a competition between
increasing heated volume and decreasing beam irradiance.

Figure 4.6 relates the calculated bubble volume to the total absorbed energy.
Here the relative bubble volume for each of the two methods used is defined as
the bubble volume divided by the maximum bubble volume for that method.
The relative total absorption is the fraction of the total laser pulse energy that is
absorbed in the capillary. The total absorption is at an almost constant maximum
value while the beam width does not exceed the capillary width. Further out
focus, an increasing part of the beam does no longer hit the capillary, resulting in
a decline of the total absorption. With the current setup, the maxima in bubble
volume are located near the limits of the maximum absorption range.
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Figure 4.5: Initial bubble volume modelled with the simple bubble threshold method (△)
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Figure 4.6: Relative total absorption (○) and bubble volume determined with the simple
bubble threshold method (△) and the evaporated fraction method (◻).

4.4 discussion & conclusion

The simple threshold and evaporated fraction method were used to get an in-
dication of when bubble formation is enhanced or suppressed by estimating
the bubble volume. The trend in experimental data fits the modelled trend well
within the range of the data.

For the evaporated fraction model, the bubble volume is higher than the
simple bubble model. The minimum in the centre is at the same position for
both models. However, for the simple model, the position of the maximum and
the decline of the volume towards zero are closer to zero. The maximum of the
evaporated fraction method agrees better with the experimental results than that
of the simple threshold method. Furthermore, the evaporated fraction method
almost provides a quantitative match with the experimental data. It has to be
noted that this match is rather arbitrary, for a snapshot of the bubble evolution
is compared with a single volume indication.

Between the maxima, where the laser is focused on the capillary, the bubble
volume reaches a minimum, but not exactly at the projected focal point xF = 0.
This shift is presumably due to the geometry of the system. As Figure 3.1 shows,
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refractions in the direction of the capillary axis shift the actual focal point away
from the laser. A small displacement of the focal position is required to minimize
the directly heated volume. This displacement cannot be confirmed with the
current experimental results.

The accuracy of the current approach may be improved by using a finer grid.
A better comparison with experiments requires that the actual dynamics after
the initial energy deposit are captured. This requires more advanced numerical
methods that resolve the motion of the liquid/vapour interface of the bubble.
While the actual dynamics of bubble formation cannot be resolved with this
simple approach, the method still provides results that can be used to enhance
cavitation.



5CONCLUSIONS & RECOMMENDATIONS

The growth of laser-induced cavitation bubbles in capillary tubes was studied
experimentally and numerically. In this final chapter, we summarize the main
results and shed light on possible further research.

5.1 experimental work

Experimental results reveal that bubble formation in capillary tubes may be
enhanced by a displacement of the focal point of the laser from the capillary axis.
This enhancement may be explained by the domination of the increase of the
volume directly heated over the decrease of irradiance in a diverging beam.

5.2 numerical modelling

To optimize bubble formation and to improve the understanding of laser-induced
cavitation, a numerical model was developed, analogous to preliminary work by
Visser (2011). The simulation combines ray tracing of a discretized laser beam
(assumed polarized and Gaussian) and spatial discretization of absorption for
the resulting rays, assuming a liquid with Lambert–Beer absorption and no
scattering. The result is a 3d spatial discretization of local energy deposit. For
comparison with experimental results, an energy threshold method was used to
obtain an indication for the initial bubble volume.

Compared to the preliminary simulations from Visser (2011), the simulation
speed was increased up to 200×, while discretization errors were decreased and
accuracy was increased. A key step for this improvement was the implementation
of a new algorithm for the spatial discretization of absorption. Furthermore,
stochastic discretization of a laser beam provides more flexibility compared to
regular pattern discretization previously used.

5.3 results

The essential features of the experimental results so far are reproduced well
with the numerical model. The numerical simulations furthermore predict an
optimum location for the focal displacement of the laser. For the application of
cavitation, such an optimum focal displacement is a desirable design parameter.
With this knowledge, bubble formation may be achieved with less laser power,
or enhanced with equal laser power.

5.4 outlook

The current model requires further numerical and experimental validation.
First, the model requires numerical validation for smaller grid sizes. Second,
the predicted optimal position of the focal displacement for bubble formation
requires experimental validation. Next, there are many more parameters to be
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studied, such as the influence of the liquid absorptivity, the capillary diameter,
the capillary wall thickness and the laser pulse energy and polarization.

The accuracy of the model could be improved by incorporating the modelling
of a finite beam waist (Alda, 2003), scattering (Madsen et al., 1992; Di Ninni et al.,
2010) and high-energy absorption (Mansour et al., 1992). Since incorporating
these effects would considerably complicate the present model, it is recommen-
ded to first estimate the influence of these effects on model output. An extension
of the energy threshold model may allow prediction of the bubble position and
shape, next to the bubble volume.

The efficiency of the model could be improved by parallel computation and a
decrease in grid dimensions, to a volume of interest or by using the symmetry
of the setup.

The key motivation to pursue further model development is that the resulting
local energy distribution may serve to enhance the initial conditions of compu-
tational fluid dynamics models, such as the method developed by Can (2010).
Such a coupling may provide further insight into the very early stage of bubble
nucleation, which remains a major scientific puzzle.



AREFLECTIONS & REFRACTIONS ON CYLINDRICAL BODIES

This appendix describes how a ray incident on a cylindrical bodies is reflected This appendix is based
on unpublished work
by Visser (2011), with
permission. The
analysis follows on a
derivation of the
transmission and
reflections vectors and
angles from de Greve
(2007).

and refracted. We first find whether and where the ray intersects the body and
then calculate the direction and amplitude of transmitted and reflected rays for
this point of incidence.

a.1 points of intersection

Consider a unit cylinder, defined by the equation x2 + y2 = 1, and a ray with
starting point X0, end point X1 and direction vector vi. The ray can thus be
desribed by the equationX0+tv, with t ≥ 0. Substituting the x and y components
of the ray equation in the cylinder equation and solving for t yields

t = −b ±
√
b2 − 4ac

2a
, (A.1)

where

a = v2
i ,x + v2

i ,y , b = 2(v i ,xX0,x + v i ,yX0,y) and c = X2
0,x + X2

0,y . (A.2)

If there are one or two real solutions, the intersection is given by the smallest non-
negative value. If t has no real solution, the ray does not intersect the cylinder. If
there are only negatives value, there is an intersection with the line along which
the ray travels, but not on the part where the ray is, so here the ray again does
not intersect the cylinder.

a.2 direction of transmitted and reflected rays

For a ray incident on an interface between two materials (Figure A.1). the angle
of incidence θ i equals the angle of reflection θr according to the law of reflection:

θ i = θr . (A.3)

For the transmitted ray, the angle of incidence θ i is related to the angle of
refraction θr by Snell’s law:

n i sin θ i = ntθ t , (A.4)

where n i and nt are the indices of refraction of the material which the indcident
and transmitted rays pass through. The incident, reflected and refracted rays all
lie in one plane, the so-called plane of incidence.

To determine the path of the rays at a given point of incidence X1 on a cylinder,
we require a vector normal to the cylinder surface. This vector is given by n =
X1/r, where the radius r of the cylinder acts as normalization constant. The
direction of the vector should be opposed to the direction of the incident ray, so
it is correct for rays originating outside the cylinder. If the incident ray comes
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Figure A.1: The incident, reflected and transmitted rays lie in one plane of incidence. n
is the normal vector at the point of incidence, X0 and X1 indicate the start
and end point of the incident ray, vi , vr and vt are the normalized direction
vectors of the incident, reflected and transmitted rays, θ i , θr and θ t are the
angles of incidence, reflection and refraction and Ei , Er and Et are the electric
field vectors of the incident, reflected and transmitted rays. Figure adapted
from Hecht (2001).

from inside the cylinder, we use n = −X1/r. The direction vectors of the reflected
and transmitted rays (vr and vt) and the angles of incidence and transmission
(θ i and θ t) can be deduced with vector algebra (de Greve, 2007):

vr = vi − 2(vi ⋅ n)n, vt =
n i

nt
vi − (

n i

nt
p +
√

1 − q)n, (A.5)

θ i = θr = ∣ cos−1 p∣, θ t = ∣ sin−1√q∣, (A.6)

where

p = ∣vi ⋅ n∣ and q = ∣(n1/n2)2(1 − p2)∣. (A.7)

If q > 1, there is no transmitted ray and complete internal reflection occurs. In
this case vt has no real solution.

a.3 intensity of transmitted and reflected light

The fractions of reflected and transmitted light depend on the polarity of the
electric field of the incident ray Ei with respect to the surface of incidence. We
therefore define normalized vectors perpendicular and parallel to the surface:

n⊥ =
vi × n
∣vi × n∣

and n∥ =
n⊥ × vi
∣n⊥ × vi ∣

. (A.8)

We can now decompose the electric field vector into parts normal and parallel
to the surface

E i ,⊥ = Ei ⋅ n⊥ and E i ,∥ = Ei ⋅ n∥ . (A.9)

The magnitude of the electric field from the incident ray is determined from the
irradiance (Griffiths (1999)):

E i ≈
√

2I in i

є i c
, (A.10)
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where I i is the irradiance, n i the refractive index of the containing material, є i
the vacuum permittivity and c the speed of light. Equation A.10 assumes the
magnetic susceptibility is negligible. For visible light in transparent media, such
as the current setup, this is usually valid.

If n i > nt , total internal reflection occurs if q > 1. The amplitude coefficients
for reflection and transmission then become

r∥ = r⊥ = 1 and t∥ = t⊥ = 1. (A.11)

In all other cases, the ray will be partially reflected. The coefficients are then
given by the Fresnel equations (Hecht, 2001):

r⊥ =
n i cos θ i − nt cos θ t
n i cos θ i + nt cos θ t

t⊥ =
2n i cos θ i

n i cos θ i + nt cos θ t
(A.12)

r∥ =
−n i cos θ t + nt cos θ i

n i cos θ t + nt cos θ i
t∥ =

2n i cos θ t
n i cos θ i + nt cos θ i

. (A.13)

We now combine the decomposed incident amplitude (A.9), the amplitude
coefficients (A.11) and (A.13) and the direction vectors (A.8) for the transmitted
beams,

Et = Et ,⊥ + Et ,∥ , Et ,⊥ = E i ,⊥t⊥n⊥ , Et ,∥ = E i ,∥t∥
n⊥ × vi
∣n⊥ × vi ∣

, (A.14)

and for the reflected beams

Er = Er ,⊥ + Er ,∥ , Er ,⊥ = E i ,⊥r⊥n⊥ , Er ,∥ = E i ,∥r∥
n⊥ × vi
∣n⊥ × vi ∣

. (A.15)

The irradiance of the reflected and transmitted rays become

Ir = (
∣Er ∣
E i
)

2

, It = (
∣Et ∣
E i
)

2

. (A.16)

With this analysis, we have fully defined the transmitted and reflected rays for
any ray intersecting a cylindrical body.





BOVERVIEW OF MODEL INPUT & OUTPUT PARAMETERS

Ua J m Absorbed energy

Laser 
discretization

Ray tracer

Initial rays

Absorption 
discretization

Bubble volume 
approximation

Traced rays

na – Refractive index
єa – Relative permittivity
αa m

ng – Refractive index
єg – Relative permittivity
αg m

N – Number of initial rays
Umin J Minimum ray energy
d m Volume element width

r m Inner radius
r m Outer radius
Fluid material: ink
Wall material: glass
Environment material: air

RL m Radius
LF m Focal length
xF
Ut J Energy per pulse

k – Tracing level
X m Start point
X m End point
v – Direction vector
ℓ m Length
U J Start energy
U J End energy
E V m
Material the ray is in

ink parameters
ni – Refractive index
єr – Relative permittivity
α i m−1 Absorption coe�cient
Ti °C Initial temperature
Tb °C Boiling temperature
ρ kg m−3 Density
Cp J kg−1 K−1 Heat capacity
∆Hvap J kg−1 Heat of vaporization
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