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Summary

Magnetic nanoparticles are very promising for various applications in medicine. In this
research the relaxation behaviour of superparamagnetic particles is investigated. Magnetic
relaxation is defined as the return or adjustment to equilibrium after a change of the
external magnetic field. Superparamagnetic nanoparticles have the same high magnetic
response as ferromagnets, but exhibit no hysteresis. This makes them particularly suited
for relaxation experiments. The relaxation behaviour is influenced by both characteristics
of the particles and their environment. This is used in clinical applications, which include
in vitro sensing and immunoassays.

Physical models describing the relaxation behaviour of both spherical and cylindrical
particles are made. Cylindrical particles are thought to be beneficial due to their shape
anisotropy. Simulations show indeed that cylindrical particles are allowed to have larger
volume at the superparamagnetic limit, indicating a higher magnetic response due to the
increased amount of magnetic material. However, surface effects counteract this effect.
Quantification of these surface effects was outside the scope of this research, but mea-
surements of the magnetization curves of spherical and cylindrical particles showed that
the surface effects are larger than the shape anisotropy effects in the superparamagnetic
regime.

The relaxation behaviour was measured with two different setups i.e. a superconduct-
ing quantum interference device (SQUID) magnetometer measuring the relaxation as a
function of time and a differential transformer measuring the susceptibility as a function
of frequency. The SQUID magnetometer setup was designed and built in our own lab,
partly during this assignment. It uses a static magnetic field to align the magnetic par-
ticles. After the field is switched off, the particles will return to a random orientation.
The corresponding decrease of magnetic moment as a function of time is measured with
the SQUID. The setup using the differential transformer was already developed at Utrecht
University, where the measurements took place as well. This setup uses an oscillating
magnetic field to align the particles. At low frequencies, the particles are able to align to
the magnetic field before it changes direction. As the frequency increases, full alignment
is not possible anymore. This transition point corresponds to the relaxation time.

Multiple samples were used to verify the simulation model with the experiments. Un-
fortunately, none of the samples was able to confirm or reject the simulation models. The
relaxation time of samples containing iron oxide particles was outside the measurement
regime for both setups. Samples containing spherical nickel particles showed sedimenta-
tion and clustering. At last, the cylindrical nickel particles could not be compared to the
simulation model, since they turned out to be ferromagnetic instead of superparamagnetic.

i



ii



Samenvatting

De toepasbaarheid van magnetische nanodeeltjes in de geneeskunde is veelbelovend. In
dit onderzoek zal het relaxatie gedrag van superparamagnetische nanodeeltjes worden on-
derzocht. Magnetische relaxatie is gedefinieerd als het terugkeren naar of het vinden van
een nieuwe evenwichtspositie na een verandering in het externe magneetveld. Superpara-
magnetische nanodeeltjes hebben eenzelfde hoge magnetische respons als ferromagneten,
maar vertonen geen hysterese. Hierdoor zijn ze uitermate geschikt voor relaxatie metin-
gen. Het relaxatiegedrag wordt bëınvloed door zowel de eigenschappen van de deeltjes
als de eigenschappen van de omgeving van het deeltje. Dit wordt gebruikt voor klinische
toepassingen, onder andere in vitro sensing en immunoassays.

Natuurkundige modellen die het relaxatie gedrag van zowel sferische als cilindrische
deeltjes beschrijven zijn ontwikkeld. Van cilindrische deeltjes wordt gedacht dat zij ge-
schikter zijn door hun vorm-anisotropie. Simulaties hebben inderdaad aangetoond dat
cilindrische deeltjes een groter volume kunnen beslaan in de superparamagnetische limiet.
Dit houdt in dat zij meer magnetisch materiaal mogen bevatten, waardoor zij een gro-
tere magnetische respons hebben. Echter, oppervlakte effecten werken dit effect tegen.
Kwantificatie van de oppervlakte effecten was helaas buiten het kader van dit onderzoek,
maar metingen aan de magnetisatie krommen van sferische en cilindrische deeltjes heeft
aangetoond dat in het superparamagnetisch regime de oppervlakte effecten groter zijn dan
de vorm-anisotropie effecten.

Het relaxatie gedrag is met twee verschillende opstellingen gemeten i.e. een supergelei-
dend kwantum interferentie apparaat (SQUID) magnetometer die de relaxatie als functie
van de tijd meet en een differentiële transformator die de susceptibiliteit meet als functie
van de frequentie. De SQUID opstelling is ontworpen en gebouwd in ons eigen laborato-
rium, gedeeltelijk als onderdeel van deze opdracht. De opstelling maakt gebruik van een
DC magneetveld om de deeltjes te richten. Nadat het magneetveld is uitgezet keren de
deeltjes terug naar een willekeurige oriëntatie. De afname in het magnetisch moment dat
hiermee gepaard gaat wordt gemeten met de SQUID. De opstelling met de differentiële
transformator was eerder al ontwikkeld aan de Universiteit Utrecht, waar ook de metingen
hebben plaats gevonden. Deze opstelling gebruikt een AC magneetveld om de deeltjes te
richten. Op lage frequenties van dit veld zijn de deeltjes in staat zich naar het magneetveld
te richten voordat deze van richting verandert. Wanneer de frequentie toeneemt, is er een
punt waarop dit niet meer mogelijk is. Dit overgangspunt typeert de relaxatie tijd.

Er is gebruik gemaakt van meerdere samples om het simulatie model te kunnen ve-
rifiëren. Helaas kon geen van deze samples de juistheid van het model bevestigen danwel
weerleggen. De relaxatietijd van het sample met ijzeroxide deeltjes lag buiten het meet-
bereik van beide opstellingen. De samples met sferische nikkel deeltjes hadden last van
sedimentatie en clustering. Tot slot waren de cilindrische nikkel deeltjes ferromagnetisch
in plaats van superparamagnetisch, waardoor ze niet konden worden beschreven met het
gemaakte model.
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Chapter 1

Introduction

The first use of radioactive substances in medicine was over 100 years ago in cancer treat-
ment. Nowadays, nuclear medicine also comprises diagnostic purposes. Radioactive mate-
rials are used to enhance contrast in MRI and CT and as tracers in PET and SPECT [1].
The main disadvantage of radioactive materials is the ionizing radiation emitted. Ionizing
radiation has negative long-term effects on the health of patients and staff and it comes
with extra regulations and a complex logistics procedure. The result is not all hospitals
having access to radioactive materials.

Magnetic materials might prove to be a good alternative. Magnetic materials do not
transmit ionizing radiation and recently much research is done on magnetic materials for
similar applications and more [2]. An overview of applications up to now is depicted in
figure 1.1.

The applications of the research described in this report can be found in in vitro sens-
ing and immunoassays, which cannot be accomplished with radioactive materials. The
focus of this research is on magnetic relaxation behaviour of superparamagnetic nanopar-
ticles. Relaxation is defined as the return or adjustment to equilibrium after a change
of the environment, in this case an external magnetic field. The relaxation behaviour is
determined by the characteristics of the particles and their environment, for example the
material, size, shape, temperature and medium. Measurement of the relaxation behaviour
reveals changes in one of these parameters. Relaxation measurements can therefore be
used to identify the viscosity of body fluids or to monitor magnetic particles as they travel
through areas with different fluids viscosities. Another application of relaxation measure-
ment involves biomarkers, attached to the particles, that bind with specific substances.
The particle size increases when the substance is bonded to the biomarker, which leads to
a change of the relaxation behaviour. This indicates the presence of the specific substance.

In this research a model is developed that describes the relaxation behaviour of various
particles, so optimum particle dimensions can be found. Special attention is paid to the
shape of the particles. Cylindrical superparamagnetic particles are expected to be bene-
ficial over spherical particles due to their shape anisotropy [4]. Therefore, these particles
are described in separate models.

The simulation models are used to find the requirements for an experimental setup
that can accurately measure the relaxation behaviour. A prototype of a magnetometer
based on a superconducting quantum interference device (SQUID) is already available,
but needs to be improved before it can be used for relaxation measurements. This setup
uses a DC magnetic field to align the magnetic nanoparticles. After the magnetic field is
turned off, the decay of the magnetic moment is measured as a function of time with the
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Figure 1.1: Applications for magnetic nanoparticles [3].

SQUID, a device that very accurately measures gradients in magnetic fields.
Another setup able to measure relaxation behaviour is already available at Utrecht

University. This setup applies an AC magnetic field to the particles. The change of
the magnetization of the sample as a reaction to the magnetic field, the susceptibility, is
measured with a differential transformer. The frequency of the magnetic field is varied
to find the specific frequency at which the particles cannot align their magnetic moment
with the magnetic field anymore in the given time frame of the AC magnetic field. This
frequency corresponds to the relaxation time of the particles.

Experiments with both setups are conducted to verify the simulation model. Different
samples where shape, size and medium are varied were used to test the simulation model
and to investigate the capability of relaxation experiments to distinguish these differences.

In this report we will focus on three research questions. Firstly, the physical behaviour
of the particles is investigated and described in a simulation model. Here we have to
include different sizes, materials and media to find the optimal particle dimensions. Special
attention will be paid to the difference between spherical and cylindrical particles, for
which separate models will be developed. Secondly, the present prototype setup of a
SQUID magnetometer needs to be improved before relaxation measurements can be done.
Finally, experiments with two different setups will be conducted to verify the models. Our
goal is to make a thorough analysis of the characteristics of the particles, such that we can
identify which attributes of both the samples and the setup have to be improved in order
to apply these relaxation measurements in the clinic.
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Chapter 2

Superparamagnetic
nanoparticles

2.1 Introduction

The particles used in this study are superparamagnetic. Superparamagnetic particles
are made from ferro- or ferrimagnetic material. The size of these magnetic particles is
decreased sufficiently, which gives rise to some special characteristics. The particles consist
of one magnetic domain and show no hysteresis. These characteristics are exploited in the
relaxation experiments. Applying a magnetic field aligns the particles, which results in
a high net magnetic moment. The absence of hysteresis ensures a fast decay of the net
magnetic moment at removement of the magnetic field.

This chapter gives an insight in superparamagnetism and relaxation behaviour. First,
the characteristics of superparamagnetism are explained. Then the magnetic moment of a
nanoparticle and its direction due to anisotropy are discussed. After that, it is explained
how the alignment of magnetic particles changes with changing magnetic fields.

2.2 Superparamagnetism

2.2.1 Magnetic domains

Every physical system aims to minimize its energy. In terms of orientation of spins in
a particle, there is the interplay between the exchange energy and the demagnetization
energy [5]. Minimal exchange energy is reached when the spins are aligned parallel to each
other. However, parallel spins give rise to a magnetic field, called the demagnetization
field, and every new spin has to fight against this field in order to be aligned parallel
to the others. So the exchange energy wants a uniformly magnetized particle, while the
demagnetization energy prefers a net magnetization of zero. For very small particles, the
demagnetization field is still small and the gain from exchange energy is large enough to
align the spins. At certain dimensions of the particle, the demagnetization field becomes
too big to maintain a uniformly magnetized particle and the magnetization of the particle
will split into multiple domains of uniformly magnetized spins, see figure 2.1. These
domains are separated by domain walls i.e. transition areas in which the orientation of
the spins turns gradually.

The size and energy of a domain wall are not only determined by the exchange energy,
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(a) Single domain (b) Multiple domains

Figure 2.1: A single domain particle has a net magnetic moment, while the net magnetic
moment of the multidomain particle is cancelled by the orientation of the different domains.

but also by the anisotropy energy, which favours the magnetization to be in the direction
of certain axis, called the easy axis. In the case of cylindrical particles, this is in the
direction of the long axis of the cylinder. The ideal thickness of the domain wall can be
determined by minimizing the exchange and the anisotropy energy. Very small particles
consist of a single domain i.e. there are no domain walls. Single domain particles are
characterized by demagnetization energies that are smaller than the domain wall energy.

2.2.2 Hysteresis

The direction of the magnetization of a single domain particle depends on the externally
applied magnetic field and on internal forces. In absence of an external magnetic field,
the particle has two equivalent equilibrium positions along two opposite directions of the
anisotropy axis. The preferred directions, also called easy axis, represent energy minima
which are the result of a number of anisotropies. To switch from one position to the other,
an energy barrier has to be overcome, see figure 2.2.

Particles with multiple domains have no net magnetic moment in the absence of a
magnetic field. However, the magnetic moments of the domains will align when a magnetic
field is applied. The magnetic moment of the particle is then along the anisotropy axis
which has the smallest angle to the magnetic field, resulting in a net magnetic moment
along the direction of the magnetic field. Further increase of the magnetic field can rotate
the magnetic moment of the domains away from their easy axis, towards the direction of
the magnetic field. Once the magnetic domains are oriented in a direction, it costs energy
to turn them back again, since the anisotropy energy has to be overcome. Therefore, the
magnetic moment will not return to zero when the magnetic field is switched off again.
This is called hysteresis. A magnetic field in the opposite direction is needed to overcome
the energy barrier and change the direction of the magnetic moment. The magnetic
moment is mainly reversed by the movement of domain walls. Only a weak magnetic field
is necessary to move the domain walls and so reverse the magnetization [6]. Particles of
this kind are called ferromagnetic and are in the multidomain regime in figure 2.3.

When the particle gets smaller, the number of domains decrease and finally only one
domain equal to the size of the particle remains. With decreasing particle size it is harder to
switch the magnetization by just the movement of domain walls. Therefore, the coercivity
increases, which means a higher magnetic field is needed to reduce the magnetization of
the particle to zero after it has been driven to saturation. The coercivity increases until it
reaches its maximum when the size of the particle is reduced to a single domain, see also
figure 2.3.
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(a) (b) (c)

Figure 2.2: Energy as a function of the angle of rotation in a particle. a) When there is no
external magnetic field, the particle has two equilibrium positions due to the anisotropy
of the particle. b) Switching on a magnetic field, these energies change. c) When the
magnetic field gets sufficiently large, one of the equilibrium states disappears and the
magnetic moment is forced to be in the direction of the remaining minimum [5].

In the single domain state the particle still exhibits hysteretic behaviour, since it has
to overcome a relatively high anisotropy barrier to reverse its magnetic moment. However,
the energy barrier decreases with decreasing particle size. So there is a critical limit at
which the energy barrier gets smaller than the thermal energy, resulting in a constantly
changing direction of magnetization [6]. The hysteretic behaviour is now lost and the total
magnetic moment of the system of particles will be zero, since the chance of the particle
to be in either favourable state is equal.

However, when a small external magnetic field is applied, the magnetization of the
particles will be along the anisotropy axis which has the smallest angle to the magnetic
field, resulting in a net magnetic moment of the system along the direction of the magnetic
field. This behaviour is very similar to paramagnetism, only the role of the single atoms is
now played by the single domain particles. Since the magnetic moment of a single domain
ferromagnetic particle is much bigger than that of a single atom in a paramagnet, the
net magnetic moment is often about 104 − 106 times as big as in paramagnetism, see also
figure 2.4. Consequently, this behaviour is called superparamagnetism [7, 8, 9, 10].

2.3 Magnetic moment

The magnetization of an ensemble of particles depends on the magnetic moment of the
individual particles. In this section, first the magnetic moment of one atom or molecule is
discussed. After which this is used to determine the magnetic moment of a nanoparticle.
Finally, this can be used to determine the magnetic moment of an ensemble of particles.
The magnetic moment of an ensemble of particles is the quantity that decays in a relaxation
process and therefore the quantity to be measured. The magnetic moment of an ensemble
of particles determines the strength of the signal in the measurements.

2.3.1 Magnetic moment of atoms

The magnetic moment of an atom is described by

µH = gJµB , (2.1)
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Figure 2.3: Coercivity as a function of particle size. Particles in the multidomain range are
ferromagnetic and show hysteresis. The hysteresis increases with decreasing particle size
until it reaches its maximum at the critical size of a single domain particle, dc. The single
domain particles in the shaded area are still ferromagnetic, while the particles smaller then
ds show no hysteresis and are superparamagnetic [6].

Figure 2.4: Magnetization curves for different types of magnetism. Unlike ferromag-
netism, superparamagnetism does not show hysteresis and compared to paramagnetism,
superparamagnetism shows much higher magnetization at saturation.
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where J represents the quantum number representing the total angular momentum, µB
the Bohr magneton and g the spectroscopic splitting factor given by

g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, (2.2)

where S represents the spin angular momentum, L the orbital angular momentum and
J is given by J = L + S. So the quantum numbers J , S and L are needed to calculate
the magnetic moment of an atom. These quantum numbers can be derived from the
electronic structure of the material. However, these quantum numbers are only valid for
isolated atoms and can therefore not be used to describe the magnetic moment of a solid.
Though, under certain simplifying assumptions, the magnetic moment of some materials
can be calculated. Such an assumption is that the contribution of the orbital momentum
is zero, i.e. J=S. This assumption is valid for many materials and arises from the force of
the electric field acting on the orbits. All atoms in the area contribute to the electric field,
which therefore depends on the crystal configuration. These forces result in a rather strong
coupling of the orbits to the lattice. On the other hand, the spins are coupled weakly to
the lattice. Hence, when a magnetic field is applied to the material, the spins can rotate
in the direction of the magnetic field, while the orbits are bound to their positions by
the strong orbit-lattice coupling. Therefore, the orbital moments do not contribute to the
resultant magnetic moment and the assumption J = S is valid.

The quantum numbers needed to calculate the magnetic moment can be derived from
the electronic structure of the material. The electronic structure of nickel is 3d84s2. The
quantum numbers S, L and J can be determined from this structure, which leads to S = 1
and L = 3. Considering the nickel atom is part of solid nickel, the total angular momentum
is zero and the magnetic moment of the nickel atom becomes µH = 2µB .

Magnetite (Fe3O4) consists of three iron ions, two Fe3+ ions and one Fe2+ ion. The
electronic structure of Fe3+ is 3d5, which gives S = 5/2 and L = 0. The magnetic moment
of a Fe3+ atom is then µH = 5µB . The electronic structure of Fe2+ is 3d6, which gives
S = 2 and L = 2. Considering the Fe2+ is in a solid so the orbital angular momentum is
zero, the magnetic moment of a Fe2+ atom is µH = 4µB . For a ferromagnetic material the
magnetic moment can be determined by adding the magnetic moments of the atoms of
the molecule. However, magnetite is not ferromagnetic but ferrimagnetic. The two Fe3+

atoms are anti-ferromagnetically ordered, cancelling each other’s magnetic moments. The
Fe2+ atoms are ferromagnetically ordered, so the net magnetic moment is due to these
atoms. The resultant magnetic moment is then µH = 4.1µB [5].

2.3.2 Magnetic moment of a superparamagnetic nanoparticle

Since superparamagnetic nanoparticles consist of one single domain, the magnetic mo-
ments of the individual atoms are aligned. Therefore, the magnetic moment of a nanopar-
ticle can be determined by adding the magnetic moments of the individual atoms and is
given by

µNP = µH
NAV

MV
, (2.3)

where NA represents Avogadro’s constant, V the volume of a nanoparticle and MV the
molar volume of the material. The combination µH

NA
MV

is also referred to as saturation
magnetization, Ms, since it is the maximum magnetization reached when all the dipoles
are aligned.
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However, at the surface of the particle the lattice symmetry is broken, which prevents
the particle to reach the maximum magnetization. Since nanoparticles have a relatively
high surface to bulk ratio, the surface effects significantly alter the particles final magnetic
moment. Therefore, the saturation magnetization of nanoparticles is less than that of the
bulk and depends on the surface to bulk ratio [11].

2.3.3 Magnetic moment of an ensemble of particles

For a paramagnetic material with atoms having a small permanent magnetic moment, the
magnetic moment of the material is described by

M = NpgJµBBJ(x), (2.4)

where Np represents the number of atoms, J the quantum number representing the total
angular momentum, µB the Bohr magneton, g the spectroscopic splitting factor and BJ
the Brillouin function, given by

BJ(x) =
2J + 1

2J
coth

(2J + 1

2J
x
)
− 1

2J
coth

( x
2J

)
. (2.5)

The quantity x can be described by

x =
µ0µHH

kBT
, (2.6)

where µH represents the maximum magnetic moment of each atom given by µH = gJµB ,
H the magnetic field, kB the Boltzmann constant and T the temperature. In quantum
mechanics the magnetic moment is restricted to a couple of directions i.e. the space is
quantized. The number of possible directions depends on the quantum number J . In the
classical approach space is not quantized and the magnetic moment can be in any direction
and J approaches infinity. In this limit, the Brillouin function reduces to the Langevin
function [8]

BJ→∞(x) = L(x) = coth(x)− 1

x
. (2.7)

The magnetic moment of an ensemble of superparamagnetic particles, with magnetic
moment µNP and dispersed in a carrier liquid, can be approached in the same way as that
of a paramagnetic material. Only the magnetic moment of the atom should be replaced
by the magnetic moment of the particle. The magnetic moment of the nanoparticles can
be directed in any orientation, since the particles are dispersed in a carrier liquid. Hence,
the number of possible directions for the magnetic moment is infinite and the Brillouin
function can be replaced by the Langevin function.

M = MsNp

(
coth

µ0µNPH

kBT
− kBT

µ0µNPH

)
, (2.8)

where Ms represents the saturation magnetization and µNP the magnetic moment of a
nanoparticle. The magnetization as a function of the applied magnetic field is depicted in
figure 2.5.

This description of the magnetic moment of an ensemble of particles would only fit an
ensemble with identical particles i.e. no variation in the size of the particles is allowed.
In real particle systems there is always a distribution in particle sizes. Often a lognormal

8



Figure 2.5: Magnetization curve for spherical particles of Fe3O4 with a diameter of 100 nm.
Both the exact Langevin function and the linear approximation model are shown. The
Langevin function is only valid for spherical particles, whereas the linear approximation
can also be made for particles with other geometries.

distribution function is used to describe the size distribution of both the magnetic cores
and the hydrodynamic particle size of superparamagnetic nanoparticles. The probability
density function is [7, 12, 13]

f(d) =
1√

2πσd
e−

ln2 d/µ

2σ2 , (2.9)

where d represents the diameter and σ and µ represent respectively the standard deviation
and the mean diameter of the natural logarithm of d.

µ = ln(
m2

√
v +m2

)

σ =

√
ln(

v

m2
+ 1)

(2.10)

where m is the mean diameter of the particles and v the variance.
The magnetic moment can now be described as

M(H) = MsNp

∫ ∞
0

f(dh, µh, σh)

∫ ∞
0

V (dc)f(dc, µc, σc)L(dc, H)ddcddh. (2.11)

The indices c and h refer to the core and the hydrodynamic diameter respectively.

Cylindrical particles

In the derivation of the Langevin function it is assumed the particles have a spherical shape.
Therefore, the Langevin function cannot be applied to describe the magnetization curve
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of cylindrical particles. For particles of all shapes the magnetization can be approximated
by a linear function [14]

M = χinHin, (2.12)

where χin represents the initial susceptibility of the material and Hin the internal field in
the particle. The internal field depends on both the applied field, H, and the demagne-
tization field of the particle, Hd, as Hin = H + Hd. Above a certain magnetic field the
particle becomes saturated and the magnetization will be M = Ms, see also figure 2.5.
The demagnetization field depends on the shape of the particle and can be described for
symmetrical particles as

Hd = −NM, (2.13)

where N is the demagnetization factor, depending on the shape of the particle. It is
described as [15, 16]

Nij(r) =
1

8π3

∫
d3k

D(k)

k2
kikje

i(k·r), (2.14)

where k represents the frequency in the space domain, D(k) the Fourier transform of the
shape function, often called the shape amplitude or shape transform. For a cylinder the
shape amplitude is given by

D(k) =
4πR

k⊥kz
J1(k⊥R) sin(

hkz
2

), (2.15)

where k⊥ =
√
k2
x + k2

y and J1 represents the Bessel function of the first kind. The mag-

netization can be described as

M =
χin

1 +Nχin
H. (2.16)

Taking the distribution of particle sizes into account, the magnetic moment of an
ensemble of particles is now described as

M(H) = MsNp

∫ ∞
0

f(dh, µh, σh)

∫ ∞
0

V (dc)f(dc, µc, σc)
χin

1 +Nχin
Hddcddh. (2.17)

The indices c and h refer to the core and the hydrodynamic diameter respectively.

2.4 Anisotropy energy

The direction of the magnetic moment of a nanoparticle depends on the energy of the
system. The direction with the lowest energy is the direction of the magnetization. There
are several contributions to the energy of the system, which makes the magnetization
dependent on the orientation. The most important contributions are

• Magnetocrystalline anisotropy

• Surface anisotropy

• Shape anisotropy

10



Figure 2.6: Coordinate system as used in this report. This coordinate system assumes
particles which are grown in the [001] direction.

The magnetocrystalline anisotropy is the only anisotropy that is fully caused by the in-
trinsic material properties. The other contributions to the anisotropy are induced by the
design of the particle. The total energy of the system can be written as

ε = KV sin2 θ, (2.18)

where K represents the anisotropy constant, which contains all anisotropies mentioned, V
the volume of the particle and θ the angle between the z-axis and the magnetization, see
figure 2.6.

2.4.1 Magnetocrystalline anisotropy

The coupling between the orbits and the lattice is very strong in a crystal, as explained
in section 2.3.1. The orientation of the orbits is strongly fixed to the lattice. Likewise,
the spins are coupled to the orbits, although this coupling is much weaker than the orbit-
lattice coupling. So, when a magnetic field tends to rotate the spin, it has to rotate the
orbit as well. However, the orbit is strongly fixed to the lattice and will keep the spin in its
original position. The spin can only be rotated when the magnetic field has more energy
than the spin-orbit coupling. We recall from section 2.3.1 that the strength of the orbit-
lattice coupling depends on the crystal configuration. Therefore, the energy needed to
overcome the spin-orbit coupling is spatially variable and is called the magnetocrystalline
anisotropy energy [8].

For a cubic lattice, the anisotropy can be described as [8, 17]

Ecrys = K0 +K1(α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3) +K2α

2
1α

2
2α

2
3 (2.19)

where K0, K1 and K2 represent material constants and α1, α2 and α3 represent the
fractions of the unit vector of magnetization on the axis of the crystal lattice. For particles
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K1 + + + − − −
K2 +∞ to −9K1/4 9K1 −∞ to 9|K1|/4 9|K1|

−9K1/4 to 9K1 to -∞ 9|K1|/4 to 9|K1| to +∞
Easy 〈100〉 〈100〉 〈111〉 〈111〉 〈110〉 〈110〉
Medium 〈110〉 〈111〉 〈100〉 〈110〉 〈111〉 〈100〉
Hard 〈111〉 〈110〉 〈110〉 〈100〉 〈100〉 〈111〉

Table 2.1: Easy, medium and hard magnetization directions for a cubic lattice [8].

Figure 2.7: Coordinate system for particles grown in the [110] direction.

grown in the [001] direction, the α1, α2 and α3 axis coincide with the x, y and z axis
respectively. These can also be expressed in the angles θ and φ defined in figure 2.6, as

α1 = cosφ sin θ

α2 = sinφ sin θ

α3 = cos θ

(2.20)

The magnetocrystalline energy density for a cubic crystal lattice then becomes

Ecrys = K0 +K1(sin2 φ cos2 φ sin2 θ+cos2 θ) sin2 θ+K2(sin2 φ cos2 φ sin2 θ cos2 θ) sin2 θ.

(2.21)

The favoured magnetization direction depends on the sign and the magnitude of the con-
stants K1 and K2, see table 2.1.

Application to our home-made wires

The nickel wires used in this research are grown in the [110] direction. The x,y and z axis
do not coincide with α1, α2 and α3 anymore, so another expression needs to be used for
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the description of α in the angles φ and θ, see also figure 2.7.

α1 = cos (π − θ)
α2 = sin θ sin (φ− π/4)

α3 = sin θ cos (φ− π/4)

(2.22)

The magnetocrystalline anisotropy energy density for cylindrical particles grown in the
[110] direction becomes

Ecrys,Ni =K0 +K1

(
sin2 (φ− π/4) cos2 (φ− π/4) sin2 (θ) + cos2 (π − θ)

)
sin2 (θ)+

K2

(
sin2 (φ− π/4) cos2 (φ− π/4) sin2 (θ) cos2 (π − θ)

)
sin2 (θ).

(2.23)

2.4.2 Surface anisotropy

The magnetocrystalline symmetry is broken at the surface of the particle. The breaking
of the lattice symmetry is associated with several chemical and physical effects leading to
a site-specific surface energy [18].

For large particles, the amount of surface atoms is very small compared to the amount
of bulk atoms. Therefore, the surface effects will be negligible compared to the magne-
tocrystalline anisotropy. However, the fraction of atoms located at the surface increases
with decreasing particles size. So for small particles, the surface atoms will contribute
significantly to the total anisotropy. For nanoparticles, the surface anisotropy is often one
order of magnitude larger than the magnetocrystalline anisotropy energy [7, 19].

There are two models that describe the surface anisotropy, the transverse anisotropy
model (TSA) and the Neel surface anisotropy model (NSA). The TSA model is simple, but
not always valid. The NSA model is more complicated, but also more accurate [20, 19, 21].
In the scope of this research, the transverse anisotropy model is sufficient en will therefore
be used.

The transverse surface anisotropy model assumes that the surface particles are magne-
tized perpendicular to the surface. The energy of the surface can be described as [20, 22]

εsurface =

∫
S

Ks

(
m · n

)2
dS, (2.24)

where m represents the unit vector of magnetization, n the normal vector, Ks the surface
anisotropy constant and S the surface.

Spherical particle

For spherical particles, the energy contribution from the surface will be uniform. Therefore,
it will not influence the anisotropy, although there is an absolute contribution to the total
energy. The contribution to the energy per area is

Esurface,area =

∫
S

Ks

(
cos2 φ sin2 θ + sin2 φ sin2 θ + cos2 θ

)2
dS =

∫
S

KsdS = 4πR2Ks.

(2.25)

The total energy will be [7, 23]

εsurface = KsS =
3

R
Ks

4

3
πR3 =

3

R
KsV, (2.26)
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where Ks represents the surface anisotropy constant, S the surface area and V the volume
of the spherical particle. The energy density can now be written as

Esurface =
3

R
Ks. (2.27)

Cylinderical particle

For cylindrical particles, the surface anisotropy will contain contributions from the top and
bottom and from the rest of the tube. Looking at equation 2.24, a cylindrical particle has
two different normal vectors, one for the top and bottom and one in the radial direction.
For the top and bottom, equation 2.24 becomes

Esurface,area = Ks

(
cos θ

)2
= Ks cos2 θ. (2.28)

For the rest of the tube this becomes

Esurface,area = Ks

(
cos2 φ sin2 θ + sin2 φ sin2 θ

)2
= Ks sin2 θ. (2.29)

The total energy of the surface then becomes

εsurface = 2πRhKs sin2 θ + 2πR2Kscos
2θ. (2.30)

The energy density now becomes

Esurface =
2

R
Ks sin2 θ − 2

h
Ks sin2 θ +

2

h
Ks. (2.31)

2.4.3 Shape anisotropy

The demagnetization field is the magnetic field inside the particle, that is caused by
the microscopic magnetic moments of the individual atoms [5]. Next to an atom with a
magnetic moment, the demagnetization field is directed opposite to the magnetic moment.
This makes it hard to add another atom with its magnetic moment parallel to the first one.
Above the atom, the demagnetization field is directed parallel to the magnetic moment,
which makes it easier to add another atom with its magnetic moment parallel to the first
one. So, it is more difficult to align atoms with magnetic moments next to each other,
than to align them above one another. This makes the magnetic moment dependent on
the shape of a particle.

The energy needed to overcome the demagnetization field is called the demagnetization
energy. For a particle with a given geometry, the direction in which the demagnetization
energy has its minimum is the easy direction of magnetization.

Spherical particle

For spherical particles the demagnetization energy density can be described as

Eshape =
2π

9V
µ0M

2
sR

3, (2.32)

where µ0 represents the permeability of free space, Ms the saturation magnetization and R
the radius of the particle. This energy is constant, since a spherical particle is symmetric.
Therefore, there is no preferred direction for the magnetic moment for a spherical particle.
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Cylindrical particle

The demagnetization energy density of a cylindrical particle is more complicated to cal-
culate. A general description for the demagnetization energy is written as [15]

Eshape =
µ0M

2
s

16π3

∫
d3k
|D(k)|2

k2
(m̂ · k)2, (2.33)

where D(k) represents the shape amplitude given by equation 2.15. This gives for the
demagnetization energy of a cylinder

Eshape =
µ0M

2
sR

2

π

∫
d3k

J1(k⊥R)2

(k2
⊥ + k2

z)k2
⊥k

2
z

sin2(
hkz
2

)(m̂ · k)2 (2.34)

After some manipulation this becomes

Eshape =
µ0M

2
sR

3

6

[
4(3m2

z−1)+6πpm2
z−3π

√
1 + p2(3m2

z−1)2F1(−1

2
,

3

2
; 2;

1

1 + p2
)
]
,

(2.35)

where p represents the ratio between the height and the diameter of the cylinder and

2F1(− 1
2 ,

3
2 ; 2; 1

1+p2 ) represents a hypergeometric function. In our case h >> R, which

reduces the hypergeometric function to 2F1(− 1
2 ,

3
2 ; 2; 1

1+p2 ) ≈ 1. With mz = cos θ, the
demagnetization energy density reduces to

Eshape =
4µ0M

2
sR

3

3V
− µ0M

2
sR

3

6V

[
12 + 6πp− 9π

√
1 + p2

]
sin2 θ, (2.36)

2.4.4 Direction of the magnetic moment

The total energy of the system can be determined by adding the contributions from the
different anisotropy energies. For spherical particles the total anisotropy energy density
can be described as

Espherical =K0 +K1(sin2 φ cos2 φ sin2 θ + cos2 θ) sin2 θ

+K2(sin2 φ cos2 φ sin2 θ cos2 θ) sin2 θ +
2π

9
µ0M

2
sR

3 +
3

R
Ks.

(2.37)

whereas the total anisotropy energy density for cylindrical particles is described as

Ecylinder =K0 +K1(sin2 φ cos2 φ sin2 θ + cos2 θ) sin2 θ

+K2(sin2 φ cos2 φ sin2 θ cos2 θ) sin2 θ +
4

3V
µ0M

2
sR

3

− µ0M
2
sR

3

6V
(12 + 6πp− 9π

√
1 + p2) sin2 θ − 2

R
Ks sin2 θ

− 2

h
Ks +

2

h
Ks sin2 θ.

(2.38)

The particle is magnetized in the direction that requires the smallest amount of energy.
The total energy densities for a spherical and a cylindrical particle are shown in figure 2.8.
The minima in the plot correspond with the direction of the magnetic moment. For the
spherical particle this is at angles θ = 54.7◦ and φ = 54.7◦, which corresponds with the
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(a) Spherical particle (b) Cylindrical particle

Figure 2.8: Total energy density for both spherical and cylindrical particles of nickel as a
function of the angles θ and φ. The minima of these plots represent the direction of the
magnetic moment. Both spherical and cylindrical particles have a diameter of 100 nm,
the cylindrical particle is 2 µm long.

[111] direction of the lattice. The energy minima of a cylindrical particle are at θ = 0 and
θ = π, which corresponds with the long axis of the cylinder.

For a spherical particle the only anisotropy energy that varies in space is the mag-
netocrystalline energy, the surface and shape energy are constant. This means the mag-
netocrystalline anisotropy determines the direction of the magnetic moment. This is in
accordance with an energy minimum at θ = 54.7◦ and φ = 54.7◦.

For a cylindrical particle with diameter of 100 nm and a height of 2 µm the shape
anisotropy is the dominant energy, see figure 2.9. Reducing the diameter of the cylinder
will increase the contribution of the surface anisotropy. At diameters of about 10.0 nm,
the contribution from the surface and the shape will be in the same order of magnitude
and therefore cancel each other out. This leads to a dominating role for the otherwise
relatively small magnetocrystalline anisotropy. When the diameter decreases even more,
the contribution from the surface anisotropy will dominate, which leads to the magnetic
moment pointing in the radial direction, see figure 2.10.

2.5 Relaxation mechanisms

The response of the magnetization to a change in the magnetic field strength or direction
is called magnetic relaxation [24]. Magnetic relaxation can be described by two processes.
First, the orientation of the magnetization with respect to the crystal axis can be changed
and second, the whole particle can rotate in order to align its magnetic moment with
the external magnetic field. The first process is called Néel relaxation and the second
is called Brownian relaxation [25]. The relaxation time indicates the time at which the
magnetization signal is decayed with a factor 1/e, with e Euler’s number.

16



(a) Spherical particle (b) Cylindrical particle

Figure 2.9: Different anisotropy energy contributions for spherical and cylindrical particles
of nickel as a function of angle θ for φ = 0. The sphere has a diameter of 30 nm and the
diameter of the cylinder is 100 nm and the height is 2 µm.

(a) Diameter = 8.0 nm (b) Diameter = 10.0 nm

Figure 2.10: Energy density for cylindrical particles of nickel as a function of the angles
θ and φ. The magnetic moment is in the direction of the energy minimum. As the size
of the particle changes, the contributions from the different anisotropy energies change
and the location of the energy minimum changes. The diameters are 8.0 nm and 10.0 nm
respectively for figures (a) and (b). The height of the cylinder is constant at 2 µm.
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2.5.1 Néel relaxation

As described in section 2.2, the magnetization direction of a single domain particle can
switch between the two equilibrium positions when the energy barrier is overcome. The
mean time between two flips is called the Néel relaxation time, τN , and is described by

τN = τ0e
∆ε
kBT (2.39)

where τ0 represents a material constant, usually with a value between 10−9 and 10−11 s,
kB the Boltzmann constant, T the temperature and the energy barrier ∆ε depends on
the effective anisotropy constant Keff and the volume of the particle V . It is very hard
to accurately calculate the Néel relaxation time, because there are uncertainties in τ0 and
Keff [26]. Small variations in the effective anisotropy constants have major influence on
the calculated Néel relaxation time.

Energy barrier

The magnetization direction can change from one crystal axis to another when an energy
barrier is overcome. The energy needed to switch the magnetization depends on the
material, the size and the shape of the particle. For example, the energy increases when
the particle size increases. Also, the symmetry of the crystal is easily broken at the surface
of the particle, which changes the energy [27].

The height of the energy barrier can be evaluated by computing the difference between
the energy at the saddle point and at the minimum of the effective energy of the system
[19, 28, 29]. Given the complex character of the effective energy with three competing
anisotropies, multiple energy barriers can exist. The relevant energy barrier for switching
corresponds to the lowest energy path between global minima, see figure 2.8.

Spherical particle

In the description of the energy density for spherical particles the magnetocrystalline
energy is the only contribution that depends on the orientation of the particle. The
energy density of these spherical particles is described in equation 2.37. The minimum of
this energy density is at (θ = nπ ± 0.30π;φ = π/4 + nπ2 ). The energy density is then

Esphere(θ = 0.30π;φ = π/4) = K0 +
1

3
K1 +

1

27
K2 (2.40)

There are two saddle points with a comparable energy, at (θ = nπ± 0.30π;φ = π/2 +nπ2 )
and (θ = π/2 + nπ;φ = π/4 + nπ2 ). The latter saddle point has a slightly lower energy.

Esphere(θ = π/2;φ = π/4) = K0 +
1

4
K1 (2.41)

For particles with negative magnetocrystalline anisotropy constants, the energy barrier
that has to be overcome in order to switch the magnetization direction is

Keff,sphere = Esphere(θ = π/2;φ = π/4)− Esphere(θ = 0.30π;φ = π/4)

= − 1

12
K1 −

1

27
K2.

(2.42)

The energy needed to overcome this barrier is

∆εsphere = Keff,sphereV. (2.43)
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Cylindrical particle

The energy density of a cylindrical particle can be described by the contributions from
the different anisotropies, as was given in equation 2.38. For particles with radii larger
than the minimum for magnetization along the direction of the cylinder, as mentioned in
section 2.4.4, the minima for this energy density are at θ = 0 + nπ for all φ. The energy
density is then

Ecylinder(θ = 0) = K0 +
4

3V
µ0M

2
sR

3 − 2

h
Ks. (2.44)

The saddle points are at θ = π/2 + nπ with φ = π/4 + nπ. The energy densities of the
saddle points are then

Ecylinder(θ = π/2;φ = π/4) =K0 +
1

4
K1 +

4

3V
µ0M

2
sR

3

− µ0M
2
sR

3

6V
(12 + 6πp− 9π

√
1 + p2)− 2

R
Ks.

(2.45)

The energy barrier can now be described by the effective anisotropy constant as

Keff,cylinder = Ecylinder(θ = π/2;φ = π/4)− Ecylinder(θ = 0)

=
1

4
K1 −

µ0M
2
sR

3

6V
(12 + 6πp− 9π

√
1 + p2)− 2

R
Ks +

2

h
Ks.

(2.46)

The energy needed to overcome this barrier is

∆εcylinder = Keff,cylinderV. (2.47)

Figure 2.11 shows the Néel relaxation time of a particle with constant volume as a function
of the aspect ratio of the cylinder. The Néel relaxation time decreases exponentially with
increasing aspect ratio, due to the increase of surface anisotropy energy.

2.5.2 Brownian relaxation

The Brownian relaxation time is the mean time between two flips of the entire particle
and depends on the size and shape of the particle. For spherical particles the Brownian
relaxation time is described by

τB,sp =
3Ṽ η

kBT
, (2.48)

where Ṽ is the hydrodynamic volume of the particle, i.e. the volume including the surfac-
tant layer, η is the viscosity of the carrier liquid, kB is the Boltzmann constant and T is
the temperature.

For cylindrical particles Tirado et al [30, 31] suggested the following approximation

τB,cy =
πηh̃3

6kBT

(
ln p̃+ δ⊥

)−1

, (2.49)

where p̃ represents the ratio between the hydrodynamic height and diameter of the cylinder
p̃ = h̃/2R̃ and δ⊥ is a correction for the end-effect of the cylinder. The end-effect correction
also depends on the ratio p̃ and is expressed in a power expansion in p̃−1 [32]:

δ⊥(p̃) = a0(p̃) + a1(p̃)p̃−1 + a2(p̃)p̃−2. (2.50)
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(a) Néel relaxation time (b) Brownian relaxation time

Figure 2.11: Relaxation times of a cylindrical particle as a function of the aspect ratio. The
volume is kept constant at 4.2·10−24 m3. The Néel relaxation time exponentially decreases
with increasing aspect ratio, while the Brownian relaxation time increases slightly with
increasing aspect ratio.

The coefficients ai depend on the ratio p̃ and there has been some discussion on their exact
values. Broersma [33] did some experiments and the numerical values of Tirado [31] had
the best match for ratios between 3 < p̃ < 30. Equation 2.49 now becomes

τB,cy =
πηh̃3

6kBT

(
ln p̃− 0.662 + 0.917p̃−1 − 0.050p̃−2

)−1

. (2.51)

Figure 2.11 shows the Brownian relaxation time of a particle with constant volume as a
function of the aspect ratio of the cylinder. The Brownian relaxation time increases with
increasing aspect ratio due to the increased length of the particle.

2.5.3 Effective relaxation time

Which relaxation mechanism dominates the magnetic behaviour of the colloidal suspension
depends strongly on the size of the particles. For small particles, this is Néel relaxation and
for larger particles this is Brownian relaxation, see figure 2.12. In the transition regime
between Néel and Brownian relaxation both mechanisms will be present. The effective
relaxation time can then be described as

τeff =
( 1

τN
+

1

τB

)−1

. (2.52)

2.6 Superparamagnetic limit

Nanoparticles are superparamagnetic when their size is sufficiently small that remanence
and coercivity go to zero i.e. there is no hysteresis in superparamagnetic particles. The
superparamagnetic limit indicates the diameter at which the particle loses its hysteresis
and becomes superparamagnetic and is described by ds, see also figure 2.3.
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Figure 2.12: Relaxation times of a spherical particle of nickel in water as a function of its
radius. The particle has no non-magnetic shell, so the hydrodynamic radius is equal to
the radius of the magnetic core. For small particles the Néel relaxation dominates, while
in larger particles the Brownian relaxation time determines the behaviour of the particles.

Superparamagnetic particles behave according to the Néel equation described in equa-
tion 2.39. The threshold for the superparamagnetic limit can be determined by substitut-
ing a critical relaxation time, τs, in this equation. For laboratory experiments the critical
relaxation time can be taken as τs = 100 s [34]. The superparamagnetic limit for spherical
particles is now described by [35]

ds(T ) =
( 6

π
kBT

( 12

K1
+

27

K2

)
ln(τs/τ0)

)1/3

(2.53)

where K1 and K2 represent magnetocrystalline anisotropy constants. Particles with a
diameter smaller than ds exhibit superparamagnetic behaviour.

Spherical magnetite particles are superparamagnetic below a diameter of 55 nm. For
nickel particles this is below 71 nm. This is in agreement with values found in literature
[6, 35, 36, 37].

Determining the superparamagnetic limit for cylindrical particles is a little more com-
plicated, since now the effective anisotropy constant depends on the size of the particle as
well. Next to that, the volume of the particle does not depend solely on the diameter, but
also on its height. The superparamagnetic limit is given by,

kBT ln(
τs
τ0

) =
(1

4
K1−µ0M

2
s

12πp

(
12+6πp−

√
1− p2

)
− 2Ks

(V/2πp)1/3
+

2Ks

2p(V/2πp)1/3

)
V. (2.54)

Figure 2.13 shows the superparamagnetic limit for cylindrical nickel particles as a function
of their volume and aspect ratio. It can be seen that increasing the aspect ratio allows
the use of particles with larger volumes. This was also found by Sun et al [38].

From the model it follows that the volume of a cylindrical particle with low aspect
ratios should be smaller than the volume of a spherical particle. This is very illogical,
since the same model also states that the higher aspect ratios have lower energy barriers
and are therefore allowed to have larger volumes. In the determination of the shape and
surface anisotropy for the cylindrical particles some approximations and simplifications
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Figure 2.13: The superparamagnetic limit for cylindrical nickel particles as a function
of volume and aspect ratio. Particles with volumes smaller than the blue line exhibit
superparamagnetic behaviour. Increase of the aspect ratio allows the use of particles with
larger volumes.

are made. Probably, these approximations and simplifications have caused inaccuracies
in the energy barrier of the cylindrical particle and therewith in the superparamagnetic
limit.
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Chapter 3

Relaxation experiments with a
SQUID magnetometer

3.1 Introduction

The relaxation behaviour of magnetic nanoparticles is characterized by a time constant,
which is influenced by both the environment of the particle and the properties of the
particle itself. Investigating the relaxation time can give information about for example
the size, the shape and the material of the particles and the carrier medium.

A physical system shows relaxation behaviour when returning or adjusting to equi-
librium after a change of the environment. There are two ways to study the relaxation
behaviour of magnetic nanoparticles. One is to change the external magnetic field and
look at how the system adjusts to the new situation. Another way is to induce a tempo-
rary change of the external magnetic field and see how the system returns to the original
situation. In the following experiment the latter is done. Measuring after the external
magnetic field is removed cancels the effect of the magnetic field changing over time, for
example by coil heating. Another advantage is that sensitive measurement devices cannot
be influenced by the magnetic field.

In this research, the magnetic moment of samples of superparamagnetic nanoparticles
is measured over time. These nanoparticles are dispersed in a carrier liquid, so both
Néel and Brownian relaxation processes can occur. The environment is disrupted by the
application of a DC magnetic field. This magnetic field aligns the magnetic moments of
the individual nanoparticles. After the magnetic field is switched off, the nanoparticles
will relax to their original random orientation. This relaxation process is monitored by
our setup.

The setup is based on a superconducting quantum interference device (SQUID). This
is a very sensitive device that measures magnetic field gradients. With noise levels up to
three orders of magnitude lower than fluxgate magnetometers, SQUIDs are considered the
most promising device for applications in which high sensitivity is required [39].

After the magnetic pulse is given, there is no limitation on the duration of the mea-
surement. This makes the setup suited for measurements of very long relaxation times.
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3.2 Model describing the relaxation behaviour of su-
perparamagnetic particles

The relaxation experiment starts with the application of a magnetic field. This magnetic
field brings extra energy to the system and therefore changes the energy barrier the par-
ticle has to overcome in order to switch the direction of its magnetic moment. This was
illustrated earlier in figure 2.2. The energy due to the magnetic field is given by [8]

εmagneticfield = −µ0V (Ms ·H), (3.1)

where H represents the applied magnetic field. The total energy of the system can now
be described as

ε = KeffV sin2 θ − µ0V (Ms ·H)

= KeffV sin2 θ − µ0MsV H
(

cos θ cos θH + sin θ sin θH cosφ− φH
)
,

(3.2)

where θH and φH represent the angles between the easy axis and the applied magnetic
field [40].

For small magnetic fields, the contribution from the magnetic field is only a small
perturbation on the anisotropy energy. The minimum of the energy occurs close to the
easy axis that is located closest to the magnetic field direction.

The particles will align their magnetic moments in this energy minimum. The state of

alignment of the particle over time can be described as 1− e−
tmag
τ , where tmag represents

the duration of the magnetic field pulse and τ the relaxation time.
The magnetic moment of an ensemble of superparamagnetic particles was already

described in section 2.3.3. Under influence of the magnetic field it is described as

M(tmag, H) =MsNp

∫ ∞
0

f(dh, µh, σh)

∫ ∞
0

f(dc, µc, σc)V (dc)
χin

1 +Nχin
H[

1− e−
tmag

τeff (K,dc,dh,H)

]
ddcddh,

(3.3)

and for the spherical particles as

M(tmag, H) =MsNp

∫ ∞
0

f(dh, µh, σh)

∫ ∞
0

f(dc, µc, σc)V (dc)L(dc, H)[
1− e−

tmag
τeff (K,dc,dh,H)

]
ddcddh.

(3.4)

These equations describe the situation of the magnetic moment when the sample is mag-
netized. This is the actual start position of the measurements. Since the particles are
superparamagnetic, they will relax from the aligned state into a random oriented state
under influence of thermal energy, as explained in chapter 2. The magnetic field is turned
off, so it does not influence the energy barriers anymore. The nanoparticles can show Brow-
nian and/or Néel relaxation depending on their size. This relaxation process is described
as

M(t, tmag, H) =MsNp

∫ ∞
0

f(dh, µh, σh)

∫ ∞
0

f(dc, µc, σc)V (dc)
χin

1 +Nχin
H[

1− e−
tmag

τeff (K,dc,dh,H)

]
e
− t
τeff (K,dc,dh) ddcddh.

(3.5)
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Figure 3.1: Schematic drawing of the setup. The sample is magnetized with a Helmholtz
coil. After the magnetic field is switched off, the detection coil will detect the magnetic
moment of the sample. The detection coil is coupled to the SQUID, which is able to
accurately quantify the change of the magnetic moment. The data acquisition card (DAQ)
is used to transport the SQUID data into the computer. The DAQ is also used to control
the SQUID electronics and the Helmholtz coil.

or more accurately for the spherical particles as

M(t, tmag, H) =MsNp

∫ ∞
0

f(dh, µh, σh)

∫ ∞
0

f(dc, µc, σc)V (dc)L(dc, H)[
1− e−

tmag
τeff (K,dc,dh,H)

]
e
− t
τeff (K,dc,dh) ddcddh.

(3.6)

3.3 Method

In this experiment the sample material is magnetized by a DC magnetic field for a certain
amount of time. The magnetic field aligns the superparamagnetic particles in the sample.
Then the magnetic field is turned off and the superparamagnetic particles will relax under
the influence of thermal energy. The magnetization of the particles will be measured after
the magnetic field is switched off, so the relaxation behaviour is visible.

The setup is shown in figure 3.1. The sample is magnetized by an external applied
magnetic field for a time, tmag. The magnetic field is created by means of a Helmholtz
coil. The Helmholtz coil produces a homogeneous magnetic field in the centre of the
coil. The size of the magnetic moment of the sample depends on the strength and the
duration of the magnetic field. A stronger magnetic field will lower the energy barrier
towards the easy magnetization axis, which results in a higher net magnetic moment. A
longer magnetic field pulse gives the particles more opportunity to switch their magnetic
moment. Increasing the pulse duration is only effective at pulse lengths in the order of
the relaxation time or shorter.
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Figure 3.2: The input circuit of the SQUID. The detection coil measures the flux coming
from the sample. This induces a current in the input circuit. This current induces a
magnetic flux in the second coil in the input circuit, which is coupled to the SQUID. The
detection coil is much larger than the SQUID and is therefore able to detect more flux.

The magnetization as a function of the time is measured with the use of a super-
conducting quantum interference device (SQUID). This is a very sensitive magnetometer
that is used to measure extremely small magnetic field gradients. The actual SQUID is
a superconducting loop of wire with two Josephson junctions. The SQUID needs to be
cooled with liquid helium and is therefore placed in a cryostat. The loop of the SQUID
should be kept small in order to keep the inductance as low as possible and therewith the
SQUID sensitivity high. Therefore, the SQUID loop is not used to directly sense the field.
This is done by a detection coil that is coupled to the SQUID via the input circuit, see
figure 3.2. The detection coil is an axial gradiometer and it is placed at the bottom of
the cryostat. The sample is placed outside the cryostat against its underside, so it is as
close as possible to the detection coil. The sample and the detection coil are located in the
middle of the Helmholtz coil, so the field they experience is homogeneous. The SQUID is
connected to the SQUID electronics, which are located outside the cryostat. The SQUID
electronics are connected to the computer using a data acquisition card. Labview is used
to collect the data from the data acquisition card. The SQUID and the magnetic field are
also controlled by the combination of Labview and the data acquisition card.

The setup is located in a magnetically shielded room. The magnetic signals obtained
in this measurement are very small and their detection is easily disturbed by magnetic
noise from the environment. The magnetically shielded room should discard this noise.

3.4 Hardware specifications

3.4.1 Helmholtz coil

A Helmholtz coil consists of two identical circular magnetic coils. The distance between
the two coils is equal to their radius. This geometry is chosen in order to produce a
homogenous magnetic field between the two coils. The magnetic fields produced by the
individual coils can be determined by the Biot-Savart law and added in order to get the
magnetic field of the Helmholtz coil. The result is shown in figure 3.3.
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Figure 3.3: The magnetic field inside the Helmholtz coil as a function of the height. The
green stars indicate the location of the windings of the detection coil. The red plus sign
indicates the location of the sample.

The Helmholtz coil has a radius of 200 mm and both the upper and the lower coil have
150 windings. The Helmholtz coil is tested to give a magnetic field of 674 µT/A. The
current can be adjusted to change the strength of the magnetic field.

3.4.2 Gradiometer

The detection coil used in this research is an axial gradiometer. An axial gradiometer
consists of two equal magnetometers placed in series and separated by the baseline. The
coils are wound in opposite direction, so the induced currents cancel each other and only
the gradient of the magnetic field will contribute to the current [41]. The gradiometer used
in this research consists of two times three windings, see also figure 3.4. The diameter of
the windings is 20 mm and the baseline is 40 mm. The lower windings are separated by
a distance of 0.5 mm, while the upper windings are separated by 6 mm.

3.4.3 SQUID

In this research a dcSQUID with superconducting switch from the company Supracon
(Jena, Germany) was used. The SQUID was delivered in a compact package combining
SQUID sensor model ’CE2blue’ and superconducting switch model ’SW1’. The integrated
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Figure 3.4: Gradiometer used as detection coil. The gradiometer has two times three
windings. The windings of the upper coil and have a bigger spacing than the windings of
the lower coil.

superconducting switch makes it possible to turn off the SQUID when the large external
magnetic field is applied. This protects the SQUID from potential large magnetic fields.
The electronic scheme is depicted in figure 3.5.

3.5 Measurement procedure for the relaxation mea-
surements

The particles used in this research exhibit sedimentation i.e. they sink under influence of
gravity to the bottom of the sample tube, where a thick layer is formed. This significantly
changes the relaxation behaviour, since the effective volume of the particles has increased
and the ability to rotate is lost. Therefore, this sediment should be dispersed again.
For samples dispersed in water this can be done by placing the sample in an ultrasonic
bath for about 5 minutes. For particles dispersed in glycerol it is more effective to place
the sample in the microwave for a 10-20 seconds. This has to be done shortly before
the measurement starts, so there is not enough time for the particles to sediment again.
For water based samples this process is repeated before every single measurement with a
decreased sonication time of 20 seconds.

When the sample is dispersed the actual measurement can start. The sequence starts
with the superconducting switch turning off the SQUID, after which the magnetic field is
switched on. Before the magnetic field is switched off again, the SQUID reset is enabled.
The magnetic field is switched off, after which the SQUID is switched on and finally the
SQUID reset is disabled. This sequence is shown in figure 3.6.

The SQUID needs to be reset to allow transient fields, induced in conductive elements
of the measurement system by the magnetic field, to decay sufficiently to enable operation
of the SQUID in its most sensitive range [42]. The reset of the SQUID causes a ’dead
time’ of 200 ms at the start of the measurement. Samples with small relaxation times that
fall within this ’dead time’ can therefore not be measured with this setup.

3.5.1 Pulse length

The duration of the different components in the sequence can be varied. Changing the
duration of the magnetic pulse influences the degree of alignment that is reached at the
start of the measurement. A maximal alignment of the particles is preferred, since this
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Figure 3.5: Scheme of the chip at which the SQUID is provided by the manufacturer. The
open dots indicate connecting points on the chip.

Figure 3.6: Relaxation behaviour of the sample (above) and the sequence used (below).
The dead time between the end of the magnetic pulse and the start of the measurement
is indicated by the red lines in the upper graph.
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will result in the highest magnetic moment. However, applying a magnetic field for a long
period of time increases the chance of particles clustering, as will be explained further in
chapter 6. Next to that, the Helmholtz coil will warm up, which causes deviations from
the applied magnetic field. It is therefore desirable to apply the magnetic field no longer
than necessary

For particles relaxing by Néel behaviour, the duration of the magnetic pulse needed
for maximal alignment can easily be calculated by the method explained in section 3.2.

For particles showing Brownian behaviour it is much harder to calculate the exact
duration of the pulse for maximal alignment, since it is not exactly known how the Brow-
nian relaxation time depends on a magnetic field. However, the particles should align
faster than they would relax, since the magnetic field brings extra energy into the system.
Maintaining the magnetic pulse for 5 relaxation times without magnetic field, would yield
a magnetization of at least 99% of its magnetization at infinite magnetic pulse duration.
However, the particles have a log-normal size distribution, which indicates that there are
large particles present, which give a relatively large signal and have relatively long relax-
ation times. So in order to compensate for this, a magnetic pulse is applied to the sample
for 10 times the relaxation time of the average particle size. The resulting start position
of the magnetization for the relaxation measurement is now approximately equal to the
value of a pulse of infinite duration.

3.5.2 Reference measurements

Next to the measurements with samples containing superparamagnetic particles, mea-
surements without samples are done. These measurements will give information about
the background effects. The magnetically shielded room should eliminate all sources of
noise from the environment. However, the magnetically shielded room is not perfect and
there might be small magnetic noise sources present in the shielded room. Also, the setup
can magnetise itself, therewith influencing the measurement. Therefore, the magnetic
relaxation of the background is measured. This is done multiple times, after which the
average of the reference measurements is taken. This averaged reference signal is sub-
tracted from the actual measurements containing a sample. This procedure ensures us the
measured signal originates from the sample. A typical reference measurement is shown in
figure 3.7

3.6 Model describing the detection of the magnetic
moment by the SQUID setup

The behaviour of the magnetic moment of an ensemble of particles was described in sec-
tion 3.2. The current section takes the magnetic moment as an input value and simulates
the effect of the setup described in section 3.3 on this signal. The actual output of the
setup is simulated, so the simulations can easily be compared to the measurements.

3.6.1 Detection of magnetic moment

The magnetic moment of the sample creates flux lines which induce a current in the
detection coil. The amount of flux that is detected by the detection coil depends i.a.
on the magnetic moment of the sample and on the distance between the sample and the
detection coil and is described in this section.
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Figure 3.7: Measurement of the relaxation behaviour of the background. This reference
signal is subtracted from the actual measurements.

Figure 3.8: Setup of the sample with the detection coil. The sample is represented as a
magnetic dipole.
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The sample is described as a loop of wire with radius a, current I and magnetic moment
m. These are related to each other by m = IS, with S the area enclosed by the loop [43].
The vector potential of this system in point p in space can be calculated by

A(r) =
µ0

4π

∫
I

s
dl =

µ0

4π
I

∮
1

s
dl, (3.7)

where s is the distance between the edge of the sample and point p, described by

1

s
=

1√
r2 + a2 − 2ar cos θ′

=
1

r

∞∑
n=0

(a
r

)n
Pn(cos(θ′) (3.8)

where Pn(x) represents the Legendre polynomial and r =
√
d2 + b2, with b the radius of

the detection coil and d the distance between the sample and the detection coil, see also
figure 3.8. This turns the vector potential into a multipole expansion. When the sample
is very small compared to the detection coil, the vector potential can be approximated by
only the contribution of the dipole term. However, in our case the radius of the sample
is in the same order of magnitude as the detection coil. Therefore, more terms of the
expansion should be considered. These terms are elaborated in appendix B. The magnetic
vector potential is then

A(r) =
µ0I

32r5

(
1−sin 2φ

)(
3a3b2−30

a5b2

r2
+35

3a5b4

64r4
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µ0

4π

( 1

r2
−3a2

2r4
+

15a4

8r6

)
m×r̂.

(3.9)

The flux through the detection coil can be determined using this vector potential,

Φ =

∫
A · dl, (3.10)

which for the circular loop of the detection coil can be written as

Φ =

∫ 2π

0

Aθbdφ. (3.11)

The flux through the detection coil then becomes

Φ = µ0b
2mz

( 1

2r3
− 3a2

4r5
+

15a4

16r7

)
+

3πµ0Ia
3b3

16r5

(
1− 5a2

2r2
+

105a2b2

128r4

)
. (3.12)

The detection coil used in the experiment is a gradiometer with two times three wind-
ings, see also figure 3.4. The sample is located beneath the gradiometer, so all windings
have a different distance to the sample and therefore experience a different flux. This is
illustrated in figure 3.9

3.6.2 Flux transmission

The magnetic relaxation process causes a change in the magnetic moment of the sample
over time and therefore also a change in the amount of flux detected by the detection coil.
According to Lenz’s law a changing magnetic field induces an electromagnetic force which
gives rise to a current in the detection coil with its magnetic field opposite to the original
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Figure 3.9: Flux through a loop as a function of the distance from the source. The source
is 100ng of nickel particles. The green stars indicate the location of the windings of the
detection coil.
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change in magnetic flux. The detection coil is part of the input circuit shown in figure 3.2.
The induced current in the input circuit can be described as

I(t) =
Φp(t)

Ltotal
(3.13)

where Φp represents the flux in the detection coil, I the current induced in the input circuit
and Ltotal the total self-inductance of the loop, given by Ltotal = Lgrad + Lin + Lshunt +
Lwire. The individual self-inductances depend on the geometry of the coils. The flux in
the detection coil can be described as

Φp(t) = Φ1(t) + Φ2(t) + Φ3(t)− Φ4(t)− Φ5(t)− Φ6(t), (3.14)

where Φi represents the flux through the ith turn of the gradiometer. The input coil
induces a magnetic field which gives a flux through the SQUID. This flux can be described
by

ΦSQUID(t) = I(t)MSQUID,in, (3.15)

where MSQUID,in represents the mutual inductance between the SQUID and the input
coil.

So the flux in the SQUID is related to the flux in the detection coil by

ΦSQUID =
Min

Ltotal
Φp = 0.00623Φp. (3.16)

The flux-to-voltage responsivity of the SQUID was measured to be 1.6 V/Φ0. The final
output voltage of the SQUID is then given by

VSQUID = 1.6
ΦSQUID

Φ0
. (3.17)

3.7 Verifications, specifications and limitations

3.7.1 Calibration of the setup

The SQUID setup is calibrated by measuring the SQUID voltage of a test coil at different
distances from the detection coil. The setup shown in figure 3.1 is used, although the
sample is replaced by a single loop of wire carrying a sinusoidal current, I. A resistance
of 1kΩ is placed parallel to the loop. The magnetic moment can be described by

m = IS, (3.18)

where S is the area of the loop. The flux through the detection coil can be determined as
described in section 3.6.1. The resultant output voltage of the SQUID can be determined
as described in section 3.6.2. Figure 3.10 shows a comparison between the simulation and
the measurements. The distance between the underside of the cryostat and the detection
coil is not exactly known. It is expected to be approximately 10 mm. However, this
length does not make a fit with the measurements, see figure 3.10a. For the simulation
of figure 3.10b it is taken as 22.5 mm. This is a little high, but it could still be possible.
Another unknown is the exact value of the self-inductance of the shunt coil that is placed
in the input loop in the electronics. This could also cause a deviation of the simulation.
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(a) distance=10 mm (b) distance=22.5 mm

Figure 3.10: The green and red stars indicate the measured SQUID voltage at different
distances from the detection coil. The blue line represents the simulation of the SQUID
output voltage as a function of distance. The distance between the underside of the
cryostat and the detection coil is taken as 10 mm in figure (a) and 22.5 mm in figure (b).

3.7.2 Noise levels

The noise of the system can be determined from the power spectral density of the measured
voltage noise

SΦ =
SV
V 2

Φ

, (3.19)

where SΦ is the noise of the SQUID system, SV is the power spectral density of the voltage
noise and VΦ is the flux-to-voltage responsivity given by VΦ = ∂V/∂Φ0.

The voltage noise was obtained by measuring the SQUID output when no sample was
present and no magnetic pulse was applied. The power spectral density was computed
from this signal, see figure 3.11. The flux-to-voltage responsivity was measured to be
1.6 V/Φ0 for this SQUID system. The corresponding noise of the system is 34 µΦ0/

√
Hz.

This is about ten times as high as the SQUID noise given in the documentation of the
SQUID, which is 3 µΦ0/

√
Hz. However, other sources like the cryostat also contribute to

the noise in the system.
The signal to noise ratio can be determined by

SNR =
Psignal
Pnoise

, (3.20)

where Psignal represents the power of the signal and Pnoise the power of the noise. The
signal to noise ratio depends on the sample. Here, the signal to noise ratio is calculated for
a simulation of 16 ng nickel particles dispersed in glycerol. The power depends strongly
on the time interval taken, since the signal shows an exponential decay. The power is
calculated in the time interval 0.2-2 s, which starts at the end of the ’dead time’ and lasts
until most of the signal has decayed. The signal to noise ratio is then 104.
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Figure 3.11: Frequency spectra of the noise of the SQUID system. The measurement is
performed three times. The resulting noise of the system is 34 µΦ0/

√
Hz.

3.7.3 Flux jumps

Sometimes, large steps arise in the measurements, see figure 3.12. These steps are caused
by flux jumps in the SQUID. The SQUID is actually a single loop of wire that only allows
an integer number of flux quanta through its loop [44]. A non-integer number of flux quanta
is compensated by extra current through the loop. This induced current is periodic with
the number of flux quanta. The number of flux through the SQUID loop is ’locked’ by a
feedback coil. This coil applies extra flux to the SQUID loop to compensate for a changing
external flux. This way the SQUID loop always experiences the same amount of flux. The
current in the feedback coil is then a measure of the change in the external magnetic field.
Sometimes, the electronics of the feedback coil cannot keep up with a rapidly changing
external magnetic field. The amount of flux locked in the SQUID loop then changes with
an integer amount of flux quanta. This is called a flux jump.

Some flux jumps are so severe that they drive the SQUID system to its limit. The
SQUID system is then unable to record magnetic field changes until it is reset. This is
seen at the second flux jump in figure 3.12. The output voltage jumps to -10 V, which is
the limit of the SQUID system. Further changes in the magnetic field are not recorded
anymore. Sometimes the cause of the flux jump was easily traced to noise sources like
automatic awnings or amplifiers switching on and off. Other times the cause of flux jumps
was unknown.

3.7.4 Anisotropy field

For small deviations of the magnetic moment away from the easy axis, the crystal anisotropy
acts like a magnetic field trying to keep the magnetic moment in the direction of the easy
axis. This magnetic field is also called anisotropy field and it is denoted as HK [8]. For
applied magnetic fields larger than the anisotropy field the easy axis will disappear and
the magnetic moment will be in the direction of the applied magnetic field.

The model described in section 3.2 assumes the easy axis determines the magnetization
direction and the applied magnetic field is only a small perturbation on the anisotropy
energy. Therefore, the model is only valid for situations in which the condition H << HK
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Figure 3.12: Flux jumps during measurements with the SQUID system. The first flux
jump is relatively small and can be corrected for in software. The second flux jump is so
severe that it drives the SQUID to its limit. The SQUID does not record any changes in
magnetic field anymore and needs to be reset.

is satisfied. Under this condition, the direction of the magnetic moment is located in the
easy axis that is closest to the direction of the magnetic field.

The anisotropy field of a spherical particle with easy axis in the < 111 > direction is
described as [8]

HK =
−4(3K1 +K2)

9µ0Ms
. (3.21)

The anisotropy field of a cylindrical particle with easy axis in the longitudinal direction is
described as

HK =
2K1

µ0Ms
− MsR

3

3V

(
12 + 6πp− 9π

√
1 + p2

)
− 4Ks

µ0MsR
+

rKs

µ0Msh
. (3.22)
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Chapter 4

Susceptibility experiments

4.1 Introduction

In the previous chapter the relaxation process of superparamagnetic particles returning to
a random orientation after alignment due to a magnetic field was studied. In this chapter
an experiment is described in which the relaxation process of alignment to the magnetic
field is studied.

In the following experiment a superparamagnetic sample is exposed to an AC magnetic
field. Since the magnetic field continuously changes direction, the superparamagnetic
sample has limited time to align to the magnetic field. Depending on the frequency at
which the magnetic field changes, the superparamagnetic particles are either able to adjust
in the given time or not. The degree of magnetization as a result of an applied magnetic
field is called susceptibility and that quantity is measured in this experiment. Making
a frequency sweep, there is a transition point above which the particles cannot keep up
anymore with the varying magnetic field. The susceptibility reduces from a finite value at
low frequencies to zero at high frequencies. The frequency at which this transition occurs
is called the characteristic frequency and it corresponds to the relaxation time.

In this setup the changing magnetic moment of the superparamagnetic sample is mea-
sured with a differential transformer. These coils are not superconducting, so in contrast
to the SQUID setup no cryogenic infrastructure is needed here. However, the coils are less
sensitive than the SQUID, so more sample material in needed.

In contrast to the SQUID setup, this setup does not have a ’dead time’ before the mea-
surement starts. Therefore, this setup is very convenient for detection of short relaxation
times.

4.2 Model susceptibility measurements

Magnetic susceptibility is the reaction of a material to an applied magnetic field. It is a
dimensionless quantity and can be described as

χ =
∂M

∂H
(4.1)

with χ the magnetic susceptibility, M the magnetization and H the external magnetic
field. For small magnetic field strengths the magnetization is often very accurately linear
to the magnetic field, which can be seen in figure 2.5. This reduces the above relation to
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χ0 = M
H .

Two types of susceptibilities can be distinguished. The first one is the susceptibility
that describes the behaviour of a specific particle, which depends on its shape. This sus-
ceptibility is denoted by χ. The other susceptibility is a material constant, χin and cannot
be used to describe the behaviour of a finite amount of that material. The magnetization
curve of spherical particles is described according to the Langevin function as described
in section 2.3.3. The steady state value of the susceptibility in the low-field limit can now
be described by a Taylor expansion of equation 2.8 around H=0:

χ0,sp =
µ0µNPMs

3kBT
. (4.2)

The susceptibility as described above depends on the shape of the particle. Using the
linear approximation model as described in equation 2.16 an expression for the initial
susceptibility, which is a material constant and does not depend on shape, can be derived

χin =
χ0,sp

1− 1
3χ0,sp

, (4.3)

where N = 1/3 for spherical particles.
For cylindrical particles with a high aspect ratio, p > 10, the demagnetization factor

vanishes, N ≈ 0. The steady state susceptibility of cylindrical particles can thus be
described as

χ0,cy = χin =
χ0,sp

1− 1
3χ0,sp

=
3µ0µNPMs

3kBT − µ0µNPMs
. (4.4)

When the magnetic field changes, the magnetization of the particles follows this change
with a time lack. The rate of change in the low-field limit depends on the difference between
the steady state magnetization and the current magnetization and is described as

dM

dt
= −ωchar

(
M − χ0H

)
, (4.5)

where ωchar is the characteristic frequency at which the rate changes. This frequency
corresponds with the Néel or Brownian relaxation time as described in section 2.5. When
an alternating magnetic field is applied, the magnetization follows the harmonic change of
the field

iωM̃ = −ωchar
(
M̃ − χ0H̃

)
, (4.6)

where ω represents the frequency of the AC magnetic field and H̃ = H0e
iωt. The magne-

tization can now be described as

M̃ =
( ωchar
ωchar + iω

)
χ0H̃. (4.7)

The magnetic susceptibility can now be described as

χ(ω) =
dM̃

dH̃
=
( ωchar
ωchar + iω

)
χ0, (4.8)

which consist of a real, in-phase and an imaginary, out-of-phase part.

χ(ω) = χ′(ω)− iχ′′(ω) (4.9)

40



Figure 4.1: Susceptibility in the low magnetic field limit. The susceptibility is indicated
by the blue line, which overlaps with the green line that represents the real (in-phase)
susceptibility.

χ′(ω) =
( ω2

char

ω2
char + ω2

)
χ0 (4.10a)

χ′′(ω) =
( ωωchar
ω2
char + ω2

)
χ0 (4.10b)

In figure 4.1 the susceptibility as a function of the frequency of the magnetic field is shown.
In the low frequency limit, when ω << ωchar, the real (in-phase) susceptibility reaches
the value of χ0. At higher frequencies, ω >> ωchar, the orientations of the magnetic
dipole moments cannot keep up with the rate of change of the magnetic field and the
susceptibility goes to zero. The characteristic frequency of the particle is given by the
intersection of the real and imaginary susceptibility, which occurs at the maximum of the
imaginary component.

4.3 Method

The system is based on a differential transformer [45]. An alternating current is applied
to the primary coils of the transformers, inducing an alternating voltage in the secondary
coils whose amplitude depends on the mutual inductance between the coils. The sample
with magnetic material is placed in one of the two transformers. The change in signal due
to the placement of the sample is proportional to the susceptibility of the sample. Since
the transformers are identical and exposed to the same noise sources, subtraction of the
signal from the empty transformer will remove the noise from the sample signal. This
measurement is performed for a spectrum of frequencies of the AC current and the real
and imaginary part of the susceptibility are plotted against the frequency. The frequency
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Figure 4.2: Electronic scheme of the setup used for the susceptibility experiments. The
setup is based on a differential transformer. An AC current is applied to two identical
transformers of which one contains the sample material. The difference between the in-
duced voltages in the secondary coils of the identical transformers is a measure of the
susceptibility of the sample material [45].

at which the real and imaginary susceptibilities intersect, indicates the characteristic re-
laxation frequency of the sample material, see figure 4.1.

A schematic overview of the setup is shown in figure 4.2. A function generator is used to
apply the AC current to the primary coils of the transformers. The transformers are placed
in series, so they experience the same current. The induced voltages in the secondary coils
of the transformers are subtracted from each other by a differential preamplifier. A second
function generator is used to cancel this signal through a so-called nullification procedure.
A minimal signal is now provided to the lock-in amplifier.

The setup is placed in a mu-metal box to shield it from low-frequency magnetic in-
terference. The box is thermostatized by the circulation of cooling liquid in copper tubes
surrounding the box. The mu-metal box is placed inside a Faraday cage of aluminum
plates to further shield it from electrical interference.

4.4 Hardware specifications

4.4.1 Magnetic field strength

The strength of the magnetic field inside the transformer coils is determined by the AC
current applied to the primary coils. However, the voltage in the secondary coils cannot
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Figure 4.3: Schematic drawing of the transformer with the sample. The transformer
consists of multiple layers of copper wire wound around a PVC cylinder. The six inner
layers constitute the primary coil and the outer 86 layers the secondary coil [45].

exceed 1 V, since this is the maximum value the preamplifier can measure. The amplitude
of the applied AC current is automatically reduced when the output voltage is exceeding
this limit, for example due to a highly magnetic sample. Therefore, the AC current applied
to the primary coils cannot exceed 12.9 mA, which corresponds to a maximum magnetic
field of 730 A/m.

4.4.2 Transformers

The transformers are made of copper wire wound in multiple layers around a PVC tube
[45]. The PVC tube has an external diameter of 12.6 mm and a height of 140 mm. The six
inner layers constitute the primary coil, and the 86 outer layers constitute the secondary
coil. The transformers have a total of 92 layers with 636 turns per layer. In theory, the
transformers should have identical mutual inductances, however, there is a difference of
0.2 %. This difference is decreased to 0.05 % by adding 80 turns to the transformer with
the lowest mutual inductance and it can be further improved by the placement of a small
piece of ferrite near the transformer.

4.4.3 Sample tube

The sample tube is made of glass and has an external radius of 4.0 mm and an internal
radius of 3.0 mm. The sample tube is longer than the transformer coils, it sticks out about
10 mm at both the top and bottom of the transformer. This is advantageous for samples
that show sedimentation. The sediment that is formed at the bottom of the sample tube
is now outside the transformer coils and therefore does not influence the output voltage
of the secondary coil. However, for an accurate measurement the concentration of sample
material in the area between the coils should remain the same during the measurement,
so there is a limit to the degree of sedimentation that is allowed.
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Figure 4.4: Schematic drawing of the measurement procedure of the susceptibility exper-
iments [45].

4.5 Measurement procedure for the susceptibility mea-
surements

The different steps of the measurement procedure are schematically depicted in figure 4.4.
To start, the sample is placed in one of the transformers, so the output signal from the lock-
in amplifier corresponds to the difference between the sample and the reference secondary
coils. Now the nullification procedure starts, at which the output of the second function
generator is varied until the output of the lock-in amplifier is minimized. This output of
the lock-in amplifier is called the remnant signal and is measured in step 3, together with
the voltage of the secondary reference coil, Vref (ω). Afterwards, the sample is removed
in step 4. Since the removal of the sample can affect the total impedance of the primary
coils, the AC current supplied by the first function generator is varied until the signal
Vref (ω) measured by the secondary reference coil is again the same as in the presence of
the sample. This is done to make sure the magnetic field in the transformers is the same
as it was when the sample was inside. The output of the lock-in amplifier is measured
again in step 6.

The signal due to the sample is the difference between the lock-in amplifier output
voltage at step 6 and step 3, ∆V (ω). This measurement is repeated a couple of times after
which the average is taken. This is then repeated for various frequencies of the applied
magnetic field. Since a large number of measurements is performed, the procedure can
take up to 10 hours.

4.6 Derivation of the susceptibility from the measured
voltage

The susceptibility of the sample material can be obtained from the increased output voltage
due to the presence of the sample. The AC current in the primary coil of the transformer
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induces a voltage in the secondary coil that is described as

Vref = −iωMI(ω), (4.11)

where Vref represents the voltage in the secondary coil, ω the frequency of the AC current,
M the mutual inductance between the primary and the secondary coil, I the AC current
applied to the primary coil and i =

√
−1. When the sample is placed inside the transformer

coils, the induced voltage changes to

Vsample = −iωM
(
1 + χ(ω)

)
FI(ω), (4.12)

where χ(ω) represents the susceptibility of the sample and F the fill-factor, which expresses
to what extent the space inside the coils is filled with the sample. The measured quantity
∆V can now be related to the susceptibility of the sample via

∆V = Vsample − Vref = Vref (ω)χ(ω)F. (4.13)

4.7 Specifications and limitations

4.7.1 Sensitivity

The system is able to measure susceptibilities that correspond to relaxation frequencies in
the range of 0.01-1000 Hz. Above the upper limit of 1000 Hz the impedance spectra of the
transformers exhibit resonances, which makes the relation between the applied current and
the magnetic field nonlinear and unsuited for susceptibility measurements. Besides, the
effect of the sample decreases at increasing frequency due to absorption of the alternating
magnetic field by the copper wires and capacitive losses between neighboring wires.

The system reaches its highest sensitivity in the range of 1-100 Hz, as can be seen in
figure 4.5 where the background signal is depicted. The background signal increases with
decreasing frequency due to the presence of 1/f noise. After the sensitive area between
1-100 Hz, the background signal increases again at higher frequencies due to heating of
the transformer coils. Susceptibilities down to 10−5 can be measured in the most sensitive
area.

4.7.2 Low-field limit

The model described in section 4.2 is only valid when small magnetic fields are applied.
The low magnetic field approximation is made twice in this model.

First, the susceptibility is assumed to be constant, see equations 4.2 and 4.4. This
corresponds with a linear magnetization curve, which is only valid for low magnetic fields,
as was shown in section 2.3.2.

Second, the relaxation process is studied when the applied magnetic field is still present.
However, the contribution of the magnetic field to the energy of the particles is neglected.
This assumption is only valid when the energy that the particles gain due to the magnetic
field is negligible compared to the dominating energy, which is the thermal energy in this
case. Therefore, only small magnetic fields that satisfy the condition µ0µNPH << kBT
are allowed.
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Figure 4.5: Background signal measured with an empty coil. At low frequencies the
background signal is increased by 1/f noise. The increase of background signal at higher
frequencies is due to the heating of the coils. The most sensitive measurements are per-
formed between 1-100 Hz [45].
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Chapter 5

Results and analyses

5.1 Introduction

The systems described in chapter 3 and 4 are used to investigate the relaxation behaviour
of superparamagnetic nanoparticles. The first section of this chapter describes the samples
that are used in these measurements.

The SQUID setup gives a measure of the change of the magnetic moment of the sample
over time. The speed with which this signal decays corresponds to the relaxation time
of the particles. It can be seen how the relaxation time changes during the relaxation
process, due to the size distribution of the particles.

The susceptibility setup measures the change in susceptibility of the sample for a range
of frequencies of the applied magnetic field. At low frequencies the magnetic moment of
the particles changes according to the direction of the magnetic field. As the magnetic field
changes direction faster, there is a point at which the particles cannot keep up anymore.
The frequency at which this happens, corresponds to the relaxation time of the particles.

The measurement results are compared to the model to check whether the model
accurately describes the relaxation behaviour of the particles.

5.2 Sample material

The samples are investigated before their use in the measurement systems. The relaxation
measurements with the SQUID system and the susceptibility measurements are performed
with the same samples.

The characteristics of the samples determine the outcome of the measurements. The
material of the nanoparticles determines the magnetization of the particles. For example,
nickel has a stronger magnetic effect than magnetite. Therefore, nickel will have a stronger
signal, which is easier to detect.

The shape of the particle also influences its behaviour. The shape and surface anisotropy
have large influences on the Néel relaxation time of the cylindrical particles. Also, the in-
creased surface area of cylindrical particles with respect to spherical ones leads to longer
relaxation times. In these experiments both spherical and cylindrical particles are inves-
tigated.

The choice of the medium is an important parameter in the determination of the Brow-
nian relaxation time. The viscosity of the medium can be varied to obtain a relaxation
time in a desirable regime. The medium can also be used to stabilize the particles. Viscos-
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ity influences the speed with which the particles sink to the bottom, sedimentation. Also,
the presence of certain ions in the medium influences the stability of the sample.

The size of the particle has large influence on the relaxation time of the particle. Larger
particles show longer relaxation times. It is therefore important to know the actual size of
the particles and the distribution of the size. An often used technique to determine the size
and the size distribution of a sample is Dynamic Light Scattering (DLS). DLS is a method
that relates Brownian motion to the size of the particle by illuminating the particles with a
laser and analyzing the intensity fluctuations in the scattered light [46]. These fluctuations
indicate the size of the particle present in the sample. The Zetasizer Nano system from
Malvern Instruments (Malvern, United Kingdom) is used to characterize the samples.

Another way to characterize the sample material is by performing a VSM measurement.
VSM stands for Vibration Sample Magnetometer. The VSM can be used to measure the
magnetization curve. The magnetization curve shows whether the sample is superpara-
magnetic or not. A superparamagnetic sample shows no hysteresis. Next to that, the
magnetization curve gives us a measure of the saturation magnetization. As discussed
in section 2.3.2, the surface effects of nanoparticles significantly influence the magnetic
moment, making the value of the bulk saturation magnetization invalid.

5.2.1 Spherical iron oxide particles

Spherical iron oxide particles are made by adaption of the organic synthesis methods of
Lattuada et al [47] and Sun et al [48]. The iron oxide particles are made of magnetite
(Fe3O4), have a diameter of 5 nm and are in a stable solution. Water is used as a solvent
and citric acid and polyethylene glycol amine (PEG-NH2) are used as dispersant. The
particles are coated with oleic acid. PEG molecules with a molecular weight of 10000 g/mol
are attached to the citric acid. The coating hinders the formation of aggregates. The
particles show no signs of sedimentation and do not form large aggregates.

DLS measurements on spherical iron oxide particles

Figure 5.1 shows DLS measurements of the iron oxide samples. The DLS only measures
the hydrodynamic size of the particles. The iron oxide particles contain a layer of citric
acid, so these measurements cannot be used to check whether the magnetic cores are 5 nm.
The measurements show a hydrodynamic diameter of 30 nm with a standard deviation of
the natural logarithm of the diameter of 0.25.

VSM measurements on spherical iron oxide particles

The magnetization curve of the iron oxide particles is obtained with a Vibrating Sample
Magnetometer (VSM). The magnetization curve is shown in figure 5.2 and it is used to
determine the saturation magnetization of the sample. The saturation magnetization has
decreased significantly due to the relatively large surface of the nanoparticle. The bulk
saturation magnetization is 3.8 ·105 A/m, while the VSM measurements show a saturation
magnetization of 2.3 · 103 A/m, which is only 0.6% of the bulk value.

The magnetization curves show hysteretic behaviour, which is remarkable since su-
perparamagnetic particles do not exhibit any hysteresis. However, the particles were not
dispersed in liquid in this measurement. Therefore, Brownian relaxation is not possible
and the particles show only Néel relaxation. As was seen in section 2.5 the Néel relaxation
time increases exponentially with increasing particles size. It is very likely that there is a
small number of larger particles present in the sample. These particles cannot align with
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(a) Iron oxide (b) Iron oxide

Figure 5.1: Dynamic Light Scattering (DLS) measurements performed on the spherical
iron oxide particles dispersed in water. Figure (a) shows the measurement series performed
on the iron oxide samples. Figure (b) shows the average of the measurement compared to
a simulation of the particles size. It follows from this simulation that the hydrodynamic
diameter is 30 nm and the natural logarithm of its standard deviation σ = 0.25.

the magnetic field in the time scale of the VSM, which results in the hysteretic behaviour.

5.2.2 Spherical nickel particles

Spherical particles are commonly used for research purposes and therefore lots of variations
are commercially available. In this research two samples of spherical nickel particles of
respectively 20 nm (9225SJ) and 60 nm (9221XH) diameter of Sky Spring Nanomaterials
Inc. (Houston, USA) are used. These nickel particles are supplied as a powder, so the
particles must be dispersed before use.

The viscosity of the carrier liquid influences the Brownian relaxation time. Water
is a common medium to disperse the particles in. However, the size of the particles
would indicate very short relaxation times in water. The sample would be totally relaxed
before the ’dead time’ of the SQUID setup has elapsed. Therefore, these particles are also
dispersed in glycerol. Glycerol has a high viscosity, which will slow down the Brownian
relaxation behaviour significantly. An additional advantage of the high viscosity of glycerol
is that it hinders sedimentation of the particles.

For the particles dispersed in water a dispersant has been added to the medium in
order to stabilize the solution. The water contains 1mM carboxy methyl cellulose (CMC).

The spherical nickel particles are not coated. However, it is possible that the carboxy
groups bind to the nickel and coat the particle. Unfortunately, it is hard to verify whether
this happens or not.

The specifications of the different spherical nickel samples are depicted in table 5.1.
The numbering of the samples will be used throughout the rest of this report.

DLS measurements on spherical nickel particles

Figure 5.3 shows Dynamic Light Scattering (DLS) measurements of the spherical nickel
particles. The diameter is often assumed to be lognormally distributed [50] and the per-
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(a) Magnetization curve iron oxide particles (b) Enlargement of the magnetization curve

Figure 5.2: VSM measurements performed on the spherical iron oxide particles dispersed
in water. Figure (a) shows the magnetization curve and figure (b) is an enlargement of
this. The particles show a saturation magnetization of 2.3·103 A/m, which is much smaller
than the bulk value of 3.8 · 105 A/m.

Dia- Medium Disper- Concen-
meter sant tration

(nm) [49] (mg/ml)
Sample 1 20 water 1% CMC 0.1
Sample 2 20 glycerol - 0.2
Sample 3 60 water 1% CMC 0.1
Sample 4 60 glycerol - 0.2

Table 5.1: Specifications of the spherical nickel samples.
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(a) 9225SJ (d=20 nm) (b) 9221XH (d=60 nm)

Figure 5.3: Dynamic Light Scattering (DLS) measurements performed on the spherical
nickel particles dispersed in glycerol. The actual size is much bigger than the size indicated
by the supplier. The nickel particles that are supposed to have a diameter of 20 nm and
60 nm, show the best fit at average diameters of 40 nm and 57 nm respectively.

formed DLS measurements confirm this. The plotted lognormal distribution functions give
an average diameter of respectively 40 nm and 57 nm for the 9225SJ and the 9221XH par-
ticles. Especially for the 9225SJ particles this deviates significantly from the specifications
given by the supplier.

The 9221XH particles show a slight decrease of particle size in time, as can be seen
in figure 5.3. The second measurement series is taken 20 minutes after the first one and
shows a smaller diameter. This could be due to sedimentation of the larger particles in
the sample. The sedimentation effect in the 60 nm particles is also seen when the sample
is stored i.e. after a few days of storage a dark layer of particles has formed at the bottom
of the sample.

VSM measurements on spherical nickel particles

Magnetization curves of the samples were obtained with a VSM. The magnetization curves
are shown in figure 5.5 and are used to determine the saturation magnetization of the
sample. The magnetization of the 9225SJ particles saturates at a magnetic field of 3.4 ·
105 A/m and for the 9221XH particles at 3.9 · 105 A/m. This corresponds to 70% and
80% of the bulk saturation magnetization respectively.

The magnetization curves show hysteretic behaviour, which is remarkable since super-
paramagnetic particles do not exhibit any hysteresis. However, in section 2.6 the super-
paramagnetic limit for spherical particles of nickel was calculated to be 71 nm. Looking
at the size distribution measured with the DLS, there are particles present that are larger
than the superparamagnetic limit and therefore exhibit hysteretic behaviour.

5.2.3 Cylindrical nickel particles

Cylindrical particles are not commercially available, so the cylindrical particles were home
made by our research group. The cylindrical particles are made of nickel and have a
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(a) 9225SJ (d=20 nm) (b) 9221XH (d=60 nm)

Figure 5.4: Dynamic Light Scattering (DLS) measurements converted to relative per-
centage of the amount of particles in the sample. The size distributions fit a lognormal
distribution with average diameters of 40 nm and 57 nm and standard deviation of σ = 0.25
and σ = 0.23. The 9225SJ particles deviate significantly from the specifications given by
the supplier.

(a) (b)

Figure 5.5: Magnetization curves of the 9225SJ and 9221XH spherical nickel particles
and the home-made nickel wires by VSM measurements. The particles show a satura-
tion magnetization that is smaller than the bulk value due to surface effects. The bulk
saturation magnetization is 4.9 · 105 A/m, while the 9225SJ particles show a saturation
value of 3.4 · 105 A/m, the 9221XH particles 3.9 · 105 A/m and the cylindrical particles
3.2 · 105 A/m. Figure (b) is an enlargement of figure (a) and shows hysteretic behaviour.
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Figure 5.6: SEM image of the cylindrical nickel particles. The particles are 2.5 µm long
and have a diameter of 150 nm.

diameter of 150 nm and a height of 2.5 µm. Figure 5.6 shows a SEM image of the
particles.

The magnetic nickel wires are made through electrodeposition of nickel in the pores of
a membrane. The size of the pores determines the diameter of the wire. The length of
the wires depends on the duration of the reaction and the electrodeposition potential [51].
The wires grow in a favoured crystal direction, which depends on the electrodeposition
potential and the pore diameter. The wires grown for this research have a diameter of
150 nm, a length of 2.5 µm and have the [110] crystal direction along the long axis of the
wire.

The wires are coated with a gold layer of 35-50 nm. The coating reduces the effect of
the particles sticking together and forming large clusters. Besides, the coating makes the
particles biocompatible.

The particles are not very stable, they easily sink to the bottom of the sample tube.
To slow down this sedimentation process, the particles are dispersed in glycerol.

VSM measurements on cylindrical nickel particles

The magnetization curve for the nickel wires is shown in figure 5.5. The cylindrical particles
clearly exhibit hysteretic behaviour, which indicates that the particles are ferromagnetic.
Considering the much larger volume of the cylindrical particles compared to the spherical
ones, it is not very surprising that the superparamagnetic regime is left. Although an
increased aspect ratio allows larger volumes within the superparamagnetic regime, the
increase in volume of the cylindrical particles is too large to be compensated by the
increased aspect ratio.

The saturation magnetization of the cylindrical particles is 3.2 · 105 A/m, only 65% of
the bulk saturation magnetization of nickel. This is substantially lower than the satura-
tion magnetization of the spherical particles. Another research group [52, 53, 54] made
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cylindrical nickel particles with a diameter fo 350 nm and lengths of multiple micrometers,
which had a saturation magnetization of 82% of the bulk value. So the saturation mag-
netization increases with increased volume. This was also seen in our spherical particles,
although they achieved similar saturation magnetizations at substantially less volume. The
cylindrical particles have a relatively larger surface area than the spherical ones, therefore
the surface effects influence relatively more atoms in cylindrically shaped particles than
in spherically shaped ones. This reduces the saturation magnetization of the cylindrical
particles below the value of the smaller spherical particles.

5.3 SQUID relaxation results

All samples described in section 5.2 are investigated with the SQUID setup described in
chapter 3. The SQUID setup measures the change in magnetic moment as a function of
time. The relaxation times of the particles can be derived from this.

The samples dispersed in water are placed in a water bath sonicator for 20 s right
before every measurement in order to disperse the particles. This ensures an equal degree
of dispersion in every measurement. The samples dispersed in glycerol are heated when
placed in the sonicator, so the effect of the sonication bath is larger. The glycerol samples
are not redispersed before every single measurement. The heating of the sample and the
cooling down afterwards could influence the measurements.

The SQUID only detects gradients of a magnetic field, an absolute value of the magnetic
field cannot be given. Every measurement has an offset, which fluctuates between different
measurements. In order to easily compare the different measurements, the offset is changed
so that the signal is zero at the end of the measurement. If the output voltage would
represent absolute magnetic fields, the magnetic field would also be zero after the particles
have relaxed.

The relaxation time is determined from the measurement signal by

τ = − t

ln(
Vsq

Vsq(t=0) )
, (5.1)

where t represents the time, Vsq the output voltage of the SQUID and Vsq(t = 0) the
initial output voltage of the SQUID.

The measurements are compared to simulations of the measurement made with the
models in section 3.2 and 3.6. Parameters for the simulation are chosen as to best represent
the sample and the setup. For example, the DLS measurements in section 5.2.2 showed
that the diameter of the 9225SJ particles is 40 nm instead of 20 nm according to the
supplier. Therefore, the measured diameter of 40 nm is used. The same applies to the
saturation magnetization. Parameters of the simulation are shown in table 5.5.

5.3.1 Spherical iron oxide particles

The specifications of the sample and the settings of the SQUID setup are shown in table 5.2.
The particles were expected to have a Brownian relaxation time of 1.3 · 10−5 s and a Néel
relaxation time of 1.0·10−9 s. The particles should be completely relaxed by Néel relaxation
before the ’dead time’ of the SQUID setup has passed. The relaxation measurement is
shown in figure 5.7 and shows a very small relaxation behaviour at the beginning of the
measurement. However, the signal is very small and probably caused by the environment
instead of the sample.
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(a) Measurement SQUID voltage (b) Simulation SQUID voltage

Figure 5.7: Relaxation measurements and simulations of spherical iron oxide particles
with a diameter of 5 nm dispersed in water. Figure (a) shows the output voltage from
the SQUID, which is a measure of the change of the magnetization of the sample and
figure (b) shows the outcome of the simulation model.

Core dia- Hydrody- Medium Dispersant Concen- Magnetic field Pulse
meter namic dia- tration strength dura-
(nm) meter (nm) (mg/ml) (A/m) tion (s)

5 30 water citric acid 3.4 800 5
PEG-NH2

Table 5.2: Specifications of the sample and settings of the SQUID setup for the relaxation
measurement on spherical iron oxide particles, section 5.3.1.

5.3.2 Spherical nickel particles

The relaxation behaviour of spherical nickel particles is measured with the SQUID setup.
The settings of the setup are shown in table 5.4. The measurements and the simulations of
the measurements for all samples described in section 5.2.2 are shown in figure 5.8, 5.9, 5.10
and 5.11. Figures (a) and (c) give the output voltage of the SQUID, which is a measure of
the magnetic moment of the particle. Figures (b) and (d) give the corresponding relaxation
times.

The measurements show much longer relaxation times than expected from the simu-
lations. The simulation predicts all particles dispersed in water to be completely relaxed
before the ’dead time’ of the SQUID has passed. However, the actual measurements show
relaxation behaviour over a much longer time. The particles dispersed in glycerol are not

H η Ms dcore dhydrod. σ tmag Concentra-
(A/m) (Pa s) (A/m) (nm) (nm) (s) tion (mg/ml)

800 1.25 · 10−3 3.8 · 105 5 30 0.25 ∞ 3.4

Table 5.3: Parameters of the simulation of the relaxation behaviour of spherical iron oxide
particles, section 5.3.1.
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Sample Magnetic field Pulse
strength (A/m) duration (s)

Measurement A 1 118 5
Measurement B 2 118 5
Measurement C 3 118 5
Measurement D 4 118 5
Measurement E 4 380 300

Table 5.4: Settings SQUID relaxation measurement on spherical nickel particles in water,
section 5.3.2.

Sample H η Ms d σ tmag Concentra-
(A/m) (Pa s) (A/m) (nm) (s) tion (µg/ml)

Measurement A 1 118 1.25 · 10−3 3.4 · 105 40 0.25 ∞ 0.1
Measurement B 2 118 1.42 3.4 · 105 40 0.25 ∞ 0.1
Measurement C 3 118 1.25 · 10−3 3.9 · 105 57 0.23 ∞ 0.2
Measurement D 4 118 1.42 3.9 · 105 57 0.23 ∞ 0.2

Table 5.5: Parameters of the simulation of the relaxation behaviour of spherical nickel
particles, section 5.3.2.

Expected Simulated Simulated Measured Corresponding
diameter Brownian Néel maximum diameter (nm)

(nm) relaxation relaxation relaxation
time (s) time (s) time (s)

Measurement A 40 3.03 · 10−5 5.58 · 106 10 2.8 · 103

Measurement B 40 3.43 · 10−2 5.58 · 106 14 3.0 · 102

Measurement C 57 8.78 · 10−5 3.67 · 1036 8.5 2.6 · 103

Measurement D 57 9.92 · 10−2 3.67 · 1036 14 3.0 · 102

Measurement E 57 9.92 · 10−2 3.67 · 1036 14 1.4 · 103

Table 5.6: Parameters of the simulation of the relaxation behaviour of spherical nickel
particles, section 5.3.2.
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even relaxed after one hour, see figure 5.11e and 5.11f.
These long relaxation times indicate the presence of very large particles, see table 5.6.

The particles used here were much smaller according to the supplier. However, the small
particles can stick together and form large clusters. More about clustering can be found
in chapter 6.

Larger particles would have a larger relaxation time according to the simulations.
Measurements A & C and B & D are similar except for the size of the particles. Therefore,
an increase in relaxation times should be seen at the larger particles. Looking at the
measurements results, there is no significant difference in relaxation time between the
small and the large particles. This is another indication that the actual size of the particles
is different than expected.

The simulations indicate Brownian behaviour based on the size of the particles. The
measurements do not give relaxation times corresponding to the simulated Brownian or
Néel relaxation times. However, comparing the water and the glycerol experiments it is
clear that the use of glycerol as a medium increases the relaxation times. The medium
only influences the Brownian relaxation time and not the Néel relaxation time. Therefore,
the particles relax by Brownian relaxation.

Due to the size distribution of the particles, there are more relaxation times present in
the samples. This causes the increase in relaxation time in figures (b) and (d). The small
particles relax very fast, after which only larger particles remain. These larger particles
have longer relaxation times, which causes the relaxation time to increase in time.

The relaxation times corresponding to the measurements, figures (b), show a broad-
ening of the graph at the end of the measurement. Since the SQUID signal decays, the
noise gets relatively larger at later times in the measurement, which causes the broaden-
ing of the graph. Next to that, the natural logarithm (which is used to determine the
corresponding relaxation time, equation 5.1) gets more sensitive around zero, which also
causes a broadening of the line.

The relaxation times in figures (d) go towards zero at the end of the measurement. This
is a result of the offset given to every measurement to let it end at zero volt. A relaxation
time of zero seconds means that all particles in the sample are relaxed. Measurements A
and C are practically relaxed at the end of the measurement. It is therefore logical that
the relaxation times go to zero, because there are no larger particles present in the sample.
Samples in measurements B, D and E are not fully relaxed when the measurement is ended.
The signal is made zero at the end of the measurement, indicating that the relaxation
process has stopped there. This is actually not the case, larger particles can still be
present. So an incorrect offset is chosen here, resulting in an incorrect initial value of the
measurement signal, Vsq(t = 0) in equation 5.1. Figure 5.12 shows that a small offset still
gives reasonable values of the relaxation time just after the start of the measurement, but
that it severely changes the result at larger times.

So it is important to choose a good offset for the measurements. Therefore, the mea-
surements should last until all particles are relaxed. However, this was not always possible
for the samples with long relaxation times, due to the high chance of flux jumps occurring.
Besides, the samples show sedimentation, which makes it hard to interpret data gathered
over a longer time.

The corresponding relaxation times of the simulations do not go to zero at the end of
the measurement, since the simulations are based on lognormal size distributions. This
means that there is still a very small chance on an infinitely large particle, which would
correspond to an infinite relaxation time.
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(a) Simulation SQUID voltage (b) Relaxation time corresponding to simulation

(c) Measurement SQUID voltage (d) Relaxation time corresponding to measurement

Figure 5.8: Measurements A. Relaxation measurements and simulations of spherical nickel
particles with a diameter of 20 nm dispersed in water.
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(a) Simulation SQUID voltage (b) Relaxation time corresponding to simulation

(c) Measurement SQUID voltage (d) Relaxation time corresponding to measurement

Figure 5.9: Measurements B. Relaxation measurements and simulations of spherical nickel
particles with a diameter of 20 nm dispersed in glycerol.
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(a) Simulation SQUID voltage (b) Relaxation time corresponding to simulation

(c) Measurement SQUID voltage (d) Relaxation time corresponding to measurement

Figure 5.10: Measurements C. Relaxation measurements and simulations of spherical
nickel particles with a diameter of 60 nm dispersed in water.
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(a) Simulation SQUID voltage (b) Relaxation time corresponding to simulation

(c) Measurement SQUID voltage (d) Relaxation time corresponding to measurement

(e) Measurement SQUID voltage (f) Relaxation time corresponding to measurement

Figure 5.11: Measurements D in (a), (b), (c) and (d). Measurement C in (e) and (f).
Relaxation measurements and simulations of spherical nickel particles with a diameter of
60 nm dispersed in glycerol.
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(a) Simulation SQUID voltage (b) Relaxation time corresponding to simulation

Figure 5.12: Simulations of spherical nickel particles with a diameter of 60 nm dispersed
in glycerol with and without an offset to the SQUID output voltage. The offset is 0.1 V. A
small offset in the output voltage has huge consequences in the corresponding relaxation
times. However, in the beginning of the relaxation process, the offset simulation is still a
good approximation of the actual value.

5.3.3 Cylindrical nickel particles

The magnetization curve of the cylindrical nickel particles depicted in section 5.2.3 shows
hysteresis. The particles are therefore not superparamagnetic, but ferromagnetic. There-
fore, the relaxation behaviour of these particles cannot be described by the model devel-
oped in section 3.2.

The relaxation behaviour of the sample is measured anyway. The settings of the setup
are shown in table 5.7. A long magnetic field pulse is given to align the particles. If
the particles were to show Brownian behaviour, their relaxation time would be 1.8 · 103 s
(without coating). Using the Brownian relaxation time as an indication for the duration of
the magnetic pulse gives the particles enough time to align to the field. If the particles do
not align by Brownian motion, they will align by an energetically more favourable process,
which will be faster.

From the magnetization curve it is not possible to determine whether the cylindrical
particles still consist of a single domain or not. The particles show hysteresis, but it is
not clear at which position in figure 2.3 they are. If the particles still consist of a single
domain, they will align to the magnetic field by Brownian relaxation. If the particles have
entered the multidomain zone, the particles can also align to the field by domain flipping
or domain wall movement.

The measurement results of the SQUID relaxation measurements are depicted in fig-
ure 5.13. There is relaxation behaviour visible, which is strange since ferromagnetic par-
ticles have a large coercive field. However, when the magnetic field used to magnetize
the particles is small, the magnetization of multidomain particles could still be in the re-
versible regime, see figure 5.14. In this regime the particles align through domain flipping,
which is easily reversed when the external magnetic field is removed [55]. The magnetic
fields used in this measurement are very small, so it is likely that if the particles have
multiple domains, they are still in that regime and therefore show a relaxation effect. If
the particles consist of a single domain, it is still be possible that they return to a random
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Size Medium Magnetic field Pulse
strength (A/m) duration (s)

150 nm x 2.5µm glycerol 240 3600

Table 5.7: Specifications of the sample and settings of the SQUID setup for the relaxation
measurement on cylindrical nickel particles, section 5.3.3.

(a) Simulation SQUID voltage (b) Simulation SQUID voltage

Figure 5.13: Relaxation measurements and simulations of cylindrical nickel particles with
a diameter of 150 nm and a height of 2.5µm dispersed in glycerol. Figure (a) shows the
output voltage from the SQUID, which is a measure of the change of the magnetization
of the sample. Figure (b) shows the relaxation times corresponding to the measurement
in figure (a).

orientation after alignment to a magnetic field. Only, the chance of this happening is
smaller and therefore the time it will take for this to happen will increase. The corre-
sponding relaxation times for this measurement are very high, so this could be possible.

5.4 Susceptibility results

The susceptibility behaviour of the iron oxide and the spherical nickel particles was mea-
sured. Unfortunately, it was not possible to measure the cylindrical nickel particles and the
spherical particles dispersed in water. An accurate measurement requires several hours,
because individual measurements at different frequencies are done multiple times. These
samples were not consistent and gave fluctuating measurement values when the measure-
ment was repeated. Therefore, no accurate frequency spectrum could be made.

Before the actual susceptibility measurements on the iron oxide and the spherical
nickel particles dispersed in glycerol were done, the dependence of the susceptibility of
the samples on the magnetic field is studied. This is done to ensure the low-field limit
described in section 4.7.2 was satisfied.

All measurements are performed with the settings in table 5.8.
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Figure 5.14: The magnetization process for a ferromagnetic particle with multiple domains.
At low magnetic fields the magnetization process is reversible [55].

Magnetic field Frequency Measurement time Iterations
strength (A/m) range (Hz) per frequency (s) per frequency

Amplitude 7-700 10 10 10
Frequency 700 0.1− 100 10 10

Table 5.8: Settings susceptibility measurements. ’Amplitude’ refers to the measurements
of the magnetic field amplitude spectrum and ’Frequency’ refers to the measurements of
the frequency spectrum.
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(a) Field amplitude spectrum (b) Frequency spectrum

Figure 5.15: The magnetization process for a ferromagnetic particle with multiple domains.
At low magnetic fields the magnetization process is reversible [55].

5.4.1 Susceptibility measurements on spherical iron oxide parti-
cles

The dependence of the susceptibility of the spherical iron oxide particles on the magnetic
field is depicted in figure 5.15a. The susceptibility shows no dependence on the magnetic
field amplitude. This ensures that the low-field limit is satisfied.

The frequency spectrum of the susceptibility is depicted in figure 5.15b. The spherical
iron oxide particle is expected to have a Néel relaxation time of 1.0 ·10−9 s and a Brownian
relaxation time of 0.0145 s, which means all particles will relax by Néel relation. The
relaxation time of 1.0 · 10−9 s corresponds with a frequency of 1.6 · 108 Hz. Unfortunately,
this frequency lies outside the available spectrum. A frequency independent behaviour of
the susceptibility is then expected in the available range. This is exactly what is shown in
figure 5.15.

5.4.2 Susceptibility spectra for spherical nickel particles

Since the setup requires stable solutions, only the spherical particles dispersed in glycerol
could be measured. Both the smaller (9225SJ) and larger (9221XH) nickel spheres are
investigated.

The magnetic field amplitude dependency of both types of particles shows the low-field
limit is satisfied, see figures 5.16a and 5.16c.

The smaller nickel particles (9225SJ) are expected to have a relaxation time of 3.43 ·
10−2, which corresponds to a characteristic frequency of 4.64 Hz. However, in figure 5.16b
there is no decrease of the real component and no maximum for the imaginary component
seen. Therefore, the characteristic frequency does not lie in the measured frequency range.

The larger nickel particles (9221XH) are expected to have a relaxation time of 9.92 ·
10−2, which corresponds to a characteristic frequency of 1.60 Hz. Figure 5.16c shows an
increase of the imaginary susceptibility at low frequencies. This could be an indication
of the characteristic frequency being there. However, the real component of the suscepti-
bility does not show any dependence of the frequency. When the characteristic frequency
is passed, the real component should decrease from a finite value before to zero after the
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Magnetic field Frequency Measurement time Iterations
strength (A/m) (Hz) per frequency (s) per frequency

Sample 1 700 1 10 3
Sample 3 700 1 10 3
Sample 4 700 0.1 10 3

Nickel wires 700 0.1 10 3

Table 5.9: Settings time depending susceptibility measurements.

characteristic frequency. The measurement should be repeated in order to conclude any-
thing from it. When the measurement is repeated, lower frequencies should be included.
The imaginary component should have a maximum at the characteristic frequency. In
this measurement it is not possible to say whether the increase in susceptibility at 0.1 Hz
decreases at lower frequencies.

5.5 Time dependency of the measurements

As described in section 5.4, the spherical nickel particles dispersed in water and the cylin-
drical nickel particles gave fluctuating measurement results and therefore no accurate
frequency spectrum could be measured. This raised the question whether the samples
were stable enough. The samples are redispersed by the sonication bath treatment before
every measurement, but it is not known how long the samples stay dispersed.

In the first part of this section, the susceptibility setup is used to measure the suscep-
tibility over time. This is an indication of the stability of the sample.

In the second part of this section, the SQUID setup is used to measure the impact of
the instability on the relaxation times.

5.5.1 Time dependant susceptibility measurements

In this section the susceptibility is measured as a function of time. A decrease of the
susceptibility over time indicates sedimentation i.e. the particles sink to the bottom of
the sample tube due to gravity. Sedimentation leads to a thick layer of particles at the
bottom of the sample tube. It is much harder for these particles to move or rotate, since
they are stuck to the other particles at the bottom. The susceptibility setup is designed
so that this sediment is outside the measurement coil. Therefore, these particles are not
contributing to the measurement, which leads to a decrease of the susceptibility signal.

Figure 5.17 shows the time dependence of the susceptibility for samples 1, 3 and 4 as
described in table 5.1 and the cylindrical particles, the settings are displayed in table 5.9.
The spherical particles show a decrease of the susceptibility over time, which indicates
that sedimentation takes place.

The cylindrical nickel particles do not show a decrease in susceptibility, so sedimen-
tation does not seem to be the main cause of the inability to accurately measure the
frequency spectrum. However, the susceptibility fluctuates enormously between various
measurements, therefore weak signal strength is more likely to be the problem.

The sedimentation rate of the particles is an indication of the size of the particles.
Larger particles sink faster than smaller particles. The sedimentation rate for spherical
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(a) Field amplitude spectrum (9225SJ) (b) Frequency spectrum (9225SJ)

(c) Field amplitude spectrum (9221XH) (d) Frequency spectrum (9221XH)

Figure 5.16: Susceptibility spectra of spherical nickel particles dispersed in glycerol. Mea-
surements on sample 2 are shown in figures (a) and (b) and the results for sample 4 are
shown in figures (c) and (d). Figures (a) and (c) give the dependence on the amplitude of
the magnetic field. Herewith the low-field limit can be checked, which is satisfied for both
samples. Figures (b) and (d) give the frequency spectrum of the particles.
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(a) Sedimentation sample 1

(b) Sedimentation sample 3 (c) Sedimentation sample 4

(d) Sedimentation nickel wires χ (real) (e) Sedimentation nickel wires χ (imaginary)

Figure 5.17: Susceptibility as a function of time. Figure (a) gives results of the spherical
nickel particles dispersed in water. The results for the larger spherical nickel particles are
shown in figures (b) and (c), for particles dispersed in water and glycerol respectively.
Figures (a), (b) and (c) all show a decrease of the susceptibility over time, which indicates
sedimentation. Figures (d) and (e) show measurements on the cylindrical nickel particles
of amplitude and phase respectively. Both the phase and the amplitude of the suscep-
tibility for the cylindrical nickel particles fluctuate enormously. Therefore, no accurate
measurement of the frequency spectrum could be made.
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Sedimentation Sedimentation Corresponding
rate (cm/hour) rate (m/s) particle size (µm)

Sample 1 10 2.7 · 10−5 2.8
Sample 3 5.0 1.4 · 10−5 2.0
Sample 4 0.67 1.9 · 10−6 25

Table 5.10: Sedimentation rates of the time dependant susceptibility measurements and
the corresponding particles sizes.

Magnetic field Pulse
strength (A/m) duration (s)

Sample 1 800 5
Sample 3 800 5

Table 5.11: Settings time dependant SQUID relaxation measurements.

particles is given by [56]

u =
d2(ρc − ρm)g

18η
, (5.2)

where u represents the sedimentation rate, d the diameter of the particle, ρc the density
of the particle, ρm the density of the medium, g the gravitational acceleration and η the
viscosity of the medium. The sedimentation rate is derived from the initial slope of the
susceptibility. The sample tube and the measuring coil have a length of 10 cm. The
sedimentation rates and the corresponding particles sizes are shown in table 5.10. The
sedimentation rates correspond to particles about 50 - 500 times larger than expected from
the specifications of the supplier. Again, this indicates the formation of huge clusters of
particles.

5.5.2 Time dependant SQUID relaxation measurements

As explained in section 3.5, the particles in aqueous dispersion are redispersed by a son-
ication bath treatment. This happens right before every measurement. The following
experiment compares measurements in which the measurement follows immediately on
the sonication bath and measurements in which 300 s have passed between the sonication
bath treatment and the measurement. This shows the stability of the samples just after
they are redispersed. The SQUID measurements are performed in a much smaller time
scale then the susceptibility measurements, minutes against hours. The effect of sedimen-
tation as seen in the susceptibility experiments, could therefore be less significant. This
experiment will show the effect of sedimentation on the SQUID experiments.

The settings of the experiment are shown in table 5.11 and the results in figure 5.18.
The corresponding relaxation times show that the relaxation time is increased when there
is a waiting period after the sonication bath treatment. So the particles have grown in
the 300 s after the sonication bath. One way the particles could have grown is by the
formation of clusters, as will be explained further in chapter 6. Another way is that the
particles have sunk to the bottom and ended up on top of another particle. Together it is
harder to relax and therefore the relaxation time increases.
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(a) Sample 1 (b) Relaxation times corresponding to sample 1

(c) Sample 3 (d) Relaxation times corresponding to sample 3

Figure 5.18: Relaxation measurement of spherical nickel particles. Three measurements
are performed in which the sample is immediately measured after the sonication bath
treatment. Then three measurements are performed in which a waiting time of 300 s
existed between the sonication bath treatment and the measurement. The waiting period
increases the relaxation times.
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Chapter 6

Clustering of
superparamagnetic
nanoparticles

6.1 Introduction

In chapter 5 it was seen that the relaxation times of the spherical nickel particles measured
with both the SQUID setup and the susceptibility setup were much larger than expected
from the simulations. Larger relaxation times are most likely caused by larger particles.
The measured relaxation times corresponded to particles with sizes in the micrometer
regime, while measurements were started with nanometer sized particles. How is it possible
that the size of the particle increases?

Magnetic nanoparticles in dispersion interact with each other. This interaction can lead
to the aggregation or clustering of multiple nanoparticles. Since the relaxation times are
very sensitive to the size of the particles, clustering will significantly change the relaxation
behaviour. The interactions between the particles are ignored in the simulation model, so
therefore the simulated relaxation times are too small.

The first section of this chapter explains which forces are involved in the formation of
clusters. In the second section, this knowledge is used to design experiments that prove
that the large relaxation times of the spherical nickel particles is caused by clustering.

6.2 Interaction energies

The main interaction energies between magnetic nanoparticles are magnetic dipolar, Van
der Waals and electrostatic interaction [57]. All of which depend crucially on the structural
parameters of the particle. The magnetic dipolar and the Van der Waals interactions have
an attractive character, while the electrostatic interaction is repulsive. Particles are likely
to form aggregates when the minimum of the resultant interaction energy is lower than
the thermal energy, kBT .
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6.2.1 Magnetic dipole interaction

A magnetic particle is attracted to another magnetic particle with its magnetic moment in
the opposite direction. This interaction energy is called dipole-dipole interaction energy
and it can be described as [58]

Em(r) = − µ0

4πr3

(
3(m1 · e1,2)(m2 · e1,2)−m1 ·m2

)
, (6.1)

where r represents the distance between the centers of the two particles, m the magnetic
moment of the particle and e represents the unit vector parallel to the line joining the
centers of the two particles. Depending on the orientation of the particles with respect
to each other the dipole-dipole interaction energy can be either positive or negative. A
minimum energy is reached when the particles are in a head-to-tail configuration.

In the absence of a magnetic field, all orientations of the particles will be present in
the sample. When a magnetic field is applied, the particles will align their magnetic
moment towards the field direction. The domination of this aligned configuration leads to
a decrease of the dipole-dipole interaction energy, which increases the chance of clusters.

6.2.2 Van der Waals interaction

The Van der Waals interaction energy describes the interaction between different atoms or
molecules. The energies from the individual atoms or molecules can be added to give the
resultant Van der Waals interaction energy of larger bodies, for example nanoparticles.
Hamaker described the Van der Waals interaction energy between two spherical particles
as [59]

E(R1, R2, s) = −AH
12

, (6.2)

where A represents the Hamaker constant and H is given by

H(x, y) =
y

x2 + xy + x
+

y

x2 + xy + x+ y
+ 2 ln

( x2 + xy + x

x2 + xy + x+ y

)
, (6.3)

where x represents the ratio of the shortest distance s to the diameter of particle 1, x = s
2R1

and y represents the ratio of the radius of particle 2 and the radius of particle 1, y = R2

R1
.

The dimensions are depicted in figure 6.1. The Hamaker constant for two particles of
different materials can be expressed as [60]

A12 =
2A11A22

A11 +A22
'
√
A11A22 (6.4)

The Hamaker constant for two particles of the same material in a medium is described as

A131 = A11 +A33 − 2A13 =
(A11 −A33)2

A11 +A22
' (
√
A11 −

√
A22)2, (6.5)

and for two different materials in a medium it is

A132 = A12 +A33 −A13 −A23 ' (
√
A11 −

√
A33)(

√
A22 −

√
A33). (6.6)

The Van der Waals energy between two spheres of the same material in vacuum can now
be described as

Espheres(R1, R2, s) =− A11

6

( 2R1R2

2(R1 +R2)s+ s2
+

2R1R2

4R1R2 + 2(R1 +R2)s+ s2
+

ln
( 2(R1 +R2)s+ s2

4R1R2 + 2(R1 +R2)s+ s2

))
.

(6.7)
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Figure 6.1: Spherical particles with a shell.

When the particles contain a shell with thickness δ, the interaction energy with the shell
and the spheres should also be considered. The Van der Waals energy is then described
as [61]

Ev(R1, R2, s, δ1, δ2) =EV (core1, core2) + EV (shell1, shell2) + EV (core1, shell2)

+ EV (core2, shell1).
(6.8)

Considering EV (core1, shell2) = EV (core1, sphere2) − EV (core1, core2), the interaction
energy of the particles can now be described as

EV (R1, δ1, R2, δ2, s) =− A11

6
H(

s+ δ1 + δ2
2(R1)

,
R2

R1
)− A232

6
H(
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,
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)

+
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1/2
232A
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(6.9)

6.2.3 Electrostatic interaction

Counteracting the attractive Van der Waals and dipole-dipole forces, ionic compounds can
be added to the medium in order to induce a repulsive force between the nanoparticles.
The golden shell around the nickel particles is electrophile, which means it has an elec-
tron deficiency and can easily absorb electrons [62]. The negatively charged ions of the
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Figure 6.2: Electrophilic particles attract negatively charged ions from the medium, re-
sulting in a double layer [63].

compound, called counter-ions, will be absorbed to the positively charged surface of the
particle, resulting in a double layer, see also figure 6.2. The generation of the double layer
will result in a coulombic repulsion between the particles. If this electrostatic repulsion
is high enough, it will prevent particle aggregation. However, the double layer can easily
be disrupted by thermal motion or by an increase of ionic strength of the medium, which
compresses the thickness of the double layer. So these parameters have to be controlled
very carefully in order to maintain a stable colloidal suspension [63].

The energy of the electrostatic repulsion of spherical equally charged particles can be
described as [64, 65]

Eel =
64πk2

BT
2Rε0εr

e2z2
eκs
(e zeΨ

2kBT − 1

e
zeΨ

2kBT + 1

)2

(6.10)

where R represents the radius of the particle, ε0 the permittivity of free space, εr the
permittivity of the medium, z the charge of the counter-ion, e the elementary charge, s
the distance between the particles and Ψ0 the electrostatic potential at the surface. The
thickness of the double layer is described by the Debye-Hückel length, 1/κ,

κ =
( e2

ε0εrkBT

∑
n

cnz
2
n

)1/2

, (6.11)

where c represents the number concentration of the ions of type n in the medium.

6.2.4 Total interaction energy

The individual interaction energies are shown in figure 6.3, just as the total interaction
energy. The total energy can be either positive or negative. Negative total interaction
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Figure 6.3: Contributions to the interaction energy between two spherical particles. The
contributions of the dipole-dipole interaction, the Van der Waals forces and the electro-
static repulsion are drawn, just as the total interaction energy of the two particles. Neg-
ative interaction energy corresponds to attraction between the particles, while positive
interaction energy results in repulsion.

energy corresponds to attraction between the particles, while positive interaction energy
results in repulsion. The electrostatic interaction energy strongly depends on the con-
centration of the ionic compound. The total energy as a function of the concentration
is depicted in figure 6.4. Low concentrations of ionic compounds result in high energy
barriers, which prevents particles to approach the primary energy minimum located at
the edge of the particle. Particles with these interaction energies repulse each other, the
suspension is stable. Increasing the concentration of the ionic compound gives rise to a
secondary minimum. In this stage, the energy barrier is still too high to overcome and the
particles cannot reach the energetically favourable primary minimum. Hence, the parti-
cles sit either in the secondary minimum or they remain dispersed in the medium. As the
energy barrier drops below kBT , the particles are able to reach the primary minimum and
slow aggregation occurs. A critical coagulation concentration is reached when the energy
barrier has dropped to zero. Here, the particle may either be in the primary or secondary
minimum. The particles form clusters. Increasing the concentration even more leads to
very rapid clustering.

6.3 Clustering experiments

The last section explained how the clustering process works. In this section some mea-
surements are performed to prove that clustering is the cause of the long relaxation times
of the spherical nickel particles.
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Figure 6.4: Total interaction energy for different concentrations of the ionic compound.
The number concentrations are indicated by c and given in the legend of the graph.

6.3.1 Pulse length variations in the SQUID setup

In section 6.2.1 it was explained that aligned particles are more likely to cluster than
random oriented particles. In the SQUID setup, the duration of the magnetic field pulse
can be used to control the degree of alignment and therefore also the degree of clustering.
A higher degree of alignment will cause more clustering and therefore also larger relaxation
times.

To induce a difference in alignment between two measurements, it is important that
one of the magnetic field pulses is shorter than the relaxation time of the sample. In
section 5.3.2 it was seen that the spherical nickel particles were not relaxed within 5 s.
Therefore, a measurement with a magnetic field pulse of 5 s and a measurement with a
pulse of 300 s are performed. The settings are shown in table 6.1.

The measurement results are shown in figure 6.5. It can be seen that the SQUID
voltage amplitudes of the measurements with short magnetic field pulses are lower than
the amplitudes of the measurements with longer magnetic field pulses. This confirms that
the shorter magnetic field pulse did not fully align the particles yet.

From the corresponding relaxation time plots, it can be seen that the longer pulse
lengths lead to longer relaxation times. The longer relaxation times indicate larger parti-
cles.

However, it is too soon to conclude that the longer relaxation times are definitely
caused by clustering effects. In section 5.5.2 it was seen that waiting 300 s after the
sonication bath treatment increases the relaxation times of the particles. It is therefore
possible that the larger relaxation times are not caused by increased clustering due to the
better alignment of the particles, but by the same effect that also caused the increase in
section 5.5.2.
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Sample Magnetic field Pulse
strength (A/m) duration (s)

Measurement F 1 800 5
Measurement G 1 800 300
Measurement H 3 800 5
Measurement I 3 800 300

Table 6.1: Settings SQUID relaxation measurement with different pulse lengths.

(a) Measurements F & G (b) Corresponding relaxation times

(c) Measurements H & I (d) Corresponding relaxation times

Figure 6.5: SQUID measurements performed with magnetic field pulses of 5 s and 300 s
on spherical nickel particles of 20 nm (figure (a) and (b)) and 60 nm (figure (c) and (d)).
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Sample Magnetic field Pulse
strength (A/m) duration (s)

Measurement J 1 350 30
Measurement K 1 1600 30
Measurement L 3 350 30
Measurement M 3 1600 30

Table 6.2: Settings SQUID relaxation measurement with different magnetic field strengths.

6.3.2 Magnetic field strength variations in the SQUID setup

In section 6.2.1 it was explained that aligned particles are more likely to cluster than
random oriented particles. In the previous section the duration of the magnetic field pulse
was varied in order to induce different degrees of alignment.

In this section the strength of the magnetic field is used to induce different degrees
of alignment. As can be seen in the magnetization curves in section 5.2, higher magnetic
fields lead to a higher magnetization of the sample. Magnetization is a measure of the
degree of alignment of the particles, so when the magnetization is increased this will also
lead to more clustering.

In the following experiment the effect of different magnetic field strengths is compared.
The settings are depicted in table 6.2 and the results in figure 6.6. The results do not show
a clear distinction between the relaxation times from larger and smaller magnetic fields.
It looks like measurement series M has higher relaxation times than measurement series
L. However, the third measurement from the M series has relaxation times comparable to
the ones from the L series. The relaxation times of measurement series J and K do not
show any correlation. Therefore, these measurements do not prove that the relaxation
times are prolonged due to clustering.

Figure 6.7 shows an enlargement of the VSM measurements of the samples performed
in section 5.2.2. Due to the hysteretic behaviour, the magnetization of the sample hardly
changes between 1600 and 350 A/m. This indicates that the degree of alignment is barely
changed during this measurement.

A different degree of alignment between the samples should also have been visible in the
begin amplitudes of the SQUID output voltage. Higher begin amplitudes indicate more
magnetization and therefore more alignment. The measurements do not show different
start amplitudes between the low and high magnetic field measurements. Therefore, these
measurements cannot tell us something about the degree of clustering caused by a higher
magnetic field.

6.3.3 DLS measurements

DLS measurements give information about the particles size and its distribution directly.
DLS measurements on the spherical nickel particles were already performed in section 5.2.
These measurements did not show the presence of large clusters of particles that could
explain the relaxation times found. However, the DLS measurement was probably falsely
interpreted. To understand why this could happen, it is necessary to explain the working
of the DLS in more detail.

Particles in a liquid medium move due to Brownian motion. Larger particles move
slower than smaller particles, which makes it possible to determine the size of the particle
by its velocity. DLS is based on this principle.

The sample is illuminated by the use of a laser. The particles in the sample scatter
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(a) Measurements J & K (b) Corresponding relaxation times

(c) Measurements L & M (d) Corresponding relaxation times

Figure 6.6: SQUID measurements performed with magnetic field strengths of 1600 A/m
and 350 A/m on spherical nickel particles of 20 nm (figure (a) and (b)) and 60 nm (figure (c)
and (d)).

Figure 6.7: Magnetization curves from VSM measurement in the magnetic field range used
in the SQUID measurements.
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this light in all directions. A screen is placed near the sample to detect the scattered light.
A speckle pattern is seen on the screen, bright spots representing particles and dark spots
the absence of them.

A short period in time later, another screenshot is made. The particles have now moved
due to Brownian motion, which slightly changes the speckle pattern. The velocity of the
particle can be calculated from the movement of the spots on the screen and corresponds
to the size of the particle.

The time interval between the screenshots should be chosen with care. If the time
interval is too long the screenshots would not correlate with each other, since the particles
move in random direction. If the time interval is too short, no movement of the particle
is detected and therefore no size is calculated. These particles are not represented in the
resulting particle size distribution.

In the DLS measurement performed in section 5.2, the time interval was too short to
detect particles of micrometer sizes. The particles were dispersed in glycerol, because this
highly viscous medium slows down the movement of the particles, which decreases the
effect of sedimentation. However, it also hinders the detection of the particles with DLS,
since micrometer sized particles move too slowly to be detected with the standard time
interval of the DLS.

New DLS measurements were performed to see whether there are large clusters present
in the samples. To ensure the time interval of the DLS is in the right range to detect
micrometer sized particles, water is used as medium instead of the more viscous glycerol.
Due to the use of water, the sample is more affected by sedimentation. This makes the
measurement results fluctuating more.

Next to the size, the influence of a magnetic field is also investigated. Placing the
sample in a magnetic field should increase the clustering. A sample with superparamag-
netic nickel particles was measured with DLS. After the DLS measurement, the sample
was placed in a magnetic field for 300 s, after which another DLS measurement was done.
To rule out any time effects, an identical sample was measured with the same time be-
tween the measurements as the first one. This sample had not undergone magnetic field
treatment.

The results of the experiment are shown in figure 6.8. Each measurement is performed
three times. Due to the use of water as a medium, the samples are unstable and fluctuate
between the different measurements. This makes it hard to compare the before and after
measurements. Nor the magnetic field treatment nor the time that has passed has induced
a significant change in particle size that could be detected.

However, all four measurements in figure 6.8 show the presence of large micrometer
sized particles. Therefore, the long relaxation times in section 5.3.2 are caused by clustering
of the nanoparticles in large micrometer sized particles.
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(a) Sample A before (b) Sample B before

(c) Sample A after (d) Sample B after

Figure 6.8: Dynamic Light Scattering (DLS) measurements performed on two identical
samples of spherical nickel particles dispersed in water. Sample A is has been placed in a
magnetic field for 300 s and sample B did not undergo any treatment. Both samples are
measured before and after the magnetic field treatment. The magnetic field treatment did
not result in significantly larger clusters. However, all measurements show the presence of
micrometers sized clusters.
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Chapter 7

Conclusions

Magnetic nanoparticles are recently introduced in medicine. There are many applications
where patients can benefit of their use. The focus of this research was on relaxation
behaviour of superparamagnetic nanoparticles for in vitro applications like sensing and
immunoassays.

A simulation model that describes the relaxation behaviour of superparamagnetic
nanoparticles was developed. Special attention was paid to the shape of the particles.
Cylindrical particles are thought to be more suited in the superparamagnetic regime than
spherical ones, because of their shape anisotropy. Comparison of the simulations for cylin-
drical and spherical particles confirmed that cylindrical particles can contain more volume
at the superparamagnetic limit, since the Néel relaxation time decreases with increasing
aspect ratio. The increase of magnetic material leads to a higher magnetic response, which
means a better performance. However, the effect of the increased magnetic moment can be
cancelled by surface effects, which affect cylindrical particles more due to their increased
surface to bulk ratio. Theoretical quantification of this effect was outside the scope of this
research, but VSM measurements of our home-made cylindrical nickel particles indicate
that the increased volume of magnetic material cannot compensate for the loss due to sur-
face effects. This indicates that the use of cylindrical particles in the superparamagnetic
regime decreases the magnetic response. On the other hand, the increased surface to bulk
ratio of the cylindrical particles results in more space to attach biomarkers to. Cylindrical
particles also show higher Brownian relaxation time, since this increases with aspect ratio.

The simulation model describes the relaxation behaviour. Investigation of the relax-
ation behaviour is a possible method to determine viscosity or particle size changes in
biological samples. Simulations show that relaxation times change significantly when the
size of the particle changes. Simulations also show that relaxation times change with
changing viscosity of the medium. However, the latter only occurs at Brownian relaxation
behaviour. For applications of viscosity measurements, the magnetic nanoparticles should
therefore be selected to have the proper size for Brownian relaxation.

The simulation model was tested with two different experimental setups i.e. a SQUID
magnetometer measuring the relaxation as a function of time and a differential transformer
measuring the susceptibility as a function of frequency. The simulation model for spherical
particles was tested with iron oxide particles and with nickel particles. For the iron oxide
particles, the simulation model predicted relaxation times that would fall outside of the
measurement range of both setups. Indeed, no relaxation was seen in the available range.

The spherical nickel particles were dispersed in both water and glycerol. The SQUID
setup showed relaxation times that were much larger than expected from the simulation
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model for all configurations. Moreover, relaxation times within the measurable range were
expected in the susceptibility setup for glycerol, but no relaxation was observed. The
water samples could not be measured with the differential transformer setup. Additional
measurements with both setups showed that the measurements for spherical nickel parti-
cles changed over time. This instability is mainly caused by sedementation of the particles
and possibly by clustering. The sedimentation rate of the particles indicates the presence
of micrometer sized clusters of particles. DLS measurements confirmed the presence of
micrometersized clusters, which are known for their larger relaxation times. Cluster for-
mation prevented confirmation of the relation of the relaxation time on the particle size
with experiments. Comparison of the water and glycerol samples showed a dependence of
the relaxation time on the viscosity of the medium.

Unfortunately, the cylindrical nickel particles were ferromagnetic instead of superpara-
magnetic. Therefore, the simulation model for cylindrical particles could not be verified.
Moreover, comparison of the spherical and the cylindrical model revealed an inconsistency
between the models. The cylindrical model showed a decrease of Néel relaxation time
with increasing aspect ratio, resulting in a larger volume for cylindrical particles at the
superparamagnetic limit. Quantifying these results, the spherical particle was allowed to
have more volume than the cylindrical particle at the superparamagnetic limit. This in-
consistency is probably caused by approximations and simplifications in the surface and
shape anisotropy.

It is possible to use the SQUID setup for relaxation measurements. The SQUID setup
gives a measure of the decay of the magnetic moment over time. These results are easily
quantified, which gives the relaxation time. A change in relaxation time due to the presence
of different particle sizes is easily seen. The SQUID setup is able to detect small quantities
of magnetic material. In this study 8 ng of nickel particles placed about 23 mm from the
detection coil were easily detected.

It is also possible to use the susceptibility setup for relaxation measurements. The
susceptibility is measured as a function of the frequency of an AC magnetic field. The
relaxation time is easily identified as the point at which the real and imaginary susceptibil-
ity intersect. The setup can identify relaxation times between 0.2 ms and 16 s. However,
there is a lot of sample material needed, which also has to be stable for several hours.

The best relaxation measurements are performed with spherical superparamagnetic
nanoparticles, since they show a higher magnetic response than cylindrical ones. Particles
should be as large as possible, since this significantly reduces the surface effects and results
in higher saturation magnetization. The SQUID setup is most promising for relaxation
measurements, since this setup is very sensitive and can detect small amounts of magnetic
material. The SQUID measurement is also much faster than the susceptibility measure-
ment. However, the SQUID setup should be improved, since the ’dead time’ is too long
to measure in low viscous media like blood. Fortunately, there is still room left to shorten
the ’dead time’.
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Chapter 8

Recommendations

Reliable in vitro diagnostics can only be done with stable particles. The spherical nickel
particles showed sedimentation, which changes the characteristics of the sample over time.
Since the sedimentation effects and the relaxation effects cannot be distinguished, the
sedimentation should be decreased significantly, so the effect on the measurement is neg-
ligable.

The spherical nickel particles also show clustering. This is an often seen problem with
magnetic nanoparticles. It would therefore be very useful if more research is done on this
subject. This research should then come up with effective methods to prevent clustering
of magnetic nanoparticles.

Improving the stability of the particles will also have positive effects on their descrip-
tion by the simulation model, since the simulation model does not include sedimentation
and clustering effects. Moreover, the model needs improvement for the quantitative de-
scription. It was seen that the spherical and cylindrical model do not match quantita-
tively. This is probably due to approximations in the description of the surface and shape
anisotropy. Further research on the surface and shape anisotropies can significantly im-
prove the model. Besides, the findings can be used to quantify the influence of surface
effects to the saturation magnetization of magnetic nanoparticles. This is very useful for
the design of particles for various applications.

The main limitation of the SQUID setup is the ’dead time’ before the start of the mea-
surement. If the SQUID is ever used for relaxation measurements of superparamagnetic
nanoparticles in low viscous media like blood or other body fluids, the ’dead time’ should
be well below 1 ms. Otherwise these superparamagnetic nanoparticles will be completely
relaxed before the measurement starts. Also, the flux jumps that sometimes occur during
measurements should be eliminated. Software can be written to correct for the flux jumps.
However some flux jumps are so big that they drive the setup outside its limits. The mea-
surement then needs to be repeated, which is very undesirable for the use in biological
samples.
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[39] F. Ludwig, S. Mäuselein, E. Heim, and M. Schilling, “Magnetorelaxometry of mag-
netic nanoparticles in magnetically unshielded environment utilizing a differential
fluxgate arrangement,” Review of scientific instruments, vol. 76, 2005.

[40] R. Chantrell, S. Hoon, and B. Tanner, “Time-dependent magnetization in fine-particle
ferromagnetic systems,” Journal of magnetism and magnetic materials, vol. 38,
pp. 133–141, 1983.

[41] V. Pizzella, S. Penna, D. D. Gratta, and G. Romani, “Squid systems for biomagnetic
imaging,” Superconductor Science and Technology, vol. 14, pp. R79–R114, 2001.

[42] N. Adolphi, D. Huber, H. Bryant, T. Monson, D. Fegan, J. Lim, J. Trujillo, T. Tessier,
D. Lovato, K. Butler, P. Provencio, H. Hathaway, S. Majetich, R. Larson, and
E. Flynn, “Characterization of single-core magnetite nanoparticles for magnetic imag-
ing by squid-relaxometry,” Physics in medicine and biology, vol. 55, pp. 5985–6003,
2010.

[43] D. Griffiths, Introduction to electrodynamics. Prentice Hall International, Inc., third
edition ed., 1999.

[44] R. Fagaly, “Superconducting quantum interference device instruments and applica-
tions,” Review of scientific instruments, vol. 77, 2006.

89



[45] B. Kuipers, I. Bakelaar, M. Klokkenburg, and B. Erné, “Complex magnetic sus-
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Appendix A

List of symbols

Symbol Description Units
A Magnetic vector potential Vs/m
A Hamakers constant
a Radius of sample m
B Magnetic field T
b Radius of detection coil m
c Number concentration 1/m3

d Diameter m
dc Single domain limit m
ds Superparamagnetic limit m
E Energy density J/m3

∆ε Energy barrier J
ε Energy J
F Fill factor
g Spectroscopic splitting factor
g Gravitational acceleration m/s2

h Height m
H Magnetic field A/m
Hin Internal magnetic field A/m
Hd Demagnetization field A/m
HK Anisotropy field A/m
I Current A
J Total angular momentum
kB Boltzmann constant J/K
K Anisotropy constant J/m3

L Orbital angular momentum
L Inductance H
M Magnetization vector A/m
m Unit vector of magnetizaton
m Mean of diameter m
M Mutual inductance H
Ms Saturation magnetization A/m
MV Molair volume m3/mol
n Unit vector normal to a plane
N Demagnetization factor
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Symbol Description Units
NA Avogadro’s constant 1/mol
Np Number of atoms per unit volume 1/m3

n Normal vector
p Ratio between height and diameter of a cylinder
p̃ Ratio between hydrodynamic height

and diameter of a cylinder
R Radius m
S Spin angular momentum
T Temperature K
t Time s
tmag Magnetization time s
u Sedimentation rate m/s
V Voltage V
V Volume m3

Ṽ Hydrodynamic volume m3

v Variance of diameter m
z Charge
δ⊥ Correction for end-effect in cylinder
ε Permittivity s4 A2/(m3 kg)
η Viscosity Pa s
θ Angle between the z-axis and the magnetization rad
µ Mean of natural logaritm of d
µ0 Permeability of free space m kg/(s2A2)
µB Magnetic moment of an electron Am2

µH Magnetic moment of a atom or molecule Am2

µNP Magnetic moment of a nanoparticle Am2

Φ Magnetic flux Wb (Vs)
φ Angle between x-axis and component of rad

magnetization in the xy-plane
ρ Density kg/m3

σ Standard deviation of natural logarithm of d
τ0 Attempt time s
τeff Effective relaxation time s
τN Néel relaxation time s
τB Brownian relaxation time s
χ Susceptibility (of particle)
χin Susceptibility (material constant)
Ψ Electrostatic potential V
ω Frequency Hz
ωchar Characteristic frequency Hz
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Appendix B

Multipole expansion

The vector potential of this system in point p in space can be calculated by [43]

A(r) =
µ0

4π

∫
I

s
dl =

µ0

4π
I

∮
1

s
dl, (B.1)

where I represents the current in the loop and s is the distance between the border of the
sample and point p, described by

1

s
=

1√
r2 + a2 − 2ar cos θ′

=
1

r
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n=0

(a
r

)n
Pn(cos(θ′) (B.2)

where Pn(x) represents the Legendre polynomial and r =
√
d2 + b2, with b the radius of

the pick-up coil, d the distance between the sample and the pick-up coil. This turns the
vector potential into a multipole expansion

A(r) =
µ0I

4π
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r2
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a cos θ′dl +

1

r3
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2

)
dl + ...

]
, (B.3)

where the first term is called the monopole term, the second dipole, the third quadrupole
and the fourth octupole. The monopole term vanishes and for small sample radii the
dipole term dominates the equation and the quadrupole term can be ignored. However, in
our case the radius of the sample and the pick-up coil are of the same order of magnitude.
Therefore, the terms after the dipole term cannot be neclegted.

The multipole terms are worked out separately.

Dipole

The dipole term is described as

Adip(r) =
µ0I

4π
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(B.4)

Quadrupole

The quadrupole term is described as

Aquadr(r) =
µ0I

4π

1

r

∮
a2

r2

(3

2
cos2 θ′ − 1

2

)
dl =

µ0I

4π

1

r3

[3

2

∮ (
r̂ · a

)2
dl−

∮
1

2
a2dl

]
(B.5)
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The second term vanishes because the integral is just the vector displacement around a
closed loop,

∮
dl = 0. The vector potential of the quadrupole becomes

Aquadr(r) =
µ0I

4π

1

r3

3

2

∫ 2π

0

a3b2

4r2

(
1− sin 2φ

)
sin2 2θdθθ̂ =

3µ0Ia
3b2

32r5

(
1− sin 2φ

)
θ̂. (B.6)

Octupole

The octupole term can be written as

Aoct(r) =
µ0I

4π

1

r

∮
a3

r3

1

2

(
5 cos3 φ− 3 cosφ

)
dl

=
µ0I

4π

1

2r4

[
5

∮
(r̂ · a)3dl− 3

∮
a2(r̂ · a)dl

]
= −µ0

4π

3a2

2r4
(m× r̂)

(B.7)

with r = b cosφx̂+ b sinφŷ + dẑ and a = a cos θx̂+ a sin θŷ. The first term (r̂ · a)3 can be
described as

(r̂ · a)3 =
a3b3

8r3

(
sinφ− cosφ− sin 2φ sinφ+ cos 2φ cosφ

)
sin3 2θ. (B.8)

Integrating gives∫ 2π

0

a(r̂ · a)3dθ =
A3b3

8r3

(
sinφ−cosφ−sin 2φ sinφ+cos 2φ cosφ

) 1

24

(
cos 6θ−9 cos 2θ

)]2π
0

= 0.

(B.9)

So the first tern in equation B.7 vanishes, which reduces the vector potential of the octupole
to

Aoct(r) = −3
µ0I

4π

1

2r4

∮
a2(r̂ · a)dl = −µ0

4π

3a2

2r4
(m× r̂) (B.10)

Hexadecapole

The hexadecapole can be described as

Ahex(r) =
µ0I

4π

1

r

∮
a4

r4

1

8

(
35 cos4 φ− 30 cos2 φ+ 3

)
dl

=
µ0I

4π

1

8r5

[
35

∮
(r̂ · a)4dl− 30a2

∮
(r̂ · a)2dl + 3a4

∮
dl
]
.

(B.11)

Again, the third term vanishes. With

(r̂ · a)2 =
a2b2

4r2

(
1− sin 2φ

)
sin2 2θθ̂ (B.12)

and

(r̂ · a)4 =
a4b4

16r4

(
1− sin 2φ

)2
sin4 2θθ̂, (B.13)

the vector potential can be rewritten as

Ahex(r) =
µ0I

32r5

[
35
a5b4

16r4
(1− sin 2φ)2 3

4
− 30

a5b2

4r2
(1− sin 2φ)

]
θ̂ (B.14)
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Dotriacontapole

The dotriacontapole can be described as

Adot(r) =
µ0I

4π

1

r

∮
a5

r5

1

8

(
63 cos5 φ− 70 cos3 φ+ 15 cosφ

)
dl

=
µ0I

4π

1

8r6

[
63

∮
a5 cos5 φdl− 70a2

∮
a3 cos3 φl + 15a4

∮
a cosφdl

]
=
µ0I

4π

1

8r6

[
63

∮ (
r̂ · a

)5
dl− 70a2

∮ (
r̂ · a

)3
l + 15a4

∮ (
r̂ · a

)
dl
]
.

(B.15)

Again,
∮

(r̂ · a)3dl = 0 and also∮
(r̂ · a)5dl =

∮
a6b5

32r5

(
1− sin2 2φ

)2(
sinφ− cosφ

)
sin5 2θdθ

=
a6b5

32r5

(
1− sin2 2φ

)2(
sinφ− cosφ

) 1

480

(
− 150 cos 2θ + 25 cos 6θ − 3 cos 10θ

)]2π
0

= 0.

(B.16)

So what remains for the vector potential of the dotriacontapole is

Adot(r) =
µ0

4π

15a4

8r6
m× r̂. (B.17)

Total vector potential

The total vector potential of the first six multipole terms can be written as

A(r) =
µ0

4π

m× r̂

r2
+

3µ0Ia
3b2

32r5

(
1− sin 2φ

)
θ̂ − µ0

4π

3a2

2r4
(m× r̂)

+
µ0I

32r5

[
35
a5b4

16r4
(1− sin 2φ)2 3

4
− 30

a5b2

4r2
(1− sin 2φ)

]
θ̂ +

µ0

4π

15a4

8r6
m× r̂

=
µ0I

32r5

(
1− sin 2φ

)(
3a3b2 − 30

a5b2

r2
+ 35

3a5b4

64r4

(
1− sin 2φ

))
θ̂

+
µ0

4π

( 1

r2
− 3a2

2r4
+

15a4

8r6

)
m× r̂

(B.18)
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