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Summary

The usage of the vascular pattern of the finger is emerging as a new form of
biometrics. This new biometrics is already commercially exploited but the
scientific research done is still lacking behind. The goal of this research is to
bridge this gap between research and commerce. In order to do so this research
focuses on three main aspects. The first aspect is the design of a sensor capable
of capturing the vascular pattern of the finger. At present there are only a small
number of datasets publicly available. This is why the second focus point is the
collection of a dataset which will be publicly available for further research. The
last aspect focuses on the verification of five existing state of the art algorithms.

The dataset collected comprises 59 volunteers which had their ring, middle
and index fingers captured from both hands during two sessions. These sessions
were separated by two weeks and during each session each finger was captured
twice. The collected dataset is noteworthy as the collected images are of high
quality and meta-information about the volunteers has been recorded.

The verification experiments have been done using an existing dataset and
the collected dataset. For all cases the collected dataset performed better than
the existing dataset. Equal Error Rates(EER) down to 0.37% have been achieved
for the collected dataset.
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Chapter 1

Introduction

The vascular pattern of the finger is advertised as a promising new biometric,
characterized by very low error rates, good spoofing resistance and a user
convenience that is equivalent to that of fingerprint recognition. This new
form of biometrics has been gaining increasing attention since the year 2000.
At present Hitachi has a monopoly position on this new type of biometrics.
As a result there are only few and small publicly available datasets and only
little academic research has been done in order to verify published claims on
performance. Also the various aspects of designing a suitable sensor for capturing
vascular pattern images is never extensively elaborated on.

Despite the fact that little academic research has been done on this new
biometric, this new biometric is already in use for devices such as automatic teller
machines(ATM) and vending machines. These machines are mainly situated in
Japan. Also close to home this new form of biometrics has emerged, in 2010 the
first ATM with this new form of biometrics was taken into use by the Polish
BPS bank [29].

The goal of this research is to get a better understanding of this new form of
biometrics and bridge the gap between commerce and academic research. The
three major topics covered in this research are the design of the sensor which is
capable of capturing a vascular pattern image of the finger, collecting a dataset
and the performance verification of several existing algorithms. At the end of
this thesis the question whether vascular pattern biometrics has the potential to
become the biometric of the future can be answered.

This thesis is composed of six themed chapters. To get familiar with the
subject of vascular pattern biometrics a literature research is done first in
Chapter 2. Before a dataset can be collected a sensor has to be designed first.
The various aspects of designing such a sensor are given in Chapter 3. After the
sensor has been designed and constructed a dataset can be collected. Details
about the data collection is given in Chapter 4. With the collected dataset
various algorithms mentioned in the literature can be tested. The details about
these algorithms are given in Chapter 5 and the performance results of these
algorithms have been recorded in Chapter 6. At the end of this thesis several
conclusions and recommendations for future work will be given.

As a final note it should be mentioned that in this thesis the term vascular
pattern is used instead of the more popular vein. This done because the term
vein might induce that only the veins are captured by the sensor device, this is of
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Chapter 1. Introduction

coarse not true. Both veins and arteries are captured, hence the name vascular
pattern is preferred.
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Chapter 2

Literature study

This chapter will provide an overview of the available literature regarding the
design of an imaging device to capture the vascular pattern of the finger. Also the
literature regarding the feature extraction is investigated. This chapter is divided
into four main parts, the first part is about the finger itself and will discuss what
properties of the finger are relevant for capturing a good vascular image of the
finger. The second part is about the imaging device, especially the type of light
source is extensively treated, the type of camera and the available commercial
devices are discussed briefly. The third part deals with the algorithms which are
used for feature extraction and it will also provide a list of performance figures
of several different algorithms. At the end of this chapter a few remarks about
existing finger vascular pattern datasets are made.

2.1 The finger

The finger is of vital importance when designing a finger vascular pattern
imaging device. The first subsection will discuss the properties of the finger
which can influence the image quality. The second subsection will mention some
anthropometric measurements of the finger such as the average finger length
and average finger breadth. These anthropometric measurements are important
when designing an imaging device.

All the investigated literature capture the vascular pattern of the ventral side
of the finger. The ventral side of the finger is the side which has a fingerprint.
The thumb is never imaged in existing literature because it is probably to short
and too stubby. To get an impression of how the vascular pattern of the finger
will look like an angiogram of the hand is given in Figure 2.1. An angiogram is
obtained by injecting a contrast fluid into the blood vessel and capturing the
image using some kind of X-ray based technique. From this figure it can be
seen that the vascular pattern in the fingertip is very dense. This is probably
the reason that in the existing literature the vascular pattern of the fingertip is
never clearly visible.

In order to make clear statements about the finger position and rotations an
object coordinate system is defined. The definition in this research is equivalent to
the one used by the ISO/IEC 19794-9:2011 standard which is given in Figure 2.2.
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Chapter 2. Literature study

Figure 2.1: Angiogram of the hand [source unknown]

2.1.1 Finger properties

There are probably several properties of the finger which can influence the quality
of the captured vascular pattern image, a few of these properties are listed below.

� Creases

� Callous

� Wrinkles

� Wounds

� Blood flow

� Age

� Skin colour

� Fat

� Handedness

Despite the fact of virtually no literature about the effect of these factors on the
vascular image quality, a few remarks will be made about these factors. For a
full understanding of these factors on the vascular image quality more research
is needed.

People doing long-time physical labour will build up more callous on hands
and fingers. As a consequence of this blood vessels will lie deeper under the skin
surface, which will make imaging these vessels harder. Deep creases can also be
of influence, for example a ridge will probably light up more than an edge.

Fresh wounds and scar tissue can probably also have an influence on the
captured vascular image. During the healing process more blood is circulated
through the hurt area. The paper by Dai et al. mentions that the vessels in the
hurt part of the finger are hardly visible [3].

4



Chapter 2. Literature study
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Figure 2.2: Object coordinate system of finger vascular biometrics (modified
version [16])

The amount of blood flowing through the finger might also be of influence to
the captured image. The factors which have influence on the amount of blood
flowing through a vessel include temperature, physical effort, alcohol usage,
gender and age.

Elderly people tend to have more wrinkles on their fingers which might cause
unwanted shadows in the captured image. Handedness might also influence the
captured images, for example images captured of the right hand of a right-handed
person might be worse than images captured from his left hand.

For a useful biometric authentication method the biometrics should not
change significantly over time. It is still not certain if vascular patterns are time-
invariant. The uniqueness of the vascular pattern of the finger was studied by
Yanagawa et al. and they conclude that the uniqueness is similar to iris patterns
and that finger vascular patterns can be used for personal identification [30].

2.1.2 Anthropometry of the finger

For the design of the imaging device it is important that the majority of the
people can use it. Therefore a few anthropometric values have been collected
from various sources which can be seen in Table 2.1.

2.2 Imaging device

There is little literature available about the design of an imaging device for
capturing vascular pattern images of the finger as it is considered as a side issue
by most papers. This section will start by providing an overview of the possible
types of imaging devices. Furthermore the light source and camera are treated
later on in this section.
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Chapter 2. Literature study

set percentiles

source description of measurement 5% 50% 95%

AWE108 [10] length 64 73 80
breadth, proximal 16 20 24

FAA [1] length (male) 64 74 82
breadth (male) 19 21 23
length (female) 62 69 76
breadth (female) 16 18 21

DINED82 [23] length (male) 70 78 86
breadth (male) 17 19 21
length (female) 63 70 77
breadth (female) 13 15 17

Table 2.1: Anthropometric measurements of the index finger in millimetres

2.2.1 Types of imaging devices

The white paper by Hitachi [6] mentions three methods for capturing vascular
images of the finger. These three methods are presented in Figure 2.3.

Vein

Near-infrared
Light(LED)

ImageSensor
(CCDCamera)

(a) Light transmis-
sion

Vein

Near-infrared
Light(LED)

ImageSensor
(CCD Camera)

(b) Light reflection

Scatteringof LightNear-infrared
Light (LED)

ImageSensor
(CCDCamera

(c) Side lighting

Figure 2.3: Three methods for capturing vascular pattern images of the finger [6]

The light transmission method places the finger between the sensor and the
light source. This method will produce the best images as the light is shone
directly through the finger and background light does not have a big influence
on the result. The downside of this method is that the user has to stick its finger
into the unknown which can be a psychological barrier. The other two methods
are not affected by this psychological barrier as the user can see where his finger
is placed.

The light reflection method places the light source and the image sensor
on the same side of the finger. The image sensor captures the light reflected
by the finger. The strong reflection from the skin its surface and the shallow
penetration of light under the skin causes the images contrast to be weak [6].

To circumvent the problems of the light reflection method and to have an
open sensor the side lighting sensor was proposed. This sensor places the light
source on both sides and the sensor beneath the finger. This method will produce
better images than the light reflection method.

Most papers use the light transmission mode [3, 8, 13, 25]. There was one
paper by Yu et al. which used the side lighting method [33].
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Parameter L810-06AU SMT780

λpeak [nm] 810 780
half width [nm] 35 35
total radiated power [mW ] 22 20
radiant intensity [mW · sr−1] 170 6.5

Table 2.2: Parameters of LEDs, 50 mA forward current

Sony has recently put a finger vascular pattern device on the market which
uses a form of side lighting. Instead of illuminating both sides of the finger only
one side of the finger is illuminated. The advantage of this method is that the
finger can directly be placed on the light source. The downside of this method is
that the captured vascular pattern image is more subjective to roll around the
x-axis of the finger. The roll effect can possibly be compensated for by aligning
the vascular image.

Another method for capturing the vascular pattern of the finger is by using
some line scanning device. The advantage of this method is that imaging device
can be reduced in size. At the moment of writing no such devices exist, and is
not mentioned in any published papers.

2.2.2 Position of finger

For template matching it is important that the finger in both images have the
same orientation and location. Possible orientation differences are caused when
there is a slight roll around the x-axis of the finger or a rotation in the xy-plane.
This orientation can be extracted from the captured image or by the imaging
device during the capturing process. For determining the orientation and position
of the finger a touch sensor can be used on which the tip of the finger is placed.
This method is described by Hitachi in one of their patents [5].

In most sensors the tip is used to support the finger when using the imaging
device, having as a consequence that the tip is not captured in the image. This
does not matter as the vascular pattern in the tip is too dense to capture clearly.

2.2.3 Light source

The wavelength of the light source should be chosen such that the contrast
between tissue and blood vessels is the largest. The most common light source
for imaging devices are LEDs, though also laser light can be used [12]. The
absorption spectra of water, oxygenated- and deoxygenated haemoglobin can be
seen in Figure 2.4. Because both blood vessels carrying oxygenated blood and
deoxygenated blood must be visible in the captured image, the chosen wavelength
for illumination must not discriminate between the two. The figure shows that
the wavelength range suitable for capturing the vascular pattern of the finger
lies somewhere between 800 nm and 1000 nm. The wavelengths of the LEDs
used in existing literature vary from 780 nm to 890 nm [25, 33] but the most
common wavelength seems to be 850 nm. LED types such as the L810-06AU,
produced by Epitex and the SMT780 produced by Marubeni Corporation are
used [13, 25] as light source in current literature.

7



Chapter 2. Literature study

absorptive effects. Reflectance is a function of the angle of
the light beam and the regularity of the tissue surface. This
decreases with increasing wavelength, thus favouring trans-
mission of NIR vs visible light. Scattering is a function of
tissue composition and number of tissue interfaces while
absorption is determined by the molecular properties of sub-
stances within the light path. Above 1300 nm, water (H2O)
absorbs all photons over a pathlength of a few millimetres
with a secondary peak between 950 and 1050 nm, whereas
below 700 nm, increasing light scattering and more intense
absorption bands of haemoglobin prevent effective trans-
mission. In the 700–1300 nm range, NIR light penetrates
biological tissueseveral centimetres.48

Within the NIR range, the primary light-absorbing mol-
ecules in tissue are metal complex chromophores: haemo-
globin, bilirubin, and cytochrome. The absorption spectra
of deoxyhaemoglobin (Hb) ranges from 650 to 1000 nm,
oxyhaemoglobin (HbO2) shows a broad peak between 700
and 1150, and cytochrome oxidase aa3 (Caa3) has a broad
peak at 820–840 nm (Fig. 1).34 The wavelengths of NIR
light used in commercial devices are selected to be sensi-
tive to these biologically important chromophores and
generally utilize wavelengths between 700 and 850 nm
where the absorption spectra of Hb and HbO2 are maxi-
mally separated and there is minimal overlap with H2O.
The isobestic point (wavelength at which oxy- and deoxy-
haemoglobin species have the same molar absorptivity)
for Hb/HbO2 is 810 nm. As discussed below, the isobestic
absorption spectra can be utilized to measure total tissue
haemoglobin concentration.

As outlined previously, the absorption of NIR light in
tissue is determined by the Beer–Lambert law relating
pathlength of NIR light to the concentration and

absorption spectra of tissue chromophores and is conven-
tionally written as:

DA ¼ L Â m

where DA is the amount of light attenuation, L the differ-
ential photon pathlength through tissue, and m the absorp-
tion coefficient of chromophore X and can be expressed as
[X]Â1, where [X] is the tissue concentration of chromo-
phore X and 1 the extinction coefficient of chromophore
X, thus [X]¼DA/LÂ1, which, in theory, allows measure-
ment of tissue oxygen saturation (SO2).

Multiwavelength NIRSand absolute vs relative
oxygen saturation
SinceDA ismeasured directly and 1 hasbeen determined for
various tissue chromophores, absolute chromophore concen-
tration [X] is thus inversely proportional to the optical path-
length. However, photon pathlength cannot be measured
directly due to reflection and refraction in the various tissue
layers involved. Unless pathlength can be determined, only
relative change in chromophore concentration can be
assessed. Modelling and computer simulation can be used to
estimate photon tissue pathlength. By using successive
approximation, an analysis algorithm can be calibrated to
provide a measure of absolute change of chromophore con-
centration, asutilized by somecommercial devices.

In order to measure absolute tissue chromophore con-
centrations, a different approach is used based on radiative
transport theory and using multiple NIRS wavelengths and
frequency-domain NIRS (fdNIRS) or time-domain NIRS
(tdNIRS) analyses to determine tissue absorption coeffi-
cients (m). Theoretically, approaches such as fdNIRS or
tdNIRS avoid the need for actual photon pathlength deter-
mination.42 46 Fundamental to such techniques is that
tissue absorption coefficients can be measured directly
using multiwavelength NIRS. Since

m¼ ½X Â 1

tissue chromophore concentration can thus be measured
absolutely, there is no requirement for determination of
optical pathlength.40 This approach has been shown to
yield reasonable fidelity using an in vitro model of human
skull and brain, but haemoglobin concentration , 6 g dl2 1

yields errors of $ 15% and increasing skull thickness pro-
duces errors as high as 32%.40 Accordingly, some correc-
tion for extracerebral tissue must still be made even with
such ‘absolute’ measurements.

NIRS limitations and confounds

Extracerebral tissue
Transcutaneous NIRS is reflective of a heterogeneous tissue
field containing arteries, veins, and capillary networks and

0
700 800

3

H2O

H2O
Hb

HbHbO2

HbO2

900 1000 1100 1200 1300
Wavelength (nm)

Fig 1 Absorption spectra for oxygenated haemoglobin (HbO2),
deoxygenated haemoglobin (Hb), Caa3, melanin, and water (H2O) over
wavelengths in NIR range. Note the relatively low peak for Caa3.
Commercial cerebral NIRS devices currently utilize wavelengths in the
700–850 nm range to maximize separation between Hb and HbO2. The
presence of melanin as found in human hair can significantly attenuate
Hb, HbO2, and Caa3 signals.
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Figure 2.4: Absorption spectra for oxygenated haemoglobin (HbO2), deoxy-
genated haemoglobin (Hb) and water (H2O) (modified version [26]).

A problem which occurs when capturing images is that the brightness within
and across images may vary. The brightness within an image may vary because
the finger is not equally thick everywhere. The brightness may also vary across
images due to variations in finger size and background light. For experimental
purposes the current level of the LEDs can be adjusted manually [13]. For
practical purposes non-uniform lighting can be used [3]. This non-uniform lighting
is realised by analysing the captured image and sending feedback to the light
controller which will adjust the output power of the LEDs individually.

Safety

Working with high-power infrared LEDs might induce some safety regarded
issues. Their are many standards related to working with non-coherent optical
radiation. One of them is the European Union directive 2006/25/EC [4]. This
standard is based on the recommendations of the International Commission on
Illumination (CIE) and the European Committee for Standardisation (CEN).
The directive mentions two kinds of potential hazard, the first danger is thermal
damage of the skin and the second danger is thermal damage to the eye. The
damage to the eye can further be divided into damage to the cornea and lens
and retina. A study done by Mulvey et al. regarding safety issues in eye-tracking
did not find any risk of using infrared light [24]. The study does not address the
issue of long term exposure to infrared light.
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2.2.4 Camera

Each of the setups mentioned in the literature makes use of a near-infrared filter
to block out visible light reaching the camera. The size of the captured images
range between 320× 240 pixels to 640× 480 pixels [25, 13]. The resolution of
these images is not known. The most common image format for storing the
captured images is by using an 8-bit grey scale. Examples of cameras used to
acquire the images are the SV1310FM CCD camera produced by Daheng Image
and the NC300AIR produced by Takenaka Systems [3, 13].

The image quality is important for further processing. The requirements
for a good image depend on the algorithm used for feature extraction. Possible
requirements can be total vessel length, number of bifurcations and the standard
deviation of grey values [3].

2.2.5 Commercial products

At the moment of writing Hitachi is the leader in finger vascular pattern au-
thentication devices. Figure 2.5 shows some of the finger vascular pattern
authentication products produced by Hitachi and Sony. The two devices on the

(a) H1 Unit (b) TS-E3F1 (c) FVA-U2SX

Figure 2.5: Commercial finger vascular pattern products

left are both produced by Hitachi. The brochure of these products mention a
similar performance for both products, both claim a FRR of 0,01% and a FAR
of 0,0001%. The figure on the left shows a USB based logical access reader, the
Hitachi H1 unit. This device makes use of the light transmission method. The
device was tested according to the ISO/IEC 19795-1 standard.

The figure in the centre shows the TS-E3F1 finger vascular patten sensor
produced by the Hitachi-Omron Terminal Solution cooperation. This device
probably makes use of the side-lighting method. The performance of this device
has been evaluated by the International Biometric Group in 2006 [9]. For the
attempt-level performance using ‘both instances’ they reported an EER of 1.33%
for same-day performance and an EER of 2.29% for different day performance.

Sony has also started with finger vascular pattern authentication technology
which they have dubbed ‘mofiria’. In 2009 they released their first product, the
FVA-U1. A later device called the FVA-U2SX can be seen in Figure 2.5c. The

9
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lighting method is the single-sided lighting method. No performance figures of
this device are known.

A downside for some applications which want to use the finger vascular pattern
as biometric authentication method is the size of the imaging devices, these are
still quite large. For example mobile devices such as laptops or smartphones
cannot use this technology yet. Recently Hitachi has announced an imaging
device which is just 3 mm thick and has potential to be used in mobile devices [7].

2.3 Algorithms

This section will try to summarise the various methods of pre-processing, feature
extraction and matching. The last section assesses the performance of various
algorithms.

2.3.1 Contour extraction

For some algorithms it is important to extract the contour of the finger. The
shape of finger contour contains information about the finger geometry which
can also be used as an extra biometric feature to increase the performance.
A possible method to extract the finger contour is to use separate masks for
extracting the upper and lower contour [11, 16]. Another simple method would
be to take the directional derivative in the y-direction [13]. A more complex
method is to use active contours and curvature estimation [8].

2.3.2 Alignment

Another step which is done often is alignment of the image, this is often necessary
because the orientation of the finger can differ slightly between captured images.
Possible orientation differences are caused by movement in the xy-plane or by a
slight rotation of the finger around its x-axis. To compensate for these orientation
differences the extracted minutia points of the binarised and thinned vascular
pattern can be used to determine a suitable affine transformation [16] for aligning
the captured image with the template image. To determine the movement in
the horizontal plane a least square method can be used to estimate a straight
line through the centre of the finger contour [16]. The properties of this line can
be used to transform the image such that the centre line is in the centre of the
image. To compensate for the rotation of the finger the assumption can be made
that the cross-section of a finger resembles an ellipse. Using this assumption an
elliptic transformation can be determined to align the image [16]. To align the
finger position in the horizontal direction is difficult as in most cases the position
of the fingertip is not visible in the image. The tip is usually placed on some
supporting structure, this is probably the reason that Hitachi has placed some
kind of touch sensor in the supporting structure. Another possible solution for
normalizing the finger position in the horizontal direction is by using the distal
interphalangeal joint. The density of synovial fluid filling the clearance between
two cartilages is much lower than that of bones which means that the joint will
be visible as a brighter area in the image [31].
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2.3.3 Pre-processing

The pre-processing of the acquired image plays an important role in feature
extraction. A common step is the removal of noise from the image, this can be
done by using a low-pass filter [25, 13, 28]. A better approach would be to use
an edge-preserving filter for removing noise [27]. Another pre-processing step
which is done often is to downscale the captured image [25, 8]. This downscaling
will save computation time, but the downside is that information might be lost.
Another pre-processing step which is done often is histogram equalization [25,
27, 14]. This is done to compensate for varying light intensities in the captured
image. A common pre-processing step which is often done is image restoration,
the goal of this is to enhance the veins in the image. An interesting approach
for image restoration is by using an estimated point spread function [17].

2.3.4 Feature extraction & matching

Probably the most simple method of verification is to determine the similarity be-
tween a reference image and an input image using the correlation coefficient [13].

A pre-processing step which is often done is adaptive thresholding [11, 33,
25]. After this step a skeleton image can be produced using a thinning algorithm.
From this skeleton image line endings and bifurcations can be extracted as
unique features. As a similarity score between a reference and an input image
the modified Hausdorff distance can be used [11].

The adaptive thresholding step can also be followed by a simpler thinning
approach which makes use of a median filter for smoothing the image. After this
template matching can be used for identification [25].

Another method of feature extraction is by using line tracking algorithms [22,
8]. After this matching can be done by template matching or an extra step can
be performed which normalises the pattern. This pattern normalization model is
based on two assumptions: the finger its cross section has an elliptical shape and
the blood vessels being imaged are close to the surface [8]. This paper concluded
that the extra normalization step improves the performance.

A combination of adaptive thresholding and line tracking can be used to
achieve better results [33].

A relatively unique approach for extraction features is described by Wang et
al. [28] They suggest using a Radon transform and singular value decomposition
(SVD).

2.3.5 Performance overview

A summarising table with the performance mentioned in some of the papers
is given in Table 2.3. The most common performance figures mentioned are
the false acceptance rate (FAR) and the false rejection rate (FRR). The equal
error rate (EER) is the rate at which the FAR and the FRR are equal to each
other. The mentioned EER of the various algorithms range from 1,164% up to
0,0009%. The table also mentions the number of unique volunteers (u persons),
the number of fingers captured per volunteer (fingers/person), the number of
unique fingers captured per volunteer (u fingers), the number of images captured
per finger (images/finger) and the total number of captured images (total).
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A note of scepticism should be added to the mentioned performance figures.
In general the procedure of capturing is not clear, for example most papers do
not mention whether the images captured per unique finger are collected in
one session or are captured over time. All the papers mentioned in the table
lack uncertainty measures for their results, which is a pity. The total number
of vascular images in correspondence to the mentioned performance is by all
means questionable. For example, determining an EER of 0,0009% with high
certainty is not possible with the mentioned number of 1356 images. Huang et
al. [8] have tested the algorithms proposed by Miura et al. on their collected
data. With normalization they achieved an EER of 2,8% for the maximum
curvature method and an EER of 5% for the repeated line tracking method.
Choi et al. have also done a verification of the maximum curvature method and
they have achieved an EER of 3,58%. Kumar et al. [14] have also verified the
performance of Miura’s maximum curvature and repeated line tracking method.
They achieved an EER of 8.25% for the repeated line tracking method and an
EER of 2.65% for the maximum curvature method. The mentioned EER’s are
the average of the middle and index fingers.

Another example of a questionable performance figure is the one mentioned
by Wang et al. [28], capturing ten vascular images from ten volunteers is by no
means enough to determine this EER. Another questionable fact is the usage
of one image per finger which is done by Zhang et al. [34]. If only one image is
captured per finger it would not be possible to determine a false rejection rate.

The performance of finger vascular pattern biometrics can be further improved
by combining it with other biometric features. A feature which is already present
in the captured image is the geometry of the finger. For example the paper by
Kang et al. has an EER of 1,164% for finger vascular pattern recognition on itself
and by combining it with finger geometry the EER decreases to 0,075% [11].

2.4 Datasets

The number of finger vascular pattern datasets available to the research com-
munity is low, the properties of the available datasets have been summarised in
Table 2.4. The Peking University in China have collected a few of the available
datasets. They have three datasets available for research, of which two contain
hand-picked images using some unknown criteria.

Another finger vascular pattern dataset has been collected by the Shandong
University [32]. The images collected in this dataset look promising but two
remarks should be made. First it seems that the time difference between capturing
images of the same finger is very small. As if the finger has remained positioned
in the capturing device between capturing moments. As a consequence of this
no reliable False Rejection Rates can be determined. Another possible issue is
the visibility of adjacent fingers in the image. This might make the detection of
the finger region difficult or even erroneous.

The last finger vascular pattern dataset found has been collected by the Hong
Kong Polytechnic University [14]. The quality of these images is not very good,
this might be caused by the fact that a true touch less device has been used to
capture the images. One good point of this dataset is its extent and the fact
that also an image of the finger is captured in the visible spectrum. Because
two types of images are captured the performance of fusing the vascular patten
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and crease pattern can be examined. The numbers mentioned in the table are
for the vascular pattern dataset.

One thing which is missing from all these datasets is some basic meta-
information such as gender and age of the participants. Other information
missing is the resolution of the captured images. This makes it difficult to
compare various algorithms using different databases.

The last row in the table is the dataset which has been collected as part of
this research and contains meta-information about the participants.

The finger vascular patten images are generally collected from students at the
university. It is questionable how representative a university population is. The
population at a university will probably be within a certain age range, consists
of a higher number of males and will not perform a lot of physical labour. To
collect a truly good dataset the dataset should resemble a cross section of the
population.
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The International Organization for Standardization (ISO) specifies an image
format for exchanging vascular image data. The specifications have been recorded
in the ISO/IEC 19794-9:2011 standard. The main purpose of this standard is
to define a data record format for storing and transmitting vascular biometric
images and certain of their attributes for applications requiring the exchange of
raw or processed vascular biometric images [19].

2.4.1 Test size

This section is based on the report Biometric Testing Best Practices, Version 2.01
written by Mansfield, A.J. and Wayman, J.L. [20]. Lower bounds to the number
of attempts needed for a given level accuracy can be determined by rules such
as the “Rule of 3” and the “Rule of 30”. An example for both rules will be
provided, assuming that an EER of 1% can be reached. As the information
provided in this section is very concise the reader is urged to read the mentioned
document.

Rule of 3

The “Rule of 3” for a 90% confidence level is as follows:

p ≈ 2/N (2.1)

In this equation p is the error rate for which the probability of zero errors in N
trials purely by chance is 10%. With the made assumption of an EER equal to
1% this will lead to 200 trials. If there are zero errors in these 200 trials it can
be said with 90% confidence that the error rate is 1% or less.

Rule of 30

The “Rule of 30” states that to be 90% confident that the true error rate is
within the ± 30% of the observed error rate, there must be at least 30 errors. So,
for example, if we have 30 false non-match errors in 3,000 independent genuine
trials, we can say with 90% confidence that the true error rate is between 0.7%
and 1.3%.
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Chapter 3

Sensor design

This chapter will focus on the design of a sensor capable of capturing vascular
pattern images of the finger. The objective is to design an imaging device which
is capable of capturing vascular pattern images of the ring, middle and index
finger of both hands. The thumb and pink will not be included as they differ
to much in shape compared to the other three fingers. Another reason for not
including the thumb and pink is that they are not interchangeable with the other
three fingers when determining the performance.

The first section will focus on the results of a few preliminary experiments
which are performed prior to designing a sensor. These preliminary experiments
are done to get an affinity with the various technological aspects involved when
designing a sensor. The next section provides detailed information about the
hardware of the sensor. The most important part of the sensor, the transillu-
mination procedure is covered next. The section concludes with some remarks
about the realised sensor.

3.1 Prototyping

Before the actual sensor is designed some preliminary experiments are done to
get an affinity with the various technological aspects involved. The first aspect
investigated is the light source. This is followed by a mock-up of the sensor and
a small experiment to try the side lighting method. The last section describes
the results obtained from the pilot data collection.

3.1.1 Light source

To determine which wavelength can be used best to capture the vascular pattern
of the finger various wavelengths have been tested. From the literature study
it is already known that the optimal wavelength should lie somewhere between
800 nm and 900 nm. Several wavelengths have been tested by placing an infrared
LED behind the finger and capturing the vascular pattern image with a camera.
The results can be seen in Figure 3.1. The index finger of the left hand has been
used and the light source has been placed on the distal joint. As it can be seen
the difference between the images is not very big. The following LEDs have
been used to illuminate the finger: the JET-800-10, the FL850-03-80 and the
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Chapter 3. Sensor design

(a) 800 nm (b) 850 nm (c) 870 nm

Figure 3.1: Vascular pattern images captured using various wavelengths

JET-870-05. The wavelengths of these LEDs were 800 nm, 850 nm and 870 nm
respectively.

It is difficult to compare the images made using these three different light
sources because they do not only differ in wavelength but also in other aspects
such as half angle.

The camera used to capture the images of the vascular pattern is the ARTIST
camera produced by art innovation. The camera is capable of capturing images
within several different spectral bands. In this case the infrared-1 band was used
which ranges from 700 nm to 1000 nm.

3.1.2 Mock-up

Before the final imaging device is designed a mock-up has been made. The
setup of the mock-up can be seen in Figure 3.2. The camera used is the
BCi5 monochrome CMOS camera with a firewire interface produced by C-Cam
technologies. The camera has been fitted with a Pentax H1214-M machine vision
lens with a focal length of 12 mm. On top of the lens a B+W 093 infrared filter
is screwed on.

Eight LEDs have been fitted in a wooden u-shaped frame, which had been
painted black on the inside to avoid reflections. The width and the height of the
inside of the u-shape was approximately 27 mm and the length of the u-shape
was 80 mm. The LEDs are of type TSFF5210 and are produced by Vishay. The
LEDs have a peak wavelength of 870 nm and have a typical radiant intensity
of 180 mW · sr−1. This u-shaped frame is taped on a sheet of 3 mm thick
plexiglass. The finger being imaged is placed inside this u-shape. The LEDs are
controlled using a custom made light controller which can be controlled using
Matlab. During preliminary experiments if was evident that using a flat surface
for resting the finger was not desirable. If the finger was pressed against the flat
surface the location of the vessels change within the finger and light is guided via
the finger to the imaging surface. The effect of pressure can be seen in Figure 3.3.
The figure on the left shows a finger with no pressure applied and the figure
on the right shows an image in which the finger has been pressed hard on the
imaging surface. It can be seen that places with more pressure applied have a
higher intensity. Several people were asked to place there finger in the u-shape
and soon it became evident that the chosen dimensions were too small.
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Figure 3.2: Mock-up of the finger vein sensor

3.1.3 Side lighting method

Also a mock-up has been made to test the side lightning method as this is more
user friendly. It is more user friendly because the user can see where he places
his finger. The mock-up can be seen in Figure 3.4a and a sample vein image
produced with this mock-up can be seen in Figure 3.4b. The camera can not be
seen in the figure, but it is the same one as in the previous mock-up. As it can be
seen from the image the sides of the finger are over exposed. A possible solution
to this problem of over exposure is by illuminating the finger sides separately,
and combining both images later to form an image without over exposure.

3.1.4 Pilot

Taking the points noted in the preliminary work into account a sensor was
designed and tested during a pilot. Details about the pilot can be found in
Section 4.1. During the pilot it became clear that the capturing device should
accommodate for shorter fingers. Also the top plate was not large enough, part
of the ceiling was still visible in the captured images. Another finding was that
the finger being captured was not in the centre of the camera view point. One
of the problems occurring with the sensor was that if the fingers were placed
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(a) No pressure

(b) Applied pressure

Figure 3.3: With and without pressure on the imaging surface

Parameter TSFF5210 SFH4550

λpeak [nm] 870 850
half width [nm] 40 42
total radiant flux [mW ] 50 50
half angle [deg] ±10 ±3
radiant intensity [mW · sr−1] 180 700

Table 3.1: Parameters of LEDs, 100 mA forward current

on the sensor the adjacent finger could be visible in the image 3.5b. This can
lead to two kinds of problems, the first is the fact that extracting the finger
contour is more difficult and the second is that the light which is reflected from
the adjacent fingers can disturb the finger being imaged.

The light source used in the sensor are near-infrared LEDs. Two different
types of LEDs have been tested, one with a wavelength of 870 nm and the
other with an wavelength of 850 nm. The parameters of these LEDs have been
summarised in Table 3.1. The difference between the captured images when
using one of the two different wavelengths is minimal. Figure 3.6 shows the
difference between the two LEDs. For this image the output power per led has
remained the same. The only difference is the brightness of the image, this
caused by the difference in half-angle between the LEDs. The 850 nm LED has a
smaller half-angle and hence less power is needed to transilluminate the finger.

3.2 Final sensor design

After the pilot a few minor adjustments are made to the sensor. The sensor now
supports smaller fingers and has a new top plate fitted which covers the hole
completely. Also the camera has been adjusted such that the area of interest is in
the centre of the captured image. The motivation for choosing the transmission
type of sensor is its simplicity and robustness. Another advantage of this type
of sensor is that external light conditions have little influence on the captured
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(a) Mock-up

(b) Result

Figure 3.4: Mock-up and result for side lighting

images. The sensor has been build half-open such that the user can see where
his finger is placed. To minimise the height of the imaging device a mirror will
be used to place the camera in the horizontal plane. The inside of the sensor
is made dull by roughening the surfaces to avoid unwanted light reflections.
The light control unit has been designed by the technical staff at the research
group and can be controlled easily from within Matlab. The camera used in the
sensor is the BCi5 monochrome CMOS camera with firewire interface produced
by C-Cam technologies. The camera has been fitted with a Pentax H1214-M
machine vision lens with a focal length of 12 mm. The lens is fitted with a
B+W 093 infrared filter which has a cut off wavelength of 930 nm. The camera
is used in 8 bit mode with a resolution of 1280× 1024 pixels. The brightness of
the camera is set to 75 and the shutter is set to 40. The LEDs have been placed
on an interchangeable module, now it is easy to switch between various light
sources. The sensor can be seen in Figure 3.7 and details about the dimensions
of the sensor can be found in Appendix B.1.

The mirror which is used to bend the path of light by 90◦ is the NT41-405
mirror from Edmund Optics. This is a first surface mirror, which means the
reflective layer is deposited directly on one surface of the glass substrate. The
advantage of this is that the path of light does not need to pass through glass
before reaching the reflective surface. A downside of this type of mirror is that
the surface is prone to oxidation and scratches. The reflective coating on this
mirror is enhanced aluminium which has a good reflectance in the visible range
but in the near-infrared part of the spectrum it has a reflectance of roughly 85%.
The images captured by the sensor are 672× 380 pixels and have a resolution of
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(a) Normal image (b) Image with adjacent fingers

Figure 3.5: Problem occurring with extra fingers

(a) TSFF5210 - 870 nm (b) SFH4550 - 850 nm

Figure 3.6: Difference between the two LED types

126 pixels per centimetre (ppcm). In non-metric units this would be 320 pixels
per inch (ppi). The format which is used to store the images is 8-bit grey scale
PNG, which is a lossless format.

3.3 Transillumination procedure

Each of the intensities of the eight individual LEDs can be controlled separately.
This is useful as the thickness of the finger differs between persons and across
a single finger. In general the tip of the finger is smaller then the base of the
finger. In order to make the feature extraction easier it is beneficial to have a
uniform intensity across the whole finger. This uniform intensity can be realised
by adaptively controlling the intensity of the LEDs using some kind of control
loop.

In order to design such an algorithm first the relation between LED intensity
and grey levels in the image must be investigated. This investigation is done
by increasing the intensity of each LED and measuring the average grey level
directly underneath the corresponding LED. An area of ten by ten pixels was
used to determine the averages. Figure 3.8 shows these relations. The eight
measurement positions are directly under the LEDs. The first measuring position
is at the finger tip and the last measurement position is at the base of the finger.
It can be seen that the relation between the LED intensity and the mean grey
level is approximately linear. The curves corresponding to measurement position
one and two, which are at the tip of the finger, shows the largest gradient.
The gradient at measurement position seven is surprisingly high as well, this is
because the LED is situated directly above the distal interphalangeal joint.

A very simple method to determine the intensities of the individual LEDs
would be to switch them on one by one and increase the intensity until the mean
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Figure 3.7: Final sensor
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Figure 3.8: Mean grey levels versus LED intensities

grey level under the LED falls within a specified range. A flowchart of this
simple control loop is given in Appendix B.2 together with the parameters used.

A downside of this method is that at the end the image intensity decreases.
This can be seen in Figure 3.9. For example when adjusting the LEDs from left
to right, the image intensity at the right of the image will be lower as it has no
neighbours which contribute to the mean grey intensity value at the specified
measurement point. To compensate for this effect the LEDs can be adjusted
from the edges to the centre which leads to an image with a more uniform
intensity. This method is used during the collection of the real database.

Two other methods for controlling the intensity per LED have also been
investigated. The first method was based on determining the width of the finger
which is assumed to be proportional with the thickness of the finger. The second
method was based on the linear relation between the intensity and grey level
value. By increasing the intensity of the LEDs one by one it was possible to
determine a transfer matrix which relates the LED intensity to the mean grey
level values. In theory it would be possible to determine the LED intensities

23



Chapter 3. Sensor design

(a) Left to right (b) Right to left (c) Outward to centre

Figure 3.9: Adjustment directions

by taking the inverse of this matrix and multiplying it with the desired mean
grey level value. A downside of this method was its speed, determining this
transfer matrix took a long time. The parameters of this linear relation can be
estimated by extrapolating the values obtained from a small number of sample
points. This might increase the adjustment speed of the algorithm.

3.4 Final remarks

Instead of using a mirror with an enhanced aluminium coating it might have
been better to use a mirror with a protected gold or a protected silver coating.
These types of coatings have a better reflectance in the near-infrared part of
the spectrum. It might also be better to use a filter which has a lower cut-off
frequency. In this case the cut-off frequency is 930 nm which means that some
of the light is still absorbed by the filter.
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Data collection

This chapter will be provide an overview of the two data sets collected. The first
data set collected was part of a pilot study and comprises a small number of
volunteers. During the pilot the effect of external conditions which might effect
the visibility of the vascular pattern in the captured images is investigated. The
second data set collected is for publication and a consists of a large number of
volunteers. The fingers in both datasets are numbered according to Figure 4.1.

L

1 2

3

R

4

5 6

Figure 4.1: Numbers associated with the fingers

4.1 Pilot

Before a large dataset is collected a pilot is done consisting of a small number of
volunteers. The objective of this pilot is to detect any teething problems and to
investigate the effects of temperature and stress on the captured vascular pattern.
The goal is to collect data from at least ten volunteers. For each volunteer the
vascular pattern of the index, ring and middle finger from both hands will be
collected. The meta-information recorded will be the gender, age and handedness
of the volunteers. The pilot will consist of two identical sessions separated at
least by two weeks.

During each session four measurements will be made. Each measurement
will consist of all six fingers being captured, starting with the index finger of the
left hand. The total number of images captured per volunteer during these two
sessions will be 48. The first two measurements done within a session will be a
normal one, no external conditions will be applied. For the third measurement
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the volunteer will be asked to operate a finger muscle training device, which can
be seen in Figure 4.2, for thirty seconds. To operate this device a firm grip is
needed to squeeze the handles towards each other. The training with this device
will be done for each hand separately. After operating the training device the

Figure 4.2: Finger training device

vascular pattern images will be captured from the corresponding hand. This
procedure is also repeated for the other hand. For the last measurement the
volunteer will be asked to submerge his hand in a large container filled with
ice-cold water for thirty seconds. The step-wise measurement procedure has
been summarized below.

1. Capture all six fingers of both hands

2. Capture all six fingers of both hands again

3. Train left hand for 30 seconds using apparatus

4. Capture all three fingers of the left hand

5. Train right hand for 30 seconds using apparatus

6. Capture all three fingers of the right hand

7. Submerge left hand in ice-cold water for 30 seconds

8. Capture all three fingers of the left hand

9. Submerge right hand in ice-cold water for 30 seconds

10. Capture all three fingers of the right hand

For each volunteer a separate directory with a unique id will be created
containing all captured images from both sessions. The following filename format
will be used for storing the captured images:

{measurement_id}_{finger_id}_{date}-{time}{.png}

For example the file 2 4 120130-104657.png belongs to the right hand index
finger and has been captured during the second measurement on 30th of January
2012 at 10:46:75. The data collected during the pilot is not available for the
public as the participating volunteers did not sign any consent form.
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Age Frequency

24 2
25 1
26 1
27 2
29 1
30 1
48 1
55 1
56 1

Table 4.1: Frequency table of participants age in the pilot

4.1.1 Realisation

A total number of eleven volunteers participated in this pilot of which eight were
male and three were female. All of the volunteers were right handed and the
age of the volunteers varied between 24 and 56, details about age are given in
Table 4.1. The number of days between the two measurements sessions ranged
from fourteen to fifteen days.

To test the effects of temperature on the vascular pattern of the finger a
container with ice-cold water was used. The ice-cold water had a temperature
which varied between 5 to 8 ◦C. Submerging the hand into this ice-cold water
during thirty second was experienced as rather unpleasant for most volunteers.
The size of the captured images was 751× 381 pixels. The captured images are
stored as 8 bit grey level Portable Network Graphics (PNG) files. Visible blood
vessels in these images are approximately 5 to 20 pixels wide.

The graphical user interface (GUI) used for capturing the images can be seen
in Figure 4.3. The GUI shows a graphical representation of the current finger
being captured in the upper left corner. The current finger being captured is
clearly indicated by the green colour. The top right pane shows a live preview of
the camera. When a snapshot is made the image is shown in the bottom right
pane. The operator can judge the captured image before saving the image to
disk.

4.2 Dataset collection

This section will describe the process of collecting a large set of vascular pattern
images for publication to the research community. Prior to contributing to the
dataset volunteers first had to read a general information letter and sign a consent
form. The information letter and consent form are included in Appendix A as
a reference. The data is collected during two sessions which are separated by
approximately two weeks. This time interval will provide more realistic results
as in practice there is also a time interval between enrolment and authentication.
In each session all six fingers of the volunteers are captured twice.

The data collected from the volunteers will be processed anonymously by
giving each volunteer a unique id. The meta-data collected from the volunteers
will be their age, gender and handedness. It was chosen not to record the
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Figure 4.3: Graphical user interface for capturing the vascular pattern images.

ethnicity of the volunteers as this is a delicate subject and it is rather difficult
to make clear categories for different ethnicities. Any oddities occurring during
the data collection will also be recorded.

The same graphical user interface as in the pilot is used to capture the
images. The captured images will be stored using the lossless PNG format. The
ISO/IEC 19794-9:2011 standard will not be used as there are no tools available
yet to support this format. The filename format for storing the images will be
as follows:

{person_id}_{finger_id}_{measurement_id}_{date}-{time}{.png}

The reason for including the person id in the filename is that it can directly
be seen from the filename to which directory this particular image belongs.
The reason for mentioning the finger id before the measurement id is that if
the filenames are sorted all images from the same finger will be grouped. For
example the file 0028 3 4 120523-112948.png corresponds to the index finger
of the left hand of volunteer number 28. The image was captured during the
second measurement round of the second session on the 23rd of May 2012 at
11:29:48.

The following acquisition protocol was followed during the acquisition:

1. Provide introduction

2. Let volunteer read & sign consent form

3. Fill in meta-data if there is no objection

4. Capture all six fingers, starting with finger 1

5. Capture all six fingers again

During the second measurement session steps 1–3 could be omitted of coarse.
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absolute %

Gender
Male 44 75
Female 15 25

Handedness
Left 7 12
Right 51 86
Undefined 1 2

Publishable
Yes 54 92
No 5 8

Table 4.2: Statistics about the collected dataset.

4.2.1 Realisation

Volunteers were chosen such that the chance of finding them back after two
weeks was high. The data collection took place in May 2012. Capturing all
six finger twice took about five minutes per volunteer. If adjacent fingers were
visible in the live preview, the user was asked to re-position its finger such that
the adjacent fingers were not visible in the image any more. In general this
repositioning of the fingers was not necessary. A few volunteers still had a little
trouble positioning their finger in the sensor due to the limited length of their
fingers. Volunteers which wore a ring were asked to remove it if it was visible in
the live preview.

During the first session a total number of 60 volunteers participated, after
two weeks 59 volunteers participated again. Hence the dataset consists of 59
volunteers which had 4 images captured per finger which leads to a total of
59× 6× 4 = 1416 images. Some statistics about gender, age and whether images
may be published is summarized in Table 4.2. The table show the absolute
number of volunteers as well as the percentage.

The average number of days between the two measurements sessions was
14 days. More details about the number of days between the measurements is
given by the histogram in Figure 4.4b. The age of the volunteers ranged from 19
up to 57, with the majority in their twenties and thirties. Details about the age
of the volunteers is given by the histogram in Figure 4.4a. The first bin of the
histogram corresponds to the ages 16–20, the second bin corresponds to ages
21–25 etc.

Some sample images from the collected dataset can be seen in Figure 4.5.
The quality of the collected images vary from person to person, but the variance
in quality of the images from the same person does not vary that much. The
width of the visible blood vessels range from 4–20 pixels which corresponds to
widths of 0.3–1.6 mm.
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Figure 4.4: Histograms of the age of volunteers and the time interval between
measurement sessions

(a) Female, age 24 (b) Male, age 32

(c) Male, age 20 (d) Female, age 31

Figure 4.5: Sample images of the left hand ring finger from the collected dataset.
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Algorithms

In order to verify some of the algorithms mentioned in existing literature the
proposed algorithms must be implemented as none of the algorithms were
available to the public. Another goal of this testing is to characterise the dataset.
This chapter will give an overview of the implemented algorithms and some of
the necessary pre-processing steps. In the first section two methods of extracting
the region of interest are investigated. After this the next step is normalisation
as the finger can be placed in the sensor at different orientations. The third
section focuses on one of the common pre-processing steps which is histogram
equalisation. The last section treats the various feature extraction methods. All
algorithms are implemented using MathWorks Matlab version R2011b.

5.1 Region of interest

One of the key actions during testing is the detection of the finger region. In the
work of Kumar et al. [14] it has been proven that using masks the performance
increases significantly. Detecting the finger region is not that difficult as the
transition from background to finger is abrupt. The finger region detection
method used in this research is described by Lee et al. [16]. This method filters
the image using a simple mask, at the transition from background to finger this
mask will give a large response. The filtered image can be seen in Figure 5.1b.
The mask used for filtering this image had a width of 40 pixels and a height
of 4 pixels. The white and dark lines correspond to the upper and lower finger
edge respectively. For determining the edges the filtered image is divided into

(a) Original image (b) Filtered image (c) Binary finger mask

Figure 5.1: Finger region detection method

two parts, an upper and a lower part. For detecting the upper finger edge the
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coordinates of the maximum values are used and for detecting the lower edge of
the finger the minimum values are used. The area between the detected finger
edges is filled to create the binary finger mask. The final detected region can
be seen in Figure 5.1c. A downside of this region detection method is that the
assumption is made that the upper finger edge is present in the upper part of
the image and that the lower finger edge is present in the lower part of the
image. This finger region mask is later used to mask the results of various feature
extraction methods. The described finger region method is provided by the
custom lee region() function.

Also the finger region detection method described by Kono at. al [13] has been
implemented. The method is provided by the custom kono region() function.
This method is very similar to the one described above. The only difference
is that in this case no masks are used but a filter kernel which is sensitive to
changes in the y-direction of the image. An advantage of this method is that
the detected finger edges are smoother compared to Lee’s method.

5.2 Normalisation

Normalisation is important as the orientation of the finger can change between
capturing moments. This normalisation ensures that the finger will be aligned to
the centre of the image. The normalisation uses the coordinates of the upper and
lower detected edges which are returned by the finger region detection method.
The normalisation method used in this research is described by Huang et al. [8].
This method attempts to fit a straight line between the detected finger edges.
The parameters of this estimated line, a rotation and a translation, are used to
create an affine image transformation. The line fitting method used is Matlab
its robustfit() function, which is part of the Statistics Toolbox. Figure 5.2a
shows the detected finger edges in red and the estimated line through the centre
of the finger edges in green. The estimated parameters of this specific line
are a translation of 27 pixels and a rotation of 8.4 degrees. The normalised
image can be seen in Figure 5.2b. The normalisation implementation made for

(a) Rotated finger image with edges(red) and
fit line(green) indicated

(b) Image after affine transformation

Figure 5.2: Finger normalisation

this research only compensates for rotations in the xy-plane. The mentioned
paper also suggests a method for compensating rotations around the x-axis,
this method is not implemented though. The normalisation is provided by the
custom Matlab function huang normalise().

The normalisation procedure as described by Lee et al. [16] has also been
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inspected. This method tries to normalise the finger based on the minutia of the
skeletonised vascular pattern. The method tries to find an affine transform such
that groups of three minutia are matched between two images. The parameters
of the affine transform must fall within certain predetermined ranges. Of all
these groups of three minutia points the set of points which results in the smallest
average minimum distance is used. During testing it was noticed that it takes
a long time to calculate the parameters of all possible combination of three
minutia. For example if an image has 17 minutia points and the reference has
15 minutia points the total number of parameter estimates becomes:(

17

3

)
×
(

15

3

)
= 309400 (5.1)

An advantage of this method is the possible compensation for the rotation around
all three axis and the compensation of translation in the x- and y-direction.

5.3 Pre-processing

A pre-processing step which is done often in existing literature is histogram
equalisation. Histogram equalisation changes the original intensity values such
that a specified histogram shape is approximated. This step can be used to
compensate for non-uniform lighting conditions in the captured vascular pattern
images. The result of an adaptive histogram equalisation algorithm applied to
a vascular pattern image can be seen in Figure 5.3. The adaptive histogram

(a) Original image (b) Adaptive histogram equalisation

Figure 5.3: Adaptive histogram equalisation applied

equalisation algorithm is provided by the Matlab its adapthisteq() which is
part of the Image Processing Toolbox. This function makes use of the contrast
limiting adaptive histogram equalisation (CLAHE). The default parameters of
this function were used to create the image above. As it can be seen the contrast
is enhanced significantly and even some of the creases of the finger become visible.
A downside of histogram equalisation is that noise might be enhanced.

5.4 Feature extraction

This section will summarise some of the popular feature extraction methods
from literature. The first subsection will treat the normalised cross-correlation,
this method is used as a reference performance. The consecutive subsections will
look at the other feature extraction methods.
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5.4.1 Normalised cross-correlation

In order to get some kind of reference for performance comparison the most
basic type of matching method is used, which is a normalised cross-correlation
between the reference and the input image. This method has also been used
by Kono et al. [13]. The normalised cross-correlation used is provided by the
Matlab function normxcorr2() which is part of the Image Processing Toolbox.
The maximum value of this correlation is used as matching score. In order to
calculate a cross-correlation the reference image must be equal or smaller than
the input image.

5.4.2 Miura’s maximum curvature method

The maximum curvature method for extracting vascular features by Miura et
al. [21] is one of the most popular methods of vascular pattern extraction at the
moment and was proposed in 2005. This method looks at the local maximum
curvature in four directions, the horizontal and vertical directions and the two
oblique directions. The derivation of the maximum curvatures is based on the
first and second derivatives in one of the four directions of the image. The
implementation used in this research calculates the derivatives based on the
scale space model. The derivatives are derived by convolving the image with
the derivatives of a Gaussian function. An example image with its extracted

(a) Original image (b) Binarised vessels overlaid

Figure 5.4: Miura’s maximum curvature method using sigma=5

features can be seen in Figure 5.4. The image on the left is the original image
and the image of the right show the original image with the extracted vascular
features imposed in green. The functionality of this method is provided by a
custom Matlab function called miura max curvature(). The paper describing
this method is not very clear about the method used for binarisation. It only
states that the dispersion between the two groups in the locus space should be
maximized. In this research the median of the locus space is used as a threshold.
This binarisation method is also used in Miura’s repeated line tracking method.

5.4.3 Miura’s repeated line tracking method

This is another popular method for feature extraction and was proposed in 2004.
This method [22] starts several times at random positions in the image and
attempts to track a line. If pixels are tracked multiple times as being a line,
these pixels have a high likelihood of being part of a blood vessel. The binarised
result of the repeated line tracking method can be seen in Figure 5.5. For this
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(a) Original image (b) Binarised vessels overlaid

Figure 5.5: Miura’s repeated line tracking method using 1000 iterations, r = 1
and W = 33

image a thousand starting positions were used within the detected finger region.
The functionality of this method is provided by a custom Matlab function called
miura repeated line tracking(). A downside of this Matlab implementation
is that it is very slow because of the large number of iterations done. Because of
this slow performance a crude C++ implementation has been made using the
OpenCV libraries which is significantly faster.

5.4.4 Miura’s matching method

This method for matching two sets of binarised feature images is described in
the repeated line tracking paper by Miura et al. The method is also used in
the maximum curvature method and by some others [8, 2]. This method is in
fact just a correlation, the reference data is trimmed by a certain amount and is
correlated with the input matching data. The maximum value of the correlation
is normalized and used as matching score. The correlation is calculated as
follows:

Nm(s, t) =

h−2ch−1∑
y=0

w−2cw−1∑
x=0

I(s+ x, t+ y)R(cw + x, ch + y) (5.2)

In this relation Nm(s, t) is the correlation value between the trimmed reference
image R(x, y) and the input image I(x, y). The width and height of both
reference and input image is w by h pixels. The reference image is trimmed by
ch pixels at the top and bottom and by cw pixels at the left and right of the
image. The size of the correlation matrix is thus 2ch by 2cw. The maximum
value of this correlation, Nmmax

matrix is normalised and used as matching score.
The normalisation is done as follows:

score =
Nmmax

t0+h−2ch−1∑
y=t0

s0+w−2cw−1∑
x=s0

I(x, y) +
h−2ch−1∑

y=ch

w−2cw−1∑
x=cw

R(x, y)

(5.3)

In this equation the indices s0 and t0 are the indices of the maximum value in
the correlation matrix Nm(s, t). Note that the score value will lie in the range
0 ≤ score ≤ 0.5. This is a bit strange as the histogram in the original paper
shows an x-axis which ranges from 0 to 0.7. Also note that in the original paper
a so called mismatch ration is calculated, this is just one minus the score.
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5.4.5 Choi’s principal curvature method

The method described by Choi et al. [2] is based on the eigenvalues of the
Hessian matrix. The blood vessels in the captured images can be regarded as line
structures. Line structures show themselves in the image as local neighbourhoods
in which the second derivative across the line is large, and the second derivative
along the line is small. These second derivatives follow from the Hessian matrix.
The second derivatives along and across the line are found as the eigenvalues of
the Hessian matrix. The Hessian matrix has two eigenvalues, but only the first
eigenvalue is used. The result before binarisation can be seen in Figure 5.6. The

(a) Result before binarisation (b) Binarised vessels overlaid

Figure 5.6: Choi’s principal curvature method using sigma=5 and a threshold of
1.6%

binarisation is done using Otsu’s method which is the same as k-means with
two clusters. The matching mentioned in the paper is done by translating and
rotating the input image and determining the correlation. The translation is
limited to ±64 and ±32 pixels for the horizontal and vertical directions. The
rotation is limited to ±10 degrees. The resolution for translation and rotation is
1 pixel and 1 degree respectively. This would mean that per correlation value
128 × 64 × 20 = 163840 correlation coefficients need to be calculated. The
computation time would be too large, therefore the matching method of Miura
et al. was used in the verification of this algorithm. The rotation in the xy-plane
has already been compensated for by the normalisation step.

5.4.6 Huang’s wide line detector

The method described by Huang et al. [8] is similar to adaptive thresholding.
Each pixel (x0, y0) in the image has a circular neighbourhood with radius r. For
each of the pixels in this neighbourhood the difference with the central pixel
(x0, y0) is determined. The number of pixels in this neighbourhood which have
a difference smaller than a certain threshold are determined. This number is
thresholded again to get a binary vascular image.
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(a) Result before binarisation (b) Binarised vessels overlaid

Figure 5.7: Hunag’s wide line method using r = 5,t = 1 and g = 41
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Results

This chapter will focus on the results obtained from the data collected during
the pilot and the results from the verification experiments. The first section
will elaborate on the method used to calculate the performance figures of an
algorithm. The section after this will look at whether the vascular pattern is
influenced by stressing or cooling the finger. This is done using the data collected
during the pilot. At the end of this chapter the verification of several algorithms
is performed using the dataset from the Peking university and the collected
dataset.

6.1 Performance reporting

Before reporting any performance figures a consensus about how these figures are
determined has to be made first. The experiments in this research are verification
experiments, which are one-to-one comparisons. The goal of verification is to
verify a claimed identity. There are two possible outcomes in a verification
experiment, either the claimed identity is valid or not valid. The validation
decision is governed by the system threshold t. There are two important rates
in verification, the False Match Rate (FMR(t)) and the False Non-Match Rate
(FNMR(t)), both these rates are a function of the system threshold t. The false
match rate is the expected probability that an imposter is wrongly accepted
and the false-non match rate is the expected probability that a true identity is
wrongly rejected.

In this research two different methods for determining the FMR(t) and
FNMR(t) curves are used. The first method divides the possible range of
thresholds into uniform intervals called bins. For each bin the number of scores
falling into it are determined. Both the performance results and the shape of
the histogram depend on the number of bins used, hence when showing the
histogram the number of bins used is mentioned. The other method uses the
existing score levels as threshold. An advantage of this method is that no binning
is necessary but a downside is the slow computation of this method as each score
level is used as a threshold. For a quick evaluation the binning method is used,
but when determining the actual performance the later method will be used.
When the number of matches done is large and when the right number of bins is
chosen both methods will approximate each other.
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An important measure describing the performance of a biometric systems
is the Equal Error Rate(EER). At this rate the number of false rejections and
false acceptances are equal, i.e., the intersection point of the FMR(t) and the
FNMR(t) curves. A simple but naive approach for determining this point is
by determining the threshold topt which corresponds to the minimum value
of |FMR(t) − FNMR(t)|. At this point the average between the two can be
calculated and this can be used as the EER.

EERnaive =
FMR(topt) + FNMR(topt)

2
(6.1)

Due to the fact that the FMR(t) and FNRM(t) are not continuous curves
the intersection cannot be directly determined with high precision, the ‘real’
intersection point is either right or left of the determined point. Figure 6.1 shows
both possibilities, the first graph shows the situation where the determined
EER point is right of the intersection and the second graph shows the reverse
situation.

A better approach would be to fit a straight line through the surrounding
points and determine the intersection of these two lines. The slope and offset
of both fitted straight lines can be calculated. Using these parameters an
intersection point can be determined. This method will be used during this
research for determining the EER and the corresponding threshold. A more
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Figure 6.1: Two fictive FMR(t)/FNRM(t) plots.

advanced method would be to fit a higher order line through these points to get
a more accurate estimate of the EER. Giving confidence intervals for the EER is
difficult as it depends on the intersection of two curves which both consist of a
different number of measurements.

6.2 Results from pilot

To check whether temperature or stressing the fingers has an influence on the
number of extracted features the normal condition fingers are compared with
the cooled and stressed fingers. The method used for extracting the vascular
features was Choi’s principal curvature method. The captured images have been
downscaled and trimmed a bit first. Part of the sensor was still visible on the
left part of the image, hence a slice of 100 pixels wide has been trimmed of the
images. The resulting image has been downscaled to 457× 267 pixels to save
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normal stressed cold

normal 5.81 – –
stressed 3.79 0.63 –
cold 4.92 1.52 3.03

Table 6.1: EER (%) for various matching options

computation time. The parameters for Choi’s method are a sigma of four and a
threshold of 1.3%. After binarisation the total number of vascular features are
counted in each image. The reference number of vascular features is obtained by
averaging the number of vascular features in the first two measurements. The
percentual increase in vascular features is calculated by comparing the number of
vascular features in the stressed and cold finger images to the reference number
of features. Figure 6.2 shows the average percentual increase in the number of
vascular features per finger. Fingers 1–3 belong to the left hand and fingers 4–6
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Figure 6.2: Influence of temperature and physical labour on the number of vein
features.

belong to the right hand. The error-bars indicate the standard deviation of the
measurements. None of the fingers show the expected behaviour, which is an
increase for stressed fingers and a decrease for cooled fingers. Also the variation
of the measurements is large.

The influence of stress and cold can also be investigated by determining
the performance. The performance has been tested using Miura’s maximum
curvature method with a sigma of three. The finger region has been found using
Lee’s method and the finger has been normalised using Huang’s method. For
matching Miura’s method has been used with a cw of 25 and a ch of 50. Various
matching configurations have been tried and are summarised in Table 6.1. During
these tests the images from both measurement sessions have been combined. It
is remarkable to see that matching normal to normal conditions has the highest
EER. For this normal condition images the difference between same day captured
images and two week time difference images have been investigated. It was
noticed that the same day EER was 5.30% and that the two week delay EER
was 6.06%. Furthermore the difference between genders has been tested using
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only the normal condition images, these results were remarkable as the EER for
females was 10.19% and that for the males this was 4.17%.

Finally it should be noted that no real conclusions can be drawn from
these performance figures as the number of test persons was low. The gender
differences and time differences will be investigated using the data from the real
data collection.

6.3 Performance of the algorithms

The first three sections provide some background information on the testing
methods used for determining the performance of various algorithms. Several
authors have been contacted to ask for their implementation of the algorithms,
but this gave no results. This is why the algorithms have been implemented by
myself based on the information given in the papers. The correctness of these
algorithms can not be verified as there are no reference implementations.

6.3.1 Testing method in general

Unless noted otherwise the images have not been downscaled. If a downscaling
was performed it was done by using Matlab its imresize() function which is
part of the Image Processing Toolbox. For all tests the lee region() method
has been used for detecting the region of the finger. Unless mentioned otherwise
the size of the mask was 40×4 for this method. All fingers have been normalised
using Huang’s method.

Each of the algorithms is tested with images which have not been subjected
to any pre-processing steps and images which are pre-processed using adaptive
histogram equalisation. This adaptive histogram equalisation was described
earlier in Section 5.3.

To save computation time when determining the performance only half of the
possible tests are done, this can be done because matching A with B is roughly
the same as matching B with A.

For each of the algorithms the Detection Error Trade-off (DET) curves are
given for both datasets, with and without adaptive histogram equalisation. The
term AHE has been used in the figure legends to refer to the usage of adaptive
histogram equalisation. Also the performance in terms of EER will be given.

6.3.2 Testing method for the Peking dataset

The Peking University Finger Vein database (V4) consists of 200 directories
containing varying amounts of finger vascular pattern images. The width of
blood vessels in these images range from 5–15 pixels. In this research only
directories containing exactly eight finger vascular images are used for testing.
This accounts for 153 usable directories available for testing. Ten percent of
these directories (15) are used for determining the optimal parameters for the
lowest possible EER. The number of genuine tests which can be done with these
15 directories is 420 and the number of imposter tests which can be done is
6720. When the optimal parameters have been found the other 90%, which
corresponds with 138 directories, are used for actual testing. The number of
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genuine attempts which can be done in this case is 3864 and the number of
imposter tests which can be done is 604992.

The images in this database contain an eight by eight pixel number three
in the upper-right and lower-right corner. This number can be clearly seen in
Figure 6.3. This number has an abrupt change in intensity compared to the
background which will interfere with the detection of the finger region. In order
to get a correct estimate of the finger region the top-right and lower-left corner
numbers are replaced by the average intensity of the surrounding pixels. This
ensures a correct detection of the finger region. The functionality of this simple
fix is provided by the custom Matlab function pku fix().

6.3.3 Testing method for the Twente dataset

The Twente dataset consists of 354 unique fingers collected from 59 volunteers.
Each finger has been captured four times in total. For this dataset also 10% has
been used for training. This means 35 fingers have been used for training and
that 319 finger are used for the real testing. The 35 training fingers are all from
different fingers from different volunteers. For training the number of genuine
tests which can be done is 210 en the number of imposter tests which can be
done is 9520.

For the real test with 319 fingers the number of genuine tests which can be
done is 1914 and the number of imposter tests which can be done is 811536.

There are still a few doubts about using 10% of the fingers instead of 10% of
the volunteers for training. When using 10% of the fingers this already covers
more then half of the volunteers. Earlier it was noted that the variance in quality
of the images from the same person is low. On the other hand when using 10%
of the people for training it is not possible to get satisfactory training results as
the algorithms perform too well in some cases.

6.3.4 Normalisation

The finger with the largest detected area of the Peking dataset is the second
image of the 18440 directory. This image can be seen on the left of Figure 6.3.
The detected finger region for this finger is correct. The image with the largest
rotation is the first image of the 1650 directory. This image can be seen on the
right of Figure 6.3. The estimated rotation of this finger was 8.6 degrees. This
image also has the largest estimated translation and the smallest detected finger
region area. This due to the fact that the finger region is not correctly detected.
As mentioned before the region detection algorithm assumes that the lower half
of the finger is in the lower half of the image. Which is not the case for this
particular image.

From the Twente dataset the finger with the largest detected area was finger
number three from volunteer number 10. The finger with the smallest detected
area was finger number one from volunteer number 21. The largest detected
rotation was 6.6 degrees, this was finger number five from volunteer number 40.
The corresponding images can be seen in Figure 6.4. The finger with the largest
detected area could not be displayed as the volunteer did not give permission
for this.
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(a) Finger with the largest area (b) Finger with the largest rotation

Figure 6.3: Finger with the largest rotation and area

(a) Finger with the smallest area (b) Finger with the largest rotation

Figure 6.4: Finger with the largest rotation and the smallest area

6.3.5 Normalised cross-correlation

To get some kind of reference for comparing the other algorithms with the
normalised cross-correlation is chosen as it is one of the most basic methods.
Before performing the cross-correlation the finger regions are detected and the
fingers are normalised. In order to calculate a cross-correlation the template
must be equal or smaller than the reference image. Based on the training
set the optimal size of the template for the Peking dataset was obtained by
trimming 24 pixels from the top and bottom and trimming 12 pixels from the
left and right of the image. For the Twente dataset 5 pixels were trimmed
from the top and bottom and no pixels were trimmed from the left or right
of the image. For the Peking dataset the EER was 14.67% when not using
adaptive histogram equalisation and with this pre-processing step the EER was
9.81%. The respective performance figures for the Twente dataset were 3.15%
and 1.99 %. The corresponding DET curves can be seen in Figure 6.5.

6.3.6 Miura’s maximum curvature

The sigma used for this method was five for both the Peking dataset and the
Twente dataset. For the Peking dataset the parameters for Miura’s matching
method were cw = 98 and ch = 86.

For the Twente dataset it was difficult to estimate good cw and ch values
as the EER was zero for several of the possible cw and ch values. Eventually
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Figure 6.5: DET curve for normalised cross-correlation

the parameters for Miura’s matching method for the Twente dataset were set
to cw = 90 and ch = 80. For the Peking dataset the EER was 1.22% when not
using adaptive histogram equalisation and with this pre-processing step the EER
was 1.32%. The respective performance figures for the Twente dataset were
0.63% and 0.49 %. The corresponding DET curves can be seen in Figure 6.6.

6.3.7 Miura’s repeated line tracking

The parameters used for the Peking dataset are 2000 iterations with r = 1 and
W = 23. The matching is done by Miura’s method again with cw = 98 and
ch = 86.

To decrease the computation time when using the Twente dataset the images
have been downscaled by a factor of 0.6 and the resulting images are 404× 228
pixels. Using the training set the optimal parameters have been determined to
be 3000 iterations, r = 1 and W = 21. The parameters for matching were set
to cw = 55 and ch = 65. For the Peking dataset the EER was 6.75% when not
using adaptive histogram equalisation and with this pre-processing step the EER
was 5.90%. The respective performance figures for the Twente dataset were
1.04% and 0.99 %. The corresponding DET curves can be seen in Figure 6.7.
The big difference in performance of the Peking and the Twente dataset might
suggest that the parameters used for the Peking dataset are not optimal.

6.3.8 Choi’s principal curvature

For the Peking dataset the images have been downscaled by a factor of 0.6 and
the resulting images are 308 × 231 pixels. The images of the Twente dataset
have not been downscaled. The parameters used for feature extraction are the
same for both datasets and compromise a sigma of 2 and a threshold of 1.3%.
The binarisation of the resulting images is done using Otsu’s method. For the
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Figure 6.6: DET curve for Miura’s maximum curvature

Peking dataset the Miura matching method the parameters cw and ch are set
to 64 and 79 respectively. For the Twente dataset these parameters were set
to 38 and 22. For the Peking dataset the EER was 2.72% when not using
adaptive histogram equalisation and with this pre-processing step the EER was
2.20%. The respective performance figures for the Twente dataset were 0.89%
and 0.37 %. The corresponding DET curves can be seen in Figure 6.8.

6.3.9 Huang’s wide line detector

The images of the datasets have been downscaled to approximate the finger
width of the images used in the original paper. For the Peking dataset this
meant that the images had to be downscaled by a factor of 0.35. The resulting
images have a size of 180× 135 pixels. The images of the Twente dataset have
been downscaled by a factor of 0.24 for the same reason and the resulting images
have a size of 162 × 92 pixels. Because the images have been downscaled the
mask used in Lee’s region detection method had a width of 10 and a height of 4.

The parameters for the wide line detector are the same as used in the original
paper r = 5, t = 1, g = 41. The matching method used is Miura’s method.
For the Peking dataset cw = 22 and ch = 4 for the Twente dataset this was
cw = 28 and ch = 18. For the Peking dataset the EER was 4.66% when not
using adaptive histogram equalisation and with this pre-processing step the EER
was 2.73%. The respective performance figures for the Twente dataset were
1.72% and 0.89 %. The corresponding DET curves can be seen in Figure 6.9.

6.3.10 Summarising

A table which summarises all of the mentioned performance figures is given in
Table 6.2. The table shows the performance of both datasets with and without
adaptive histogram equalisation. It also shows the performance which has been
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Figure 6.7: DET curve for Miura’s repeated line tracking

Peking Twente

original
paper

no
AHE

with
AHE

no
AHE

with
AHE

Normalised cross-correlation 0.00 14.67 9.81 3.15 1.99
Maximum curvature 0.00 1.22 1.32 0.63 0.49
Repeated line tracking 0.15 6.75 5.90 1.04 0.99
Principal curvature 0.36 2.72 2.20 0.89 0.37
Wide line detector 0.87 4.66 2.73 1.72 0.89

Table 6.2: Performance of several algorithms for both datasets, both with and
without adaptive histogram equalisation (AHE).

achieved in the actual paper in the second column. All of these papers made use
of their own collected dataset.

As it can be seen the application of adaptive histogram equalisation enhances
the performance of nearly all the algorithms. The only exception is the maximum
curvature method using the Peking dataset. The table also shows that the
performance of the Twente dataset is higher in all cases. Using the Twente
dataset the performance of the principal curvature method and the wide line
detector method have approximated the value mentioned in the literature.

6.3.11 Miscellaneous experiments

As the collected dataset contains meta-information about gender and handed-
ness several interesting experiments can be done. These are described in the
consecutive subsections. The scores from Miura’s maximum curvature method
with adaptive histogram equalisation have been used for these experiments.
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Figure 6.8: DET curve for Choi’s principal curvature

Time interval

The dataset contains images of the same finger with very small time between
capturing moments and images with a large amount of time between capturing
moments. The time difference for the small time interval images was about
≈2–3 minutes. The large time difference was approximately two weeks. When
comparing small time difference images with each other the performance is
0.314% and when comparing images with large time difference the performance
is 0.531%. The number of genuine tests for the small time difference images was
638 and the number of imposter tests was 405768. For the large time difference
images these figures were 1276 genuine tests and 405768 imposter tests. From
this experiment it can be concluded that for determining realistic performance
figures it is essential to have data with a large time difference between capturing
moments.

Gender

The dataset also enables the investigation of gender differences on the perfor-
mance. The dataset consists of 44 males and 15 females. When considering
only males in the dataset the performance is 0.278% and when considering only
females in the dataset the performance is 1.177%. The number of genuine tests
done for males was 1440 and for females the number of tests was 474. The
number of imposter tests done for males was 458880 and for females this was
49296. The lower performance for females might be caused by the fact that
females have lower haemoglobin levels compared to men. The reliability of these
findings is not very high as the number of volunteers is low.
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Figure 6.9: DET curve for Huang’s wide line detector

finger 1 2 3 4 5 6

performance (%) 0.315 0.327 0.943 1.258 0.018 0.066

Table 6.3: Performance in terms of EER for different fingers.

Finger

For the performance evaluation it was assumed that all six finger were identical
individualities of the same class and could be interchanged with one another.
For instance matching the ring finger of the left hand with the middle finger of
the right hand was considered as a valid imposter attempt. During the collection
of the Twente dataset it was noticed that index and ring fingers tend to curve
towards the middle finger. This observation might mean that fingers have to be
treated as different classes. The work by Kumar et al. [14] already observed that
the performance of middle fingers was worse when compared to index fingers.
They attribute this to the difference in convenience when capturing the fingers.

In this research the difference between fingers is also investigated in terms
of performance. Therefore the dataset is divided into six classes, one for each
finger. The number of genuine test for fingers 1–5 was 318 and for finger 6 this
was 324. The number of imposter tests for fingers 1–5 were 22048 and for finger
6 this was 22896. The performance results per finger are given in Table 6.3. For
the left hand the observation does not match with the findings by Kumar et al..
Note that Kumar et al. only collected data from the left hand of the volunteers
so it can not be verified whether the findings are in correspondence with the
right hand of the volunteers. It is interesting to see that the index fingers have
the worst performance compared to the other fingers. For the right hand it is
remarkable to see that the middle finger performs significantly better than the
surrounding fingers.
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Chapter 7

Conclusion and
recommendations

This research has focused on three things mainly, the first focus point was the
design of a sensor which is capable of capturing images of the vascular pattern
of the finger. The second focus point was the collection of a dataset of vascular
pattern images of the finger for release to the research community and to verify
the performance of existing algorithms. The last focus point was the verification
of several algorithms mentioned in the literature using the collected dataset and
an existing dataset.

The collected dataset is a noteworthy contribution to the field of finger
vascular pattern biometrics. The collected dataset consist of 59 volunteers which
had their ring, middle and index finger from both hands captured. Each finger
has been captured four times, twice during the first session and twice during
the second sessions which was two weeks later. One of the key features of this
dataset is the high quality of the images and the availability of meta information
about the volunteers. The meta information collected is the finger type, age,
gender and handedness of the volunteers. Furthermore the resolution of the
captured images is known which makes comparing performances with other
future datasets easier.

The performance of the collected dataset and an existing dataset from the
Peking University has been evaluated in terms of Equal Error Rate (EER).
The achieved EER of of the existing dataset ranged from 14.67% up to 1.22%.
For the collected dataset of this research the EER ranges from 3.15% up to
0.37%. The performance of the collected dataset was higher for all algorithms.
Furthermore the effect of adaptive histogram equalisation on the performance
has been evaluated. This has revealed that by using this pre-processing method
the performance can be significantly improved.

As the collected dataset contains meta information about the volunteers the
influence of several factors on the performance could be analysed. One of the
most significant findings is that the quality of the images is probably gender
dependant. When selecting only males from the dataset the performance is better
compared to selecting only females from the dataset. Also the time between
capturing moments influences the performance. For getting more realistic results
there should be several weeks between enrolment and verification.
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Chapter 7. Conclusion and recommendations

Returning to the question posed at the beginning of this study, it is now
possible to state that this form of biometrics certainly has the potential of
becoming the biometric of the future. But before this is the case more research is
needed and larger datasets have to be collected which have a higher a resemblance
to a real population.

7.1 Further work

This research has thrown up many questions in need of further investigation. For
real applications a more ‘open’ sensor is preferred for a higher user convenience.
For future work it is recommended to look at the design of an other sensor
type such as a side illumination model. The side lighting method which places
the illumination sources at an angle looks promising for this purpose. Another
requirement necessary for real applications is some kind of liveliness detection
to make sure the object presented is really a live human finger. Furthermore
the optical properties of the mirror and the near infra-red filter used should be
checked more thoroughly.

The current transillumination method for getting a uniform intensity across
the entire image is rather slow and it might not produce the optimal results.
Future research should focus on better algorithms and increase the speed of
adjustment. This speed enhancement can be achieved by using a more low level
programming level instead of Matlab.

In the future it might even be possible to detect diseases with this type of
sensor. For example, patients with rheumatism might be detectable by the way
the light is transmitted through their interphalangeal joints.

The roll around the x-axis of the finger when capturing images might be
solved by generating a three dimensional model of the vascular pattern by using
multiple mirrors. Another point which needs attention is the translation of the
finger in the x-direction. As mentioned earlier this might be solved by detecting
the position of the interphalangeal joint.

In this research only high level features have been investigated. It would also
be interesting to investigate more low level feature extraction methods such as
principal component analysis (PCA) or linear binary patterns (LBP). To increase
the performance the score of the vascular pattern biometric can be combined
with other features such as the shape of the finger which is already present in
the captured image. By using a ‘hot-mirror’ it is possible to capture a vascular
pattern image and a crease patten image at the same time. The scores of these
two types of images can be fused to get a higher performance [14].
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Appendix A

Volunteer consent form

The volunteer consent form has been added as a reference in the following two
pages.
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Information letter for participants of a study on finger vein biometrics. 
 

Purpose of the study 
Finger vein recognition is advertised as a promising biometric, characterized by very low error rates, 
good spoofing resistance, and a user convenience that is equivalent to that of fingerprint recognition. 
At present manufacturers keep most of their technology secret. As a result of this there are only a 
few publically available datasets and only little academic research has been done in order to verify 
published claims on performance. The purpose of this research is to acquire a database of finger vein 
images for verification and testing. 

What is your contribution to this research? 
A number of images of the vascular pattern of your fingers will be captured at several occasions. 
These images, along with your age, gender, handedness and a sequential number will be stored in a 
database. This data will be used for research. Your contribution is valuable for the creation of a 
database containing images of the vascular pattern of the finger. 

Confidential 
All participants are given a unique identification number and your data will be processed 
anonymously. All legal rules for data storage will be applied.  

Risks 
The setup for acquiring images of the finger vascular pattern makes use of high power near‐infrared 
Light Emitting Diodes (LEDs). As far as we know, no long or short term effects of this near‐infrared 
light on the skin or to the eye are known.  Nonetheless, participation in this research is at your own 
risk. 

Who will carry out the research? 
The research will be conducted by B. Ton BSc (b.t.ton@alumnus.utwente.nl) on behalf of Dr. Ir. R.N.J. 
Veldhuis (r.n.j.veldhuis@utwente.nl). If you have any further questions about the research, you can 
contact Mr. Ton or Mr. Veldhuis via email. If in any case or at any time, you wish to withdraw your 
data from the research program you can contact one of the above mentioned persons.  

             

  

We thank you in advance for your participation in this research. 

 

Sincerely, 

  

Bram Ton 
Master student Electrical Engineering 



 

Volunteer consent form 
The study in which we ask you to participate entails that we record a number of images of the 
vascular pattern of your fingers at several occasions. Furthermore your gender, age and handedness 
will be recorded.  

That is all we ask from you. No further investigation is necessary and you do not have to provide any 
further information to us. Of course, your data is processed anonymously and confidentially.  

If you are willing to participate in this research, then please read the statement below and sign this 
declaration. 

 

I confirm that I read the information letter and have been properly informed about the nature of the 
investigation, which is the collection of a database containing vascular patterns of the finger. 

I willingly participate in these trials at my own risk. I consent to images of the vascular pattern of my 
fingers and my questionnaire responses being collected during the trial and stored electronically. I 
agree to the use of this data by the University of Twente and any other research for the purposes of 
evaluating the performance of biometric systems and identifying problems and improvements. 

I understand that my name/identity will not be stored or shown in any released database or report. 
Furthermore I understand that images from the database might be included in published work, 
unless an objection is given. 

 

Date            :  

  

Name         :  

  

Signature  :  

 

 

 

 

Optional:  

        I object to the inclusion of my captured vascular pattern images in any publications. 



Appendix B

Sensor details

B.1 Dimensions of the sensor
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Figure B.1: Cross section of the sensor
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B.2 Transillumination method

This simple LED adjustment control loop has been used for collecting the data
for the pilot and the real dataset. The flow chart of this control loop can be seen
in Figure B.3. The maximum PWM value was set to 0.8 and the PWM step

Start

Get snapshot

Determine local 
mean grey 

intensity (mgi)

mgi < 
grey_threshold

Increase PWM 
value

yes
Decrease PWM 

value
no

pwm > max_pwm

pwm = 
max_pwm

Yes

pwm < 0

pwm = 0

yes

Set new PWM 
value

no

Is PWM equal to max_pwm or 0 ?
OR

Is mgi within range ?

Done !

yes

no

Figure B.3: Flowchart for the LED power adjustment control loop

size was set to 0.04. The local mean grey intensities were determined directly
underneath the LEDs using a square window of 40 by 40 pixels. The grey level
threshold was set to 80 and the maximum deviation allowed from this threshold
was 20%. The current implementation starts with a PWM value of zero which
is not very time efficient. In the future it might be beneficial to start with an
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average initial value to decrease the regulating time.
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