
Phased Array Processing:
Direction of Arrival Estimation

on Reconfigurable Hardware

Master’s Thesis
by

Jasper D. Vrielink

Committee:
prof. dr. ir. Gerard J.M. Smit

dr. ir. André B.J. Kokkeler
ir. Marcel D. van de Burgwal

ir. Kenneth C. Rovers

University of Twente, Enschede, The Netherlands
January 16, 2009

Abstract

A beamforming system consists of three different parts, the beamformer, the
beamsteering, and the parameter estimation. In this thesis the parameter esti-
mation is described, the Direction Of Arrival (DOA) estimation in particular.

Two popular DOA estimation algorithms are described. The first algo-
rithm is MUltiple SIgnal Classification (MUSIC), and the second algorithm
is Estimation of Signal Parameters by Rotational Invariance Techniques (ES-
PRIT). Both algorithm can be used to estimate the DOAs of multiple signals.
Covariance Matrix Differencing (CMD) is an extension to MUSIC to improve
the performance of the MUSIC algorithm. This CMD extension is also de-
scribed in this thesis.

A model of MUSIC and a model of ESPRIT are made in Matlab to analyse
the performance, and the effects of different test scenarios on the DOA esti-
mation. Both algorithms are compared by means of these test scenarios. The
performance of the CMD extension is also analyzed by means of a set of test
scenarios. Based on the superior performance of the MUSIC algorithm when
the Signal to Noise Ratio (SNR) is low, the MUSIC algorithm is chosen to be
implemented on the reconfigurable architecture.

The MUSIC algorithm is implemented on the Montium2 architecture. The
implementation is described by means of pseudo code. Implementation aspects
such as, accuracy, computational load, and scalability are analyzed. The com-
plete implementation requires 1.5 million clock cycles on the Montium2. This
number of clock cycles results in an execution time of 7.5ms. A practical ex-
ample of a beamforming system used as a satellite television receiver, mounted
on the roof of a car, shows that this is an acceptable execution time in this
particular situation.

i

Acknowledgement

The author hereby wants to thank the members of the Computer Architecture
for Embedded Systems group at the Computer Science department of the Uni-
versity of Twente, the graduation committee in particular, for their support and
advice during this master assignment. The author also wants to thank Recore
Systems for their support with the implementation part of this assignment.

iii

Contents

Contents v

List of Acronyms vii

1 Introduction 1

2 Phased array processing 3
2.1 System model . 3
2.2 Data model . 5
2.3 Processing architecture . 7
2.4 Problem statement . 8
2.5 Related work . 8

3 Methods for DOA estimation 9
3.1 MUSIC . 9

3.1.1 Basic algorithm . 9
3.1.2 CMD extension . 11

3.2 ESPRIT . 13
3.3 Eigenproblems . 15

3.3.1 Eigendecomposition . 15
3.3.2 Generalized eigendecomposition 19

3.4 Comparison of MUSIC and ESPRIT 20

4 Modeling and simulations 21
4.1 MUSIC and ESPRIT simulations 21
4.2 CMD MUSIC simulations . 24
4.3 Conclusion . 27

5 Algorithm implementation 29
5.1 Montium2 . 29
5.2 Music algorithm . 31

5.2.1 Covariance matrix . 32
5.2.2 Eigendecomposition . 37
5.2.3 MUSIC spectrum . 53
5.2.4 Peak selection . 55

5.3 Conclusion . 58

6 Conclusion and Recommendations 61
6.1 Conclusion . 61

v

vi Contents

6.2 Recommendations . 61

A Simulation results 63
A.1 MUSIC and ESPRIT . 63
A.2 CMD MUSIC . 68

Bibliography 73

List of Acronyms

CMD Covariance Matrix Differencing

CORDIC COordinate Rotation DIgital Computer

DOA Direction Of Arrival

dword double word

DSP Digital Signal Processing

ESPRIT Estimation of Signal Parameters by Rotational Invariance
Techniques

FPGA Field Programmable Gate Array

LSB Least Significant Bit

MSB Most Significant Bit

MUSIC MUltiple SIgnal Classification

SNR Signal to Noise Ratio

SRAM Static Random Acces Memory

ULA Uniform Linear Array

vii

Chapter 1

Introduction

A phased array antenna is a direction sensitive antenna, constructed out of
a number of smaller antennas. The signals received by the smaller antennas
are combined, to increase the SNR of the output signal. Phased array anten-
nas are used in communication systems, sonar and radar applications, space
exploration, and many other applications.

The signals received by a phased array antenna are processed in a beam-
forming system. A digital beamforming system consist of three different parts,
a beamformer, a beamsteerer, and parameter estimator. The contents of a
beamformer is described in the master’s thesis of Rik Portengen [13]. In this
master’s thesis the contents of a parameter estimator is described. The anal-
ysis of the contents of the beamsteerer is the subject of a successive master
assignment.

A electronically adaptable beamformers can be used in a mobile, non-
stationary environment, such as a satellite television receiver, mounted on the
roof of a car. In this case mechanically adaptable beamformers are to slow
to keep the phased array antenna focused on the satellite when the car drives
into a hard turn. Electronically adaptable beamformers are expected to be fast
enough to keep the phased array antenna focused on the satellite.

In chapter 2, the three different parts of a beamforming system are briefly
explained. In this thesis the focus is on the parameter estimation part, the
DOA estimation in particular. A data model is defined, which is used through-
out the thesis. The problem statement is also defined in chapter 2. Two
popular DOA estimation algorithms, MUSIC and ESPRIT, are described in
chapter 3. In chapter 4, the effects of different test scenarios on the DOA esti-
mation are analyzed by means of a model of MUSIC and a model of ESPRIT.
In chapter 5, the implementation of the MUSIC algorithm on the Montium2
architecture is described. Chapter 6 is the last chapter of this thesis. In this
chapter conclusions are drawn, and recommendations are made to optimize the
implementation.

1

Chapter 2

Phased array processing

A phased array antenna is an antenna which consists of a number of smaller
antennas. These antennas are generally mounted on a flat surface and con-
sequently they are separated by a certain distance. A signal from a certain
direction arrives at the antenna array with a certain time shift between the an-
tennas. Signals from different directions arrive at the individual antennas with
different time shifts. The largest distance between two elements of a phased
array antenna can vary from a few centimeters to several kilometers, depend-
ing on the application. The received signals at the array are combined in a
beamforming system into a signal which can be used for further processing.
Combining the received signals increases the SNR. A phased array antenna
can be used in communication systems, sonar and radar applications, space
exploration, etc.

2.1 System model

A schematic representation of the digital processing part of a generic beam-
forming system is shown in figure 2.1 [5]. This system is preceded by a frontend,
which transforms the signal received by the different antennas in the antenna
array into a snapshot1 containing complex data samples. (The snapshots do
not necessarily need to be complex.) The algorithms treated in this thesis re-
quire complex snapshots. The output of this beamforming system is a signal,
which for example can be fed into a decoder. The system is separated into
three different blocks. Each block has its own functionality and in the next
sections that functionality is briefly explained.

Beamformer

In this part of the beamforming system, the actual beam is composed. This
means that a snapshot from the antenna array is transformed into a signal.
A snapshot containing complex samples is received from the frontend. Each
element of this snapshot is delayed in case of wideband signals, or the delay
is approximated by a multiplication with a complex weight factor in case of
narrowband signals. The time delay or complex multiplication is done to cor-

1A snapshot is a vector containing samples of each antenna in the antenna array at one
instance of time.

3

4 CHAPTER 2. PHASED ARRAY PROCESSING

����������

�����	���
��

�����	���

��	
��	
��

�
����

��	�����

��	�

���������

Figure 2.1: Schematic representation of a beamforming system.

rect the time shift of the signal between the antennas, and thus between the
different elements of the snapshot. The time delay or weight factors determine
in which direction the beam is aimed. After the time delay or complex mul-
tiplication all values of the snapshot are summed to form the resulting signal.
That signal can be fed into a subsequent system for further processing.

Figure 2.2 shows the sensitivity pattern of a 16 element Uniform Linear
Array (ULA), the main beam is directed to 0◦ with respect to the broadside of
the array. Signals impinging from directions other than direction of the main
beam are received attenuated. A treatment of beamforming algorithms in more
detail is beyond the scope of this thesis, and the reader is therefore referred
to [5, 13].

Beamsteering

The beamsteering part of the beamforming system calculates the time delay or
weight factor for each antenna, based on a DOA estimation of the parameter
estimation part described below. The result of the beamsteering algorithm is
used in de beamformer described above. If the DOA of the signal received by
the antennas is stationary, the beamsteering algorithm is executed only once.
If the DOA varies in time, the beamsteering algorithm is executed for every
update of the time delays or weight factors. The rate of change of the DOA
determines the update frequency. In case of rapid changing sources, the time
delays or weight factors need to be updated more often.

The feedback of the output signal of the beamformer is used when the
beamsteering algorithm can track the signal of a source in a non stationary
environment. In this case the beamsteering part contains an algorithm to

2.2. DATA MODEL 5

−100 −80 −60 −40 −20 0 20 40 60 80 100
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

dB

Degrees

Figure 2.2: Sensitivity pattern of a 16 element ULA.

adapt the time delays or weight factors used in the beamformer. These tracking
algorithms often need an initial estimation of the DOA of the signal.

Parameter estimation

In this section of the beamforming system, parameters of the signal are esti-
mated. A number of subsequent snapshots are used to estimate for example
the number of sources, the DOAs, the strengths and cross correlations among
the sources, polarizations, strength of the noise or the signal frequency. In
most cases these parameters can not be computed simultaneously and different
algorithms are needed. In this thesis the focus is on DOA estimation. Most
DOA estimation algorithms can estimate the DOA of multiple signals simul-
taneously. In case of multiple signals, one parameter estimation algorithm can
provide DOAs to several beamsteering algorithms. Each signal needs its own
beamsteering algorithm and probable its own beamsteering algorithm.

2.2 Data model

A data model is a mathematical representation of the data received by the
antenna array. The data model is based on a ULA, however, other shapes are
also possible. A ULA is an antenna array with identical antennas, arranged in
a straight line. The distance between the antennas is equal and at most λ/2,
where λ is the wavelength of the center frequency of the signals. The relation
between the distance d and λ is described by d = λ/2.

A schematic representation of a signal impinging at the antenna array is
shown in figure 2.3. To keep the figure simple only one signal is represented.

6 CHAPTER 2. PHASED ARRAY PROCESSING

The angle θ is the angle of the source with respect to a vector which is or-
thogonal to the array. The distance between two antennas is d, and λ is the
wavelength of the signal. φ is the phase shift of the signal between two anten-
nas. This phase shift is calculated by:

φ = 2π(d/λ) sin θ (2.1)

Consider a n-element array and k sources. The data model is defined by:
x1(t)
x2(t)

...
xn−1(t)
xn(t)

 =

 a(θ1) a(θ2) · · · a(θk)

s1(t)
s2(t)

...
sk(t)

+

n1(t)
n2(t)

...
nn−1(t)
nn(t)

 (2.2)

where xn is the signal received at element n of the antenna array, a(θk) is a
steering vector of source k, sk the signal of source k and nn the additional noise
introduced at element n. The steering vectors are defined by:

a(θk) =

1

ej2π(d/λ) sin θk

...
ej2π(d/λ)(n−2) sin θk

ej2π(d/λ)(n−1) sin θk

 (2.3)

Equation 2.3 describes the phase shift of a signal of one source between the
antennas of the antenna array. Equation 2.2 can also be written as:

X(t) = AS(t) +N(t) (2.4)

where X is the n-element snapshot, A is the set of steering vectors of the
k sources, S are the signals of the k sources, and N is the additional noise
[16], [20]. This noise is collected by the signal or generated internally in the
instrumentation.

To validate the data model of equation 2.2, some assumptions need to be
made.

1. The center frequency of the signals or the distance between the antennas
is known. When the center frequency of the signals is known, the distance
between the different antennas of the antenna array can be determined.
When the distance between the antennas is known, the center frequency
of the signals can be determined.

2. The signals are narrow band. Signals are narrow band if the energy of
the signal is located at, or close to the center frequency of the signal. If
the energy of the signal is located at another frequency, an error arises
in the DOA estimation. If the deviation of the energy of the signal with
respect to the center frequency increases, the error in the DOA estimation
increases.

3. The number of sources is known. The number of sources has to be known
to determine the size of matrix A, in combination with the number of
antennas.

2.3. PROCESSING ARCHITECTURE 7

4. The sources are located in the far field of the array, such that the signals
are impinging at the array as plane waves. If the narrow band signals
are not impinging as plane waves, the shifted reception of the signals at
the antennas is not corrected completely. This results in a smaller SNR
of the output signal of the beamformer.

5. During the execution of the algorithm, the DOAs of the sources are sta-
tionary (wide-sense stationarity), or at least do not change more than
the spatial resolution of the DOA algorithm.

6. The noise is white, and uncorrelated between the antennas [12,15].

��

�

�����	
����

Figure 2.3: Phased array antenna model.

2.3 Processing architecture

A multiprocessor architecture can be used to executed the different sections
of the beamforming system of figure 2.1. In the CRISP project [18] such a
reconfigurable architecture is developed. This architecture can be used for a
wide range of (streaming) applications; from low-cost consumer applications to
very demanding high performance applications.

One or more processors can be assigned to each part of the beamforming
system. The beamformer has to process each snapshot to produce a continuing
stream of samples of the output signal. Therefore, in most cases one or more
processors are dedicated to perform this task.

The other two parts of the beamforming system can be executed less often,
since the update frequency of the time delays or weight factors is determined
by the rate of change of the DOA of the sources. In case of a tracking algorithm
is used in the beamsteering part, it is even possible that the DOA estimation
algorithm is executed only once.

Because of the lower execution rate, it is expensive to permanently reserve
a processor for the beamsteering or DOA estimation algorithm. Reconfigurable

8 CHAPTER 2. PHASED ARRAY PROCESSING

hardware can reduce this cost by offering the possibility of an interleaved exe-
cution with an other part of the beamforming system.

2.4 Problem statement

The main assignment of this thesis is to search and investigate the implementa-
tion aspects on reconfigurable hardware of current, commonly used algorithms
for DOA estimation in beamforming systems. These algorithms are used for
the parameter estimation part of the beamforming system in figure 2.1. An
implementation of one algorithm has to be made on reconfigurable hardware
to investigate performance and scalability.

If the DOAs of the signals with respect to the antenna array are unknown,
the contents of matrix A in equation 2.4 is unknown. The objective of the DOA
estimation algorithms investigated in this thesis, is to retrieve the contents of
matrix A.

A set of subsequent snapshots is used as an input for the DOA estimation
algorithms. The algorithms perform a number of operations on these snapshots
to estimate the different angles of the sources relative to the antenna array. The
kernels of these operations have to be identified.

It is expected that the DOA estimation algorithm is executed only in the
startup phase of the beamforming system, or with long intervals between two
successive executions. The execution time of the implementation of the chosen
DOA estimation algorithm should allow an interleaved execution with an other
part of the beamforming system.

2.5 Related work

A few implementations of DOA estimation algorithms are listed below.

FPGA based MUSIC estimator

In [6], the MUSIC algorithm is implemented on 1 Xilinx Virtex-II Pro. MU-
SIC is a DOA estimation algorithm (which will be explained later). The
implementation is based on a 4 element ULA. A Field Programmable Gate
Array (FPGA) is chosen to reduce the execution time of the algorithm. The
total execution time of the MUSIC algorithm on the FPGA is 30µs.

FPGA based unitary MUSIC estimator

In [10], the unitary MUSIC algorithm is implemented on 2 FPGAs (EP20K600,
Altera). Unitary MUSIC is a variant of the MUSIC algorithm mentioned above.
This implementation is also based on a 4 element ULA. The execution time of
the complete algorithm is 28µs.

DSP based DOA estimator

In [29], a DOA estimation algorithm is implemented on four Digital Signal
Processings (DSPs). The implementation is based on a 8 element circular
array. The four DSPs execute the complete algorithm in 187µs.

Chapter 3

Methods for DOA estimation

In this chapter, two popular methods are described which can be used to esti-
mate the DOAs of multiple signals. A comparison between several beamform-
ing algorithms has been made in [14,16]. The conclusions showed that MUSIC
and ESPRIT are useful beamforming algorithms. The first method described
below is MUSIC, and the second method is ESPRIT.

3.1 MUSIC

MUSIC [16] is one of the first DOA algorithms which can be used to estimate
the DOA with a high spatial resolution. The basic idea of MUSIC is that the
eigenvalues and eigenvectors of a signal covariance matrix are used to estimate
the DOAs of multiple signals received by the antenna array.

3.1.1 Basic algorithm

In figure 3.1 the different steps of the algorithm are shown. The algorithm starts
with the composition of a covariance matrix. A covariance matrix is calculated
by multiplying a snapshot and the Hermitian adjoint1 of that snapshot. To
reduce the disturbing effect of the noise, the expected value is taken over a
number of multiplied snapshots. A covariance matrix is calculated by:

Rxx =
1
m

m∑
i=1

XiX
H
i (3.1)

where Rxx is the n by n covariance matrix, Xi is the ith snapshot containing
n elements, and m is the number of snapshots.

The next step is the eigendecomposition of the covariance matrix. An
eigendecomposition is used to determine the eigenvalues and eigenvectors of
the covariance matrix. See section 3.3.1 for a detailed description of an eigen-
decomposition algorithm. The k (number of sources) largest eigenvalues and
their corresponding eigenvectors are assigned to the sources and the n−k other
(smallest) eigenvalues and their corresponding eigenvectors are assigned to the
noise (n denotes the number of antennas). The eigenvectors assigned to the

1A Hermitian adjoint of a vector or matrix is the complex conjugate transpose of that
vector or matrix. The Hermitian adjoint is denoted by ()H

9

10 CHAPTER 3. METHODS FOR DOA ESTIMATION

���������	

�����

�����������

�����
��	�����

�����������

�����
��������

�	�	�����
��
��	

����	��
�	���

���	��

�	�����������

�
�����	�

���	���

����

 �����	!

����	�

��

�������

�
�����	�

�	��	�

��	"�	���

��

� �

$

%�

�

�&

� '!

'$

'�

Figure 3.1: Schematic representation of the MUSIC algorithm.

noise are combined in matrix En (the noise subspace). Each eigenvector is a
column in En.

The number of snapshots used to calculate the covariance matrix determines
the accuracy of the eigenvalues and eigenvectors. If an infinite number of
snapshots is used, the eigenvalues of the noise converge to the same value,
namely the variance of the noise.

If the number of sources is unknown, a threshold value can be used to de-
termine the number of sources. The SNR determines the level of the threshold
value. The number of eigenvalues greater than the threshold value determine
the number of sources.

After the eigendecomposition, the MUSIC spectrum is calculated. This is
done by:

Pm(θ) =
1

aH(θ)EnEHn a(θ)
(3.2)

where Pm(θ) is the measure for the MUSIC spectrum, En is the noise subspace
and a(θ) is a steering vector of the array manifold. The array manifold is a
collection of predefined steering vectors. Every steering vector represents a
angle in the MUSIC spectrum. The steering vectors of the array manifold are
defined the same as a steering vector of a source (see equation 2.3). Pm(θ) is
calculated for every vector in the array manifold. In figure 3.2 an example of
a MUSIC spectrum is shown. The maximal spatial resolution of the MUSIC
algorithm is determined by the angle between two adjacent steering vectors in
the array manifold. If the area of interest is smaller than the whole spectrum, all
vectors other than the area of interest can be removed from the array manifold,
and therefore reduce the number of computations.

A source is located at the angle where the steering vector of the array
manifold is (almost) orthogonal to the noise subspace. The denominator of
equation 3.2 is an inner product. When a steering vector is orthogonal to the
noise subspace, the result of the inner product is zero. Therefore, the locations
of the sources appear as peaks in the MUSIC spectrum. So the last step in
the MUSIC algorithm is the selection of the k largest peaks in the MUSIC
spectrum. Figure 3.2 shows a MUSIC spectrum with five sources located at
-30, -8, 0, 3 and 60 degrees.

3.1. MUSIC 11

−100 −50 0 50 100
−15

−10

−5

0

5

10

15

20

25

30

35

Degrees

dB

Figure 3.2: The MUSIC spectrum.

3.1.2 CMD extension

Coherent or fully correlated signals have a destructive effect on the result of the
MUSIC algorithm. If, for example, two received signals are coherent sinusoids,
the frequency of both signals is equal. The signals received by one antenna of
the antenna array can be written as:

xn = a1 sin(2πfc + θ1) + a2 sin(2πfc + θ2) = a3 sin(2πfc + θ3) (3.3)

where xn is the signal at the nth element of the array, a is the amplitude of
a signal, fc the center frequency of a signal, and θ the phase shift of a signal.
The two signals merge into one signal, and as a consequence, the DOA of the
resulting signal is estimated instead of the DOAs of the two original signals.

CMD [20] is an extension to MUSIC to eliminate the received noise, and to
allow MUSIC to work on coherent signals at the cost of extra elements in the
antenna array. The CMD extension replaces the covariance matrix calculation
of the standard MUSIC algorithm. If CMD is used, the number of snapshots
and the SNR can be reduced and still achieve the same result as MUSIC without
the CMD extension. Figure 3.3 shows that the covariance matrix calculation
of the MUSIC algorithm is replaced bij the CMD extension. In figure 3.4 a
schematic representation of the CMD extension is shown.

CMD uses L maximally overlapping subarrays of n elements, where n is
equal to the number of elements used in the original version of the MUSIC
algorithm. Two antenna arrays maximally overlap if they make use of the same
elements except for the first element of the first array and the last element of

12 CHAPTER 3. METHODS FOR DOA ESTIMATION

���������	

�����

����	�	�����

�����
��	�����

�����������

�����
��������

�	�	�����
��
��	

����	��
�	���

���	��

�	�����������

�
�����	�

���	���

����

 �����	!

����	�

��

�������

�
�����	�

�	��	�

��	"�	���

#$ ��

� �

%

&�

�'(�%

�)

� *!

*%

*�

Figure 3.3: Schematic representation of MUSIC including the CMD extension.

���������	

�����

�����������

��������
�

���������	

�����

�����������

��������
�

���������	

�����

�����������

��������
�

��	�������

���������

���������	

����	�	��	

�����

�����������

���	���

����

������	�

���������	

����	�	��	

�����

���

���

 !�

 !�

 !�

���

�

�

�

�

�

�

"

�

�#�$�

Figure 3.4: Schematic representation of the CMD extension.

3.2. ESPRIT 13

the second array (see figure 3.5). Due to the maximal overlap, the L subarrays
form one ULA of n+ L− 1 elements.

����������

���������	

Figure 3.5: Two maximally overlapping antenna arrays.

A covariance matrix is calculated over each of the L subarrays using equa-
tion 3.1. Due to the maximal overlap of the subarrays, n − 1 elements are
shared by two adjacent subarrays. Therefore (n− 1)2 = n2 − 2n+ 1 elements
are shared by both covariance matrices of two adjacent subarrays. So, for every
additional subarray, n2− (n2−2n+1) = 2n−1 new elements of the additional
covariance matrix have to be calculated.

An average of the L covariance matrices is calculated by:

R =
1
L

L∑
l=1

Rxx,l (3.4)

The extra covariance matrices introduce additional information about the DOA
of the signals. This information is used to retrieve the DOAs.

After the averaging, the covariance difference matrix is calculated. The
covariance difference matrix is used in the MUSIC algorithm instead of the
covariance matrix. The calculation of the covariance difference matrix (∆R) is
not discussed here, because a detailed explanation of this calculation is beyond
the scope of this thesis. The CMD extension is only mentioned as a way to
improve the result of the MUSIC algortihm. See [20] for a complete explanation
of the CMD algorithm.

3.2 ESPRIT

The second DOA algorithm described in this thesis is ESPRIT [14, 15]. It is
also a high resolution DOA algorithm. In contrast to MUSIC, ESPRIT does
not need an array manifold. It uses the property of a time shifted reception
of a signal by two identical subarrays. The two subarrays are separated by a
known distance (displacement vector ∆), and therefore the DOA of that signal
can be determined. The displacement vector ∆ can have arbitrary length.

If the different elements of the two subarrays are all completely identical,
and the distance between two elements is equal, the two subarrays can max-
imally overlap to reduce the number of antennas (see figure 3.5). In case of
two maximally overlapping arrays, the displacement vector ∆ is equal to the
distance between two adjacent elements.

In figure 3.6 the different steps of the algorithm are shown. The algorithm
starts with the composition of a autocovariance matrix and a crosscovariance
matrix. The calculation of the autocovariance matrix is equal to equation 3.1,

14 CHAPTER 3. METHODS FOR DOA ESTIMATION

this equation is repeated below.

Rxx =
1
m

m∑
i=1

XiX
H
i = ARsA

H + σ2I (3.5)

Rxx is the n by n autocovariance matrix, Xi is the ith snapshot of the first
subarray containing n elements, and m is the number of snapshots. The last
part of the equation is the model of the autocovariance matrix used by ESPRIT.
A are the steering vectors of the k sources (so the size of A is n by k), Rs is
the k by k signal covariance matrix, σ2 is the additional noise, and I is an n
by n identity matrix. Rs is a diagonal matrix if the signals are uncorrelated.

The crosscovariance matrix is calculated by:

Rxy =
1
m

m∑
i=1

XiY
H
i = ARsΦHAH + σ2Z (3.6)

where Rxy is the n by n crosscovariance matrix, Xi is the ith snapshot of
the first subarray (n elements), Yi is the ith snapshot of the second subarray
(also n elements), and m is the number of snapshots. The last part of the
equation is the model of the crosscovariance matrix used by ESPRIT. A are
the steering vectors of the k sources (A is a n by k matrix), Rs is the n by n
signal covariance matrix, Φ is a diagonal k by k matrix containing the phase
shifts of the k signals between the two subarrays, σ2 is the additional noise,
and Z is a n by n matrix with ones on the first subdiagonal and zeros elsewhere
(a delay operator). A, Rs, Φ, and σ in equations 3.5 and 3.6 are assumed to
be unknown. The goal of ESPRIT is to retrieve the contents of Φ.

������

���	
�	���	�

��	�

�	���������

�����

��������	�

�	����

���
����	�

������������

������

���	
�	���	�

�������

���

��	
�����

�������

	��

�������

��	���

�	���������

�����

��������	�

�	����

���
����	�

������	��	�����

������������

��	����	����

����������

������

��������	�

���	����� ������

��� ����!

"��

"�!

#
$

���

��!

%

&'

&(

)'

)(

(�*

'

�+'

Figure 3.6: Schematic representation of the ESPRIT algorithm.

The next step is the eigendecomposition of the autocovariance matrix. The
smallest eigenvalue (λmin) of the resulting eigenvalues of the eigendecomposi-
tion is assumed to be de variance of the noise. λmin = σ2 in equations 3.5 and
3.6. Because the smallest eigenvalue is assigned to the noise, the maximum
number of sources is n − 1. See section 3.3.1 for a detailed description of an
eigendecomposition algorithm.

After the eigendecomposition, σ2 is used to eliminate the noise out of the
autocovariance matrix and the crosscovariance matrix. The noise is eliminated
by:

Cxx = Rxx − σ2I = ARsA
H (3.7)

3.3. EIGENPROBLEMS 15

in case of the autocovariance matrix and

Cxy = Rxy − σ2Z = ARsΦHAH (3.8)

in case of the crosscovariance matrix.
The next step is the generalized eigendecomposition of the autocovariance

and the crosscovariance matrices. The result of the generalized eigendecompo-
sition is a vector Λ, containing n generalized eigenvalues. The contents of Λ
are estimates of the phase shifts of the signals between two subarrays, and they
are located on or close to the unit circle. See section 3.3.2 for an explanation
of the generalized eigendecomposition.

After the generalized eigendecomposition, the k generalized eigenvalues
which are closest to the unit circle are selected. The angles of these k gen-
eralized eigenvalues determine the phase shifts of matrix Φ.

When matrix Φ and the wavelength at the center frequency of the signals
are known, the DOAs of the signals can be calculated by:

θk = sin−1

(
φkλ

2π∆

)
(3.9)

where θk is the DOA of the kth signal, φk is the kth element of the diagonal
of Φ, λ is the wavelength of the signal, and ∆ is the distance between the two
subarrays. With this last step the algorithm has finished.

3.3 Eigenproblems

The DOA estimation in MUSIC and ESPRIT is based on an accurate esti-
mation of the eigenvalues and eigenvectors of a covariance matrix. In MUSIC
the eigendecomposition of the covariance matrix is calculated. In ESPRIT the
eigendecomposition of the autocovariance matrix and a generalized eigende-
composition of the autocovariance matrix in combination with the crosscovari-
ance matrix are calculated.

3.3.1 Eigendecomposition

An eigendecomposition is used to calculate the eigenvalues and eigenvectors of
a square matrix. The relation between a square matrix A, an eigenvalue λ and
its corresponding eigenvector v is, by definition [9, 22], described by:

Av = λv (3.10)

The analytical method for calculating the eigenvalues [9] is by solving the
characteristic equation:

det (A− λI) = 0 (3.11)

where A is a square matrix, λ are the eigenvalues of A and I is the identity
matrix. The problem with this analytical method is that there is no formula
or finite algorithm to solve the characteristic equation of a n by n matrix in
case n ≥ 5 [9]. A numerical method can be used to overcome this problem.

A few examples of numerical algorithms are:

• Power Method [9].

16 CHAPTER 3. METHODS FOR DOA ESTIMATION

• Jacobi Method [17,24].

• QR algorithm [11].

The Power Method will find only one eigenvalue and its corresponding eigen-
vector, the eigenvalue with the greatest absolute value. The Jacobi Method
and QR algorithm are both algorithms which calculate all eigenvalues and
eigenvectors simultaneously.

The Power Method is not useful as an eigendecomposition algorithm for
MUSIC or ESPRIT, since it finds only one eigenvalue and eigenvector. The
Jacobi Method and QR algorithm are similar algorithms, and both useful as an
eigendecomposition algorithm for MUSIC and ESPRIT. In [1, 17, 27] is stated
that the QR algorithm is the standard method for computing the eigenvalues
of a general dense matrix, because of the faster convergence of the algorithm.
Therefore the QR algorithm is chosen as the algorithm to compute the eigen-
values and eigenvectors.

QR algorithm

The QR algorithm starts with the decomposition of matrix A into a Q and a
R matrix.

A = A0 = Q0R0 (3.12)

where Q is a orthogonal matrix2 and R is an upper triangular matrix. The
next step is to calculate a new A matrix by multiplying the Q0 and the R0

matrices in the reverse order.

A1 = R0Q0 (3.13)

During the repetition of these two steps, the values on the diagonal of matrix
A converge. The converged values on the diagonal of matrix A represent the
eigenvalues of matrix A.

The calculation of the eigenvectors of matrix A is done by multiplying all
Q matrices calculated during the calculation of the eigenvalues.

S0 = Q0 (3.14)

S1 = S0Q1 (3.15)

The last multiplication is repeated for every Q matrix. After multiplication of
all Q matrices, the columns of matrix S represent the eigenvectors of matrix
A.

The complete algorithm can be written as:

A = Q0R0, S0 = Q0

Ak+1 = RkQk = Qk+1Rk+1, Sk = Sk−1Qk, k = 0, 1, 2, . . .
(3.16)

The QR algorithm in its original form will converge to the correct eigenval-
ues only if the eigenvalues of matrix A are real. The covariance matrices used
in MUSIC and ESPRIT are Hermitian3. One of the properties of a hermitian

2A square matrix Q is called an orthogonal matrix if it satisfies QT Q = I.
3In a Hermitian matrix the element on the ith row and jth column is the complex

conjugate of the element on the jth row and ith column. Therefore X = XH .

3.3. EIGENPROBLEMS 17

matrix is that it has real eigenvalues, so the QR algorithm can be used without
any extensions.

The columns of matrix S converge to the eigenvectors only if matrix A
is hermitian and positive definite (i.e. matrix A has positive eigenvalues). If
matrix A is not hermitian or not positive definite, the Inverse Power Method [9]
can be used to calculate the eigenvectors out of the found eigenvalues.

QR decomposition

A QR decomposition based on complex Givens rotations is used to calculate
the Q and the R matrices. Givens rotations can rotate a vector by a certain
angle and are the core operations in the QR decomposition discussed here.
Givens rotations can introduce zeros in a vector or a matrix. This property is
used in the QR decomposition. Parts of the text and equations written below
are comparable to [7].

A real Givens rotation is given by:(
cos θ sin θ
− sin θ cos θ

)(
a
b

)
=
(
r
0

)
(3.17)

where θ = arctan
(
b
a

)
, a and b are real values and r =

√
a2 + b2. The first

matrix in equation 3.17 is the rotation matrix.
A complex Givens rotation is given by:(

cos θ1 (sin θ1)eiθ2
(− sin θ1)e−iθ2 cos θ1

)(
ar + iai
br + ibi

)
=
(
rr + iri

0

)
(3.18)

where ar and ai together form a complex value, this also holds for br, bi and
rr, ri. The complex rotation matrix is derived from the real rotation matrix
by applying a unitary transformation:

U =
(
e−iθa 0

0 e−iθb

)
(3.19)

To reduce the number of complex multiplications, the complex conjugate of
the unitary transformation above is applied to the left side of the real Givens
rotation matrix. As a result, the diagonal of the rotation matrix becomes real.
The resulting complex Givens rotation matrix is given by:(

eiθa 0
0 eiθb

)(
cθ1 sθ1
−sθ1 cθ1

)(
e−iθa 0

0 e−iθb

)
=
(

cθ1 (sθ1)eiθ2
(−sθ1)e−iθ2 cθ1

)
(3.20)

where cθ1 = cos θ1 and sθ1 = sin θ1.
θ1 is calculated by:

θ1 = arctan
(
|b|
|a|

)
(3.21)

θ2 is calculated by:
θ2 = θa − θb (3.22)

|a| and θa are caculated by:

θa = arctan
(
ai
ar

)
, |a| =

√
a2
r + a2

i (3.23)

18 CHAPTER 3. METHODS FOR DOA ESTIMATION

and |b| and θb are caculated by:

θb = arctan
(
bi
br

)
, |b| =

√
b2r + b2i (3.24)

The decomposition of a matrix A in a Q and a R matrix [26] is explained
by an example of a 3 by 3 matrix. Let matrix A be defined by:

A =

 |r|eiθr |s|eiθs |t|eiθt

|u|eiθu |v|eiθv |w|eiθw

|x|eiθx |y|eiθy |z|eiθz

 (3.25)

The first step of the decomposition is zeroing element |x|eiθx . Rotation matrix
Q3,1 is composed to rotate this element.

Q3,1 =

 cos θ3,11 0 (sin θ3,11)eiθ
3,1
2

0 1 0
(− sin θ3,11)e−iθ

3,1
2 0 cos θ3,11

 (3.26)

where θ3,11 = arctan
(
|x|
|r|

)
, and θ3,12 = θr − θx. Matrices Q3,1 and A are

multiplied to calculate matrix A′.

A′ = Q3,1A =

 |r′|eiθr
′ |s′|eiθs

′ |t′|eiθt
′

|u|eiθu |v|eiθv |w|eiθw

0 |y′|eiθy
′ |z′|eiθz

′

 (3.27)

The second step of the decomposition is zeroing element |u|eiθu . A second
rotation matrix (Q2,1) is composed to rotate this element.

Q2,1 =

 cos θ2,11 (sin θ2,11)eiθ
2,1
2 0

(− sin θ2,11)e−iθ
2,1
2 cos θ2,11 0

0 0 1

 (3.28)

where θ2,11 = arctan
(
|u|
|r′|

)
, and θ2,12 = θ′r − θu. Matrices Q2,1 and A′ are

multiplied to calculate matrix A′′.

A′′ = Q2,1A
′ =

 |r′′|eiθr
′′ |s′′|eiθs

′′ |t′′|eiθt
′′

0 |v′|eiθv
′ |w′|eiθw

′

0 |y′|eiθy
′ |z′|eiθz

′

 (3.29)

The third step of the decomposition is zeroing element |y′|eiθy
′. A third rotation

matrix (Q3,2) is composed to rotate this element.

Q3,2 =

 1 0 0
0 cos θ3,21 (sin θ3,21)eiθ

3,2
2

0 (− sin θ3,21)e−iθ
3,2
2 cos θ3,21

 (3.30)

where θ3,21 = arctan
(
|y′|
|v′|

)
, and θ3,22 = θ′v − θ′y. Matrices Q3,2 and A′′ are

multiplied to calculate matrix A′′′.

A′′′ = Q3,2A
′′ =

 |r′′|eiθr
′′ |s′′|eiθs

′′ |t′′|eiθt
′′

0 |v′′|eiθv
′′ |w′′|eiθw

′′

0 0 |z′′|eiθz
′′

 (3.31)

3.3. EIGENPROBLEMS 19

The lower left triangle of matrix A′′′ is completely zeroed, therefore:

R = A′′′ = Q3,2Q2,1Q3,1A (3.32)

The fourth and last step of the QR decomposition is the calculation of the final
Q matrix. Matrix Q is calculated by:

Q = QH3,1Q
H
2,1Q

H
3,2 (3.33)

After the calculation of matrix Q, the QR decomposition has finished.
To decompose n by n matrices, the rotation matrix is extrapolated to:

Qi,j =

1
. . .

1

cos θi,j1 (sin θi,j1)eiθ
i,j
2

1
. . .

1

(− sin θi,j1)e−iθ
i,j
2 cos θi,j1

1
. . .

1

(3.34)

The subscript i and j after Q are the row and column index of the element in
matrix A which will be zeroed. The generalized equation to calculate the n by
n upper triangular matrix R is given by:

R=Qn,n−1Qn−1,n−2Qn,n−2 . . . Qn−2,1Qn−1,1Qn,1A=

 −1∏
j=−n+1

n∏
i=−j+1

Qi,−j

A
(3.35)

The generalized equation to calculate the n by n final orthogonal matrix Q is
given by:

Q = QHn,1Q
H
n−1,1Q

H
n−2,1 . . . Q

H
n,n−2Q

H
n−1,n−2Q

H
n,n−1 =

n−1∏
j=1

−j−1∏
i=−n

QH−i,j (3.36)

3.3.2 Generalized eigendecomposition

The generalized eigendecomposition is used to calculate the generalized eigen-
values and eigenvectors of two square matrices. The relation between two
square matrices A and B, an eigenvalue λ and its eigenvector v is, by defini-
tion [22], described by:

Av = λBv (3.37)

20 CHAPTER 3. METHODS FOR DOA ESTIMATION

If B is invertible, the relation can be rewritten into:

B−1Av = λv (3.38)

which is the relation of the normal eigendecompostion. In most situations it is
preferable not to perform the inversion of B, but to calculate the generalized
eigendecomposition. The analytical method for calculating the generalized
eigenvalues [22] is by solving the characteristic equation:

det (A− λB) = 0 (3.39)

where A and B are n by n matrices, and λ are the generalized eigenvalues
of the matrices A and B. With this analytical method for the generalized
eigendecomposition the same problem arises as with the eigendecomposition,
there is no formula or finite algorithm to solve the characteristic equation of n
by n matrices where n ≥ 5 [9]. The solution to this problem is also to use a
numerical method. The QZ algorithm [4, 8] is an example of such a numerical
method which is commonly used. In the next chapter it will become clear why
the QZ algorithm is not treated in detail.

3.4 Comparison of MUSIC and ESPRIT

Both algorithms make use of an eigendecompostion. One iteration of the eigen-
decomposition has a computational complexity of O(n3) [28], where n is the
number of antennas, this step has greatest computational complexity in both
algorithms. The number of iterations depend on the accuracy of the eigenval-
ues. It is not unlikely that the number of iterations can grow to n or more, and
therefore increase the order of complexity of the eigendecomposition algorithm.

In this thesis a 1-dimensional ULA is used for both algorithms. If the di-
mensions of the antenna array expand to 2 or 3 dimensions, the computational
load of both algorithms grows linear with the dimensions, since every dimen-
sion can be seen as a 1-dimensional array. In every dimension k angles of
interest are selected, therefore the angles of interest grow exponentially with
the dimensions. To find the DOAs of the k sources, all angles of interest have
to be examined.

The model used in ESPRIT is based on a situation where the signals of the
sources are uncorrelated. In this case the signal covariance matrix Rs is equal to
the identity matrix I. In most practical cases there is at least some correlation
between the sources, so Rs is not strictly equal to I. Therefore, the noise is not
completely eliminated out of the autocovariance and crosscovariance matrices.
Due to the difference between the noise model of ESPRIT and the practical
situation, the DOA estimations become less accurate. In contrast to ESPRIT,
MUSIC needs a certain level of noise, because MUSIC has to assign a noise
subspace.

The last difference between MUSIC and ESPRIT mentioned in the thesis
is the memory used by MUSIC to store the array manifold. The size of this
memory depends on the resolution of the search on 1 dimension of the array.
ESPRIT does not have to store any information about the antenna array. On
the other hand, ESPRIT requires two identical subarrays.

In the next chapter some practical situations are simulated in MUSIC and
ESPRIT. The results of the simulations are used to compare the accuracy of
both algorithms.

Chapter 4

Modeling and simulations

A model of MUSIC and a model of ESPRIT are made in Matlab to analyse the
performance, and the effects of different test scenarios on the DOA estimation.
MUSIC and ESPRIT are tested in the first set of simulations. MUSIC with
the CMD extension is tested in the second set of simulations.

4.1 MUSIC and ESPRIT simulations

To analyse the performance of MUSIC and ESPRIT a test case is defined.

• The antennas are arranged in a ULA with a distance of λ/2 of the ref-
erence frequency between the antennas. The distance λ/2 is a critical
element distance [25]. A smaller distance increases the width of the main
beam. A larger distance introduces additional main beams.

• The signals of 5 sinusoid sources are impinging at the antenna array.
The number of sources is chosen in combination with the locations of the
sources to create a specific sitation.

• The sources are located at angles of respectively -30, -8, 0, 3 and 60
degrees with respect to a vector orthogonal to the antenna array. The
ability of the algorithms to detect the sources at -8, 0, and 3 degrees is
interesting, because the spatial difference between these sources is small.
The sources at -30 and 60 degrees are used to check if the estimation
error changes if the angle becomes larger.

• The different sources have a small difference in center frequency. This
small difference is needed to prevent full correlation of the signals. The
differences in center frequency are by steps of −0.1% of the reference
frequency per signal. This step size causes sufficient decorrelation, and
the DOA estimation error can be ignored.

The parameters changed between the different simulations are:

• the SNR (60dB, 40dB and 20dB).

• the number of snapshots (2048, 1024 and 512 snapshots).

• the number of antennas (32, 16 and 8 antennas).

21

22 CHAPTER 4. MODELING AND SIMULATIONS

The values of these parameters are chosen after a parameter sweep on the test
case. These parameters showed interesting observations. For every configu-
ration of simulation parameters, 40 datasets are determined. Each dataset
consists of the signals of the 5 sources added with white noise per signal. The
variance of the noise is the same in all 40 datasets to achieve the correct SNR.
Eventually, for every configuration of simulation parameters the DOA of 200
sources are estimated.

In ESPRIT two subarrays are used. The size of each subarray is equal to
the number of antennas parameter. In this way the sizes of the correlation
matrices used in MUSIC and ESPRIT are equal. As a consequence, the total
number of antennas used in ESPRIT is one more.

Reducing the SNR

The best simulation results for all algorithms are obtained if the SNR is 60dB
(largest value used in the simulations). In figure 4.1a the result of a simulation
is shown. In this example the number of antennas used in the array is 16,
the number of snapshots is 2048 and the SNR is 60dB. As can been seen in
figure 4.1a, all 200 DOA estimations per algorithm have an error of 0 degrees,
so in this case all DOAs are correctly estimated. In MUSIC the spectrum is
calculated using a resolution of 1 degree. The estimation results of ESPRIT are
rounded to the closest integer value, so all estimation errors are always integer
values. In section A.1 of the appendix, all results of the simulations are shown.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

(a) 60dB

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

(b) 20dB

Figure 4.1: Two simulation results with different SNRs. (2048 snapshots, 16 anten-
nas)

If the SNR is reduced, the difference between the eigenvalues of the signals
and the eigenvalues of the noise become smaller. In case of the MUSIC algo-
rithm, the peaks in the MUSIC spectrum (see figure 3.2) become smaller with
respect to the noise level. High peaks are desired to distinguish the sources
more easily. In case of the ESPRIT algorithm, more (generalized) eigenvalues
are situated close to the unit circle. A clear distinction between the eigenvalues
of the sources close to the unit circle and the other eigenvalues is desired to

4.1. MUSIC AND ESPRIT SIMULATIONS 23

select the eigenvalues of the sources more easily. The variance of the errors of
MUSIC due to smaller SNR is less than the variance of the errors of ESPRIT.

Reducing the number of snapshots

The number of snapshots used to estimate the covariance matrix determines
the variance of the off-diagonal elements of Rs (equations 3.5, and 3.6), and
therefore the estimated correlation between the signals. If less snapshots are
used, the signals seem to be more correlated. In MUSIC, the level of correlation
determines the size of all the peaks and the distinction of closely situated peaks
in the MUSIC spectrum. A low level of correlation between the signals results
in high peaks in the spectrum. A high level of correlation result in small peaks
in the spectrum. If the signals are fully correlated, no peaks appear in the
spectrum, and therefore, no DOA estimation can be done.

In figure 4.2a the sizes of the peaks have relatively large differences, despite
of an equal SNR. Probably this is a consequence of the small differences in
center frequencies of the sources.

−100 −50 0 50 100
−15

−10

−5

0

5

10

15

20

25

30

35

Degrees

dB

(a) 2048 snapshots

−100 −50 0 50 100
−15

−10

−5

0

5

10

15

20

25

30

35

Degrees

dB

(b) 1024 snapshots

Figure 4.2: The effect of different numbers of snapshots on the MUSIC spectrum.
(16 antennas, 20dB SNR)

In ESPRIT, the level of correlation does not affect the detection of closely
situated sources, because the DOA of the signals is determined by the angle
of the generalized eigenvalues (the angle represents the phase shift of a signal
between two antennas, and therefore the DOA). A small difference of the angle
of two closely situated generalized eigenvalues is detectable in most cases. The
covariance matrices are estimated using a finite number of snapshots, therefore
the eigenvalues of these matrices contain an error. The variance of this error
decreases linearly with the number of snapshots [2]. Since the DOA are derived
out of the eigenvalues, reducing the number of snapshots in ESPRIT does
affect the variance of the DOA estimation error. If less snapshots are used, the
variance of the DOA estimation error increases, see figure 4.3. The effect of
reducing the number of snapshots is less than the effect of reducing the SNR
on the variance of the DOA estimation error.

24 CHAPTER 4. MODELING AND SIMULATIONS

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E
rr

or
s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

(a) 2048 snapshots

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

(b) 1024 snapshots

Figure 4.3: The result of two simulations with a different number of snapshots. (16
antennas, 20dB SNR)

Reducing the number of antennas

The number of antennas in the antenna array affects the spatial resolution of
both DOA algorithms. More antennas result in a higher spatial resolution, and
less antennas reduce the spatial resolution. In MUSIC the peaks in the MUSIC
spectrum become narrower when more antennas are used, and therefore two
adjacent sources may be located with a smaller mutual distance. Figure 4.4
shows the effect of different numbers of antennas on the MUSIC spectrum.
In figure 4.4a the small peaks in the noise level located at the mirrored angle
of a DOA of a signal exist due to the fact that the implementation of the
Hilbert transform in Matlab suffers from the effect of a turn-on and turn-
off transient. If more snapshots are used, the peaks become smaller and will
disappear eventually. If two peaks merge into one peak, the MUSIC algorithm
still has to find 5 peaks. Therefore, one of the small peaks mentioned above
is chosen. This results in a wrong estimation of the DOA of source. In figure
4.5b several times the same wrong peak is chosen, which results in the peak at
-63 degrees.

In ESPRIT, more antennas also result in a higher spatial resolution. How-
ever, the effect of a higher resolution due to more antennas is less noticeable,
because two closely situated sources are already detectable, and therefore it
only affects the accuracy of the angles of the generalized eigenvalues.

4.2 CMD MUSIC simulations

To analyse the performance of MUSIC in combination with the CMD extension,
the test case of the previous section is used. The only difference with respect
to the test case of the previous section is the center frequency of the sources.
In the test case used in this section, all sources have the same center frequency.
Due to the equal center frequency, the signals of the sources are fully correlated,
because all signals are sinusoids. The parameters changed between the different
simulations are:

• the SNR. (20dB, 10dB, 5dB, 0dB and -5dB)

4.2. CMD MUSIC SIMULATIONS 25

−100 −50 0 50 100
−20

−15

−10

−5

0

5

10

Degrees

dB

(a) 32 antennas

−100 −50 0 50 100
−20

−15

−10

−5

0

5

10

Degrees

dB

(b) 16 antennas

Figure 4.4: The effect of different numbers of antennas on the MUSIC spectrum.
(1024 snapshots, 40dB SNR)

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

(a) 32 antennas

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

(b) 16 antennas

Figure 4.5: The result of two simulations with a different number of antennas. (1024
snapshots, 40dB SNR)

• the number of snapshots. (512, 256, 128, 64 and 32 snapshots)

These parameters are different from the parameters used in the previous sec-
tion, because the previous parameters showed almost no differences in the
results of the simulations of MUSIC including the CMD extension. The new
parameters are chosen after a parameter sweep on the test case using the CMD
extension. The number of antennas does not change between the different sim-
ulations and is fixed at 16 antennas. This fixed number is chosen to reduce
the total number of simulations, and the previous simulations of the MUSIC
algorithm showed that 16 antennas is a good choice. Per simulation 200 DOA
estimations are done (40 datasets with 5 signals each).

In figure 4.6 the superior performance of MUSIC including the CMD ex-
tension over the original version of MUSIC is shown. In figure 4.6a the small
peak at an error of -59 degrees arise from the the fact that two closely situated
peaks in the MUSIC spectrum merge into one peak if the signals are highly
correlated. The MUSIC algorithm used in the simulations must always find the

26 CHAPTER 4. MODELING AND SIMULATIONS

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E
rr

or
s

Error in degrees

(a) MUSIC

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

(b) CMD MUSIC

Figure 4.6: The result of two simulations. (512 snapshots and 20dB SNR)

5 largest peaks. As a consequence a smaller peak in the noise level is wrongly
assumed to be a DOA of a source. In this example always the same peak
with an error of about -59 degrees with respect to the correct peak is chosen,
due to the turn-on and turn-off transient of the implementation of the Hilbert
filter in Matlab, explained earlier. In figure 4.6b almost all DOA estimations
are correct. In section A.2 of the appendix, all results of the simulations are
shown.

Reducing the SNR

If the SNR is reduced, the number of incorrect DOA estimations increases.
Figure 4.7 shows the effect of reducing the SNR of the signals. In this example
64 snapshots are used to calculate the correlation matrix. The DOA estimation
errors are spread more randomly over the different angles. In figure 4.7, two
cases of CMD MUSIC are considered. A simulation of the basic algorithm of
MUSIC using equal parameters (10dB, 0dB SNR and 64 snapshots) results
in arbitrary DOA estimations. Therefore, it is not interesting to compare a
simulation of basic MUSIC and CMD MUSIC.

Reducing the number of snapshots

Reducing the number of snapshots in CMD MUSIC has the same effect as
reducing the number of snapshots in the original version of MUSIC. Two
closely situated peaks in the spectrum merge into one peak, and the sizes of
the peaks decrease, when the number of snapshots reduces. In figure 4.8b
the small peaks at -61 and 30 degrees are incorrect DOA estimations due to
the fact that two peaks are merged and a peak in the noise level is chosen
as a DOA. These two small peaks are again a consequence of the imperfect
implementation of the Hilbert transform in Matlab.

4.3. CONCLUSION 27

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

(a) 10dB SNR

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

(b) 0dB SNR

Figure 4.7: The result of two simulations. (64 snapshots)

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

(a) 64 snapshots

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

(b) 32 snapshots

Figure 4.8: The result of two simulations. (20dB SNR)

4.3 Conclusion

A model of MUSIC and a model of ESPRIT are simulated in Matlab. A test
case as defined in section 4.1 is used to compare both algorithms. For the
comparison of both algorithms, only the results of the simulations are consid-
ered. The simulations show that MUSIC has a better performance compared
to ESPRIT when the SNR is low. Figure 4.9 shows the number of errors of all
simulations with 20dB SNR (the lowest SNR used in the simulations). Table
4.1 shows the number of antennas and the number of snapshots used in these
simulations.

When less snapshots are used to calculate the covariance matrix, the per-
formance of ESPRIT is superior to the performance of MUSIC (in case of
high SNR). Changing the number of antennas does not result in a significant
difference in performance between both algorithms.

The simulations as described in section 4.2 show that the performance of
MUSIC increases considerably if the CMD extension is used. The impinging
signals may be fully correlated. To achieve the same performance, the number

28 CHAPTER 4. MODELING AND SIMULATIONS

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

Simulation

E

rr
or

s

20dB SNR Simulations

Music
Esprit

Figure 4.9: Comparison of all simulations with 20dB SNR.

Simulation Antennas Snapshots
1 32 2048
2 32 1024
3 32 512
4 16 2048
5 16 1024
6 16 512
7 8 2048
8 8 1024
9 8 512

Table 4.1: Number of antennas and snapshots used in the simulation.

of snapshots reduces significantly.
Both algorithms, MUSIC and ESPRIT, have comparable computational

complexity. The largest complexity in both algorithms is at least O(n3) in the
eigendecomposition. Because the performance of MUSIC is better than the
performance of ESPRIT when the SNR is low, the MUSIC algorithm is chosen
to be implemented on reconfigurable hardware. Initially the basic algorithm is
implemented.

Chapter 5

Algorithm implementation

The MUSIC algorithm is implemented on the Montium2 [19]. The MUSIC
algorithm is chosen, because the performance of MUSIC is better compared
to ESPRIT if the SNR is low. The Montium2 architecture is chosen, because
it is designed for the CRISP project, to process high performance streaming
applications such as beamforming. The Montium2 is one of the tiles in the
multiprocessor reconfigurable architecture.

5.1 Montium2

The Montium2 architecture consist of 16 functional units, 5 Static Random
Acces Memory (SRAM) units (1024 32-bit words per unit), and a number of
shared register files. The interconnection between the different parts of the
architecture is reconfigurable. Because of the reconfigurable interconnection,
the interconnection between all 16 functional units can be determined at design
time by the application engineer. It is also possible to use a subset of all
functional units in the datapath, depending of the application. See figure 5.1
for a simplified schematic representation of the Montium2 architecture.

The 16 functional units of the Montium2 architecture are divided into seven
different categories. The Montium2 has 4 S units (S0 to S3), 2 P units (P0
and P1), 2 M units (M0 and M1), 5 A units (A0 to A4), 1 LC unit (LC),
1 EI unit (EI) and 1 EO unit (EO). The S and P units can perform general
DSP operations (e.g. addition, subtraction, etc). The S units can, additionally,
perform shift operations. The P units can, additionally, perform compare and
pack operations. The M units can perform multiply operations. One M unit
contains two multipliers, and is therefore also called a dual multiplier. The A
units can perform address and memory load/store operations. The LC unit
can perform loop counter operations. The EI unit can perform external input
operations. The EO unit can perform external output operations. Each unit
can perform one operation per clock cycle and all operations take a single clock
cycle. The Montium2 can calculate one complex multiplication per clock cycle.
The maximum clock frequency is targeted at 200 MHz.

The Montium2 targets the 16-bit DSP algorithm domain. Therefore, the
word size of the Montium2 is 16-bit. In most DSP algorithms complex data
samples are used, consisting of one 16-bit word for the real part of the sample
and one 16-bit word for the imaginary part of the sample. In the Montium2 the

29

30 CHAPTER 5. ALGORITHM IMPLEMENTATION

Figure 5.1: Simplified schematic representation of the Montium2 architecture.

width of the datapath is 32-bit, therefore the 16-bit real and 16-bit imaginary
part of a complex number can be transported simultaneously. The datapath of
the S units is locally expanded to 40-bit. The additional 8 bits are accumulator
bits. A 40-bit word cannot be stored in memory, it has to be transformed into
a 32-bit word by a shift operation, because the width of the SRAM units are
32-bit.

The S, P, and M units can operate in 3 different modes:

• 32-bit double word (dword) mode

• vertical vector mode

• horizontal vector mode

In 32-bit dword mode the S and P units interpret the 32-bit dword as one
word. The M units use only the 16 Least Significant Bits (LSBs) of the 32-bit
dword, because the multipliers inside the M units are 16-bit. The output of a
multiplier is 32-bit. In 32-bit dword mode only one multiplier of an M unit is
used, and the output of an M unit is one 32-bit dword.

In vertical vector mode and horizontal vector mode a 32-bit dword is in-
terpreted as a vector containing two 16-bit words. In figure 5.2 the relations
between the input and the output of the two vector modes are shown. In verti-
cal vector mode the upper 16 bits of the output dword are calculated out of the
upper 16 bits of the two input dwords. The lower 16 bits of the output dword
are calculated out of the lower 16 bits of the two input dwords. In horizontal
vector mode the upper 16 bits of the output dword are calculated out of the
first input argument. The lower 16 bits of the output dword are calculated

5.2. MUSIC ALGORITHM 31

out of the second input argument. The two multipliers of an M unit are used
simultaneously in both vector modes, and the output of an M unit are two
32-bit dwords.

����� �����

������

��������

�� ��

(a) Vertical mode.

�� ��

�� ���� ��

����� �����

������

(b) Horizontal mode.

Figure 5.2: Vector modes of the Montium2.

Additionally, the S units can operate in 40-bit accumulator mode. In this
mode an S unit operates as an 40-bit accumulator. Because of the 8 additional
bits more dwords can be accumulated before a shift operation transforms the
40-bits into a 32-bit dword. The 32-bit result is calculated using less round
off actions, and therefore the result is calculated more accurately. All other
functional units always operate in 32-bit dword mode. In all modes the unit
operands are interpreted, either as signed integer numbers, or as signed fixed
point numbers.

The architecture and instruction set of the Montium2, as well as the name
itself, are subject to changes, because the Montium2 is still in its development
phase. The implementation described in the next sections is based on the ar-
chitecture and instruction set as known at 17 september 2008. Because the
Montium2 architecture and instruction set are subject to changes, the Mon-
tium2 compiler is not available. The programs written for the Montium2 can be
compiled to a General Purpose Processor, to verify the functionality of the pro-
grams. A prediction of the computational load can only be done by a manual
estimation of the mapping of the instructions onto the Montium2 architecture.

5.2 Music algorithm

The implementation of the MUSIC algorithm is based on a 16 element ULA.
1024 snapshots are used to calculate the covariance matrix, and the DOAs of
5 sources have to be estimated. A 16 element ULA is chosen because a 16 by
16 covariance matrix contains 256 elements, and this is a useful size because of
the memory structure of the Montium2. 1024 snapshots are chosen because it
is a power of 2, and therefore in an average calculation the division reduces to
a shift operation. Estimation of 5 sources is chosen because of the same reason
as explained in section 4.1. These parameters are also used in simulations
described in section 4.1, and these simulations showed that it are practical
parameters as well. This implementation of the MUSIC algorithm can be
executed on one Montium2, and it is assumed that the complete algorithm will
fit into the program memory of the Montium2. The size of the program memory
is still unknown, therefore it cannot be said if it is a reasonable assumption.
The pseudo code listed in the next sections is a mix of human language and a
simplified version of the Montium2C code.

32 CHAPTER 5. ALGORITHM IMPLEMENTATION

5.2.1 Covariance matrix

In this section the implementation of the calculation of the covariance matrix
is discussed. The calculation of the covariance matrix is the first step of the
MUSIC algorithm. This implementation of the MUSIC algorithm presumes
the snapshots to be stored in some external memory.

Implementation

Because of the limited memory space in the Montium2 the snapshots are loaded
in blocks of 64 snapshots. The 64 snapshots are stored into MEM0 and the
conjugated values of those 64 snapshots are stored into MEM1 (see figure 5.4).
The conjugated snapshots represent the Hermitian adjoint of the snapshots.
The conjugate operation is done by the Montium2. A complex value a is
conjugated by vertical vector mode operation:

a_conj = addsub_v(0, a);

The value 0 and the real part of a are summed, and the imaginary part of a
is subtracted from 0. The addsub_v instruction can be executed on S and P
units.

A covariance matrix is calculated out of the 64 snapshots using equation:

Rxx =
1
m

m∑
i=1

XiX
H
i (5.1)

This equation is equal to equation 3.1. This covariance matrix calculation is
implemented by:

void avg_covmatr_64snapsh(*memory_real, *memory_imag)
{
for (i = 0; i < 16; i++)
{
for (j = 0; j < 16; j++)
{
acc_real = 0;
acc_imag = 0;
for (k = 0; k < 64; k++)
{
c = compl_mul(snapshot64[i+k*16], snapshot64_conj[j+k*16]);
acc_real = add_a(acc_real, c.real);
acc_imag = add_a(acc_imag, c.imag);

}
memory_real[j*16+i] = asr_a(acc_real, 6);
memory_imag[j*16+i] = asr_a(acc_imag, 6);
}
}

}

The pointers *memory_real and *memory_imag point to a block of 256 dwords
in respectively MEM2 and MEM3, where the real and imaginary part of Rxx
are stored. The array snapshot64 contains the values of 64 snapshots. The

5.2. MUSIC ALGORITHM 33

array snapshot64_conj contains the conjugated values of the same 64 snap-
shots. The variable c is a structure containing two 32-bit dwords, representing
the real and imaginary part of a complex value. An element of Rxx is calculated
by accumulating (add_a) all results of 64 complex multiplications. The accu-
mulated value is shifted to the right (asr_a) by 6 positions, which is equal to a
division by 64. The instructions add_a and asr_a are operations of an S unit in
accumulator mode. Three successive blocks of 64 snapshots are processed in an
identical way to fill MEM2 and MEM3 with the real and imaginary values of 4
covariance matrices. The function compl_mul is an implementation of the com-
plex multiplication. A complex multiplication consists of four multiplications
and an addition and subtraction ((ar+iai)(br+ibi) = arbr−aibi+i(arbi+aibr)).
These operations can be mapped on the Montium2 efficiently in a pipelined
structure.

struct complex_ri compl_mul(a, b)
{
mul_v(a, b, PSL1S, &abh, &abl);
mul_v(a, b, SWAP_B | PSL1S, &absh, &absl);
c.real = sub(abh, abl);
c.imag = add(absh, absl);
return c;
}

In the first clock cycle the two M units calculate the four multiplications
using the mul_v instruction. This instruction multiplies values a and b in verti-
cal vector mode. The operands of the M units are represented as 16-bit signed
fixed point numbers in the Q(0,15) format (1 sign bit (not denoted), 0 integer
bits, and 15 fractional bits). The result of the multiplication is represented in
Q(1,14) format. The option PSL1S of the mul_v instruction shifts the result
of the multiplication to the left by 1 position, to correct the representation of
the result into the Q(0,15) format. The option SWAP_B interchanges the two
elements of the second input operand, to calculate the values of arbi and aibr.
All instruction options do not require additional clock cycles. The results of
the multiplications are four intermediate 32-bit dwords.

In the second clock cycle, two dwords are input for a subtraction in an S
unit. The other two dwords are input for an addition in an other S unit. The
subtraction and addition are both executed in 32-bit dword mode. The result
of the subtraction represents the real part of a complex value in 32-bit. The
result of the addition represents the imaginary part of the same complex value
in 32-bit. The function compl_mul returns a structure containing these two
dwords.

The function compl_mul_to_dword() combines the result of function compl_mul()
in a vector representation of one dword.

void compl_mul_to_dword(a, b, *c)
{
c_temp = compl_mul(a, b);
*c = packhh(c_temp.real, c_temp.imag);
}

The instruction packhh selects the 16 Most Significant Bits (MSBs) of both
dwords, and stores them into the 16 MSBs and 16 LSBs of one dword. The

34 CHAPTER 5. ALGORITHM IMPLEMENTATION

packhh instruction is executed in the third clock cycle in a P unit. Figure 5.3
shows the pipeline of a complex multiplication on the Montium2.

� �

� �

�

������	

������

�������

Figure 5.3: Three stage pipeline of the complex multiplication

As a consequence of the pipelined execution, the complex multiplication
produces a result every clock cycle. The latency of one complex multiplication
depends on the representation of the input of the subsequent instructions. If
the next instructions need a separate real and imaginary part the latency is
2 clock cycles. If the next instructions need a combined representation in one
dword, the latency is 3 clock cycles. For now the complex multiplication is
implemented in a function, in subsequent versions of the Montium2C compiler
instructions will be introduced to support the pipelined execution. Therefore,
a pipelined execution of the complex multiplication is assumed.

An average of the 4 covariance matrices is calculated and the real and
imaginary parts are combined into 32-bit dwords.

void avg_4matrices(*input_mem_real, *input_mem_imag, *output_mem)
{
for (i = 0; i < 256; i++)
{
acc_real = 0;
acc_imag = 0;
for (j = 0; j < 4; j++)
{
acc_real = add_a(acc_real, input_mem_real[j*256+i]);
acc_imag = add_a(acc_imag, input_mem_imag[j*256+i]);
}
real = asr_a(acc_real, 2);
imag = asr_a(acc_imag, 2);

5.2. MUSIC ALGORITHM 35

output_mem[i] = packhh(real, imag);
}
}

Pointer *input_mem_real points to MEM2 and pointer *input_mem_imag points
to MEM3. Pointer *output_mem points to a block of 256 dwords in MEM4,
where the average covariance matrix is stored. The real and imaginary parts
of the ith elements of the four matrices stored in MEM2 and MEM3 are ac-
cumulated and shifted to the right by 2 positions (division by 4) to calculate
element i of the average covariance matrix. The instruction packhh selects the
16 MSBs of both dwords, and stores them into the 16 MSBs and 16 LSBs of
one dword. The 12 remaining blocks of 64 snapshots are processed as described
above to fill MEM4 with 4 covariance matrices.

The last step of the calculation of the covariance matrix is the calculation
of the average covariance matrix of the 4 matrices stored in MEM4. The result
is the final covariance matrix, containing information of 1024 snapshots.

for (i = 0; i < 256; i++)
{
a = add_v(MEM4[i], MEM4[i+256], PSR1);
b = add_v(MEM4[i+2*256], MEM4[i+3*256], PSR1);
c = add_v(a, b, PSR1);
compl_mul_to_dword(c, div_val, &MEM0[i]);
}

The values of the 4 matrices are combined, using an addertree structure. In-
struction add_v is an add instruction in vertical vector mode. The option PSR1
of the add_v instruction is used to shift the result of the addition to the right
by 1 position (a division by 2). The advantage of using the add_v instruc-
tion including the PSR1 option is that an average calculation of two values van
be executed in 1 clock cycle. The resulting values are divided by 16, to keep
the eigenvalues smaller than 1. The size of the eigenvalues scales linear with
the size of the values of the matrix, without influencing the direction of the
eigenvectors [9]. The value 16 is a result of an empirical observation. The
division is implemented by a multiplication with 1/16 (div val). The funtion
compl_mul_to_dword() is an implementation of the 3 staged complex multi-
plication. The final matrix is stored in the first 256 dwords of MEM0.

��������	

�
���

���

���	�

�	�	�

���

���

���

���

���	�

�	�	�

��

��

��

��

���	�

	�	��

��

��

��

��

���	�

	�	��

��

���	

�	�	�

��

���	�

�	�	�

����������

���������� ���������� ����������

Figure 5.4: Memory usage during the covariance matrix calculation

36 CHAPTER 5. ALGORITHM IMPLEMENTATION

The numbers inside the memory blocks of figure 5.4 describe de number of
snapshots used to calculate the data, stored in that block. The numbers under
the memory blocks describe the representation of the data, 2 × 16 for vector
mode, and 1× 32 for dword mode.

Accuracy

In the implementation both 16-bit and 32-bit values are used. The LSB values
in this section are defined by the LSB of a 16-bit value.

The worst-case quantization error of the elements in a snapshot is 1
2LSB.

A fixed point multiplication of two values containing an error of 1
2LSB, results

in a value containing a worst-case error of 1LSB. A fixed point addition or
subtraction increases the worst-case error by 1LSB. In the first stage of the
complex multiplication 4 multiplications are executed in parallel, so the 4 re-
sults contain a worst-case error of 1LSB each. Keep in mind that the input
operands of the multiplication are always ≤ 1 in this implementation, therefore
no extra integer bits are needed in the result. The PSL1S option of the mul_v
instruction corrects the representation of the result into Q(0,15) representation.
In the second stage of the complex multiplication an addition and subtraction
are executed in parallel. Both results contain a worst-case error of 2LSBs,
which is therefore the worst-case error of the 2-staged complex multiplication.

An element of the resulting matrix of multiplication of a snapshot to its
Hermitian adjoint is calculated by one 2-staged complex multiplication. In the
calculation of an average covariance matrix of 64 snapshots, the 64 complex
values are accumulated in two accumulators (1 real part accumulator, and
1 imaginary part accumulator) to prevent saturation. The 63 additions in
the accumulator increase the worst-case error by 63LSBs to 65LSBs. The
accumulated values are divided by 64 (right shift by 6 positions), so the worst-
case error in a covariance matrix containing the average of 64 snapshots is
d65/64e = 2LSBs per element (a ceiling function is needed because of the
truncation of the shift action).

The next averaging step, the averaging of 4 matrices, the worst-case error is
increased to d(4 + 2)/4e = 2LSBs.The matrices stored in MEM4 are averaged
in two steps. The worst-case error of the calculation of the final covariance
matrix is d(1 + d(1 + 2)/2)e/2e = 2LSBs.The final covariance matrix is scaled
by means of a complex multiplication. Therefore, the final worst-case error of
an element of the covariance matrix is 4LSBs.

Computational load

For the estimation of the computational load, it is assumed that a dword can
be fetched from the external memory every clock cycle. To store a block of
64 snapshots into MEM0 and MEM1, 16× 64 = 1024 clock cycles are needed.
During the calculation of the covariance matrix 16 blocks are stored into the
memory of the Montium2. A total of 1024×16 = 16384 clock cycles are needed
to store all snapshot into the memory of the Montium2.

The calculation of the covariance matrix of 1 snapshot requires 16×16 = 256
multiplications. The calculation of the covariance matrix of 1 block of 64 snap-
shots requires 256× 64 = 16384 multiplications. The calculation of the covari-
ance matrices of the 16 blocks requires 16384× 16 = 262144 multiplications.

5.2. MUSIC ALGORITHM 37

The calculation of the average of the 4 matrices stored in MEM2 and MEM3
requires 4× 256 = 1024 averaging operations. The averaging of these matrices
is executed four times during the covariance matrix calculation.

The final covariance matrix is calculated out of the 4 matrices stored in
MEM4 by a two staged adder tree. The result is calculated in 3 × 256 = 768
averaging operations. See table 5.2 for an overview of the computational load.
The loop and pipeline overhead is hard to estimate, because the Montium2 is
not implemented yet. Therefore, the overhead is not mentioned.

Operation Cycles # Executions Total
load 64 snapshots 1024 16 16348
average 64 snapshots 16384 16 262144
average 4 matrices (MEM2/3) 1024 4 4096
average 4 matrices (MEM4) 768 1 768
total clock cycles 283356

Table 5.1: Clock cycles of the covariance matrix.

Scalability

This implementation of the calculation of a 16 by 16 covariance matrix can
be executed on one Montium2. It is estimated that an implementation based
on a 32 by 32 matrix is the largest covariance matrix calculation that can be
executed on one Montium2. A 32 by 32 matrix fits exact in 1 memory block
of 1024 dwords. An accumulator contains 8 extra bits, so 256 values can be
accumulated before it has to be scaled and stored. Four average matrices, based
on 256 values each, can be stored in 4 memory blocks. The average matrix of
these 4 matrices, which is the covariance matrix based on 1024 snapshots, can
be stored in the 5th memory block. This 32 by 32 covariance matrix calculation
can be executed on one Montium2, at a costs of more load and store operations
to external memory.

The calculation of a larger covariance matrix has to be distributed over mul-
tiple Montium2s. The covariance matrix can be separated into smaller pieces,
and each piece can be assigned to a Montium2. An example of a separation is
given by:

M21 M22

M23 M24

where M2 denotes a Montium2. This division of the covariance matrix can be
done at the cost of tripling the communication overhead.

5.2.2 Eigendecomposition

In this section the implementation of the eigendecomposition of the covariance
matrix is discussed. The calculation of the eigendecomposition is the second

38 CHAPTER 5. ALGORITHM IMPLEMENTATION

step of the MUSIC algorithm. The eigendecomposition is based on the QR
algorithm. In section 3.3.1 the theory of the QR algorithm is described.

Implementation

The explanation of the implementation of the eigendecomposition is subdivided
into three paragraphs. Due to the subdivision, the implementation is explained
in a top-down approach.

QR algorithm The QR algorithm is explained by means of equation 3.16.
This equation is repeated below.

A = Q0R0, S0 = Q0

Ak+1 = RkQk = Qk+1Rk+1, Sk = Sk−1Qk, k = 0, 1, 2, . . .
(5.2)

The QR algorithm starts with the QR decomposition of the covariance matrix
stored in the first 256 dwords of MEM0. The function qr_decomp() is an
implementation of the QR decomposition. The implementation of this function
is explained in the next paragraph. The similarity between the code described
below and equation 5.2 is demonstrated by: A = covariance_matrix0[],
Q0 = Q_matr[], R0 = R_matr[], and S0 = S_matr[]. Q_matr[] is stored in
MEM2, R_matr[] is stored in the first 256 dwords of MEM3, and S_matr[] is
stored in the second 256 dwords of MEM3.

Equations Ak+1 = RkQk = Qk+1Rk+1 and Sk = Sk−1Qk of the QR algo-
rithm are implemented in a loop.

qr_decomp(covariance_matrix0, Q_matr, R_matr);
for (idx i = 0; i < 256; i++)
{
S_matr[i] = Q_matr[i];

}
while (cmpgt(eigval_max, 0.001))
{
matr_mult(R_matr, Q_matr, RQ_matr);
qr_decomp(RQ_matr, Q_matr, R_matr);
matr_mult2(S_matr, Q_matr, S_matr);
eigval_max = 0;
for (idx i = 0; i < 16; i++)
{
eigval_temp = R_matr[i*16+i];
eigval_diff = sub_v(eigvals[i], eigval_temp);
eigvals[i] = eigval_temp;
eigval_max = max(packhh(abs_hl(eigval_diff), 0), eigval_max);
}

}

The function matr_mult() is an implementation of a matrix multiplication.
The function matr_mult2() is an implementation of a matrix multiplication,
where the result of the multiplication is stored on the location of one of the
multiplied matrices. The values on the diagonal of R are assumed to be con-
verged to the eigenvalues of the covariance matrix, if the maximal difference

5.2. MUSIC ALGORITHM 39

between the diagonal of Rk−1 and Rk is smaller than 0.001. The choice of 0.001
is explained later. eigvals[] is an array containing values of the diagonal of
the previous Rk−1. eigval_diff is the difference between the previous and
the current value of an element of the diagonal of R. eigval_max is the maxi-
mum difference of all differences between the two diagonals. In the instruction
sequence packhh(abs_hl(eigval_diff), 0) provides abs_hl an elementwise
absolute value (i.e. the sign bits of both vector elements are cleared). An
elementwise operation, since eigval_diff is a complex value. The packhh
instruction in combination with the value 0, cleares the imaginary part of
eigval_diff. In case of a Hermitian covariance matrix the eigenvalues are al-
ways real, therefore the real parts of the eigenvalues are compared. To ensure
that the imaginary part has no influence on the comparison, the imaginary
part is cleared.

The function matr_mult2() is implemented by:

void matr_mult2(*input_matr1, *input_matr2, *output_matr)
{
matr_mult(input_matr1, input_matr2, temp_matrix);
for (i = 0; i < 256; i++)
{
output_matr[i] = temp_matrix[i];

}
}

The matrix multiplication is calculated by the function matr_mult(), the result
is stored in temporary matrix temp_matrix[]. After the multiplication the
values of temp_matrix[] are copied into output_matr[], which is one of the
multiplied matrices.

The function matr_mult() is implemented by:

void matr_mult(*input_matr1, *input_matr2, *output_matr)
{
for (i = 0; i < 16; i++)
{
for (j = 0; j < 16; j++)
{
acc_real = 0;
acc_imag = 0;
for (k = 0; k < 16; k++)
{
c = compl_mul(input_matr1[k*16+j], input_matr2[i*16+k]);
acc_real = add_a(acc_real, c.real);
acc_imag = add_a(acc_imag, c.imag);
}
output_matr[i*16+j] = packhh(acc_real, acc_imag);
}

}
}

A row of input_matr1[] is elementwise multiplied with a column of input_matr2[],
and the real and imaginary results are separately accumulated. The real and
imaginary parts are combined and stored in output_matr[].

40 CHAPTER 5. ALGORITHM IMPLEMENTATION

QR decomposition The QR decomposition is explained by means of equa-
tions 3.35 and 3.36. These equations are repeated below. The row and column
indices of the matrices are replaced by the values used in this implementation.

R = Q16,15Q15,14Q16,14 . . . Q14,1Q15,1Q16,1A (5.3)
Q = QH16,1Q

H
15,1Q

H
14,1 . . . Q

H
16,14Q

H
15,14Q

H
16,15 (5.4)

The QR decomposition is implemented as the funtion qr_decomp(). The struc-
ture of this function is given by:

void qr_decomp(*input_matrix, *Q_matrix, *R_matrix)
{
separate input_matrix into A_real and A_imag.
initialize Q_real as I and Q_imag as 0.

for (col = 0; col < 15; col++)
{
for (row = 15; row > col; row--)
{
calculate theta1 by CORDIC.
calculate theta2 by CORDIC.
calculate theta2neg.

calculate Q_11_22.
calculate Q_12.
calculate Q_21.

calculate A_real, A_imag by optimized multiplication.

calculate Qh_11_22.
calculate Qh_12.
calculate Qh_21.

calculate Q_real, Q_imag by optimized multiplication.
}
}
combine A_real, A_imag into R_matrix.
combine Q_real, Q_imag into Q_matrix.

}

The elements of input_matrix[] are separated into a real and imaginary part.
The real part is copied into A_real, and the imaginary part is copied into
A_imag. This separation is needed to achieve an acceptable accuracy of the
QR decomposition, because the intermediate real and imaginary values can
now be stored in 32-bit precision. This holds also for matrices Q_real and
Q_imag. Matrix Q_real is initialized as the identity matrix, and matrix Q_imag
is completely initialized to 0.

To calculate the complete QR decomposition, 120 Qi,j (see equation 3.34)
matrices have to be calculated. theta1 = θ1, theta2 = θ2, and theta2neg =
−θ2. These variables have to be recalculated for every Qi,j matrix. The calcu-
lation of these values by COordinate Rotation DIgital Computer (CORDIC)

5.2. MUSIC ALGORITHM 41

is explained later. The values of variables Q_11_22, Q_12, and Q_21 are calcu-
lated out of theta1, theta2,and theta2neg. Equation 5.5 shows the similarity
between elements of the rotation matrix and the variables Q_11_22, Q_12, and
Q_21. (

cos θ1 (sin θ1)eiθ2
(− sin θ1)e−iθ2 cos θ1

)
=
(
Q11 22 Q12

Q21 Q11 22

)
(5.5)

The multiplication of matrices Qi,j and A (see equation 5.3) can be executed
using an optimized matrix multiplication. This multiplication is explained
later. The values of variables Qh_11_22, Qh_12, and Qh_21 are calculated
out of Q_11_22, Q_12, and Q_21 by conjugation. The multiplication of two
QHi,j matrices (see equation 5.4) is also implemented by an optimized matrix
multiplication.

When all 120 Qi,j matrices are calculated and multiplied to A, the real part
of the result is stored in A_real and the imaginary part is stored in A_imag.
The elements of A_real and A_imag are combined and copied into R_matrix.
When all 120 QHi,j matrices are calculated and multiplied to each other, the
real part of the result is stored in Q_real and the imaginary part is stored in
Q_imag. The elements of Q_real and Q_imag are combined and copied into
Q_matrix.

The optimized matrix multiplication mentioned before, is explained by
means of an example of a multiplication of two 3 by 3 matrices. Let ma-
trix Qex be an example of a 3 by 3 version of matrix Qi,j . Matrix Qex can be
separated into the identity matrix and a zero matrix except for four values.

Qex =

 a 0 b
0 1 0
c 0 a

 =

 1 0 0
0 1 0
0 0 1

+

 a− 1 0 b
0 0 0
c 0 a− 1

 (5.6)

Let general non-sparse 3 by 3 matrix Aex be defined by:

Aex =

 r s t
u v w
x y z

 (5.7)

Matrices Qex and Aex are multiplied.

QexAex =

 a 0 b
0 1 0
c 0 a

 r s t
u v w
x y z

=

 1 0 0
0 1 0
0 0 1

+

 a− 1 0 b
0 0 0
c 0 a− 1

 r s t
u v w
x y z

=

 r s t
u v w
x y z

+

 ar − r + bx as− s+ by at− t+ bz
0 0 0

cr + ax− x cs+ ay − y ct+ az − z

=

 0 0 0
u v w
0 0 0

+

 ar + bx as+ by at+ bz
0 0 0

cr + ax cs+ ay ct+ az

=

 ar + bx as+ by at+ bz
u v w

cr + ax cs+ ay ct+ az

(5.8)

42 CHAPTER 5. ALGORITHM IMPLEMENTATION

The multiplication of matrices Qex and Aex only affects the top and bottom
rows of Aex, as can be seen in equation 5.8. Due to the specific structure of
Qex, the calculations in the multiplication of Qex and Aex can be reduced to:(

a b
c a

)(
r s t
x y z

)
=
(
ar + bx as+ by at+ bz
cr + ax cs+ ay ct+ az

)
(5.9)

To produce the complete result of the multiplication, the top row of matrix
Aex is replaced by the top row of the result of equation 5.9, and the bottom
row of matrix Aex is replaced by the bottom row of the result of equation 5.9.
If both rows of the second matrix of equation 5.9 are expanded to 16 elements,
this optimized matrix multiplication also works on 16 by 16 matrices. The first
matrix of equation 5.9 does not change. All 120 Qi,j matrices can be multi-
plied by this optimized multiplication. The rows affected by this multiplication
depend on the position of the values cos θ1, (sin θ1)eiθ2 , and (− sin θ1)e−iθ2 in
matrix Qi,j . The calculation of the values of Q_11_22, Q_12, and Q_21 and the
optimized matrix multiplication are implemented by:

Q_11_22.real = theta1.real;
Q_11_22.imag = 0;
temp_val.real = theta1.imag;
temp_val.imag = 0;
Q_12 = compl_mul32(temp_val, theta2);
temp_val.real = neg(theta1.imag);
temp_val.imag = 0;
Q_21 = compl_mul32(temp_val, theta2neg);

for (i = 0; i < 16-col; i++)
{
temp_upper.real = A_real[col+16*col+16*i];
temp_upper.imag = A_imag[col+16*col+16*i];
temp_lower.real = A_real[row+16*col+16*i];
temp_lower.imag = A_imag[row+16*col+16*i];
temp1 = compl_mul32(temp_upper, Q_11_22);
temp2 = compl_mul32(temp_lower, Q_12);
A_real[col+16*col+16*i] = add(temp1.real, temp2.real);
A_imag[col+16*col+16*i] = add(temp1.imag, temp2.imag);
temp1 = compl_mul32(temp_upper, Q_21);
temp2 = compl_mul32(temp_lower, Q_11_22);
A_real[row+16*col+16*i] = add(temp1.real, temp2.real);
A_imag[row+16*col+16*i] = add(temp1.imag, temp2.imag);

}

If the angles θ1, θ2, and −θ2 are each represented by a complex value (with
an absolute value of 1) in Cartesian representation. The cosine of such an
angle is represented by the real part of the complex value, and the sine is
represented by the imaginary part of the complex value (Euler’s formula: eiθ =
cos θ + i sin θ). theta1, theta2, and theta2neg are all structure variables
containing two dwords. One dword for the real part of a complex value, and
one dword for the imaginary part of a complex value.

The values of variables Q_11_22, Q_12, and Q_21 are assigned according to
equation 5.5. To calculate the values of these variables, function compl_mul32()

5.2. MUSIC ALGORITHM 43

is used. compl_mul32() is an implementation of a 32-bit complex multiplica-
tion. This function is not yet implemented in Montium2C code, but as a C
function. For now, the Montium2C compiler and simulator are under con-
struction and accept and execute C code, as long as the syntax is correct. To
execute this implementation of the MUSIC algorithm on the Montium2, the
function compl_mul32 has to be implemented using Montium2C code. The
need for an 32-bit complex multiplication is explained later. The optimized
matrix multiplication is implemented in the loop, in a configuration equal to
equation 5.9.

The relation between Qh_11_22, Qh_12, Qh_21 and Q_11_22, Q_12, Q_21 is
shown by equation 5.10 The values of Qh_12 and Qh_21 are calculated out of
Q_12 and Q_21 using conjugate a operation.(

Q11 22 Q12

Q21 Q11 22

)H
=
(
Qh11 22 Qh12

Qh21 Qh11 22

)
(5.10)

The implementation of the optimized matrix multiplication used for the multi-
plications in equation 5.4, has a small difference with respect to equation 5.9.
In equation 5.11 the order of the multiplied matrices is changed. The reduced
matrix of Aex is now in front of the reduced matrix of Qex, and two columns
of Aex are affected instead of two rows. r t

u w
x z

(a b
c a

)
=

 ra+ tc rb+ ta
ua+ wc ub+ wa
xa+ zc xb+ za

 (5.11)

The calculation of the values of Qh_11_22, Qh_12, and Qh_21 and the second
optimized matrix multiplication are implemented by:

Qh_11_22 = Q_11_22;
Qh_21.real = Q_12.real;
Qh_21.imag = neg(Q_12.imag);
Qh_12.real = Q_21.real;
Qh_12.imag = neg(Q_21.imag);

for (i = 0; i < 16; i++)
{
templ.real = Q_real[i+col*16];
templ.imag = Q_imag[i+col*16];
tempr.real = Q_real[i+row*16];
tempr.imag = Q_imag[i+row*16];
temp1 = compl_mul32(templ, Qh_11_22);
temp2 = compl_mul32(tempr, Qh_21);
Q_real[i+col*16] = add(temp1.real, temp2.real);
Q_imag[i+col*16] = add(temp1.imag, temp2.imag);
temp1 = compl_mul32(templ, Qh_12);
temp2 = compl_mul32(tempr, Qh_11_22);
Q_real[i+row*16] = add(temp1.real, temp2.real);
Q_imag[i+row*16] = add(temp1.imag, temp2.imag);
}

44 CHAPTER 5. ALGORITHM IMPLEMENTATION

CORDIC A CORDIC algorithm [3, 21] is an algorithm to calculate hyper-
bolic and trigonometric functions. The algorithm requires addition, subtrac-
tion, bitshift and table lookup operations. The algorithm is originally designed
for computer architectures where no hardware multiplier is available. The
CORDIC algorithm is iterative. After every iteration the precision of the re-
sult is increased by 1 bit. In this implementation the CORDIC algorithm is
used to transform a complex number from polar form to cartesian form and the
other way around. Although the Montium2 contains multipliers the CORDIC
is still useful, because no table lookup operations are needed if the number of it-
erations is fixed. In this implementation the number of iterations is fixed to 32,
since the complex number transformations are calculated in 32-bit precision.

The CORDIC algorithm can be used in two modes:

• rotation mode

• vectoring mode

The rotation mode is used to rotate a vector over a known angle. In figure
5.5 three iterations of the rotation mode are shown. Vector v0 is rotated over
angle β in three steps. The rotation angles mentioned below, are different from
the rotation angles of the implementation, but they clarify the basic idea of
the CORDIC algorithm. In the first iteration v0 is rotated over 45◦ to v1. In
the second iteration, this new angle (45◦) is compared to β to determine the
sign of the next rotation. In this example the angle of v1 is smaller than β.
The second rotation is over 45◦/2 = 22.5◦ to v2 (67.5◦). In the third iteration,
the angle of v2 is compared to β, and rotated over −(22.5◦/2) = −11.25◦ to
v3 (56.25◦). If the difference between the angle of the rotated vector and β is
smaller than a predefined value the algorithm is stopped.

Figure 5.5: Three iterations of the CORDIC algorithm

The vectoring mode is used to determine the length of a vector and the
angle of a vector with respect to a vector (1,0). If, for example, v3 in figure
5.5 is a vector of unknown length and angle, these values can be determined
using the vectoring mode. In this example the angle of v3 is reduced to 0 in
three iterations (56.25◦ − 45◦ − 22.5◦ + 11.25◦ = 0◦). The length of the vector
is the value of the non zero element in the vector, in this example (1,0). The
CORDIC algorithm is explained by means of a citation out of [3].

The CORDIC algorithm is derived from the general (Givens) rota-
tion transform:

x′ = x cos θ − y sin θ
y′ = y cos θ + x sin θ

(5.12)

5.2. MUSIC ALGORITHM 45

which rotates a vector in a cartesian plane by angle θ. These can
be rearranged so that:

x′ = cos θ(x− y tan θ)
y′ = cos θ(y + x tan θ)

(5.13)

So far, nothing is simplified. However, if the rotation angles are
restricted so that tan θ = ±2−i, the multiplication by the tangent
term is reduced to a simple shift operation. Arbitrary angles of ro-
tation are obtainable by performing a series of successively smaller
elementary rotations. If the decision at each iteration, i, is which
direction to rotate rather than whether or not to rotate, then the
cos δi term becomes a constant (because cos δi = cos−δi). The
iterative rotation can now be expressed as:

xi+1 = Ki(xi − yidi2−i)
yi+1 = Ki(yi + xidi2−i)

(5.14)

where:

Ki = cos(arctan 2−i) = 1/
√

1 + 2−2i, di = ±1 (5.15)

Removing the scale constant from the iterative equations yields a
shift-add algorithm for vector rotation. The product of the Ki’s can
be applied elsewhere in the system or treated as part of a system
processing gain. That product approaches 0.6073 as the number of
iterations goes to infinity. Therefore, the rotation algorithm has a
gain, An, of approximately 1.647. The exact gain depends on the
number of iterations, and obeys the relation

An =
∏
n

√
1 + 2−2i (5.16)

The angle of a composite rotation is uniquely defined by the se-
quence of the directions of the elementary rotations. That sequence
can be represented by a decision vector.

In rotation mode the decision vector is known, while in vectoring mode the
decision vector is determined. Since the number of iterations is fixed at 32, the
value of K(32) =

∏31
i=0Ki can be precalculated.

Before an angle of a vector, or in this example a complex, value is deter-
mined by the vectoring mode of the CORDIC algorithm, the complex value is
scaled. The scaling increases the accuracy of the CORDIC algorithm.

a.real = A_real[col+16*col];
a.imag = A_imag[col+16*col];
exp_a.real = exp(a.real);
exp_a.imag = exp(a.imag);
exp_shift_a = min(exp_a.real, exp_a.imag);
a.real = asl(a.real, exp_shift_a);
a.imag = asl(a.imag, exp_shift_a);
absa = cordic_vec(a, rhoa);
absa = asr(absa, exp_shift_a);

46 CHAPTER 5. ALGORITHM IMPLEMENTATION

In the example above, a complex value a is scaled. The instruction exp re-
turns the number of sign bits−1. This number is equal to the number of
positions value areal can be shifted to the left before it saturates. The mini-
mal shift value exp_a is determined. Value a is shifted to the left. Function
cordic_vec() is an implementation of the CORDIC algorithm in vectoring
mode. cordic_vec() returns the absolute value of a (absa) and the decision
vector of a (array rhoa[]). The absolute value of a is scaled back to the original
length.

The function cordic_vec() is implemented by:

cordic_vec(compl_val, *rho)
{
K_val.real = 0.6073;
K_val.imag = 0;
compl_val = compl_mul32(compl_val, K_val);
I = compl_val.real;
Q = compl_val.imag;

for (i = 0; i < 32; i++)
{
I_shift = asr(I, i);
Q_shift = asr(Q, i);
if (bittest(xor_d(I, Q), 31))
{
rho[i+1] = 1;
I = sub(I, Q_shift);
Q = add(Q, I_shift);
}
else
{
rho[i+1] = -1;
I = add(I, Q_shift);
Q = sub(Q, I_shift);
}
}
return(I);

}

The complex value is corrected for the processing gain of the CORDIC algo-
rithm. The implementation of the loop is similar to equation 5.14.

The implementation of cordic_vec() described above works only if the
complex value is in the first or fourth quadrant. Therefore, some extra code
has to be added to accept all four quadrants.

if (cmplt(I, 0))
{
if (cmpgt(Q, 0))
{
I_new = Q;
Q = neg(I);
I = I_new;

5.2. MUSIC ALGORITHM 47

rho[0] = -1;
}
else
{
I_new = neg(Q);
Q = I;
I = I_new;
rho[0] = 1;

}
}
else
{
rho[0] = 0;
}

This code rotates the complex value by ±90◦, without affecting the size of the
complex value.

The structure of the calculation of θ1 and θ2, using the CORDIC algorithm
in vectoring mode is shown in figure 5.6. The angles θ1 and θ2, both represented
by a decision vector, are used in the QR decomposition. The subtraction θa−θb
is implemented by een elementwise subtraction of the decision vectors of a and
b.

������

���	
���

������

���	
���

������

���	
��� ���� ��� �

���

���

��

��
��

��

	������ �

� �

� �

� ��

Figure 5.6: Calculation of θ1 and θ2.

The rotation mode of the CORDIC algorithm is used to rotate a vector,
or in this case a complex value. Because of the different ranges of θ1 and θ2,
two implementations of the rotation mode are made. The range of θ1 is 0◦

to 90◦, because |a| and |b| are always nonnegative. The range of θ2 is −360◦

to 360◦, because the ranges of θa and θb are both −180◦ to 180◦. A complex
value is rotated by θ1 using function cordic_rot. The function cordic_rot is
implemented by:

cordic_rot(compl_val, *rho)
{
K_val.real = 0.6073;
K_val.imag = 0;
compl_val = compl_mul32(compl_val, K_val);
I = compl_val.real;
Q = compl_val.imag;

48 CHAPTER 5. ALGORITHM IMPLEMENTATION

for (i = 0; i < 32; i++)
{
Q_shift = asr(Q, i);
I_shift = asr(I, i);
if (bittest(rho[i+1], 31))
{
I = sub(I, Q_shift);
Q = add(Q, I_shift);
}
else
{
I = add(I, Q_shift);
Q = sub(Q, I_shift);
}
}
compl_val.real = I;
compl_val.imag = Q;
return(compl_val);

}

The complex value is corrected for the processing gain of the CORDIC algo-
rithm. The implementation of the loop is similar to equation 5.14.

A complex value is rotated by θ2 using function cordic_rot2. The first
element of the decision vector of θ2, which determines the starting quadrant,
can contain the values 0, ±1, and ±2. In case of 0, the rotation starts in the
current quadrant. In case of ±1 the complex value is rotated by ±90◦. In
case of ±2 the complex value is rotated by ±180◦. All other elements can only
contain the values 0 and ±2. Because θ2 is a difference angle, the rotations have
to be executed twice in every iteration. Because of the double rotations the
processing gain has to be corrected by the value K(32)2. When the decision
vector contains a zero, the complex value is rotated once and then rotated
back to achieve the correct processing gain, because it is not known in advance
where a zero is located. The function cordic_rot2 is implemented by:

cordic_rot2(compl_val, *rho)
{
K_val.real = 0.3688;
K_val.imag = 0;
compl_val = compl_mul32(compl_val, K_val);
I = compl_val.real;
Q = compl_val.imag;
if (!(cmpeq(rho[0], 0)))
{
if (cmpeq(rho[0], 1))
{
I_new = Q;
Q = neg(I);
I = I_new;
}
if (cmpeq(rho[0], -1))
{

5.2. MUSIC ALGORITHM 49

I_new = neg(Q);
Q = I;
I = I_new;
}
if (cmpeq(rho[0], -2)|cmpeq(rho[0], 2))
{
I = neg(I);
Q = neg(Q);
}

}
for (i = 0; i < 32; i++)
{
Q_shift = asr(Q, i);
I_shift = asr(I, i);
if (cmpeq(rho[i+1], 0))
{
I = add(I, Q_shift);
Q = sub(Q, I_shift);
Q_shift = asr(Q, i);
I_shift = asr(I, i);
I = sub(I, Q_shift);
Q = add(Q, I_shift);
}
else
{
if (bittest(rho[i+1], 31))
{
I = sub(I, Q_shift);
Q = add(Q, I_shift);
Q_shift = asr(Q, i);
I_shift = asr(I, i);
I = sub(I, Q_shift);
Q = add(Q, I_shift);
}
else
{
I = add(I, Q_shift);
Q = sub(Q, I_shift);
Q_shift = asr(Q, i);
I_shift = asr(I, i);
I = add(I, Q_shift);
Q = sub(Q, I_shift);
}
}

}
compl_val.real = I;
compl_val.imag = Q;
return(compl_val);
}

50 CHAPTER 5. ALGORITHM IMPLEMENTATION

To be able to use the values of θ1 and θ2 in the QR decomposition, the rep-
resentation of these values have changed from a decision vector into a complex
value. This can be achieved by rotating the value 1 (= 1 + i0), see figure 5.7.

������

���	�
��

�

�

���	�
����	���� �

���	�
����	����

Figure 5.7: CORDIC in rotation mode

Accuracy

The LSB values in the paragraphs about the CORDIC algorithm and the QR
decomposition are defined by the LSB of a 32-bit value, since all operations
are executed on 32-bit dwords. In the paragraph about the QR algorithm the
value of the LSB is defined by the LSB of a 16-bit value.

CORDIC The gain correction in cordic_vec() introduces a worst-case er-
ror of 2LSBs. The rotation to the first or fourth quadrant increases the worst-
case error to 3LSBs. The number of iterations of the loop is 32. Therefore,
the result of the loop increases the worst-case error by 1LSB (see [3]) to a final
worst-case error of 4LSBs.

In function cordic_rot(), the gain correction introduces a worst-case error
of 2LSBs. The loop increases the worst-case to 3LSBs.

The gain correction in function cordic_rot2() introduces a worst-case
error of 2LSBs. The rotation to the start quadrant of the cordic rotation
increases the worst-case error to 3LSBs. The loop increases the worst-case
error to 4LSBs.

QR decomposition The values of θ1, θ2, and −θ2 are calculated by a
CORDIC algorithm containing a worst-case error of 4LSBs. The two off-
diagonal nonzero elements of matrix Qi, j are calculated by a complex mul-
tiplication. This complex multiplication increases the worst-case error of the
values in Qi,j to 6LSBs.

The optimized matrix multiplication contains 2 complex multiplications
and 1 addition per element of the result. Therefore, the optimized matrix
multiplication increases worst-case error by 3LSBs. To calculate the complete
QR decomposition 120 optimized multiplications have to be performed, which
results in an increase of the worst-case error by 360LSBs to 366LSBs (8.5 bits).
The elements of the resulting Q and R matrices are stored in vector mode in
the memory of the Montium2. The 32-bit elements are truncated to 16-bit
elements (the 16MSBs are selected), which result in a worst-case error of 1LSB
of a 16-bit value.

QR algorithm As of this paragraph the LSB is again defined by the LSB of
a 16-bit value. The matrix multiplication is calculated by 16 multiplications

5.2. MUSIC ALGORITHM 51

and 15 additions. An element of the result of this matrix multiplication is
calculated containing a worst-case error of 2 + 15 = 17LSBs.

An iteration of the loop increases the worst-case error by 1 + 17 = 18LSBs.
The number of iterations of the loop is 8. This is a result of an empirical
observation, with the value 0.001 used as the maximum difference between the
eigenvalues of two iteration. The value 0.001 resulted in a stable number of iter-
ations, whereas a smaller value increases the number of iterations and increases
the variance of the number of iterations, without increasing the accuracy of the
eigenvalues. A larger value decreases the accuracy of the eigenvalues.

The total worst-case error of the QR algorithm is 8× 18 = 144LSBs, which
is just over 7 bits. This result justifies the choice for a 32-bit multiplication
in the QR decomposition, since a 16-bit multiplication results in a worst-case
error of 8(366 + 17) = 3064LSBs, which is more than 11,5 bits.

Computational load

The estimation of the computational load of the CORDIC algorithm, the QR
decomposition, and the QR algorithm are considered separately.

CORDIC The scaling operations before and after the function cordic_vec()
require 5 clock cycles. The function cordic_vec() start with a 32-bit complex
multiplication. The computational load of this multiplication is not known,
because it is not implemented in Montium2C code. Therefore, the computa-
tional load of the 32-bit complex multiplication is denoted by x. The assign
operations outside the loop require 2 clock cycles. The rotation of the com-
plex value from the second or third quadrant to the first of fourth quadrant,
requires 5 clock cycles. However, if the complex value is already in the first
or fourth quadrant, a compare and assign operation still have to be executed,
requiring 2 clock cycles. It is assumed that the complex values are randomly
distributed over all four quadrants. Therefore, the expected number of clock
cycles is (5 + 2)/2 = 3.5, which is rounded to 4 clock cycles. Every iteration
of the loop requires 4 clock cycles. The number of iterations is 32, so the all
iterations require 32× 4 = 128 clock cycles. The overall computational load of
the function cordic_vec is 5 + x+ 2 + 4 + 128 = 139 + x clock cycles.

In function cordic_rot() all assign operations outside the loop require
3 clock cycles in total. The 32-bit complex multiplication requires x clock
cycles. Every iteration of the loop requires 3 clock cycles. The number of
iterations is 32, so the all iterations require 32 × 3 = 96 clock cycles. The
overall computational load of the function cordic_rot is 3 + x+ 96 = 99 + x
clock cycles.

In function cordic_rot2() all assign operations outside the conditional
statements and loop require 3 clock cycles. The 32-bit complex multiplication
requires x clock cycles. The expected number of clock cycles of the com-
plete conditional statement outside the loop is rounded to 5 (≈ (1 + 5 + 6 +
5 + 6)/5, whichistheaverageofallpossiblesituations) in case of randomly dis-
tributed choices. The expected number of clock cycles of the complete condi-
tional statement inside the loop is rounded to 5 (≈ (4+5+5)/3), if the choices
are assumed to be randomly distributed. Every iteration of the loop requires
5 + 1 = 6 clock cycles. The number of iterations is 32, so the all iterations re-

52 CHAPTER 5. ALGORITHM IMPLEMENTATION

quire 32×6 = 192 clock cycles. The overall computational load of the function
cordic_rot2 is 3 + x+ 192 = 195 + x clock cycles.

QR decomposition The calculation of θ1 and θ2 by means of the structure
shown in figure 5.6 requires 3× (139 + x) + 33 = 450 + 3x clock cycles (θa− θb
requires 33 cycles). The calculation of rotation factor theta1 requires 99 + x
clock cycles, and calculation of rotation factor theta2 requires 195 + x clock
cycles. Rotation factor theta2neg is calculated out of theta2 by conjugation,
which requires 1 clock cycle. The calculation of matrix Qi,j requires 450+3x+
99 + x+ 195 + x+ 1 = 745 + 5x clock cycles. To decompose 1 matrix, 120 Qi,j
matrices have to be calculated, which requires 120(745 + 5x) = 89400 + 600x
clock cycles.

One iteration of the loop of the optimized matrix multiplication requires 4
32-bit complex multiplication, 2 parallel assign operations, and 2 parallel addi-
tions. The number of iterations is 16, therefore the optimizes matrix multipli-
cation requires 16(4 + 4x) = 64 + 64x clock cycles. The calculation of equation
5.3 requires 120 of these optimized matrix multiplications, and equation 5.4
requires 119 optimized matrix multiplications. The calculation of all matrix
multiplication in both equations requires (120+119)(64+64x) = 15296+15296x
clock cycles. The complete QR decomposition requires 89400 + 600x+ 15296 +
15296x = 104696 + 15896x clock cycles.

QR algorithm The function matr_mult() contains three nested loops of 16
iterations each. The complete function requires 16× 16× (2 + 16× 1) = 4608
clock cycles. The function matr_mult2() requires 256 additional clock cycles,
and therefore 4608 + 256 = 4864 clock cycles in total. The comparison of
the eigenvalues requires 16 × 6 = 96 clock cycles. Every iteration of the loop
requires 4608 + 104696 + 15896x+ 4864 + 96 = 114264 + 15896x clock cycles.
The number of iterations of the loop is 8.

The complete QR algorithm requires 104696 + 15896x+ 256 + 8(114264 +
15896x) = 1019064 + 143064x clock cycles.

Scalability

This implementation of the QR algorithm is based on a 16 by 16 matrix, and it
fits in the memory space of one Montium2. It is estimated that a QR algorithm
based on a 22 by 22 matrix is the largest implementation of the QR algorithm
that fits in the memory space of one Montium2, because two 22 by 22 matrices
can be stored in one memory block of 1024 dwords, and therefore 10 matrices
can be stored simultaneously. The maximum number of matrices that is stored
simultaneously during the execution of the QR algorithm is 9. A QR algorithm
based on larger matrices can be distributed over multiple Montium2s. Differ-
ent parts of the matrices are distributed over different Montium2s. The QR
decomposition is calculated at a cost of continuously distributing the rotation
factors. The two matrix multiplications at the end of an iteration of the QR
algorithm cause an exponential increase of the communication, because parts
of the matrices are continuously transferred between the Montium2s.

5.2. MUSIC ALGORITHM 53

5.2.3 MUSIC spectrum

In this section the implementation of the calculation of the MUSIC spectrum
is discussed. The calculation of the MUSIC spectrum is the third step of the
MUSIC algorithm. This implementation of the MUSIC algorithm presumes the
array manifold to be stored in some external memory, because the covariance
matrix calculation makes use of all memories during its computations. The
array manifold is determined once, and never changed.

Implementation

The MUSIC spectrum is calculated using formula 3.2. In the next step the
locations of the peaks of the MUSIC spectrum are selected. Therefore, if the
inverse of the MUSIC spectrum is calculated, the location of the lows have to
be selected to achieve the same result. To reduce the computational load, the
division is not implemented. The inverse of the MUSIC spectrum is calculated
by:

Pm(θ)−1 = aH(θ)EnEHn a(θ) (5.17)

The first step is the multiplication of the noise subspace matrix (En) and its
hermitian adjoint (EHn).

F = EnE
H
n (5.18)

In this implementation 5 impinging sources are assumed, so the size of matrix
En is 16 by 11 and the size of matrix EHn is 11 by 16. The size of the resulting
matrix F is 16 by 16. Matrix F is calculated by:

for (i = 0; i < 16; i++)
{
for (j = 0; j < 16; j++)
{
real = 0;
imag = 0;
for (k = 0; k < 11; k++)
{
c = compl_mul(En[k*16+j],En_hermitian[k+i*11]);
real = add(real, c.real);
imag = add(imag, c.imag);
}
F_matrix[j+i*16] = packhh(real,imag);

}
}

Matrix En is stored in MEM2, matrix EHn is stored in MEM4, and the resulting
matrix F is stored in MEM0.

As a consequence of the scaling operation in the covariance matrix calcula-
tion, the accumulated value in matrix multiplication described above does not
become larger than 1. Therefore, the values are accumulated in 32-bit dword
mode. Matrix F is calculated only once.

The final implemented equation to calculate the MUSIC spectrum is:

Pm(θ)−1 = aH(θ)Fa(θ) (5.19)

This equation is implemented by:

54 CHAPTER 5. ALGORITHM IMPLEMENTATION

for (i = 0; i < 181; i++)
{
load_array_man_vector(i);
for (j = 0; j < 16; j++)
{
acc_real = 0;
acc_imag = 0;
for (k = 0; k < 16; k++)
{
c = compl_mul(array_man_hermitian[k],F_matrix[k+j*16]);
acc_real = add_a(acc_real, c.real);
acc_imag = add_a(acc_imag, c.imag);
}
real = asr_a(acc_real, 4);
imag = asr_a(acc_imag, 4);
temp_result[j] = packhh(real,imag);
}
acc_real = 0;
for (idx j = 0; j < 16; j++)
{
c = compl_mul(temp_result[j],array_man[j]);
acc_real = add_a(acc_real, c.real);
}
real = asr_a(acc_real, 4);
P_music[i] = real;

}

The function load_array_man_vector() loads a vector of the array manifold
(a(θ)), and stores it in the first 16 dwords of MEM1. The function also conju-
gates the values, to calculate aH(θ), and stores them in the first 16 dwords of
MEM4. Vector array_man_hermitian[], representing aH(θ), is multiplied by
matrix F . The values are scaled to keep the values between −1 and 1, before
they are combined in one dword and stored in the resulting 16 element vector
temp_result[] (MEM2). The vector temp_result[] and vector array_man[]
(representing a(θ)) are multiplied. The resulting value is scaled and stored in
P_music[], the MUSIC spectrum. Only the real part is stored, because the
imaginary part is always zero. The MUSIC spectrum is stored in MEM3. All
scaling values in this section are a result of an empirical observation.

Accuracy

To calculate an element of matrix F , 11 complex multiplications and 10 ad-
dition are performed. A complex multiplication introduces a worst-case error
of 2LSBs. The 10 additions in the accumulator increases the worst-case error
by 10LSBs. An element of matrix F is calculated with a worst-case error of
12LSBs.

The calculation of an element of the MUSIC spectrum, is performed by
multiplying vector aH(θ) and matrix F . The resulting vector is multiplied
to vector a(θ). The elements of a(θ) and aH(θ) contain a worst-case error of
1
2LSB. The elements of F contain a worst-case error of 12LSBs. To calculate

5.2. MUSIC ALGORITHM 55

one element of the result of the aH(θ)F multiplication, 16 complex multiplica-
tions and 15 additions are performed. A complex multiplication of an element
of aH(θ) and an element of F result in a worst-case error of 14LSBs. The 15 ad-
ditions increases the worst-case error to 14+15 = 29LSBs. The elements of the
resulting vector of the aH(θ)F multiplication are divided by 16, which result
in worst-case error of d29/16e = 2LSBs. This resulting vector is multiplied by
a(θ) using 16 complex multiplications and 15 additions. The complex multipli-
cation and additions increase the worst-case error to 2+2+15 = 19LSBs. The
last scaling operation reduces the worst-case error to d19/16e = 2LSBs. There-
fore, an element of the MUSIC spectrum is calculated containing a calculation
error of 2LSBs.

Computational load

In this implementation the DOA of 5 sources have to be estimated. Therefore,
En is a 16 by 11 matrix. The calculation of matrix F requires 16×11×16 = 2816
mac operations.

Equation 5.19 is a vector-matrix-vector multiplication, and is calculated
for every angle of the spectrum. The calculation of one point in the spectrum
requires 1× 16× 16 + 16 = 272 multiplications.

The spatial resolution of the MUSIC algorithm is 1 degree when a 16 ele-
ment ULA and 1024 snapshots are used (see the simulation results in appendix
A.1). The complete spectrum consists of all angles from -90 degrees to 90 de-
grees in steps of 1 degree. A total of 181 points have to be calculated. The
calculation of the spectrum requires 181 × 272 = 49232 multiplications. The
complete calculation of the MUSIC spectrum requires 2816 + 49232 = 52048
clock cycles, excluding overhead.

Scalability

The calculation of the MUSIC spectrum could be distributed over multiple
Montium2s, at the cost of distributing the complete matrix F over these Mon-
tium2s. Each Montium2 can calculate a different part of the spectrum using
equation 5.19. This option is usefull if the spectrum contains many angles.

If matrix F does not fit into the memory space of one Montium2, the
communication between the Montium2s increases exponentially, because the
calculation of equation 5.19 is divided over multiple Montiums.

5.2.4 Peak selection

In this section the implementation of the selection of the peaks in the MUSIC
spectrum is discussed. The selection of the peaks is the fourth step of the
MUSIC algorithm.

Implementation

In the previous part of the MUSIC algorithm the inverted spectrum is calcu-
lated. Therefore, instead of the peaks, the lows have to be selected.

The first step is de detection of all local minimums in the spectrum. All
spectrum values of the angles in the spectrum are compared with their neigh-
bours. A local minimum is detected if the spectrum value of the previous angle

56 CHAPTER 5. ALGORITHM IMPLEMENTATION

and the next angle are greater than the spectrum value of the current angle. All
local minimums are stored in an array. The detection of the local minimums
starts with a corner case.

peak_number = 0;
if (!(cmplt(P_music[1],P_music[0])))
{
peak_angle[peak_number] = 0;
peak_size[peak_number] = P_music[0];
peak_number = add(peak_number, 1);

}

The first element of the MUSIC spectrum is compared to the second ele-
ment of the MUSIC spectrum. If the second element is not less than the
first element, the location and the size of the first element are stored in re-
spectively, peak_angle[] (MEM2) and peak_size[] (MEM4). The variable
peak_number stores the location where the next local minimum can be stored
in peak_angle[] and peak_size[].

for (i = 1; i < 180; i++)
{
if (cmpgt(P_music[i-1],P_music[i]))
{
if (!(cmplt(P_music[i+1],P_music[i])))
{
peak_angle[peak_number] = i;
peak_size[peak_number] = P_music[i];
peak_number = add(peak_number, 1);
}
}

}

The general case of the local minimum detection is described above. All el-
ements of the MUSIC spectrum, except for the first and last element, are
compared to their neighbours. If an element is smaller than both neighbours,
the location and size is stored in peak_angle[] and peak_size[].

The second corner case is the comparison of the second last and the last
element of the MUSIC spectrum.

if (cmpgt(P_music[179],P_music[180]))
{
peak_angle[peak_number] = 180;
peak_size[peak_number] = P_music[180];

}

If the second last element is greater than the last element, the location and the
size is stored in peak_angle[] and peak_size[].

This implementation has to detect a predefined number of sources, in this
case 5 sources. The second step is to select the 5 smallest minimums. All local
minimums are compared to each other, and the 5 smallest are stored in an
array. These 5 lows are the DOAs of the 5 sources.

5.2. MUSIC ALGORITHM 57

for (i = 0; i < 5; i++)
{
source_size[i] = 0x7FFFFFFF;
}

source_size[] is a 5 element array, and is initialized with the largest value
possible in signed fixed point Q(0,15) format.

for (i = 0; i < peak_number; i++)
{
temp_size = peak_size[i];
temp_angle = peak_angle[i];
for (j = 0; j < 5; j++)
{
if (cmplt(temp_size, source_size[j]))
{
swap_size = source_size[j];
swap_angle = source_angle[j];
source_size[j] = temp_size;
source_angle[j] = temp_angle;
temp_size = swap_size;
temp_angle = swap_angle;
}

}
}

The size of the 5 smallest local minimums are stored in source_size[]. The
locations of the 5 smallest local minimums are stored in source_angle[]. The
5 smallest minimums are selected by comparing the sizes of the minimums and
storing them using an insertion sort algorithm.

The last step of the peak selection, and therefore of the MUSIC algorithm,
is the calculation of the DOAs of the sources. These directions are calculated
by subtracting the value 90 from the locations of the sources.

for (i = 0; i < 5; i++)
{
source_angle[i] = sub(source_angle[i], 90);
}

The estimated DOAs in degrees are stored in source_angle[].

Computational load

The detection of the local minimums in the spectrum requires 2×179+2 = 360
compare operations (the two outer values of the spectrum are compared to one
neighbour). An empirical observation stated that on average 11 local minimums
are detected. The selection of the 5 smallest minimums requires 5 × 11 = 55
compare operations. The selection of all 5 DOAs is requires on average 415
clock cycles without overhead.

58 CHAPTER 5. ALGORITHM IMPLEMENTATION

Scalability

The peak selection part of the MUSIC algorithm scales linear if it is distributed
over multiple Montium2s. A different part of the spectrum is assigned to each
Montium2. All Montium2s select the 5 peaks of their part of the spectrum.
One Montium2 has to select the largest peaks of the results of all Montium2s.

5.3 Conclusion

The implementation of the MUSIC algorithm on the Montium2 is described in
this chapter. An estimation is made of the execution time in clock cycles of
each part of the MUSIC algorithm. In table 5.2 the clock cycles of the different
parts are summed to estimate the computational load of the complete MUSIC
algorithm. In the eigendecomposition a 32-bit complex multiplier is used. Since
the 32-bit complex multiplication is not implemented in Montium2C code, the
value of x is not known. The architecture of the Montium2 is still under
construction. Therefore, if it is assumed that the four 16-bit multipliers (2 M
units) of the Montium2 are extended to 32-bit multipliers, the value of x = 1
(i.e. every clock cycle a result of a complex multiplication is calculated). In this
case the minimal number of clock cycles needed, to execute the implementation
described above, can be calculated.

Algorithm Clock cycles %
covariance matrix 283.356 18.92
eigendecomposition 1.162.128 77.58
music spectrum 52.048 3.47
peak selection 415 0.03
total 1.497.947 100

Table 5.2: Clock cycles of the MUSIC algorithm.

The complete algorithm is executed in 1.497.947 clock cycles. The clock
frequency of the Montium2 is targeted at 200MHz. The execution time of the
complete algorithm is 1.497.947/200.000.000 = 7.5ms. To achieve this result,
it is assumed that the complete algorithm will fit into the program memory of
the Montium2. The size of the program memory is still unknown, therefore it
cannot be said if it is a reasonable assumption. Although the implementation
contains many loops, which reduces the number of instructions, and therefore
the size of the program memory needed to store the instructions.

The results described above do not contain any (loop, pipeline, etc) over-
head. Because the Montium2 is still under construction, it is hard to estimate
the total amount of overhead.

In section 2.5 the shortest execution time of the described implementations
is 28µs. This implementation is based on a 4 element ULA and 2 FPGAs.
To be able to compare this implementation with the implementation described
in this chapter, the execution time of the implementation in this chapter is
roughly estimated for a 4 element ULA. A 4 element ULA results in 4 by 4
matrices during all calculations. A 4 by 4 matrix is 16 times smaller than a
16 by 16 matrix. In the QR decomposition of a 16 by 16 matrix, 120 Qi,j
matrices are calculated and multiplied. This number reduces in the calculation

5.3. CONCLUSION 59

of a QR decomposition of a 4 by 4 matrix to 6 Qi,j matrix calculations and
multiplication. Because of the optimized matrix multiplications, a reduction of
the size of the matrix scales linear with the number of computations, a factor 4
in this case. The execution time of the eigendecomposition is determined almost
only by the execution time of the QR decomposition. So if the execution time
of the QR decomposition is 120/6 = 20 times shorter, the execution time of
the eigendecomposition is 20 times shorter. The eigendecomposition consumes
77.6% of the execution time. Therefore it reduces the total execution time to
roughly 0.224× 7500/16 + (0.776× 7500/4/20) = 178µs. This execution time
is about 6 times longer than the execution time of the implementation on 2
FPGAs.

The advantage of the Montium2 with respect to an FPGA is the faster
reconfiguration of the application. Another advantage of the Montium2 is the
estimated energy consumption. Because the size of the Montium2 is limited
to 2mm2, it is estimated that the energy figures of the Montium2 architecture
are more than 6 times lower than the energy figures of 2 FPGAs (EP20K600,
Altera).

Practical example

Assume that a beamforming system for satellite television reception, containing
a 16 element ULA, is installed on the roof of a car. In this beamforming system
one Montium2 is reserved to execute the implementation of the MUSIC algo-
rithm described in this thesis. One iteration of the complete implementation of
the MUSIC algorithm on the Montium2 takes 7.5ms. To be able to track the
sources a maximum rotation of the car of 1◦ is allowed in these 7.5ms. This
maximal rotation is the spatial resolution of the MUSIC algorithm based on
a 16 element ULA and 1024 snapshots. The maximum rotation of the car is
limited at 133◦ per second, which is enough for normal use of the car.

Chapter 6

Conclusion and
Recommendations

6.1 Conclusion

Two popular DOA estimation algorithms, MUSIC and ESPRIT, are analyzed.
Both algorithms contain an eigendecomposition. Since the eigendecomposition
is the part containing the largest order of complexity in both algorithms, the
order of complexity of both algorithms is the same.

MUSIC and ESPRIT are compared by means of a test case. The results
of the comparison showed no significant differences in the number of correct
estimations when the number of antennas are changed. In case of low SNR, the
MUSIC algorithm showed less estimation errors in the result of the simulations,
with respect to the ESPRIT algorithm. When the signals are more correlated,
ESPRIT showed less estimation errors, except for situations where the SNR is
low, because influence of the SNR becomes more dominant.

The MUSIC algorithm is implemented on the Montium2 architecture. MU-
SIC contains many vector and matrix multiplications. The QR decomposition
is based on many iterations of the CORDIC algorithm. Therefore the kernels of
the MUSIC algorithm are the CORDIC algorithm and matrix multiplications.

The execution time of the implementation described in chapter 5 is 7.5ms on
one Montium2. The practical example showed that it is acceptable execution
time when the Montium2 is completely dedicated to execute the MUSIC algo-
rithm. Therefore, there is no time left for an interleaved execution with other
parts of the beamforming system. To create the possibility of an interleaved
execution, and therefore employ the purpose of a reconfigurable architecture,
the execution time has to be reduced.

6.2 Recommendations

Optimizing the eigendecomposition

The eigendecomposition is responsible for 78% of the execution time of the
MUSIC algorithm. Optimizations in the eigendecomposition should reduce
the amount of contribution. The CORDIC algorithm consumes a large portion
of the execution time of the eigendecomposition. Therefore the possibilities of

61

62 CHAPTER 6. CONCLUSION AND RECOMMENDATIONS

an other algorithm for conversion from polar form to Cartesian form and vice
versa should be investigated.

The QR decompostion can also be optimized by first transforming the co-
variance matrix into an upper Hessenberg matrix [23]. An upper Hessenberg
matrix is almost an upper triangular matrix. The calculation of such a matrix
is often less computational expensive.

The covariance matrix contains complex values. By applying a unitary
transform [12], the covariance matrix can be transformed into a real symmet-
ric matrix, which at least halves the number of multiplications in the eigende-
composition. If all 4 multipliers in the Montium2 could be used to calculate
4 real multiplications simultaneously, the number of multiplications is divided
by 4. This is not a straight forward solution because of the grouping of the
multipliers in the Montium2.

If the QR decomposition is calculated in a multi processor architecture, the
Jacobi Method could increase the performance of a parallel implementation.

To increase the accuracy of the eigendecomposition, without increasing the
computational load, the 16-bit multipliers have to be extended to 32-bit mul-
tipliers in the Montium2.

Optimizing the covariance matrix calculation

The implementation of the CMD extension could reduce the computational
load of the covariance matrix calculation and increase the number of correct
DOA estimations of MUSIC when the sources are correlated.

Appendix A

Simulation results

A.1 MUSIC and ESPRIT

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.1: 32 antennas, 2048 snapshots, 60dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.2: 32 antennas, 2048 snapshots, 40dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.3: 32 antennas, 2048 snapshots, 20dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.4: 32 antennas, 1024 snapshots, 60dB
SNR.

63

64 APPENDIX A. SIMULATION RESULTS

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.5: 32 antennas, 1024 snapshots, 40dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.6: 32 antennas, 1024 snapshots, 20dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.7: 32 antennas, 512 snapshots, 60dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.8: 32 antennas, 512 snapshots, 40dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.9: 32 antennas, 512 snapshots, 20dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.10: 16 antennas, 2048 snapshots,
60dB SNR.

A.1. MUSIC AND ESPRIT 65

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.11: 16 antennas, 2048 snapshots,
40dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.12: 16 antennas, 2048 snapshots,
20dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.13: 16 antennas, 1024 snapshots,
60dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.14: 16 antennas, 1024 snapshots,
40dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.15: 16 antennas, 1024 snapshots,
20dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.16: 16 antennas, 512 snapshots, 60dB
SNR.

66 APPENDIX A. SIMULATION RESULTS

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.17: 16 antennas, 512 snapshots, 40dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.18: 16 antennas, 512 snapshots, 20dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.19: 8 antennas, 2048 snapshots, 60dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.20: 8 antennas, 2048 snapshots, 40dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.21: 8 antennas, 2048 snapshots, 20dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.22: 8 antennas, 1024 snapshots, 60dB
SNR.

A.1. MUSIC AND ESPRIT 67

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.23: 8 antennas, 1024 snapshots, 40dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.24: 8 antennas, 1024 snapshots, 20dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.25: 8 antennas, 512 snapshots, 60dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.26: 8 antennas, 512 snapshots, 40dB
SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Music

E

rr
or

s

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

Esprit

Error in degrees

E

rr
or

s

Figure A.27: 8 antennas, 512 snapshots, 20dB
SNR.

68 APPENDIX A. SIMULATION RESULTS

A.2 CMD MUSIC

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.28: 512 snapshots, 20dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s
Figure A.29: 256 snapshots, 20dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.30: 256 snapshots, 10dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.31: 256 snapshots, 5dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.32: 256 snapshots, 0dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.33: 256 snapshots, -5dB SNR.

A.2. CMD MUSIC 69

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.34: 128 snapshots, 20dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.35: 128 snapshots, 10dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.36: 128 snapshots, 5dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.37: 128 snapshots, 0dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.38: 128 snapshots, -5dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.39: 64 snapshots, 20dB SNR.

70 APPENDIX A. SIMULATION RESULTS

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.40: 64 snapshots, 10dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.41: 64 snapshots, 5dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.42: 64 snapshots, 0dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.43: 64 snapshots, -5dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.44: 32 snapshots, 20dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.45: 32 snapshots, 10dB SNR.

A.2. CMD MUSIC 71

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.46: 32 snapshots, 5dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.47: 32 snapshots, 0dB SNR.

−200 −150 −100 −50 0 50 100 150 200
10

−1

10
0

10
1

10
2

CMD Music

Error in degrees

E

rr
or

s

Figure A.48: 32 snapshots, -5dB SNR.

Bibliography

[1] Ziad Al-Qadi and Musbah Aqel. Performance analysis of parallel matrix
multiplication algorithms used in image processing. In World Applied
Sciences Journal, volume 6, pages 45–52. IDOSI Publications, 2009.

[2] M.S. Oude Alink. Increasing the spurious-free dynamic range of an in-
tegrated spectrum analyzer. Master’s thesis, University of Twente, En-
schede, The Netherlands, November 2008.

[3] Ray Andraka. A survey of cordic algorithms for fpga based computers. In
Proceedings of the 1998 ACM/SIGMA sixth international symposium on
Field Programmable Gate Arrays, pages 191–200, February 1998.

[4] Burton S. Garbow. Algorithm 535: The qz algorithm to solve the gener-
alized eigenvalue problem for complex matrices [f2]. ACM Trans. Math.
Softw., 4(4):404–410, 1978.

[5] Lal Chand Godora. Smart Antennas. CRC Press LLC, January 2004.

[6] M. Glesner H. Wang. Hardware implementation of smart antenna systems.
In Advances in Radio Science, volume 4, pages 185–188, September 2006.

[7] Nariankadu D. Hemkumar. A systolic vlsi architecture for complex svd.
Master’s thesis, Rice University, Houston, Texas, May 1991.

[8] Linda Kaufman. Some thoughts on the qz algorithm for solving the gen-
eralized eigenvalue problem. ACM Trans. Math. Softw., 3(1):65–75, 1977.

[9] David C. Lay. Linear Algebra and Its Applications. Addison-Wesley Pub-
lishing Company, second edition, April 2000.

[10] K. Arai H Minseok, K. Ichige. Implementation of fpga based fast doa esti-
mator using unitary music algorithm. In Vehicular Technology Conference,
volume 1, pages 213–217, October 2003.

[11] Peter J. Olver. Orthogonal bases and the qr algorithm. Technical report,
2006.

[12] M. Pesavento, A.B. Gershman, and M. Haardt. Unitary root-music with
a real-valued eigendecomposition: a theoretical and experimental perfor-
mance study. 48(5):1306–1314, 2000.

[13] Rik Portengen. Phased array antenna processing on reconfigurable hard-
ware. Master’s thesis, University of Twente, Enschede, The Netherlands,
December 2007.

73

74 BIBLIOGRAPHY

[14] R Roy and T Kailath. Esprit - estimation of signal parameters via rota-
tional invariance techniques. In IEEE Transactions on Acoustics, Speech,
and Signal Processing, volume 37, pages 984–995, July 1989.

[15] R Roy, A Paulraj, and T Kailath. Esprit - a subspace rotation approach
to estimation of parameters of cisoids in noise. In IEEE Transactions on
Acoustics, Speech, and Signal Processing, volume ASSP-34, pages 1340–
1342, October 1986.

[16] R. Schmidt. Multiple emitter location and signal parameter estimation. In
IEEE Transactions on Antennas and Propagation, volume AP-34, pages
276–280, March 1986.

[17] Gautam M. Shroff. A parallel algorithm for the eigenvalues and eigen-
vectors of a general complex matrix. In Numer. Math., volume 58, pages
779–805, 1991.

[18] Recore Systems. Crisp project. http://www.crisp-project.eu/, Last
checked: 1-15-2009.

[19] Recore Systems. Montium User Guide. 2008. Version 2.

[20] Nizar Tayem, Hyuck M. Kwon, Seunghyun Min, and Dong Hee Kang.
Covariance matrix differencing for coherent source doa estimation under
unknown noise field. In Proc. VTC-2006 Fall Vehicular Technology Con-
ference 2006 IEEE 64th, pages 1–5, 2006.

[21] Various. Coordinate rotation digital computer. http://en.wikipedia.
org/wiki/CORDIC, Last checked: 1-13-2009.

[22] Various. Eigendecomposition of a matrix. http://en.wikipedia.org/
wiki/Eigendecomposition_of_a_matrix, Last checked: 1-13-2009.

[23] Various. Hessenberg matrix. http://en.wikipedia.org/wiki/
Hessenberg_matrix, Last checked: 1-13-2009.

[24] Various. Jacobi eigenvalue algorithm. http://en.wikipedia.org/wiki/
Jacobi_eigenvalue_algorithm, Last checked: 1-13-2009.

[25] Hubregt J. Visser. Array and Phased Array Antenna Basics. John Wiley
and Sons, 2005.

[26] Shaoyun Wang and Jr. Swartzlander, E.E. The critically damped cordic
algorithm for qr decomposition. In Conference Record of the Thirtieth
Asilomar Conference on Signals, Systems and Computers, pages 908–911
vol.2, November 1996.

[27] David S. Watkins. Understanding the qr algorithm. In SIAM Review, vol-
ume 24, pages 427–440. Society for Industrial and Applied Mathematics,
October 1982.

[28] David S. Watkins. Fundamentals of Matrix Computations. John Wiley
and Sons, 2002.

http://www.crisp-project.eu/
http://en.wikipedia.org/wiki/CORDIC
http://en.wikipedia.org/wiki/CORDIC
http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
http://en.wikipedia.org/wiki/Hessenberg_matrix
http://en.wikipedia.org/wiki/Hessenberg_matrix
http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm
http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

75

[29] J. Wu, W.-X. Sheng, K.-P. Chan, W.-K. Chung, K.-K.M. Cheng, and K.-L.
Wu. Smart antenna system implementation based on digital beam-forming
and software radio technologies. In Proc. IEEE MTT-S International Mi-
crowave Symposium Digest, volume 1, pages 323–326, 2002.

	Contents
	List of Acronyms
	Introduction
	Phased array processing
	System model
	Data model
	Processing architecture
	Problem statement
	Related work

	Methods for DOA estimation
	MUSIC
	Basic algorithm
	CMD extension

	ESPRIT
	Eigenproblems
	Eigendecomposition
	Generalized eigendecomposition

	Comparison of MUSIC and ESPRIT

	Modeling and simulations
	MUSIC and ESPRIT simulations
	CMD MUSIC simulations
	Conclusion

	Algorithm implementation
	Montium2
	Music algorithm
	Covariance matrix
	Eigendecomposition
	MUSIC spectrum
	Peak selection

	Conclusion

	Conclusion and Recommendations
	Conclusion
	Recommendations

	Simulation results
	MUSIC and ESPRIT
	CMD MUSIC

	Bibliography

