

CONVERGENCE OF AN

IMPLICIT RUNGE-KUTTA

DISCONTINUOUS GALERKIN

METHOD USING SMOOTH

LIMITERS

Jacob Middag

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE
CHAIR: MATHEMATICS OF COMPUTATIONAL SCIENCE

EXAMINATION COMMITTEE

prof.dr.ir. J.J.W. van der Vegt
dr.ir. O. Bokhove
dr. A.R. Thornton

AUGUST 23, 2012

Abstract

In higher order discontinuous Galerkin methods limiters are used to remove non-physical nu-
merical oscillations. e limiters are used as a postprocessing step aer each stage or time step.
However, the limited solution is not a solution to the DG formulation and oen limiters con-
tain switches which are non-smooth. is results into a limit cycle behavior which hampers
convergence of iterative methods used for the solution of algebraic equations resulting from
an implicit time integration method.

We will investigate a new smooth limiter in this thesis, the Weighted Biased Averaging
Procedure (WBAP), to address this problem. e limiter is adapted to be used in an implicit
discontinuous Galerkin method and the modifications necessary for a DG algorithm will be
discussed in detail.

e WBAP limiter is applied both in a one dimensional and a two dimensional seing.
In the one dimensional seing this is done using shock tube problems described by the Euler
equations for gas dynamics and steady state problems described by the Burgers equation. For
the two dimensional problemwe consider the shallowwater equations for the flow in a channel
with contraction.

e application of the DG method is successful in both dimensions. However, the result of
the simulations do not confirm the hypothesis that smoothness is beneficial for the convergence
of the implicit time integration method. e most discontinuousWBAP variant is only slightly
beer than the discontinuousminmod-TVB limiter and the other variants areworse. Compared
to the results without limiter there is still a large gap in convergence rate. For future work it is
recommended to look for methods that can deal with the discontinuous properties of limiters
such as semi-smooth Newton methods.

Contents

1 Introduction 1

2 Discontinuous Galerkin method 3

2.1 One dimensional hyperbolic systems . 3
2.1.1 Numerical flux . 5
2.1.2 Boundary conditions . 6
2.1.3 Entropy . 6

2.2 Two dimensional hyperbolic systems . 8
2.3 DG discretization . 10

2.3.1 Trial functions . 10
2.3.2 Method of lines for time integration 10
2.3.3 Time integration . 12

3 Implementation details 15

3.1 Basis functions . 15
3.1.1 1d: Legendre polynomials . 15
3.1.2 2d: Reference triangle . 16

3.2 Numerical quadrature . 19

4 WBAP limiter 21

4.1 Introduction . 21
4.2 Definition of the WBAP . 22

4.2.1 Different versions . 23

ii

4.2.2 Smoothness . 24
4.3 Application to the Discontinuous Galerkin method 25

4.3.1 One dimensional application . 25
4.3.2 Two dimensional application . 26
4.3.3 Time integration with limited DG discretization 29

4.4 Derivatives of the WBAP . 29

5 Non-linear solvers 33

5.1 Jacobian . 33
5.1.1 One dimensional DG operator . 33
5.1.2 Two dimensional DG operator . 34
5.1.3 One dimensional WBAP limiter . 35
5.1.4 Two dimensional WBAP limiter . 36
5.1.5 Numerical Tests . 37

5.2 Newton method . 37
5.3 Damped Newton method . 38

5.3.1 Line-search . 39

6 Implicit time integration of Euler equations 41

6.1 Accuracy . 42
6.2 Harten-Lax problem . 43

6.2.1 Convergence of the iterative method as a function of the time step . . 43
6.2.2 Limiter accuracy . 47

6.3 Blast wave problem . 49
6.3.1 Convergence of the iterative method as a function of the time step . . 49
6.3.2 Limiting accuracy . 49

6.4 Conclusions . 51

7 Steady state solution of the Burgers equation 55

7.1 Burgers equation with source term independent of the solution 56
7.2 Burgers equation with source term depending on the solution 58
7.3 Conclusion . 62

iii

8 Multiple steady states in a annel contraction 63

8.1 Introduction . 63
8.1.1 Model . 63

8.2 Oblique hydraulic jumps . 65
8.3 Simulations . 67

8.3.1 Setup . 67
8.3.2 Comparison with other limiters . 72
8.3.3 Convergence in the iterative method as function of the time step . . . 75

8.4 Conclusions . 75

9 Discussion & Conclusions 77

9.1 Future work . 78

Bibliography 79

Anowledgment 83

iv

Chapter 1
Introduction

Scientific problems in many fields of physics are described by partial differential equations
(PDE’s). Except for simple problems or problems with enough symmetry, most of them cannot
be solved analytically. erefore numerical methods have been developed to solve the PDE’s
with a computer. e most important classes of numerical methods are finite difference meth-
ods (FDM), finite volume methods (FVM) and finite element methods (FEM). A relatively new
method is the discontinuous Galerkin (DG) method. Originally it was used to solve hyperbolic
PDE’s, but the method is extended to solve elliptic and parabolic PDE’s as well.

e DG method is based on the finite element method, but uses discontinuous basis func-
tions – in most cases polynomials – instead of continuous basis functions as is the case in
classical FEM. Due to the discontinuous basis it frees the method from some restrictions in
classical FEM, e.g. arbitrary triangulation, hanging nodes and changing the polynomial order
per element (p-adaptivity) are easily implemented. e discontinuous basis functions make the
method appealing for problems with discontinuities, eg. shocks and material interfaces. Also,
due to the local nature of the basis functions, only the nearest neighbors of an element have to
be considered, which makes the algorithm very aractive for parallel computing.

e use of discontinuous basis functions also has its disadvantages. As known under the
name Godunov’s eorem, the DG method lacks the property of not generating new extrema
in the solution when using linear or higher order polynomial basis functions. is is only pos-
sible for constant basis functions in combination with an upwind (or approximate Riemann)
flux. In order to be sufficiently accurate, the DG method generally uses first or higher order
polynomials and encounters therefore non-physical numerical oscillations in problems with
discontinuities, interfaces and very steep gradients. ese oscillations seriously affect the so-
lution and can cause non-physical values in applications, such as negative density in a com-
pressible flow or negative water height. Not only is this unrealistic, but it can also cause the
method to blow up or halt.

ese numerical oscillations also arise in finite volume methods. DG methods are very
similar to finite volume methods and share important components, such as the flux functions

1

Chapter 1. Introduction

at the element faces. In fact, a zeroth order DG method has the same formulation as a zeroth
order finite volume method. e main solution to remove the numerical oscillations is the
use of slope or flux limiters. Originating from finite volume methods, they compare different
gradients in the reconstruction process (MUSCL framework with TVD limiters [32, 14, 29])
or alter the reconstruction process such that it reduces the oscillations (ENO/WENO schemes
[15, 23, 18]).

Limiters and numerical fluxes developed for finite volume methods are also suitable for
DG methods. Since DG methods do not have to use a reconstruction method as in MUSCL and
ENO/WENOmethods – DGmethods only use basis functions inside the elements – the limiters
have to be altered. e limited solution is, however, no weak solution to the DG formulation
of the PDE and the key issue in applying limiters in a DG discretization is that they are used
as a post- or preprocessing step.

emain difficulty in the use of limiters lies in the fact that most limiters are formulated us-
ing conditions and selection procedures which result in a switching behavior and non-smooth
flux functions. is makes it difficult to incorporate the limiter in a space-time DG method
(i.e. a method that discretizes space and time simultaneously using a DG method) and in itera-
tive methods for the solution of non-linear equations resulting from implicit time integration
methods [33].

Li et al. [22],[21] recently presented a new smooth limiter which suffers less from these
drawbacks of limiters. is smooth limiter is successfully applied in a finite volume frame-
work on structured and unstructured grids using explicit time integration methods. is would
make the limiter a good candidate to use in direct combination with the DG discretization. In
this thesis we will explore its suitability for one dimensional and two dimensional problems
discretized with an implicit time integration method.

e thesis is organized in the following way. In Chapter 2 we will introduce the DG for-
mulation for one dimensional and two dimensional conservation laws. We will proof that it
satisfies the entropy condition for the scalar one dimensional case. Furthermore we will look
into Runge-Kua time discretization methods. Implementation details such as basis functions
and transformations to the reference element will be given in Chapter 3. e WBAP limiter
and its variations will be introduced in Chapter 4. Since the limiter is originating from a finite
volume method we will show how the limiter is applied in the DG method in both the one di-
mensional and two dimensional seing. e chapter concludes with the derivatives needed to
solve the algebraic equations. In Chapter 5 the solution to the non-linear algebraic equations
will be treated and the Jacobians of the operators will be calculated.

In the second part of the thesis we will test the smooth limiter in three different setups.
In Chapter 6 we use the Euler equations to see how the radius of convergence is affected by
including the limiter and compare it to the basic and reliable TVB-minmod [8] limiter. How
the limiter behaves in the case of convergence towards a steady state solution is discussed in
Chapter 7 with the use of the Burgers equation. Chapter 8 will look into a more realistic two
dimensional system given by the shallow water equations in a channel with contraction and
we will compare the WBAP limiter to other limiters [4, 33, 25]. e final chapter will discuss
the results, draw conclusions and presents an outlook for future work.

2

Chapter 2
Discontinuous Galerkin method

e first discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill [27]
to solve the hyperbolic neutron mass transport equation. Although we will look only into
hyperbolic equations, DG can also be applied to elliptic and parabolic problems [3]. e DG
method is based on the finite element method (FEM) and uses components from the finite
volume method (FVM). Like the Galerkin formulation of FEM, the DG formulation starts with
the weak formulation and uses the same functions as test and trial functions. e discretization
is obtained by using a finite basis.

Within the DG method there are two separate approaches to handle the time derivative
in time dependent problems. e first is to treat it as a spatial variable, the space-time DG
method [16, 19]. e second approach is to first discretize in space with DG and then use a
time integration method to solve the resulting ordinary differential equations. A widely used
time integration method is the Runge-Kua method, known in combination with DG as the
Runge-Kua discontinuous Galerkin (RKDG) method [9].

In this chapter we will discretize one and two dimensional conservation laws using a DG
formulation. is leads to the definition of a spatial operator D which will result in a system
of ordinary differential equations. In the last section we will show how this system is solved.

2.1 One dimensional hyperbolic systems

Let us consider a one dimensional conservation law of d variables, with time dependent variable
t, spatial variable x, flux term f and a source term s:

ut + f(u)x = s(u) , (2.1)

f is a Rd → Rd function which differs per physical phenomena and is oen non-linear. Exam-
ples are the advection, Burgers and shallowwater equations. V is defined as the space in which
the solution u lives. Furthermore we assume periodic boundary conditions in this chapter to
ease the theoretical treatment.

3

Chapter 2. Discontinuous Galerkin method

In the one dimensional DG method we divide the domain into N elements, denoted by

Ii =
{
x : xi−1/2 ≤ x ≤ xi+1/2

}
, 1 ≤ i ≤ N , (2.2)

with
xle = x1/2 < x1 < · · · < xN < xN+1/2 = xright , (2.3)

where the i− 1/2 and i+ 1/2 notation is used to denote the le, respectively, right boundary of
element i and xi to denote the midpoints. Note that the elements do not have to be distributed
uniformly. e width of the element and the minimum width are given by:

∆xi = xi+1/2 − xi−1/2, h = min
1≤i≤N

∆xi . (2.4)

We assume that the mesh is regular, i.e. there exists a constant c independent of h such that:

∆xi ≥ ch, 1 ≤ i < N .

For a discretization we have to define a finite subset of the solution space. is is where the
discretization takes place. Although one can propose any function space with a finite basis
span, it is numerically advantageous to use local polynomial test and trial functions. erefore
we define the finite element space consisting of polynomials up to the order p as

V p,d
h = {v ∈

(
L2(Ω)

)d
: v|Ii ∈

(
P p(Ii)

)d
; 1 ≤ i ≤ N} ⊂ V d . (2.5)

e trial and test functions are in contrast with continuous FEM truly local and due to the
use of basis functions, which are discontinuous at element faces, the function u ∈ V p,d

h is not
necessarily continuous at the faces of the elements.

e DG method is derived from the weak formulation and can be formulated as finding
u ∈ V p,d

h , such that for all v ∈ V p,d
h the following holds:

N∑
i=1

{∫
Ii

[
ut − s(u)

]
v dx+

∫
Ii

f(u)x v dx
}

= 0

at which we can integrate the second term by parts and obtain:

N∑
i=1

{∫
Ii

[
ut − s(u)

]
v dx−

∫
Ii

f(u) vx dx+ f̂(u) v
∣∣∣∣xi+1/2

xi−1/2

}
= 0 . (2.6)

At the boundaries f is replaced with f̂, the numerical flux, since the flux at the element faces is
not guaranteed to be single valued due to the use of basis functions which are discontinuous
at element faces. e integrals can be approximated by numerical quadratures, e.g. Gauss
or Gauss-Lobao rules. To complete the DG space discretization we only have to define the
numerical flux.

4

2.1. One dimensional hyperbolic systems

2.1.1 Numerical flux

Due to the discontinuous basis functions the trace at the element faces is double valued and
therefore a numerical flux is introduced. is flux should depend on the elements which con-
stitute the face. e choice of an appropriate numerical flux in DG includes two main ideas.
e first one is to let the numerical flux only depend on the values at the faces. is is conve-
nient since we only have to evaluate the solution at that point. e second one is to choose the
numerical flux such that it results in a monotone finite volume scheme for piecewise-constant
basis function. e motivation is that only first order, monotone schemes seem to be stable
and convergent to the exact solution. Along with the natural consistency condition that if the
face values are equal then the numerical flux should return the same value as the original flux,
we obtain the following three conditions:

1. Consistency: f̂(u, u) = f(u)

2. Continuity: f̂(u−, u+) is at least Lipschitz continuous with respect to both arguments
u− and u+

3. Monotonicity: f̂(u−, u+) is a non-decreasing function in its first argument u− and a
non-increasing function in its second argument u+.

Using this notation, (2.6) can be wrien as:

N∑
i=1

{∫
Ii

[
ut − s(u)

]
v dx−

∫
Ii

f(u) vx dx

+ f̂
(
u(x−i+1/2), u(x

+
i+1/2)

)
v(x−i+1/2)− f̂

(
u(x−i−1/2), u(x

+
i−1/2)

)
v(x+i−1/2)

}
= 0 . (2.7)

We will use the well-known Lax-Friedrichs flux in this report. Although it introduces more
artificial viscosity than the Godunov flux, the Lax-Friedrichs flux is smooth and very easy to
calculate. is is important because we need to solve a non-linear equation introduced by the
implicit time integration method. e Lax-Friedrichs flux is given by:

f̂LF(a, b) =
1

2

[
f(a) + f(b)− α(b− a)

]
, (2.8)

with α the maximum characteristic wave speed of the system, i.e. the maximum modulus of
the eigenvalues of the Jacobian of f. is can be imposed locally or globally. Local imposition
reduces the dissipation introduced by α in many elements, but costs extra time to compute
and – more importantly – introduces a dependency on the solution which makes it harder to
calculate the derivative. For the one dimensional problem we chose to impose the α globally.

5

Chapter 2. Discontinuous Galerkin method

2.1.2 Boundary conditions

Homogeneous Neumann boundary conditions

If we want to study a shock tube problem to test the limiter for suppressing numerical oscil-
lations, we have to implement homogeneous Neumann boundary conditions. e Neumann
boundary condition of g(t) = ux(0, t) is implemented using a ghost element with the same
width as the boundary element via a finite difference relation:

u1 − u0
∆xi

= g(t) (2.9)

For homogeneous boundary conditions the ghost element is equal to the boundary element
and the numerical flux is reduced to:

f̂(u0, u1) = f̂(u1, u1) = f(u1) (2.10)

e boundary condition on the other side is completely analogue.

Dirilet boundary conditions

Dirichlet boundary conditions are enforced via the numerical flux. e data component outside
the domain which is necessary to compute the flux at the boundary is preset to the Dirichlet
condition. Although this means that the Dirichlet condition is not enforced pointwise, it results
in less oscillations.[10]

2.1.3 Entropy

e DG method uses a weak formulation of (2.1). Solutions to this weak formulation may
not be unique (e.g. when faced with discontinuous initial conditions). e physically unique
solution must satisfy the following entropy inequality:

U(u)t + F (u)x ≤ 0 , (2.11)

in the sense of a distribution, for any convex entropyU , satisfyingU ′′ ≥ 0 and the correspond-
ing entropy flux

F (u) =

∫ u

U ′(v)f ′(v) dv .

is solution is therefore also known as the entropy solution.
To calculate physically realistic phenomena it is desirable for a numerical approximation to

share the same entropy inequality. In contrast with finite difference or finite volume schemes,
it is easy to prove that the DG scheme satisfies a cell entropy inequality [17]. We will show
in this section that for a scalar conservation law with no source term, the physically unique

6

2.1. One dimensional hyperbolic systems

solution is obtained using the DG method. is can be proved element-wise. For element i the
scalar version of (2.6) is given as:∫

Ii

utv dx−
∫
Ii

f(u) vx dx+ f̂i+1/2v(x
−
i+1/2)− f̂i−1/2v(x

+
i−1/2) = 0 , (2.12)

with f̂i±1/2 being defined as:

f̂i±1/2 = f̂
(
u(x−i±1/2), u(x

+
i±1/2)

)
. (2.13)

is leads to the following proposition:

Proposition 2.1. e solution u to the scalar semi-discrete DG scheme (2.12) satisfies the following
cell entropy inequality:

d
dt

∫
Ii

U(u) dx+ F̂i+1/2 − F̂i−1/2 ≤ 0 , (2.14)

for the square entropy U(u) = 1
2u

2, for some consistent entropy flux

F̂i+1/2 = F̂
(
u(x−i+1/2), u(x

+
i+1/2)

)
,

satisfying F̂ (u, u) = F (u).

Proof. If we take our weak formulation (2.12) and use as test function u itself, we get the fol-
lowing equality:∫

Ii

utu dx−
∫
Ii

f(u)ux dx+ f̂i+1/2u(x
−
i+1/2)− f̂i−1/2u(x

+
i−1/2) = 0 . (2.15)

e first term can be wrien in terms of U as:∫
Ii

utu dx =
1

2

∫
Ii

∂

∂t
u2 dx =

∫
Ii

U(u)t dx =
d
dt

∫
Ii

U(u) dx ,

and if we denote F̃ as:
F̃ (u) =

∫ u

f(v) dv ,

we can change the second term by

−
∫
Ii

f(u)ux dx = −
∫
Ii

{
∂

∂x
F̃ (u)

}
dx = −F̃

(
u(x−i+1/2)

)
+ F̃

(
u(x+i−1/2)

)
.

Introducing the contributions into (2.15) gives:

d
dt

∫
Ii

U(u) dx−F̃
(
u(x−i+1/2)

)
+F̃

(
u(x+i−1/2)

)
+f̂i+1/2u(x

−
i+1/2)−f̂i−1/2u(x

+
i−1/2) = 0 . (2.16)

Now we will define our consistent entropy flux to be:

F̂i±1/2 = −F̃
(
u(x−i±1/2)

)
+ f̂i±1/2u(x

−
i±1/2) . (2.17)

7

Chapter 2. Discontinuous Galerkin method

Note that although it looks like F̂ does only depend on one variable, it is f̂i±1/2 that defines the
other variable automatically being u(x+i±1/2) in (2.13). is entropy flux needs to be consistent,
which can be proven using the consistency property of the numerical flux and integration by
parts. Working backwards:

F (u) =

∫ u

U ′(v)f ′(v) dv =

∫ u

vf ′(v) dv

= −
∫ u

f(v) dv + uf(u) = −F̃
(
u
)
+ uf̂(u, u) = F̂ .

Using our entropy flux (2.17) we can rewrite (2.16) to a cell entropy inequality)

d
dt

∫
Ii

U(u) dx+ F̂i+1/2 − F̂i−1/2 +
[
F̂i−1/2 + F̃

(
u(x+i−1/2)

)
− f̂i−1/2u(x

+
i−1/2)︸ ︷︷ ︸

Θ

]
= 0 . (2.18)

To proof the entropy inequality we only have to prove that Θ ≥ 0. Since all functions are
evaluated at xi−1/2 wewill drop the subscript and adopt the notation that u± = u(x±). Writing
out F̂i−1/2, applying the mean value theorem¹ and using the fact that F̃ ′(v) = f(v) gives:

Θ =
[
− F̃ (u−) + f̂ u−

]
+ F̃ (u+)− f̂ u+ =

[
F̃ (u+)− F̃ (u−)

]
− (u+ − u−)f̂

= (u+ − u−)
[
F̃ ′(ξ)− f̂

]
= (u+ − u−)

[
f(ξ)− f̂

]
= (u+ − u−)

[
f̂(ξ, ξ)− f̂(u−, u+)

]
,

with ξ between u+ and u−. We used again the consistency property of the numerical flux
which states: f̂(ξ, ξ) = f(ξ). Using the monotonicity property of the numerical flux it follows
that u+ − u− should have the same sign as f̂(ξ, ξ)− f̂(u−, u+). Which concludes that Θ ≥ 0
and finishes the proof.

Note that the proof does not depend on the polynomial order of the basis functions nor the
accuracy of the scheme.

2.2 Two dimensional hyperbolic systems

A two dimensional conservation law is the same as a one dimensional conservation, but with
an extra flux term for the extra spatial dimension:

ut + f(u)x + g(u)y = s(u) . (2.19)

For two (and higher) dimensional equations one has to choose a geometry for the elements.
Triangles and quadrilaterals are oen used for this purpose in two dimensional problems. We
divide our spatial domain up into triangular elements denoted by Th, because the transforma-
tion to the reference element is linear and is simple to implement. Note that elements with
different geometries can be mixed in one problem.

¹F̃ satisfies the conditions of differentiable on the open and continuous on the closed interval because it is
defined using an integral

8

2.2. Two dimensional hyperbolic systems

e weak formulation of (2.19) is given by:∑
Ki∈Th

{∫
Ki

[
ut − s(u)

]
v dxdy +

∫
Ki

f(u)x v dxdy +
∫
Ki

g(u)y v dxdy
}

= 0 ,

or if we introduce F = [f, g]T we can write it as:²∑
Ki∈Th

{∫
Ki

[
ut − s(u)

]
v dxdy +

∫
Ki

∇ · F(u) v dxdy
}

= 0 ,

at which we can apply the two dimensional divergence theorem and obtain:∑
Ki∈Th

{∫
Ki

[
ut− s(u)

]
vdxdy−

∫
Ki

F(u) ·∇vdxdy+
∫
∂Ki

F̂(u−, u+) · n̂ vds
}

= 0 , (2.20)

with u− to be defined as the trace from inside the element and u+ (and thus inside the neigh-
boring element) to be defined as the trace from outside the element, n̂ is the outward pointing
normal of elementKi. Note that u+ is in a different element for each element face. To simplify
the numerical implementation it is easier to transfer the sum of the element faces into a sum
over interior and boundary faces:

∑
Ki∈Th

{∫
Ki

[
ut − s(u)

]
v dxdy

}
−

∫
Ki

F(u) · ∇v dxdy

+
∑
S∈Si

∫
∂Ki

(
F̂(u−, u+) · n− v− + F̂(u+, u−) · n+ v+

)
ds

+
∑
S∈Sb

∫
∂Ki

F̂(u−, u+) · n̂− v ds = 0 , (2.21)

where the normal n̂− has to be taken outward with respect to the element associated with v−.
e Lax-Friedrichs flux is given by the relation:

F̂LF(u−, u+) · n̂ =
1

2

{[
F(u−) + F(u+)

]
· n̂− α(u−, u+) (u+ − u−)

}
, (2.22)

where α is taken as an upper bound for the characteristic wave speeds in the normal direction
at the element face, i.e. the maximum modules of the eigenvalues of the Jacobian of the inner
product of F with n̂. e coefficient α is dependent on u− and u+ because we will calculate
it locally at each element face. e line integral and volume integral can be obtained by nu-
merical quadrature just as in the one dimensional case. Note when using the Lax-Friedrichs
flux as numerical flux in (2.7) we only have to calculate the flux once. e flux for the element
connected to the face can be calculated via the skew-symmetric relation:

F̂LF(u−, u+) · n̂− = −F̂LF(u+, u−) · n̂+ . (2.23)
²Abusing notation a lile bit, but the dot product has to be taken with respect to the two dimensional field

created.

9

Chapter 2. Discontinuous Galerkin method

2.3 DG discretization

Aer the discretization in space discussed in the previous section, the time derivative is still
present in the system of equations. To simplify this section we will base the equations on the
two dimensional case, but the one dimensional case can be done analogously.

2.3.1 Trial functions

Let’s denote the trial functions by φk,i(x, y), where k denotes the index of the L different basis
functions per element and i the element number of the N elements:

u = (u1, · · · , ud), uj(t, x, y) =
N∑
i=1

L∑
k=1

u⃗j,k,i(t)φk,i(x, y) j = 1, · · · , d , (2.24)

where u⃗ shall be used to denote the coefficients in contrast with u (and uj) which denotes
the solution itself (or the j component). e coefficients have to depend on t, since the basis
functions do not.

If we choose the basis functions to be orthonormal the time derivative³∫
Ki

ut v dxdy =
d
dt

∫
Ki

u v dxdy

is explicit and no mass matrix has to be inverted. But even if the basis is not orthonormal, the
mass matrix is local per element and has sizeL×L. is matrix can be inverted beforehand and
the cost is only a matrix multiplication of the element mass matrix with the DG coefficients.
We define the mass matrix on element i as Mi, which is defined per entry as:

(Mi)kl =

∫
Ki

φk,i φl,i dxdy . (2.25)

When the basis is orthogonal but not orthonormal, the mass matrix is diagonal and the coeffi-
cients only have to multiplied with the inverse of the diagonal entry.

2.3.2 Method of lines for time integration

In this section we will define a spatial DG operator to apply standard time integration tech-
niques to the resulting system of ordinary differential equations (ODE’s). Our starting point
is the weak formulation in (2.20) and the basis functions as used in (2.24) which will also be
used as test functions. e test space is therefore given by the span of the basis functions and
leads to the same number of equations. In this section we will use this basis span and take an
arbitrary basis function as test function.

³Note that the test function v is not dependent on t.

10

2.3. DG discretization

If we manipulate (2.20) such that the time derivative is at one side we obtain for uj , the
j-th component of u, the following equation:

∑
Ki∈Th

d
dt

∫
K
uj φk,i dxdy =

∑
Ki∈Th

{∫
Ki

s(u)j φk,i dxdy

+

∫
Ki

F (u)j · ∇φk,i dxdy −
∫
∂Ki

[
F̂ (u−, u+) · n̂

]
j
φk,i ds

}
.

e test function is only non-zero in element i and therefore singles out the integral over
element i. Introducing the expansion of (2.24) for uj in the le hand side gives:

d
dt

∫
Ki

(L∑
l=1

u⃗j,l,i φl,i

)
φk,i =

∫
Ki

s(u)j φk,i dxdy

+

∫
Ki

F (u)j · ∇φk,i dxdy −
∫
∂Ki

[
F̂ (u−, u+) · n̂

]
j
φk,i ds .

e integral on the le hand side can be replaced with the mass matrix entries aer switching
the order of the integral, sum, and time derivative. is results into:

L∑
l=1

(Mi)k,l
d
dt

(
u⃗j,l,i

)
=

∫
Ki

s(u)j φk,i dxdy

+

∫
Ki

F (u)j · ∇φk,i dxdy −
∫
∂Ki

[
F̂ (u−, u+) · n̂

]
j
φk,i ds .

e summation on the le hand can be wrien as a matrix multiplication if we take all trial
function of element i and component j. We will use the Matlab based notation : to denote
all the entries available in that index position. is leads to the system of (L) equations for
element i:

Mi ·
d
dt

(
u⃗j,:,i

)
=

∫
Ki

s(u)j φ:,i dxdy +
∫
Ki

F (u)j · ∇φ:,i dxdy

−
∫
∂Ki

[
F̂ (u−, u+) · n̂

]
j
φ:,i ds ≡ Mi · D

(2)
i,j (u⃗) (2.26)

from which we can derive a spatial operator D and write:⁴

d
dt u⃗ = D(2)(u⃗) (2.27)

which we have to solve by marching in time.

⁴e (2) is used to distinguish the two dimensional DG operator from the one dimensional one.

11

Chapter 2. Discontinuous Galerkin method

e one dimensional spatial DG operator can analogously be derived from:

Mi ·
d
dt

(
u⃗j,:,i

)
=

∫
Ii

s(u)j φ:,i dx+

∫
Ii

f(u)j
d
dx

(
φ:,i

)
dx

− f̂
(
u(x−i+1/2), u(x

+
i+1/2)

)
j
φ:,i(x

−
i+1/2) + f̂

(
u(x−i−1/2), u(x

+
i−1/2)

)
j
φ:,i(x

+
i−1/2)

≡ Mi · D
(1)
i,j (u⃗) , (2.28)

where Mi is the local mass matrix for an element in the one dimensional seing.

2.3.3 Time integration

One can distinguish two classes of time integration methods: explicit and implicit. While the
intermediate stages in explicit methods only depend on the previous ones, implicit methods
also depend on the current stage. For non-linear systems of equations this usually involves
using iterative methods to solve the corresponding non-linear algebraic equations.

Wewill first consider explicit Runge-Kua (RK) methods for time integration. Runge-Kua
methods are used to solve the ordinary differential equations (ODE) as (2.27). ey are gener-
alized Euler methods in the sense that they allow for a number of evaluations of the derivative
to take place in one time step [5]. e reason to do this is to obtain a higher order discretization
in time. is is accomplished by using intermediate stages.

Explicit methods can be straightforwardly used. e time step is, however, restricted for
these methods and a relation exists between the maximum time step, ∆t and the minimum
element size h. is condition is known as the CFL-condition⁵. For the method of lines they
look like:

c
∆t

h
≤ CFL , (2.29)

with c the magnitude of the largest wave velocity of the hyperbolic system and CFL a constant
depending on the time step and spatial discretization. For a DG method with polynomials of
order p, an RK method of p+ 1 stages and linear flux, this CFL number is upper bounded by:

CFL =
1

2p+ 1
, (2.30)

being optimal for p = 0 and p = 1. For p ≥ 2 it is numerically shown that this upper bound is
less than 5% smaller than the optimal CFL number [9]. is condition is a necessary condition
for non-linear flux functions. We will use the variable∆tCFL as the maximal allowed time step
which satisfies the CFL condition.

A widely applied scheme in DG is the following third order strongly stability preserving

⁵Named aer Richard Courant, Kurt Friedrichs, and Hans Lewy who described it in their 1928 paper [11]

12

2.3. DG discretization

(SSP) RK scheme:⁶

u(1) = un +∆tD(un) ,

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tD(u(1)) ,

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tD(u(2)) ,

(2.31)

Strongly stability preserving means that it will maintain the stability property when the time
step is restricted as would be for the forward Euler method [13]. Any convex combination of
the forward Euler method would have the same property.

e use of implicit methods leads to a system of algebraic equations that has to be solved
each time step. Frequently these equations are non-linear. It is clear that this is a disadvantage
with respect to explicit methods, but it generally comes with the advantage of being uncondi-
tionally stable, i.e. no restrictions on the time step. For steady state problems this is convenient
as we can make the time step larger as the solution is closer to steady state in order to speed up
convergence to the steady state solution. Furthermore, we can test the limiter directly coupled
with the DG method. For simplicity we will primarily use the backward Euler method⁷

un+1 = un +∆tD(un+1) , (2.32)

and the Crank-Nicolson method

un+1 = un +
∆t

2

[
D(un) +D(un+1)

]
. (2.33)

e backward Euler method is only first order accurate in time and the Crank-Nicolson method
second order accurate. But for large time steps the Crank-Nicolson method is known to intro-
duce numerical oscillations.

⁶Dropping the arrow and indices out the notation for clarity
⁷Again dropping the arrow and the indices for clarity

13

14

Chapter 3
Implementation details

In the previous chapter the DG formulation was presented. However, some details in the im-
plementation were omied. is chapter fills in those blanks by discussing the used basis
functions and numerical quadrature. e non-linear algebraic equations resulting from the
implicit Euler method will be discussed in Chapter 5 in combination with the limiter.

3.1 Basis functions

e DG formulation uses basis functions which are also used as test functions. ere is no
standard choice since no set of basis functions has only advantageous properties. One can look
for orthogonality, but also for functions that can be efficiently evaluated inside the element or
have an easy representation at the faces. e integrations are done on a reference element,
so we will first describe the transformations of the integrals to the reference element. Due to
the conservation requirements of the limiters, the equations are based on the mean value of
an element. In this section we also describe the formulation of the mean value for our chosen
basis functions.

3.1.1 1d: Legendre polynomials

For one dimensional problems we use Legendre polynomials as basis functions because they
are orthogonal in the L2[−1, 1] space, which makes the mass matrix diagonal. is leads to
the choice of the interval [−1, 1] as our reference element on which the integration is done.
e spatial coordinate in the reference element will be denoted by ξ. e first four Legendre
polynomials are given by:

P0(ξ) = 1, P2(ξ) =
1
2(3ξ

2 − 1),

P1(ξ) = ξ, P3(ξ) =
1
2(5ξ

3 − 3ξ),

15

Chapter 3. Implementation details

and the orthogonality is given by the following relation:∫ 1

−1
Pi Pj dξ =

2

2k + 1
δij , (3.1)

in which δij represents the usual Kronecker delta.¹ Another pleasant feature of the Legendre
polynomials is that they have nice values at the boundaries, given by:

Pi(−1) = (−1)i ,

Pi(1) = 1 .
(3.2)

Using these basis functions, the solution in an element can be wrien as:

uj(x)

∣∣∣∣
Ii

=

p∑
k=0

u⃗j,k,i φk,i(x), φk,i(x) = Pk

(
2(x− xi)

∆xi

)
, (3.3)

where u⃗j,k,i stands for the coefficient of the k-th basis function in the i-th element of the j-th
component. e actual calculations are more convenient to do in the interval [−1, 1], because
the basis functions are equal in each element and their values at the quadrature points only
have to be computed once. For the source term we get a transformation coefficient in front of
the integral: ∫

Ii

s(u)j φk,i(x) dx =
∆xi
2

∫ 1

−1
s(u)j Pk(ξ) dξ .

e conversion of the flux integral introduces also the inverse of the transformation coefficient
due the derivative with respect to the x-variable and becomes:∫

Ii

f(u)j
d
dx

(
φk,i(x)

)
dx =

∫ 1

−1
f(u)j

d
dξ

(
Pk(ξ)

)
dξ .

emean value of an element is easily computed and given by the coefficient of the zeroth
order polynomial:

ūj,i ≡
1

∆xi

∫
Ii

uj(x) dx =
1

∆xi

∫
Ii

p∑
k=0

u⃗j,k,i φk,i(x) 1 dx

=
1

∆xi

p∑
k=0

u⃗j,k,i

∫
Ii

φk,i(x)φ0,i(x) dx =
∆xi
2∆xi

p∑
k=0

u⃗j,k,i
2

2k + 1
δk0 = u⃗j,0,i . (3.4)

3.1.2 2d: Reference triangle

For two dimensional problems we chose the triangle as our element shape. Our reference
triangle is shown in Figure 3.1. We will denote the coordinates in the reference frame by ξ
and η. e trial functions will be constructed such that the coefficients are equal to the mean
for p = 0, the midpoints p = 1 (squares in figure) and the midpoints and vertices (circles

16

3.1. Basis functions

in figure) for p = 2 is choice is orthogonal for p ≤ 1 and makes it easy to calculate the
minimum or maximum on an element using just the coefficients and simplifies the calculation
of the coefficient for the Lax-Friedrichs flux. For p = 0 the trial function is:

ψ1(ξ, η) = 1, (3.5a)

for p = 1 the trial functions are:

ψ1(ξ, η) = 1 + ξ + η, ψ2(ξ, η) = −ξ, ψ3(ξ, η) = −η , (3.5b)

and for p = 2 the trial functions are:

ψ1(ξ, η) = 1 + ξ + η + ξη, ψ4(ξ, η) =
1
2(ξ + η)(1 + ξ + η),

ψ2(ξ, η) = −(ξ + η)(1 + η), ψ5(ξ, η) =
1
2ξ(1 + ξ), (3.5c)

ψ3(ξ, η) = −(ξ + η)(1 + ξ), ψ6(ξ, η) =
1
2η(1 + η) .

Since the trial equations are not orthonormal for all p we will state the mass matrices. For
p = 0 it is given by: [

2
]
, (3.6a)

for p = 1:
2

3

1 1
1

 , (3.6b)

and for p = 2

1

90



32 16 16 −4
16 32 16 −4
16 16 32 −4
−4 6 −1 −1

−4 −1 6 −1
−4 −1 −1 6

 . (3.6c)

¹e Kronecker delta is one if i = j and zero otherwise.

(-1,-1) (1,-1)

(-1,1)

1 2

3η

ξ

Figure 3.1: e reference triangle for 2d equations.

17

Chapter 3. Implementation details

For the numerical computation it is desirable to transform an element to the reference
triangle. If we use the labels as shown in Figure 3.1, we have the following transformation for
every element i:[

x
y

]
=

1

2

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

] [
ξ
η

]
+

1

2

[
x2 + x3
y2 + y3

]
≡ Ai

[
ξ
η

]
+ Bi . (3.7)

is transformation is linear for the faces and the interior of the element in contrast to quadri-
laterals for which the transformation is only linear on the faces.

Using these basis functions, the solution in an element can be wrien as:

u(x)

∣∣∣∣
Ii

=

L∑
k=1

u⃗k,i φk,i(x), φk,i(x) = ψk

(
A−1
i

[
x− Bi

])
, (3.8)

where L is the number of basis functions. is is not equal to p + 1 anymore since we have
now more coordinates. e mean for p = 0 is simply the coefficient of the constant. For p = 1
and p = 2 it is given by:

ūi =
1

3

[
u⃗1,i + u⃗2,i + u⃗3,i

]
. (3.9)

e integral terms need to be converted to the reference triangle. Using the determinant
of Ai (3.7) this is given for the source term by:∫

Ki

s(u)j φk,i(x, y) dxdy = det Ai

∫
Kref

s(u)j ψ(ξ, η) dξdη .

To integrate the element flux integrals we need the derivatives of the transformation. ey can
be derived from (3.7) and for element i they are given by:

dξ
dx = (A−1

i)1,1 =
(Ai)2,2
detA ,

dη
dx = (A−1

i)2,1 = −(Ai)2,1
detA ,

dξ
dy = (A−1

i)1,2 = −(Ai)1,2
detA ,

dη
dy = (A−1

i)2,2 =
(Ai)1,1
detA .

is leads to the following flux integrals on the reference triangle:∫
Ki

f(u)j
d
dx

(
φk,i(x, y)

)
dxdy

=

∫
Kref

f(u)j

[
(Ai)2,2

d
dξ

(
ψ(ξ, η)

)
− (Ai)2,1

d
dη

(
ψ(ξ, η)

)]
dξdη ,

∫
Ki

g(u)j
d
dy

(
φk,i(x, y)

)
dxdy

=

∫
Kref

g(u)j

[
(Ai)1,1

d
dη

(
ψ(ξ, η)

)
− (Ai)1,2

d
dξ

(
ψ(ξ, η)

)]
dξdη .

e line integrals are on the reference triangle are on the standard domain for Gaussian quadra-
ture for a one dimensional line. No extra transformation has to be done. e line integral is
multiplied with ℓ/2 where ℓ is the length of the boundary.

18

3.2. Numerical quadrature

3.2 Numerical quadrature

As outlined in the previous chapter, we will calculate the integrals via Gauss quadrature rules.
e Gauss quadrature rules are, like many other quadrature methods, a weighted sum over
specific points – also called abscissae – of the integrand. In one dimension the quadrature is
done on the reference interval [−1, 1] and is accurate for polynomials up to order 2n− 1 for n
integration points. In formula: ∫ 1

−1
f(ξ) dξ ≈

n∑
i=1

f(xi)wi . (3.10)

e formulas for specific abscissae xi and weights wi, can be found in numerous places, for
example in Abramowitz and Stegun [1] or Wikipedia. We used a five point approximation for
the integrals in one dimension and for the line integrals in two dimensions ey are given up
to double precision in Table 3.1

A two dimensional integral in a non-square shape is more difficult. For a square the ab-
scissae and weights can be used of the one dimensional case in each direction. In a triangle
the abscissae and weights can be derived using the same principles as in the one dimensional
case. e resulting equations are, however, difficult to solve. We used the table from Solin
et al. [28] as displayed in Table 3.2, which is accurate for polynomials up to fih order and is
given in double precision. e position of the abscissae can be seen in Figure 3.2. e formula
for applying the Gauss quadrature is given by:∫

∆
f(ξ, η) dξdη ≈

n∑
i=1

f(xi, yi)wi . (3.11)

Table 3.1: Numerical quadrature abscissae and
weights for the interval [−1, 1] order p = 9, [28]

xi wi (weight)

−0.906179845938664 0.236926885056189
−0.538469310105683 0.478628670499366

0 0.568888888888889
0.538469310105683 0.478628670499366
0.906179845938664 0.236926885056189

19

Chapter 3. Implementation details

Table 3.2: Numerical quadrature abscissae and weights for the reference tri-
angle order p = 5, [28]

xi yi wi (weight)

−0.333333333333333 −0.333333333333333 0.450000000000000
−0.059715871789770 −0.059715871789770 0.264788305577012
−0.059715871789770 −0.880568256420460 0.264788305577012
−0.880568256420460 −0.059715871789770 0.264788305577012
−0.797426985353088 −0.797426985353088 0.251878361089654
−0.797426985353088 0.594853970706174 0.251878361089654
0.594853970706174 −0.797426985353088 0.251878361089654

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 3.2: Numerical quadrature abscissae for the reference triangle order p = 5.

20

Chapter 4
WBAP limiter

4.1 Introduction

e DG method introduces non-physical oscillations near discontinuities or steep gradients
when solving the hyperbolic equations with high resolution schemes. An important method in
suppressing these oscillations is the use of limiters. Limiters use information from neighboring
elements to limit the gradients in the cell to physical values.

An important class of limiters for conservation laws are slope limiters with total variation
diminishing property. e total variation is given analytically by [30]:

TV(u) =
∫
Ω
|u′(x)|dx , (4.1)

which for convergence purposes can be viewed at fixed times t = tn and is given on a mesh
by:

TV(un) =
∑
i

|uni+1 − uni | . (4.2)

e total variation diminishing property is then given by:

TV(un+1) ≤ TV(un), ∀n . (4.3)

If the TVD property holds, no new local extrema are generated and existing local minima and
maxima do not decrease, respectively, increase. More importantly, it also implies no numer-
ical oscillations. e admissible region for slope limiters which guarantees that they satisfy
the TVD property is the Sweby region [29]. Minmod and superbee limiters are well known
examples.

However, schemes with a TVD property are only second order accurate – an improvement
on the first order accuracy due to Godunov’s theorem – and have to be applied dimension by
dimension on higher dimensional problems and unstructured grids. eWBAP limiter tries to

21

Chapter 4. WBAP limiter

overcome these problems. Our interest in this limiter lies in the fact that it is smooth, which is
expected to be helpful in the iterative method used to solve the algebraic equations resulting
from an implicit time integration method.

4.2 Definition of the WBAP

e WBAP limiter is introduced by Li et al. [22] for finite volume schemes on unstructured
grids. It is based on the biased averaging procedure (BAP) of Choi and Liu [6] because this
method has a number of aractive properties: very simple, efficient, parameter free, differ-
entiable and applicable on unstructured grids. ey improved the method in [6] by using the
weight function in the averaging procedure and therefore call it the weighted biased averaging
procedure (WBAP). Additionally, they introduced a free parameter to control the dissipation
and introduced a way to preserve self-similarity.

e limiter is introduced in the finite volume framework and is based on the gradients
computed by a central difference scheme:

σ̄i =
1

2

[
ūi+1 − ūi

1
2(∆xi +∆xi+1)

+
ūi − ūi−i

1
2(∆xi−1 +∆xi)

]
=

ūi+1 − ūi
∆xi +∆xi+1

+
ūi − ūi−i

∆xi−1 +∆xi
, (4.4)

where ū denotes the mean value as computed in the finite volume scheme. For uniform grids
it simplifies greatly to

σ̄i =
1

2∆x
[ūi+1 − ūi−i] . (4.5)

Li et al. proposed the limiter in two versions, the first one is mainly of theoretical use
to prove the TVD property in the MUSCL framework and to show why the WBAP limiter is
capable of removing oscillations. is proof does not extend to the second version. e second
version is used in practice because it is easier to extend to multiple dimensions. e WBAP
limiter is given as:

L(σ̄0, σ̄1, σ̄2, · · · , σ̄J) = σ̄0 ·W (1, σ̄1
σ̄0
, σ̄2
σ̄0
, · · · , σ̄J

σ̄0
) , (4.6)

with σ̄0, the reconstructed gradient in the element and σ̄j , j = 1, · · · , J , the gradients of the
neighboring elements. e easiness in extending the limiter to multiple dimensions lies in the
fact that one can just add gradients to the limiter for each extra neighboring element. e
WBAP limiter compares the gradients divided by its first argument, the unlimited gradient,
and limits the ratio’s inW , which is given by:

W (θ0, θ1, θ2, · · · , θJ) = B−1

 J∑
j=0

ωjB(θj)

 , (4.7)

22

4.2. Definition of the WBAP

where B is the biased function and ωj , j = 0, · · · , J are the weights. ey consider the
following bias and weight function:

B(χ) =
χ√

ϵ2 + χ2
, ωj =

αj∑J
j=0 αj

, (4.8a)

B−1(χ) =
ϵχ√
1− χ2

, αj =

{
n

B(θj)2+δ
if j = 0

1
B(θj)2+δ

otherwise
, (4.8b)

with ϵ a positive parameter, which is a measure for the dissipativity of the limiter and δ a small
positive number to prevent division by zero. We will use throughout this report a value of
10−10 for δ. e n in the formula for αj is the weight of the unlimited gradient – i.e. the
gradient which would be used without limiting – of an element relatively to its neighboring
elements. is n is adjustable to let the unlimited gradient weigh more or less and thus alter
the strength of the limiter. In the case of n→ ∞ the limiter does not act at all.

4.2.1 Different versions

Together with the previous definition, two limited versions of (4.7) are introduced in [22] to
reduce the complexity of the formula’s and the associated computational cost and numerical
roundoff errors. e ϵ in (4.8) can have a value in (0,∞). Based on numerical results it has
a positive correlation with the dissipative property of the limiter. Limiting ϵ to the lower and
upper bound of this range, give two different versions:

WL1(1, θ1, · · · , θJ) = lim
ϵ→0

W (1, θ1, · · · , θJ) =


√

n+J
n+

∑J
j=1

1/θ2j
if θ1, · · · , θJ > 0

0 otherwise
, (4.9)

WL2(1, θ1, · · · , θJ) = lim
ϵ→∞

W (1, θ1, · · · , θJ) =
n+

∑J
j=1

1/θj

n+
∑J

j=1
1/θ2j

. (4.10)

It is easily seen that the first case, (4.9), is not smooth anymore for the lines θi = 0. It is,
however, continuous in zeroth order and continuously differentiable for all other points. In
addition to those limiter versions, they propose an alternative for the WBAP-L2 limiter, using
the same zero case as with the WBAP-L1.

WL2a(1, θ1, · · · , θJ) =

{
WL2(1, θ1, · · · , θJ) if θ1, · · · , θJ > 0

0 otherwise
. (4.11)

is is motivated by the Sweby region [29] as for x < 0 the limiter should be zero. In Figure 4.1
the WBAP-limiters are shown for J = 1 and n = 1.¹ One can see from the figure that the
WBAP-L1 and the alternative WBAP-L2 fall in the Sweby region and hence satisfy the TVD
property. However, for J > 1, as used even for the one dimensional setup, only a TVD-like
property can be proven. Namely, a maximum principle that the new values are contained
within the values of a stencil of five neighboring elements.

¹e alternative WBAP-L2 limiter is just the WBAP-L1 limiter in the second quadrant and the WBAP-L2 limiter
in the first.

23

Chapter 4. WBAP limiter

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

θ
1

W
(1

,θ
1
)

Sweby region

WBAP, ε = 1, n = 1

WBAP−L1, n = 1

WBAP−L2, n = 1

Figure 4.1: e different WBAP-limiters for J = 1 with Sweby-TVD region for comparison.

4.2.2 Smoothness

In [22], the WBAP limiter W is stated to be smooth, i.e. continuously differentiable. But the
function L is not smooth when σ̄j = 0 for all j ∈ 0, · · · , J . e problem lies in the fact that
all arguments are divided by σ̄0 in the argument of the limiter function W and its result is
multiplied by σ̄0 again. If we look at the first derivative in the second term in the simple case
of J = 1 :

∂

∂σ̄1
L(σ̄0, σ̄1) =

∂

∂σ̄1

[
σ̄0W (1, σ̄1/σ̄0)

]
= D2W (1, σ̄1/σ̄0) , (4.12)

we can show that the limit of (0, 0) is undetermined. First, we transform the problem into polar
coordinates:

σ̄0 = r cosφ σ̄1 = r sinφ ,

which makes (4.12):
∂

∂σ̄1
L(σ̄0, σ̄1) = D2W (1, tanφ) . (4.13)

We see that the derivative is independent of the Euclidean distance, r = |(σ̄0, σ̄1)|. However,
(0, 0) is equivalent with r = 0 and any φ. So if this derivative D2L depends on φ, the limit
in (0, 0) cannot exist, and hence the derivative cannot be continuous at that point. Looking
at what φ = arctan σ̄1/σ̄0 represents, it is clearly from the purpose of a limiter – changing the
ratio of σ0 and σ1 – that it will not be independent of φ. It can easily be extended to J > 2 by
seing all σ̄j = 0 for j > 1 and repeat the argument.

e non-smoothness for the limiters can cause problems in solving our algebraic equations.
Due to the non-linearity of the spatial DG operator and limiter, methods will be used which

24

4.3. Application to the Discontinuous Galerkin method

need the Jacobian of the function that has to be solved. e problem is that the Jacobian due
to the non-smoothness is not defined. We will use the generalized Jacobian in the sense of Qi
[26] to solve the problem. In the generalized Jacobian we formally define the function to be
zero at those points or planes along with their derivatives.

4.3 Application to the Discontinuous Galerkin method

In contrast with the finite volume method, the DG method does not have to reconstruct a
gradient from themean values of its neighboring elements because it describes a solution on the
entire element. However, we cannot compare the gradient of the DGmethodwith the gradients
inside neighboring elements since none of those gradients can be excluded from being distorted
with numerical oscillations. To limit gradients in an element we need to construct gradients
between the elements using the mean values, which are free from numerical oscillations.

For the one dimensional case we will use gradients computed by using the means of two
neighboring elements. For the two dimensional case a reconstruction method from [22] is used
to apply the limiter in a finite volume method. e result is that our modification will only use
higher order DG information in the first argument of the WBAP limiter.

In the above sections the limiter was explained in a scalar approach. For a system of equa-
tions, there are two approaches. e first is to limit the conservative variables, which means all
conservative variables will be limited independently and the equations of the scalar case can be
copied for each variable. e second is to limit the characteristic variables. A transformation
to and from the conservative variables is needed and is given by the le eigenvectors of the
flux Jacobian and its inverse. is approach is usually more successful in limiting, but we will
use the first method since it simplifies our equations. Simple equations are beer for direct
application in the DG method, which is more an issue than its limiting capability. If it works
for the conserved variables it can of course be extended to the characteristic variables.

e following subsections will describe how the limiter is applied in the DG method for
scalars. For convenient notation we drop the index of the component in the equations and
coefficients, and describe the scalar case.

4.3.1 One dimensional application

e gradient of the DG method at an element face is calculated via the value of the solution at
the faces subtracted by its mean value.

ũ
(1)
i =

u(xi+1/2)− ūi
1
2∆xi

, ũ
(2)
i =

ūi − u(xi−1/2)
1
2∆xi

, (4.14)

By subtracting the mean value we assure conservation of the mean value of the solution. e
gradients with the neighboring elements are computed by a finite difference relation using the

25

Chapter 4. WBAP limiter

mean value in the elements. Using the operators∆+ and∆−, defined as:

∆+ūi =
ūi+1 − ūi

1
2(∆xi +∆xi+1)

, ∆−ūi =
ūi − ūi−1

1
2(∆xi−1 +∆xi)

, (4.15)

we can write the limiting procedure as:

ũ
(1,mod)
i = L(ũ(1),∆+ūi,∆−ūi), ũ

(2,mod)
i = L(ũ(2),∆+ūi,∆−ūi) . (4.16)

Using this limited gradient the coefficients of the basis functions are recovered using the same
relation as (4.14), resulting in:

u(xi+1/2) =
1

2
∆xi

(
ũ(1,mod) − ū(xi)

)
, u(xi−1/2) =

1

2
∆xi

(
ū(xi)− ũ(2,mod)

)
. (4.17)

Note that for k ≤ 2 the recovery is unique. For k > 2 we have extra freedom in the recovery.
To solve the algebraic equations originating from the implicit time integration we would

like an explicit formula for the limiting procedure. is will be needed for the Jacobian of the
operator. Using our Legendre polynomials as basis functions, the values at the boundaries are
given by:

u(xi+1/2) = u⃗0,i + u⃗1,i + · · ·+ u⃗p,i, u(xi−1/2) = u⃗0,i − u⃗1,i + · · ·+ (−1)p u⃗p,i .

is results in an explicit formula which is for k = 1

u⃗lim1,i =
∆x

2
L
(

2
∆x u⃗1,i, ∆+u⃗0,i, ∆−u⃗0,i

)
, (4.18)

and for k = 2:

u⃗lim1,i =
∆x

4

(
LA + LB

)
, u⃗lim2,i =

∆x

4

(
LA − LB

)
, (4.19a)

with LA and LB being defined as:

LA = L
(

2
∆x(u⃗1,i + u⃗2,i),∆+u⃗0,i,∆−u⃗0,i

)
, (4.19b)

LB = L
(

2
∆x(u⃗1,i − u⃗2,i),∆+u⃗0,i,∆−u⃗0,i

)
. (4.19c)

4.3.2 Two dimensional application

In two dimensions the limiting procedure is more complicated, as almost all things are in di-
mensions higher than one. We have to compare the gradients in two directions, but because of
the triangulation and the use of our reference element, the elements are rotated relative to each
other and the gradients are given in different directions than the x,y relative to the domain.
is will be addressed in the first part of this section. In the second part the reconstruction us-
ing information from the neighbors will be addressed. Both parts will end in explicit formula
which will be combined such that the derivatives can easily be derived in Chapter 5.

26

4.3. Application to the Discontinuous Galerkin method

Converting a local element gradient to global gradient

We will use the absolute x and y position of the grid to limit the solution in two dimensions,
erefore, we first have to project our solution in the trial space into the linear space Z =
(1/2, ξ + 1/3, η + 1/3) relative to the reference triangle. e mean in this basis is given only by
the coefficient of the first basis function in our reference triangle. Using (3.5) we can formulate
the transformation matrix Ŵ and its inverse as:

Ŵ =

1
3

1
3

1
3

1 −1 0
1 0 −1

 , Ŵ−1 =

1 1/3 1/3
1 −2/3 1/3
1 1/3 −2/3

 , (4.20)

We only need the transformation to and from the last two components. erefore we define
that by W and the pseudo inverse W−1.

W =

[
1 −1 0
1 0 −1

]
, W−1 =

 1/3 1/3
−2/3 1/3

1/3 −2/3

 , (4.21)

We do not loose any information since we will add the mean value aer the limiter is applied.
In this way the mean value is conserved which is a natural requirement for a limiter.

Using this basis the transformation to the absolute x and y components is done using the
inverse transpose of the transform matrix (3.7). e total transform is given by:[

σx
σy

]
= A−T

i ·W · u⃗i , (4.22)

and going back is done using the inverse and adding the mean value:

u⃗i = W−1 · AT
i ·

[
σx
σy

]
+ ūi . (4.23)

e limiter is applied to the x and y gradient separately. Introducing L̃ as a 2 × 2 operator
defined by:

L̃([x1, y1]
T, · · · , [xn, yn]T) =

[
L(x1, · · · , xn)
L(y1, · · · , yn)

]
, (4.24)

we describe this mathematically and the procedure can be given for an element i as:

u⃗lim:,i = W−1 · AT · L̃
(
A−T
i ·W · u⃗:,i, · · ·

)
+ ū:,i . (4.25)

Computing gradients using neighboring elements

To calculate the various gradients used in the limiter from information in neighboring elements
we will use a method from finite volume schemes. For every element i we define a so-called
first order reconstruction polynomial by:

ũi(x− xi) = ūi +∇ui · (x− xi) , (4.26)

27

Chapter 4. WBAP limiter

in which ūi is the mean value of the element, xi the centroid and∇ui are the two coefficients to
be determined. For a linear reconstruction it is sufficient to choose the neighboring elements,
labeled Si = j1, j2, j3, as the reconstruction stencil. e best reconstruction preserves the cell
average on every cell of the stencil. is leads to the equations:

1

|Kj |

∫
Ki

ũi(x− xi) dxdy = ūj , j ∈ Si , (4.27)

with |Ki| the area of element i. e equations constitute an overdetermined system of equa-
tions for elements not connected to the boundary. For elements connected to the boundary,
however, we have an equal number of unknowns and equations or an underdetermined prob-
lem. In those cases the system of equations is too stiff and elements with a common vertex in
the element considered are added to the system. We will designate the set used for the recon-
struction with Ŝi ⊃ Si to prevent unnecessary separation of interior and boundary elements.
Common practice is to give neighboring elements a larger weight when they are closer to the
element where the data is limited. erefore we introduce ωi as weight function defined as the
inverse distance between the centers:

ωij =
1

|xj − xi|
. (4.28)

If we move the given mean value ūi to the right hand side in (4.27), we obtain the final recon-
struction equations:

ωij

|Kj |

∫
Ki

∇ui · (x− xi) dxdy = ωij

(
ūj − ūi

)
, j ∈ Ŝi . (4.29)

e weight is on both sides since we will convert the overdetermined system to a minimization
problem and the weights are to be considered with respect to the residue of the equation.

e overdetermined system of equations can easily be solved by themethod of least squares.
Since (4.29) is linear we can write it in matrix form as:

min∥Bi · ∇ui − βi∥L2 ,

with Bi and βi being defined as:

(Bi)j,1 =
ωij

|Kj |

∫
Ki

(
∇ui

)
1
(x− xi) dxdy,

(Bi)j,2 =
ωij

|Kj |

∫
Ki

(
∇ui

)
2
(y − yi) dxdy,

(βi)j = ωij(ū(Ŝi)j
− ūi) .

Solving a minimization problem is equal to solving the following normal equations

BTi · Bi · ∇ui = BTi · βi ,

which has as solution
∇ui = R−1

i QT
i · βi , (4.30)

with Qi and Ri being the QR decomposition of Bi. Note that the le hand side of (4.29) does
not depend on u⃗, but only on the chosen mesh. So with a fixed mesh the other gradients are a
simple matrix multiplication with the means of the elements of Ŝi.

28

4.4. Derivatives of the WBAP

Applying the limiter

e limiter is applied only to elements that share a side, even if more neighboring elements
were used in the reconstruction process. is set is still denoted by Si. With (4.30) we can fill
the second and higher arguments into (4.25) and give a complete expression of how to apply
the limiter

u⃗limi = W−1 · AT
i · L̃

(
A−T
i ·W · u⃗i, R−1

(Si)1
QT
(Si)1

· β(Si)1 , · · ·
)
+ ūi . (4.31)

4.3.3 Time integration with limited DG discretization

e application of the limiter with an explicit Runge-Kua method is trivial. is can be done
aer each time step or stage of the method. For an implicit method, the limiter has to be
integrated into the system of algebraic equations. is changes (2.32) for the implicit Euler
time integration method to²

un+1 = L
(
un +∆tD(un+1)

)
, (4.32)

and for the Crank-Nicolson time integration method (2.33) to

un+1 = L
(
un +

∆t

2

[
D(un) +D(un+1)

])
, (4.33)

whereL is the limiter operator which is simply the explicit formula of the limiters, (4.18), (4.19)
in one dimension and (4.31) in two dimensions, applied for each component of the hyperbolic
system and to each element in the mesh.

4.4 Derivatives of the WBAP

Since we need to take the derivative of the limiter operator in the Newton method used to solve
the non-linear algebraic equations, we will also need the derivatives of theWBAP limiters. is
section will give the equations of the derivatives. e WBAP-L1 limiter is given explicitly by:

L1(σ0, σ1, · · · , σl) =



√
n+l

n/σ2
0 + 1/σ2

1 + · · ·+ 1/σ2
l

if σ0, σ1, · · · , σl > 0,

−
√

n+l

n/σ2
0 + 1/σ2

1 + · · ·+ 1/σ2
l

if σ0, σ1, · · · , σl < 0,

0 otherwise,

(4.34)

²Dropping the arrow and indices out the notation for clarity

29

Chapter 4. WBAP limiter

for which the derivatives for the non-zero case are given by:

Di L1(σ0, σ1, · · · , σl) =
ni

(n+ l)σ3i
L1(σ0, σ1, · · · , σl)3, (4.35)

with

ni =

{
n if i = 1,

1 otherwise.
(4.36)

e WBAP-L2 limiter is given explicitly by:

L2(σ0, σ1, · · · , σl) =

0, σ0 = 0 ∨ σ1 = 0 ∨ · · · ∨ σl = 0,
n/σ0 + 1/σ1 + · · ·+ 1/σl

n/σ2
0 + 1/σ2

1 + · · ·+ 1/σ2
l

, otherwise,
(4.37)

for which the derivatives for the non-zero case are given by:

Di L2(σ0, σ1, · · · , σl) =
2ni
σ3i

n/σ0 + 1/σ1 + · · ·+ 1/σl

(n/σ2
0 + 1/σ2

1 + · · ·+ 1/σ2
l)

2

− ni
σ2i

1
n/σ2

0 + 1/σ2
1 + · · ·+ 1/σ2

l

.

(4.38)

e original WBAP limiter is given explicitly by:

L(σ0, σ1, · · · , σl) =
ϵ σ0B√
1−B2

, (4.39a)

with

B =

n
C0

√
ϵ2+1

+
σ1/σ0

C1

√
ϵ2+(σ1σ0)

2
+ · · ·++

σl/σ0

Cl

√
ϵ2+(σlσ0

)
2

n
C0

+ 1
C1

+ · · ·+ 1
Cl

, (4.39b)

and

C0 = δ +
1

ϵ2 + 1
, Ci = δ +

(
σi
σ0

)2
ϵ2 +

(
σi
σ0

)2 , i > 1 . (4.39c)

e derivatives of this function are quite complicated. ey are:

D1 L2(σ0, σ1, · · · , σl) = ϵ
B −B3 − σ1

σ0

∂B
∂σ1

− · · · − σl
σ0

∂B
∂σl

(1−B2)3/2
, (4.40a)

Di L2(σ0, σ1, · · · , σl) =
ϵ ∂B
∂σi

(1−B2)3/2
, i > 1 , (4.40b)

30

4.4. Derivatives of the WBAP

with

∂B

∂σi
=


1− σi

σ0

dCi
dσi

Ci
− (σi/σ0)

2

ϵ2+(σiσ0
)
2

Ci

√
ϵ2 +

(
σi
σ0

)2 +B

dσi
dCi

C2
i


/{

n

C0
+

1

C1
+ · · ·+ 1

Cl

}
(4.40c)

dCi

dσi
= 2

σi/σ0

ϵ2 +
(
σi
σ0

)2
{
1− (σi/σ0)2

ϵ2 +
(
σi
σ0

)2
}
. (4.40d)

31

32

Chapter 5
Non-linear solvers

From the previous chapters we were le with non-linear equations that we have to solve each
time step, equations (2.32), (4.32) for the backward Eulermethod and (2.33), (4.33) for the Crank-
Nicolson method. is chapter deals with the (damped) Newton method to solve these non-
linear algebraic equations. Several methods exist to solve non-linear equations. Well-known
methods are the secant method, the Newton method, quasi-Newton methods, conjugate gradi-
ent methods (CG), steepest descent, Levenberg-Marquadt and many others. All these methods
are iterative methods, i.e. each iterative step refines the solution and the process is repeated
until a certain tolerance is reached.

We use the damped Newton method which is a variant of the Newton method. e Newton
method uses a second order approximation and is easy to implement. e second order approx-
imation results in second order local convergence in the number of iterations. e damped
Newton method is a modification to the Newton method that damps the step size when the
solution is not in the area of local convergence and has good results for global convergence.

e Newton method needs the Jacobian of the operators D and L. ese will be derived
first. Subsequently, the Newton method is introduced and the damped Newton modification to
deal with the limited convergence radius of the original Newton method.

5.1 Jacobian

5.1.1 One dimensional DG operator

To calculate D(1) we will use again the spatial DG operator per element i and component j,
D(1)

i,j in (2.28), as starting point. e neighbors of an interior element are just (i−1) and (i+1),
which limits the derivative to the components and basis functions of elements (i− 1, i, i+ 1).

33

Chapter 5. Non-linear solvers

ey are given by:

∂

∂u⃗b,a,i

(
Mi · D

(1)
i,j (u⃗)

)
=

∫
Ii

[
∇s(u)

]
b,j
φ:,i φa,i dx+

∫
Ii

[
∇f(u)

]
b,j

d
dx

(
φ:,i

)
φa,i dx

−
[
∇1f̂

(
u(x−i+1/2), u(x

+
i+1/2)

)]
b,j
φ:,i(x

−
i+1/2)φa,i(x

−
i+1/2)

+
[
∇2f̂

(
u(x−i−1/2), u(x

+
i−1/2)

)]
b,j
φ:,i(x

+
i−1/2)φa,i(x

+
i−1/2),

(5.1a)

∂

∂u⃗b,a,i+1

(
Mi · D

(1)
i,j (u⃗)

)
=

−
[
∇2f̂

(
u(x−i+1/2), u(x

+
i+1/2)

)]
b,j
φ:,i(x

−
i+1/2)φa,i+1(x

+
i+1/2), (5.1b)

∂

∂u⃗b,a,i−1

(
Mi · D

(1)
i,j (u⃗)

)
=[
∇1f̂

(
u(x−i+1/2), u(x

+
i+1/2)

)]
b,j
φ:,i(x

+
i−1/2)φa,i−1(x

−
i−1/2), (5.1c)

with ∇1f̂ and ∇2f̂ defined as the gradient in the first and second argument in the numerical
flux. In the one dimensional case we used a global α so the gradients of the numerical flux are
given by:

∇1f̂(a, –) =
1

2

[
∇f(a) + α a I

]
, ∇2f̂(–, b) =

1

2

[
∇f(b)− α b I

]
. (5.2)

with I being the identity matrix. Note that the Lax-Friedrichs flux is linear in its arguments,
which simplifies the expressions for the gradients.

5.1.2 Two dimensional DG operator

To calculate D(2) we will use again the spatial DG operator per element i and component j,
D(1)

i,j in (2.28), as basis. Furthermore we use the notation ∂F, ∂1F and ∂2F for

∂F = (∇f,∇g), ∂1F̂ = (∇1f,∇1g), ∂2F̂ = (∇2f,∇2g) . (5.3)

Although our α depends on the solution we do not include this in the notation, but we do
take the solution dependence of α into account in the derivative. Otherwise notation would be
unnecessarily complicated. e gradients of the fluxes are given by (for g similar relations are
obtained):

∇1f̂(a, –) =
1

2

[
∇f(a) · n̂+ α I a

]
, ∇2f̂(–, b) =

1

2

[
∇f(b) · n̂− α I b

]
. (5.4a)

34

5.1. Jacobian

e derivatives are then given by

∂

∂u⃗b,a,i

(
Mi · D

(2)
i,j (u⃗)

)
=

∫
Ki

[
s(u)

]
b,j
φ:,i φa,i dxdy +

∫
Ki

[
∂F(u) · ∇φ:,i

]
b,j
φa,i dxdy

−
∫
∂Ki

{[
∂1F̂(u−, u+)j · n̂

]
b,j
φa,i −

1

2

∂α(u⃗:,:,i)

∂u⃗b,a,i

(
u+ − u−

)}
φ:,i ds, (5.5a)

∂

∂u⃗b,a,l

(
Mi · D

(2)
i,j (u⃗)

)
= −

∫
∂Ki∩∂Kl

{[
∂2F̂(u−, u+)j · n̂

]
b,j
φa,l

− 1

2

∂α(u⃗:,:,i)

∂u⃗b,a,l

(
u+ − u−

)}
φ:,i ds, l ∈ Si . (5.5b)

e derivative with respect to α is given for our basis functions as

∂α(u⃗:,:,i)

∂u⃗b,a,l
=


∂λf (u⃗:,a,i)

∂u⃗b,a,l
n̂x +

∂λg(u⃗:,a,i)

∂u⃗b,a,l
n̂y if (·, a, l) = maxloc

x=[1,d],y=[1,p],z=(i,l)
λ(u⃗x,y,z)

0 otherwise
,

(5.6)
where the maxloc operator returns the position of the maximum value of its argument and λf
and λg are the eigenvalues of the flux functions.

5.1.3 One dimensional WBAP limiter

For k = 1 the Jacobian of the limiter viewed as an operator on the DG coefficients, can be
calculated straightforwardly from (4.18). L is used again to denote the limiter operator. We
drop the index for the components in the equations, similar to Chapter 4.

∂L(u⃗)0,i
∂u⃗0,j

= δij , (5.7a)

∂L(u⃗)1,i
∂u⃗1,j

= δij D1L(
2

∆xi
u1,i,∆+u⃗0,i,∆−u⃗0,i), (5.7b)

and off diagonal by

∂L(u⃗)1,i
∂u⃗0,i−1

=− ωi,i−1 D3L(
2

∆xi
u1,i,∆+u⃗0,i,∆−u⃗0,i), (5.7c)

∂L(u⃗)1,i
∂u⃗0,i

=− ωi,i−1 D2L(
2

∆xi
u1,i,∆+u⃗0,i,∆−u⃗0,i),

+ ωi,i+1 D3L(
2

∆xi
u1,i,∆+u⃗0,i,∆−u⃗0,i), (5.7d)

∂L(u⃗)1,i
∂u⃗0,i+1

= ωi,i+1 D2L(
2

∆xi
u1,i,∆+u⃗0,i,∆−u⃗0,i), (5.7e)

35

Chapter 5. Non-linear solvers

with ω being defined as
ωi,j =

∆xi
∆xi +∆xj

. (5.8)

Using (4.19) the derivatives for k = 2 with respect to the first argument are:

∂L(u⃗)0,i
∂u⃗0,j

= δij , (5.9a)

∂L(u⃗)1,i
∂u⃗1,j

=
δij
2

(
D1LA + D1LB

)
,

∂L(u⃗)2,i
∂u⃗1,j

=
δij
2

(
D1LA − D1LB

)
, (5.9b)

∂L(u⃗)1,i
∂u⃗2,j

=
δij
2

(
D1LA − D1LB

)
,

∂L(u⃗)2,i
∂u⃗2,j

=
δij
2

(
D1LA + D1LB

)
, (5.9c)

and with respect to the second arguments:

∂L(u⃗)1,i
∂u⃗0,i

=− ωi,i−1

2

(
D3LA + D3LB

)
+
ωi,i+1

2

(
D2LA + D2LB

)
, (5.9d)

∂L(u⃗)2,i
∂u⃗0,i

=− ωi,i−1

2

(
D3LA − D3LB

)
+
ωi,i+1

2

(
D2LA − D2LB

)
, (5.9e)

∂L(u⃗)1,i
∂u⃗0,i−1

=− ωi,i−1

2

(
D3LA + D3LB

)
,

∂L(u⃗)2,i
∂u⃗0,i−1

=− ωi,i−1

2

(
D3LA − D3LB

)
, (5.9f)

∂L(u⃗)1,i
∂u⃗0,i+1

=
ωi,i+1

2

(
D2LA + D2LB

)
,

∂L(u⃗)2,i
∂u⃗0,i+1

=
ωi,i+1

2

(
D2LA − D2LB

)
. (5.9g)

5.1.4 Two dimensional WBAP limiter

For the two dimensional case the limiter viewed as operator on the DG coefficients can be
calculated straightforwardly from (4.31). L is used again to denote the limiter operator. With
respect to the first argument of the limiter:

∂L(u⃗)k,i
∂u⃗a,i

= W−1 · AT
i · ∇

[
D̃1L

(
· · ·

)]
· A−T

i ·W+
∂ūi
∂u⃗a,i

, (5.10a)

∂L(u⃗)k,i
∂u⃗a,l

= W−1 · AT
i · ∇

[
D̃lL

(
· · ·

)]
· Yl, l ∈ Si, (5.10b)

∂L(u⃗)k,i
∂u⃗a,s

= W−1 · AT
i · ∇

[
D̃lL

(
· · ·

)]
· Zl,s, s ∈ Ŝl, l ∈ Si . (5.10c)

Note that Ŝ denotes the elements in the reconstruction process and S ⊂ Ŝ denotes the neigh-
boring elements used in the WBAP limiter. ese equations are not unique, but will overlap.

36

5.2. Newton method

eir contributions should therefore be summed up. e new matrices Yl and Zl,s are given
by:

(Yl)j,k = −
(
R−1
l QT

l · ωl

)
k

∂ūl
∂u⃗j,l

, (5.11)

(Zl,s)j,k =
(
R−1
l QT

l

)
j,s

(ωl)s
∂ūs
∂u⃗j,s

. (5.12)

Note that in the last equation the s is used as index for the matrix R−1QT and vector ωl. In this
context not the element number is meant, but the position in the set Ŝl.

5.1.5 Numerical Tests

e analytic Jacobians of the previous sections were also numerically tested. Using the central
difference scheme:

JF (u⃗):,j =
F (u⃗1, · · · , u⃗i + δ, · · · , u⃗n)− F (u⃗1, · · · , u⃗i − δ, · · · , u⃗n)

2δ
, δ = 10−6, (5.13)

for every coefficient the functions were tested with random vectors several times. e dif-
ference between the analytic and numerical Jacobian were 10−7 and 10−8 in the L1 and L∞
norm.

5.2 Newton method

e Newton(-Raphson) is a well-known method to solve non-linear root problems. e idea is
that if we have the equation:

f(x) = 0,

we can Taylor expand it to its unknown solution a from x by:

f(a) = f(x) + f ′(x)(x− a) +O
(
(x− a)2

)
= 0 .

Assuming that we are already in the neighborhood, (x− a) ≪ 1, we can truncate the second
and higher order terms and get a new and beer approximation. So given xm we can get xm+1

by:

xm+1 = xm − f(xm)

f ′(xm)
,

continuing till the absolute value of the update |xm+1 − xm|, or the function value |f(xm+1)|,
comes below a certain tolerance. Usually this is taken close to the order of the numerical
approximation on the computer. All we need is some initial guess.

is idea can be extended to a general RQ → RQ function:

vm+1 = vm − J−1
F (vm)F (vm) ,

37

Chapter 5. Non-linear solvers

with JF being the Jacobian of F . Now we will iterate until the difference between the second
to last and the last in some norm is smaller than the prescribed tolerance. Note that in the
actual computations we will solve a linear system instead of calculating the inverse.

Locally the Newtonmethod can be proved to have second order convergence in the number
of iterations. e radius of convergence can, however, be quite small. We will will use the
previous time step as initial guess, but if the time step is too large, it can diverge from the
solution.

All the above leads to the following algorithm.¹

JF (v
m)sm = −F (vm), (5.14a)
vm+1 = vm + sm, (5.14b)

with the following equations for F and JF for the backward Euler time integration method
(4.32)

F (x) = x− L
[
un +∆tD(x)

]
, (5.15a)

JF (x) = I −∆t JL
(
un +∆tD(x)

)
JD(x) . (5.15b)

and for the Crank-Nicolson time integration method (4.33)

F (x) = x− L
[
un + ∆t

2

{
D(un) +D(x)

}]
, (5.16a)

JF (x) = I − ∆t
2 JL

(
un + ∆t

2

{
D(un) +D(x)

})
JD(x), (5.16b)

with I being the identity matrix.

5.3 Damped Newton method

As mentioned before, the quadratic convergence of the Newton method is local. It has no
global convergence properties. is can be a problem for large time steps or a small radius
of convergence due to complicated algebraic equations. at is why we also need a damped
Newton iteration, which does have global convergence properties. e difference between the
damped Newton and the Newton method is that the directional variable s, calculated in (5.14),
is multiplied with a damping factor λ. is leads to the following algorithm:

JF (v
n)sn = −F (vn), (5.17a)
vn+1 = vn + λsn, λ ∈ (0, 1) . (5.17b)

Note that if λ = 1 we obtain the original Newton method.
e main idea is that you take the direction s, but control the step size λ. e only question

remaining is how to choose λ. e process is called the line-search procedure.

¹We drop the arrow and the indices from the notation for clarity

38

5.3. Damped Newton method

5.3.1 Line-sear

e process of determining λ is called line-search because until the 1960’s it was a prevailing
believe that λ should be chosen such that it minimizes the function in λ ∈ (0, 1). But compu-
tational experience has shown the importance of taking a full Newton step whenever possible
[12].

In our algorithm we therefore first try a λ = 1 step. A preset improvement is demanded to
apply λ in order to assure convergence

log
10

[
∥F (vn+1)∥ − ∥F (vn)∥

]
< −λ tol . (5.18)

Note that if tol = 0, then this is equivalent to the Armijo rule [26]. But demanding a set
improvement makes the line search faster as the method will sooner switch to damped Newton.
If this condition does not hold the λ value will be multiplied by a certain coefficient ρ until a
lower bound is reached. e set improvement is multiplied with λ to relax the condition when
a smaller step size is taken.

It should be mentioned that in the literature more sophisticated algorithms are present to
calculate λ. For example Dennis and Schnabel [12] use the Euclidean norm and convert the
non-linear equation in an optimization problem (Gauss-Newton method). Doing so gives nice
properties and gives the opportunity to use the algorithms developed for Rn → R problems
such as backtracking or by using a trust-region. e Levenberg-Marquadt [24] algorithm uses
both, namely a Gauss-Newton method combined with a trust-region method.

However, experience with the Burgers equation indicated that the Levenberg-Marquadt al-
gorithm performed equally well and backtracking performed worse than our simple algorithm.
One main difference between our algorithm and the backtracking algorithm, is that we calcu-
late the norm of the actual function rather than the norm of the coefficients. e former is more
meaningful, for the objective is to solve this underlying problem. In a test with the Burgers
equation our simple algorithm performed reasonably well, i.e. halve of the time it only needs
one step, even for large time steps.

39

40

Chapter 6
Implicit time integration of Euler
equations

e compressible Euler equations are a set of equations governing the flow of inviscid com-
pressible gasses. In this hyperbolic system mass, momentum and energy are conserved. In one
dimension the equations are given by [30]: ρ

ρu
E


t

+

 ρu
ρu2 + p
u(E + p)


x

= 0 ≡ ut + F(u)x , (6.1)

with E the total energy per unit area given by:

E = ρ
(1
2
u2 + e

)
, (6.2)

where e is the specific internal energy. We have four unknowns in these equations (ρ, u, p, e)
and only three equations. For inviscid fluids one can add the assumption that the divergence
of the velocity field is zero. For gasses we have to use an equation of state (EOS) such that we
can relate one state variable to another one. We use the caloric EOS of an ideal gas, which is
given by the simple expression:

e = e(ρ, p) =
p

(γ − 1)ρ
, (6.3)

in which γ is the ratio of the specific heats at constant pressure and volume, which is always
greater than 1.

An important concept in gas dynamics is the sound speed. e sound speed is a relative
measure for the speed of the fluid and characterizes the wave speeds. e speed of sound for a
calorically perfect gas is given by:

a =

√
γp

ρ
. (6.4)

41

Chapter 6. Implicit time integration of Euler equations

If we transform (6.1) into quasi-linear form we have:

ut + A(u) ux = 0 , (6.5)

with

A =
∂F
∂u

=

 0 1 0
−1

2(γ − 3)u2 (3− γ)u γ − 1
−γuE/ρ + (γ − 1)u3 γE/ρ − 3

2(γ − 1)u2 γu

 , (6.6)

in which the characteristic wave speeds are given by the eigenvalues of A – the Jacobian of F
– which are {u− a, u, u+ a}.

In this chapter we will test the accuracy of the different versions of the limiter and the con-
vergence properties and limiting capabilities of theWBAP limiter compared with the minmod-
TVB limiter [8]. e limiting capabilities will be tested using the Harten-Lax problem and the
blast wave problem. In these problems the minmod-TVB limiter will also be used as troubled
cell indicator. When the limiter returns something else in the first argument it is a troubled
cell and will be limited.

is troubled cell indicator is motivated by the notion that the limiter introduces extra dif-
ficulty in solving the algebraic equations and restricts the radius of convergence of the New-
ton method. If we restrict the limiter only to those elements which need limiting we remove
unnecessary complications in solving of the algebraic equations and hopefully achieve beer
convergence properties. e sensitivity to indicate troubled cells is governed by theM variable
in the minmod-TVB limiter. IfM is too low, elements will wrongly be marked as troubled, and
ifM is too large necessary limiting will be omied.

We will use a uniform grid and a non-uniform grid to check if the limiter also works for
the laer grid. e non-uniform grid is given by:

∆xi =

{
3H
2N if i is odd
1H
2N if i is even

(6.7)

with H the length of the domain, which is equal to 1 for this problem. is grid is highly
artificial since it has a 3 to 1 ratio in every neighboring element.

6.1 Accuracy

To test the order of accuracy we need a continuous problem since discontinuous problems
always have some artificial viscosity in the numerical solution. is results in a smooth tran-
sitions and a large error in the discontinuity. We will use the following initial condition on the
domain of x ∈ [0, 1] with periodic boundary conditions:ρu

p

 (x) =

1 + 1
2 sin(2π x)

1
1

 . (6.8)

42

6.2. Harten-Lax problem

e exact solution is given by:ρu
p

 (x, t) =

1 + 1
2 sin(2π(x− t))

1
1

 . (6.9)

Results for a uniform mesh are given in Table 6.1 and for a non-uniform mesh in Table 6.2.
From the results we see that the WBAP limiter achieves second order accuracy in the L1 norm
and around 1.5 in the L∞ norm, which is suboptimal. e WBAP-L1 limiter is beer than the
WBAP-L2 limiter, with the original WBAP limiter somewhere in between. e minmod-TVB
limiter is as good as the unlimited case on a uniform grid as can be expected from the proof
and the fact that we have a smooth solution. e absolute error of the minmod-TVB limiter is
the same as the WBAP limiters on non-uniform grids, but the order of the error is lower than
the order 1.5 of the WBAP limiters.

6.2 Harten-Lax problem

e Harten-Lax problem is a shock tube problem. It is used to test the capability of limiters in
capturing strong shock waves and contact discontinuities. Aside from those it also creates a
rarefaction wave. e initial solution is given by:

(ρ, u, p)T(x) =

{
(0.445, 0.698, 3.528)T if x ≤ 1

2

(0.5, 0, 0.0571)T if x > 1
2

. (6.10)

e constant M for the minmod-TVB limiter is set atM = 0.1, which is reasonable for this
problem. We want to test two things with this test case. First, we want to test the convergence
properties of the limiter as a function of the time step and compare with the minmod-TVB
limiter and the unlimited case. Our hope is that the convergence properties remain unchanged
or that the number of iterations is smaller than used in the forward Euler method with max-
imum possible time step given by the CFL condition. Secondly, we want to investigate what
the properties of the various limiters are. e analytic solutions of this Riemann problem are
obtained from Chapter 4 in [30]. e non-linear equation (4.5) in that chapter is solved using
the Newton-Raphson method as described in Section 5.2.

6.2.1 Convergence of the iterative method as a function of the time step

In Figure 6.1 the number of iterations is ploed against the relative time step for a uniform grid
and in Figure 6.2 for a non-uniform grid.

e most important thing we notice, is that limiters worsen the convergence properties of
the non-linear solver. If no limiter is applied, no damping in the Newton method is needed
for any time step up to 8∆tCFL. e damping makes the convergence of the Newton method
slower and grows when the time step is enlarged. However, the WBAP-L1 limiter can still be
applied at t = 12∆tCFL whereas the case without limiter halts for this time step.

43

Chapter 6. Implicit time integration of Euler equations

Table 6.1: Density accuracy test for the Euler equations using the Crank-Nicolson time integration
method, p = 1,∆t= 2.0CFL and tfinal = 0.5 on a uniform grid.

Case N L1 error Order L∞ error Order

Unlimited 10 5.59e-03 1.62e-02
20 1.28e-03 2.13 4.19e-03 1.95
40 3.11e-04 2.04 1.07e-03 1.97
80 7.70e-05 2.01 2.71e-04 1.98
160 1.92e-05 2.00 6.83e-05 1.99

WBAP-L1, n = 1 10 9.27e-02 1.84e-01
20 2.85e-02 1.70 6.60e-02 1.48
40 7.71e-03 1.89 2.51e-02 1.39
80 1.80e-03 2.10 9.32e-03 1.43
160 4.12e-04 2.13 3.42e-03 1.45

WBAP-L1, n = 5 10 3.94e-02 1.00e-01
20 1.38e-02 1.51 3.69e-02 1.44
40 3.06e-03 2.17 1.34e-02 1.46
80 6.73e-04 2.18 4.83e-03 1.47
160 1.51e-04 2.15 1.75e-03 1.46

WBAP-L2, n = 1 10 1.24e-01 2.30e-01
20 3.81e-02 1.70 8.37e-02 1.46
40 1.12e-02 1.77 3.25e-02 1.37
80 2.61e-03 2.10 1.21e-02 1.42
160 5.91e-04 2.14 4.43e-03 1.45

WBAP-L2, n = 5 10 5.38e-02 1.32e-01
20 2.08e-02 1.37 4.91e-02 1.43
40 4.63e-03 2.16 1.81e-02 1.44
80 1.03e-03 2.16 6.57e-03 1.46
160 2.27e-04 2.19 2.36e-03 1.48

WBAP, ϵ = 1, n = 3 10 6.81e-02 1.53e-01
20 2.47e-02 1.46 5.57e-02 1.46
40 5.66e-03 2.12 2.07e-02 1.43
80 1.28e-03 2.15 7.54e-03 1.46
160 2.81e-04 2.19 2.71e-03 1.47

Minmod-TVB 10 5.59e-03 1.62e-02
20 1.28e-03 2.13 4.19e-03 1.95
40 3.11e-04 2.04 1.07e-03 1.97
80 7.70e-05 2.01 2.71e-04 1.98
160 1.92e-05 2.00 6.83e-05 1.99

44

6.2. Harten-Lax problem

Table 6.2: Density accuracy test for the Euler equations using the Crank-Nicolson time integration
method, p = 1,∆t= 2.0CFL and tfinal = 0.5 on a non-uniform grid.

Case N L1 error Order L∞ error Order

Unlimited 10 1.47e-02 4.06e-02
20 4.09e-03 1.85 1.43e-02 1.50
40 1.05e-03 1.97 4.16e-03 1.79
80 2.60e-04 2.01 1.10e-03 1.92
160 6.47e-05 2.01 2.80e-04 1.97

WBAP-L1, n = 1 10 8.47e-02 1.61e-01
20 2.59e-02 1.71 5.50e-02 1.55
40 7.61e-03 1.77 2.15e-02 1.36
80 1.94e-03 1.97 8.02e-03 1.42
160 4.79e-04 2.02 2.98e-03 1.43

WBAP-L1, n = 5 10 4.47e-02 9.92e-02
20 1.53e-02 1.55 3.59e-02 1.47
40 4.11e-03 1.89 1.30e-02 1.46
80 1.05e-03 1.97 4.90e-03 1.41
160 2.58e-04 2.03 1.83e-03 1.43

WBAP-L2, n = 1 10 1.03e-01 1.94e-01
20 3.28e-02 1.66 6.88e-02 1.49
40 9.87e-03 1.73 2.71e-02 1.34
80 2.49e-03 1.99 1.02e-02 1.41
160 6.11e-04 2.03 3.81e-03 1.42

WBAP-L2, n = 5 10 5.98e-02 1.26e-01
20 2.01e-02 1.57 4.55e-02 1.47
40 5.23e-03 1.95 1.66e-02 1.45
80 1.32e-03 1.98 6.26e-03 1.41
160 3.22e-04 2.04 2.33e-03 1.42

WBAP, ϵ = 1, n = 3 10 6.73e-02 1.37e-01
20 2.23e-02 1.60 4.82e-02 1.50
40 5.98e-03 1.90 1.80e-02 1.42
80 1.50e-03 1.99 6.75e-03 1.42
160 3.67e-04 2.03 2.50e-03 1.43

Minmod-TVB 10 3.64e-02 1.01e-01
20 1.33e-02 1.46 3.64e-02 1.47
40 3.58e-03 1.89 1.70e-02 1.10
80 8.89e-04 2.01 7.16e-03 1.25
160 2.14e-04 2.06 2.76e-03 1.38

45

Chapter 6. Implicit time integration of Euler equations

2 4 6 8 10 12
0

5

10

15

20

25

30

∆t / t
cfl

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

ti
m

e
 s

te
p

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

WBAP−L1, troubled cell

reference

Figure 6.1: e mean number of iterations per time step with the standard deviations (divided by five) of the
Harten-Lax problem for different time step sizes with different limiters on a uniform grid (N = 100) with p = 1
and tfinal = 0.1 using the backward Euler time integration method. A reference line is included to denote the
number of time steps needed for an explicit method with∆t = ∆tCFL

2 4 6 8 10 12
0

5

10

15

20

25

30

∆t / t
cfl

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

ti
m

e
 s

te
p

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

WBAP−L1, troubled cell

reference

Figure 6.2: emean number of iterations per time stepwith the standard deviations (divided by five) of the Harten-
Lax problem for different time step sizes with different limiters on a non-uniform grid (N = 100) with p = 1 and
tfinal = 0.1 using the backward Euler time integration method. A reference line is included to denote the number
of time steps needed for an explicit method with∆t = ∆tCFL

46

6.2. Harten-Lax problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

x

ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

x

u

exact

unlimited

Figure 6.3: e solution of the Harten-Lax problem showing density and velocity on a uniform grid (N = 200)
with p = 1, ∆t = 2 = ∆tCFL at tfinal = 1.5 using the backward Euler time integration method. e rectangle
denotes the region shown in Figures 6.4 and 6.5.

A second important observation is that the WBAP-L1 limiter and the alternative WBAP-L2
limiter have beer convergence properties than the original WBAP limiter and the WBAP-L2
limiter. However, the former limiters are more discontinuous as they limit the gradient in an
element to zero when the signs of the arguments are not equal with all the compared gradients.
Application of the troubled cell method does not seem to give a significant improvement in the
convergence properties of the WBAP-L1 limiter.

6.2.2 Limiter accuracy

In order to compare the capabilities of the various limiters we look at solution at t = 1.5,
zoomed in at the discontinuitywhere the oscillationswill arise. is is the contact discontinuity
and the shock wave. In Figure 6.3 the region of interest is depicted and the exact solution in the
whole domain is shown together with a solution without limiter. For clarity, we only take the
WBAP-L1 limiter variant of the available WBAP limiter versions. e other limiter versions
produce almost identical results provided they converge. e results are shown in Figure 6.4
for a uniform grid and in Figure 6.5 for a non-uniform grid.

On a uniform grid there are no oscillations at all, even for the unlimited case. However, the
troubled cell approach does affect the values of the density, which probably indicates an over-
sensitivity for troubled cells (M to low). is is contradictory to the non-uniform grid, where
the WBAP-L1 limiter with troubled cell indicator does not remove the numerical oscillations
and points to an undersensitivity for troubled cells.

47

Chapter 6. Implicit time integration of Euler equations

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
1.2

1.25

1.3

1.35

1.4

x

ρ

unlimited

WBAP−L1, n=1

minmod−tvb

WBAP−L1, troubled cell

exact

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
1.4

1.45

1.5

1.55

1.6

u

x

Figure 6.4: Detail of the numerical solution of the Harten-Lax problem showing density and velocity on a uniform
grid (N = 200) with p = 1,∆t = 2 = ∆tCFL and tfinal = 1.5 using the backward Euler time integration method.

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
1.2

1.25

1.3

1.35

1.4

x

ρ

unlimited

WBAP−L1, n=1

minmod−tvb

WBAP−L1, troubled cell

exact

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
1.4

1.45

1.5

1.55

1.6

u

x

Figure 6.5: Detail of the numerical solution of the Harten-Lax problem showing density and velocity on a non-
uniform grid (N = 200) with p = 1, ∆t = ∆tCFL and tfinal = 1.5 using the backward Euler time integration
method.

48

6.3. Blast wave problem

Compared with the minmod-TVB limiter, the WBAP limiter works good. It removes all the
oscillations and has relatively small overshoots. Combined with the result of the convergence
the WBAP-L1 limiter is the best limiter in this test.

6.3 Blast wave problem

e blast wave problem is also a shock tube problem just like the Harten-Lax problem, only
much harder. Its initial solution is given by:

(ρ, u, p)T(x) =

{
(1, 0, 1000)T if x ≤ 1

2

(1, 0, 0.1)T if x > 1
2

. (6.11)

e value for the minmod-TVB limiter is set atM = 0.1.
We will perform the same tests on this problem as with the Harten-Lax problem, namely

the convergence properties of the Newton method as function of the time step and the limiting
properties.

6.3.1 Convergence of the iterative method as a function of the time step

In Figure 6.6 the number of iterations is ploed against the relative time step for a uniform grid
and in Figure 6.7 for a non-uniform grid. e results are similar as the results of the Harten-
Lax problem for a non-uniform grid, i.e. the unlimited solution converges significantly beer
than the limited solutions and the WBAP-L1 limiter and the alternative WBAP-L2 variant are
beer than the other WBAP limiters and the minmod-TVB limiter. At a uniform grid we see
some other results. e unlimited case has no solution for ∆t = ∆tCFL, and, moreover, the
convergence halts for ∆t > 6∆tCFL only when combined with the WBAP-L1 it does not. Our
guess is that the numerical oscillations of this problem are larger than in the previous problem
and hamper the convergence when the time steps are larger.

Although it would seem that the solution on a uniform grid is easier to obtain than on a
non-uniform grid and therefore this result should be the other way around, but this is not the
case. A simple explanation is that the CFL condition is based on the smallest element and for
the non-uniform grid this is relatively larger for half of the elements than on the uniform grid.
is makes a straightforward comparison between the uniform and non-uniform grid unfair.

6.3.2 Limiting accuracy

e capabilities of the various limiters are analyzed again by comparing the solutions at t = 1.5
zoomed in at the discontinuity where the oscillations will arise. is are the contact discon-
tinuity and the shock wave. In Figure 6.8 the exact solution on the whole domain is shown
and our region of interest together with a numerical solution without limiter. For clarity in the
figures, we again only show the WBAP-L1 limiter of the available WBAP limiter versions. e

49

Chapter 6. Implicit time integration of Euler equations

2 4 6 8 10 12
0

5

10

15

20

25

30

∆t / t
cfl

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

ti
m

e
 s

te
p

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

WBAP−L1, troubled cell

reference

Figure 6.6: e mean number of iterations per time step with the standard deviations (divided by five) of the blast
wave problem for different time step sizes compared with different limiters on a uniform grid (N = 100) with
p = 1 and tfinal = 0.1 using the backward Euler time integration method. A reference line is included to denote
the number of time steps needed for an explicit method with∆t = ∆tCFL

2 4 6 8 10 12
0

5

10

15

20

25

30

∆t / t
cfl

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 p

e
r

ti
m

e
 s

te
p

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

WBAP−L1, troubled cell

reference

Figure 6.7: e mean number of iterations per time step with the standard deviations (divided by five) of the blast
wave problem for different time step sizes compared with different limiters on a non-uniform grid (N = 100) with
p = 1 and tfinal = 0.1 using the backward Euler time integration method. A reference line is included to denote
the number of time steps needed for an explicit method with∆t = ∆tCFL

50

6.4. Conclusions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

x

ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−500

0

500

1000

x

p

exact

unlimited

Figure 6.8: e numerical solution of the blast wave problem showing density and pressure on a uniform grid
(N = 200) with p = 1, ∆t = 2 = ∆tCFL at tfinal = 1.5 using the backward Euler time integration method. e
rectangle denotes the region shown in Figures 6.9 and 6.10.

other versions produce almost identical results provided they converge. e results are shown
in Figure 6.9 for the uniform grid and in Figure 6.10 for the non-uniform grid.

e first thing that can be noticed is that the method has far more difficulty to get the
shape of the solution right. is is due to the backward Euler method which reduces the order
of accuracy to first order. With limiters the numerical dissipation causes the density to reduce
with about 10%. e results with the limiter are the same as for the Harten-Lax problem,
only amplified. e minmod-TVB limiter does not remove the oscillations on the non-uniform
mesh, neither does the WBAP-L1 limiter with the troubled cell indicator. eWBAP-L1 limier
computes the height of the pressure slightly beer on the non-uniform grid than the minmod-
TVB limiter, but it is the other way around on the uniform grid.

6.4 Conclusions

e main conclusion of this chapter is that the WBAP limiters can be combined with the dis-
continuous Galerkin method in combination with a backward Euler or Crank-Nicolson time
integration method. e L1 error is second order as expected and the L∞ error half an order
lower. is error is slightly beer than obtained with the minmod-TVB on non-uniform grids,
but the absolute error is of the same order.

When applied to discontinuous problems we see that the use of a limiter results in signif-
icantly more iterations in the Newton method than without a limiter. e specific increase

51

Chapter 6. Implicit time integration of Euler equations

0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77
0

2

4

6

x

ρ

0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77
400

420

440

460

480

500

p

x

unlimited

WBAP−L1, n=1

minmod−tvb

WBAP−L1, troubled cell

exact

Figure 6.9: Detail of the numerical solution of the blast wave problem showing density and pressure on a uniform
grid (N = 200) with p = 1,∆t = 2 = ∆tCFL at tfinal = 1.5 using the backward Euler time integration method.

0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77
0

2

4

6

x

ρ

0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77
400

420

440

460

480

500

p

x

unlimited

WBAP−L1, n=1

minmod−tvb

WBAP−L1, troubled cell

exact

Figure 6.10: Detail of the numerical solution of the blast wave problem showing density and pressure on a non-
uniform grid (N = 200) with p = 1, ∆t = ∆tCFL at tfinal = 1.5 using the backward Euler time integration
method.

52

6.4. Conclusions

differs significantly between the versions of the WBAP limiters. e WBAP-L1 limiter and the
alternative WBAP-L2 limiter are beer than the other versions. e difference between those
two group of limiters is that the WBAP-L1 limiter and the alternative WBAP-L2 limiter reduce
the gradient to zero if not all gradients are of the same sign. Compared to the minmod-TVB
limiter the convergence in the Newton method of the WBAP-L1 limiter are beer. e qualify
of the limited solutions are comparable. In problems with relatively large numerical oscilla-
tions the use of the WBAP-L1 limiter improves the convergence rate of the Newton method
for large time steps, since the unlimited case halts and does not converge at some point during
the iterations.

53

54

Chapter 7
Steady state solution of the Burgers
equation

In this chapter we will investigate the limiter for steady state problems. Steady state problems
arise when the input boundaries conditions are fixed in time and not periodic. Usually it comes
together with a source term which compensates the flux term when the solution has reached
steady state. e use of an implicit time integration method is advantageous because the time
step can be increased when the solution is close to steady state. is results in exponential
convergence of the solution to steady state and reduces the number of time steps dramatically.

We will investigate two different steady state problems for the inviscid Burgers equation.
e problems are taken from Chou and Shu [7]. e first problem has a source term which is
independent of the solution and the second one does depend on the solution. In both problems
we investigate the convergence of the Newton method as a function of the time step. is is
largely the same as in the previous chapter.

Also, we will study how the limiter reacts to a time step increase with respect to the con-
vergence of the steady state solution. is time step increase will be done in a simple way by
multiplying it with a fixed multiplier from an offset. is method is very simple, difficult to
tweak and error prone. For future research it would be beer to replace it with a function that
modifies the time step based on information on the convergence improvement and the current
time step.

e grids used in this chapter are the same as in the previous chapter. In the uniform grid
the elements all have the same width,∆x and is given by (6.7) for the non-uniform grid.

55

Chapter 7. Steady state solution of the Burgers equation

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

∆t / t
cfl

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s
 p

e
r

ti
m

e
 s

te
p

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

reference

Figure 7.1: e mean number of iterations per time step with the standard deviations (divided by four) of the
Burgers equationwith a source term independent of the solution for different time step sizes comparedwith different
limiters on a uniform grid (N = 100) with p = 1 at tfinal = 22 using the backward Euler time integration method.
A reference line is included to denote the number of time steps needed for an explicit method with∆t = ∆tCFL

7.1 Burgers equation with source term independent of the solution

e first problem is given by: [7]

ut +

(
u2

2

)
x

= sinx cosx, x ∈ [0, π], t ≥ 0 , (7.1)

with homogeneous Dirichlet boundary conditions u(0, t) = 0 = u(π, t) and initial condition:

u(x, 0) = β sinx . (7.2)

e solutions for this problem are sinx and − sinx, but the entropy solution is a combination
of both connected with a shock when |β| < 1. We take β = 0.5. e shock is then located at

π − arcsin
√
1− β2 =

2

3
π ≈ 2.0944 .

In Figures 7.1 and 7.2 the number of iteration steps is ploed as a function of the time steps
for a uniform, respectively, non-uniform grid. For the uniform grid the WBAP-L1 limiter
is the best limiter as it is the only limiter working for all time steps. e alternative WBAP-
L2 limiter is a good second and the other limiters are unreliable as they do not give a result
for all time steps. Minmod-TVB does not converge in the Newton method for ∆t > 5∆tCFL.
However, for non-uniform grids it is the only reasonable limiter.

In Figure 7.3 the convergence to the steady state solution of the different methods for∆t =
2∆tCFL is shown for uniform and non-uniform grids. e convergence rates are considerably
different. For the uniform grid the convergence is the same for all limiters and reaches the
numerical limit of double floating point precision. For the non-uniform grid convergence is
different. All methods do not converge to the numerical limit of double floating point precision,

56

7.1. Burgers equation with source term independent of the solution

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

∆t / t
cfl

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s
 p

e
r

ti
m

e
 s

te
p

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

reference

Figure 7.2: emean number of iterations per time stepwith the standard deviations (divided by four) of the Burgers
equationwith a source term independent of the solution for different time step sizes comparedwith different limiters
on a non-uniform grid (N = 100) with p = 1 at tfinal = 22 using the backward Euler time integration method. A
reference line is included to denote the number of time steps needed for an explicit method with∆t = ∆tCFL

0 100 200 300 400 500 600
10

−15

10
−10

10
−5

10
0

iteration #

c
o
n
v
e
rg

e
n
c
e
 ~

 |
u

n
+

1
 −

 u
n
|
/

∆
t

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

(a) Uniform grid

0 200 400 600 800 1000 1200
10

−15

10
−10

10
−5

10
0

iteration #

c
o
n
v
e
rg

e
n
c
e
 ~

 |
u

n
+

1
 −

 u
n
|
/

∆
t

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

(b) Non-uniform grid

Figure 7.3: Convergence of the steady state solution of the Burgers equation with a source term independent of
the solution for a uniform and non-uniform grid (N = 100) with p = 1, ∆t = 2∆tCFL at tfinal = 22 using the
backward Euler time integration method.

57

Chapter 7. Steady state solution of the Burgers equation

0 100 200 300 400 500 600 700 800

10
−15

10
−10

10
−5

10
0

iteration #

c
o
n
v
e
rg

e
n
c
e
c
e
 ~

 |
u

n
+

1
−

u
n
|
/

∆
t

unlimited

WBAP−L1

minmod

(a) Unlimited growth of∆t

0 100 200 300 400 500 600 700 800

10
−15

10
−10

10
−5

10
0

iteration #

c
o
n
v
e
rg

e
n
c
e
c
e
 ~

 |
u

n
+

1
−

u
n
|
/

∆
t

unlimited

WBAP−L1

minmod

(b) Limited growth of∆t

Figure 7.4: Convergence of the steady state solution of the Burgers equation with a source term independent of
the solution for a uniform grid (N = 100) with p = 1, ∆t = 2∆tCFL multiplied with 1.02 from t = 2.0 (black
bar) onwards (a) and till 300 iterations (b, designated with dashed line). Time integration is done via the backward
Euler method time integration method.

but the WBAP limiters converge two orders more. is explains why the minmod-TVB limiter
and the unlimited case have beer convergence properties in the Newton method for the non-
uniform grid as shown in Figure 7.2.

As a last test case we increase the time step with a constant factor (1.02) in every iteration
aer some time. In Figure 7.4 the convergence to the steady state solution for the unlimited
and limited solutions is shown for N = 100 and ∆t = 2∆tCFL on a uniform grid. We see
exponential convergence for the unlimited case. For the WBAP-L1 and minmod-TVB limiter
it starts with exponential convergence but stops at some point and reduces to a second order
convergence. If we stop the increase in time step, the convergence increases again to the same
exponential rate (only requiring 5 iterations to obtain machine precision convergence) as the
unlimited case.

In Figure 7.5 the unlimited and limited solutions using theminmod-TVB andWBAP limiters
are shown. All methods have the jump location at the right position and both limiters remove
the oscillations. e minmod-TVB andWBAP limiter obtain almost similar results. eWBAP
limiter is slightly less dissipative.

7.2 Burgers equation with source term depending on the solution

e second problem is given by: [7]

ut +

(
u2

2

)
x

= −π cos(πx)u, x ∈ [0, 1], t ≥ 0 , (7.3)

58

7.2. Burgers equation with source term depending on the solution

0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

unlimited
WBAP−L1
minmod
exact

2.04 2.06 2.08 2.1 2.12 2.14

−1

−0.5

0

0.5

1

1.5

x

u

Figure 7.5: e steady state solution of the Burgers equation with source term independent of the solution compared
with different limiters on a uniform grid (N = 100) with p = 1 using the backward Euler time integration method.
e solution is obtained by increasing the time step for a limited number of time steps.

with Dirichlet boundary conditions u(0, t) = 1 and u(1, t) = −1/10. is problem has two
steady state solutions with shocks:

u(x,∞) =

{
1− sinπx if 0 ≤ x < xs

− 1
10 − sinπx if xs ≤ x < 1

, (7.4)

where xs = 0.1486 or xs = 0.8514. Both solutions are entropy solutions and satisfy the
Rankine-Hugoniot jump conditions, but only the solution with the shock at 0.1486 is stable
for small perturbations. We will use the same initial condition as in [7]:

u(x, 0) =

{
1 if 0 ≤ x < 1

2 ,

− 1
10 if 1

2 ≤ x < 1,
(7.5)

where the initial jump is located in themiddle of the positions of the shock in the two admissible
steady state solutions.

In Figures 7.6 and 7.7 the number of iteration steps are ploed as a function of the time
step for uniform, respectively, non-uniform grids. e WBAP-L1 limiter is the best for the
uniform case with the alternative WBAP-L2 limiter as a closer second than the previous test.
eWBAP-L1 limiter actually improves the time step size compared to the unlimited case. For
the non-uniform grid we see again that the minmod-tvb limiter is a slightly beer candidate
than any of the WBAP limiters.

e convergence to the steady state solution of the methods for∆t = 2∆tCFL, as ploed in
Figure 7.3, is almost the same. Both reach the numerical limit of double floating point precision.
A small difference is that for the non-uniform grid the steady state oscillates more.

59

Chapter 7. Steady state solution of the Burgers equation

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

∆t / t
cfl

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s
 p

e
r

ti
m

e
 s

te
p

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

reference

Figure 7.6: e mean number of iterations per time step with the standard deviations (divided by four) of the
Burgers equation with a source term depending on the solution for different time step sizes compared with different
limiters on a uniform grid (N = 100) with p = 1 at tfinal = 22 using the backward Euler time integration method.
A reference line is included to denote the number of time steps needed for an explicit method with∆t = ∆tCFL

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

∆t / t
cfl

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s
 p

e
r

ti
m

e
 s

te
p

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

reference

Figure 7.7: emean number of iterations per time stepwith the standard deviations (divided by four) of the Burgers
equation with a source term depending on the solution for different time step sizes compared with different limiters
on a non-uniform grid (N = 100) with p = 1 at tfinal = 22 using the backward Euler time integration method. A
reference line is included to denote the number of time steps needed for an explicit method with∆t = ∆tCFL

60

7.2. Burgers equation with source term depending on the solution

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

iteration #

c
o
n
v
e
rg

e
n
c
e
 ~

 |
u

n
+

1
 −

 u
n
|
/

∆
t

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

(a) Uniform grid

0 1000 2000 3000 4000 5000 6000
10

−15

10
−10

10
−5

10
0

iteration #

c
o
n
v
e
rg

e
n
c
e
 ~

 |
u

n
+

1
 −

 u
n
|
/

∆
t

unlimited

WBAP−L1, n=1

WBAP−L2, n=3

WBAP−L2a, n=3

WBAP, ε=1,n=3

minmod−tvb

(b) Non-uniform grid

Figure 7.8: Convergence of the steady state solution of the Burgers equation with a source term depending on the
solution for a uniform and non-uniform grid (N = 100) with p = 1,∆t = 2∆tCFL at tfinal = 22 using the backward
Euler time integration method.

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−20

10
−15

10
−10

10
−5

10
0

iteration #

c
o
n
v
e
rg

e
n
c
e
c
e
 ~

 |
u

n
+

1
−

u
n
|
/

∆
t

unlimited

WBAP−L1

minmod

(a) Unlimited growth of∆t

0 500 1000 1500 2000 2500 3000 3500 4000
10

−20

10
−15

10
−10

10
−5

10
0

iteration #

c
o
n
v
e
rg

e
n
c
e
c
e
 ~

 |
u

n
+

1
−

u
n
|
/

∆
t

unlimited

WBAP−L1

minmod

(b) Limited growth of∆t

Figure 7.9: Convergence of the steady state solution of the Burgers equation with a source term depending on the
solution for a uniform grid (N = 100) with p = 1, ∆t = 2∆tCFL multiplied with 1.002 from t = 2.0 (black bar)
onwards (a) and till 1200 iterations (b, designated with dashed line). Time integration is done via the backward
Euler time integration method.

If we let the time step grow again we see the same features as with a source term indepen-
dent of the source. e convergence to steady state is shown for this test case in Figure 7.9.
For unlimited growth of the time step, the minmod-TVB and WBAP-L1 limiters reduce the
exponential convergence to a second order convergence aer a certain time step size. When
the growth is limited they achieve exponential convergence till machine precision – just for
the unlimited case – aer the fixation of the time step.

In Figure 7.10 the unlimited and limited solutions using the minmod-TVB and WBAP lim-
iters are shown. All methods converge to the stable steady state and both limiters remove the

61

Chapter 7. Steady state solution of the Burgers equation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.5

0

0.5

1

x

u

unlimited
WBAP−L1
minmod
exact

0.13 0.14 0.15 0.16 0.17
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
u

Figure 7.10: e steady state solution of the Burgers equation with source term depending on the solution compared
with different limiters on a uniform grid (N = 100) with p = 1 at tfinal = 22 using the backward Euler time
integration method. e solution is obtained by increase the time step for a limited number of time steps.

numerical oscillations. Again the WBAP-L1 limiter is slightly less dissipative.

7.3 Conclusion

In line with the previous chapter we conclude that the WBAP-L1 limiter and the alternative
WBAP-L2 limiter show improved convergence rates in the Newton method than the other
limiter variants. e convergence rate is oen beer than for the minmod-TVB limiter and
when this is not the case, either the end result differs (first problem) or the difference is small
(second problem).

Both the minmod-TVB limiter and the WBAP limiter have the same limitation regarding
the time step. At a certain time step size the convergence towards steady state is second order
until we fix the time and very fast convergence to machine precision is obtained. is time step
size is larger for the WBAP-L1 limiter than the minmod-TVB limiter. All solutions converge
to the stable steady state, but this could be a problem for solutions that have multiple steady
states closer to each other.

62

Chapter 8
Multiple steady states in a channel
contraction

8.1 Introduction

is chapter deals with a more realistic experiment considering two dimensional shallowwater
flows. In many channels one can find a contraction. In this case the domain consists of a
uniform domain followed by a linear contraction into a nozzle where the width is smaller than
at the point of entry. In the case of supercritical flow the contraction will result in one or more
oblique hydraulic jumps. From [2] we know that for certain inflow condition two steady state
solutions are possible and by including a drag coefficient another one.

If the inflow is kept constant, the system will converge to a steady state. e challenge of
this problem is to include a limiter which converges to one of the multiple steady states and
not switch between the different solutions when nothing changes at the inflow.

8.1.1 Model

e channel that is being modeled has a top overview as displayed in Figure 8.1. It is inclined
with ζ , the inclination angle. Aer the contraction we broaden the channel again to ensure that
the water pours out and does not affect our solution in the contraction. e velocity is denoted
as u = (u, v), the height with h, g is the gravity constant and t time. e two dimensional
shallow water equations read:

ht +
(
hu

)
x
+

(
hv

)
y
= 0, (8.1a)(

hu
)
t
+

(
hu2 + 1

2h
2g cos ζ

)
x
+

(
huv

)
y
= Cdu

2 + hg sin ζ, (8.1b)(
hv

)
t
+

(
huv

)
x
+

(
hv2 + 1

2h
2g cos ζ

)
y
= Cdv

2 . (8.1c)

63

Chapter 8. Multiple steady states in a channel contraction

b0

-xl 0 -xc

bc

θc
x

y

0

Figure 8.1: Model of the channel contraction

To reduce the number of constants we non-dimensionalize the system using the following
dimensionless variables (with a hat)

h = hlĥ, (x, y) = b0(x̂, ŷ), (u, v) =
√
gb0(û, v̂), t =

√
b0
g
t̂ . (8.2)

is leads to the following dimensionless equations (dropping the hat):

ht +
(
hu

)
x
+

(
hv

)
y
= 0, (8.3a)(

hu
)
t
+

(
hu2 + 1

2ϵh
2 cos ζ

)
x
+

(
huv

)
y
=
Cd

ϵ
u2 + h sin ζ, (8.3b)(

hv
)
t
+

(
huv

)
x
+

(
hv2 + 1

2ϵh
2 cos ζ

)
y
=
Cd

ϵ
v2 . (8.3c)

with ϵ = hl/b0 ≪ 1. e characteristic speed is c =
√
ϵh cos ζ and the Froude number is

defined to be:
Fr =

|u|
c

=
|u|√
ϵh cos ζ

. (8.4)

e Froude number is important because it relates the average water velocity to the charac-
teristic wave speed. In gas dynamics the Mach number plays a similar role. For flows with a
Froude number higher than 1, i.e. supercritical, the information travels slower than the water
itself resulting in hydraulic jumps to discharge the water flow. e Froude number shows up
in the momenta equations of (8.3) in the following way:

ht +
(
hu

)
x
+

(
hv

)
y
= 0, (8.5a)(

hu
)
t
+

(
hu2 +

|u|
2Fr2

)
x

+
(
huv

)
y
=
Cd

ϵ
u2 + h sin ζ, (8.5b)

(
hv

)
t
+

(
huv

)
x
+

(
hv2 +

|u|
2Fr2

)
y

=
Cd

ϵ
v2 . (8.5c)

e boundary conditions are easy for supercritical flow since we can just prescribe the
values at the inflow as:

h = hl, u = ul, (8.6)

64

8.2. Oblique hydraulic jumps

θc
θ2m+1

θ2m+3

θ2m+2

Fr2m Fr2m+1 Fr2m+2 Fr2m+3

y2m+1
y2m+2

y2m+3

y2m+4

L2m+1

L2m+2
L2m+3

Figure 8.2: Sketch of the oblique hydraulic jumps (thin solid lines) within the contraction and the definition of some
variables involved. e centerline of the channel is dashed. Channel walls are the thick lines. is is the corrected
Figure 9 from Akers and Bokhove [2].

and at the outflow we just apply Neumann boundary conditions as transparent boundary con-
ditions. For subcritical flow these boundary conditions will not work as the wave is reflected
back at the inflow from the shock and the water height and momenta will blow up at the out-
flow. Along the wall we apply the standard no normal flow boundary condition:

hu · n̂ = 0, (8.7)

8.2 Oblique hydraulic jumps

In Figure 8.2 a is sketch shown with a schematic view of the oblique hydraulic jumps and the
variables involved. If we assume an inviscid flow upstream with constant Froude number Fr0,
depth h0 and speed u = U0(1, 0) we will observe a hydraulic jump due to the collision on
the slanted walls. e oblique jumps meet symmetrically at the center and generates two new
oblique jumps which hit the slanted walls and so forth. In this paern we distinguish the odd
jumps (from the walls to the center) and the even jumps (from the center to the wall). We will
denote the odd jumps by 2m+ 1 and the even jumps by 2m+ 2.

Classical 2D theory for oblique hydraulic jumps [20] gives the following relations between
the angles θ, height h, width y, velocity U and Froude number Fr assuming no inclination and
no drag.

h2m+1

h2m
= −1

2
+

1

2

√
1 + 8Fr22m sin2 θ2m+1 =

tan θ2m+1

tan(θ2m+1 − θc)
, (8.8a)

U2m+1

U2m
=

cos θ2m+1

cos(θ2m+1 − θc)
, (8.8b)

Fr22m+1 = Fr22m
cos3 θ2m+1 sin(θ2m+1 − θc)

cos3(θ2m+1 − θc) sin θ2m+1
(8.8c)

65

Chapter 8. Multiple steady states in a channel contraction

and

h2m+2

h2m+1
= −1

2
+

1

2

√
1 + 8Fr22m+1 sin2(θ2m+2 + θc) =

tan(θ2m+2 + θc)

tan θ2m+2
, (8.9a)

U2m+2

U2m+1
=

cos(θ2m+2 + θc)

cos θ2m+2
, (8.9b)

Fr22m+2 = Fr22m+1

cos3(θ2m+2 + θc) sin θ2m+2

cos3 θ2m+2 sin(θ2m+2 − θc)
. (8.9c)

Note that (8.9) equals (8.8) by replacing θ2m+2 + θc by θ2m+1. To find the angles we have to
solve (8.8a) and (8.9a). is is the most complicated part which will be explained first. Next we
will describe the full algorithm to find all variables.

Using the following trigonometric identities and definitions

cos θ =
√

1− sin2 θ, tan θ =

√
sin2 θ

1− sin2 θ
, tan(θ1 + θ2) =

tan θ1 + tan θ2
1− tan θ1 tan θ2

, (8.10)

F = 8Fr, S = tan θc, Z = sin2 θ2m+1, (8.11)

we can rewrite¹ (8.8a) such that the solution of the following polynomial[
1+S2

]
Z5+

[
−5(1+S2)

]
Z4+

[
(1+2S2)(1−F)+1)

]
Z3+

[
(1+S2)(14+6F)−F

]
Z2

+
[
FS2(F + 2)− 3(S2 + F + 1)

]
Z +

[
− FS2(F + 6)− 9(S2 + F + 1)

]
= 0 , (8.12)

leads to the solution of the angle:

θ2m+1 = arcsin
√
Z2 − 1

F
. (8.13)

e polynomial equation (8.12) can be solved by an algorithm that find the roots of a poly-
nomial, which is available in many numerical libraries. We have used the roots function of
Matlab. If the solution to the polynomial root problem has one or more real solutions, we have
a solution to the actual problem. Likewise for the even equation (8.9a) we can solve the same
polynomial equation (8.12) only now with Z = sin2(θ2m+2+ θc) and obtain the new angle by:

θ2m+2 = arcsin
√
Z2 − 1

F
− θc . (8.14)

e algorithm to find the variables for the oblique hydraulic jumps can be described in the
following way. We start with an upstream Fr0 and the known half-channel width y1 = b0/2. So
we start with the even ‘shock‘ as known, i.e. Fr2m and y2m+1. Solving θ2m+1 using (8.12) and
(8.13), we can determine L2m+1 and y2m+2 by:

L2m+1 =
y2m+1

tan θ2m+1
. y2m+2 = L2m+1

(
tan θ2m+1 − tan θc

)
. (8.15)

¹With a lile help from Maple.

66

8.3. Simulations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

2.530

2.419

2.314

2.215

2.120

2.031

x

y

Figure 8.3: e two dimensional analytical steady state solution for the channel flow in terms of Froude numbers.
in lines denote the oblique hydraulic jumps and the thick lines are the walls. e numbers in the regions are the
local Froude number of the flow.

e Froude number Fr2m+2 can be calculated via (8.8c). Next we solve the even angle θ2m+2

using (8.12) and (8.14) and determine L2m+2 and y2m+2 by:

L2m+2 =
y2m+1

tan θ2m+1 + tan θc
. y2m+3 = L2m+2 tan θ2m+2 . (8.16)

e Froude number Fr2m+2 can be calculated via (8.9c). We have enough information to calcu-
late the odd shock again, and are at the beginning of the loop again. is has to be continued
until the total length is larger than the contraction length or the polynomial equation (8.12)
has no real solution, i.e. there is no angle. is happens when the Froude number at the le
side of the hydraulic jump is close to 1.

8.3 Simulations

In this section we will look at two different things. First, we will compare the WBAP limiter
to other known limiters to see how it performs in a two dimensional DG setup. We will use
the WBAP-L1 limiter since it is the most promising limiter from the one dimensional results.
Second, we investigate for one mesh how many iterations in the Newton process is needed
with or without the limiter for different time steps.

8.3.1 Setup

In all our simulations we will use the following parameters:

Cd = 0, ϵ = 0.1, hl = 1.0, ul = 0.8, ζ = 0 . (8.17)

Using (8.4) we come to a Froude number of 2.530 at the inflow. e oblique hydraulic jumps in
the steady state solution for these input variables are shown in Figure 8.3.

67

Chapter 8. Multiple steady states in a channel contraction

t = 0 t = 1

t = 2 t = 3

t = 4 t = 5

Figure 8.4: Snapshots of the height and Froude number (in color) of a simulation using the explicit Runge-Kua
time integration method, p = 1, Nel = 44138 and no limiting. Part 1 of 2. See Figure 8.5 for t > 5.

68

8.3. Simulations

t = 6 t = 7

t = 8 t = 9

t = 10 t = 11

Figure 8.5: Snapshots of the height and Froude number (in color) of a simulation using the explicit Runge-Kua
time integration method, p = 1, Nel = 44138 and no limiting. Part 2 of 2. See Figure 8.4 for t ≤ 5.

69

Chapter 8. Multiple steady states in a channel contraction

t = 0 t = 1

t = 2 t = 3

t = 4 t = 5

Figure 8.6: Snapshots of the height and Froude number (in color) of a simulation using the explicit Runge-Kua
time integration method, p = 1, Nel = 44138 and with the WBAP-L1 limiter. Part 1 of 2. See Figure 8.7 for t > 5.

70

8.3. Simulations

t = 6 t = 7

t = 8 t = 9

t = 10 t = 11

Figure 8.7: Snapshots of the height and Froude number (in color) of a simulation using the explicit Runge-Kua
time integration method, p = 1, Nel = 44138 and with the WBAP-L1 limiter. Part 2 of 2. See Figure 8.6 for t ≤ 5.

71

Chapter 8. Multiple steady states in a channel contraction

As initial condition we take

h0(x, y) =

{
hl if x < 0,
1
2hl if x ≥ 0,

u0(x, y) = ul, v0(x, y) = 0 . (8.18)

We cannot take the inital water height or x-velocity to be zero at the contraction, since the code
will divide by zero at some point or takes the square root of a negative number. e initial DG
coefficients can be calculated via the inner product of our trial functions, or just by using the
corresponding values of the variables at the midpoints and vertices of the elements.

In Figures 8.4 and 8.5 an example run with Nel = 44138 using the third order SSP Runge-
Kua method without any limiter is shown for several points of time up to t = 12 aer which
not much development is visible. In Figures 8.6 and 8.7 the same example run is displayed, but
now with theWBAP-L1 limiter. One can see that no limiter is used resulting in rough edges on
the hydraulic jumps which are not present in the results with the WBAP-L1 limiter. However,
the hydraulic jumps in the results with the WBAP-L1 limiter contain more dissipation.

8.3.2 Comparison with other limiters

We compare the WBAP-L1 limiter with the limiters of Barth and Jespersen [4], Venkatakrish-
nan [33] andMichalak andOllivier-Gooch [25]. To shorten the computational time and because
we didn’t calculate the Jacobian of these other limiters, we have used the explicit third order
SSP Runge Kua scheme (2.31). e results are displayed in Figure 8.8 (cross section x = 1.5),
Figure 8.9 (cross section y = 0) and Figure 8.10 (cross section y = 0.2).

In all cross sections the WBAP limiter follows the Barth-Jespersen limiter closely, which
outperforms the limiters of Venkatakrishnan andMichalak in terms of dissipation and accuracy.
Also, the limiters of Venkatakrishnan andMichalak require significantly more computing time.

In the x = 1.5 cross section the WBAP limiter gives clearly the best result since it aains
the correct value of the shock in contrast to the other limiters. Note that this limiter is not
positivity preserving. In the y = 0 cross sections one can see a small undershoot of the WBAP
limiter.

If we look at the convergence in Figure 8.11, we see that that in terms of convergence rate
the WBAP limiter does a beer job than the Barth-Jespersen limiter. e sudden increase at
the end of the domain can be contributed to the fact that our code adapts the last time step,
such that the total time is exactly the desired final time. It is the same phenomena that was
also seen in Chapter 7.

72

8.3. Simulations

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
2.3

2.35

2.4

2.45

y

F
r

unlimited

Barth−Jespersen

Venkatakrishnan

Michalak

WBAP

theoretical

Figure 8.8: Cross section of the final solution on a unstructured regular grid (Nel = 22726) with p = 1, ∆t =
0.2∆tCFL and tfinal = 20 using the third order SSP Runge Kua scheme for different limiters and the analytic
solution at x = 1.5.

0 1 2 3 4 5 6 7

2

2.1

2.2

2.3

2.4

2.5

x

F
r

unlimited

Barth−Jespersen

Venkatakrishnan

Michalak

WBAP

theoretical

Figure 8.9: Cross section of the final solution on a unstructured regular grid (Nel = 22726) with p = 1, ∆t =
0.2∆tCFL and tfinal = 20 using the third order SSP Runge Kua scheme for different limiters and the analytic
solution at y = 0.

73

Chapter 8. Multiple steady states in a channel contraction

0 1 2 3 4 5 6 7

2

2.1

2.2

2.3

2.4

2.5

x

F
r

unlimited

Barth−Jespersen

Venkatakrishnan

Michalak

WBAP

theoretical

Figure 8.10: Cross section of the final solution on a unstructured regular grid (Nel = 22726) with p = 1, ∆t =
0.2∆tCFL and tfinal = 20 using the third order SSP Runge Kua scheme for different limiters and the analytic
solution at y = 0.2.

0 2 4 6 8 10 12 14 16 18 20
10

−15

10
−10

10
−5

10
0

t

c
o
n
v
e
rg

e
n
c
e
c
e
 ~

 |
u

n
+

1
−

u
n
|
/

∆
t

unlimited

Barth−Jespersen

Venkatakrishnan

Michalak

WBAP

Figure 8.11: Convergence to the steady state solution on a unstructured regular grid (Nel = 22726) with p = 1,
∆t = 0.2∆tCFL and tfinal = 20 using the third order SSP Runge Kua scheme for different limiters and the analytic
solution.

74

8.4. Conclusions

2 4 6 8 10 12 14

2

4

6

8

10

12

14

16

18

20

∆t / t
cfl

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s
 p

e
r

ti
m

e
 s

te
p

unlimited

WBAP−L1, n=1

reference

Figure 8.12: e mean number of iterations per time step with the standard deviations (divided by five) for the
time steps 1, 2, 3, 5, 7, 9, 11, 13, 15 times∆tCFL, without and with the WBAP-L1 limiter on a unstructured regular
grid (Nel = 986) with p = 1 and tfinal = 20 using the backward Euler time integration method. A reference line is
included to denote the number of time steps needed for an explicit method with∆t = ∆tCFL

8.3.3 Convergence in the iterative method as function of the time step

In Figure 8.12 the number of iterations per time step is ploed as a function of the time step
oncemore. Due to time constraint this is only done for theWBAP-L1 limiter and the unlimited
case, although the implementation could be easily changed to other variants. e results are
worse than for the Euler equations and the steady state problems with the Burgers equation.
For the unlimited case the simulation with∆t = 13∆tCFL halted and could not be completed.
For the WBAP-L1 limiter only four of the ten different time steps succeeded.

e convergence to the steady state is ploed in Figure 8.13 for three different time steps.
For∆t = 3∆tCFL the convergence to steady state is different with theWBAP-L1 limiter, but for
larger time steps the convergence is the same with or without the WBAP-L1 limiter. Although
the convergence towards steady state for the larger time step is only 10−3, the results, whether
or not the convergence in the Newton methods halts, will not change by a longer final time.
e difficulty in convergence in the Newtonmethod is in that time region – i.e. for convergence
smaller than 10−3 – not present anymore.

8.4 Conclusions

is chapter could use some more simulations. One particular object of interest is how the
convergence to the analytic solution will be when the number of elements is increased. A
conclusion that can be made is that the WBAP-L1 limiter is comparable to the Barth-Jespersen
limiter in dissipation, but beer in converging to the steady state solution. For use in a implicit
time integration method it is less reliable than for the one dimensional equation as the problem
is harder.

75

Chapter 8. Multiple steady states in a channel contraction

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

co
nv
er
ge
nc
e

unlimited
WBAP−L1

17 17.5 18 18.5 19 19.5 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

t

co
nv
er
ge
nc
e

Figure 8.13: e convergence towards the steady state method for the time steps 3.0 (diamond), 5.0 (square) and
7.0 (circle) times ∆tCFL without and with the WBAP-L1 limiter on a unstructured regular grid (Nel = 986) with
p = 1 and tfinal = 20 using the backward Euler time integration method.

76

Chapter 9
Discussion & Conclusions

In this thesis we investigated the WBAP limiter and different variants of it. We were interested
in the WBAP limiter because it is a smooth limiter in contrast to most known limiters which
contain non-smooth switches. is property should be beneficial in iterative methods that are
used to solve the non-linear algebraic equations resulting from an implicit time integration
method.

We have successfully extended the WBAP limiter developed for finite volume methods to
the DG method in one and two dimensions. All variants performed comparable to standard
limiters known from the literature. in the limiting of numerical oscillations In the one dimen-
sional seing this was the minmod-TVB limiter, and in the two dimensional seing this is the
Barth-Jespersen limiter. In the accuracy test the order of magnitude of the errors from the
different versions of WBAP limiter were comparable to the minmod-TVB limiter for the non-
uniform grid and in absolute value they performed beer. e WBAP limiter also performed
beer in converging to the steady state solution in the two dimensional channel contraction
than the Barth-Jespersen limiter.

Although the different WBAP limiter variants perform comparable in accuracy or limiting
capabilities, they do not with respect to the convergence rate of the Newton method used to
solve the non-linear algebraic equations. ere is a clear indication that the WBAP-L1 limiter
is the preferred limiter to be used. Due to the fact that the alternative WBAP-L2 limiter is
also beer than the other variants we have to aribute this to the condition that those limiters
set the gradient to zero when not all arguments have the same sign. In Figure 4.1 those two
limiters are in the Sweby region.

Our hypothesis that smoothness would be beneficial for the iterative methods is therefore
not confirmed. e limiters significantly reduce the convergence rate of the Newton method.
e only exception is when the numerical oscillations and time step are large enough to pre-
vent the Newton method without limiter to converge. It is difficult to determine the origin of
this problem, but it might be aributed it to the extra complexity of the non-linear algebraic
equations resulting from the limiters.

77

Chapter 9. Discussion & Conclusions

9.1 Future work

Due to time constraints on the project not everything in the two dimensional problem could
be investigated. One thing to look closer into is how the limiter affects the accuracy in com-
parison with the analytic results when the number of elements is increased. Some parts of
the numerical implementation could be optimized by using an existing numerical library. Es-
pecially the custom implementation for the matrix multiplication of two sparse matrices was
slow compared to the Matlab implementation and is the main boleneck in the simulations.

e biggest problem in this research was the convergence of the damped Newton method
when a limiter was used. Since smoothness was not found to have a large impact one should
look for other Newton methods. In the current setup the limiter is being implemented as an
Rn → Rn function applied to the DG formulation. Without the limiter the convergence prop-
erties are much beer. is leads to the idea of using a semi-smooth Newton method [31]
instead and use the limiter as a constraint in solving the algebraic equations from the DG op-
erator without a limiter.

In the convergence of the steady state problems we multiplied the time step by a fixed
factor. e convergence in the Newton method is very sensitive to the size of this multiplier
when a limiter is used and one could look into the literature to see how the limiter reacts to
more sophisticated algorithms. In particular, it would be interesting if such algorithms achieve
the same exponential convergence as the Newton method without limiter and do not reduce
to second order convergence.

78

Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables. U.S. Department of Commerce, Dec. 1972. ISBN 978-
0318117300.

[2] B. Akers and O. Bokhove. Hydraulic flow through a channel contraction: multiple steady
states. Physics of fluids, 20(5):056601, 2008. ISSN 1070-6631. doi:10.1063/1.2909659.

[3] D. Arnold, F. Brezzi, B. Cockburn, and L. Marini. Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 39(5):1749–
1779, 2002. doi:10.1137/S0036142901384162.

[4] T. J. Barth and D. C. Jespersen. e design and application of upwind schemes on un-
structured meshes. In Proceedings of the 27th Aerospace Sciences Meeting, 2002.

[5] J. C. Butcher. Numerical methods for Ordinary Differential Equations. John Wiley & Sons,
2003. ISBN 0-471-96758-0.

[6] H. Choi and J.-G. Liu. e reconstruction of upwind fluxes for conservation laws: Its
behavior in dynamic and steady state calculations. Journal of Computational Physics, 144
(2):237–256, 1998. ISSN 0021-9991. doi:10.1006/jcph.1998.5970.

[7] C.-S. Chou and C.-W. Shu. High order residual distribution conservative finite difference
WENO schemes for steady state problems on non-smooth meshes. Journal of Computa-
tional Physics, 214(2):698–724, 2006. ISSN 0021-9991. doi:10.1016/j.jcp.2005.10.007.

[8] B. Cockburn and C.-W. Shu. TVB Runge-Kua local projection discontinuous Galerkin
finite element method for conservation laws II: General framework. Mathematics of Com-
putation, 52(186):411–435, 1989. ISSN 00255718. doi:10.1090/S0025-5718-1989-0983311-4.

[9] B. Cockburn and C.-W. Shu. Runge–Kua discontinuous Galerkin methods for
convection-dominated problems. Journal of Scientific Computing, 16(3):173–261, 2001.
ISSN 0885-7474. doi:10.1023/A:1012873910884.

79

http://dx.doi.org/10.1063/1.2909659
http://dx.doi.org/10.1137/S0036142901384162
http://dx.doi.org/10.1006/jcph.1998.5970
http://dx.doi.org/10.1016/j.jcp.2005.10.007
http://dx.doi.org/10.1090/S0025-5718-1989-0983311-4
http://dx.doi.org/10.1023/A:1012873910884

Bibliography

[10] S. S. Collis. Discontinuous Galerkin methods for turbulence simulation. In Center for
Turbulence Research, Proceedings of the Summer Program, 2002.

[11] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der
mathematischen Physik. Mathematische Annalen, 100(1):32–74, 1928. ISSN 0025-5831.
doi:10.1007/BF01448839.

[12] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. SIAM, 1996. ISBN 978-1611971200. doi:10.1137/1.9781611971200.

[13] S. Golieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order
time discretization methods. SIAM Reviews, 43(1):89–112, 2001. ISSN 00361445.
doi:10.1137/S003614450036757X.

[14] A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of Compu-
tational Physics, 49(3):357–393, 1983. ISSN 0021-9991. doi:10.1016/0021-9991(83)90136-5.

[15] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high order accurate
essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2):231–303,
1987. ISSN 0021-9991. doi:10.1016/0021-9991(87)90031-3.

[16] T. J. Hughes and G. M. Hulbert. Space-time finite element methods for elastodynamics:
Formulations and error estimates. Computer Methods in Applied Mechanics and Engineer-
ing, 66(3):339–363, 1988. ISSN 0045-7825. doi:10.1016/0045-7825(88)90006-0.

[17] G.-S. Jiang and C.-W. Shu. On a cell entropy inequality for discontinuous Galerkin
methods. Mathematics of Computation, 62(206):531–538, 1994. ISSN 00255718.
doi:10.1090/S0025-5718-1994-1223232-7.

[18] G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted eno schemes. Journal of
Computational Physics, 126(1):202–228, 1996. ISSN 0021-9991. doi:10.1006/jcph.1996.0130.

[19] C. M. Klaij, J. J. W. van der Vegt, and H. van der Ven. Space-time discontinuous Galerkin
method for the compressible Navier-Stokes equations. Journal of Computational Physics,
217(2):589–611, 2006. ISSN 0021-9991. doi:10.1016/j.jcp.2006.01.018.

[20] P. K. Kundu and I. M. Cohen. Fluid Mechanics. Academic Press, Feb. 2010. ISBN 978-
0123813992.

[21] W. Li and Y.-X. Ren. e multi-dimensional limiters for solving hyperbolic con-
servation laws on unstructured grids II: Extension to high order finite volume
schemes. Journal of Computational Physics, 231(11):4053–4077, 2012. ISSN 0021-9991.
doi:10.1016/j.jcp.2012.01.029.

[22] W. Li, Y.-X. Ren, G. Lei, and H. Luo. e multi-dimensional limiters for solving hyperbolic
conservation laws on unstructured grids. Journal of Computational Physics, 230(21):7775–
7795, 2011. ISSN 0021-9991. doi:10.1016/j.jcp.2011.06.018.

80

http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1137/1.9781611971200
http://dx.doi.org/10.1137/S003614450036757X
http://dx.doi.org/10.1016/0021-9991(83)90136-5
http://dx.doi.org/10.1016/0021-9991(87)90031-3
http://dx.doi.org/10.1016/0045-7825(88)90006-0
http://dx.doi.org/10.1090/S0025-5718-1994-1223232-7
http://dx.doi.org/10.1006/jcph.1996.0130
http://dx.doi.org/10.1016/j.jcp.2006.01.018
http://dx.doi.org/10.1016/j.jcp.2012.01.029
http://dx.doi.org/10.1016/j.jcp.2011.06.018

Bibliography

[23] X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes. Journal of
Computational Physics, 115(1):200–212, 1994. ISSN 0021-9991. doi:10.1006/jcph.1994.1187.

[24] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parame-
ters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.
doi:10.1137/0111030.

[25] K. Michalak and C. F. Ollivier-Gooch. Differentiability of slope limiters on unstructured
grids. In Proceedings of the 14th Annual Conference of the Computational Fluid Dynamics
Society of Canada, 2006.

[26] L. Qi. Convergence analysis of some algorithms for solving nonsmooth equations. Math-
ematics of Operations Research, 18(1):227–244, 1993. doi:10.1287/moor.18.1.227.

[27] W. Reed and T. Hill. Triangular mesh methods for the neutron transport equation. Tech-
nical Report LA-UR–73-479, Los Alamos Scientific Lab, Oct. 1973.

[28] P. Solin, K. Segeth, and I. Dolezel. Higher-Order Finite Element Methods. Chapman and
Hall/CRC, 2004. ISBN 978-1584884385.

[29] P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation
laws. SIAM Journal on Numerical Analysis, 21(5):995–1011, 1984. doi:10.1137/0721062.

[30] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, 2009.
ISBN 978-3-540-49834-6. doi:10.1007/b79761.

[31] M. Ulbrich. Semismooth Newton Methods for Variational Inequalities and Constrained
Optimization Problems in Function Spaces. SIAM, 2011. ISBN 978-1611970692.
doi:10.1137/1.9781611970692.

[32] B. van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel
to Godunov’s method. Journal of Computational Physics, 32(1):101–136, 1979. ISSN 0021-
9991. doi:10.1016/0021-9991(79)90145-1.

[33] V. Venkatakrishnan. Convergence to steady state solutions of the Euler equations on
unstructured grids with limiters. Journal of Computational Physics, 118(1):120–130, 1995.
ISSN 0021-9991. doi:10.1006/jcph.1995.1084.

81

http://dx.doi.org/10.1006/jcph.1994.1187
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1287/moor.18.1.227
http://dx.doi.org/10.1137/0721062
http://dx.doi.org/10.1007/b79761
http://dx.doi.org/10.1137/1.9781611970692
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.1006/jcph.1995.1084

82

Acknowledgment

Aer seven years my study has come to an end. In this last year I worked full time on this
research and learned a lot about numerical methods for PDE’s, in particular the discontinuous
Galerkin method and the use of limiters, but also additional techniques on how to convert the
mathematics into code. It is fair to say that this was a great learning experience, and valuable
addition to the classroom theory acquired from earlier years.

Half of the research was conducted at Brown University in the United States. Studying
abroad was something on my checklist and my experience in and around Providence was very
pleasant. During my stay at Brown I had the pleasure to have Chi-Wang Shu as an advisor.
Despite being a highly cited author and popular speaker, he shows interest in his students and
his open office policy is encouraging to show results and discuss them. e classes I aended
were of a high quality and given by enthusiastic professors. ey broadened and deepened my
understanding of numerical methods for PDE’s. Together with the seminars with researchers
from different applications I enjoyed the glimpse into the wonderful world of applied mathe-
matics.

In the Netherlands I finished the research under supervision of Jaap van der Vegt and Onno
Bokhove. I enjoyed the weekly meetings with Jaap and am thankful for the helpful pointers
and articles. It was good to see how the more theoretical mathematics from Brown can be
applied in more application focused research in Twente.

Most work in this research was done individually with the help of my supervisors. How-
ever, I would like to thank Sirui Tan for easing the path in the introduction to DG and limiters
and the pointers on how to find the source of the inevitable bugs. A last thanks to the Dutch
government, which provided me with a large scholarship. Large enough to not only provide
in my means of support, but which also supported my exploration of the land of the free. e
oppurtunity to live in a foreign culture was an addition to my cultural baggage, which in my
opinion is a necessary complement to the academic skills learned in college for every academic
student.

83

	Introduction
	Discontinuous Galerkin method
	One dimensional hyperbolic systems
	Numerical flux
	Boundary conditions
	Entropy

	Two dimensional hyperbolic systems
	DG discretization
	Trial functions
	Method of lines for time integration
	Time integration

	Implementation details
	Basis functions
	1d: Legendre polynomials
	2d: Reference triangle

	Numerical quadrature

	WBAP limiter
	Introduction
	Definition of the WBAP
	Different versions
	Smoothness

	Application to the Discontinuous Galerkin method
	One dimensional application
	Two dimensional application
	Time integration with limited DG discretization

	Derivatives of the WBAP

	Non-linear solvers
	Jacobian
	One dimensional DG operator
	Two dimensional DG operator
	One dimensional WBAP limiter
	Two dimensional WBAP limiter
	Numerical Tests

	Newton method
	Damped Newton method
	Line-search

	Implicit time integration of Euler equations
	Accuracy
	Harten-Lax problem
	Convergence of the iterative method as a function of the time step
	Limiter accuracy

	Blast wave problem
	Convergence of the iterative method as a function of the time step
	Limiting accuracy

	Conclusions

	Steady state solution of the Burgers equation
	Burgers equation with source term independent of the solution
	Burgers equation with source term depending on the solution
	Conclusion

	Multiple steady states in a channel contraction
	Introduction
	Model

	Oblique hydraulic jumps
	Simulations
	Setup
	Comparison with other limiters
	Convergence in the iterative method as function of the time step

	Conclusions

	Discussion & Conclusions
	Future work

	Bibliography
	Acknowledgment

